
Solving the Labeling Problem
A Byzantine Fault-Tolerant Self-Stabilizing FPGA

Prototype based on the FATAL+ Protocol

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Technische Informatik

eingereicht von

Markus Hofstätter
Matrikelnummer 0725034

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Ulrich Schmid
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Matthias Függer

Wien, 17. Juni 2013
(Unterschrift Verfasser/in) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Solving the Labeling Problem
A Byzantine Fault-Tolerant Self-Stabilizing FPGA

Prototype based on the FATAL+ Protocol

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Markus Hofstätter
Registration Number 0725034

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Ulrich Schmid
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Matthias Függer

Vienna, June 17, 2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Markus Hofstätter
Dechant-Neidlgasse 10, 2223 Klein-Harras

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser/in)

i

Acknowledgements

I want to thank my familiy and friends for their support over the years that made the thesis
possible. Moreover I want to thank my advisor, Matthias Függer and Christoph Lenzen for their
feedback, suggestions and effort put into my thesis.

iii

Abstract

The topic of this thesis lies in the intersection of VLSI design and fault-tolerant distributed al-
gorithms. It is devoted to the development of an FPGA implementation of the well-known syn-
chronous Phase King consensus algorithm using single-bit serial communication and the design
of a suitable testbench for verifying its operation. The implementation is finally integrated into
an existing prototype and testbench of the self-stabilizing Byzantine fault-tolerant distributed
clock generation scheme FATAL+, where it is used to generate 17-bit wide synchronized clocks
without increasing the stabilization time of the underlying scheme. The thesis also explores
implementation alternatives and provides the correctness proofs of the employed algorithm.

v

Kurzfassung

Das Thema dieser Masterarbeit liegt im Querschnitt der Gebiete VLSI-Design und fehlertole-
ranter verteilter Algorithmen. Sie ist einer FPGA Implementierung des bekannten synchronen
Phase King Konsensus Algorithmus mittels 1-bit serieller Kommunikation und der Entwicklung
einer entsprechenden Testumgebung gewidmet. Die Implementierung wurde darüberhinaus mit
einem bereits existierenden Prototyp eines selbst-stabilisierenden, fehlertoleranten verteilten Al-
gorithmus zur Taktgenerierung integriert, um ohne Verlängerung der Stabilisierungszeit 17-bit
breite synchronisierte Uhren zur Verfügung stellen zu können. Die Arbeit untersucht auch mög-
liche Implementierungsalternativen und enthält die Korrektheitsbeweise der verwendeten Algo-
rithmen.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The problem . 3
1.3 The solution . 3
1.4 Aim of the work . 4
1.5 Structure of the thesis . 4

2 State of the art 5
2.1 Hardware-level distributed systems . 5
2.2 Digital Logic . 16
2.3 Metastability . 22
2.4 Synchronous circuits and state machines . 25
2.5 Asynchronous circuits and state machines . 30
2.6 Globally Asynchronous and Locally Synchronous Systems 39
2.7 Designflow . 44

3 FATAL+ and the Labeling solution 51
3.1 Pulse synchronization with FATAL+ . 51
3.2 (M, l)-labeling problem . 59
3.3 Related Work . 60
3.4 Solution algorithm . 62
3.5 Proofs . 64

4 Implementation 69
4.1 Components . 69
4.2 Threshold Modules . 70
4.3 Lock-step synchronous round communication 79
4.4 Synchronous FSM . 83

5 Experiments 89
5.1 Hardware and Software . 89
5.2 Testbenches . 90
5.3 Experimental Validation . 96
5.4 Results . 99

ix

6 Conclusion 103
6.1 Summary of accomplishments . 103
6.2 Critical reflection and future work . 103

A Thesis directory contents 109

Bibliography 113

x

CHAPTER 1
Introduction

1.1 Motivation

Over the past years, continuously shrinking feature sizes facilitated Very Large Scale Integra-
tion (VLSI) circuits that contain more transistors, switch faster and are still energy efficient [33].
Most of these circuits are designed under the monolithic fault-free synchronous design paradigm.
A single control signal, called the clock, is distributed via a clock tree [35] all across the circuit
and a global reset is used to simultaneously initialize the entire circuit. The clock itself is gen-
erated by an oscillator circuit that produces a periodic signal of the desired frequency. However,
due to varying delays (uncertainty) along the paths and logic in between, it is not possible in
practice to distribute the clock and reset signals to the required elements such that signal tran-
sitions happen simultaneously. These transition variations are a result of environment effects
(e.g. temperature and noise) and process variance in the production of the circuit. If faster cir-
cuits are desired, it is necessary to minimize delays, which in turn allows to decrease the clock
period. Especially the delay uncertainty needs to be made as small as possible to maintain the
assumption of simultaneity on an abstract level, i.e. to establish synchrony. Maintaining this
requirement becomes increasingly complex due to the overwhelming amount of logic to which
the clock must be distributed. As a result, the clock tree consumes a significant part of the over-
all chip area and energy, because the delay uncertainty is reduced by inserting delays either via
longer wires or buffer-logic [52].

Another drawback of the synchronous design paradigm becomes apparent if parts of the chip
shall be made fault-tolerant or at least more robust against faults. If clock or reset fail, the whole
systems is likely to fail (single point of failure). Except for special safety critical and reliable
applications such as in medical, aerospace and space products, not much effort has been put in
fault-tolerance mechanisms in VLSI circuits [80]. However, due to increasing technology and
process variations and shrinking signal voltages the assumptions of no or restricted faults do not
hold anymore [7, 16, 22, 58, 61]. Thus, some effort has been put into improving architectural
measures and process technology to ensure robust circuits.

1

Fault-tolerance or robustness measures involve redundancy to make a component less likely
to fail. An often used architectural concept in fault-tolerant implementations is Triple Modular
Redundancy (TMR). In its simplest form, a component that shall be made fault-tolerant is repli-
cated three times (ensemble) [47]. The ensemble outputs are merged into a single output by a
voting component (e.g. majority vote on each output bit) either in all receiver components or
once in the TMR ensemble if the voter is sufficiently robust and not likely to fail. TMR is only
able to cover the failure of a single component of the ensemble, which poses a problem in high
failure rate scenarios. A more fine-grained approach is to increase the robustness of the modules
itself used to build a component. For example, many components contain memory or storage
cells to maintain the current state of algorithms, but any VLSI circuit can be affected by environ-
mental effects like high-energy ionizing particles. These particles are able to induce charge into
the circuits and may thus flip a stored bit in the memory cells, called Single Event Upset (SEU).
One approach to mitigate induced charges in memory cells is to use Dual Interlocked Storage
Cells (DICE) [12], which is a redundant storage cell. If one of the two cells flips its stored bit
and the effect of the particle hit decays fast enough, the second cell will force the failed cell into
the correct state again. Depending on the implementation, it is not guaranteed, however, that the
readout is correct while one of the cells is still erroneous.

So, on one hand, maintaining a single global clock becomes more difficult and leads to a
single point of failure. On the other hand, fault-tolerant distributed algorithms and fault-recovery
algorithms benefit from the availability of global synchrony, because it allows to implement lock-
step synchronous rounds and provides a global time base to the system. For example, such a time
base may be used to construct global schedules necessary to coordinate message transmissions
and actions performed by the system globally.

In many newer Systems on Chip (SoC) the single global clock is replaced by multiple,
usually independent and unrelated, clocks. This Globally Asynchronous Locally Synchronous
(GALS) [13] design paradigm is spreading rapidly [40,77,83]. Each subsystem is implemented
synchronously, using its own clock domain, and is hence able to run at its own pace. The in-
terfaces between the subsystems use asynchronous design styles. If the clocks are completely
unrelated, the subsystems may violate each others’ interface requirements sometimes, resulting
in possible undesired behaviour like metastability (see Chapter 2.3). Fault-tolerant distributed
algorithms, in which the nodes execute their algorithms independently of each other and just
exchange information across their interfaces, share similar requirements as GALS systems.

The special multi-synchronous GALS systems [64] are of particular interest to designers.
Herein the available clocks are not completely unrelated, but maintain the same nominal fre-
quency with a possibly unknown but bounded phase relation. The combined standard local syn-
chrony plus availability of a global time base allow to implement metastability-free high-speed
communication across the clock domains [64].

However, it is apparent that fault-tolerant approaches, for generating multi-synchronous
clocks for GALS systems, are needed. Due to the increasing vulnerability w.r.t. transient faults,
it may even be necessary to implement self-stabilizing mechanisms in order to recover from fault
bursts that may have left the whole system in an unspecified resp. undesired state.

2

1.2 The problem

Sound models, correctness proof and a prototype implementation of a Byzantine fault-tolerant
and self-stabilizing pulse synchronization algorithm (FATAL+) for multi-synchronous GALS
systems have been developed in [26, 66]. The solution consists of a “fast” Byzantine fault-
tolerant pulse generation algorithm FATAL+, which generates tightly synchronized high-frequency
clock pulses at all correct nodes. For self-stabilization, it relies on a lower-level slow pulse syn-
chronization algorithm FATAL that is able to recover from an arbitrarily corrupted system state.
Moreover FATAL+ provides a bounded synchronized clock (BSCLK) driven by the fast pulses
(which offers less than 8-bit in the current prototype).

Given the high clock frequency achieved by FATAL+, fast wrap-arounds (overflows) of the
BSCLK are inevitable. Since enlarging the width of the FATAL+ BSCLK would increase the
stabilization time of both FATAL and FATAL+ significantly, the problem to be solved in this
thesis was to extend the width of the synchronized clocks to 24, . . . , 64-bits atop of BSCLKs
by solving the labeling problem: The challenge is to maintain labels at every node, which are
the same at all correct nodes and are incremented whenever the BSCLK wraps around (i.e.,
overflows).

Since the BSCLK is self-stabilizing it must be ensured that once the underlying protocol
has stabilized the extended clock stabilizes as well, i.e., fulfills its specification eventually at all
correct nodes, even in the presence Byzantine faulty nodes. If all correct nodes have stabilized
their labels must not be influenced by faulty nodes and a label that became corrupted by a
transient fault at some node must be recovered to match the labels of the correct nodes. In
a fault-free scenario, i.e., where all nodes are correct, metastable upsets must not occur after
stabilization. During stabilization and in the presence of faults, the upset probability should be
as low as possible. To guarantee scalability, the algorithm must be restricted to use serial (i.e.,
1-bit) channels.

1.3 The solution

The solution algorithm [39] is based on the well-known synchronous Phase King [10] consensus
algorithm, which outputs the same input value of a correct node at all correct nodes. The Phase
King algorithm can be implemented efficiently if it is used to solve 1-bit (i.e., binary) consensus.
Hence the labeling problem is first reduced to the 1-bit consensus problem, by agreeing on every
label bit. If all correct nodes already maintain the same label, all correct nodes will keep it as
their candidate otherwise they will reset the candidate label to 0. The required synchrony is
provided by the lowest bit of the short clock of FATAL+, and the label is set to the incremented
candidate at the wrap-around of the BSCLK to ensure progress. Furthermore, the wrap-around
of the BSCLK is used to reset every node into the initial state of the labeling algorithm, which
implements the self-stabilization mechanism. As a result, the labeling algorithm guarantees
stabilization within 2 short clock wrap-arounds after FATAL+ has stabilized.

3

1.4 Aim of the work

The primary task of this thesis was to develop a Field-programmable gate array (FPGA) im-
plementation of the solution described in [39] and a suitable testbench for verifying its proper
operation. For integration testing the implementation was finally combined with an existing
implementation and testbench of the FATAL+ clock generation scheme [26]. The resulting so-
lution algorithm provides wide synchronized clocks that stabilize eventually even in the presence
of Byzantine faulty nodes.

The results are:

• An implementation of the above algorithm and all necessary components in digital logic
using VHDL. This includes concepts for an efficient and glitch-free serial communica-
tion between partially asynchronous state machines as well as an efficient Phase King
consensus implementation.

• Both a standalone testbench and an integration into the existing testbench of the FATAL+

protocol. These testbenches shall provide insights into possible problems, limitations and
performance as well as validate the correctness of theoretical results.

• Synthesis and experimental evaluation of a fully-fledged FPGA-prototype.

1.5 Structure of the thesis

As this thesis lies in the domain of VLSI design and distributed algorithms, an overview of the
basics of both fields is presented in Chapter 2. Next, the structure and implementation of the
underlying FATAL+ protocol and its interfaces are explained, followed by a detailed description
of the solution algorithm for the labeling problem along with its correctness proofs in Chapter
3. Chapter 4 evaluates some implementation options for the necessary modules and provides an
overview of the final implementation. Finally the testbenches and the results of the experimental
evaluation are provided in Chapter 5. The thesis is concluded in Chapter 6, which summarizes
the accomplishments and reflects on the achieved goals.

4

CHAPTER 2
State of the art

The following chapter will provide a brief overview about digital hardware design and its chal-
lenges, the typical design flow, timing analysis, asynchronous and synchronous circuits and
FPGA structures. Furthermore, it will provide important definitions and logic concepts of (fault-
tolerant) distributed systems, which will be streamlined toward compatibility with digital hard-
ware design. The description will integrate the general framework developed in [25, 40] with
classic distributed computing models [55].

2.1 Hardware-level distributed systems

A distributed system consists of a finite set of (independent) computing nodes V = {1, . . . , n}
connected via communication links. The endpoints of a link are called input resp. output ports.
A link may be a physical wire on the chip, on a printed circuit board (PCB) or even an off-
board communication channel like a wireless link. Obviously, it takes some amount of time to
communicate with another node over a link, which is known as the link delay. The delays are
not stable and may vary within the interval [dmin, dmax] as mentioned in the introduction. The
lower and upper bound is the minimum delay dmin and the maximum delay dmax respectively,
and their difference is referred to as jitter resp. delay uncertainty. If at least the bound dmax is
known the link is called a bounded delay link.

Typical distributed systems employ one of the following two communication styles for com-
munication among nodes:

Event-based: Event-based communication (classic message passing) transmits messages over
the link, which are explicitly stored in a buffered output port by the sender and are deliv-
ered via a buffered input port after reception. The ports store the messages until the link
is ready to transmit resp. the recipient is ready to process them. Starting the transmission
resp. processing of a message will remove it from the corresponding buffer. Usually,
messages are only generated upon the occurrence of some certain computing event on the
sender.

5

State-based: State-based communication continuously transmits a certain value, a state, taken
from some bounded value set, over a link. It assumes that the sender provides the state to
be communicated on its output port. The receiver continuously provides the state seen at
its input port to the recipient node. Note that these links are typically bounded delay links.
Therefore there is delay in [dmin, dmax] until a new state provided by the sender is visible
at the recipient. Since there is no (or finite) buffering at the receiver, it may happen that
the recipient overlooks a communicated state.

Note that state-based communication with bounded delay links is used as the primary com-
munication style in VLSI circuits, which use m parallel wire for communicating m bits of state
data.

A node is implemented using a certain set of arbitrary modules, such as finite state ma-
chines(FSM), timers/timeouts, clocks and memory elements/flags. These modules are connected
via links and ports just like nodes, which are referred to as local ports and local links. In gen-
eral a node implements an algorithm consists of multiple concurrently executing modules, each
performing one or more instructions (also called operation resp. actions), typically realized
by some sub-modules. Many algorithms are implemented resp. specified using a FSM, which
communicates its state over the links to other nodes (see Figure 2.1).

Link

Timer

FSM

Voting

Node

State-

Output

Link

Timer

FSMVoting

Node

State-

output

State-Outputs

 from

other nodes

Figure 2.1: Depicting two nodes of an example distributed system containing sub-modules.

The basic instructions typically used in a (sub-)module range from variable assignments
resp. memory element set and reset, sending messages resp. states to standard boolean opera-
tions.

2.1.1 Executions

In this chapter, I introduce the notation for specifying and reasoning about the executions of
modules.

Computation Events: A computation event represents a state transition performed by some
particular module at a given time instant. The granularity of events depends on the speci-
fication level. Usually, only (multiple) statements typical for programming languages and
FSMs are considered (and are executed atomically in an event), but events of individual

6

logic gates or low level modules (like timers) could be considered as well. However, com-
putation events can only affect the local state and the output ports of a module. Hence,
a (computation) step of a node will generate a new state at the output ports via the tran-
sitions of its module depending on the local state consisting of its (buffered) input ports
and module-internal local ports of sub-modules. Note that in case of bounded delay com-
putations, it is assumed that consecutive state transitions occur within [σmin, σmax] of each
other.

Send/Receive Events: A send event marks the time instance at which a message is put onto the
link from an output port, whereas receive events indicate the change of an input port, i.e.,
the instance when a new message is buffered. As can be seen this is only necessary in
message passing communication styles.

A distributed execution model defines how events at different modules are ordered and when
events can occur. Due to uncertainties resulting e.g. from the link jitter [dmin, dmax], computation
time [σmin, σmax], there is some freedom in the ordering of events and the occurrence time of an
event. An adversary is responsible for choosing these (i.e., scheduling the events) in a way
that does not violate the model. This freedom of choice results in different worst-, average and
best-case scenarios depending on what is analyzed (e.g. time or message complexity).

An ordered infinite alternating sequence of module states and events beginning with an ini-
tial state, is called an execution. Every event in an execution must be applicable, i.e. allowed by
the execution model and the module specification, i.e., the algorithm. For example, a computa-
tion event must not occur if it is not enabled by the current state (e.g., transition guard) of the
algorithm, and a state can not be seen at an input port if it has not been received yet. Thus an
event occurring later in the execution occurs later in time than a previous event (or at the same
time).

2.1.2 Basic Modules

In this chapter, I provide an overview of the basic modules that are used in the algorithms con-
sidered in this thesis.

Clocks: Clocks represent functions that map real/reference time to some local (logical) time
(see Figure 2.2). For example, synchronous systems contain a (single) 1-bit clock the
transitions of which trigger computations (time-driven execution). A clock is referred to as
a function C : R+

0 → R+
0 . For any time interval [t−, t+] ∈ R+

0 and any two time instants
(t, t′) and t− ≤ t < t′ ≤ t+, a correct clock must fulfill (t′−t) ≤ C(t′)−C(t) ≤ ϑ(t′−t).

As mentioned in the example of a 1-bit clock, digital clock implementations are finite
and discrete, i.e. they can only approximate the real clock definition above, which is
sufficient usually. Hence, the clocks maximum finite value must be chosen sufficiently
large, s.t. the overflow is tolerable resp. desired by another module or does not occur
during the operation of the system, and the rate, at which the digital clocks increment,
must be sufficiently high to offer the required time resolution. Herein, ϑ is the clock ratio
between the minimum and maximum clock frequency bounds ([fmin, fmax]) and ρ = ϑ−1

7

is the clock drift: Thus all clocks operate at some frequency of the range [1, ϑ]fmin in the
context of digital clocks.

Note that I assume that the unavoidable clock jitter, which originates e.g. in the fact that
digital clocks are discrete, is accommodated in ϑ. This is possible, since the intervals
t′ − t, considered in the analysis are large relative to the jitter.

Memory Elements/Flags: Memory elements are used for implementing buffered input and out-
put ports. A typical implementation of a memory element provides a set and reset port.
If the set resp. reset port is enabled the output port is set to some value resp. reset. At
the lowest level, each memory element is able to store just one bit. Note that later in this
thesis also different memory element interfaces will be used.

Timers/Timeouts: A timer comprises a reset port,a counter that is pre-set to a predefined or
randomly chosen timeout value T upon reset, an associated clock, and an output port that
fires within [T/ϑ, T] after the reset is disabled and stays enabled until the next reset.

ref. t

C
(t

)

(t’-t)

ϑ
(t
’-

t)

Figure 2.2: Example clock drift between a clock and the reference time.

Finite State Machines

A FSM module is specified using a set of states and transitions (edges) between those states.
These transitions implement the instructions of the sequential algorithm implemented by the
FSM and are usually guarded by a transition guard specified as an edge label: Before a transition
can be executed, its guard must be enabled. In order to keep the FSM descriptions simple, all
operations executed by a transition, in addition to the instructions necessary to modify the state,
are also specified as (boxed) edge labels. The output of a FSM is some suitable encoding of the
current state. Note that transition guards may involve the output ports of other modules (like the
timers in Figure 2.1).

The example depicted in Figure 2.3 is the FSM specification of the Quick-Cycle algorithm
used in the FATAL+ protocol by each node(see Chapter 3.1.2). Additionally to the FSM, 3 timer
modules (including clock modules) and at least one memory flag for every node is needed at

8

each node, since they are used in the transition guards and implement buffered input ports. The
FSM does not communicate all states to the other nodes, e.g., both the accept+ and ready+ state
use the same encoded state none+, whereas the state propose+ uses its own unique encoded
state. However, a node i will set its local memory flag module of a node j to memorize that it
has seen node j in the state propose+ at the input port of node i, in the current example.

The guards and actions will be explained briefly:

Timer guards: A timer guard like T+
1 becomes true, when the output port of the timer T+

1 fired
(i.e., T+

1 = 1). The timer T+
1 is reset by the transition into the state Accept+. Sometimes

the timer reset state, which may be state of another FSM module too, is specified along
with the timer output port (e.g., (T+

2 , accept)).

Voting/Threshold guards: A voting module guard like ≥ n − f propose+ will be true at a
node i if at least n− f (i.e., the threshold) of node i’s memory flags are set.

Actions: These are specified along with the transition guard in a box, which specifies that all
memory flags of the contained states in the box are reset once the transition is performed
(e.g., propose+ in the example FSM).

accept+

none+

ready+

none+

propose+

T+
1 and

(T+
2 , accept)

T+
3 or

≥ f + 1 propose+

or (T+
2 , accept) = 0

≥ n− f propose+

or (T+
2 , accept) = 0

propose+

Figure 2.3: The quick cycle of the FATAL+ protocol. [26]

How the FSM, i.e, its transitions are actually implemented in a VLSI circuit is of course not
defined in the FSM specification.

Two basic execution styles exist for this purpose:

Event-driven (asynchronous): A state transition is performed once the transition guard lead-
ing from the current state to some successor state becomes true. Since there is no means
to synchronize the evaluation of transition guards, neither w.r.t. consecutive enabling/dis-
abling nor w.r.t. multiple transitions leading away from the current state, the potential of
metastable upsets exist (see Chapter 2.3).

Timing-driven (synchronous): A state transition is performed using information of the time
domain. For example, a clock module may provide the trigger for all state changes and

9

continuously samples the transitions guards on this occasion. Although a transition guard
may become true earlier, the transition is performed at the next predefined time instant.

Note that it is even possible to combine these execution styles, by using a timing-driven
Transition State Machine (TSM) that is started asynchronously once the transition guard be-
comes true (see Chapter 2.5). The actions performed in the transition are triggered by the TSM
clock, however. On the algorithmic/modeling level the transitions are often assumed to be exe-
cuted in zero-time. State transitions executed by the real modules take some time to complete,
however the minimum and maximum state transition delays must either be integrated into the
link delays, leading to end-to-end delays, or must be considered in the analysis of the system
separately.

2.1.3 Node execution models

In this chapter, I introduce the classic distributed computing models describing the behaviour of
nodes, i.e., the described top-level modules. According to Figure 2.1 they consist of a simple
FSM (with associated sub-modules) that implement some particular algorithm.

Asynchronous execution model

In the classical asynchronous execution model neither the actual link delays nor the bound of
dmax is known. Moreover, only clocks with unknown or unbounded drift ρ may be available
to the nodes, which also implies unbounded computation time bounds σmax. Usually event-
based communication and event-driven executions are considered in this model. The adversary
is just required to be fair, i.e., if there is an enabled computation a corresponding event occurs
eventually. This implies that no node will starve.

Bounded delay asynchronous execution model

In this execution model, only bounded delay links resp. bounded delay computations exist
and clocks with bounded drift ρ may be available to the nodes to implement timers and other
time sensitive modules. The adversary must not violate the link delay bound dmax, computation
bounds σmax and the clock drift ρ: All messages resp. states must be received within dmax and
all computation events of a enabled computations must occur within σmax. Furthermore, most
of these models require that no computation is infinitely fast, i.e., it always takes some time
before another computation event at the same node is allowed to occur. As mentioned earlier the
computation delays σmax are integrated into the link delay bound dmax sometimes.

Lock-step synchronous execution model

All events occur in a well defined order in the lock-step synchronous execution model. The
execution is organized in so called rounds. As the name indicates, all nodes perform their com-
putations simultaneously in this high-level abstraction. A round is started by the adversary
scheduling all pending send events. After that the adversary schedules the receive events for
messages resp. provides the new states at the input ports. Finally, all pending computation

10

events are scheduled before initiating the next round. Note that a computation event is generated
even if no messages are present resp. new states are available. Hence, receiving no message in a
round can also provide information. An example round and communication is depicted in Figure
2.5. Note that a lock-step synchronous execution model can be simulated using synchronized
clocks in bounded delay execution models (see Chapter 2.1.5 for details).

2.1.4 Fault models

As mentioned in the introduction VLSI circuits become more and more vulnerable w.r.t. man-
ufacturing defects, ionizing particle hits (e.g. radiation), electron migration and many more
[7, 16, 22]. A system must reliable operate despite these circumstances. Thus, fault-tolerant
architectures, which have been well-known in classic distributed computing for decades, are
becoming an option for VLSI circuits too. In order to reason about the ability of some imple-
mentation to tolerate faults, one has to specify which faults are considered. This is the purpose
of the failure model. The following concepts can be found more detailed in [6], but the most
important definitions are explained shortly:

Fault: A fault is a source resp. the origin of undesired behaviour of a component or the environ-
ment that deviates from the optimal normal conditions. Examples of faults are ionizing
particle hits, supply voltage drops due to power shortage or a faulty power supply and
manufacturing faults (e.g., process variation).

Error: Once a fault becomes active, i.e. it occurs, it may affect the state of node resp. module
such that it may lead to an inconsistent, unspecified or wrong state. In the case of an
ionizing particle hit, a memory bit could flip, for example. If the affected state is a part
of an arithmetic computation result, an error occurs. Depending on the algorithm, module
and node implementation, such errors can be corrected after some time and vanish from
the state automatically (e.g., a wrong sensor value).

Failure: Once a node resp. module violates its specification at its output ports due to an error,
the node resp. module fails.

Moreover, there are to major kinds of faults distributed systems need to cope with:

Transient faults: Transient faults are short term undesired faults. For example, a power short-
age or ionizing particle hits will not last forever and the operating conditions return to
normal after some time. At this point, the affected part may resume correct operation as
its circuits have not been damaged, albeit its state could still be corrupted.

Permanent faults: Once a permanent fault occurs, it remains persistent until it is repaired by
manual maintenance usually. Such faults are a typical result of physical damage to the
chip by aging (e.g., electron migration), destructive particle hits, overheating and large
temperature gradients or short circuits. Sometimes parts of a chip are already malfunc-
tioning right after manufacturing due to design errors or manufacturing process variations.

11

Two nodes connected via a link, where one experiences a fault, should not lead to a fault
of the correct node. Hence, it is assumed that a node forms a fault containment region, by
construction, e.g., by securing that faults can not cross node boundaries. Note that power supply,
common clock and common reset among nodes are particularly problematic here. However, it
can not be avoided that failures propagate across a node boundary to a successive node. In this
case, a failure may lead to a fault of the successor node. Proper “shielding” of the successor
node against such errors, e.g., by means of voting, can be used for implementing proper error
containment regions (see Figure 2.1).

In this thesis only failures on the algorithm level are considered, i.e., a node fails if it does
not execute its algorithm faithfully resp. at least one of its modules or ports is faulty within the
execution model. Thus, a faulty node will be allowed to send messages/states from the specified
value domain, but not excessive voltages or metastable signals (see Chapter 2.3). Since links
may be faulty too, they are considered as a module of the sender usually.

The two most important failure behaviour classes a node may exhibit are:

Crash failure: A node fails and stops its operation from some time on (no more computation
events, send and receive events). These failures are considered to be permanent usually
and are the easiest class to tolerate.

Byzantine failure: A node fails and exhibits an arbitrary behaviour at its interfaces to the re-
maining system, i.e., the node will not execute its algorithm anymore. Many Byzantine
faulty components may even collude to maximize their effect (clique) or distribute in-
consistent information (i.e., “lie”). Such failures are difficult and costly to tolerate. For
(lock-step) synchronous consensus [51], for example, the maximum number of Byzantine
faulty nodes f a distributed system of n nodes is able to tolerate (i.e., the resilience) is
bounded by f ≤ b(n− 1)/3c, see Chapter 2.1.5.

Self-Stabilization

Although fault-tolerance mechanisms ensure that systems stay operational, even when a subset
of nodes is allowed to fail, a high number (burst) of transient faults (e.g., a solar flare) can cause
a system to become malfunctioning, because the maximum number of allowed faulty nodes may
have been exceeded. In this case, there is a high risk that the system will fail completely and
never recovers, especially if a system can not be maintained during its operation (e.g., satellites
and air planes). Hence, recovery mechanisms are needed that allow a still functional system
(that experienced a burst of transient faults only) to recover, i.e., become correct and operational
again.

The simplest solution are recovery algorithms, which allow a failed node to rejoin the re-
maining correctly working system and become correct again. Since this requires enough nodes
of the system to be still correct, further mechanisms are needed.

An advanced form of recovery algorithms are self-stabilizing algorithms that may start in any
given system state, even after a burst of transient faults, and move the system into a specified
and allowed state (i.e., context) using a convergence mechanism. In order for the system to con-
tinue the correct operation, a closure mechanism ensures that the algorithm remains within the

12

specified context (in the presence of faulty nodes) and proceeds to allowed and correct successor
states. Once the algorithm achieved convergence and closure the system is called stabilized.

Obviously, a subset of nodes may still experience permanent and transient faults, while
others experience only corrupted states and could stabilize. Hence, stronger mechanisms to
tolerate faults during stabilization of an algorithm are needed. For example, an algorithm is
Byzantine self-stabilizing if it manages to stabilize the remaining corrupted but non-faulty nodes
of the system, even in the presence of Byzantine faulty nodes during stabilization.

2.1.5 Distributed Problems

Clock and Pulse synchronization

A common notion of time among the nodes of a distributed system is advantageous in sev-
eral aspects. Besides circumventing the impossibility of asynchronous solutions for distributed
computing problems like consensus, the ability to trigger simultaneous actions and determine
sequences of actions (i.e., schedules) in a distributed system is beneficial for control loops and
data sampling [47].

Definition 2.1.1. Pulse synchronization Problem. Each node provides an output pulse port pi
that may have either the value 0 resp. 1 (1-bit). A pulse synchronization algorithm produces
synchronized pulses iff a correct node’s pulse port pi changes from 0 to 1 at the time instance
t (positive transition) and any other port pj of a correct node j either maintains already 1 or
produces a positive transition at latest at t + Σ. Σ is referred to as the skew. Furthermore
the period P between two successive positive transitions at a correct node is bounded by P ∈[
TP

min, T
P
max
]
, if required.

Since the above problem is very limited, to provide a large global time base with just 1-bit,
it is necessary to solve the clock synchronization problem. Note that connecting a counter to the
synchronized pulses, s.t. it increments whenever a pulse occurs, is not sufficient. Due to faults
or initialization, offsets may still be present in the counter values, which may violate the clock
synchronization condition. Nonetheless, pulse synchronization can be used to implement clock
synchronization algorithms (see FATAL+ [26]).

Definition 2.1.2. Clock synchronization problem. Two correct clocks C and C ′ are called syn-
chronized with precision 0 ≤ π <∞ if they fulfill |C(t)−C ′(t)| ≤ π at any instant t. Sometimes
also the skew Σ is considered instead of the precision and gives a more accurate time definition:
|C−1(t)− C ′−1(t)| ≤ Σ.

A synchronization algorithm will try to minimize these two parameters. Obviously only
small values of π resp. Σ are interesting as a trivial solution would be∞ and for finite clocks
these values should be small enough to be called synchronized, i.e., very small compared to
the clock’s maximum value. Although the clock definition provided earlier defines real-valued
clocks, the clock synchronization definition applies to finite and discrete digital clocks too. A
finite resp. real digital synchronized clock with π = 1 is called bounded synchronized clock
(BSCLK).

13

≤π

ref. t
C

(t
)

≤Σ

Figure 2.4: Clock synchrony bounds between to synchronized clocks.

A popular algorithm for synchronizing clocks is the fault-tolerant midpoint algorithm. It is
used in the following frameworks and protocols [54, 63]. In short each node has a local free
running clock. The nodes broadcast the clock values to each other and each node calculates
the difference to their own value. This error values are sorted and the f smallest and largest
values are omitted. The midpoint (i.e., median) of the remaining values is used to correct the
local clock. Obviously, all previously mentioned uncertainties and clock drifts will affect the
precision and skew.

It is known that clock and pulse synchronization needs a system with at least n = 3f + 1
nodes if f Byzantine faulty nodes must be tolerated [53]. At least a bounded delay execution
model is needed: It has been proven that a fully asynchronous algorithm can not solve clock and
pulse synchronization even if it has access to bounded drift clocks [27].

Using synchronized clocks it is possible to simulate lock-step synchronous rounds as fol-
lows: The round with the number k will be started at a node when its local clock reads kP ,
where P is the period or duration of a round. Due to the precision/skew of the synchronization,
clock drift and the maximum delay on the links among the nodes P must fulfill the inequality
P ≥ ϑ(Σ + dmax). The kth computation event at a node occurs when it starts the k + 1th round,
which is indicated by a node reading (k + 1)P at its clock. This period ensures that no node
starts a new round before all nodes finished the current round, i.e., all messages of the current
round have been received. In chapter 4.3 I will provide some information about a problem that
arises in real (lock-step) synchronous implementations at the input ports, which are not able to
buffer messages resp. states instantly or buffering is actually included within some computation.

Consensus

Consensus [51, 55] is one of the most important distributed computing problems to be solved.
Each node is provided with a local input of a given value domain. These local inputs may differ.
The task of the consensus algorithm is to make a single and irrevocable output decision at every
correct node, at the time the algorithm terminates at that node, which is equal to the output at all
correct nodes and was the input of a correct node. A consensus algorithm then reaches agreement

14

p1

p2

≤Σ ≤dmax

k k+1 k+2 k+3round

[P/ϑ,P]

Figure 2.5: Example synchronous round communication between two nodes p1 and p2. The red
line shows the skew bound and a new round initiated by the first node is indicated by a black
line.

in the presence of input deviations among the nodes, and either probabilistic or deterministic
algorithms can be used. For example, in computer systems distributed or replicated databases
must be kept consistent. If there is a deviation between the databases a consensus algorithm
must be used for agreeing on multiple input values among the replicated data.

The most basic form is binary consensus. The inputs and outputs may obtain either of the
two values 0 and 1. As someone can imagine the process involves some form of voting.

Definition 2.1.3. Consensus Problem. Every node has an input variable xi and an output vari-
able oi, which is unassigned initially. xi and oj are elements of a given value domain I. A
solution algorithm must fulfill the following assumptions:

Exact Agreement: The algorithm computes oi = oj at any correct nodes i and j.

Validity: The computed output oi at correct node i must be the input of some node j, i.e. ∃j :
oi = xj .

Termination: The algorithm terminates at every correct node and the output is irrevocable.

Other stronger or weaker definitions exist. It is known that consensus needs a system with
at least 3f + 1 nodes and f + 1 synchronous rounds (in a lock-step synchronous round model)
if f Byzantine faulty nodes must be tolerated [32, 51, 55]. At least a bounded delay execution
model is needed: It has been proven that a fully asynchronous algorithms aren’t able to solve
consensus with Byzantine faulty nodes [27]. Two well-known (lock-step) synchronous consen-
sus algorithms are the Phase-King [10] and Phase-Queen consensus [11] algorithm, see Chapter
3.2. The first features optimal resilience n > 3f using 4(f + 1) rounds and the latter needs at
least n > 4f nodes, but is able to solve it with a termination time of 2(f+1) rounds.

It is logical that the same node and model lower bound applies as in clock synchronization,
since consensus is able to solve clock synchronization with π = 0, if the clocks are used as inputs
and outputs. Note that due to the uncertainties (e.g., link delays) there will always be a skew
and exact agreement can only be achieved in a high-level model like the lock-step synchronous
round execution model, where the skew is neglectable.

15

2.2 Digital Logic

The following chapter will describe digital design and its problems, when implementing algo-
rithms using VLSI circuits, and typical synchronous and asynchronous solution approaches.

2.2.1 Boolean Circuits

No matter what algorithm must be implemented one basic form of asynchronous circuits can be
found on any chip: boolean circuits. A boolean circuit, also referred to as combinatorial logic,
is a VLSI implementation of a boolean function with multiple input and output ports that may
take one of the values 1/TRUE resp. 0/FALSE. The basic forms of boolean circuits are not
stateful, i.e., their output does not depend on the past input and just map the current input state
to the specified output state. A boolean circuit is implemented by using standard boolean gates
that represent the functions ∧,∨ and ¬ usually. Depending on the vendor other and high-level
complex functions like XOR,NOR, NAND, arbitrary boolean function with 3 or 4 inputs, binary
addition, multiplexers and multipliers might be already available to the designer without the
need to implement them from scratch. Figure 2.6 depicts the boolean circuit for the function
(¬S ∧ A) ∨ (S ∧ B), which implements a multiplexer using the input port S to select between
the input ports A and B.

S

S

A

B

Figure 2.6: A 2-input multiplexer (MUX).

2.2.2 Time and Value domain issues

Although the boolean circuits and functions are simple to specify and analyze, this description
contains no concept of time. As mentioned before any computation and communication causes
delays. In this case the computations are performed by the boolean circuit and the communica-
tion is between the source that provides the input and the sink that uses the output of the circuit.
Besides, someone might notice that the boolean circuit of Figure 2.6 is not elementary, i.e. the
computation of the boolean function involves smaller sub-modules (e.g., standard boolean gates)
that can be assumed to be elementary.

As mentioned before, such increased granularity gives the adversary more strength in asyn-
chronous and bounded delay execution models as it may choose the execution order of computa-
tion events depending on the actual link and computation delays. These delays are often referred
to as gate and propagation delays in the VLSI context. They are prone to jitter and the delay
bounds depend on many factors like the temperature, production process, lifetime, transistor

16

driver strengths and supply voltage noise. These problems arise from the fact that transistors are
analog devices both in time and value (voltage) and the digital abstractions map their behaviour
to discrete time and value domains. The physical world has its limits, however, in that no infor-
mation may be propagated faster than the speed of light and that currents need time to build up
the voltage at capacitances, i.e., charge them.

Signals

The voltage levels that represent a logical 1 resp. 0 are the supply resp. ground voltage, but the
actual voltage output by any logic function will not exactly match these depending on production
and environment effects. As a result, the discrete logic values are represented by a voltage range
instead of a single discrete value. The region separating these ranges is a forbidden region,
in the signal range, which may only be used during signal transitions, because it can not be
guaranteed that every gate will map the voltage into the same specified region. Figure 2.7 depicts
the problem with two inverters and the same characteristic curve, but slightly offset thresholds.
The forbidden range is determined by selecting two input voltage ranges for logic level 0 resp. 1
represented by the thresholds VIL resp. VIH . The transfer function, f : Uin → Uout of an inverter
must satisfy f(VIL) ≥ VIH and f(VIH) ≤ VIH , for example. Note that even safe thresholds
require the output to cross the forbidden region to reach the opposite logic level, however. In
this case the discrete computation events occur when Uout crosses VIH in a rising transition ↑
(resp. VIH in a falling one ↓).

Uin

U
o

u
t

Forbidden region

Figure 2.7: Example of two inverters with a slightly different threshold and the forbidden an
safe regions.

17

Glitches

The possibility of reordering the gate computation events due to the non-zero propagation and
gate delay jitter may cause undesired signal transitions at the output of a boolean circuit, called
glitches [73], which would not be observed for an ideal (zero-delay) gate.

Every real boolean circuit might produce glitches, but the actual behaviour depends on the
input pattern. For example a simple two-input AND-gate with inputs a = 1 and b = 0 is prone
to produce glitches if a falling transition a ↓ occurs at a when a rising transition b ↑ occurs at b.
If b ↑ is received slightly earlier by the gate it begins the transition to 1 instead of remaining at 0.
The existence of such an input pattern is called a hazard. Just its existence does not imply that
a glitch will ever occur, since this depends on the real delays and only when a critical pattern is
actually applied by the source, but a priori glitch-free circuits are of course desirable.

Glitches may be categorized as follows (see Figure 2.8):

Static 0/1: A state change of the output occurs although the output should remain 0 resp. 1.

Dynamic ↑/↓: Although the output should perform just one rising (↑) or falling transition (↓)
exactly, one or multiple intermediate pulses may occur.

S0

S1

D ↑
D ↓

Figure 2.8: Possible behaviour of a single output circuit with static or dynamic hazards.

Standard binary truth tables and binary circuit analysis does not reveal these hazards and its
enabling inputs. Hence, a 9-valued logic extended truth table is used instead with the symbols
0, 1, ↓, ↑, S0, S1, D ↑, D ↓ and ∗. Herein, ∗ represents any signal, S/D the above glitches and
0/1 the standard stable logic states (see Table 2.1).

The attentive reader will notice that only glitches at the input resp. transitions of opposite
polarities (i.e., ↑ and ↓) can cause glitches at the output of a standard gate. Unfortunately, even
simple circuits with multiple inputs and a single output (MISO) can produce glitches if a single
input changes (SIC) and the other inputs remain stable. The problem is that a signal may travel
along multiple paths (i.e., forks) that are recombined by a single gate afterwards. Figure 2.9
shows an example of the function a ∨ ¬a, which should be always 1. If the path through the
inverter is assumed to be significant and the OR-gate is fast, a negative transition ↓ on a will
cause a S1 glitch at the output, since the inverter output is still 0 and the ↑ arrives too late. An
equivalent problem exists with the AND-gate.

Although nobody would implement such circuits directly, similar structures implicitly exist
within many implementations (e.g., in the MUX in Figure 2.6). If a = 1, b = 1 and s = 0 the
MUX output is 1. Obviously, the output of one AND-gate is ¬s while the other is s, which is
recombined by the OR-gate.

18

OR 0 1 ↓ ↑ S1 S0 D ↑ D ↓ *
0 0 1 ↓ ↑ S1 S0 D ↑ D ↓ *
1 1 1 1 1 1 1 1 1 1
↓ ↓ 1 ↓ S1 S1 D ↓ S1 D ↓ *
↑ ↑ 1 S1 ↑ S1 D ↑ D ↑ S1 *

S1 S1 1 S1 S1 S1 S1 S1 S1 S1
S0 S0 1 D ↓ D ↑ S1 S0 D ↑ D ↓ *
D ↑ D ↑ 1 S1 D ↑ S1 D ↑ D ↑ S1 *
D ↓ D ↓ 1 D ↓ S1 S1 D ↓ S1 D ↓ *

* * 1 * * S1 * * * *
AND 0 1 ↓ ↑ S1 S0 D ↑ D ↓ *

0 0 0 0 0 0 0 0 0 0
1 0 1 ↓ ↑ S1 S0 D ↑ D ↓ *
↓ 0 ↓ ↓ S0 D ↓ S0 S0 D ↓ *
↑ 0 ↑ S0 ↑ D ↑ S0 D ↑ S0 *

S1 0 S1 D ↓ D ↑ S1 S0 D ↑ D ↓ *
S0 0 S0 S0 S0 S0 S0 S0 S0 S0
D ↑ 0 D ↑ S0 D ↑ D ↑ S0 D ↑ S0 *
D ↓ 0 D ↓ D ↓ S0 D ↓ S0 S0 D ↓ *

* 0 * * * * S0 * * *

Table 2.1: 9-valued logic analysis results of the standard OR and AND logic gates [73].

A

Figure 2.9: Example structure inside circuits that may cause SIC glitches for OR-gates.

If a circuit is free of any such structures, it is SIC glitch-free. The good news is that any
boolean function can be made SIC glitch-free using Huffman circuits [73], see Figure 2.10 for
the Huffman MUX implementation. It works by inserting the required redundant terms that
mask the problematic signal transitions. In the MUX case, the term (a ∧ b) must be added.
The required terms can be found from the Karnaugh-Veitch-diagram (see [73] for more detailed
information). The only problem is that it is very difficult to establish SIC patterns in every case.

Apparently, it is not possible to build glitch-free circuits in general multiple input change
(MIC) resp. multiple output (MO) scenarios easily, since this would require to match all delays
and forks such that any input change arrives almost simultaneously at the successive gates and
no old inputs are present. In such cases, restricting the source input pattern, matching the delays
or a different circuit implementation might be able to solve the problem.

19

S

S

A

B

A

B

Figure 2.10: A 2-input Huffman multiplexer.

2.2.3 State

The standard boolean circuits compute the output for a given current input, no matter what
its past inputs were (i.e., its history). In order to implement algorithms (i.e., FSM) and more
complex functions, memory elements are needed to capture some sort of state. Their output
will not only depend on its current inputs, but also on its state. Stateful circuits must contain
feedback paths, i.e., parts of the output of a boolean function are used as inputs too.

One common memory element is the SR-latch. Matching the memory element definition
in the previous chapter, it provides a set and reset input port (S and R) and at least one output
port Q that is one if the memory element is set and zero otherwise. Figure 2.11 (left) shows an
example implementation that also provides an enable port (E). Figure 2.12 provides an example
timing diagram.

Another very popular memory element is event-triggered and called a D-Flipflop (DFF). It
provides two input ports D and E and at least one output port Q. One way to build it is by using
a master-slave SR-latch structure, see Figure 2.11 (right). If E is 1, the slave stage holds its
output Q no matter what happens at the input, and the master stage is transparent and forwards
the current value of D to the input of the slave stage. Once E changes to 0, the enable of the
second stage is active and sets its output Q to the output of the master stage, while the master
stage holds its output (i.e., the slave stage is transparent). Hence, in the current example, it sets
Q to the value of D, once a falling transition on the input port E occurs. An example timing is
depicted in Figure 2.13.

Note that the memory elements require some time to reset resp. set the output and, in par-
ticular, the feedback loop appropriately. Thus glitches, activating set and reset at the same time
and too short set/reset pulses could violate the respective timing requirements and the memory
element might not be able to store the input safely, which can lead to undesired behaviour and
incorrect states (see Chapter 2.3). In case of the DFF, the resulting timing constraints are called
the Setup/Hold-requirements. A new inputD must be stable at least for the setup time before the
enable’s falling transition occurs, and must remain stable at least for hold-time after the enable
performed the falling transition.

20

Q

Q

E

R

S Q

Q
SET

CLR

S

R Q

Q
SET

CLR

S

R

D

E

Figure 2.11: Implementation of an SR-Latch with enable (left), and a DFF with enable (right)
using a master-slave SR-latch structure. The slave stage captures the output of the previous stage
on the negative transition.

S

R

E

Q

Figure 2.12: SR-latch example timing behaviour. Due to delays the outputs are not able to
change instantly

D

E

QM

Q

Figure 2.13: DFF example timing behaviour. Due to delays the outputs are not able to change
instantly

2.2.3.1 Communication

Boolean circuits and memory elements provide state outputs only, i.e., they do not implicitly
specify when an output is valid and consistent with the current input and may be safely captured
by successive circuits. This creates a fundamental design problem (see Figure 2.14) for every
circuit: How does the source know when it is safe to issue new data, and how does the sink
know when it is safe to capture data? As a result of the non-zero gate and link delays, the source
is not allowed to provide a new input until the sink has captured the old input, and the sink is
not allowed to use the data until all bits are valid (i.e., stable 0 and 1) and consistent (i.e., all
bits belong to the same data word). Chapters 2.4 and 2.5 of this thesis will be explaining some
popular design principles for solving this problem. More detailed descriptions can be found
in [19, 20].

21

Source
data

circuit

C
data

Trigger Trigger

Sink

Figure 2.14: The fundamental design problem: How to generate safe issue and capture triggers?
[20].

2.3 Metastability

As indicated above, input and timing specification violations (as well as forbidden input volt-
ages) occurring during the operation of a memory element may result in a violation of its output
specification either in the time or value domain. In the extreme case it might not reach one of the
two stable states 0 or 1 within bounded time, i.e., it may become metastable [56]. Note that it is
even uncertain which of the stable valid output states will be reached eventually. If a subsequent
memory element captures the metastability, i.e., it has been propagated through the intermediate
boolean logic, it becomes upset [46, 48].

Take the DFF as an example. A new value must have propagated to the slave stage already
and lead to a stable output Q when the falling transition on the enable occurs. If the enable
transition occurs before the feedback loop in the slave hes settled to the new value, Q may stay
within the forbidden output region arbitrarily long.

In any asynchronous or synchronous closed loop system, almost all such timing violations
can be avoided, but systems are never closed completely: Real systems always contain inter-
faces to the physical world, other components that are not able to comply with the setup/hold
requirements, or possibly faulty components.

2.3.1 Metastability modeling

In order to understand the details of a metastable upset, consider the SR latch from Figure 2.11,
which can be used for implementing the stages of a DFF.

Once the enable is deactivated, only the feedback loop, consisting of two inverters, remains.
It represents a bi-stable memory element, which is frequently used in any digital system. Figure
2.15 shows this inverter loop and the input to output transfer function for both inverters. Besides
the stable operating points UO = 0 and UO = 1, there exists also an inevitable metastable point
UO = UM . Note that the gain A in the region around the metastable point can be reasonable
approximated by a perfect linear amplification. In theory, the whole loop would come to rest at
this point, without ever leaving it. Due to noise and other physical quantum effects, it is very
unlikely to never resolve, but it may take long. Moreover, the intermediate output voltage UM

may cause successive stages to output intermediate voltages too.
Actually, one can distinguish between two forms of metastability [46, 69]:

Creeping: The output is settled within the forbidden region, close to UM , from where it creeps,

22

I O

Inv1

Inv2

Metastable

UI

U
O

Gain A

Stable 0

Stable 1

UM

fInv1

f
-1
Inv2

Figure 2.15: Inverter loop within a storage element and the input to output voltage relation.

i.e., moves slowly toward either 0 or 1, instead of performing a fast rising or falling tran-
sition. The closer the settling voltage is to UM , the longer it will take for the storage loop
to resolve.

Oscillation: The output oscillates significantly between the stable high and low state or within
the forbidden region. This behaviour may be caused by input pulses with enough energy
to put the output of the first inverter into a new state, but which is not long enough to set
second the inverter before it vanishes. This produces a pulse that will circulate through
the loop and eventually dies out, namely, when its duty cycle becomes sufficiently asym-
metric. Note that oscillatory metastability may end up in creeping metastability as well.

For a quantitative analysis of the metastable behaviour of the inverter loop, the inverter model
shown in Figure 2.16 is used. It consists of an ideal amplifier, a pure delay and a slope limiter
modeled by an RC-circuit. The pure delay models the propagation delay, whereas the slope
limiter determines the time needed to build up the output voltage, i.e., charge the capacitances.

Amplifier gainPure delay Slope limiter

Figure 2.16: An analog model of a single inverter use for modeling metastable behaviour of a
feedback loop.

23

As mentioned above, metastability can be triggered via time domain and via the value do-
main. If a pulse is introduced into the loop, which is able to charge the capacitance modeled
by the first inverter, but does not charge the second inverter’s capacitance sufficiently before
the pulse has vanished, can create oscillatory metastability [69]. The condition for oscillatory
metastability is δ > RC/A, where δ is the pure delay and RC/A the inverse of the gain-
bandwidth product. After the oscillations stops, the loop is within the stable state or still within
the forbidden region and starts to creep.

Intermediate input voltages (close to UM) that have fully propagated through the inverter
loop always create creeping behaviour, i.e., stays within the margins of the forbidden region.
Note that this holds true even when the pure delay δ is zero. Metastability modeling hence
primarily addresses creeping metastability, and many experiments and simulations exist and the
extracted memory element technology parameters (e.g., gain and bandwidth product) match the
observed upset rate and resolution time very well. Note, however, that delays are increasing
relative to the gain-bandwidth product, which makes oscillatory metastability more dominant in
the future.

2.3.2 Metastability mitigation

If a circuit becomes metastable, it obviously behaves incorrect for some unpredictable time.
Moreover, metastable behaviour may propagate to subsequent circuits. Oscillatory metastability
might cause even more harm in (asynchronous) circuits, since the pulse transition could be taken
for regular signal transitions.

Fortunately, deep metastable upsets are rather rare and metastability propagation can be
made sufficiently improbable, by means of metastability filters.

The following standard equation is used to calculate the expected upset rate (mean time
between upsets) of a single memory element [46]:

MTBU =
1

λdatfclkT0
e
tr
τc (2.1)

Herein, τc = RC
A−1 , T0 is time needed to cross the forbidden range (technology parameters),

fclk represents the enable frequency, tr the granted resolution time and λdat the expected input
data rate.

In order to compute the upset rate of a chain of memory elements, one has to plug in
tr =

∑n
i=1 t

i
r. where tir is the available resolution time of stage i. In the case of synchronous

state machines (see Chapter 2.4), the resolution time of a stage is computed by subtracting all
(combinatorial) delays and setup times from the clock period (enable period). The results in [36]
show similar results for other memory elements like the Muller C-gates (see Chapter 2.5).

The chance metastable upsets can be reduced by means of synchronizers, i.e., for syn-
chronous designs and elastic pipelines [76] for asynchronous ones. The primary purpose of
a synchronizer is to synchronize some arbitrary data input with a clock signal. It usually con-
sists of a chain of latches as DFFs, all enabled by the clock signal. Efficient filters for creeping
metastability can be built by means of Schmitt-Triggers, which are buffers with a hysteresis
in their threshold voltages [65]. They effectively map UM to a stable output of 0 or 1, hence

24

prohibit metastability propagation. This mechanism trades performance for safety (i.e., delay),
however.

Although, metastability can be avoided in (many) fault-free distributed system executions
using (asynchronous) closed loop communication, module and node failures can lead to metasta-
bility. Obviously, any fault (e.g., ionizing particle hits) can be the origin of metastable upsets.
Hence, a node may fail exerting a metastable behaviour instead of Byzantine behaviour at its in-
terfaces, but Byzantine failures were restricted to states resp. messages of the specified algorithm
output domain (e.g., stable 0 or 1). As mentioned above, metastability may output intermediate
voltages of the forbidden region and produces oscillating pulses, for example. Thus, metastable
failures are even more severe than Byzantine failures, since no (deterministic) fault containment
is possible. Note that (creeping) metastability is one possible source of the typical inconsistent
Byzantine behaviour, i.e., the invalid metastable output signal may be interpreted as a stable 0
by some subsequent node but as stable 1 by another node.

However, it is (often) assumed that nodes of a distributed system fail independently of each
other. Therefore, it is necessary to reduce chance of metastability propagation and employ
Schmitt-Triggers resp. synchronizers and elastic pipelines as probabilistic fault-containment
mechanisms. Other mechanisms, like voting modules, may be even able to mask metastable up-
sets, and treat them like ordinary Byzantine faults. In this case, there must be sufficiently many
inputs from other correct nodes that arrive in time, and are not metastable.

Metastability propagation is also a problem in asynchronous fault-tolerant clock generation
schemes like [36], due to (Byzantine) faulty nodes, which can put the system into an invalid
state. If no fault-tolerance, error containment, masking and recovery mechanisms are applied a
system might fail due to possible continued inconsistent states. Metastability is another reason,
why self-stabilizing algorithms are so important.

2.4 Synchronous circuits and state machines

The dominant approach to solve the issue of validity and consistency, introduced at the end of
Chapter 2.2.1, is to design the circuit according to the synchronous design principle. Within a
synchronous design there exists one control signal, the clock signal, indicating the launch of new
input data and output data (time-triggered execution). It is a periodic 1-bit signal, the transition
of which indicates when an output is valid and consistent in the time domain. A full period is
called a clock cycle. Any algorithm implemented as a synchronous design, is being executed in
the lock-step synchronous round model.

Figure 2.17 shows a typical multi-stage synchronous circuit. In every state, a new input
must be processed by the boolean function before the next rising edge on the clock occurs. The
input is issued at (some) previous clock transition, usually. Due to the delays on the paths in
the combinatorial circuit, glitches may occur and the output is either not valid or inconsistent
until all intermediate results have propagated through the circuit and stabilized. The period of
the clock ensures that the triggering edge only occurs when the output has stabilized such that
a DFF may be used to safely capture the data at the next clock transition. Additionally, the
clock must ensure that no new data arrives before the current one has been stored by a DFF. In
the example shown in Figure 2.18, the grey data parts indicate when the data is an invalid or

25

outputs
D Q

Q

combinatorial

function

D Q

Q

...

Clk

D Q

Q

inputs

combinatorial

function

Figure 2.17: A typical synchronous pipeline using DFFs and combinatorial boolean functions to
process the data. A DFF is called a stage in this context.

CLK

DOUT

Figure 2.18: The data output of a stage changes only after every successor component has cap-
tured the current valid and consistent data indicated by the clock signal. In this case the rising
edge is used as trigger.

inconsistent output of the combinatorial circuit, while the white part is valid and consistent. As
also shown in this example, there is no need for the data output to change every cycle, e.g., if
the input stays the same or the output does not change, and no glitch occurs despite a changing
input. Note that it even takes some time before a new input causes the combinatorial function’s
output to become invalid or inconsistent , i.e., it still reflects the old output, as can be seen in the
example.

2.4.1 Pipelining

A complex combinatorial function, like multiplication or division, can be split into smaller com-
binatorial functions, e.g., by inserting DFFs on intermediate links like in Figure 2.17, to reduce
the combinatorial and link delay between two DFFs. Herein, a pair of DFF and the combina-
torial function processing its output is called a stage. As a result, the number of cycles it takes
to complete the computation increases to the depth of the pipeline (number of stages). In the
best case a pipeline stage influences a successor stage only. Hence, pipelining is similar to con-
veyor belts inside factories. Each stage performs a small part of the overall specification and
determines the input state of the next stage.

Sometimes, components or pipeline stages need to share some resources like communication
channels and so on. Then an arbiter module is needed to control the access to these resources
and only grants one access request at a time per resource.

Pipelines are very common to process instructions in a CPU to increase the operating fre-
quency and average throughput, for example: A simple CPU pipeline contains stages for fetch-
ing, decoding and processing an instruction, as well as a stage for storing the results.

Assume that someone was able to reduce the delay of 10 seconds of a combinatorial circuit
to 1 second, using a 10-stage deep pipeline, which allows to operate it using a clock with a period
of 1 second instead. An input at the pipeline still needs the same time to be processed completely

26

(10 cycles), but the remaining systems runs at the higher clock frequency too, which can be a
significant improvement. Moreover, if the pipeline stages are independent, i.e., they do not need
to wait for the completion of a successive stage, a new input may be provided every cycle. This
implies that after the first element is available at the output of the pipeline the next output will
be available one cycle later. In the current example, the second input will reach the output after
11 seconds using the pipeline instead of 20 seconds. Hence, the overall throughput has been
increased by a factor of 10 too, but only if a new input can be provided every cycle on average.
Therefore, if a new input can only be provided to the pipeline once the last input is available at
the output of the pipeline the throughput stays the same. Another example, which illustrates the
latency very well, is that of a whiskey distillery. When it first starts distilling whiskey a batch is
stored for some years before it is sold, e.g., 10 years. If the distillery continues to distill whiskey
every year, it will produce its first batch after 10 years and from now on a batch is produced
every year instead of every 10 years. The pipeline has a latency of 10 years and even parallel
storing stages are needed.

2.4.2 Clocking

A crucial part of any synchronous design is clock distribution [35]: The clock must be distributed
to all DFFs such that clock transitions occur at the same time, at all DFFs. Note that excessive
skew could result in setup and hold violations of the DFFs, which may require to decrease the
clock frequency or to change the implementation. The typical skew, i.e., the maximum difference
of clock tree delays between any two DFFs, within the clock trees of modern chips is just a few
(hundred) ps at most to achieve high clock frequencies GHz-region without violating timing
constraints. Typically, a carefully engineered clock tree is used for this purpose (see Figure
2.19) [67, 68]. Each leaf in the tree or sometimes a node of the tree is an exit point that is
connected to a DFF. If the amount of DFFs and logic becomes larger the routing of the clock
tree becomes more complex. After all, the problem of validity and consistency has been moved
into the delays of the clock tree, as it must ensure that the race condition between the clock
and the data never becomes a problem. Furthermore, larger clock trees require the insertion of
buffers/inverters for signal conditioning and skew compensation, which consumes much energy
and create considerable power dissipation. Moreover, the clock continues to toggle even if there
is no new data to be processed. Besides, the clock tree may act as an large antenna receiving
noise from the environment [57].

Consequently, the clock tree is one of the most energy consuming parts of a modern high-
performance VLSI circuit and is a single point of failure [40, 52],. Improvements of VLSI
technology further exacerbate these problems: Timing margins (period) shrink even further due
to increasing frequencies, chips contain even more logic and long clock trees also suffer from
many parasitic effects (i.e., resistance, inductance and capacitance) and hence act as low pass
frequency filters, etc. Power dissipation also becomes worse as the dissipated heat must be
moved to the heat spreader through multiple layers, including the clock tree layer.

27

Figure 2.19: An abstract example of a clock tree. Buffers are inserted to keep the fan-out
(capacitance) low or to add delay. Another possibility to adjust delays is the wire length. [35]

.

.

.

combinatorial

next state

logic

D Q

Q

D Q

Q

D Q

Q

Clk

.

.

.

outputs

...

inputs

Figure 2.20: Abstract representations of synchronous circuits for general FSMs.

28

2.4.3 FSM

Figure 2.20 shows how a FSM is usually implemented in a synchronous design. The DFFs,
which are used to hold the current state of the FSM, are referred to as registers. For each bit
of the state a separate register is used. The registers feed the combinatorial function, which
generates the next state and the outputs of the FSM module. Apart form the FSM state, the
combinatorial functions receive module external inputs via the FSM input ports. As mentioned
in Chapter 2.3, these inputs must be either synchronized to clock domain of the FSM, if that
is not already case, or the inputs are generated by other modules of the same clock domain.
Hence, a combinatorial function implements the next state logic, i.e., from the current state and
its inputs it computes a new value for each of the registers. The transition to a new state, i.e.,
execution of an algorithm, is controlled by the clock at either every rising resp. falling edge.

Depending on whether all FSM module outputs are connected to further combinatorial func-
tions resp. to register outputs directly, the FSM is called Mealy-FSM (as in Figure 2.20) resp.
Moore-FSM. Obviously, all Moore-FSM outputs are glitch-free and due to the missing combi-
natorial function, no additional combinatorial delay is introduced. One drawback of the Moore-
FSM remains, i.e., it is not able to generate an output for the current input within the same clock
cycle. The number of memory elements to implement the registers and the next state logic can
become rather large. Unfortunately, the logic depth of the latter determines the delay and, hence,
the achievable clock frequency.

In order to speed-up a synchronous FSM, the clock frequency must be increased, which
requires decreasing the maximum delays between the memory elements, i.e., the delays of links
and the combinatorial next state logic. Within the general FSM implementation (shown in Figure
2.20), a single DFF output may influence many other DFF inputs via the next state logic. Such
increased influence can result in much larger delays than an implementation in which a DFF
only influences a few other DFFs. An approach to solve this problem is to use pipelining, i.e.,
breaking up some deep next state logic into multiple stages with interspersed DFFs. Herein,
each stage represents a reduced FSM. The only problem is that the hardware effort may increase
compared to the general FSM implementation, due to additional combinatorial logic and DFFs.
The attentive reader may have noticed that only the clock skew between DFFs influencing each
other via a combinatorial circuit is of interest. A pipeline is able to relax the skew constraints.
In the ideal pipeline, only the skew between two adjacent stages, as shown in Figure 2.17, must
be small, the overall skew could be larger.

As a result, such a pipeline is still a FSM, since all stages represent FSMs as well, but the
combinatorial logic depth (delay) between two DFFs has been decreased. Any modern CPU is
based on synchronous circuits and contains pipelines of lengths of up to 14 or more. In order to
meet the performance requirements and increase the clock frequencies the production process
(e.g., feature size) and the architecture are enhanced every year [33].

To sum up, the most important advantage of synchronous designs it is relatively easy to de-
scribe and develop algorithms. It is almost possible to immediately transform sequential prob-
lems into synchronous finite state machines using the clock to perform the steps and still many
different design possibilities exist (e.g., pipelining and combinatorial circuit implementation).
The designer does not need to care about any glitches, due to the chosen clock period, and may
always assume to have consistent and valid inputs or outputs. The clock ensures that the receive

29

events and computation events occur in a well defined order (triggered by the rising resp. falling
clock transition). Even simulations are much easier, since the clock tree’s delays can be assumed
to be 0 (lock-step round simulation), and thus the circuit’s functional behaviour can be simulated
at a much higher level without caring about any delays or glitches.

2.5 Asynchronous circuits and state machines

Until now, only a single global control signal, the clock signal, distributed to all stateful com-
ponents has been used, for controlling data exchanges. This chapter will provide an overview
of design alternatives including multiple clock signals, handshaking, self-timed asynchronous
circuits, hybrid forms of synchronous and asynchronous state machines and asynchronous com-
munication. The overall goal is to remove the need for global clock signal, i.e., to implement
circuits at least partially asynchronous.

2.5.1 Circuit classification

Data validity and consistency of a circuit’s outputs is determined by the delays of links and logic,
which can be classified as follows (based on the example in Figure 2.21):

d1
A

da

B

db

C

dc

d2

d3

...
...

...

Figure 2.21: A typical fork found in any combinatorial function or feedback paths [73].

Speed Independent: If the wire delays d1, d2 and d3 can be assumed to be 0, but the module
resp. gate delays can be arbitrary, the circuit is called speed independent (SI).

Delay Insensitive: If all delays can be arbitrary, the circuit is called delay insensitive (DI).
Delay insensitive circuits are the most robust circuits possible, but are not always imple-
mentable.

Quasi Delay Insensitive: If all fork delays d2 and d3 must be equal (called an isochronic fork),
the circuit is quasi delay insensitive (QDI). In the clock tree of a synchronous system,
this would require the clock skew to be 0 at all nodes of the same level. It is of course
impossible to make delays perfectly equal in practice, but the error can be sufficiently
minimized.

30

Self Timed: Any asynchronous circuit that is not within one of the above classes is self timed
(mixed circuits).

Note that the above delay assumptions are only required in basic modules, to ensure no
glitches or metastability can occur due to the link, memory and gate delays. A circuit that is
built from these modules can always be made DI, by using proper asynchronous communication
protocol in-between. See [43, 73] for further details.

2.5.2 Signal Transition Graphs and Muller C-gates

Many asynchronous circuits can be described by means of Signal Transitions Graph(STG). Like
a FSM, a STG specifies the sequences of allowed transitions at the input ports and the output
ports transition sequences. I will explain the STG using the example of a Muller C-gate [79].

The C-gate is a memory element often found in asynchronous circuits. Unlike the DFF it
stores the input state in an event-triggered fashion. It features two input ports and a single output
port. If both input ports are 1 resp. 0, the output port is 1 resp. 0. Otherwise the C-gate holds its
output. Figure 2.22 shows a C-gate’s timing behaviour, interface and its Signal Transition Graph
(STG) extracted from the timing specification. The C-gate is embedded in a simple environment,
which just feeds back its output to its inputs via two inverters.

The STG is a simple representation of a Petri net. It is built of:

Edges: Edges represent states of input and output ports of the circuit. The current/initial state
is indicated by a single token on the according edges.

Nodes: Each node specifies either a rising or falling signal transition on the input or output
ports.

Once tokens are present on all input edges of a node, the corresponding transition is allowed
to occur. As a result, the tokens are removed from the input edges as soon as the transition
occurs and one token is forwarded to each output edge. Note the apparent compatibility with the
asynchronous execution model, which only considers that computations get eventually enabled
and the adversary chooses the time instants of the computation events.

The simple test environment in Figure 2.22 shows that the C-element is operated metastability-
free if new input transitions are guaranteed to occur after the C-element generated the required
output transition, i.e., the input ports may only change once the C-element changed its output
port. Note that the C-element must contain a storage loop, because it needs to hold the last out-
put as long as the inputs are not equal. Hence, the timing requirements of the employed memory
element resp. circuit, which is used to implement the C-element, must be met, i.e., the inputs
must stay stable long enough such that the specified transition can be performed. In the case
of the C-gate, the feedback path via the output port c is typically longer than the storage loop.
Besides, a source waits for the required transition of the output, before providing the next input
transitions. Thus, the storage loop will have settled before new inputs arrive usually.

A C-gate can be implemented using either an SR-latch. The set resp. reset input port is
connected to the combinatorial output of the boolean function a ∧ b resp. ¬a ∧ ¬b. In this

31

Timing diagram

a

b

c
etc.

a
c

b

b+

b-

a+

a-

c-

c+

STG

b+

c+

b-

c-

a+

a-

Petri net

C-element embedded in a
simple test environment

C

Figure 2.22: A Muller C-gate specification and its corresponding STG [73].

case no enable is needed (see Figure 2.23). Since this implementation is not optimal, other
implementations are used in VLSI circuits typically [72].

C

C

B

A

B

A

Figure 2.23: Schematic of a Muller C-element using an SR-latch (without an enable port).

A program like Petrify [73] is able to generate speed independent circuits from the STG
specifications of a circuit. Typically, C-gates are used for state-holding purposes in the gener-
ated circuit. Obviously, there are some requirements on the STG, which must be fulfilled in order
to implement a STG as a speed independent, glitch-free and metastability-free circuit (see [73]).
Basically, everything that is similar to the Producer/Consumer-problem can be solved by such
circuits (see [50]). The (generated) circuit implementations typically contain closed loop com-
munication protocols as specified in Chapter 2.5.3.

32

2.5.3 Asynchronous communication

Any interface of a circuit to other synchronous or asynchronous circuits, either needs synchro-
nization or metastability filters, if setup/hold violations can not be avoided by design. Thus,
robust and fast means of metastability-free asynchronous communication are needed.

Existing approaches can be classified according to the behaviour of sink and source in Figure
2.14:

Fundamental mode: If the inputs of the sink are valid and consistent, the source may change
exactly one output port and must wait until all inputs are valid and consistent again, before
the next input (port) may change. As mentioned before, Huffman circuits can be operated
glitch-free in this mode (single input change).

Input/Output mode: If the inputs of the sink are valid and consistent, it will provide the source
with an output signal which allows the source to provide new data. Therefore, this com-
munication mode is a closed loop protocol, as source and sink need to wait for each other.

2.5.3.1 Handshaking

A common communication style, used to establish input/output mode communication and in-
dicate new data transmission, is called a handshake protocol. A handshake works as follows:
Whenever a source wants to initiate a transmission it sends the data along with a request sig-
nal. Once the request is received by the sink and it is ready to process resp. store the data
it will acknowledge the transmission. At the time the source receives the acknowledgment, it
may issue a new request. A handshaking protocol forms a closed loop, i.e., sender and receiver
need to wait for the corresponding handshake signal, before taking further steps. Obviously, the
originator of a new transmission is the source in this example, in which case the link is referred
to as push channel (see Figure 2.24). If the request resp. acknowledgment signal needs to re-
turn to zero, before a new request can be issued, the handshake is called 4-phase. A 2-phase
handshake protocol uses both rising and falling transitions, which doubles the transmission rate
approximately.

Although there is no need for both nodes to share a clock in order to use handshaking, the
issue to recognize the validity and consistency of the data remains: A race between the request
and the bundled data exists, but this problem is of a much smaller scale than distributing a global
clock. Usually, the request and data race is solved in the time domain by compensating the skew
between the arrival of the request and data signals, at the sink via suitable delays.

In fact the request resp. acknowledge signal is able to violate timing margins if the sender
and receiver circuit implementations are not able to avoid it by design, which will be addressed
in the following Chapters. Moreover, the overall communication speed is limited by the delays
of the request and data signals, because the sender needs to wait for the acknowledge of the
receiver. Another problem arises in fault-tolerant systems: Apparently, the sender and receiver
handshake signals and controller states must be consistent during operation, a deadlock could
occur otherwise.

33

(push) channel

4-phase protocol 2-phase protocol

Data

Req

Ack

Req

Ack

Data

n

Bundled data

Data

Ack

Req

Figure 2.24: An example of a push channel handshake communication either 4-phase (RZ) or
2-phase NRZ) [73].

2.5.3.2 Micropipelines

Micropipelines [76] are a frequently used approach for implementing a pipeline in asynchronous
designs.

Similar to the synchronous pipeline, it consists of stages (i.e., registers and combinatorial
functions) connected in series (see Figure 2.25). Instead of using a common clock, each stage
contains an additional Muller C-element to provide the trigger for the so-called capture and pass
registers. Like in the standard handshake case, the (bundled) data must be available before the
trigger at the corresponding stage’s register, which captures the input. Again, delays need to be
inserted to eliminate the possible race condition, thereby ensuring validity and consistency.

C

REQpre

Cd

PdC

P

ACKpre

DATApre Combinatorial

logic

ACKsucc

DATAsucc

REQsucc

Figure 2.25: A example of a single micropipeline stage, including a combinatorial function, for
processing the data. [73]

The capture and pass register is transparent and connects the input to the output (i.e., passes)
if both the capture and pass signal are equal, and otherwise holds its output. The capture done

34

signal is used as both a request for the next stage and a acknowledgment for the previous one.
The pass signal is the acknowledgment received from the next stage. The capture resp. pass
signal are delayed by the capture and pass register to the output ports capture done and pass
done. These delays ensure the setup and hold requirements of the employed memory element(s).
For possible memory element implementation options see [76].

Obviously the capture and pass registers can either implement a 2-phase or 4-phase hand-
shaking protocol. The advantage of handshaking compared over communication between two
synchronous designs without a handshake is obvious: The request, acknowledge and data sig-
nals can not change at inappropriate time instants due to the handshaking protocol and inserted
delays. Hence, the pipeline is metastability-free. Since there are no discrete time instants trig-
gering a state transitions, the execution is entirely event-triggered, i.e., asynchronous. This may
even result in a performance improvement compared to a synchronous pipeline. On the down-
side, the additional hardware and delay elements required, make micropipelines unsuitable for
complex systems and nodes. Consequently, they are typically employed for implementing fast
asynchronous buffers or small modules, rather than complex processing algorithms.

2.5.3.3 Transition signaling

The previously introduced circuits all share the same problem: Properly chosen delays need to
be introduced to compensate the skew between data and trigger signals, since the validity and
consistency of data signals could not be recognized from the data alone. The goal of transition
signaling is to encode data signals such that it is immediately apparent from the data itself
whether it is valid and consistent or not. Therefore, a new request must encoded in the data
itself, for example. In general data communication scenarios, i.e., where arbitrary data bits are
allowed to change in each new data word, an extra validity signal is required for each bit due
to the fact that a single bit is able to represent either 0 or 1 only. This is called a two-rail
communication.

The following encodings are commonly used (see [19–21]):

Null convention logic (NCL): A NCL-gate accepts two rail inputs with the following values:
10, 01, 00 and 11. The latter is illegal and must be ignored. The code words 10 and 01
represent logic high(h) and logic low(l) and the codeword 00 represents the NULL value
(n). Once all inputs of an NCL-gate are h or l the gate will change its outputs h or l as
specified by the desired boolean function. If all inputs are n, the outputs will switch to
n. A NCL-gate holds its outputs if any other input combinations are applied. Figure 2.26
shows an example NCL data stream: Between two successive data waves a null wave is
inserted.

Four state logic(FSL): A FSL-gate accepts two rail inputs with any of the four encoding from
00 to 11. The encodings are grouped in two phases: 10 resp. 01 (h/l) represent one phase
and 11 resp. 00 (H/L) the other phase. Once all inputs of an FSL-gate are from the
same phase, the gate will output the corresponding value specified by the desired boolean
function using the encoding of the input phase.

35

Both NCL and FSL gate implementations often offer an additional acknowledgment output
port, using single-rail encoding, which acts as acknowledgment for the source to reduce the
communication effort back to the source. The acknowledgment signal reflects the current output
phase (FSL) or the current output wave (NCL). For example, a null wave acknowledgment is
encoded using 0 and a data wave is acknowledge with 1.

Gateinput b

input a NCL
output

NULL

NULL

NULL DATA

DATA

DATA

NULL DATA

NULL

NULL DATA

DATA

input a

input b

output

Figure 2.26: Data and null wave communication using NCL gates [20].

AND h l n i
h h l * *
l l l * *
n * * n *
i * * * *

AND H L h l
H H L * *
L L L * *
h * * h l
l * * l l

Table 2.2: Truth table of a two input NCL(left) resp. FSL(right) AND-gate. The symbols
represent the codes in the description and * means hold last output.

Obviously, the outputs of such a gate will not glitch and the delays on the links do not need to
be considered. Table 2.2 shows the truth tables of an AND-gate for both encodings. Apparently,
the NCL-gate is similar to a 4-phase handshake communication, whereas the FSL implements a
2-phase handshake, since any of the two phase transmits data. Using the acknowledgment and
one of the above data encodings, it is possible to safely transmit data as the source is able to
establish an input/output mode communication.

Nonetheless, NCL and FSL circuits come with the problem of an increased hardware effort
due to one additional rail per bit and at least two memory elements (e.g., SR-latch) for each rail
per gate. Furthermore, it must be ensured that the combinatorial function, used to set/reset the
memory element output port of a rail, does not glitch. For example, the NCL AND-gate’s set
function for the SR-latch of rail 1 could be the equation: (a.r1 ∧ ¬a.r0) ∧ (b.r1 ∧ ¬b.r0). The
NCL/FSL encoding enforces that only one rail per (two-rail) input port performs a transition and
all transitions are of the same polarity, i.e., all rails may perform either a rising transition or a
falling transition only. Hence, at least the combinatorial set/reset functions of basic gates, like
the AND-gate of Table 2.2, can be implemented glitch-free.

Note that (possibly) different delays of the set and reset functions, it may occur that the set
and reset port of a memory element are active at the same time. It must be ensured that this
does not lead to an early or invalid deactivation of the set and reset function due to new arriving

36

encoded data words, i.e., before the memory element has settled. Hence, the QDI isochronic
fork assumptions must hold to establish a correct input/output mode, which is satisfied by the
longer feedback path via the source, usually.

To sum up, NCL/FSL circuits are QDI asynchronous circuits.

2.5.4 Pipelined asynchronous communication

The communication protocols introduced so far, use closed loop asynchronous channels, which
poses a problem if the communication speed shall be increased without increasing the data width
by means of pipelined communication. The handshake signals must always propagate back and
forth between the sender and receiver, i.e., the transmission rate is limited by the overall delay d
on the channel (link and combinatorial functions). In the case of pipelined communication, the
sender could send a new data bit every τ < d seconds after initiating the transmission, without
the need to wait for the receiver’s acknowledgment for every single bit. Therefore the serial
transmission of B bits in this example would be completed within d+B · τ seconds. Inevitably,
pipelined communication involves some timer driven execution, like sending new data (bits)
every τ seconds.

Obviously, metastability robustness will depend on the actual protocol and the sender resp.
receiver implementation. In general, metastability will not be avoidable by design like before,
however, because implementations must resort to drifting resp. unrelated clocks.

2.5.4.1 UART

Serial Universal Asynchronous Receiver and Transmitter protocols are the most used and widespread
communication protocols in embedded systems, for example it is used by the [78] standard. Typ-
ical UART connections convey serial terminal interface data, configuration data, sensor data or
logging data. It requires only a single wire and is easy to implement.

A data frame is encoded using a typical data format of one start bit, 4-9 data bits, 0-1 parity
bit and 1-2 stop bits (see Figure 2.27). In idle mode, i.e., when there is no data to transmit, the
output signal at the transmitter outputs logical high (1). A new frame is indicated by a transition
to the logic level 0 (start bit). After that, the data bits are transmitted beginning with the LSB.
At last, a parity bit (XOR or XNOR sum of the data bits) may be transmitted. The frame is
completed by a transition to the idle state for 1 or 2 bits (stop bits).

S
ta

rt

LS
B

D
1

D
2

D
3

D
4

D
5

D
6

M
S

B

P
ar

ity

S
to

p

Figure 2.27: Example UART frame with eight data bits, one odd parity bit and one stop bit.

37

If fbaud gives the frequency (i.e., baudrate) of the transmit clock, each bit takes 1/fbaud
seconds for transmission.

The achievable baudrate is limited due to noise, filtering(jitter) and DC offsets, which in-
crease with the wire length. Although, these problems can be neglected for (short) on-chip
communication, clock drifts are a limiting factor:

Assume the initial start bit offset introduced by the receiver implementation is at most doff.
A simple receiver will now sample each bit, including the start bit, periodically using its clock,
which frequency drifts within the interval [1/(ϑfbaud), 1/fbaud]. The worst case accumulated
offset is then doff + [(W − 1)/fbaud](1− 1/ϑ), where W is the number of symbols in the frame.
Since the offset must be less than 1/(2ϑfbaud) to guarantee proper decoding at the receiver, the
following baudrate inequality must hold:

fbaud < (1/2− (W − 1)(ϑ− 1))/(ϑdoff) (2.2)

Assuming the simple receiver circuit oversamples the UART data signal by a factor of 16 and
it takes at most 2 oversampling clock cycles to detect the start of a transmission, which starts
the periodic sampling too, the worst case initial offset is doff = 1/(2fbaud) − 1/(2ϑfbaud) +
2/(16fbaud). Note that this is equal to (5ϑ − 4)/(8ϑfbaud). The analysis is based on the results
in [29].

2.5.4.2 SPI

Alternatively, the clock may be passed along with the data by the sender via a separate wire.
Such an interface is often used between peripheral components in embedded systems like sen-
sors, flash, LCD and others. It hence suffers from similar problems as the UART over longer dis-
tances. Typical interfaces are implemented bi-directional on the data link to allow slave devices
to answer over the same channel. The receivers and transmitters are very simple to implement,
but more careful routing needs to be performed to ensure a tolerable skew between clock and
data at the receiver.

A typical SPI interface comprises 3 wires: Data, Clock and Slave-Select (request). An
example communication is depicted in Figure 2.28. Note the potential race between the request,
clock and data. The data and clock are (often) connected to a shift register, which is an “empty”
pipeline (without combinatorial logic), see Figure 2.17. The first input is connected to the data
channel. Some receivers and transmitters allow to define the clock phase, clock period and
clock polarity (sampling edge) for the transmission. In the standard setting, no full handshake
is performed due to the missing acknowledgment signal. A new request is indicated by a low-
active Slave-Select, before the first bit is transmitted. It rises again after the transmission is
complete. Once a clock phase, clock polarity and clock period is chosen, the maximum skew
between data, request and clock must be at most half a clock period minus setup and hold times.

38

CLOCK(POL=0)

CLOCK(POL=1)

SS(REQ)

DATA(PHA=0)

DATA(PHA=1)

Figure 2.28: Example SPI communication of 4 bits.

2.5.4.3 Self-clocked codes

The two previous protocols suffer from the drawback that either the clock drift (UART) or the
data-clock skew (SPI) limits the frame length and data rate. Self-clocked codes ensure periodic
resynchronization points, s.t. the error introduced by the clock drift can be reduced at those in-
stants and remains at an acceptable level. Some receivers even extract the sender clock from the
data stream [84]. Examples of modern high-speed protocol standards that use these techniques
are PCIe, Gigabit Ethernet [34], USB (3.0), SATA and others.

Most of the protocols mentioned are used for off-chip communication between peripherals
or to other systems over a network. For DC and noise compensation, due to the increased
interference and longer distances, it is often required to use (low voltage) differential signals
(LVDS), which comprises two wires. Nonetheless, some of these principles may be used for
SoC communication as single bit channels.

A well known self-clocked code is the Manchester-code [15]. It uses 2 symbols to encode a
single bit (10 or 01). Obviously the Manchester-code needs a baudrate twice as high as in UART
to achieve the same bitrate. Apart from that problem the receiver may resynchronize on every bit
instead of every frame keeping the error minimal and allows larger clock drifts and still receive
large frames. This code has been used in older Ethernet LANs with differential channels. Since
there is no idle symbol in a single channel implementation a start-bit can be used just like in the
UART setting to indicate a new transmission.

One of the most popular codes is the 8B/10B encoding [82], where a byte is encoded using
a symbol with 10 bits length, but the actual meaning may vary. The encoding allows to specify
special code words for idle states, as frame delimiters, for resynchronization or other commands
that can not be found in the data code words. The encoding ensures that the running disparity,
i.e, the difference in the amount of transmitted ones and zeros, within 20 bits of the transmitted
data stream is less than 2. Besides, the amount of successive ones and zeros is at most 5. The
above mentioned modern high-speed protocol standards, make use of such a code.

2.6 Globally Asynchronous and Locally Synchronous Systems

Globally Asynchronous and Locally Synchronous Systems (GALS) [13] are creating more asyn-
chronous systems([40, 77, 83]). It is a very common technique in SoCs due to the variety of
processors and interfaces. It comprises locally synchronous subsystems, each of which runs at

39

its own pace. The GALS principle tries to avoid the problem of distributing a single clock to
all components by distributing multiple clocks to these locally synchronous subsystems instead
(see Figure 2.29). These subsystems are processors, signal processors, system buses and other
components. Hence, the subsystems employ asynchronous communication protocols for means
of interfacing. Therefore, the GALS principle is used to implement distributed systems on a chip
in general.

CPU
2GHz

PCI-IF
533MHz

DSP
2,7GHz

USB-IF
24MHz

Figure 2.29: An example architecture of a SoC using the GALS principle [75].

The advantages a GALS system are obvious:

• Use of standard tools for locally synchronous subsystems.

• Local clock distribution simpler.

• Clock frequency not limited to the slowest subsystem clock.

• Reuse of existing synchronous circuits.

• Simple and fast system design, i.e., less complex than pure synchronous or asynchronous
design principles.

• Many efficient and robust asynchronous communication protocols exist.

But the global notion of time is lost. This implies that in general timing violations will be
inevitable due to the asynchronous communications protocols, which may result in metastable
upsets. Furthermore, synchronized actions and global schedules are not guaranteed.

Hence, GALS systems can be further classified depending on which kinds of clocks are
available to the nodes ([75]):

Synchronous: Clocks with identical frequency and constant phase relation are available. Clas-
sical synchronous design with one clock source usually.

Multi-synchronous: The available clocks maintain a global synchrony without accumulating
drift, but unknown bounded and varying phase relation (skew). Examples are employed
clock synchronization algorithms or a PLL driven by one clock source.

40

Plesiochronous: All clocks offer the same nominal frequency, but there is a (bounded) accu-
mulating drift. Examples are independent oscillators with the same nominal frequency.

Heterochronous: All clocks are unrelated and have different nominal frequencies.

The attentive reader will notice that the following two major issues must be solved in (fault-
tolerant) GALS systems:

• Clock generation.

• Communication.

Providing these services in a fault-tolerant and self-stabilizing fashion is preferred by the
(multi-synchronous) GALS designer.

2.6.1 Clock generation

Most systems use asynchronous circuitry as clock distribution techniques. A single clock source
feeds Phase-locked Loops (PLLs) [5, 42, 70] to compensate the clock tree skew. A PLL may
even generate higher or slower clocks from this base input clock (i.e., perform a clock frequency
division or multiplication). Besides, more complex clock nodes, than simple buffers, can be em-
ployed to possible reduce the skew even further by delaying the clock edge propagation, until a
certain amount (e.g., threshold) of its inputs has observed this clock edge [30]. Although, a PLL
can generate multiple sufficiently synchronized clock sources for multi-synchronous GALS,
which do not suffer from an accumulated clock drift since it is based on a single clock source,
the PLL is in general still not fault-tolerant and a single point of failure.

Hence, fault-tolerant clock (tick/pulse) generation algorithms must be employed to build
reliable multi-synchronous GALS. A popular fault-tolerant algorithm to provide local synchro-
nized clock ticks is [74]. It assumes that sufficiently many correct nodes remain synchronized
within the specified precision, to be able to reintegrate failed nodes after the startup procedure.
This algorithm has been extended in [81] to hybrid failure models (e.g., link and node failures)
of different severity (e.g., crash and Byzantine failures). A reduced approach of this algorithm
has been implemented in the DARTS [38] scheme, using asynchronous design styles. It comes
without the need to distribute linear sized messages (i.e., synchronous round number) and fits
the needs of VLSI circuits by just exchanging binary clock signals. On the downside, it looses
the ability to reintegrate failed nodes. Each DARTS module provides tightly synchronized clock
pulses for a single GALS clock domain.

The missing availability of Byzantine self-stabilizing pulse synchronization algorithms, that
suit VLSI requirements (e.g., constant sized messages and metastability), has lead to the de-
velopment of the FATAL+ algorithm [26]. It offers probabilistic self-stabilization, even in the
presence of Byzantine faulty nodes, within linear time. Each FATAL+ node provides fast and
slow synchronized pulses and a (short) bounded synchronized clock that increments in lock-step
manner at every fast pulse and resets to zero at every slow pulse (see Chapter 3). The only
assumptions are those of the bounded delay model (e.g., bounded drift, delay and computation
time).

41

2.6.2 Communication

Any of the previously described protocol can be used for this purpose (e.g., pipelined com-
munication and handshaking). Existing interface standards include PCIe, GbE, SATA, DDR3
including the very popular embedded system bus protocols AMBA and the Wishbone.

The most common asynchronous communication techniques, to interface with the locally
synchronous subsystems, are handshaking controllers [41], shared memory or synchronizing
FIFOs [23, 24, 64, 77]. Sometimes asynchronous communication methods or on-chip networks
are employed like GbE [34] between the modules. Obviously, metastability can not be avoided,
in general, if no global synchrony exists, but the probability is usually minimized by metastabil-
ity filters liker synchronizers.

The Wishbone and AMBA protocols make use of handshaking techniques, by organizing
the modules into masters and slaves. The bus communication is typically driven by its own syn-
chronous clock to overcome the problems of metastability. In (fault-tolerant) multi-synchronous
GALS systems, each subsystem could use its own clock for this purpose. In order to grant
the bus to a single master only, arbitration modules, which grant only one access per time, are
needed. A slave is selected by the master by applying the slave address(es) to the bus, which
waits for the acknowledgment.

As mentioned above FIFOs like the Micropipeline can be used as fast means of commu-
nication, but an input element needs to pass the whole pipeline (even if the elements are not
processed). Instead, some FIFO implementations use on-chip memories with read and write
ports. The sender is allowed write as long as the FIFO is not full and the receiver as longs the
FIFO is not empty. This requires to remember the current read and write address locations of
the memory, which must be managed either by the sender resp. receiver or an asynchronous or
synchronous arbiter module. Most FIFOs are based on handshaking mechanisms using either
dual-clock, i.e reader/writer clock, shared memories as buffers to improve the burst data rate
if the sink is slower in accepting new transmissions than the source. The FIFO decouples the
source and sink s.t. they do not need to wait for each other. The handshaking controller between
the FIFO and the sender resp. receiver act as metastability filters. Hence, this communication is
usually reliable.

Nonetheless, if modules resp. nodes of a GALS system may fail the handshaking mecha-
nisms, FIFO read and write addresses, bus protocols and transition signaling may become in-
consistent due to faults and introduced errors. Hence, self-stabilizing mechanisms or recovery
circuits like watchdogs that try to detect wrong states and deadlocks, must reset the commu-
nication controllers accordingly or other recovery mechanisms are needed (see for NCL/FSL
self-healing circuits [62]).

Apart from global schedules and simultaneous actions, a global notion of time in multi-
synchronous GALS facilitates metastability-free communication either via simple DFFs, fast
FIFOs [64] or handshake-free synchronizers like the phase predicting Even-Odd-synchronizer
[18].

42

2.6.3 Hybrid state machines

In GALS systems, a synchronous FSM needs to be interfaced with another synchronous FSM
without introducing unnecessary delays and, if possible, without metastable upsets. Hybrid State
Machines (HSMs) have been used successfully for this purpose [26, 66]. A HSM implements
a transaction-based scheme: A state transition is performed by a pausable synchronous state
machine, in multiple steps, but triggered asynchronously. For this purpose the synchronous
part of a HSM, called the transition state machine (TSM), which stops executing once a state
transition is complete, by pausing its local clock. Figure 2.30 shows an example transition
including the transition state machine (TSM) of FATAL+.

A Syn Cmt Trm B

TSMClock
� � �

G′ true

¬TSMCStop TSMCStop

Figure 2.30: Example transition including the TSM [26].

All state transitions guards are evaluated asynchronously by (standard) combinatorial cir-
cuits from the node’s external (data) input ports, the HSM local state (i.e., FSM state) as well as
those of any other local module (e.g., timers, memory flags and voting modules). Once a tran-
sition guard is true, the TSM clock is resumed. Hence, the TSM module executes the required
state transition. Since multiple transition guards may become true close to each other, the HSM
resolves the issue using a tie-breaking mechanism s.t only one transition guard remains enabled
(e.g., by assigning static priorities).

The first state of the TSM (Syn) sets a lock signal to prohibit that other transitions guards
become true, since the HSM has chosen its next state candidate already. This also enforces that
this transition guard remains true. The FSM state transition computations are implemented in
the state (Cmt) of the TSM, i.e., it resets associated memory elements and timeouts and stores
the new FSM state. At last the TSM terminates (Trm) and completes the state transition by
clearing all resets and the lock signal. Usually, at this point no transition guard is true, which
pauses the clock.

Apparently, each HSM needs its own pausable clock, but the available amount of external
precise quartz oscillators is rather low (cost and area). Hence, internal imprecise (i.e., large ϑ)
ring oscillators are used for this purpose. Basic ring oscillators are just a loop containing an odd
number of inverters (see [66]). Note that the combinatorial circuits must be glitch-free, i.e., the
designer needs to choose suitable state encodings for state communication among HSM nodes
(see [66]). Unfortunately, the HSM can suffer from metastable upsets:

• Multiple transitions may become true at inadequate instants s.t. either tie-breaking resp.
the lock signal has not settled.

• Faulty nodes may introduce glitches and runt pulses, which can upset the memory ele-
ments of transition guards.

43

In many (self-stabilizing) algorithms such upsets can not occur after stabilization in fault-
free executions, since one guard will be true at a time only. Besides, (deep) metastable upsets
are rare and may be mitigated using metastability filters and voting modules (see Chapter 2.3).
Consequently, metastable upsets can only delay stabilization.

To sum up, combining event and time-triggered execution styles, allows to use the simplicity
of synchronous state transitions, and thereby ensuring all timing requirements of local modules
are met, and still start a state transition as soon as possible. Furthermore, it does not need extra
stabilization mechanisms if the algorithm FSM actually executes some stabilization protocol.
Should the HSM stop in an unspecified FSM state, this can be covered by a default transition
guard to some specified state. Moreover, pausing the clock implicitly saves power.

2.7 Designflow

Today’s vendor tools allow designers to describe circuits at the register-transfer level (RTL) and
even at lower levels. Hereby, circuits may be directly described as FSMs or boolean circuits
(functions) or by assembling already available components. The remaining transformation to
the completed circuit is done by automatic synthesis tools (using technology libraries), which
map the desired functions to the vendor-specific low-level gates and components. If the gener-
ated circuit is not able to fulfill the requirements, the description may be changed or manually
transformed to a lower level. A synthesis tool performs the following operations automatically:

1. Analyze and compile design entry description (VHDL/Verilog RTL). Allows behavioural
simulations (fast).

2. Synthesis (technology mapping to gates and components of the vendor). Allows pre-
Layout simulations and estimated (gate) delays (slow).

3. Place and Route (place the components on the chip and connect them). Allows post-
Layout simulations using actual delays (very slow).

4. Timing analysis

Modern synthesis tools are able to perform various optimizations and metastability or power
estimation analysis.

However, typical cost factors in VLSI design are:

• Power

• Area

• Performance (Frequency, Jitter)

• Robustness (glitch-free, metastability-free, noise, etc.)

Each of these are influenced by:

• Link (length, amount)

44

• Fan-out (amount of links to a single output port)

• Logic (gates,memory)

• Depth/Delay (propagation delay of cascaded logic)

All these cost factors are also influenced by the choice of technology (e.g., feature size,
production process, transistors and internal structure). Synthesis tools provide coding guidelines
to automatically infer specific lower-level blocks like multiplexers, multipliers, adders, SRAM-
memory, FIFOs, registers, latches, FSMs and many more, which can be tailored to optimize
certain cost factors.

2.7.1 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) contains many predefined vendor configurable hard-
ware modules, which may be connected via a programmable interconnect. FPGAs are frequently
used as rapid hardware prototyping platform or if creating an Application Specific Integrated Cir-
cuit (ASIC) is to expensive due to a low manufacturing volume or when specifications change
frequently. Most FPGAs and vendor tools are streamlined to be used in synchronous designs
using on-board oscillators or external clock sources. Hence, most FPGAs contain well-balanced
clock trees. In the following, I introduce a typical structure and basic elements using the Cyclone
IV-FPGA [3] as an example.

Logic Array Blocks

The FPGA layout is organized in a grid structure (i.e., columns and rows) of so called logic
array blocks (LAB), each consisting of 16 logic elements (LE). The inputs and outputs of a LAB
may be tied to the row resp. column interconnects connecting it to adjacent LABs of the same
row resp. column. These interconnects actually drive the local interconnect of a LAB, which
physically interfaces to the LEs: Each LE output can be routed either to the local, column or row
interconnect. Furthermore, each LE may use a direct link to a LE in an adjacent LAB on the left
or right to save row and column interconnects.

Figure 2.31 depicts the grids structure using row, column and local interconnects of a LAB
containing 16 LE. Further inputs and outputs of a local interconnect can be embedded RAM
blocks, multipliers, global clocks or dedicated input and output pins.

45

Direct link
interconnect
from adjacent
block

Direct link
interconnect
to adjacent
block

Row Interconnect

Column
Interconnect

Local InterconnectLAB

Direct link
interconnect
from adjacent
block

Direct link
interconnect
to adjacent
block

Figure 2.31: Structure of a Cyclone IV-FPGA LAB and interconnect [3].

Logic Elements

A logic element (LE) contains several components and is used to implement combinatorial cir-
cuits and memory elements (see Figure 2.32). The most important part is the Look-up Table
(LUT). It implements an arbitrary 4-input and single output boolean truth table. Its output can
either be routed directly to the interconnects or via a memory element, represented by a standard
register (i.e., a DFF). The LUT may also pass its output fast to the next LE in the same LAB
to implement arithmetic functions like addition with carry logic. Note that, the DFF can select
between one of two LAB-wide clocks, and that unused memory elements may even be used by
another LE (register packing). Obviously, an LE can implement a single stage in a synchronous
pipeline, like the one of Figure 2.17.

Clocking

The Cyclone IV-FPGA provides up to 30 low-skew clock networks. Moreover, the FPGA offers
4 PLLs, i.e., input clock frequency division and multiplication circuits with adjustable phase
relation, which can offer up to 5 output clocks sources, each capable of driving a clock net-
work. Each LAB can select two clocks out of these or can use a source from its local inter-
connect Sometimes, a clock is generated internally by the user circuit (e.g., by ring oscillators
or clock tick generation algorithms). Note that due to the limited number of available global

46

Row, Column,
And Direct Link
Routing

data 1
data 2
data 3

data 4

labclr1
labclr2

Chip-Wide
Reset

(DEV_CLRn)

labclk1

labclk2

labclkena1

labclkena2

LE Carry-In

LAB-Wide
Synchronous

Load
LAB-Wide

Synchronous
Clear

Row, Column,
And Direct Link
Routing

Local
Routing

Register Chain
Output

Register Bypass

Programmable
Register

Register Chain
Routing from
previous LE

LE Carry-Out

Register Feedback

Synchronous
Load and

Clear Logic

Carry
Chain

Look-Up Table
(LUT)

Asynchronous
Clear Logic

Clock &
Clock Enable

Select

D Q

ENA
CLRN

Figure 2.32: Structure of a Cyclone IV-FPGA logic element [3].

clock networks, it is sometimes necessary to route internally generated clocks via the standard
interconnects to the required LABs, which increases the clock skew and limits the achievable
clock frequency typically.

Timing Analysis

A synthesis tool is used for automatically mapping a net-list design onto the suitable LABs
in an FPGA. Obviously, that does not imply that all timing constraints are met. Therefore,
the TimeQuest timing analyzer [1] verifies every path between two DFFs (register-to-register
path) using the minimum and maximum delays introduced by the clock network, local, row
and column routing, LUTs and memory elements on the path. Note that it is only capable of
analyzing synchronous or multi-synchronous designs for timing violations. The most important
timings constraints to be verified are the setup and hold constraints of a DFF. For this purpose,
the timing analysis uses different models for environmental effects like temperature and supply
voltage to cover different (worst case) scenarios.

The following explanation will serve as an example how synchronous or multi-synchronous
designs can be verified under the assumptions of a bounded delay links and logic.

47

The general setup slack equation is given by [2]:

Clock Setup Slack = Data Required Time− Data Arrival Time (2.3)

Data Arrival Time = Current Launch Edge + Clock Network delay to Source

+ µtCO + Register-to-Register Delay
(2.4)

Data Required Time = Next Latch Edge + Clock Network Delay to Sink

− µtS − Setup Uncertainty
(2.5)

The computed clock setup slack is a margin by which a timing constraint is either met or
not. If the Clock Setup Slack > 0, a new issued (launched) data by the source DFF will always
arrive before the sink DFF next capture clock edge occurs (where it latches the data). See the
example in Figure 2.33. In order for the timing analyzer to analyze the communication between
two DFFs, the clock of the source and sink DFF must be specified, i.e., the clock transition time
instants. Note that the source and destination clock specifications are the same in a synchronous
design.

Either the rising or falling clock transitions are plugged in into the above equation as Current
Launch Edge resp. Next Latch Edge, depending on whether the rising resp. falling clock tran-
sition is used to control the source resp. sink DFF. Since the worst case setup relation must be
analyzed, the closest two triggering source and destination clock transitions have to be chosen,
which are exactly one clock cycle apart from each other in a synchronous design. The remaining
parameters are extracted from the clock distribution network (maximum Clock Network delay
to Source and minimum Clock Network delay to Sink), combinatorial path delays (maximum
Register-to-Register Delay) and DFF parameters (clock to output µtCO and setup time µtS).

This results in the following reduced equation for synchronous designs, where the same
clock edge is used for both launching and latching the data:

Clock Setup Slack = Minimum Clock Period− Skew− dmax (2.6)

dmax = µtS + Setup Uncertainty

+ µtCO + Register-to-Register Delay
(2.7)

As already mentioned, a sink can overlook a received state in bounded delay link models
using state-based communication. Since a clock transition is used for both receiving and sending
new data, it can happen that new data (Next Launch Edge) is sent by the source before the current
one has been stored by the sink (Current Latch Edge), i.e., it overlooked the old state data.
Hence, it must be ensured that the data holds until the sink successfully latched the data.

The general hold slack equation is given by [2]:

Clock Hold Slack = Data Arrival Time− Data Required Time (2.8)

Data Arrival Time = Next Launch Edge + Clock Network delay to Source

+ µtCO + Register-to-Register Delay
(2.9)

Data Required Time = Current Latch Edge + Clock Network Delay to Sink

+ µtH + Hold Uncertainty
(2.10)

48

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

Figure 2.33: In this example hold relation A2 and setup relation B are the most restrictive ones
[2].

If the Clock Hold Slack > 0 no hold violations are going to occur. Again, the closest two
clock transitions must be chosen and plugged into the above equation. In a synchronous design
these transitions are the same, i.e., there is no time in between. The remaining parameters
are extracted from the clock distribution network (minimum Clock Network delay to Source
and maximum Clock Network delay to Sink), combinatorial path delays (minimum Register-to-
Register Delay) and DFF parameters (clock to output µtCO and hold time µtH).

If a synchronous design is analyzed (using the same edge to launch and latch data), the hold
slack can be reduced to:

(2.11)

Clock Hold Slack = dmin − Skew

− µtH − Hold Uncertainty
(2.12)

dmin = µtCO + Register-to-Register Delay (2.13)

Apparently, it is possible to solve setup violations by reducing the clock period in these
designs, but not hold violations. This poses a problem in designs with large clock skews. A
solution is presented in Chapter 4.

The timing analysis tool automatically extracts the above delays and the worst case clock
transitions from the clock specification, but this specification is static. Hence, all clock transi-
tions occur at the periodic specified time instants (no drift), which implies also predefined phase
relations for clocks with the same nominal frequency. Since clock synchronization algorithms
introduce a significant amount of skew, that is not a result of the clock network delay, this part of
the overall skew must be specified using the uncertainty parameters in the equation. Besides, the
timing analysis tool is not able to analyze the properties of a clock synchronization algorithm.
Therefore, either the designer needs to provide own tools to extract the required information
and verify these against the constrains or must make assumptions about it. Providing automatic
tools, is not part of this thesis. Hence, the assumed delays and theoretical results of a clock
synchronization algorithm can be plugged into the above equations manually (see Chapter 5.2).

49

CHAPTER 3
FATAL+ and the Labeling solution

In this chapter, an overview about FATAL+ (see [26]), the labeling problem to be solved, and
the solution algorithm and its proofs will be given. It will summarize the important features and
properties of FATAL+ that are needed to provide and implement a solution for the self-stabilizing
and fault-tolerant labeling problem.

3.1 Pulse synchronization with FATAL+

As noted in Chapter 2, many distributed problems need algorithms to be run within the syn-
chronous lock-step round or bounded delay model in order to solve them in the presence of
Byzantine failures. Among these are the pulse and clock synchronization problems. Fault-
tolerant Algorithms for Tick-Generation in Asynchronous Logic (FATAL+ [26]) provides a
self-stabilizing solution to the clock and pulse synchronization problem in the presence of at
most f ≤ b(n− 1)/3c Byzantine faults, which stabilize with high probability.

The FATAL+ pulse synchronization algorithm is designed to cope with the typical problems
of VLSI designs, like metastability, drifting clocks and delay at once and still provides linear
probabilistic stabilization/convergence. The prototype has been implemented in [66]. The syn-
chronized slow and fast pulses are provided by the main algorithm in Figure 3.3 and Quick-cycle
algorithm in Figure 3.5 and the associated memory flags for the states Accept resp. Accept+,
which are referred as FATAL- and FATAL+-pulses. This protocol stack, including the important
interface to the application layer as well as the interface between those two algorithms, is de-
picted in Figure 3.1. M fast FATAL+-pulses are generated by the Quick-cycle algorithm, which
rely on the basic FATAL algorithm for self-stabilization, such that the provided BSCLK counts
these fast pulses and overflows to 0 with the next FATAL-pulse. These are the most important
algorithms concerning this thesis as these provide the interface to the labeling algorithm. A more
detailed explanation is provided later in this chapter.

51

FATAL

(Pulse Sync)

FATAL
+

(Quick-cycle)

T2
+

NEXTi

Accept
+

Accept

BSCLK(mod M)

Figure 3.1: Generated synchronized slow and fast pulses including a bounded synchronized
clock.

3.1.1 Modules

A node comprises the following elements: State machines, memory flags, links, (random) timers
and clocks. 1

Clocks and timers

The FATAL+ prototype implementation uses pausable 1-bit clocks for the timeouts and state
machines. A timeout is referred to by the model (and the state machine descriptions) as a tuple
(T, s, C) or short (T, s), where C is a clock. The timeout T is reset (i.e., started) upon entering
some specific state s in one of the state machines of FATAL+. Sometimes, no state s is specified,
then the timer is reset, for example, when entering a state that uses the timeout output port T in
one of its outgoing transition guards.

Ports, memory flags and links

Each FSM provides a local output port Si and input ports Si,j for each node i and j. Si,j
is connected via a link to Sj , which conveys node j’s state to node i. In the current FATAL+

prototype, a code word with a Hamming distance of 2 with a delay insensitive decoding function
is used on the links. At node i, port Si,j is fed into memory flags Memi,j,s, which are set
when node i has seen node j in state s since the last reset by node i’s state machines. Figure
3.2 depicts the prototype implementation of the an input and output port between two nodes
and the associated memory flags of the main algorithm. It is apparent that the memory flags
implement buffers for the individual states conveyed via the link. Note that some state (e.g.,
Actual ACCEPT) is also available without buffering.

1The general definitions of Chapter 2.1.2 apply, so only the most important differences in notation and some
more detailed informal explanations FATAL+ are provided.

52

A statement in a transition guard like in s refers to some state machine being in state s. Sim-
ilarly, if a state is used without the keyword in, it refers to the output port of the corresponding
memory element. Hence, a guard like (≥ n − fs or)in s′ will become true at a node i if at
least n− f of node i’s memory elements of state s are set, i.e.,

(∑
j∈V Memi,j,s

)
≥ n− f , or

some local state machine has the state s′. Besides, a transition of the FSM will perform some
additional action, i.e., it resets all memory elements specified as a edge label in a box along with
the transition guard (see Figures 3.3 and 3.5).

D Q

D Q

D Q

D Q

Data0

Data1

Data2

Data3

InCLK

Reset PROPOSE
Reset ACCEPT

Reset SLEEP-WAKING
Reset RECOVER

Reset JOIN

MEM-PROPOSE
MEM-ACCEPT

MEM-SLEEP-WAKING
MEM-RECOVER
MEM-JOIN

Actual in ACCEPT

Sender Receiver

Figure 3.2: Memory flags sender and receiver port implementations of the main algorithm. [66]

Threshold modules

Since some transition guards require that at least a certain number (i.e., the threshold) of memory
flags of some specific states to be set, threshold modules set their output once this threshold is
reached (e.g., at least n − f memory flags are set). Due to the asynchronous evaluation of the
transition guards using combinatorial logic, the threshold modules’ output ports must be glitch-
free. In the current FATAL+ prototype, these modules are implement using the Sum of Products
approach (see Chapter 4.2).

53

State machines

The FATAL+ state machines are implemented by means of HSMs introduced in Chapter 2.6.3.
The transition combinatorial functions, which determine which transition of the FSM shall be
performed and enable the TSM clock, have been generated by Petrify using STG specifications
of the FATAL+ protocol (see Chapter 3.1.2).

Metastability

The HSM and the FATAL+ algorithm itself have been designed to make the window of vul-
nerability for metastable upsets small. Consequently, on average, such upsets are very rare and
can only delay the stabilization. An analysis of possible upsets in the current FATAL+ imple-
mentation can be found in [26]. However, analytical results on the upset probability are still
lacking.

Once the system has stabilized, it is guaranteed to be metastability-free due to the used
timeouts and the delays and clock ratios covered by them: The HSM is started safely as all
signals are supplied long enough to be stored correctly by the memory flags and no glitches will
occur. Furthermore, in case of multiple outgoing transitions, only one transition will be enabled
at a time and thus no tie-breaking is needed.

The only way metastability may be introduced after stabilization is by faulty nodes, which
may send runt pulses and upset the memory flags. This in term, may produce undefined be-
haviour of the HSM processing the corresponding transition guards. Nonetheless, the proba-
bility of metastability propagation is small (due to the threshold modules and the TSM), and
additional synchronizers or elastic pipelines in the links can be used to decrease the probability
of metastable upsets due to faulty nodes.

3.1.2 Protocol

FATAL+ assumes a fully connected network of n nodes in the bounded delay asynchronous
model. All link delays, including the computation delays, and the clock ratio ϑ are known
and bounded. The adversary may choose any initial state of the distributed system and up to
f Byzantine faulty nodes: link failures are modeled as node failures. If the number of node
failures exceeds f , the whole system may need to restabilize.

The main actual parameters influencing the timeouts and execution of the protocol algo-
rithms are:

Delays: The maximum delay d between the launch of a new state on an output port sent over a
link by another node or an internal component of a node (e.g., timeout) until it is safely
stored (link delay, decoding/combinatorial delay and memory flag set/reset delay), includ-
ing the necessary time to perform a transition if the a guard became enabled by that signal
(transition guards combinatorial functions, clock resume delay and TSM delay). Since
the Quick-cycle algorithm is likely to have smaller delays it provides a further distinc-
tion into d+max and d+min, which represents the maximum resp. minimum delay within the
Quick-cycle algorithm only.

54

Clock ratio: Is defined by ϑ like before.

accept

sleep

sleep
→

waking
wakingready

propose

recoverjoin

T1 and
≥ n− f
accept

(2ϑ+ 1)T1

true(T2, accept)

(T3 and
NEXTi = 1)

or T4 or
≥ f + 1
propose

or accept

≥ n− f propose or accept
or ≥ f + 1 accept

T1 and
< n− f
accept

ϑ(2T1 + 3d) and
|{j ∈ V | Si,j = accept}|

≥ n− f

(((T6, active) and in active)
or (not in dormant and

((T7, passive or ≥ f + 1 join)))
and Memi,i,join = 0

in dormant

T5
≥ n− f
join or

propose
or accept

≥ f + 1
recover or

accept

accept, recoverpropose,NEXTi

accept

accept

propose, accept

Figure 3.3: Overview of the core routine of node i’s self-stabilizing pulse algorithm. Once
stabilized only the outer cycle is performed. [26]

FATAL pulse synchronization

The main algorithm, which is responsible for generating the slower synchronized FATAL-pulses
(see Figure 3.4), progresses through the states depicted in Figure 3.3. The inner core restabilizes
the system or (late) joining nodes, should there ever be a loss of synchronization. There are
further algorithms not shown here, which the main algorithm relies on to implement the actual
resynchronization mechanisms, using randomly chosen timeouts to cope with Byzantine faults.
Note that once the FATAL algorithm has stabilized, all correct nodes execute the outer cycle of
the main algorithm, which is the main source of the accuracy and precision/skew bounds.

Put precisely, the timeouts of the main algorithm ensure, that all correct nodes enter the
state ready resp. accept (i.e., last pulse) before the first node leaves it. Once the a node reaches
ready, there are two timeouts T3 and T4 that may lead the first correct node to switch to the state
propose. T3 can be much smaller than T4 and allows an application layer to provide theNEXTi
trigger to force the algorithm to increase the pulse frequency, i.e., the application layer is ready
for the next pulse at node i. Due to the clock ratio ϑ and the skew, some nodes will leave the
state earlier than others, i.e., they are fast. After a node is in propose, a node may generate a
new pulse, i.e., switch to accept, either once it has seen at least f +1 correct nodes in propose or
accept or if it has seen at least one correct node in accept. So, when the first node enters accept,
all other nodes have seen at least f + 1 correct nodes in propose and switched to propose within
d. Therefore all nodes have seen n − f correct nodes in accept and switch to accept within d.

55

Hence, any node will switch to accept within 2d after the first correct node switched to accept.
At this point, a new iteration of this cycle begins.

To sum up, the main algorithm solves the pulse synchronization problem (see Chapter 2.1.5)
and Figure 3.4) with up to f Byzantine failures within stabilization time T (k) ∈ O(kn) with a
probability of at least 1 − 2−k(n−f), for some k ∈ N. If at least n − f correct nodes are syn-
chronized other correct nodes synchronize within O(R1) deterministically. After stabilization
it guarantees the accuracy [Tmin, Tmax] = [(T2 + T3)/ϑ − 2d, T2 + T4 + 7d] and the precision
(skew) Σ = 2d. Obviously, the minimum FATAL-pulse width is T1/ϑ.

≤ Σ t ∈ [Tmin, Tmax]

Accepti
Acceptj

Figure 3.4: Interface timing to provided by FATAL to higher level algorithms.

The FATAL timeouts must meet the following constraints to ensure stabilization and correct
operation:

λ =
√

(25ϑ− 9)/(25ϑ) ∈ (4/5, 1) (3.1)

∆g = (2ϑ+ 3)T1 + 2d (3.2)

T1 ≥ 4ϑd (3.3)

T2 ≥ 3ϑ∆g + 7ϑd (3.4)

T3 ≥ (2ϑ2 + 4ϑ)T1 − T2 + ϑT6 + 7ϑd>(ϑ− 1)T2 + 6ϑd (3.5)

T4 ≥ T3 (3.6)

T5 ≥ max {(ϑ− 1)T2 − T3 + ϑT4 + 7ϑd, (ϑ− 1)T1 + ϑ(T2 + T4)− T6} (3.7)

T6 ≥ ϑT2 − 2ϑT1 + 2ϑd>(2ϑ2 + 3ϑ)T1 + 6ϑd (3.8)

T7 ≥ (4ϑ− 2)T1 + ϑ(T2 + T4 + T5) + T6 + 2ϑd

> (2ϑ2 + 7ϑ− 2)T1 + ϑ(T2 + T4 + T5 + 8d) (3.9)

R1 ≥ max
{
ϑT7 + (4ϑ2 + 8ϑ)d, ϑ(2T1 + 2T2 + 2T4 + T5 + 12d)− 2T1

}
(3.10)

R2 ≥ 2ϑ(R1 + 6∆g + T1 + (8ϑ+ 11)d)(n− f)

1− λ
(3.11)

R3 = uniformly distributed random variable on

[ϑ(R2 + 3d), ϑ(R2 + 3d) + 8(1− λ)R2] (3.12)

λ ≤ T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd
. (3.13)

56

FATAL+ pulse synchronization

accept+

none+

ready+

none+

propose+

T+
1 and

(T+
2 , accept)

T+
3 or

≥ f + 1 propose+

or (T+
2 , accept) = 0

≥ n− f propose+

or (T+
2 , accept) = 0

propose+

Figure 3.5: The quick cycle of the FATAL+ protocol. [26]

The attentive reader should have noticed that the main-cycle is rather large and depends on a lot
of timeouts. Therefore the Quick-cycle algorithm in figure 3.5 is used to perform a shortened
Main cycle to generate faster pulses. Such a pulse is generated at a node by entering the state
accept+. Moreover, it provides a special counter, which increments at every Quick-cycle pulse
modulo M (see Figure 3.6). Since the counter shall implement a BSCLK, it is desired that the
Quick-cycle algorithm resp. the counter are held at the state accept+ resp. at 0 until the next
FATAL-pulse occurs.

For this purpose, the special timeout T+
2 is used to reset the counter and move the Quick-

cycle algorithm into the state accept+ if this has not been the case already. Hence, the Quick-
cycle algorithm and the counter rely on the FATAL-pulse protocol for self-stabilization. Once
the counter reaches 0, i.e., a overflow modulo M occurs at some node, it must not leave the state
accept+. This requires the FATAL main algorithm to switch to accept and reset T+

2 before T+
1

fires. Thus, M must be large enough s.t. M Quick-cycle pulses fit between two consecutive
FATAL-pulses, the main algorithm must be in the state ready and the timeout T3 must have
fired. Once the counter overflows, the Quick-Cycle algorithm can issue a NEXTi-pulse to start
the transition of the main algorithm towards the accept state. Basically, T+

1 must be just large
enough to cover this transition of all correct nodes to accept as well as accept+. On the downside,
if M is increased it may be necessary to slow down the generation of the FATAL-pulses by
increasing the timeouts. Hence, the stabilization time of the FATAL-algorithm depends linearly
on M .

In this shortened main-cycle all correct nodes enter the state accept+-state within Σ+ =
2d+max − d+min. The current FATAL+-prototype utilizes a synchronous state machine for the
BSCLK, which is driven by the rising transition of the FATAL+-pulse as clock. Since a FATAL+-
pulse needs at most d time to reach the counter’s synchronous state machine and perform the
synchronous transition, all correct nodes increment the counter within Σb = Σ+ +d. Therefore,
the counter implements a BSCLK with skew Σb. Note that this skew may be covered by Σ+,
if desired, by setting d+max appropriately to include the additional delay. However, this skew is
lower than the period between to consecutive FATAL+-pulses. Hence, the BSCLK may be used

57

to directly implement lock-step synchronous rounds. Besides, the ith counter bit implements a
clock frequency divider, since it increments every 2i FATAL+-pulses.

For example, the application layer may use the LSB of this counter (i = 1) as clock signal to
implement further synchronous algorithms. This synchronized FATAL+ clock signal divides the
FATAL+-pulse frequency by 2 and toggles exactlyM times, i.e., the upper counter bits overflow
afterM/2 clock cycles, each of which may be a full lock-step synchronous round if the resulting
clock period is sufficient (see Chapter 4.3).

To sum up, the Quick-Cycle algorithm solves the pulse synchronization problem with up
to f Byzantine failures within stabilization time T (k) + T+

1 + T+
3 + Σ+ + 3d + 5d+max with a

probability of at least 1−2−k(n−f). After stabilization it guarantees the accuracy [T+
min, T

+
max] =

[(T+
1 + T+

3)/ϑ−Σ+, T+
1 + T+

3 + 2Σ+ + 3d+max] and the precision (skew) Σ+ = 2d+max − d+min.
Obviously the minimum FATAL+-pulse width is T+

1 /ϑ.

More over it provides a BSCLK, which increase exactly by 1 mod M at each FATAL+-pulse
and is dld(M)e bits wide. Since the BSCLK is implemented by a synchronous state machine
driven by the accept+-pulse the BSCLK’s skew is at most Σb = Σ+ + d. Hence, the accuracy
(i.e., the clock period) of the ith BSCLK bit is

[
2iT+

min, 2
iT+

max
]
, where i = 1 represents the LSB.

≤ Σ+ t ∈ [T+
min, T

+
max]

≤ Σb

Accept+i
Accept+j
BSCLKi

M − 1 0 1

BSCLKj
M − 1 0 1

Figure 3.6: Interface timing to provided by FATAL+ to higher level algorithms.

Note that the BSCLK is zero and the Quick-cycle algorithm is in the state accept+ once the
FATAL-pulse is generated. The Quick-cycle timeouts must meet the following constraints:

T+
1 ≥ ϑ(T+

2 + Σ+ + 3d+ d+max) (3.14)

T+
2 ≥ ϑ(3d+ 3d+max) (3.15)

T+
3 ≥ ϑ(T+

1 + d+max) (3.16)

M ∈
[
ϑ(T2+T3+3d)+T+

1 −T+
2

T+
1 +T+

3

,
T2+T4−3ϑd

ϑ(T+
1 +T+

3 +Σ++4d+max)

]
(3.17)

58

3.2 (M, l)-labeling problem

The following chapter provides an overview of the labeling problem and existing algorithms.
Afterwards the high-level code of the solution algorithm, its proofs and explanations of its be-
haviour are provided.

The previous introduced FATAL+ BSCLKs are synchronized to each other with a skew Σb

and increment with a period from the interval
[
T+

min, T
+
max
]
, i.e., at every FATAL+-pulse. At the

M th FATAL+-pulse the BSCLK overflows and obtains the value 0 again. This overflow occurs
right before the next FATAL-pulse and the BSCLK remains at 0 until then. Unfortunately, these
M FATAL+-pulses need to fit between two consecutive slow FATAL-pulses, i.e., the stabiliza-
tion time of both FATAL and FATAL+ increases linearly with M . Therefore, the Quick-cycle
algorithm is only able to provide small size BSCLKs (of width 8 to 9 typically), which are not
sufficiently wide to be used as global time base due to fast overflows.

In order to generate a wide global time base, some algorithm is required that is able to extend
the short BSCLKs by l upper bits, called labels Li. These labels must increment at each BSCLK
overflow at a correct node and must be equal at all correct nodes once all BSCLKs overflowed,
i.e., they are synchronized with a skew Σl and increment in lock-step manner to implement a
suitable extension.

The labeling algorithms are run on n independent nodes, where each node is provided with
one BSCLK modulo M . In this case the BSCLKs are generated by the n nodes of the FATAL+

algorithm. The n nodes are deployed in a fully connected network, i.e., each node has a separate
input port for each node’s output port, which are connected via bounded delay 1-bit links only
for scalability.

The algorithm solving this (M, l)-labeling problem (or just called labeling problem) must
be self-stabilizing once the underlying BSCLK stabilized, and tolerates up to f ≤ b(n− 1)/3c
Byzantine faulty nodes during both stabilization and operation. Formally, the primary conver-
gence and closure property hold eventually:

Definition 3.2.1. (1) At each overflow of correct node i’s BSCLK and correct node j’s BSCLK
L′i = L′j mod 2l. As long as the previous property is satisfied by at least at n− f correct nodes
these nodes are called stabilized and must satisfy the following secondary closure property:
(2) At each following overflow of the short BSCLK the new label is L′i = (Li + 1) mod 2l at a
correct node i.

These properties ensure that a node recovering from a failure (late-joining) adapts the label
of a already correct stabilized node instead of allowing a recovering or faulty node to reset all
labels.

The attentive reader should have noticed that these properties define a Byzantine fault-
tolerant self-stabilizing clock synchronization algorithm using exact agreement on each BSCLK
overflow resp. FATAL-pulse. Due to inevitable non-zero skew, the combined clock of the label
value and BSCLK value can provide approximate agreement with precision π ≥ 0 only. If Σl

can be kept smaller than the minimum FATAL+-pulse period T+
min, the combined precision is

bounded by π ≤ 1.

59

3.3 Related Work

In this chapter, a brief overview on existing Byzantine self-stabilizing clock synchronization
algorithms, for solving the labeling problem, based on lower level pulse synchronization pro-
tocols, is provided. The ideal solution would match the requirements of VLSI circuits, i.e.,
constant sized messages, only basic building blocks and fast stabilization, i.e., the algorithm
completes at the every BSCLK overflow (resp. slow FATAL-pulse).

3.3.1 Non-Byzantine fault-tolerant algorithms

Classic clock synchronization algorithms [55] exchange the local (real-time) clock values and
compute a simple arithmetic average function from the difference of the received values to the
own clock. This result can be refined for real-time clocks by adding the expected communication
and adding the computation delay to this candidate (e.g., (dmax − dmin)/2). In order to improve
the synchronization precision the algorithms may also use a ping-pong mechanisms to estimate
and measure the link delays between two nodes, by capturing the ping send and the pong receive
time instants at the requesting node.

Alternatively, all nodes may perform a single majority vote on (each bit of) the clock values
to select a candidate or select a single clock value [49] (e.g., the maximum) among the received
values.

These approaches work well as long as some initial synchronization exists. However, as
soon as some nodes are Byzantine faulty, by sending inconsistent resp. incorrect messages,
these naive approaches will not stabilize from all initial states, since the correct nodes may not
share the same set of input values. Especially, the approaches using simple averaging or which
select the maximum from all received values can not tolerate Byzantine faulty nodes, even if
n− f nodes are correct and should share the same label at a BSCLK overflow.

3.3.2 Byzantine fault-tolerant algorithms

Early fault-tolerant algorithms were designed to be used by processors with free running real-
time clocks, i.e., a local counter, which increments regularly at a chosen local clock transition. A
synchronization algorithm reads the local real-time clock and distributes it via the communica-
tion network to other nodes. Usually, all nodes receive these local clock values within bounded
time, upon which the algorithm computes a convergence function. The basic convergence func-
tions are purely arithmetic, i.e., the convergence function computes either a correction term for
the clock rate or the real-time clock value. A popular convergence function, is the fault-tolerant
midpoint algorithm (FTM) [71]. Basically, algorithms using this approach first compute the
differences of the local clock to the received clock values and sort these differences afterwards.
The f largest and smallest values are discarded and the FTM selects the median of the remaining
set of differences as correction candidate. Some protocols take even clock drift estimations into
account to increase the precision further [63]. Unfortunately, these convergence functions can
only provide approximate agreement (precision π ≥ 0) and not exact agreement at each BSCLK
overflow, as required by the labeling problem. Furthermore, some protocol implementations
rely on initially synchronized real-time clocks or rather strong communication network primi-

60

tives, which ensure that Byzantine nodes are not able to forge messages of correct nodes resp.
distribute inconsistent information, but only incorrect clock values [54, 63]. Hence, they are not
implicitly Byzantine self-stabilizing in the weak bounded delay model. Besides, all nodes need
to exchange linear sized messages and keep the whole received clock values in their memory.

Another approach [4], is to allow a node access to the labels of other/adjacent nodes directly
and proceed through these in a round robin manner at every pulse. The the execution of this
algorithm needs not to be finished at the next pulse, i.e., it can take multiple pulses before it
stabilizes. On the downside, it requires linear sized messages again and more complex arithmetic
resp. sorting functions and can not tolerate Byzantine faults during stabilization.

3.3.3 Byzantine fault-tolerant and self-stabilizing algorithms

In order to establish exact agreement some form of a consensus algorithm is needed. There
has already been put some effort into Byzantine self-stabilizing agreement algorithms based on
pulse synchronization protocols for clock synchronization. Note that pulses correspond to the
overflows of BSCLKs.

The algorithm presented in [44], for example, uses k Byzantine (non self-stabilizing) con-
sensus instances in parallel at each node. Thereby, it takes into account that a consensus protocol
may need multiple pulses (overflows) to complete (e.g., k). The oldest instance is restarted at
each pulse (overflow). Besides, the output of the oldest instance is used to determine if the the
current label value shall be incremented or not. After k pulses, it is guaranteed that all correct
processors execute the consensus algorithms consistently, i.e., the algorithm execution stabilizes.
Although the algorithm does not need to be finished at the next pulse, k depends on the number
of nodes n due to the chosen (deterministic) consensus algorithm, and makes use of linear sized
messages as well as a separate communication channel for each consensus instance.

The algorithms proposed in [9, 28] require that one iteration of the algorithm finishes at
the next pulse (overflow). Thus, a node may use the pulse to consistently reset the algorithm
instance into the initial state for self-stabilization. The Byzantine consensus algorithms [9, 28]
provide probabilistic consensus solutions based on a short bounded synchronized clock. Still
these algorithms exchange the full labels and perform a (majority) vote among the received
labels. In the last phase, a process that is not convinced by the voting outcome will toss a coin to
either reset resp. keep the outcome of the voting process. Despite linear sized messages, some
random number generator is required to provide a (perfect) coin tossing process. Nonetheless,
[9] offers a expected constant convergence time, whereas [28] can only provide exponential
convergence time (in the number of label bits l).

Currently, the only suitable algorithm for n > 3f , is the solution presented in [39]. It is based
on [17], hence suffers from linear sized message like the already mentioned algorithms. [39]
bypasses this problem, by first reducing the labeling problem to binary consensus. The reduction
and binary (Phase King) consensus (see Chapter 2.1.5) require messages of size 1 only, i.e., a
serial (1-bit) channel. Moreover, it only consist of relative small logic blocks compared to the
other solutions. Hence, the proposed algorithm has been implemented and evaluated in this
thesis and is explained in the next chapter.

61

3.4 Solution algorithm

The labeling algorithm (Algorithm 1) uses 1-bit channels to broadcast partial state information
between the nodes. As noted in the previous chapter, other clock synchronization algorithms
send their whole label (clock) in one message and calculate their correction terms from the
received labels. In this case, only one bit of the label is considered at a time, which can result in
large message and hardware complexity reduction.

At first the problem instance is reduced to binary consensus. The reduction outputs a label
candidate ci and a boolean trust value bi, which is set if the node could identify a candidate. The
reduction result bi is then fed into a binary consensus algorithm. If the consensus outputs true
the node will keep and increment its label candidate ci otherwise if the output is false it will
reset the candidate to a predefined value.

A new message is always sent (i.e., broadcast) to every node, including itself, if the node
and its links are correct. In the provided algorithms a new round is initiated after a broadcast
statement. If a broadcast sends multiple bits at once each bit is being sent separately and a new
round is initiated by each bit. Note that the algorithm is executed using the (simulated) lock-step
synchronous round execution model on top of BSCLKs. Hence, the skew and delays can be
assumed to be 0 at the algorithm level. For now, assume that M lock-step synchronous rounds
are available to the algorithm using the BSCLKs.

Algorithm 1: (M, l)-round labeling algorithm at node i ∈ V . P is a consensus algorithm.
[39]
1 while true do
2 (ci, bi) := red(Li) //reduction
3 oi := P(bi) //run consensus
4 if oi = false then ci := 1 //agree on default
5 else ci := ci + 1 mod 2l //agree on ci
6 wait until round number modulo M is 0
7 Li := ci //update label

Algorithm 2 is used as the reduction algorithm. It is split in two phases, consisting of a for-
loop of l rounds each. In the first loop it will try to determine if enough (at least n − 2f) other
correct nodes share the same label. If the label is not equal to its own input or not enough correct
nodes share the same label it will exit the first loop with bi = false at a correct node i. A correct
node will tell the others if it could identify a candidate ci. If a correct node could not identify
a candidate its messages will be ignored by other correct nodes in the second for-loop (i.e., it is
disabled). The set of nodes, whose messages shall be considered, is represented by Si. Hence,
all (enabled) correct nodes broadcast the same candidate label bits in the second for-loop. The
second loop guarantees that if one correct node i exits with bi = true that all correct nodes exit
with the same label candidate.

Since a failed node might be correct in the next iteration of the labeling algorithm, e.g., due to
transient fault, and needs to resynchronize to other nodes without affecting their labels, I need to
strengthen the validity condition of the (binary) consensus definition given in Chapter 2.1.5. For

62

Algorithm 2: Algorithm red(Li): reduces (M, l)-round labeling to binary consensus. [39]
input : label Li (l bits)
output: candidate clock value and boolean trust value (ci, bi)

1 ci := Li //holds candidate label
2 bi := true
3 for j ∈ {1, . . . , l} do
4 broadcast ci(j) //jth bit of candidate value
5 if received ≥ n− f times value c = ci(j) then
6 ci(j) := c

7 else
8 bi := false
9 broadcast(bi)

10 store set Si of nodes that sent true
11 bi := true
12 for j ∈ {1, . . . , l} do
13 broadcast ci(j)
14 if received ≥ n− f times c from Si then
15 ci(j) := c //all others see ≥ f + 1 times c
16 else if received ≥ f + 1 times c from Si then
17 bi := false // input values differ
18 ci(j) := c //candidate bit still known
19 else bi := false //inputs differ, known to all
20 return (ci, bi)

example, if this failed node recovers right at the time the binary consensus begins, a consensus
algorithm that only satisfies this weaker validity property is allowed to choose some input of a
correct node, i.e., also the input of the recovering node, because it executes the binary consensus
algorithm faithfully. Thus, it may reset the label of the already n − f correct synchronized
nodes if its input is false and the consensus algorithm determines this input as output for all
correct nodes. Therefore, any employed binary consensus algorithm must satisfy the following
strengthened validity property:

Validity: The result must be the input of a correct node and if at least n− f correct nodes share
the same input the result must be the input of these nodes.

Algorithm 3 implements the Phase-King consensus algorithm. In each iteration of this algo-
rithm, consisting of 3 resp. 4 rounds each (i.e., 3 2-bit resp. 4 1-bit broadcasts), a correct node
verifies if enough correct nodes (at least n−2f) propose the same value. If so, each of these cor-
rect nodes will transmit the same identified value and the remaining correct nodes indicate that
no candidate has been identified. If a node is able to verify that enough correct nodes (at least
n − 2f) transmitted an identified value they will update their candidate to the identified value.
Due to Byzantine faulty nodes, there might still be an inconsistency among the correct nodes

63

Algorithm 3: Algorithm P(bi): Phase-King consensus algorithm. [10]
input : bi //binary value to be decided on
output: oi //binary value representing the consensus decision.

1 for k ∈ {1, . . . , f + 1} do
2 broadcast bi //identify candidate value
3 if received ≥ n− f times value b then
4 broadcast 1b //bc identified candidate
5 else
6 broadcast 00 //bc no candidate identified
7 if received ≥ n− f times value 1b then
8 bi := b //identified value
9 broadcast b //Phase King’s bc

10 else
11 if received ≥ f + 1 times value 11 then
12 broadcast 1 //Phase King’s bc, convince nodes with 0
13 else
14 broadcast 0 //Phase King’s bc, convince nodes with 1
15 bi := received b from k //assign value from Phase King
16 return bi

and thus each correct node, which couldn’t update its candidate, will listen to the broadcast of
the current Phase-King (ith node, for the ith iteration).

Since the prototype system consists of n = 8 nodes the Phase-King algorithm was the
natural choice as a low effort (time complexity and message complexity) and optimal resilience
algorithm. Note that from the algorithmic point of view it is not always necessary to perform a
broadcast (e.g. Phase-King), but it makes it easier to understand where a new round is initiated
without inserting commands to indicate the end of a round.

3.5 Proofs

In order for this thesis to be self-contained I will provide the correctness proofs of the above
algorithms and their informal description taken from [39].

At first the properties that are satisfied after the first for-loop in the reduction algorithm are
proofed by Lemma 3.5.1. (1): If at least n − f correct nodes execute the reduction with the
same label L, these nodes identify a candidate by setting bi. (2): If a correct node identifies a
candidate ci is equal to its own input. (3): All correct nodes identify the same candidate label.

Lemma 3.5.1. Algorithm 2 satisfies the following post-conditions after the first for-loop:

1. (∃L : |S = {i|Li = L ∧ i is correct}| ≥ n− f)⇒ ∀i ∈ S : bi

2. ∀ correct i : (bi ⇒ ci = Li)

64

3. ∀ correct i, j : (bi ∧ bj ⇒ ci = cj)

Proof. If at least n − f correct nodes enter the first loop with their labels being equal to L,
including a correct node i, node i will receive at least n − f times c in the k-th iteration with
c = ci(k) = L(k) and keep bi = true. Note that a correct node j with cj(k) = Lj(k) 6= L(k)
will execute the else-statement and set bj = false (proves (1)).

Assume some correct node i exits the first loop with bi = true. Then, i executed the if-
statement in all iterations and thus received at least n− f times c in each iteration with every bit
being equal to its own input ci = Li (proves (2)).

Assume in contradiction to (3) that ci 6= cj . By (2) the candidates after the loop are ci = Li

and cj = Lj . The values broadcast by i and j in the kth iteration of the first for-loop equal ci(k)
resp. cj(k), it must hold that ∃k : Li(k) 6= Lj(k), since a node accepts only its own input.
W.l.o.g. node i executed ci(k) := c and node j cj(k) := ¬c. As a result, all correct nodes have
received at least n − 2f > f times c from correct nodes, hence at most n − f − 1 times ¬c.
Contradiction that j accepted its own input and Li(k) 6= Lj(k) (proves (3)).

The following Theorem 3.5.2 shows that if at least n− f nodes enter the reduction with the
same label L all correct nodes exit with the label L and the trust value bi = true. Besides, if at
least one correct node exits with bi = true all correct nodes hold the same candidate label.

Theorem 3.5.2. Algorithm 2 terminates in 2l + 1 rounds and satisfies the following post-
conditions:

1. (∃L : |S = {i|Li = L ∧ i is correct}| ≥ n− f)⇒ ∀ correct i : ci = L ∧ bi

2. ∀ correct i, j : (bi ⇒ ci = cj)

Proof. By Lemma 3.5.1, if at least n − f correct nodes enter the first loop with the same label
L those nodes exit the first loop with the label L and bi = true and thus any correct node i will
receive at least n−f times c from correct nodes in Si in the k-th iteration of the second for-loop
with c = ci(k) = L(k), which proves (1).

For proving (2) assume some correct node i exits the second for-loop with bi = true. Thus
node i has executed the if-statements and received at least n − f times c from nodes in Si in
each iteration of the second loop. Assume in contradiction that some correct node j exited with
ci 6= cj and thus ∃k : ci(k) 6= cj(k). Since there are at least n− 2f ≥ f + 1 correct nodes in Si
hence node j shares at least f + 1 of these correct nodes in Sj as well. By Lemma 3.5.1 (3) all
correct nodes in Si broadcast the same value c in the second loop’s k-th iteration, since a node
r can only be in Si if br = true after the first loop. Hence, node i executed Line 15 and node j
executed Line 15 or 18 and set ci(k) = cj(k) = c. Contradiction that ci(k) 6= cj(k).

The termination time is calculated by summing the iterations of all loops and the intermedi-
ate broadcast in between.

Obviously, it is not necessary to enforce that c = ci(j) in Line 5 to be able to reduce
correctly, but it is a logical choice to either synchronize all correct nodes to some input of a
correct node or reset them all. Furthermore, it will simplify the implementation of a Byzantine-
faulty node. Note that the reduction algorithm would solve the labeling problem even without

65

consensus if less than n− 2f nodes enter with the same labels, since all correct nodes will exit
with (ci, false).

At this point, I switch to Algorithm 3 to prove the remaining properties. Lemma 3.5.3 shows
that if at least n− f correct nodes start a phase (i.e., an iteration of the for-loop) with the same
candidate value b (i.e., they prefer b) all correct nodes assign bi = b at the end.

Lemma 3.5.3. If at least n − f correct nodes prefer b at the beginning of an iteration in Algo-
rithm 3, all correct nodes prefer b at the end of the iteration.

Proof. Since there are at least n− f correct nodes preferring b at the beginning of the iteration
those nodes broadcast b in line 2 and all correct nodes receive at least n − f ≥ f + 1 times b
and thus at most f < n− f times ¬b. Therefore all correct nodes broadcast 1b in line 4 and thus
every correct node i receives at least n − f times 1b and sets bi = b. Hence, all correct nodes
return b.

Lemma 3.5.4. If two correct nodes i and j execute line 4 in the kth iteration of Algorithm 3,
they broadcast 1b in the same iteration.

Proof. Assume in contradiction that node i broadcasts 1b and node j 1¬b. Then, node i receives
at least f + 1 times b from broadcasts of correct nodes in line 2. Thus, node j can receive at
most n− f − 1 < n− f times ¬b. A contradiction that node j broadcasts 1¬b.

Lemma 3.5.5. If the Phase-King node k ≤ f + 1 is correct, then at latest at the end of iteration
k in Algorithm 3 all correct nodes prefer the same value b.

Proof. Case (1): Assume some correct node i receives at least n− f times 1b from line 4 and
sets bi = b. Then, k (like all other correct nodes) receives at least n− 2f ≥ f + 1 times 1b and
at most f times 1¬b (by Lemma 3.5.4). Hence, node k will broadcast b in line 9 resp. 12 or 14
and thus every correct node j will set bj = b.

Case (2): Assume no correct node receives n− f times 1b. Then node k broadcasts b = 1
in line 12 resp. b = 0 in line 14 and every correct node j executes the else-statements and set
bj = 1 resp. bj = 0.

I will now prove that the Phase-King algorithm satisfies exact agreement, the extended va-
lidity property and termination at each correct node.

Theorem 3.5.6. Algorithm 3 offers termination in 4(f + 1) rounds and satisfies the following
post-conditions:

1. (∃b : |S = {i|bi = b ∧ is correct}| ≥ n− f)⇒ ∀i ∈ S : oi = b

2. ∀ correct i, j : oi = oj

Proof. Lemma 3.5.3 proves property (1), since b is preferred initially by at least n − f correct
nodes and thus will be preferred over all iterations by any correct node, which implies property
(2) in that case.

66

Property (2) is ensured by Lemma 3.5.5, because there is at least one iteration with a correct
node as the Phase-King and thus all correct nodes prefer the same value b at the end of that
iteration. Lemma 3.5.3 insures that this value will be preferred in all further iterations by any
correct node.

Obviously, there are 4 broadcasts per iteration (1b or 00 need 2 broadcasts on a single-bit
channel), thus the algorithm terminates in 4(f + 1) rounds.

I will now prove the overall stabilization and closure properties of Algorithm 1:

Theorem 3.5.7. Algorithm 1 needs M ≥ 4(f + 1) + 2l+ 1 rounds per iteration, where Li is the
input label at the start of the iteration (at the current BSCLK overflow) and L′i the output after
one iteration (at the next BSCLK overflow) of a correct node i:

1. (∃L : |S = {i|Li = L ∧ is correct}| ≥ n− f)⇒ ∀ correct i : L′i = (L+ 1) mod 2l

2. ∀ correct i, j : L′i = L′j mod 2l

Proof. Assume that at least n−f correct nodes execute the iteration with the input label L, then
any correct node i exits Algorithm 2 with (ci = L, bi = true) by Theorem 3.5.2. Therefore,
any correct node i exits Algorithm 3 with oi = true by Theorem 3.5.6. Thus, all correct nodes
wait until the next overflow and set L′i = (L + 1) mod 2l, which shows the first and second
property.

Assume less than n − f correct nodes execute the iteration with the input label L, then any
correct node i resp. j exits Algorithm 2 either with ci = cj or bi = bj = false by Theorem 3.5.2.
In the first case, node i resp. j exits Algorithm 3 with oi = oj by Theorem 3.5.6 and thus wait
until the overflow and either set L′i = L′j = (cj + 1) mod 2l or L′i = L′j = 1. In the second
case, any correct node i exits Algorithm 3 with oi = false by Theorem 3.5.6 and thus waits until
the next overflow and sets L′i = 1.

The runtime can be computed by summing the runtime of the above algorithms.

It is obvious that property (2) of Theorem 3.5.7 implies the primary convergence and closure
property and (1) ensures the secondary closure property of Definition 3.2.1, which completes the
proof that the solution algorithm solves the labeling problem.

67

CHAPTER 4
Implementation

This chapter describes the implementation of Algorithms 1-3 presented in Chapter 3.4. Starting
out from a low-level view on the necessary building blocks, I will give a state machine descrip-
tion of the entire solution. Furthermore, its connections to the prototype implementation of the
FATAL+ protocol are described.

4.1 Components

Since Algorithms 1-3 are synchronous distributed algorithms, the implementation will be de-
signed using the synchronous design principle. Herein, the BSCLK of the FATAL+ Quick Cycle
algorithm provides the necessary lock-step synchronous round abstraction. Note that it would be
also possible to implement parts asynchronously or by means of HSMs to improve performance,
but due to the increased complexity of those approaches, the synchronous design principle is
preferred. A first design analysis reveals that the following building blocks are required:

• Synchronous FSM

– Synchronous state elements (flip-flops)

– Next-State logic

• Threshold modules

• Synchronous transmission buffer (1-bit)

• Synchronous reception buffers (1-bit)

Figure 4.1 depicts the needed modules and required abstract interfaces of the labeling algo-
rithm, including the lower-level FATAL+ Quick Cycle module. The threshold module provides
the necessary input for the next state logic of the FSM; it determines whether a certain set of re-
ceived broadcasts occurred a certain number of times (i.e., the threshold). The FSM implements

69

the necessary states (held in registers) and next state logic to progress through the Algorithms
1-3, i.e., processes the received broadcasts of the reduction and consensus algorithm to com-
pute the new label. The FSM also provides the next broadcast value to the transmission buffer
and controls the threshold module, i.e., it may disable/mask some of the inputs (like in Algo-
rithm 2 in the second loop, which uses the set Si to consider a subset of the received broadcasts
only). Activities of the FSM to higher level algorithms are triggered by the BSCLK overflow
(FATAL-pulse).

Receiver-

Communication

Subsystem

Node i

FSM

Node i

Threshold

module

Node i

FATAL
+

(Quick-cycle)

Node i

Buffered

broadcast

vote output

threshold (n-f)

vote output

threshold (f+1)
Transmitter-

Communication

Subsystem

Node i

broadcast

value

node i’s broadcast

control

node i’s

broadcast to

other nodes

BSCLK (mod M)

broadcasts

from other

nodes

Figure 4.1: The modules needed to implement the labeling algorithm.

In the following sections, I will present some possible implementations for the major build-
ing blocks in Figure 4.1, as well as the variant eventually chosen.

4.2 Threshold Modules

A threshold module has n inputs taken from some finite input domain and a single binary output.
It determines whether a certain value of the input domain appears a certain number of times
(called the threshold) among these inputs. For example, if the input domain is binary {0, 1},
a standard k−threshold module will output 1 if the input set contains at least k-times 1 and 0
otherwise, usually. It may be defined formally with the given input set I = {(i, v)|i ∈ P ∧ v ∈
V}, |I| = |P| = n and input domain V , where i ∈ P represents the unique input port and v the
actual value of the input (i, v). Furthermore, let Iv = {(i, v)|(i, v) ∈ I} and

thr(I, v, k) =

{
1 if |Iv| ≥ k
0 otherwise

(4.1)

be the general threshold module. Since the output is invariant under permutation of the
inputs, it is called a symmetric function [8].

The labeling algorithm needs a threshold module with a 2-bit input domain (see the thresh-
olds in Algorithm 2 resp. 3) and two thresholds n − f and f + 1 for each of the input values
{10, 11}, where the input set size n ≥ 3f + 1. The output of thr4(I) defined in (4.2) is a
3-tuple, where the first two elements are 1 if the threshold n − f resp. the threshold f + 1 is

70

satisfied as required by the algorithms. The last element is 1 if the f + 1-threshold for the input
value 11 is reached and 0 otherwise; note that 11 has a higher priority than 10.

thr4(I) =

(1, 1, 1) if |I11| ≥ n− f
(1, 1, 0) if |I10| ≥ n− f
(0, 1, 1) if |I11| ≥ f + 1
(0, 1, 0) if |I11| < f + 1 ∧ |I10| ≥ f + 1
(0, 0, 0) otherwise

(4.2)

This specification can be built using a general threshold module for each of the two interest-
ing values and thresholds:

thr4(I) =

 thr(I, 11, n− f) ∨ thr(I, 10, n− f)
thr(I, 11, f + 1) ∨ thr(I, 10, f + 1)
thr(I, 11, f + 1)

 (4.3)

Since only the two values 10 and 11 are of interest, the most significant bit can be seen as an
input enable bit (i.e., its mask). It is thus possible to reduce the threshold modules to the standard
threshold modules for binary inputs, as shown in Figure 4.2: Each input is compared (using a
comparator function) against the two input values. The logic functions used as comparators are
ic0∧ ic1 resp. ic0∧¬ic1 for the input value 11 resp. 10, where ic1 is the MSB and ic0 the LSB
of the input. The outputs represent the 3-tuple (nf,f1,c) according to Equation (4.2). Note that
MSB will be provided by the FSM state, i.e., the FSM selects if the upper bits represent the set
Si in the reduction algorithm resp. the dual bit broadcasts of the Phase King algorithm, but in
the case of the remaining broadcasts the upper bits are set to 1 by default.

Since threshold modules are primarily used for fault-masking, the issue of glitches is impor-
tant. From (4.1), it is apparent that almost simultaneous deletions and insertions of elements in
the input set in case of |Iv| = k may generate glitches at the output - even if the threshold module
implementation is glitch-free. For inputs supplied by correct components, this can sometimes
be avoided by construction (suitable timing constraints). For faulty components, this can not
usually be avoided entirely; however, as long as the threshold is not crossed, a glitch-free imple-
mentation will even mask faulty inputs. In synchronous design styles, glitches are masked by
the clock as usual, and are hence less critical. Nevertheless, a glitch-free implementation could
help masking against metastable upsets of synchronizers and is hence preferable also here.

A brief overview and a comparison of the implementation choices will follow. Since the
size, i.e., amount of logic, and the easy adaptability are more important in the current prototype
implementation, only the necessary parameters are considered here. More detailed descriptions
and further analysis can be found in [8,14,37]. Especially, [14,37] have performed some analysis
on the performance (delays) on a typical FPGAs. An analysis and formal model for glitches in
threshold modules can be found in [45].

The effort to implement such a threshold module depends on the number of inputs, as well
as the size of the input domain and the value of k. The typical complexities considered are gate,
adder and/or comparator complexity, which give a hint on the required amount of logic (i.e.,
area). Furthermore, the depth, i.e., the maximum amount of such logic functions (stages) that

71

Threshold
gate
n − f

Threshold
gate
f + 1

Threshold
gate
n − f

Threshold
gate
f + 1

&

&

≥ 1

≥ 1

n

n

ic0 n

ic1 n

nf

f1

c

Figure 4.2: Labeling threshold module structure(yellow)

need to be passed before the input results in the correct output (i.e., the maximum path length),
is evaluated as indication for the input-to-output delay. Additionally, the maximum number of
interconnect intersections, at a certain logic level/depth, is a valuable information for estimating
the routing complexity (i.e., it affects the interconnect distance), and hence the effect of the
interconnect on the input-to-output delay. See Figure 4.3 for an example with an interconnect
distance of 4.

gate

gate

1
2
3
4

5
6
7
8

Figure 4.3: An abstract combinatorial logic function with 8 inputs and an interconnect distance
of 4.

4.2.1 Sum of Products

The most intuitive way to implement a threshold module, like any boolean function, is to imple-
ment it as the sum of all products. Logic designers know such implementations under the term
Disjunctive Normal Form (DNF). A product refers to the AND combination of a single input
pattern (vector) that returns 1. The sum is the OR combination of all such products.

A threshold module may be reformulated as selecting all k subsets of the n inputs and
checking whether one of them has all inputs set to 1. The resulting boolean function contains

72

exactly
(
n
k

)
terms of k not negated inputs. An example for n = 3 and k = 2 is given in Equation

(4.4).

thr(x4, 1, 3) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x3) ∨ (x0 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) (4.4)

Since the products share at most k − 1 non-negated inputs between each other, the DNF rep-
resentation can’t be minimized anymore. The only way of reducing the amount of gates is by
reusing some of the already computed outputs: Depending on the fan-in of the available gates
or logic functions, the number of gates (and possibly the overall interconnect complexity) of the
implementation of Equation (4.4) could be reduced, if already computed subsets (e.g., such as
x2 ∧ x3) are reused, although this will increase the fan-out and the interconnect/routing com-
plexity at the gate level. For example, Equation (4.5) shows the tree for n = 4, k = 3 and
m = 2.

thr(x4, 1, 3) = {[(x0∧x1)∧x2]∨ [(x0∧x1)∧x3]}∨{[(x0∧x2)∧x3]∨ [(x1∧x2)∧x3]} (4.5)

The advantage of the sum of products implementations is that it can easily be implemented
in logic trees. Furthermore, it is glitch-free due to the missing negation paths: Transitions of
the same polarity (rising resp. falling) can only cause transitions of the same polarity at the
output. Note however, that synthesis tools perform optimizations of their own that may result in
non-glitch-free implementations.

Table 4.1 shows the complexity of a direct sum of products implementation without gate output
reuse. m represents the AND/OR input width andAO(n) the number of AND/OR gates. As can
be seen, the overall complexity increases very drastically (O(nk)) and is only suitable for very
small n and k. Furthermore, the actual complexity depends on the threshold value. Besides, a
very drastic limitation is the fan-out since an input is connected to

(
n−1
k−1
)

AND gates to compute
the products, which contain this input in the corresponding subset. The interconnect distance is
computed by assuming that a single input connection (e.g., of the first input) intersects with all
k inputs of all

(
n
k

)
product terms. Note however, that there is probably a tighter and lower worst

case bound than this one, but I conjecture that it is probably of the same order of magnitude.

Complexity AO(n)

⌈
(nk)−1
m−1

⌉
+
(
n
k

) ⌈
k−1
m−1

⌉
Depth AOS(n)

⌈
logm

((
n
k

))⌉
+ dlogm (k)e

Fan-out
(
n−1
k−1
)

Interconnect distance k
(
n
k

)
Table 4.1: Sum of Products complexity, n = 2p

4.2.2 Counter and Comparator

This implementation of a threshold module produces an output which is the dense binary repre-
sentation of the number of 1s in the input vector, by performing binary addition. Such a counter

73

is called (n, bld(n)c+1)-counter [85], since it outputs the count of 1s of width bld(n)c+1 in the
n-bit wide input. Obviously, the result can be compared to another binary number, i.e., a thresh-
old X , by a comparator. A counter and comparator implementation is very easy to describe and
still relative hardware-efficient. The variant shown in Figure 4.4 uses a linear implementation
of an adder structure. Other implementations arrange these counters in trees, which are able to
reduce the maximum depth [85].

The major disadvantage is that these circuits are not glitch-free, which makes them rather
impractical for asynchronous fault tolerant circuits. Multi-threshold modules may be described
easily by just adding comparators for each threshold. Furthermore, there exist less hardware-
efficient counter/comparator implementations, which reduce the maximum delay and power re-
quirement of the circuit [31, 60, 85]. A typical improvement are carry-lookahead implementa-
tions. Note that a lot of FPGAs provide fast and efficient built-in adder modules, which add
m-bit binary numbers. However, they should be used only in multi-cycle/pipelined implementa-
tions as they are rare and get easily used up by a larger counter implementations in combinatorial
logic, especially if only small binary numbers are added.

Table 4.2 shows the counter complexity of a linear (2p, p + 1)-counter. The complexity
represents the amount of full adders (single bit adder with carry-in and carry-out) needed to
implement this counter. The interconnect distance and fan-out to successive adders and the
fan-out of the input connected to the adders is constant.

Complexity FA(2p) 2p − 1

Depth FS(2p) 2p−1 + p− 1

Fan-out 1

Interconnect distance 1

Table 4.2: Counter complexity, n = 2p.

Obviously, the number of inputs into the comparator for a (2p, p + 1)-counter is 2(p + 1),
when the output of the above counter is compared to some binary number of equal width (i.e.,
p + 1). In order to implement comparators for large p efficiently, comparator trees as shown in
Figure 4.5 are usually employed. At the base of the comparator tree single bits (e.g., the MSB of
the counter output and the MSB of the threshold) are compared against each other with the com-
parator defined by Equation (4.6), called the base comparator. At higher levels, the computed
outputs are merged using the circuit shown in Figure 4.4b, called a merging comparator.

comp(ai, bi) = (ai ∧ bi, (ai ∧ bi) ∨ (ai ∧ bi), ai ∧ bi) (4.6)

Table 4.3 shows the complexity for a comparator tree. C(n) represents the number of com-
parators and comparator merging stages needed; The depth S(n) is logarithmic and the inter-
connect distance resp. the fan-out inside the comparator is constant. Since the input bits, which
are compared by the base comparator, are not at the appropriate input position initially, they
must be routed to these position resulting in a interconnect complexity of p + 1. For example,
the initial input order is a3, a2, a1, a0, b3, b2, b1, b0 typically, which is not identical to the order
shown in Figure 4.5. Typical LUTs have 3 or 4 inputs and thus a full adder can be implemented

74

FA

FA

FA

FA

x1

x0

x2

x3

x4

x5

x6

x7

FA

FAFA

s0s1s2s3

(a) Serial (8, 4)-counter.

comp

comp

>
=
<

>
=
<

≥ 1
&

&

≥ 1

&

>

=

<

(b) Merging two comparators (MSBs, LSBs)

Figure 4.4: A typical implementation of a (8,4)-counter and a comparator tree. [59, 60]

comp
a0

b0

comp
a1

b1

comp
a2

b2

comp
a3

b3

merge

>
=
<

>
=
<

merge

>
=
<

>
=
<

merge

>

=

<

>

=

<

>

=

<

Figure 4.5: Example of a comparator tree implementation using the base comparator and the
merging comparator tree to compare two numbers of width 2.

with 2 LUTs and a (merging) comparator with 3 LUTs. If LUTs or gates with larger fan-in
are available, the tree/counter depth and LUT complexity may be further reduced. Obviously,
synthesis tools may perform optimizations, especially if one of the values (e.g., the threshold) is
a constant.

Complexity C(n) 2p+ 1

Depth S(n) dld(p+ 1)e+ 1

Fan-out 1

Interconnect distance p+ 1

Table 4.3: Comparator complexity, n = 2p

75

4.2.3 Sorting Networks

A sorting network sorts an input sequence based on a defined relation ≤ on the input value
domain. In my case, this relation represents the standard relation ≤ for binary numbers, rep-
resented as vectors: The sorting function may be formulated by means of a permutation of a
sequence of inputs:

sort(x) = π(x) = y|yi−1 ≤ yi, for 2 ≤ i ≤ n (4.7)

Herein yi, 1 ≤ i ≤ n represents the ith component in the output vector y and the permutation
must be chosen s.t. that the output represents a sorted sequence.

Thus the threshold module for binary inputs is:

thr(x, 1, k) = sort(x)n−k+1 (4.8)

Therefore, the n− k + 1th output represents the output of a threshold module with threshold
k in the binary domain [14]. The sorting network produces all possible thresholds at once. The
inverse threshold, i.e., of the amount of zeros in the input, is just the logical complement of the
kth output.

A sorting network is built out of compare-and-swap elements for two values, which are
connected according to some chosen sorting algorithm. The actual implementation of the basic
comparator element (see Figure 4.6c) for a two 1-bit binary numbers with the included swap is:

comp(e, o) = (e ∧ o, e ∨ o) (4.9)

In sorting networks designed for CPU implementations, different compare-and-swap operations
may be executed for different inputs, i.e., in some cases more or less operations may be per-
formed. These algorithms are more complicated and less efficient to implement in the VLSI
context, where all compare-and-swap elements need to be present in hardware anyway and only
the worst case performance is of interest. Therefore, the compare-and-swap elements used in a
VLSI sorting network or steps performed by the algorithm should be input-independent, which
also facilitates glitch-free implementations.

Typical algorithms in the VLSI context are the even-odd merge and bitonic sort algorithms
with efficient implementations for input sizes of n = 2p [59].

Figure 4.6 depicts the recursive definition of an even-odd merge sort algorithm. An even-
odd merge sort takes two sorted sequences as inputs and merges them using the even-odd merger
network definition to produce a sorted output sequence. As the figure shows, its recursive def-
inition is rather complex as lot of index (rewiring of comparator) outputs occur in in order to
merge those.

From the comparator implementation it can be seen that each output of the sorting network
is glitch-free due to missing negation paths and rising resp. falling transition at a comparator
input may cause only rising resp. falling transitions at its output, except if opposite transitions
occur such that the threshold is crossed. On the one hand, each input and intermediate signal
in the network has a fan-out of 1 on the other hand the interconnect complexity increases, i.e.,
the distance between compared elements grows exponentially with the depth, for larger problem

76

EOS(n)

EOS(n)

EOM(n)

e0

e1

...
en−1

o0

o1

...
on−1

e′0

e′1

...e′n−1

o′0

o′1

...o′n−1

y0

y1

...
yn−1

yn

yn+1

...
y2n−1

(a) Recursive definition of the EOS(2n)
sorter.

EOM(n)

EOM(n)

e′0
e′2 ...
e′2n
o′0
o′2 ...
o′2n

e′1
e′3 ...

e′2n−1
o′1
o′3 ...

o′2n−1

y0
y1
y3
y5

...

y4n−5
y4n−3

y2
y4
y6

...

y4n−4
y4n−2
y4n−1

(b) Recursive definition of the
EOM(2n) merger.

e y0

o y1

(c) Basic EOS(2) =
EOM(1) compare-and-
swap element.

Figure 4.6: Even-odd merge sort. [59]

sizes (see Figure 4.7). Table 4.4 contains the complexity results of the even-odd merge sorting
network.

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

Figure 4.7: A 8 input even-odd merging sorting network. [59]

A popular alternative is a bitonic sorting network, which merges a ascending sorted sequence
and a descending sorted sequence. It consists of bitonic sorters (see [59]), the recursive definition
of which is simpler compared to the even-odd merge sorters. Figure 4.8 shows an example. The
bitonic sorting network has an interconnect distance that grows even more with each stage (at
its maximum 2p), because the order of the sorted lower half of the input at every recursion
level of needs to be reversed to make it bitonic (i.e, a combined ascending and descending
sorted sequence), which results in a compare-and-swap of the first and last element at the last

77

recursion level (see Figure 4.8). If the lower half of the input is already a bitonic sequence, the
interconnect distance is the same as for the even-odd merge sort. A descending sorted sequence
may be achieved by swapping the comparator outputs (≤→≥). The major advantage of the
bitonic sorter is that its depth (i.e., the number of compare-and-swap elements) is equal on all
paths, which results in reduced jitter and glitches at the price of a (small) increase of the number
of compare-and-swap elements.

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

Figure 4.8: A 8 input bitonic sorting network. [59]

Complexity C(2p) (p2 − p+ 4)2p−2 − 1

Depth S(2p) p(p+1)
2

Fan-out 1

Interconnect distance (max) 2p−1

Table 4.4: Sorting Network complexity (EOM) for n = 2p. [59]

Table 4.4 shows the complexity of the even-odd sorting network. C(n) represents the
compare-and-swap element count of the full sorting network. The actual number of LUTs de-
pends on the placement and routing, it can be estimated by 2C(n). Note that all sorting network
outputs, which are not used, can and will be removed by the synthesis tool.

4.2.4 Further options

Efficient implementations of small threshold modules may be used to construct larger threshold
modules by combining their outputs in a tree. For example, a threshold module with k = 3 and
4 inputs, the inputs may be divided into groups of 2 and threshold modules for k = 1, 2 may
be applied to these groups and recombined. Such an approach has been considered in [8] for
constructing threshold modules for neural networks.

Obviously, all the above threshold module implementations could be pipelined to shorten
the critical paths between the stages by just inserting flip-flops where needed. However, the
labeling solution would not benefit from pipelined threshold modules, since Algorithm 1 can
not be pipelined, because of the incorporated consensus algorithm.

In order to reduce the hardware effort, the sorting network and counter implementation could
be implemented in a multi-cycle scheme, i.e., with a synchronous FSM. Using multiple cycles
per operation would slow down the execution speed multiplicatively, however.

78

Other options are analog threshold modules, which work by summing currents or voltages.
A transistor with a specified threshold or analog comparator will output logic high if the volt-
age/current sum reaches the required threshold (see [14]).

4.2.5 Chosen implementation

Since the prototype implements a system of only n = 8 nodes, I chose the counter and compara-
tor implementation as an appropriate solution, due to its genericity and flexibility. Glitches can
be neglected due to the synchronous environment. Listing 4.1 shows an excerpt of the threshold
module VHDL description at the RTL level, which is automatically transformed by the synthesis
tool to LUTs, using an adder and comparator style threshold module. At the end, the outputs are
recombined for the inputs 10 and 11 to form the threshold module output (nf, f1, c) according
to Equation (4.2.

1 . . .
i n c _ 0 := u n s i g n e d (n o t i n p u t _ c h a n 0 and i n p u t _ c h a n 1) ;

3 c n t _ 0 := 0 ;

5 f o r i i n inc_0 ’ r a n g e loop
c n t _ 0 := c n t _ 0 + t o _ i n t e g e r (i n c _ 0 (i downto i)) ;

7 end loop ;

9 nf0 <= c n t _ 0 >= (N−F) ;
f10 <= c n t _ 0 >= (F+1) ;

11 . . .

13 n f <= nf0 or nf1 ;
f1 <= f10 or f11 ;

15
c <= ’1 ’ when f11 e l s e ’ 0 ’ ;

Listing 4.1: Excerpt of the VHDL threshold module description at the RTL level.

4.3 Lock-step synchronous round communication

The actual communication in a lock-step round system proceeds like in any synchronous system:
In some round/clock cycle r, the FSM at a node selects a new state and a broadcast value, using
its current local state and the received values; The broadcast value is present at the transmission
buffer output at the beginning of the next round. In this round r + 1, the value is received by all
recipients and processed in the very same way.

The remaining problem is that only imprecise (bounded-precision) BSCLKs and bounded
delay links are available at the nodes. In Chapter 2.1.5 and 2.7, I described how lock-step
synchronous rounds can be simulated in such a system. I will now streamline this description to
the available bounded-precision imprecise BSCLKs and state-based bounded-delay links.

79

A lock-step synchronous execution performs a computation every round at a node, which is
triggered by the BSCLK, using either the falling or rising transition of the nodes clock signal.
Assume that the clock frequency does not violate any local timing constraint (i.e., those of local
computations using synchronous (state) elements). Furthermore, assume that buffering an input
port state (i.e., sampling) is performed by a node when it starts a new round. Essentially, if some
node broadcasts a new state in round r at time t, it will be received at latest after dl seconds on
a bounded delay link with the upper bound dl, i.e., at latest at t + dl. Due to both the BSCLK
imprecision and the node’s clock distribution network, which is represented by the skew Σl,
nodes do not start a local round at the same time. Made specifically, the latest state put on the
link by some node in round r is seen at the input port of all nodes at latest Σl + dl after the
first node started round r. Hence, the minimum lock-step synchronous round period Pmin must
satisfy Pmin ≥ Σb + dl, i.e., the interval between sending new states must be at least that long.

Assume that minimum period between local computations/state buffering is T l
min, based on

the BSCLK’s LSB as clock signal. Then, setting Pmin = kT l
min, where k is the minimum number

of synchronous rounds between two successive broadcasts, results in the following inequality for
k:

k ≥
⌈
(Σl + dl)/T l

min

⌉
(4.10)

Note that all nodes execute the same algorithm and broadcast a new state simultaneously in
the same round (r), i.e., all BSCLKs have the same value in that particular round. Therefore,
every node knows it may buffer/use the new received state safely at the time it starts round
r + k. Hence, inequality (4.10) ensures the setup requirement of a labeling node, but not the
hold requirement. Any hold requirement can only be satisfied if an input port state remains
stable (i.e., holds) when a node buffers this state at the time it starts round r+k. Thus, any node,
which sent some new state in round r, must guarantee that any state sent in some later round
r + k + l, l ≥ 0 is not received at the input port of some node, before this node started round
r + k. This results in the following inequality for the parameter l ≥ 0:

l ≥
⌈
(Σl − dlmin)/T l

min

⌉
(4.11)

If the minimum delay dlmin of the bounded delay links among the nodes is unknown, it can
be assumed to be 0. On the downside, these requirements decrease the transmission rate and
the available number of (lock-step) synchronous rounds for communication, since a node may
broadcast a new state every k + l rounds at most.

Figure 4.9 shows the Trellis timing diagram of the described problem. The solid vertical line
represents the first start of a new round and the first dotted vertical line (with short strokes) the
last possible start (skew). The last dotted line (with long strokes) marks the maximum delay of
a link and thus the point when the last state may be received.

The first Trellis diagram shows the standard lock-step round model for two synchronized
nodes with some skew. In the second round, node p1 has received a new state from node p2
before it sent its own state, i.e., started the next round, which results in a hold violation. Besides,
the setup time is violated in round r3 too. Note that this is not a problem in the abstract model,

80

p1

p2

r 1 r 2 r 3 r 4

p1

p2

r 1 r 2

p1

p2

r 1 r 2 r 3 r 4

Figure 4.9: Synchronous computation model timing violations and new abstraction.

i.e., zero skew, or when using event-based communication, since all states/messages are buffered
upon reception or sent at all nodes concurrently.

This problem can be solved by using “macro”-rounds that consist of two rounds each: In
even rounds, processing/buffering takes place, in odd rounds, values are sent and received. The
second Trellis diagram in Figure 4.9 shows the resulting execution; all setup/hold violations
have been resolved. The last one displays the corresponding “abstract” lock-step synchronous
round execution.

4.3.1 Chosen implementation

In Chapter 2, I provided an overview of typical synchronous and asynchronous communication
schemes. Since the algorithm is executed within a synchronous environment and low hardware
effort is desired, the actual choice to use flip-flops as the communication buffers is inherent:
DFFs need no extra handshake, control modules or further signals, except the clock. Thus,
both the transmitter and receiver communication subsystem contain DFFs only. The transmitter
register output is connected to the output port of a node, which is connected to all input ports and
hence to the receiver register of the receiver communication subsystem of all nodes, including
itself. In this prototype, a node needs n = 8 such receiver registers. Their outputs are connected
to the threshold module directly.

Since the BSCLK’s LSB clock period of the current prototype is large (see Chapter 5) and the
(assumed) delays and skew are small enough, I can choose k = 1 and l = 1. This holds even if
both rising and falling transitions of the BSCLK are used to drive local rounds (i.e., computations
and buffering); Using both transitions increases the available number of synchronous rounds
before the BSCLK overflows by a factor of 2. Note that this also increases the clock frequency at
which the labeling nodes operate, i.e., T l

min is now half the BSCLK’s LSB clock period, because
a synchronous round is triggered on every transition. The FSM and transmitter subsystem has
been chosen to operate at each falling transition and the receiver subsystem samples the input

81

ports at each rising transition to maintain the constraints of k = 1 and l = 1. Consequently, one
synchronous round is used to perform the computations and send a state, while the other round
is used to buffer the input states. This implies that the actual number of (lock-step) synchronous
rounds, between overflows of the BSCLK, is M/2 at the algorithm level. Furthermore, this
solution does not require any additional hardware or further states in the FSM to count the
number of passed rounds to ensure these constraints, since the DFFs need to trigger at the resp.
other clock signal transition only.

Although this approach features fast and metastability-free serial synchronous communica-
tion, faulty nodes may still violate the setup and hold requirements. Therefore, instead of just
one DFF acting as receiver, a 2 stage synchronizer is used to mitigate the effects of metastable
upsets. Figure 4.10 shows the entire communication subsystem between two nodes, using the
two stage synchronizer as receiver register and a single DFF as transmitter register. The clock
signals are connected to the BSCLK’s LSB of the corresponding node. Unfortunately, the syn-
chronizer affects the runtime of Algorithm 3 multiplicatively, because the synchronizer pipeline
delays the reception of a broadcast by one additional round and the Phase King algorithm is only
able to broadcast a new state once all previous broadcasts have been received, which leaves the
synchronizer pipeline empty.

This results in the following round complexity of the labeling algorithm in my setting:

r(l, f, sync, i) = 2i(2l + 2sync+ (3sync+ 2)(f + 1) + 4) (4.12)

In the above equation, l is the label width, f the number of Byzantine faulty nodes that
must be tolerated, sync is the length of the synchronizer pipeline, and i is the clock division
factor; i = 1 represents the BSCLK’s LSB. Thus, the size M of the BSCLK must satisfy M ≥
r(l, f, sync, i) and the last transition before the BSCLK overflow must be a falling transition of
the chosen clock bit.

TX
FSM

D Q D Q D Q

RX
FSM

11

Clk tx Clk rx
1

Figure 4.10: Transmit and receive buffer implementation.

Figure 4.11 provides a detailed timing diagram of this communication subsystem, c.p. also
Figure 4.9. As can be seen in this example, the overall frequency has increased by a factor of 2,
since both clock transitions are used by the nodes to trigger synchronous rounds for computation
and buffering. Therefore, T l

min must be set to half the clock period.

82

≤ Σl ≤ dl t ∈
[
T l

min, T
l
max
]

Clock i

Clock j

Input port i D1 D2

Output port j D1 D2

Input port j D3 D4

Output port i D3 D4

Figure 4.11: This figure depicts an example of two correct nodes’ clock signals and the com-
munication solution timing. Both nodes sample the input using the rising clock transitions and
broadcast on falling clock transitions.

4.4 Synchronous FSM

The FSM implements Algorithms 1-3 and is implemented according to the standard current state
and next state logic synchronous FSM design (see Figure 2.20), without pipelining except for
Algorithm 2.

The choice of state encoding is left to synthesis tool and may be forced if needed. I im-
plemented the state-machine using macro states and synchronous state elements (flip-flops) to
encode variables of the above algorithms. The synthesis tool chooses a one-hot encoding (i.e.,
one bit for each macro state) in the default setting if the number of states is rather small (< 50).
As mentioned, the FSM execution, receiving and broadcasting implemented by the communi-
cation subsystem utilizes the BSCLK’s LSB as clock signal. For execution control, it uses the
falling transition of its clock signal.

States

First, it is important to identify the implicit state of Algorithms 1, 2 and 3. Apparently, these
algorithms must maintain the following implicit state variables:

• Label Li.

• Label candidate ci.

• Threshold module mask bits ic1 . Depending on the particular threshold module, they
which are either all set, set accordingly to Si in Algorithm 2, or represent the high-order
bit of the only dual-bit broadcast in Algorithm 3.

• Trust value bi, represented by the state variable lock in the FSM.

• Broadcast register txi.

83

Besides these state variables, the FSM needs to know which broadcast it must perform
resp. which of the above state variables must be modified by the next state logic, i.e., it needs
some states to implement the control flow. Obviously, these explicit states are implementation-
dependent. In order to maintain scalability and to automatically adapt the implementation to the
(main) generic parameters n, f and l, the FSM is implemented using the macro states described
in Chapter 4.4.1 and the following auxiliary micro states:

• Bit and synchronizer counter cntbit.

• Phase King phase/king counter cntf .

• Phase King listen bit, tells a node whether it must listen to the Phase King broadcast or
not.

• Overflow bit ovf to indicate a BSCLK overflow.

4.4.1 Detailed description

Figure 4.12 and 4.13a depicts the current FSM implementation of the labeling algorithm, which
is very similar to actual the VHDL description. Each macro state implements a specific state of
the labeling algorithm. As in the already used FSM specifications in Chapter 2, the transition
edges of the graph specify the performed actions (shaded boxes) as well as the transition guards
(labels). The current macro-state is represented by labeled circles as usual. The transitions and
associated actions are performed when a new synchronous rounds starts, i.e., upon a falling
clock transition.

The actions specify the modifications to the above state variables, i.e., if no modification is
specified for some state variable, it keeps the current value.

The task of each macro state from Algorithm 1 can be specified informally as follows:

RED_INIT: Initializes the label candidate to the current value of the label.

RED_1_0: Broadcasts the candidate bits 1 to sync sequentially. Waits until the first bit is
present at the synchronizer output. First for-loop in Algorithm 2.

RED_1_1: Broadcasts the candidate bits sync+ 1 to l sequentially and computes the threshold
of the received broadcasts. First for-loop in Algorithm 2.

RED_1_FIN: Intermediate broadcast between the first and second for-loop in Algorithm 2.

RED_2_0: Broadcasts the candidate bits 1 to sync sequentially. Waits until the first bit is
present at the synchronizer output. Second for-loop in Algorithm 2. Also stores the set
Si, i.e., sets ic1 .

RED_2_1: Broadcasts the candidate bits sync+ 1 to l sequentially and computes the threshold
of the received broadcasts. Second for-loop in Algorithm 2.

PHK_1_0: First broadcast in each phase of Algorithm 3. Waits until the broadcast is received.
If there is no further phase it updates the label candidate ci accordingly.

84

RED_INIT
cntbit ← 0
ci ← Li

RED_1_0

txi ← ci(0)
ci ← lsr(ci)
cntbit ← cntbit + 1

lock ← TRUE
ic1(1 . . . n) ← 1
txi ← ci(1)
ci ← lsr(ci)
cntbit ← 0

RED_1_1

lock ← lock ∧ nf ∧ c = rxi
txi ← ci(1)
ci ← lsr(ci)
ci(l) ← c
cntbit ← cntbit + 1

lock ← lock ∧ nf ∧ c = rxi
ci ← lsr(ci)
ci(l) ← c
cntbit ← 0

RED_1_FIN
cntbit ← 0
txi ← lock

RED_2_0

lock ← TRUE
ic1 ← rx
txi ← ci(1)
ci ← lsr(ci)
ci(l) ← c
cntbit ← 0

txi ← ci(1)
ci ← lsr(ci)
cntbit ← cntbit + 1

RED_2_1

lock ← lock ∧ nf
ci ← lsr(ci)
ci(l) ← c
cntbit ← 0
cntf ← 0

lock ← lock ∧ nf
txi ← ci(1)
ci ← lsr(ci)
ci(l) ← c
cntbit ← cntbit + 1

PHK_1_0

cntbit < sync− 1

else

cntbit < l − 1

else

cntbit < sync− 1

else

else

cntbit < l − 1

Figure 4.12: RED part of the transformed algorithm into synchronous FSM

PHK_2_0: Broadcasts the MSB of the second (dual bit) broadcast in each phase of Algorithm
3.

PHK_2_1: Broadcasts the LSB of the second (dual bit) broadcast in each phase of Algorithm
3. Waits until the LSB is received.

PHK_2_2: Computes the second threshold to determine whether there is a candidate or the
node listens to the Phase King broadcast instead. Broadcasts the current local candidate
(Phase King).

PHK_3_0: Waits until the Phase King broadcast arrives and listens to the broadcast if listen is
set.

In order to reduce the impact of the synchronizers on the runtime of Algorithm 2, processing
of the label bits is pipelined, i.e., in each cycle, a new bit of the candidate label is broadcast

85

PHK_1_0

txi ← lock
cntbit ← cntbit + 1

ic1(1 . . . n) ← 1
cntbit ← 0

PHK_2_0
lock ← c ∧ nf
txi ← nf
cntbit ← 0

PHK_2_1

ic1 ← rx

txi ← lock
cntbit ← cntbit + 1

PHK_2_2

lock ← c
txi ← c
listen ← ¬nf
cntbit ← 0

PHK_3_0

cntbit ← cntbit + 1

lock ← (listen ∧ rxcntf)

∨
(¬listen ∧ lock)

cntbit ← 0
cntf ← cntf + 1

ci ← ci ∧ lock + 1 WAITOVF

cntf ≤ f
∧

cntbit < sync− 1

cntf ≤ f
∧

cntbit ≥ sync− 1

else
cntbit < sync− 1

else

cntbit < sync− 1

else

(a) Phase king part of the transformed algorithm into synchronous FSM.

Any state Li ← ci RED_INIT
ovf

¬ovf ovf

bsclk ≥ max

else

bsclk < max

else

(b) Stabilization mechanism of the macro state machine and
the label update.

Figure 4.13: Phase King consensus FSM and the BSCLK overflow mechanism for self-
stabilization.

86

until there is none left. Hence, after waiting for the initial bit to be present at the synchronizer
output port, the next bit is already available in the next round. The need to wait for the first bit
at the output can been identified by the transition guards cntbit ≤ sync− 1 in the FSM figures.
Unfortunately, this does not work for Algorithm 3, because the nodes must vote on the current
received broadcasts before starting the next broadcast. This explains the multiplicative effect of
the synchronizer pipeline on its runtime.

Note that the input channel 0 (ic0) of the threshold module is connected to the synchronizer
pipeline output directly. Furthermore, I saved the LUTs of the candidate bit multiplexer (ci(j))
in Algorithm 2 by shifting the candidate label register (lsr(ci)) every time a new broadcast
is performed instead. This allows to insert resp. retrieve the next broadcast value from static
locations at the top ci(l) resp. at the bottom ci(1). Hence, each bit is at its specified location
after all bits are received.

4.4.2 Self-stabilization

During stabilization or after recovering from transient faults, it may occur that a node is not in
the macro-state corresponding to the BSCLK value (e.g., in the initial state if the clock is 0).
Since the algorithm needs to be in the initial state after each overflow of the BSCLK, it is a
logical choice to use its wrap-around to reset the FSM into the initial state, no matter what the
current state is. Besides, the generated label must be updated at the overflow of the BSCLK with
the current candidate label too.

For this purpose, the overflow flag ovf is used. If it is set, the node will update its label and
set its state to the initial state RED_INIT. Note that this is an additional transition from any of
the FSM states to the initial state (see Figure 4.13b), which occurs at the falling transition of the
FSM clock. Obviously, this flag must not violate the FSM timing constraints, which makes a
solution based on an asynchronous reset rather impractical. Therefore, a comparator compares
the higher order bits of the BSCLK against M/2− 1, which is sampled by the ovf DFF at each
rising clock transition instead.

The attentive reader should notice that this is the opposite clock transition of the one used by
the FSM. This approach is similar to the one used by the receiver subsystem (i.e., synchronizer
pipeline). Since the higher order bits of the BSCLK can only change upon some Accept+-
pulse, which creates a falling clock transition on the BSCLK’s LSB (i.e., the clock signal), the
overflow flag samples the comparator output only when it is stable and safe, i.e., cannot change.
Figure 4.14 shows the synchronous abstraction of the overflow flag and the different clocks. The
comparator compares the BSCLK high order bits against 7F in that example, which corresponds
to M = 256.

To sum up, the progression of the state machine depends on its local state only, which implies
that only an incorrect behaviour of the BSCLK, during stabilization, can disturb the control flow
of the FSM. Besides, the chance of metastable upsets due to faulty inputs is sufficiently reduced
by the employed synchronizer. The self-stabilization mechanism ensures that any corrupted
state of the FSM will be removed at the next correct BSCLK overflow to ensure a consistent and
correct algorithm execution.

Finally, the overall implementation of a node is shown in Figure 4.15.

87

BSCLK[W - 1. . . 0] FA FB FC FD FE FF 0 1 2

BSCLK[W - 1. . . 1] 7D 7E 7F 0 1

BSCLK[0]

FSMCLK

OVFCLK

OVF

Figure 4.14: Overflow flag and FSM abstract timing. W represents the BSCLK width.

D Q D Q

FATAL
+

(Quick-cycle)

Node i

B
S

C
L

K
(m

o
d

 M
)

Labeling

FSM

+

Threshold

modules

Node i

BSCLK[0] BSCLK[0]

Node 1 output port(rx)

.

.

.

D Q D Q

BSCLK[0] BSCLK[0]

Node n output port(rx)

BSCLK[0]

Node i output port(tx)

Label(mod 2l)

≥M/2 - 1 D Q
BSCLK[W-1..1]

BSCLK[0]

Overflow flag

Figure 4.15: System overview of the labeling implementation and its interfaces at a node i.

88

CHAPTER 5
Experiments

This chapter will cover the experiments performed on the implementation and its results. It will
also provide an overview of the standalone and integrated testbench structure and the Byzantine
node implementation. The purpose of the experiments is to verify the circuits and to show that it
is indeed possible to implement a synchronous algorithm, like the discussed labeling algorithm,
based on the FATAL+ prototype.

5.1 Hardware and Software

Hardware

The well known DE2-115 Development and Education Board from Altera, provided by Tera-
sic, has been chosen as the target platform. It inhabits a Cyclone IV FPGA, which may be
programmed using the built-in USB-Blaster. Furthermore, it provides 18 switches and a 40-pin
expansion header. Since the labeling algorithms prototype needs to be integrated into the ex-
isting FALTAL+ prototype [66] I used the same mechanisms and interfaces to build my own
testbenches. It turned out that they were sufficient for all envisioned experiment, which relieved
me from developing a new test interface for the entire system.

The USB-blaster was used for downloading the FPGA configuration file and to gather in-
formation from the in-circuit logic analyzer Signal Tap II, while developing and testing the
algorithms and experiment setup manually. The expansion header was used for the main testing
interface between the bigAVR6 µC -board from Mikroelectronica, containing an ATmega 1280
microcontroller, the FPGA-board, and the Agilent logic analyzer 16800. As shown in Figure 5.1,
the µC-based was connected via a serial interface to a PC acting as the experiment controller,
and to the FPGA-board using an SPI interface (see Chapter 2.5.4.2). The µC-board and the
FPGA-board operate at different voltages (5 V and 3.3 V), which required a logic level shifter
based on the 8-bit bi-directional TXB0108PWR shifter from Texas Instruments. The PC was
operated under Linux.

89

Software

The FPGA configuration file was synthesized by the design and synthesis tool Altera Quar-
tus II: Additionally, it has been used to perform a simple timing analysis of the labeling algo-
rithm, i.e., that the internal state machine implementation of the labeling algorithm works at the
given frequencies. The host program (PC) for experimental control was implemented in Python,
which uses the RS-232 connection to communicate with µC-board. The software for the µC-
implementation has been provided as C-source code, compiled using the avr-gcc and deployed
with avr-prog2. Note that it also incorporates hardware drivers for UART, SPI and timers.

5.2 Testbenches

The testbenches consist of the following compounds:

Experiment controller (PC): The PC application is implemented in Python and uses the serial
interface to communicate with the µC. The application is used to generate new random
system reset states, which starts a new experiment run, and to receive and log the experi-
ment results (i.e., the required stabilization time). Once the result has been logged, the PC
chooses a new random reset state.

Microcontroller (µC): The µC receives the experiment system reset states and a desired reset
procedure to start the experiment. Prior to applying the reset procedure the received reset
state will be shifted into the FPGA. The reset is used to load the new system state. After
that the µC waits an adjustable amount of time for the correct-signal, provided by the
FPGA side of the experiment, to become true, which indicates that the labeling algorithm
has stabilized, and observes it for another adjustable amount of time to ensure that it
remains true. The recorded stabilization time is sent to the PC and the µC waits for a reset
state sent by the PC.

FPGA: The FPGA incorporates the prototype implementation of the labeling algorithm and its
testbench environment. In order to verify its correct operation, a validation node is inte-
grated into the testbench, which samples the labels of the correct nodes at each overflow
of the BSCLK using the FATAL-pulses and compares them against the labeling defini-
tion. Once the labeling specification holds, it indicates stabilization via the correct-signal.
Should the label specification be violated, some time after the correct-signal is set to true,
the correct-signal will be set to false again.

This experiment flow is depicted in Figure 5.2 used in the following two testbench settings:

Standalone testbench

Its main purpose is to validate the functional behaviour of the labeling algorithm using simulated
synchronized BSCLKs: Instead of the underlying FATAL+ algorithm it provides four counters
driven by a single PLL utilizing four of its clock outputs to simulate stabilized BSCLKs. Since

90

there are eight nodes altogether, a pair of nodes will share such a counter. Once these clocks
overflow, a pulse is generated to simulate the slow FATAL-pulses (see Chapter 3.1.2).

It provides the following features:

• Simulation of Byzantine faulty labeling nodes to show the Byzantine self-stabilizing fea-
ture of the labeling algorithm.

• Start the experiments with downloadable random reset states.

• Support for late joining experiments.

• Detect the correct operation via the validation node.

Integrated testbench

The integrated testbench is essentially the same, but the FATAL+ prototype is used instead of
the BSCLK simulation in the standalone testbench. Only the Byzantine test case is performed to
measure the end-to-end stabilization time, since the correct behaviour follows from the previous
experiments of FATAL+ [66], the standalone testbench and the combined Byzantine testbench.

It provides the following features:

• Integrated Byzantine testbench with the existing FATAL+ prototype.

• Start the experiments with downloadable random reset states for the labeling and FATAL+

prototype.

• Detect the correct operation via the validation node.

Byzantine nodes

First of all it is important to define which nodes should exert Byzantine behaviour. In the case
of the labeling algorithm, which is synchronous, only the number of messages containing the
same value is important, but not which node sent the information. The only exception is Algo-
rithm 3, where the nodes acting as Phase Kings are statically defined to be in {1, . . . , f + 1}.
statically defined. Therefore the first f nodes will be assigned statically to be Byzantine faulty
in those experiments, hence gain the maximum power to delay label synchronization (up to the
last phase).

The Byzantine faulty nodes use the same state machine as a correct node, but choose a
message that will most likely introduce a considerable inconsistency between correct nodes.
More specifically, they try to separate the (correct) nodes into two groups with different decision
outcomes, one of which consisting of n − 2f (correct) members if possible and needed. In
the case of n = 8 and f = 2 this will split the nodes into one group of 4 correct nodes and
another group consisting 2 correct nodes. The decision outcome of Byzantine faulty nodes is
not considered.

The Byzantine nodes thus exert very strong adversarial behaviour except, in the case that
the Byzantine nodes and the correct nodes start in an inconsistent state of the FSM (destabilized

91

system): Since the Byzantine nodes uses its local state and received messages to choose the
worst-case faulty messages, their adversarial power is reduced. I do not consider implementation
of Byzantine behaviour that is even strong in inconsistent states.

In the first loop of Algorithm 2, the Byzantine nodes broadcast the opposite value of their
threshold modules’ output if all correct nodes sent the same value or send every node its own
message back to force them to keep their label if at least n − 2f correct nodes send the same
label bit. In the last case at least n − 2f , but less than n − f , correct nodes will tell the others
that they want to propose the candidate label (bi = true) in the second loop, while the remaining
correct nodes inform all nodes that they couldn’t identify the candidate label.

In the second loop the Byzantine nodes propose the same label as the correct nodes to at most
the first f correct nodes proposing the candidate label too. All other correct nodes will receive
the opposite label bit. Therefore if less than n− f , but at least n− 2f correct nodes proposed a
candidate label, f correct nodes have identified a candidate label and exit with bi = true, while
the other correct nodes exit with bi = false. Hence, if no consensus would be run after the
reduction, the Byzantine nodes would be able to delay the stabilization of the labeling algorithm
infinitely long, in those cases.

In the first broadcast of algorithm 3 the Byzantine nodes broadcast the value that occurs
least often to all correct nodes. Now, all correct nodes broadcast 00. In the second broadcast,
the Byzantine nodes broadcast 1b, where b is the least frequent value again. In the Phase King’s
broadcast the Byzantine nodes send their inconsistent messages containing true to the first f
correct nodes and false to the others. Hence, the correct nodes are not able to stabilize before
reaching the phase with the correct Phase King if there are not n−f correct nodes with the same
initial consensus candidate value already.

Two approaches are available to actually implement this Byzantine behaviour: Either indi-
vidually within each correct node or as one separate “multi-node” connected to the broadcast
channel synchronizers, which emulates the behaviour of all faulty nodes. The first approach has
the advantage that it may have more adverse impact when FATAL+ hasn’t stabilized or before
the first correct BSCLK overflow occurred, but it needs more hardware. The second approach
needs more combinatorial logic in the link (communication) path to the correct nodes, which
increases the delay. Nonetheless the provided (frequency) accuracy bounds are large enough in
the current setting to cover the additional delay. Therefore the Byzantine node has full control
about the message sent to each correct node and is able to provide inconsistent information.

I chose to implement the second approach, in which all Byzantine faulty nodes are imple-
mented in a single node. Note that if the correct nodes had accepted any label in first loop
of the reduction, instead of accepting only their own, it would have been more complicated to
implement the worst case behaviour in all initial settings. For example, assume that all nodes
are correct (n = 4) and their labels are initialized to (1110, 1101, 1011, 0111). Then all nodes
will identify the label 1111 as candidate instead of no correct node identifying a label candidate
(bi = false). In such an implementation the current Byzantine nodes implementation will result
in bi = false at all correct nodes, although f correct nodes could exit with true using another
behaviour.

92

Reset procedure

The whole state of the labeling algorithm of one node consists of the following components for
(n = 8, l = 17, f = 2, sync = 2):

state: The macro state of the FSM (enumeration with one bit for each state). Size 12-bit.

cntbit: Size 4-bit.

cntf : Size 2-bit.

lock: Size 1-bit.

listen: Size 1-bit.

ci: Size 17-bit.

Li: Size 17-bit.

rxchan: The buffer connected to the most MSB (ic1) of the threshold module. Size 8-bit.

tx: Size 1-bit.

ovf : The overflow bit indicating a BSCLK overflow. Size 1-bit.

rxSync: The synchronizer pipeline used to buffer input ports of all nodes. Its output is con-
nected to LSB (ic0) of the threshold module too. Size 16-bit.

Almost all state components above are represented by registers clocked by the falling edge
of the bounded synchronized clock, except for the last two, which use the rising edge.

A new reset state, randomly chosen by the PC, is transferred to the FPGA by using a SPI-
shift register, which doesn’t need much hardware beside the actual reset-registers for each state-
bit. The µC outputs the reset state using its SPI hardware (see Chapter 2.5.4.2), which comprises
out of one 1-bit data channel and a clock. Each bit of the serial shift register corresponds to a bit
of a state within one nodes complete state. Since this is the same state transmission procedure
as in [66] I appended the state of the labeling algorithm at the end of the serial shift register in
FATAL+.

Additionally, each labeling node has a reset enable bit within the shift register for choosing
which labeling node will be affected by a reset. This is necessary, because I don’t have enough
pins available at the expansion header.

The testbenches provide 3 different types of resets:

SwRstClk: Asynchronous reset of the underlying FATAL+ algorithm states resp. its simula-
tion.

SwRstNode: Asynchronous reset of the labeling algorithm states (for enabled nodes).

SwRstTest: Reset of the validation node (see Chapter 5.3), which is synchronized to the vali-
dation node’s clock.

93

Note that as long as the SwRstClk is activated, all bounded synchronized clocks will stop
as the FATAL+ algorithm resp. its simulation is held at the reset state. In the future, it may be
reasonable to use a signal which just freezes the algorithm instead of resetting it. Such a signal
must be accurately timed to ensure a correct resume of the operation of all algorithm, however.

The actual two reset procedures performed are:

Experiment 1: SwRstClk → SwRstNode, SwRstTest. In this case, the labeling algorithm,
of all nodes is guaranteed to start properly.

Experiment 2: SwRstNode. In this case a node may suffer from a metastable upset.

All resets are deactivated in the reverse order. The time between the activation/deactivation
of the resets is 5 ms, which ensures that all asynchronous and synchronized resets are long
enough and deactivated completely before the next reset (e.g., SwRstClk) is released.

PC µC FPGA

UART rx

UART tx

SwRstClk
SwRstNode
SwRstTest

SPI data/MOSI
SPI clock

correct

Figure 5.1: Hardware testbench setup.

Timing analysis

The correctness proofs rely on the assumption that certain timing constraints are met that ensure
the correct distributed synchronous execution of the algorithm and a meta-stability free operation
of the FSM. These constraint of my implementation have been validated by means of standard
analysis of synchronous circuits (see Chapter 2.7), as follows:

The timing bounds provided by the existing FATAL+ implementation are:

Accuracy bounds Quick-Cycle: [T+
min, T

+
max] = [57.67µs, 76.16µs]

Accuracy bounds Main: [Tmin, Tmax] = [2.57 ms, 13.18 ms].

Skew/Precision bounds: Σ+ = 1.6µs and Σ = 5.12µs.

Delays: d+max = 800 ns, d+min = 0 ns and d = 2.56µs.

Clock-Ratio: ϑ = 1.3 and thus clock drift is ρ = 0.3.

94

Wait for µC to send ready.

Send random/defined testcase.

Send defined reset behaviour.

Receive and log result.

Send ready

Recveive testcase.

Receive reset procedure.

Transmit SPI data.

Perform the received reset procedure.

Wait for correct-signal transistion.

Sig. trans.
occured?

Observe correct-signal.

Sig. trans.
occured?

Send result correct. Send result incorrect.

PC: µC:

yes

timeout

no and no timeout

no and no timeout

timeout

yes

Figure 5.2: PC (left) and µC (right) data exchange and control flow, including the FPGA gener-
ated correct signal (see Figure 5.3).

95

The BSCLK is incremented with a precision/skew Σb = 4.16µs and its LSB accuracy
bound, i.e. the time interval between transitions of the same polarity, is just twice the accuracy
provided by the Quick-Cycle state machine [T b

min, T
b
max] = [115.34µs, 152.32µs]. Assuming

that the bounded delay of the labeling algorithm dl = d, then the resulting labeling skew is Σl =
Σb+dl = 5.76µs. The delay dl must include all communication delays of the labeling algorithm
including the propagation delays of asynchronous logic functions between the registers. The
skews or delays should also include all clock uncertainties.

Then the following timing constraints between all interfaces and nodes of the labeling algo-
rithm must be met (see Chapter 2.7):

Setup FSM↔FSM: T+
min − Σl − dl − tS > 0.

Hold FSM↔FSM: T+
min − Σl − tH > 0.

Setup BSCLK→FSM: T+
min − dl − tS > 0.

Hold BSCLK→FSM: T+
min − dl − tH > 0.

The FSM constraints copes with all local paths and registers of a labeling node as well as
the paths between the nodes’ input and output port (registers).

The BSCLK constraints needs to be verified to ensure the correct operation of the BSCLK
overflow flag used by the FSM, since the upper bits of the BSCLK are part of the Quick-Cycle
clock domain (FATAL+-pulse).

Inserting the above FATAL+ bounds into the constraints yields no violations, because the
setup and hold parameters, tS resp. tH, of latches and registers can be assumed to be just several
nano seconds, and there are still a reserve of some µs. In my case, the Quartus II uses latches to
emulate the flip-flops to be able to asynchronously load those registers, but as these requirements
can be fulfilled in the standalone testbench using 12.5 MHz as the BSCLK LSB clock frequency,
it is reasonable to assume there are no problems after integration. Moreover, the timing analysis
revealed that the standalone testbench would be able to run at 38 MHz.

5.3 Experimental Validation

There a lot of possibilities to validate a given design. Apart from simulations, it is necessary
to experimentally validate a design in a given physical setting to observe its real behaviour and
validate it against its specified behaviour in the case that some assumptions don’t hold or a
mistake has been made either in the implementation specification or by the synthesis tools. Note
that no specific timing analysis has been performed in the integrated testbench setting. This
should be no problem here, because the synchronized round period is large enough, but this
need not always be the case.

Possible validation procedures range from golden nodes, capturing all outputs and important
states fast enough and transmitting them at the end for analysis, to using an in-circuit validation
node, which monitors the important part of the system state and validates it against certain
assumptions. Obviously, I don’t have a reference node available, the expansion header is too

96

limited to capture all bits externally with a logic analyzer and the internal memory capabilities
are limited. Thus, state transfers to an external memory, storage device or network device would
be necessary for implementing this option. Fortunately, for my purpose, it is sufficient to validate
the execution at each correct node against the proofs assumptions, which is that the labels at
correct nodes must be equal after a full iteration of Algorithm 1 and always incremented in the
following iterations. Formally:

• After Li = Lj at any correct node i and j, the next label is Li + 1.

This assumption must hold at each BSCLK overflow. Since the label is updated at the
overflow (last falling transition) and the BSCLK must be 0 when the FATAL-pulse (i.e., the
node is in the Accept-state) occurs, the use of these pulses is sufficient for the validation node to
recognize the overflow.

All assumptions are validated by a synchronous validation algorithm driven by a separate
PLL-clock at 70 MHz described at the RT-level in VHDL, which provides the correct signal
to indicate the stabilization of the labeling algorithm. For this purpose, the validation node
continuously samples the labels of the correct nodes and a indication signal, which is active if
all correct nodes are in the FATAL-pulse state, using a two stage synchronizer chain.

Therefore, the validation node waits for this indication signal to become active to detect the
BSCLK overflow at all correct nodes. Once the indication signal is inactive again, the validation
node increments the stabilized label candidate, if one is present, and compares the sampled label
values of the correct nodes against each other for equality. If this first part of the assumption
holds this label will be remembered as stabilization candidate by the validation node for the next
BSCLK overflow. If there is a stabilized label candidate already and the correct node labels
match this candidate, the correct signal is set to true, otherwise the correct signal is set to false.
Hence, the stabilization candidate label is used to verify that the correct nodes increment their
labels appropriately. After that the validation node waits for the next BSCLK overflow.

Note that the correct signal becomes true one BSCLK overflow after the labeling algorithm
stabilized, since validating that the correct node labels increment needs an additional iteration
of the labeling algorithm (e.g., BSCLK overflow).

Due to the sampling of the validation node and the labeling algorithm skew Σl, timeouts
have been employed to cover these, i.e., if the assumption does not hold at least Σl + dl after the
indication signal became false, the validation node may wait for the next overflow. Moreover,
a further timeout, which requires the indication signal to become active again within Tmax + d,
ensures that the labeling state or FATAL state machine can’t freeze. If any such a timeout occurs,
before the required assumptions become true, the correct signal will be reset to false. All these
timeouts are configurable and provided as VHDL generics.

This validation flow is depicted in Figure 5.3.

Standalone testbench

The PLL clock output frequency used by the BSCLK simulation counters is set to 12.5 MHz,
but the clocks 2,3 and 4 are shifted by 45◦, 90◦ and 135◦ to simulate non-zero precision/skew.

97

Sample indication

signal/labels.

Stop Skew

timeout.

All BSCLKs

overflowed?

no

yes

Sample indication

signal/labels.

Reset FATAL

timeout.

First node left

FATAL state

accept?

no

Sample indication

signal/labels.

Are all labels equal?

yes

no

yes

Reset

Is there a stored

label?

Set correct signal.

Inrecement the

stored label.

Reset the correct

signal.

Store the label and

increment it.

no

no

Is the stored label

equal to the

algorithm labels?

yes

yes

Reset Skew

timeout.

Reset the correct

signal and stored

label.

timeout or

 all BSCLKs

overflowed

timeout

Figure 5.3: Shows the labeling monitoring control flow and correct signal generation by the
validation node.

Additionally the BSCLK counter value is affected by the chosen reset state too, i.e., it starts with
an randomly chosen value.

The BSCLK reset (SwRstClk) is synchronized to the first PLL output clock to ensure that
all counters are reset synchronously and no upsets occur.

As mentioned before, the first 2 nodes are used to represent the Byzantine faulty nodes and
the validation node is connected to the label outputs of the labeling nodes and the simulated
slow FATAL-pulses. The Experiment 1-reset procedure is used to start the Byzantine node ex-
periments. Note that the correct operation of the validation node has been verified with some
manual test cases.

Since the µC is used to measure the required stabilization time, the validation node provides
an additional signal that toggles each time the BSCLK overflows. The µC counts the amount
of toggles and transmit this required number of overflows of the BSCLK as stabilization time to
the PC.

Besides, I use the second reset procedure to start the late join experiments, i.e., all nodes

98

are correct, but at most f = 2 nodes may be reset arbitrarily and the rest of the system remains
untouched. In this case, the validation node additionally ensures that the remaining nodes keep
operating correctly, i.e., without resetting their labels, and the failed must adapt the labels of the
already correct nodes.

As mentioned above, the validation node will output the correct signal one BSCLK overflow
later than the labeling algorithm stabilized. Furthermore, the first toggle can never be a full
overflow of the BSCLK, i.e., a full iteration of the labeling algorithm, resulting from chosen
reset value of the BSCLK in the Byzantine experiment or its current value at a reset of a node
in the late join experiment. For example, if the BSCLK modulo M = 132 and the BSCLKs
are reset to 0 by the chosen reset state, a FATAL-pulse is generated that produces a toggle at the
signal provided by the validation node and is counted by the µC.

Hence, subtracting 2 from the recorded stabilization time gives the amount of full overflows,
e.g., full iterations of the labeling algorithm.

The standalone testbench hardware effort with about 3407 logic cells is pretty low (about 375
LC per node). The late join experiment uses 4193 logic cells (about 375 LC per node). Using the
current FATAL+ prototype with f = 2 and M = 132 a 17-bit label can be achieved. Besides,
the timing analysis reveals that the current standalone testbench would allow an BSCLK LSB
clock frequency of up to 38 MHz.

Integrated testbench

In this case, the PLL outputs are set to 25 and 30 MHz, which is further divided by 4 of the
clock-switch logic that selects either of these two outputs to drive the timers and the HSMs of
FATAL+ to simulate a larger clock drift ρ. Only the Byzantine test case is performed, since
the correct behaviour follows from the previous experiments of FATAL+ [66], the standalone
testbench and the combined Byzantine testbench.

Furthermore, the stabilization time is measured by a µC software timer with a resolution of
about 1 ms instead of counting the toggles provided by the validation node, because in general
FATAL+ has not stabilized yet. Hence, the required end-to-end stabilization can be measured.
The µC waits at most 60 seconds for a single experiment to complete. Once the correct signal
occurs it observes the correct signal for further 10 seconds before it accepts the correct event
time instance as the stabilization time as result of the performed experiment.

Overall, 62543 logic cells have been used by the testbench, but only 2832 logic cells corre-
spond to the Byzantine and correct nodes of the labeling algorithm resp. the validation node.

5.4 Results

Standalone testbench

As expected the stabilization time is at most two full BSCLK overflows proofing the fast sta-
bilization of the developed algorithm. Table 5.1 depicts the relative frequency of stabilization
times given in complete overflows in 50000 runs (late join, Byzantine experiment with and with-
out consensus). As mentioned in the description of the reduction Algorithm 2 and the Byzantine
node implementation, the reduction is sufficient to solve the labeling problem, without the need

99

of a consensus to be run afterward, if either less than n − 2f correct nodes enter the algorithm
with the same label or the Byzantine faulty nodes are reduced in adverse power.

Any requirement and assumption could be fulfilled, i.e. neither the late joining nodes were
able to affect the already stabilized nodes, but rejoined the correct nodes, nor could the Byzan-
tine nodes stop the correct nodes from stabilizing. Moreover, the results show an significant
amount of runs can never stabilize if no consensus algorithm is used. This implies that the con-
sensus algorithm is indeed necessary to guarantee stabilization in any case, if no other means
are available or different failure assumptions can be made.

Consensus faults f 1 2 ∞
Phase King late join 1.0 0 0
Phase King 2 0.737 0.263 0
none 2 0.586 0.073 0.341

Table 5.1: Relative frequency of stabilization times of 1 (50000 randomly initialized runs).

Integrated testbench

The integrated testbench revealed a design error in the current FATAL+ prototype, which be-
comes active as soon as an output of some link delay chains are used instead of the direct output
port of a node. These delay chains have been deployed to simulate longer delays than the actual
available link delay provided by the interconnect in the FPGA and its logic. As a result, the
BSCLK is interrupted at a non-zero value by the slow FATAL-pulse, which is a violation of the
BSCLK specification since it must be 0 once the FATAL pulse occurs.

Therefore the current testbench has been reduced to delay 0 experiments, i.e., without re-
setting the FATAL+-prototype (SwRstClk), and using any output of the delay chain. Hence,
only correctness and no stabilization time analysis have been performed using 50000 random
initialized runs of the labeling algorithm in the context of FATAL+-prototype, which showed
that the labeling prototype would work in a stabilized environment. Using the current FATAL+

prototype with f = 2 and M = 132 a 17-bit label can be achieved.
These problems couldn’t be removed via minor adjustments of the FATAL+-timeouts. I

conjecture that there is either a design flaw in the current FATAL+ prototype or still an error
in the formulas used to set the timeout values given in Chapter 3.1.2. Before handing in my
thesis, the timeout equations of FATAL+ have been corrected. After updating the timeouts
accordingly, the issue reduced to just one case in 3000 runs. The preliminary result of the end-
to-end stabilization times in seconds, using the full power of the integrated testbench (and not
just zero delay experiments), is shown in Figure 5.4. As can be seen, the stabilization times have
not increased significantly, except by at most 2 overflows for the stabilization of the labeling
algorithm. Moreover, the experiment shows fast stabilization within 10 seconds, where about
40% of the runs stabilized within 26 to 50 ms. Considering these facts, a solution must be found
in the future for this (rare) stabilization issue.

Figure 5.5 shows the start of a new integrated testbench experiment. The change of the labels
can be observed once the node reset occurs.

100

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

1 2 3 4 5 6 7 8 9 10

re
l.

oc
cu

rr
en

ce

time in seconds

stabilization time

Figure 5.4: Preliminary results on the FATAL+ and labeling algorithm end-to-end stabilization
times (3000 randomly initialized runs).

Figure 5.6 resp. Figure 5.7 show the logic analyzer screen shots of a detailed BSCLK over-
flow at the lock-step synchronous round with the number 65 and the correct incrementing of
the labels resp. the continued correct operation of the labeling algorithm over multiple BSCLK
overflows. Once the labels increment as required the correct signal, produced by the validation
node, indicates the stabilization by switching to logical 1.

Note that only the lowest 5-bits of a label at two nodes are depicted due to the limitation on
the available output pins. The AllFatal-pulse is the AND combination of all slow FATAL-pulse
signals (i.e., all nodes are in the state Accept).

Figure 5.5: Reset behaviour in the integrated testbench.

101

Figure 5.6: Detailed label increment at a BSCLK overflow.

Figure 5.7: Correct label increments at multiple BSCLK overflows.

102

CHAPTER 6
Conclusion

6.1 Summary of accomplishments

In this thesis it has been shown that is possible to extend a short clock with reasonable small ad-
ditional hardware effort in a self-stabilizing and Byzantine fault-tolerant manner. The presented
implementation increases the label width by a factor of 3-4 in a 8 node system, if a full 8-bit
clock is available, using the standard synchronous design principle. Since the BSCLK is used to
simulate lock-step synchronous rounds, the implementation is even metastability-free once the
BSCLK has stabilized.

Due to the generic design, it is easy to adjust the prototype and let the synthesis tools auto-
matically synthesize the labeling algorithm for arbitrary system sizes.

Moreover, a configurable standalone testbench, that validated the design using 50000 ran-
domly initialized runs on an FPGA successfully, is provided. The validation technique proofed
to be reliable, since I was able to discover a violation in the BSCLK generation of the FATAL+

prototype after integration. Updating the timeouts according to the correct timeout equations of
FATAL+ reduced this issue. The preliminary results of 3000 runs show that the overall stabi-
lization time FATAL+ has not increased after integration. Therefore, the FATAL+ prototype and
the labeling algorithm provide a sound basis for SoC designs to create more reliable systems by
providing a large global time base to the independent subsystems.

6.2 Critical reflection and future work

6.2.1 Achievable clock frequency

Quartus II reports a maximum BSCLK LSB frequency of 38 MHz for the standalone testbench.
By changing the clock trigger to the falling transition at the second synchronizer stage of the
receiver buffers at a node and incrementing the label candidate in the next state logic of the label
value when the overflow flag is set, increased the frequency up to 90 MHz, but due to the lack
of time no further validation has been performed.

103

If the single synchronous FSM, which implements both the reduction and consensus algo-
rithm, limit the frequency, separating the reduction and consensus algorithm into two FSMs may
decrease the undesired delays. Note that it may be even possible to use (synchronous) pipelining
to increase the achievable clock frequency. The most likely candidate for a pipelined imple-
mentation is the threshold module, because its complexity depends on the system size n. The
attentive reader should not forget that this approach has a multiplicative effect on the consensus
algorithm run time.

Since Quartus II reports a maximum BSCLK simulation frequency of 150 MHz in the stan-
dalone testbench, which implies a BSCLK LSB frequency of at most 75 MHz, an achievable
maximum FSM clock frequency of 90 MHz is more than sufficient.

6.2.2 Label size l

Plugging in n = 8, f = 2 and the BSCLK size M = 132 into Equation 4.12 it is apparent
that a label width larger than 17-bit couldn’t be achieved. If M = 256, i.e., a full 8-bit clock
was available, a label width of 32-bit could be reached. There are two basic possibilities that
can increase the number of label bits resp. faults that can be tolerated: Either the number of
available rounds is increased or the required run time reduced. A straight forward way to double
the number of available synchronous rounds is to directly use the Accept+-pulses, rather than
the BSCLK’s LSB, for triggering round switches. Fortunately, Algorithm 2 can be sped up by
means of parallel processing and/or communication of the label bits.

A straight forward approach would be to use B > 1 instances of the labeling solution, ap-
plied to different parts of the label, concurrently. This obviously multiplies the gate complexity
of a node by B and also requires B-bit channels between nodes. Alternatively, the label can be
extended recursively: A shorter logical clock can be further extended in the same way as the
BSCLK has been extended, using the reduction and the Phase King consensus algorithm, but
this approach obviously increases the overall stabilization time.

Another possibility is to only “parallelize” communication. In the current implementation
only 1-bit per round is transmitted using a single physical channel. Using parallel communica-
tion or a UART-like transmitter and receiver would enable to transmit B > 1 bits per round. In
chapter 2, examples of fast (and almost serial) communication protocols suitable for reducing
the effect of a large synchronous round period on the transmission rate by continuously trans-
mitting and possibly acknowledging only words or frames consisting of multiple state bits have
been provided. The FSM of Algorithm 2 can be adapted easily such that only dl/Be iterations
of the two for-loops are needed.

Unfortunately, parallel processing (or communication) can only be used for decreasing the
number of rounds required for processing the label bits, but not the number of rounds required for
the consensus algorithm: Deterministic consensus has a lower bound of f+1 rounds [32,51,55].
Fortunately, randomized algorithms do not suffer from this overhead and can be used in this
context. A suitable algorithm shown in Algorithm 4 has been introduced in [39].

104

6.2.3 Alternative consensus

The first part of the loop in Algorithm 4 is equivalent to the Phase King consensus. In the second
part a correct node i tells the others if it would like to proposes a certain output true or false, but
only when its persistent variable ∆i,i = 0 and the outcome of the random process indicates a
success. Herein, a persistent variable keeps its value at the end of the consensus algorithm until
it is executed again. Node i only accepts a wish to propose a value from node j if its persistent
variable ∆i,j = 0 and thus sets its ∆i,j := n to start over and reduce the effect of possible
Byzantine nodes, i.e., it limits how often a (Byzantine) node may influence a correct node. At
last step, a node tells the others that it has accepted to propose some output value. All correct
nodes that receive at least n− 2f such accepts from correct nodes update their output candidate
bi and lock their decision. Since a correct node i needs the random process to succeed before
it performs the broadcasts, indicating it would like to propose a value, there exists a significant
chance that ∆j,i = 0 at all other correct nodes j at some time node i performs the broadcast. If
not all correct nodes have locked their output to another value all correct nodes will lock their
decision to the proposed value now.

Algorithm 4: Randomized consensus algorithm including a uniform independent dis-
tributed random source and persistent variables at node a node i. The persistent variables
∆i,j can take values from the range 0, . . . , n. [39]

input : bi //binary value to be decided on
output: oi //binary value representing the consensus decision.

1 for l times do
2 broadcast bi
3 if received ≥ n− f times b then
4 broadcast 1b // b is unique
5 else broadcast 00 // 2 rounds for 2-bit bcast
6 locked := received ≥ n− f times 1b
7 if received ≥ f + 1 times 1b then
8 bi := b // b remains unique
9 for j ∈ V do ∆i,j := max{0,∆i,j − 1}

10 for b ∈ {0, 1} do
11 pb := false // indicates if b is proposed
12 if ∆i,i = 0 and bi = b then
13 broadcast 1 with probability 1/n
14 else broadcast 0
15 for each node j that sent 1 do
16 if ∆i,j = 0 then pb := true
17 ∆i,j := n

18 broadcast pb
19 if locked = false and received ≥ n− f times true then
20 bi := b
21 locked := true
22 return bi

105

As source of randomness the same linear feedback shift register as in [66] has been chosen
and its output is compared against 216/8 to get a uniform distribution. Furthermore, each node
needs additional memory elements for each other node, including itself, to implement the per-
sistent variables. Although it needs more hardware, its run time does not depend on f anymore.
If the number of nodes resp. the tolerated number of faults f is not much larger than the label
width l there won’t be any advantage using this algorithm instead of the Phase King algorithm
since the label width will have the most impact on the round complexity and will be lower in the
Phase King case.

In the current prototype only a label width of 4-bits could be achieved using the same
BSCLK and the randomized algorithm due to the synchronizer chain. The attentive reader
should notice that the number of iterations in this probabilistic consensus can also be inde-
pendent of the label width l and just be some arbitrary constant, but the smaller this constant is
the more BSCLK overflows it will take for the algorithm to stabilize. The histogram in Figure
6.1 shows the observed number of overflows in the standalone testbench. Currently, the effect of
the Byzantine node implementation on the stabilization time is rather low, because it is almost
equivalent to the Phase King implementation, and it mostly depends on the counters to reach 0
before the labels stabilize. However, the stabilization time increased to 8 overflows at most in
the performed experiments, but large stabilization times are rather improbable (less than 0.01).

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

wrap-arounds

re
l.

o
cc

u
rr

e
n

ce

Figure 6.1: Rel. frequency of stabilization times of 4(50000 randomly initialized runs in the
standalone testbench).

6.2.4 Miscellaneous

Note that further validation of FATAL+ and the labeling algorithm using the integrated testbench
is needed, since the new timeouts only reduced the stabilization problem. In the 3000 runs of
the experiment, only a single case occurred in which the integrated testbench could not stabilize
(within 50 seconds). Since, such a case was not reproducible, I conjecture that there still is
an BSCLK overflow issue at some node. For this purpose, automatic timeout verification tools

106

are needed to verify all required constraints, since some vendor tools are currently unable to
process real custom asynchronous timing requirements easily. Currently, all these delays must
be verified manually as the tools are optimized for synchronous circuits usually.

107

APPENDIX A
Thesis directory contents

The thesis directory is split into the following important directories:

Directory Description
prj Contains all necessary .tcl files and further source files to create the

integration and standalone testbench Quartus projects.
python Contains all necessary Python sources to provide the standalone resp.

integration testbenches with new (random) states and receive, log and
parse the results.

sim Contains some standalone testbench files
for behavioural as well as post-layout simulation in Modelsim.

thesis All files needed to build this document (including Make-files).
uC The µC standalone and integration testbench µC implementations

including Make-files.
vhdl-src All VHDL-files introduced by this thesis.

Before a testbench can be run it must be verified by the user that all parameters match (e.g.
the label width, connected inputs and output pins, number of nodes, etc.), which can be found in
the following files:

109

File Description
prj/standalone/ Standalone testbench project setups
fatal_labeling_test.tcl including input and

output pin connection settings.
prj/integration/ Integration testbench project setups
FATALsim.tcl including input and

output pin connection settings.
python/standalone/main.py Standalone testbench host-PC

implementation.
Widths and reset vector positions must
match the VHDL package files.
UART communication speed must
match the µC setting.

python/integration/main.py Integration testbench host-PC
implementation.
Widths and reset vector positions must
match the VHDL package files.
UART communication speed must
match the µC setting.

uC/standalone/main.c Contains the standalone testbench
µC-implementation.
Its input and output pins must
match the definitions in the .tcl
and VHDL package files.

uC/integration/main.c Contains the integration testbench
µC-implementation.
Its input and output pins must
match the definitions in the .tcl
and VHDL package files.

vhdl-src/ A package that contains all
pb_fatal_labeling.vhd necessary testbench parameters.

The remaining important labeling VHDL sources are:

110

File Description
ea_fatal_labeling.vhd Connects all configured correct nodes,

faulty nodes and
the validation node.

ea_fatal_labeling_byzantine.vhd Byzantine node algorithm FSM, buffers
and overfow flag implementation.

ea_fatal_labeling_fsm.vhd A single correct node algorithm FSM, buffers
and overfow flag implementation.

ea_fatal_labeling_sim.vhd Standalone testbench implementation.
Connects the labeling entity
with the simulated BSCLK.

ea_fatal_labeling_threshold.vhd Threshold module implementation.
ea_fatal_test_assump.vhd Validation node FSM implementation.
ea_fatalp_bsclk_sim.vhd BSCLK standalone simulation implementation

After adjusting the parameters and making sure that the testbench setup and physical con-
nections match, the .tcl files can be used to create the project, compile and download the
design to the FPGA using Quartus II. Next, the required Python host implementation must be
started by running main.py and the µC-implementation compiled and downloaded using the
Makefile to start the testbench. If no parameters need to be changed, i.e., the settings of this
thesis’ experiments are used, the project can be build directly using Quartus II and the provided
.tcl files.

111

Bibliography

[1] Altera. The Quartus II TimeQuest Timing Analyzer, 2012.

[2] Altera. Timing Analysis Overview, 2012.

[3] Altera. Cyclone IV Device Handbook, 2013.

[4] Anish Arora, Shlomi Dolev, and Mohamed Gouda. Maintaining digital clocks in step. In
Sam Toueg, PaulG. Spirakis, and Lefteris Kirousis, editors, Distributed Algorithms, vol-
ume 579 of Lecture Notes in Computer Science, pages 71–79. Springer Berlin Heidelberg,
1992.

[5] L. Ashby. Asic clock distribution using a phase locked loop (pll). In ASIC Conference and
Exhibit, 1991. Proceedings., Fourth Annual IEEE International, pages P1–6/1–3, 1991.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. Dependable and Secure Computing, IEEE Transac-
tions, 1(1):11–33, 2004.

[7] R.C. Baumann. Radiation-induced soft errors in advanced semiconductor technologies.
Device and Materials Reliability, IEEE Transactions, 5(3):305 – 316, sept. 2005.

[8] Valeriu Beiu, Jan A. Peperstraete, Joos Vandewalle, and Rudy Lauwereins. Digital imple-
mentation of neural networks using threshold gates, 1994.

[9] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-stabilizing Byzantine tolerant
digital clock synchronization. In Proceedings of the twenty-seventh ACM symposium on
Principles of distributed computing, PODC ’08, pages 385–394, New York, NY, USA,
2008. ACM.

[10] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Computer science. chapter Bit optimal
distributed consensus, pages 313–321. Plenum Press, New York, NY, USA, 1992.

[11] Piotr Berman and JuanA. Garay. Asymptotically optimal distributed consensus. In Gior-
gio Ausiello, Mariangiola Dezani-Ciancaglini, and SimonettaRonchi Rocca, editors, Au-
tomata, Languages and Programming, volume 372 of Lecture Notes in Computer Science,
pages 80–94. Springer Berlin Heidelberg, 1989.

113

[12] Daniel R. Blum, Mitchell J. Myjak, and José G. Delgado-frias. Enhanced Fault-Tolerant
Data Latches for Deep Submicron CMOS. In International Conference on Computer De-
sign, pages 28–34, 2005.

[13] D. M. Chapiro. Globally-asynchronous locally-synchronous systems. PhD thesis, Stanford
Univ., CA., 1984.

[14] Markus Chmelar. Building a threshold-gate with a sorting network with application to the
darts project. Research Report 50/2012, Technische Universität Wien, Institut für Technis-
che Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2012.

[15] Dhiman Deb Chowdhury. High Speed LAN Technology Handbook. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1st edition, 2000.

[16] C. Constantinescu. Trends and challenges in vlsi circuit reliability. Micro, IEEE, 23(4):14
– 19, july-aug. 2003.

[17] Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear time byzantine self-stabilizing clock
synchronization. In Marina Papatriantafilou and Philippe Hunel, editors, Principles of
Distributed Systems, volume 3144 of Lecture Notes in Computer Science, pages 7–19.
Springer Berlin Heidelberg, 2004.

[18] W.J. Dally and S.G. Tell. The even/odd synchronizer: A fast, all-digital, periodic synchro-
nizer. In Asynchronous Circuits and Systems (ASYNC), 2010 IEEE Symposium, pages 75
–84, may 2010.

[19] M. Delvai and A. Steininger. Solving the fundamental problem of digital design - a sys-
tematic review of design methods. In Digital System Design: Architectures, Methods and
Tools, 2006. DSD 2006. 9th EUROMICRO Conference, pages 131 –138, 0-0 2006.

[20] Martin Delvai. Design of an Asynchronous Processor Based on Code Alternation Logic -
Treatment of Non-Linear Data Paths. PhD thesis, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2005.

[21] Martin Delvai and Andreas Steininger. Asynchronous logic design - from concepts to
implementation. The 3rd International Conference on Cybernetics and Information Tech-
nologies, Systems and Applications - Volume 1, Jan. 2006.

[22] A. Dixit and A. Wood. The impact of new technology on soft error rates. In Reliability
Physics Symposium (IRPS), 2011 IEEE International, pages 5B.4.1 –5B.4.7, april 2011.

[23] R. Dobkin, R. Ginosar, and A. Kolodny. Fast asynchronous shift register for bit-serial
communication. In Asynchronous Circuits and Systems, 2006. 12th IEEE International
Symposium, pages 10 pp. –127, march 2006.

[24] R. Dobkin, R. Ginosar, and C.P. Sotiriou. High rate data synchronization in GALS SoCs.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions, 14(10):1063 –1074, oct.
2006.

114

[25] Danny Dolev, Matthias Függer, Christoph Lenzen, Markus Posch, Ulrich Sch mid, and An-
dreas Steininger. FATAL+: A Self-Stabilizing Byzantine Fault-tolerant Clocking Scheme
for SoCs. Computing Research Repository, abs/1202.1925, 2012.

[26] Danny Dolev, Matthias Függer, Christoph Lenzen, and Ulrich Schmid. Fault-tolerant al-
gorithms for tick-generation in asynchronous logic: Robust pulse generation. In Xavier
Défago, Franck Petit, and Vincent Villain, editors, Stabilization, Safety, and Security of
Distributed Systems, volume 6976 of Lecture Notes in Computer Science, pages 163–177.
Springer Berlin / Heidelberg, 2011. 10.1007/978-3-642-24550-3_14.

[27] Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility and impos-
sibility of achieving clock synchronization. Journal of Computer and System Sciences,
32:230–250, 1986.

[28] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence
of byzantine faults. J. ACM, 51(5):780–799, September 2004.

[29] W. Elmenreich and M. Delvai. Time-triggered communication with UARTs. In Factory
Communication Systems, 2002. 4th IEEE International Workshop, pages 97 – 104, 2002.

[30] S. Fairbanks and S. Moore. Self-timed circuitry for global clocking. In Asynchronous Cir-
cuits and Systems, 2005. ASYNC 2005. Proceedings. 11th IEEE International Symposium,
pages 86 – 96, march 2005.

[31] K.H. Fatemeh and A.K. Horestani. New structure for adder with improved speed, area and
power. In Networked Embedded Systems for Enterprise Applications (NESEA), 2011 IEEE
2nd International Conference, pages 1 –6, dec. 2011.

[32] MichaelJ. Fischer, NancyA. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[33] International Technology Roadmap for Semiconductors. International technology roadmap
for semiconductors, 2011 edition, executive summary, 2011.

[34] H. Frazier and H. Johnson. Gigabit ethernet: from 100 to 1,000 mbps. Internet Computing,
IEEE, 3(1):24 –31, jan/feb 1999.

[35] E.G. Friedman. Clock distribution networks in synchronous digital integrated circuits.
Proceedings of the IEEE, 89(5):665–692, 2001.

[36] G. Fuchs, M. Fugger, and A. Steininger. On the threat of metastability in an asynchronous
fault-tolerant clock generation scheme. In Asynchronous Circuits and Systems, 2009.
ASYNC ’09. 15th IEEE Symposium, pages 127 –136, may 2009.

[37] Gottfried Fuchs, Julian Grahsl, Ulrich Schmid, Andreas Steininger, and Gerald Kempf.
Threshold Modules – Die Schlüsselelemente zur verteilten Generierung eines fehlertoler-
anten Taktes. The Austrian National Conference on the Design of Integrated Circuits and
Systems (Austrochip 2006), Oct. 2006.

115

[38] Gottfried Fuchs and Andreas Steininger. VLSI implementation of a distributed algorithm
for fault-tolerant clock generation. JECE, 2011:4:4–4:4, January 2011.

[39] Matthias Függer, Christoph Lenzen, Ulrich Schmid, and Markus Hofstätter. Efficient Con-
struction of Global Time in SoCs despite Arbitrary Faults. In 16th Euromicro Conference
on Digital System Design (to appear), 2013.

[40] Matthias Függer and Ulrich Schmid. Reconciling fault-tolerant distributed computing and
systems-on-chip. Distributed Computing, 24:323–355, 2012.

[41] R. Ginosar. Fourteen ways to fool your synchronizer. In Asynchronous Circuits and Sys-
tems, 2003. Proceedings. Ninth International Symposium, pages 89 – 96, may 2003.

[42] V. Gutnik and A.P. Chandrakasan. Active GHz clock network using distributed PLLs.
Solid-State Circuits, IEEE Journal of, 35(11):1553 –1560, nov. 2000.

[43] S. Hauck. Asynchronous design methodologies: an overview. Proceedings of the IEEE,
83(1):69 –93, jan 1995.

[44] Ezra N. Hoch, Danny Dolev, and Ariel Daliot. Self-stabilizing Byzantine Digital Clock
Synchronization. In AjoyK. Datta and Maria Gradinariu, editors, Stabilization, Safety, and
Security of Distributed Systems, volume 4280 of Lecture Notes in Computer Science, pages
350–362. Springer Berlin Heidelberg, 2006.

[45] A.B. Howe and C.L. Coates. Logic hazards in threshold networks. Computers, IEEE
Transactions, C-17(3):238 – 251, march 1968.

[46] L. Kleeman and A. Cantoni. Metastable behavior in digital systems. Design Test of Com-
puters, IEEE, 4(6):4 –19, dec. 1987.

[47] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997.

[48] Stanford University. Computer Systems Laboratory and C.L. Portmann. Characterization
and reduction of metastability errors in cmos interface circuits. 1995.

[49] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[50] Leslie Lamport. Arbitration-free synchronization. Distrib. Comput., 16(2-3):219–237,
September 2003.

[51] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[52] Dong-Jin Lee, Myung-Chul Kim, and I.L. Markov. Low-power clock trees for CPUs. In
Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference, pages 444
–451, nov. 2010.

116

[53] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound for Clock Synchroniza-
tion. Information and Control, 62(2-3):190–204, 1984.

[54] Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for clock synchro-
nization, 1984.

[55] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1996.

[56] Leonard Marino. General theory of metastable operation. IEEE Transactions on Comput-
ers, C-30(2):107–115, February 1981.

[57] Y. Massoud, S. Majors, J. Kawa, T. Bustami, D. MacMillen, and J. White. Managing on-
chip inductive effects. Very Large Scale Integration (VLSI) Systems, IEEE Transactions,
10(6):789–798, 2002.

[58] M.S. Maza and M.L. Aranda. Analysis of clock distribution networks in the presence of
crosstalk and groundbounce. In Electronics, Circuits and Systems, 2001. ICECS 2001. The
8th IEEE International Conference, volume 2, pages 773 –776 vol.2, 2001.

[59] Rene Mueller, Jens Teubner, and Gustavo Alonso. Sorting networks on FPGAs. The VLDB
Journal, 21(1):1–23, February 2012.

[60] V.G. Oklobdzija, B.R. Zeydel, H.Q. Dao, S. Mathew, and R. Krishnamurthy. Comparison
of high-performance VLSI adders in the energy-delay space. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions, 13(6):754 –758, june 2005.

[61] A.K. Palit, V. Meyer, W. Anheier, and J. Schloeffel. Modeling and analysis of crosstalk
coupling effect on the victim interconnect using the ABCD network model. In Defect and
Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings. 19th IEEE International
Symposium, pages 174 – 182, oct. 2004.

[62] T. Panhofer, W. Friesenbichler, and M. Delvai. Fault tolerant four-state logic by using self-
healing cells. In Computer Design, 2008. ICCD 2008. IEEE International Conference,
pages 1 –6, oct. 2008.

[63] M. Paulitsch and W. Steiner. Fault-tolerant clock synchronization for embedded distributed
multi-cluster systems. In Real-Time Systems, 2003. Proceedings. 15th Euromicro Confer-
ence, pages 249–256, July.

[64] Thomas Polzer, Thomas Handl, and Andreas Steininger. A metastability-free multi-
synchronous communication scheme for SoCs. In Stabilization, Safety, and Security of
Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November
3-6, 2009. Proceedings, pages 578–592, 2009.

[65] Thomas Polzer and Andreas Steininger. C-element metastability mitigation using Schmitt-
Triggers. Research Report 1/2012, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2012.

117

[66] Markus Posch. Selbststabilisierende Byzantinisch fehlertolerante Takterzeugung in FP-
GAs. Master’s thesis, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2012.

[67] P.J. Restle and A. Deutsch. Designing the best clock distribution network. In VLSI Circuits,
1998. Digest of Technical Papers. 1998 Symposium, pages 2–5, 1998.

[68] P.J. Restle, T.G. McNamara, D.A. Webber, P.J. Camporese, K.F. Eng, K.A. Jenkins, D.H.
Allen, M.J. Rohn, M.P. Quaranta, D.W. Boerstler, C.J. Alpert, C.A. Carter, R.N. Bailey,
J.G. Petrovick, B.L. Krauter, and B.D. McCredie. A clock distribution network for micro-
processors. Solid-State Circuits, IEEE Journal of, 36(5):792–799, 2001.

[69] L.M. Reyneri, D. Del Corso, and B. Sacco. Oscillatory metastability in homogeneous
and inhomogeneous flip-flops. Solid-State Circuits, IEEE Journal of, 25(1):254 –264, feb
1990.

[70] M. Saint-Laurent and M. Swaminathan. A multi-PLL clock distribution architecture for
gigascale integration. In VLSI, 2001. Proceedings. IEEE Computer Society Workshop,
pages 30 –35, may 2001.

[71] Fred B. Schneider. A paradigm for reliable clock synchronization. In Proceedings Ad-
vanced Seminar of Local Area Networks, pages 85–104, Bandol, France, April 1986.

[72] Maitham Shams, Jo C. Ebergen, and Mohamed I. Elmasry. Modeling and Comparing
CMOS Implementations of the C-Element. IEEE Transactions on VLSI Systems, 6(4),
1998.

[73] Jens Sparso. Asynchronous circuit design – a tutorial, 2006.

[74] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J. ACM, 34(3):626–645,
July 1987.

[75] Andreas Steininger. Advanced Digital Design Lecture Slides - GALS, 2012.

[76] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

[77] P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy of GALS Design
Styles. Design Test of Computers, IEEE, 24(5):418 –428, sept.-oct. 2007.

[78] RS232 interface standard, 1997.

[79] C.H. van Berkel, M.B. Josephs, and S.M. Nowick. Applications of asynchronous circuits.
Proceedings of the IEEE, 87(2):223 –233, feb 1999.

[80] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, R.E.
Shostak, and C.B. Weinstock. Sift: Design and analysis of a fault-tolerant computer for
aircraft control. Proceedings of the IEEE, 66(10):1240 – 1255, oct. 1978.

118

[81] Josef Widder and Ulrich Schmid. Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing, 20(2):115–140,
2007.

[82] A. X. Widmer and P. A. Franaszek. A DC-Balanced, Partitioned-Block, 8B/10B Transmis-
sion Code. IBM Journal of Research and Development, 27(5):440 –451, sept. 1983.

[83] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A fully integrated multi-CPU,
GPU and memory controller 32nm processor. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2011 IEEE International, pages 264 –266, feb. 2011.

[84] A. Zargaran-Yazd, K. Keikhosravy, H. Rashtian, and S. Mirabbasi. Hardware-efficient
phase-detection technique for digital clock and data recovery. Electronics Letters, 49(1):20
–22, 3 2013.

[85] R. Zimmer. Binary Adder Architectures for Cell-Based VLSI and their Synthesis. PhD
thesis, Swiss Federal Institute of Techonology Zurich, 1997.

119

	Introduction
	Motivation
	The problem
	The solution
	Aim of the work
	Structure of the thesis

	State of the art
	Hardware-level distributed systems
	Digital Logic
	Metastability
	Synchronous circuits and state machines
	Asynchronous circuits and state machines
	Globally Asynchronous and Locally Synchronous Systems
	Designflow

	FATAL+ and the Labeling solution
	Pulse synchronization with FATAL+
	(M,l)-labeling problem
	Related Work
	Solution algorithm
	Proofs

	Implementation
	Components
	Threshold Modules
	Lock-step synchronous round communication
	Synchronous FSM

	Experiments
	Hardware and Software
	Testbenches
	Experimental Validation
	Results

	Conclusion
	Summary of accomplishments
	Critical reflection and future work

	Thesis directory contents
	Bibliography

