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Kurzfassung

Verkehrsstaus werden mit der ständig wachsenden Weltbevölkerung und Urbanisierung
zu einem immer schwieriger zu lösenden Problem. Infolgedessen sind ampelgesteuerte
Kreuzungen ein wichtiger Brennpunkt, der die Effizienz des Verkehrsflusses im gesamten
Straßennetz einer Stadt beeinträchtigen und schnell zu Staus führen kann. In den letzten
Jahren hat sich gezeigt, dass Reinforcement Learning großartige Ergebnisse bei der
Verbesserung des Verkehrsflusses erzielt, die in der Lage ist, optimale Ampelphasen in
Echtzeit auszuwählen. Während diese Lösungen sehr vielversprechend sind, steht die
Forschung mit ihrem aktuellen Stand vor einem von zwei Problemen. Die state-of-the-art-
Lösungen konzentrieren sich entweder auf eine einzelne Kreuzung, die die Schwierigkeiten
des Verkehrsmanagements nicht angemessen abbildet, oder sie versuchen, komplexere
Systeme als Ganzes zu lösen, was keinen skalierbarer Ansatz für ganze Städte darstellt.
Diese Arbeit schlägt eine skalierbare Deep-Q-Learning-basierte Lösung für intelligente
Ampeln vor, die sich auf die Zusammenarbeit von Ampeln mit ihrer unmittelbaren
Nachbarschaft konzentriert, wodurch die Komplexität der Zusammenarbeit begrenzt
wird und gleichzeitig die Modellierung transitiver Effekte ermöglicht wird, die sich über
mehrere Kreuzungen auswirken, wie zum Beispiel der green wave Effekt. Diese Dis-
sertation evaluiert mehrere verschiedene Stufen der Zusammenarbeit und verschiedene
Synchronisationsschemata zwischen Agenten und misst die Auswirkungen dieser Desi-
gnentscheidung auf ein kollaboratives System. Es wird gezeigt, dass vielversprechende
state-of-the-art-Lösungen, die im Rahmen einer einzelnen Kreuzung evaluiert wurden, in
einem Systemen mit mehreren Kreuzungen nicht mit optimierten fixen Zeitintervallen
konkurieren können, was die Wichtigkeit der Nutzung von zusätzlichen Informationen
bestätigt, die durch Kollaboration bereitgestellt werden. Diese Arbeit zeigt auch, dass der
kollaborative Ansatz zu einer signifikanten Verringerung der Wartezeit in einem Netz von
fünf Kreuzungen im Vergleich zu einer nicht kollaborativen state-of-the-art-Alternative
führt. Schließlich wird auch gezeigt, dass die vorgeschlagene Lösung mit einer adaptiven
und optimierten realen Lösung innerhalb einer Simulation von drei Kreuzungen basierend
auf realen Verkehrsdaten und den entsprechenden Ampelprotokollen des beobachteten
Zeitrahmens konkurrieren und diese bei geringem bis mittlerem Verkehrsaufkommen
übertreffen kann. Diese Ergebnisse bilden die Grundlage für ein skalierbares, kollabo-
ratives System, welches in großen Verkerhsnetzen und sogar ganzen Städten eingesetzt
werden kann.
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Abstract

Traffic congestion is becoming an increasingly difficult problem to solve with the ever grow-
ing world population and urbanization. As a result, traffic light controlled intersections
are an important focal point that can make or break efficiency of traffic flow throughout
a cities road network and can quickly cause congestion. In recent years, reinforcement
learning has been shown to produce great results in improvement of traffic flow by using
fully adaptive agent based traffic light control capable of choosing optimal light phases
in real time. While these solutions show great promise, current literature faces one of
two problems. The state-of-the-art solutions focus either on a single intersection which
does not adequately represent the difficulties of traffic management or they attempt to
solve more complex systems as a whole which is not a scalable approach for entire cities.
This work proposes a scalable deep Q-Learning based solution for smart traffic lights that
focuses on collaboration of traffic lights with their immediate neighborhood, thus limiting
the complexity of the collaboration while still allowing modeling of transitive effects
that span multiple intersections such as the green wave effect. This thesis evaluates
several different levels of collaboration and different synchronisation schemes between
agents measuring the impact of these design decisions in a collaborative system. It
is shown that promising state-of-the-art solutions that were evaluated using the scope
of a single intersection fall behind highly optimized fixed time intervals in systems of
multiple intersections, which confirms the importance of utilizing the additional infor-
mation provided by collaboration. This work also shows that collaboration results in
significant reduction of wait time in a grid of five intersections when compared to a
non-collaborative state-of-the-art alternative. Lastly it is also shown that the proposed
solution can compete with and for low to medium traffic outperform an adaptive and
optimized real world solution within a simulation of three intersections based on real
traffic data and the respective traffic light logs of the observed time frame. These findings
lay the ground work for a scalable, collaborative system deployable throughout large
scale traffic systems or even entire cities.
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CHAPTER 1
Introduction

Efficient management of traffic has always been a problem especially in densely populated
areas but with the ever increasing population all around the world it is becoming more
and more important to improve the way traffic is managed in order to keep the traffic grids
from overloading. A key component for keeping traffic throughout an entire city fluid is
the management of intersections using traffic lights. For many years the approaches for
improving traffic flow through intersections have been either time-consuming and costly
traffic studies to determine the best green/red light intervals for a given time of day, or
more recently, semi-actuated and actuated controls which use sensors to detect oncoming
traffic and cars waiting in front of a red light. The problems with these two approaches
are apparent. Fixed time intervals can never really adapt to changing traffic conditions
dynamically and can only be tuned based on empirical measurements. Actuated controls
lay an important foundation for further improvements but they leave a lot of information
unused. While switching the light phases based on whether or not cars are waiting to
pass is adaptive, it does not take the whole intersection into account and it also cannot
decide how to efficiently handle the intervals if cars are waiting in both directions. The
work of Qadri et al. [QGÖ20] has shown with a comprehensive state-of-the-art analysis of
current trends and advancements in this field, that with the ever increasing computational
power of hardware as well as increasing availability of real time data, predictive machine
learning approaches are becoming more feasible and powerful, making these solutions
a realistic candidate for the future of traffic signal control. Several modern solutions
using fuzzy logic as shown by Alam and Pandey [AP15], population based metaheuristic
algorithms as seen in the works of Fleck et al. [FCG16] and machine learning approaches
to the likes of the solutions proposed by Vidali et al. [VCVB19] and Gao et al. [GSL+17]
have been proposed that make use of these technological advancements with promising
results. While these solutions work well and have been extensively trained and tested for
single intersections, there is a lack of work done in applying the approaches on multiple
intersections making it effective for entire traffic grids as a wholistic solution. This thesis
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1. Introduction

expands a promising state-of-the-art solution proposed by Vidali et al. [VCVB19] to
more complex grids, evaluating its performance in these complex settings. Furthermore,
this thesis adapts the discussed solution with the goal to provide a scalable concept for
self learning traffic light grids. This is achieved by extending the scope of each traffic light
to its immediate neighborhood and enabling collaboration between the machine learning
agents. By restricting the collaboration of each traffic light agent to its immediate
neighbors, the communication costs can be kept low and the total complexity of the
system is kept at a minimum while providing benefit from the additional information
received from neighboring agents, resulting in a scalable solution for large grids. This
thesis explores both the capabilities and limitations of the proposed system by rigorous
testing within an experimental setup using Simulation Of Urban Mobility1 or SUMO for
short which is an open source, highly portable, microscopic and continuous multi-modal
traffic simulation package designed to handle large networks. Further tests of the full
solution and implementation scheme on a real world example using traffic data provided
by the City Council of Christchurch New Zealand are also performed. Lastly, this thesis
also discusses the requirements, challenges and obstacles of constructing this system in
the real world.

1.1 Research Questions and Contributions
This thesis thus answers the following three research questions:

1. Does the performance improvement of state-of-the-art reinforcement learning solu-
tions for smart traffic lights proposed for single intersections hold for more complex
traffic light grids with multiple intersections? Specifically is there a statistically
significant drop in performance improvement over fixed time intervals?

This question serves the purpose of confirming the need to further improve state-of-
the-art solutions that are limited to the scope of a single intersection for them to be
competitive in more complex real world settings. This is done by first confirming
the results of the non-collaborative solution proposed by Vidali et al.[VCVB19] and
applying it to a more complex simulation setup of five intersections. The results are
compared against fixed time intervals with comparable traffic load within the system
to measure if the improvements still hold within a grid of multiple intersections.

2. Does collaboration among agents in a grid of traffic lights lead to a significant
improvement in either cumulative wait time for the entire cluster of intersections
or the average cumulative wait time per vehicle over non-collaborative agents?

By answering this research question it is shown that the proposed approach for
collaboration can lead to a significant improvement of the wait time within a system

1https://www.eclipse.org/sumo/
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1.2. Thesis Organization

of intersections when compared to both fixed time intervals and a non-collaborative
Q-Learning solution. This is shown both within an experimental setup of five
connected intersections and a real world example of three intersections using real
traffic data.

3. Can the proposed collaborative approach achieve significant improvement over highly
optimized real world intervals in terms of total wait time or mean vehicle wait time?

To answer this final research question, we measure the performance of the proposed
solution in a real world setting against optimized timings instead of the experimental
setup with five intersections. Thus, it is shown that the collaborative solution can
compete with modern systems and further reduce wait times and congestion in
urban traffic. This is done by using a simulation model of three real intersections
in Christchurch NZ for which the Christchurch City Council Traffic Signals Team
provided the exact logs of active traffic light phases throughout the day and the
traffic counts during this time. This provides a solid baseline of a competitive
real world application as these intersections do not use regular fixed time intervals
but are instead managed and constantly optimized by the Sydney Coordinated
Adaptive Traffic System or SCATS2 for short.

1.2 Thesis Organization
This thesis is structured as follows. In Chapter 2 we provide an overview of the historic
background of signal based traffic management and a closer look at the technological
advancements of recent years. The chapter also highlights enabling technologies that
are needed for a real life implementation of the discussed solution and goes into detail
on how we can benefit from them. Lastly it summarizes the contributions of Vidali et
al.[VCVB19] that lay the ground work upon which the proposed solution is built.
In Chapter 3 we provide a detailed overview on deep Q-Learning in general and within the
context of smart traffic lights. Furthermore the chapter explains the design contributions
and the concrete implementations, that enable collaboration and synchronisation among
reinforcement learning agents within the system.
Chapter 4 explains the setup of the simulation framework that is used to fully train and
also subsequently test and evaluate the collaborative solution. It provides information
on how the road networks used in this thesis are designed and how traffic within these
systems is generated both for the training phase as well as for evaluation to answer the
underlying research questions.
In Chapter 5 we show the concrete results of the proposed system compared to a non-
collaborative alternative and optimized fixed time intervals evaluated on the previously
defined simulation setups. On top of answering the research questions, the rigorous
testing of specific design decisions of the collaborative aspects and external variables, such
as for instance varying road lengths and varying traffic distributions, provides further

2https://www.scats.nsw.gov.au/
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1. Introduction

insight on the strengths and weaknesses of the discussed solution.
To showcase the feasibility of a real life implementation of the proposed system, Chapter 6
discusses the required steps of modeling, training and testing a given set of intersections
and additionally, the required technologies for actually building the system in the real
world are discussed as well.
Lastly, Chapter 7 concludes the thesis by summarizing the research questions and their
respective answers as shown by this thesis. Furthermore, all other contributions that were
made are revisited again and the final section of the chapter discusses potential future
work to further improve the concepts discussed here and to solidify the understanding of
the field.

4



CHAPTER 2
Related Work

This chapter gives an overview of traffic light management throughout history and how
technological advancements are beginning to change the way the problem of efficient traffic
management is viewed and subsequently solved. Furthermore, Section 2.3 summarizes
the concepts proposed by Vidali et al. [VCVB19] which lays the ground work for the
solution proposed in this thesis.

2.1 Historic Summary
The worlds first traffic light was implemented in 1868 and it was essentially composed of
two mobile signs that could be interchanged by the use of a lever and a gas-lit semaphore
so the signs were visible during the night. A few months after its implementation the
police officer who operated the traffic light died when this first prototype exploded and
thus the world had to wait for another 52 years until the first electricity powered traffic
light was installed in Cleveland US, marking the start of the technology spreading across
the urban areas of the world. Finally on March 30th, 1931 the first Convention on
the Unification of Road Signals was signed in Geneva, standardizing the common three
colored traffic lights known today. Within this last century, humanity has a come a long
way not only regarding urbanization and an increase in demand for road infrastructure
that could not have been imagined in 1930 but also with the digital revolution allowing
for automation and optimization of every single step in the process of traffic management.
From vehicle detection using machine learning based image recognition for monitoring to
actuated traffic lights responding to vehicles present in the intersection and adjusting
their cycles accordingly the possibilities are endless. In spite of these possibilities being
available, the actual implementation is lagging behind as a large part of traffic lights
still operate on fixed time intervals just as they did almost a hundred years ago. These
fixed times are in no way selected arbitrarily and a lot of traffic studies and calculations
factor into them as shown by the work of Gorodokin et al. [G17] but the drawbacks for

5



2. Related Work

these solutions are apparent. In many cases the fixed cycle lengths are changed based
on empirical data gathered for specific days and time periods to optimize for different
demands but they can never truly adapt to the actual situation. While rush hours
might be fairly consistent on week days, an expected low traffic situation can quickly
change if for instance some special event is taking place in a certain area resulting in
a rapid increase of traffic flow where it was not expected. SCOOT 1 and SCATS2 are
traffic control systems that aim to optimize traffic flow in cities by constantly monitoring
traffic flow and optimizing traffic light timings accordingly. As shown by systems such as
SCOOT [BC95] in the UK and SCATS [SD80] in Australia the market has recognized
this potential for a long time as these adaptive systems have been around 35 and 40
years respectively. Examples such as the city of Sydney which heavily relies on SCATS
show that adaptive systems have the potential to greatly improve traffic flow. These
systems operate on real time traffic data and are able to adapt to situations accordingly
and thus provide a great framework for the implementation of promising work from
recent literature which has shown that reinforcement learning and fuzzy logic have the
potential to further improve traffic management. The state-of-the-art summary of Quadri
et al. [QGÖ20] shows that research is still largely focused on meta / heuristic algorithms
despite these advancements in different technologies but machine learning is quickly
catching up in this regard as shown in Figure 2.1. The aforementioned state-of-the-art
summary also highlights two problems with the current state of research in this field
which is on one hand the focus on single intersections without considering the problem
in the larger scale and on the other hand the problem of the initially large investment for
development and maintenance of these solutions. The problem of economic feasibility
can be countered by the aforementioned systems that are already in place and being
maintained with similar infrastructure as would be required by many literature solutions.
In regard to those issues this thesis proposes a relatively light weight, scalable solution
that can build upon known technologies for monitoring traffic in an intersection such as
the one discussed by Collotta et al. [CBP15] while also considering the agents impact on
neighboring traffic lights and thus the whole grid.

2.2 Enabling Technologies
In order to provide a better understanding of promising approaches, problems faced
and work done in the field this section summarizes a selection of different solutions
highlighting the variety of approaches that can be taken to tackle this issue and also
discuss how the insights from these works are beneficial to the solution discussed in this
thesis. The two papers summarized here are the the work of Collotta et al. [CBP15]
which proposes a solution using a wireless sensor network and fuzzy logic controllers to
determine the optimal phase duration for a given situation in real time and the concept
proposed by Dhingra et al. [DMP+21] which elaborates on a concrete fog computing
solution for real time traffic monitoring and congestion detection. Additionally this

1https://trlsoftware.com/products/traffic-control/scoot/
2https://www.scats.nsw.gov.au/

6

https://trlsoftware.com/products/traffic-control/scoot/
https://www.scats.nsw.gov.au/


2.2. Enabling Technologies

Figure 2.1: Current focus of research (2020, Quadri et al. [QGÖ20])

section goes over two promising solutions published very recently in 2020 and 2021 by
Kumar et al. [KMGK21] and Zhou et al. [ZCL+20] and how these approaches differ
from the collaborative solution proposed by this thesis.

Fuzzy Logic Controlled Traffic Lights
As mentioned above the traffic light management system proposed by Chavan et al.
[CDR09] uses a technology which is widely used in research of traffic management which
is fuzzy logic controllers. In essence these controllers can abstract input information to
a more human-readable format which in this case is the conversion of numeric queue
lengths to the categories of normal, medium and long, infer decisions within this domain
and revert these abstract decisions back to a real world metric. This process is called
fuzzification and defuzzification respectively. In this case the concept is utilized by using
one fuzzy logic controller for each possible green phase which first categorizes the queue
lengths for its respective lanes and then infers its own priority (i.e. how urgently its
green phase needs to be executed) and the optimal length in seconds for its green phase.
As an example the controller for north-south bound traffic would first calculate its phase
priority as shown in Equation 2.1 then categorize the queue lengths and infer its green
phase according to the function shown in Figure 2.2. Lastly a higher ranking phase
selector determines which controller has the highest priority and selects the next phase
to be executed.

phasepriority = queuelengthnorthsouth + queuelengthsouthnorth (2.1)

Despite the simplistic approach the evaluation results have shown satisfying improvements
over fixed intervals and also other single-controller fuzzy logic approaches. The main
drawback of this solution is that the controllers which are working in a disjoint fashion
cannot capture complex interactions and influences of other lanes in the intersection.
Furthermore they cannot incorporate additional information from neighboring traffic
lights and thus make future oriented decisions. While more complex solutions might
outperform this approach the simplicity results in a very cost efficient and maintainable

7
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Figure 2.2: Fuzzylogic Green Phase Function (2015, Collotta et al. [CBP15])

system which is one of the most important driving factors for real world application.
Chavan et al. [CDR09] propose a system of inexpensive wireless sensors for measuring
the queue lengths in each lane which is the core of why this work is relevant for this
thesis. While most reinforcement learning approaches work great within the simulation
settings in which they are developed they often neglect the difficulty of gathering the data
required to train and operate these models reliably. Traffic simulation frameworks like
SUMO provide perfectly accurate real time data on each vehicle within the simulation at
all times. In reality this information can be hard to acquire in sufficient quality which
is why a system has to be designed around information that can be provided by the
available technology. Figure 2.3 shows the concept of how these wireless sensors could
be implemented in an intersection in order to provide the required information. As
depicted the small Reduced Function Devices can detect the presence of cars and only
communicate with their respective Full Function Device which aggregates the received
information and passes on the state of the entire lane to the traffic light controller. This
intersects with the state representation used in the solution proposed by this thesis which
requires precisely this information.

Fog Computing for Traffic Monitoring
Fog computing[YHQL15] is a well known, Internet of Things related concept which
proposes the distribution of computing workload over smaller decentralised computing
nodes instead of transmitting everything to one large server and computing it there
generating potential bottlenecks. This concept is greatly relevant to the topic of large,
complex traffic light grids that span entire cities. Transferring the traffic data of an entire
city to a single computing center and computing decisions such as the next green phase
of a specific traffic light there is infeasible especially if situation needs to be reevaluated
on a second by second basis. Fog computing proposes an elegant solution to this by
decentralizing the decision making process and dividing a given system into smaller

8



2.2. Enabling Technologies

Figure 2.3: Wireless Sensor Network (2015, Collotta et al. [CBP15])

subsystems to the point where the communication costs are as low as possible while
still providing all the necessary information for a given node. The work of Dhingra et
al. [DMP+21] proposes a decentralized, scalable solution for traffic monitoring using
ultrasonic sensors for the counting of vehicles at crucial points within a traffic network
and utilizes fog computing to compute these traffic counts in real time with low latency.
This is highly relevant to the topic of this thesis as on one hand fog computing is a viable
solution to splitting up the computational load in a system of traffic light agents that
require only the additional information of their immediate neighborhood and on the
other hand the implemented traffic detection using ultrasonic sensors poses a possible
real world solution for acquiring the data required as state representation input for the
deep learning agent discussed in Chapter 3 in a very cost efficient way.

State-of-the-Art Collaborative Approaches

The works of Kumar et al.[KMGK21], Zhou et al.[ZCL+20] and Chu et al.[CWCL19] are
highly relevant to this thesis as they are three very recent papers published in 2022, 2021
and 2020 respectively on the topic of smart traffic light management using reinforcement
learning. What makes them especially relevant is the fact that all three solutions extend
the scope to multiple intersections and address the problem of collaboration and scalability
which are the core contributions of this thesis. Thus, this subsection will provide a quick
summary of the contributions of those three papers regarding these points and explain

9
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how the proposed solution differs and why it provides important insight on top of these
works. In essence the solution proposed by Kumar et al.[KMGK21] uses non-collaborative
Q-Learning agents with a slightly more complex state space that not only observes vehicle
positions but also their velocity. While this promises better results within a simulation
framework, it makes real life application more difficult as these exact measurements need
to be taken consistently for every decision step. The solution of Kumar et al. introduces
collaboration by adding a congestion detection system on top of the non-collaborative
agents which allows a form of collaboration by providing this congestion information to
the agents in the system to which they can then react. The solution does not include any
direct communication between agents or extension of the state space that allow agents to
view more than the roads of their own intersection. Another important contribution of
this work is the fact that the problem of heterogeneity of traffic is accounted for which
is often not considered in model training and simulations of this kind. For this thesis
we also simplified this aspect and all vehicles are assumed to be homogeneous. As such,
Kumar et al. provides an important reference point for future work especially when
considering this heterogeneity.
Zhuo et al.[ZCL+20] also propose a collaborative system that consists of multiple layers.
Here the first layer which are single intersections operate on a threshold based algorithm
that decides, given traffic parameters like halting vehicles and speed lag, whether to
extend a given light phase or switch to the next phase in the cycle. Deep Q-Learning
is introduced on the second level which oversees multiple intersections. This creates an
important distinction to the solution proposed by us. Zhuo et al. proposes a solution in
which the Q-Learning agent does not decide the optimal light phase per intersection but
instead provides a vector which, for each intersection, contains the value 0 or 1 denoting
whether to extend the given light phase or switch to the next phase. Finally there is
another layer on top of this layer that groups several of this Q-Learning agents together
and adjusts the learning rate based on the achieved results. While this is a form of
collaborative system, it is an entirely different approach on an intersection basis, as a
single intersection does not choose the best light phase for the given circumstances and
instead prolongs certain phases within the cycle if necessary. It is also important to note
that while this system scales linearly instead of exponentially, which would be the case if
a single agent attempts to solve a system of multiple intersections, the solution proposed
by Zhuo et al. follows a more modular approach that can be implemented intersection by
intersection without ever facing a scaling problem beyond the immediate neighborhood.
A core aspect that should be compared in future work is how well the system utilizes
effects that span multiple intersections. The system of Zhuo et al. attempts to react to
congestions as they arise and does so by applying the policy to a larger part of the grid
while the solution proposed here attempts to carry these effects throughout the system
from one intersection to the next as each agent communicates only with its immediate
neighbor.
Out of the three discussed solutions the work of Chu et al. is closest to the concepts and
contributions of this thesis. Chu et al. addresses the problem of real life feasibility of
state representation by proposing a simple state which consists of the accumulative wait
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time of only the first car in the lane combined with the total number of cars waiting in
the given lane. While this is more complex than simply tracking occurrence of cars in
the intersection, as proposed by our solution, it adds the additional waiting information
without having to track the wait times of all vehicles. In terms of the reinforcement
learning approach the solution of Chu et al. proposes collaborating agents, that share
policy information among neighboring agents, similar to the solution proposed by this
thesis. The main difference is that firstly Chu et al. proposes collaboration by also
sharing the policy information of neighboring agents resulting in the agents policies
influencing each other, whereas this thesis focuses on sharing only the chosen action and
the available state information of neighboring agents, having each agent build their own
policy. Secondly, as opposed to the evaluation of Chu et al. the emphasis of the research
in this thesis is not solely focused on showing the efficiency of the resulting system but
also on measuring the effect that collaboration has as a whole and how robust such a
system is to varying traffic load and distances between intersections.
In conclusion it can be said that while all three solutions expand the scope to include
collaboration in a system of multiple intersections the contributions of this thesis differs
fundamentally from the works of Kumar et al. and Zhou et al. as it includes explicit
communication of state information between agents, which allows the deep Q-Learning
agents a broader view of the world around them, while still limiting complexity significantly.
This is possible due to the simplicity of the state representation which results in low
communication cost despite all of the relevant state information being shared among
collaborating agents. The main difference to the work of Chu et al. is the fact that, in
the solution proposed by this thesis, policies of neighboring agents do not influence each
other and instead only share their observed environment and actions taken.

2.3 Deep Q-Learning Agent for Traffic Signal Control
This section summarizes the work of Vidali et al. [VCVB19] which provides the ground-
work for this thesis and the concepts on which the discussed solution and experiment
are built upon. Vidali et al. proposes a deep reinforcement learning approach which
has become one of the most promising approaches for traffic light management in recent
years as shown by a lot of research done in this field by [LLW16],[LDWH19],[GR16] and
[GSL+17] to name a few recent publications. Among current research in the field of
reinforcement learning for traffic light control the work of Vidali et al. stands out in the
sense that it operates on a simple state space and does not require convolutional layers
for a complex state representation and subsequently long and resource intensive training.
Additionally these complex state representations require data in a quality that can often
not be provided by current technology such as exact speed measurements of every car in
the intersection at a given time. In essence, the core contributions of Vidali et al. are
the following four points which are summarized in this section:

The state representation The algorithm is built on a binary representation of an
intersection where cells are assigned to a road as shown in Figure 2.4. Each cell is either
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assigned the value 1 if a car is present within its range or 0 if no car is present. Both
Gao et al. [GSL+17] as well as Genders and Razavi [GR16] use a similar but decidedly
more complex state representation which is shown in Figure 2.5. In the case of Gao et al.
each cell is 7 meters long and each traffic lane consists of a separate row of cells. The
simplified state representation proposed by Vidali et al. combines these cells for all lanes
that allow straight crossing of the intersection and keeps the cells for the lane allowing
for left turns only. This not only greatly reduces the complexity of the machine learning
task but also decreases cost and complexity of a potential real world application as this
is the information that has to be gathered for the fully trained algorithm to operate.

Figure 2.4: Design of the state representation (2019, Vidali et al. [VCVB19])

Figure 2.5: Design of the state representation (2017, Gao et al. [GSL+17])

The reward function The function proposed in the paper utilizes the cumulative
wait time of all cars in the intersection as depicted in Equation 2.2.

atwtt =
n�

veh=1
awt(veh,t) (2.2)

awt denotes the wait time accumulated by vehicle veh at time step t in the given
intersection. This metric is computed once for the time step at which a decision is made
by the agent and once for the time step at which the agent makes its next decision.
According to Equation 2.3 the reward is calculated with atwtt denoting the accumulated
total wait time at timestep t.

rt = atwtt−1 − atwtt (2.3)
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Others such as Gao et al. [GSL+17] have also used this reward function with promising
results and the work of Vidali et al. has shown the performance increase over using
vehicle stop time which is defined as the time a vehicle has a speed below 0.1 m/s. The
problem being that stop time does not take into account multiple stops in an intersection
which can occur if the vehicle can not clear the intersection in a green cycle due to high
traffic load.

The scheme of the deep neural network Another important contribution for this
thesis is the scheme of the deep neural network proposed in the paper. As shown in
Figure 2.6 the model consists of the input state which is shown in Figure 2.4 and 5 fully
connected hidden layers of size 400 each. Lastly the output layer is of size 4 as there are 4
different green light phases in the example that was analyzed. Furthermore there was an
additional project done by Hussain [Hus18] on the hyperparameter tuning of the model
proposed by Vidali et al. which explored the learning rate α and the γ parameter which
defines how much weight is put on maximizing immediate rewards versus maximizing
future rewards. The insights of Hussain’s analysis were also used to further improve both
the model proposed of Vidali et al. as well as the collaborative solution evaluated by this
thesis.

Figure 2.6: Scheme of the deep neural network (2019, Vidali et al. [VCVB19])

The experience replay function The basic concept of reinforcement learning de-
scribes an agent that is capable of observing its environment according to a given state
representation and evaluate each state based on a predefined metric. This allows an agent
to perform an action and observe how said action influenced the state of its environment
and further evaluate exactly how good or bad the resulting change is in regard to the
performance metric. Based on this concept an agent can learn from each action as
they are taken. Experience replay is an extension of this concept where the gaining
of experience is logically separated from the learning phase. Thus the agent does not
attempt to immediately learn from its action but instead perform to the best of its
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knowledge and store each resulting observations in a memory store in the form depicted
in Equation 2.4 with st representing the state at time step t, at being the action taken
at time step t and lastly rt+1, st+1 being the received reward and the resulting state
respectively.

m = {st, at, rt+1, st+1} (2.4)

During the learning phase these 4-tuples are then randomly sampled from the memory
store in batches in order to train the agent and improve its policy.
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CHAPTER 3
Reinforcement Learning Based

Traffic Light Management: Design
and Mechanisms

This chapter provides an in depth explanation of the designed collaborative reinforcement
learning algorithm for smart traffic light grids and the reasoning behind each design step
that was chosen. The chapter is divided into an overview of a single Q-Learning agent
and its design in Section 3.1 and the implementation of these agents in a collaborative
setting in Section 3.2.

3.1 Deep Q-Learning for Smart Traffic Lights
The reinforcement learning framework can, in its simplest form, be summarized by
Figure 3.1 which is a formalization of a Markov Decision Process. In accordance with
this, the core components of each reinforcement learning problem are the learning agent
itself, the state space which is the agent’s view of the environment, the action space
which defines the actions an agent can take within the environment and lastly the
environment with which the agent interacts. Additionally the system requires a reward
function in order to measure the reward rt it receives for executing action at that leads
to the transition of the state st to the state st+1. Based on this information there is an
important distinction on how an agent attempts to maximize the received reward which
is categorized as either model-based reinforcement learning or model-free reinforcement
learning. Sutton and Barto [SB18] have described model-based RL to rely on planning
based on understanding of the environment, while model-free RL relies on learning about
the effects of their actions. This means that a model-based approach trains a complex
model of the environment with which an agent can predict the outcome of certain actions
ahead of time and make decisions based on those predictions. A model-free agent on
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Figure 3.1: Basic view of the reinforcement learning framework (2018, Galatzer-Levy et
al. [GLRC18])

the other hand does not require any knowledge of its environment. It can simply keep
executing actions, observe the state changes and learn the best policy from experience. A
clear advantage of a model-based agents is that given a sufficiently sophisticated model of
the environment it can make relatively good decisions even when faced with states that
have never been encountered before. A model-free approach on the other hand is entirely
dependent on its experience but is a lot more flexible and less complex in its design. The
development of both a model-free approach by Mnih et al. [MKS+13] and a model-based
approach by Kaiser et al. [KBM+19] for popular atari games which is an important use
case for reinforcement learning in literature showcase the advantages and disadvantages
of both concepts. The advantage most important to the solution proposed in this thesis
is the flexibility of model-free reinforcement learning at the cost of needing more data
and time to train the policy. This is why Q-Learning which is a model-free RL approach
is a fitting tool for the domain of traffic management in intersections. Given the ever
increasing processing power, availability of real time traffic data and the development of
microsimulation tools for traffic flow such as SUMO, there is an abundance of data to
train from and resources to do so. In order for a machine learning problem to be solvable
with Q-Learning, it has to be definable as a finite markov decision process. This means
that both the state space as well as the action space need to be finite. In the case of a
traffic light agent this is certainly true for the action space as the only available actions
are the available light phases that can be activated. The state space defined by Vidali et
al. [VCVB19] as described in Section 2.3 is also guaranteed to be finite as there is a finite
number of cells and subsequent permutations which depict the presence of vehicles as
shown in Figure 2.4. These two criteria must be satisfied because Q-Learning entails the
construction of a finite Q-Table that assigns a fixed Q-value for each available action in a
given state which can then be used to choose an based on wihch has the highest Q-Value
for a given state. The Bellman equation shown in Equation 3.1 is used to calculate these
Q-Values by considering the reward rt received for action at in state st in combination
with the maximum expected future reward achievable in the resulting state st+1. The
future reward is weighted by the hyperparameter γ which specifies whether the agent
tries to maximize immediate rewards or put more weight on the expected reward of
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future states.
Q(st, at) = rt + γ ∗ maxAQ′(st+1, at+1) (3.1)

In theory this is enough to start training an agent by continuously feeding it data and
updating the Q-Values based on the resulting experiences. In reality this quickly becomes
unfeasible for complex states. The Q-Table for a single intersection with four actions
and a state representation of 80 binary cells is shown in Figure 3.2. While the state
space is finite there are still 280 = 1.21 ∗ 1025 different states with four Q-Values assigned
to each state which makes it impossible for an agent to collect sufficient experience for
each state and action pair. To solve this problem deep Q-Learning has been introduced

Figure 3.2: Q-Table for a single intersection with 4 actions and an input state of 80
binary cells

which combines the concept of Q-Learning with deep neural networks. Here the concept
of the Q-Table is replaced by a deep neural network which receives a state as an input
and produces Q-Values for each action as output as shown in Figure 3.3. With this
approach even highly complex image input can be used for state representation within a
Q-Learning framework with great results as shown by Mnih et al. [MKS+13] with the
example of a Q-Learning agent learning to play popular atari games, easily outperforming
humans.

Since the single agent is modeled directly after the Deep Q-Learning agent proposed by
Vidali et al. [VCVB19] which was already discussed in Section 2.3 the following only
shortly revisits the core components:

State Representation The concept of the state representation is the same as shown
Figure 2.4 with the only difference being the exact size and total number of cells which
varies depending on the size of the intersection and the available light phases. In order to
allow for different distances between intersections while still building on the same model
the number of cells is fixed at 10 per lane which are then spanned across the available
lane space. Thus the agent can be trained using the same state representation whether
the incoming road is 400m or 100m long. Furthermore, for a more generalized definition,
a lane can span multiple physical lanes if they are all affected by the same green light
phase. Figure 3.4 shows an example of state cell distribution in the case of a one-way
setup. While there are four lanes, they are all affected by the same green light phase

17



3. Reinforcement Learning Based Traffic Light Management: Design and
Mechanisms

Figure 3.3: Deep Q-Learning Concept (graphic by A. Choudhary [Cho])

Figure 3.4: State cell distribution

and are combined into a single state lane represented by 10 cells. For the experiment
conducted by Vidali et al. this results in 20 cells per incoming road for the intersection
(since there is a separate green phase for left turns and straight/right turns) and a total
of 80 binary cells of input for an intersection with four incoming roads as shown for the
input layer in Figure 2.6. It is important to note that this concept is designed to be
applicable to any given intersection but it might result in a differently sized input layer
and thus might benefit from additional fine tuning of the size and number of the fully
connected hidden layers.

Action Set The available action set for each agent is given by the number of different
green light phases of the intersection. In the case discussed by Vidali et al. this set is
described by 3.2 which contains NSA for NORTH-SOUTH bound traffic which either
goes straight or right, NSLA for NORTH-SOUTH bound traffic which goes left and their
EAST-WEST counterparts.

A = {NSA, NSLA, EWA, EWLA} (3.2)

This action set is easily adaptable to any given intersection as it directly represents the
green light phases. The only adjustment that needs to be made before training is defining
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the output layer of the deep learning model to match the number of actions available.

Reward Function As discussed in Section 2.3 the reward function calculates the
accumulated wait time awtt of all vehicles in the lanes approaching the intersection
(outgoing lanes are not observed) at timestep t and as shown in Equation 2.2 and
Equation 2.3. The reward rt for the action at−1 is then calculated by comparing the
sum of wait times atwtt with the wait times of the previous action step atwtt−1. Within
the scope of this thesis the system is designed to be trained in the simulation and then
deployed to the actual intersection without any further need of training. This means
that as long as the state representation is feasible for real world implementation the
reward function can be very complex and only realistically usable within the simulation.
Tracking the accumulated wait times for every vehicle is not technically impossible with
modern image recognition as shown by Yudin et al. [YSK+19] but it might pose further
challenges in its implementation and increase the overall cost. Due to these circumstances
the evaluation phase also measures the performance of a simpler reward metric which
is the total queue length of all incomming lanes for a given intersection denoted by
Equation 3.3.

sum_queuelengths =
n�

lane=1
queuelength(lane,t) (3.3)

This metric can be more easily approximated in a real world application by first counting
the cars that pass a threshold at an incoming lane and also the cars that leave the
intersection at the traffic light. The comparative analysis conducted by Mandal and
Adu-Gyamfi [MAG20] shows promising results regarding the reliability of traffic counting
solutions. The benefit of having a reward metric that can be measured in real time after
implementation is that the agent can constantly generate new data to learn from and
can continuously improve its policy.

Deep Q-Learning Lastly, the deep Q-learning agent is implemented largely according
to the scheme shown in Figure 2.6 with the only difference being the varying input sizes
and output sizes which are more loosely defined to fit any given intersection. In a given
grid of intersections each agent controls one traffic light which is training based on its
own experience. The main difference for collaboration among these agents is timing and
state representation which will be further discussed in Section 3.2. Aside from these
changes for agent collaboration the models are trained exactly like the model proposed
by Vidali et al. [VCVB19]. In line with this design the timing of a non-collaborative
agent for consecutive decisions either spans 10 seconds if a green phase was extended or
14 seconds if the light phase is switched. These timings are derived from the green phase
time G = 10s and the yellow phase time Y = 4s which are set to these fixed values for
the sake of comparability of different solutions over the course of this thesis but can and
should be fine tuned for real life application as required. As described in Section 2.3 the
training of the deep neural network is not done directly after each action step. Instead
the experience replay function is used to store all experiences in a memory store which
can hold a maximum of 50.000 samples and requires a minimum of 600 samples before
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Figure 3.5: Simulation steps between actions (2019, Vidali et al. [VCVB19])

training of the deep neural network begins. Each training episode simulates an hour
or 3600 time steps of traffic and generates one experience sample every 14 time steps
(every time an agent chooses a new action and receives the reward for its previous action).
After each simulation episode, if the memory store contains at least 600 samples the deep
neural network is then trained for 500 training epochs with each epoch training on a
randomly sampled batch of 100 samples.

Figure 3.6: Experience replay of a single agent (2019, Vidali et al. [VCVB19])

3.2 Collaborative System Design
The deep Q-Learning solution proposed by Vidali et al. [VCVB19] has shown promising
results for a single intersection, but in a real life application an intersection can rarely
be viewed as an isolated problem and the complexity increases rapidly as traffic grids
become larger. In order to expand the single agent reinforcement learning framework
as depicted in Figure 3.1 it is important to have an understanding of the environment,
how an agent can move and interact within said environment and how different agents
might influence each other in their actions. For the example of a smart traffic light grid
it is apparent that the spatial aspect which means the part of the environment visible to
any given agent remains constant at all times as the traffic lights are stationary. This
makes conceptualization easier as movement of an agent does not need to be accounted
for and agents do not interfere directly with the observed space of other agents. As
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described in Section 3.1 the part of the environment an agent can observe is limited to
the available cells in the incoming roads of its own intersection but with a growing grid
the actual environment and usable and potentially relevant information also increases.
This poses the question of how much information is relevant for a given agent, how
expensive the gathering and communication of this information is and whether or not it
is feasible to compute the information within an acceptable time frame. It is obvious
that a centralized solution where the decision for all traffic lights in a city is made by
a single server that first needs to collect all available traffic data is not feasible. The
trade-off is communication cost and complexity versus the added benefit of the additional
information. This thesis proposes a solution that limits the collaboration and thus the
complexity and cost of communication of each agent to its immediate neighborhood
resulting in a decentralized, scalable grid of smart traffic lights. With this approach
large, complex grids can be reduced to smaller sub problems with a maximum of four
connected, collaborating agents as shown in Figure 3.7.

Figure 3.7: Simple Node Network

The simplest way of extending this solution to an entire grid with multiple agents is
implementing the isolated Q-Learning agent separately for each intersection. While this
solution is non-collaborative it is mentioned here as it is the easiest to implement with no
need for the independent agent to communicate with other nodes and always provides a
fallback solution in the case that communication amongst agents becomes impossible due
to hardware failure or similar circumstances. Furthermore this disjoint, non-collaborative
solution serves as a baseline to measure the benefit provided by different approaches
evaluated in Chapter 5.
Communication between agents allows for two core concepts considered in the design
of the proposed solution, which are the sharing of information and the synchronization
of decision making. The scope for sharing of information is defined and limited by the
knowledge each agent has by itself. This entails the last decision made by the agent which
represents the currently active light phase and the observed state according to the state
representation defined in Section 3.3. The resulting framework is shown in Figure 3.8
where the function constructing the state can access the observations made by neighboring
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agents. The second concept, synchronization of decision making, is especially important

Figure 3.8: Multi Agent Approach

when considering for instance the green wave effect which would not be achievable by a
non-collaborative system but becomes possible by sharing information on the currently
active light phase of neighboring agents and timing their decisions correctly. As both
the ideal amount of shared information as well as the synchronisation between agents is
strongly dependent on the attributes of the intersections in question, Section 3.2.1 and
Section 3.2.2 respectively propose an assortment of different schemes that are evaluated
in Chapter 5. In order to explain the concept for state representation and synchronisation
the following sections depict an implementation based on the non-collaborative state
representation featuring 80 cells per intersection as proposed by Vidali et al. (20 cells per
lane for four incoming lanes as shown in Figure 2.4) with the target agent (TLCenter)
being connected to and collaborating with adjacent agents on all four lanes (TLNorth,
TLEast, TLSouth, TLWest) depicted in Figure 3.9. In the final implementation all
synchronisation and state representation schemes can be applied for an arbitrary number
of connected traffic agents and size of their non-collaborative state representation.

3.2.1 Collaborative State Representation
As briefly described above the state representation in the collaborative system discussed
here can at most use all available information of its neighbors. This thesis explores three
different state representations in regard to the amount of data shared between agents.
The three approaches which utilize the available information to varying degree are referred
to as collaborative-complex, collaborative-simple and collaborative-optimal.

Collaborative-Complex State The idea of the collaborative-complex state is rel-
atively simple and straight forward. This state uses all the information of adjacent
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Figure 3.9: Fully Connected Traffic Light

traffic agents as is and concatenates the additional state information on to its own. As
mentioned before, the available information here are the 80 cells an agent can observe
within its own intersection plus the light phase that is currently active in the intersection.
Figure 3.10 shows the resulting input array for the example of Figure 3.9 where the TLC
agent receives the state and binary encoded light phase information of all surrounding
traffic lights resulting in an input vector of size 408. In order to keep the same ratio of 1 : 4
for input size to width of hidden layers in the model this requires a hidden layer width of
approximately 1600 resulting in a much more complex model. In deep learning however it
is not guaranteed that simply keeping the same ratio results in equally optimized results
and these parameters are often chosen based on experience and best practices. As such
future work should include further research into the width and number of hidden layers
for the complex model. A comprehensive overview on this topic is provided by the work
of D. Stathakis [Sta09]. While the communication cost for 82 bit (80 bit state + 2 bit
binary encoded light phase) per adjacent traffic light is certainly manageable, it must be
evaluated whether or not the additional information provides enough utility and if the
more complex model can achieve stable performance.

Figure 3.10: Input for Complex State Representation

Collaborative-Simple State The goal of the collaborative-simple state is to keep the
model as simple as possible while still allowing the system to discover concepts like the
green wave effect during the training phase. This is done by limiting the exchange of
information to the binary encoding of the light phase of all adjacent traffic lights. While
the agent is not provided information on the exact traffic situation of its neighbors it
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can react to changes in light phases of surrounding traffic lights. Figure 3.11 depicts the
resulting input vector with a size of 88 bits. The resulting communication cost is only 2
bit of information per adjacent traffic light and the increase of the state size is thus only
8 bit for four adjacent traffic lights.

Figure 3.11: Input for Simple State Representation

Collaborative-Optimal State The collaborative-optimal state aims to combine the
benefits of a simpler model while still providing the utility of traffic observations in
surrounding intersections. This is achieved by simplifying the state representation of
surrounding intersections and limiting the observed lanes to those that are relevant to
the agent i.e. those that allow for traffic to enter the intersection. An example is shown
in Figure 3.12 which depicts the observed lanes from an intersection to the east of the
agent itself. All west-bound vehicles will enter the intersection of the agent and are thus
observed. Furthermore the number of cells is reduced to 4 per relevant lane and the size
of the cells is increased to cover a larger part of the lane with less granular information.
In the cluster of intersections of the experiment setup TLC has 4 neighboring traffic

Figure 3.12: Optimal-State observing only the relevant lanes

lights (TLN,TLE,TLS,TLW ) with 3 relevant lanes each. Additionally the currently active
light phase of each adjacent traffic light is also binary encoded and added to the input
state. The resulting input vector is shown in Figure 3.13 with a total size of 136 bits.
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Figure 3.13: Input for Optimal State Representation

3.2.2 Synchronisation of Decision Making
With the added complexity of multiple intersections the timing of an agent’s decision
becomes very important. In order for a green wave effect to be possible, all traffic
lights need to be synchronized and match their green light phases accordingly. This
effect however is not always desirable especially if the traffic across all lanes is evenly
distributed and there is no main road to benefit from this effect. The desired type of
synchronization may thus vary based on the traffic load and structure of each intersection.
In order to cater to these different circumstances this section proposes three different
synchronization schemes for collaborating traffic light agents. The three approaches are
asynchronous decision making, synchronous decision making and cycled decision
making. The following depicts all synchronisation schemes for the example of green phase
time G = 10s and yellow phase time Y = 4s.

Asynchronous The asynchronous synchronisation scheme follows the concept proposed
by Vidali et al. [VCVB19] and as discussed in their work may lead to different time
intervals between agent decisions as the interval is either one green phase time G = 10s if
the agent chooses to not change the light phase or G + Y = 14s if the phase is switched
and requires a yellow light phase. These irregularities, while negligible for a single
intersection, might have an adverse effect on collaborating agents as this allows the time
delays between two adjacent agents to vary constantly. In other words if one agents
changes light phases and a neighboring agent decides to remain in the current green
phase, their next decision step will vary by exactly one yellow phase duration. This
greatly changes the utility of the information on the currently active light phase in a
neighboring traffic light, as this variance may constantly change if decision making is
not synchronized. Depending on the current delay between the two agents the phase
might remain active for an entire duration of G = 10s or switch shortly after sending the
information. This constantly changing utility can make it more difficult for the model to
learn how to use this information correctly. The delay resulting from asynchronicity is
shown in Figure 3.14 where TL1 changes the light phase and TL2 chooses to remain in
the currently active phase. While the original decision was made at the same time, the
second decision differs as TL2 reaches its next decision steps 4 seconds (or one yellow
phase duration) before TL1.

Synchronous The synchronous scheme aims to stabilize the utility of the information
received from neighboring agents. By having all agents decide their next light phase at
the same decision step it is ensured that the resulting phase will be active for the next
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Figure 3.14: Asynchronous Scheme

G + Y = 14s. This also introduces an implicit penalty for switching light phases as a
prolonged phase adds 14s of green light while switching results in 4s of yellow phase
followed by 10s of green phase until the next decision step as shown in Figure 3.15. The
most important benefit and drawback of this approach is that the order in which the
agents make a decision also dictates who can use this information. The first agent to
decide can thus not utilize the light phase information of any neighboring traffic light as
they have not yet chosen the next phase but will potentially change it within the current
time step. While this forces a hierarchy for the order of in which the agents decide their
next step it can provide great utility in intersections where a decision hierarchy is sensible
as the subsequent decision can rely on the fact that the light phase of its neighbor is
active for the maximum duration of 14s. A common situation would be a main road
with commute traffic at rush hour where the majority of traffic is headed out of town. In
this situation the hierarchy allows the agents to generate a green wave effect and also
react accordingly if a preceding traffic light decides to switch to a different light phase
and it gives each subsequent agent light phase information that will not change until the
next decision step.

Figure 3.15: Synchronous Scheme

Cycled Lastly the cycled synchronisation scheme looks to stabilize the utility of light
phase information in situations where a decision hierarchy can not be established. The
experiment setup discusses in Chapter 4 assumes relatively equal distribution of traffic over
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all incoming roads and intersection. Thus, disadvantaging certain agents for the benefit
of others does not make sense. In order to keep the utility of light phase information
stable while providing the same benefit to all agents the cycled synchronisation offsets
the decision steps of neighboring agents by half a decision phase (G + Y )/2 = 7s. This
results in an alternating pattern where the direct neighbors are always delayed by this
offset and all agents within a 2-hop distance are making synchronous decisions as shown
in Figure 3.16. Figure 3.17 depicts this scheme applied to the given experiment setup

Figure 3.16: Cycled Synchronisation Scheme

plus additional neighboring nodes. It is important that as shown in Figure 3.17 real
world application allows for connections that require exceptions to this pattern. In this
case the system is forced to assign a delay which favors one neighboring intersection and
disadvantages the other.

Figure 3.17: Cycled Synchronization Network
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CHAPTER 4
Simulation Environment

Traffic simulation is not only a key methodology for evaluation of the solution proposed by
this thesis, but also a core component of the conceptualisation and implementation of said
solution itself. The reinforcement learning framework, and especially deep Q-Learning,
requires a large amount of experience before an agent can make sensible decisions.
Deploying an untrained agent in a real world intersection would result in a considerable
amount of time in which the agent would operate solely on random decisions which
would be unacceptable during day to day traffic. Modern traffic simulation tools make it
possible to cope with this cold start problem by defining a state representation that can
be implemented within the simulation as well as in the real world application. Thus, the
agent can be trained within the simulation framework for countless hours of simulated
traffic and be deployed to the real world once it achieves satisfactory performance. It is
important to note that the technology used for traffic simulation is interchangeable as
long as it allows for the state representation and the reward calculation required by the
agent. The following sections give an overview of the simulation framework used and
how the environment was set up for training and evaluation of the solution.

4.1 Basic Setup in SUMO
Both the reinforcement learning based training as well as the testing during the course of
the experiment execution are implemented using Simulation of Urban Mobility, which is
an open-source microscopic traffic simulation framework. SUMO allows for full control
over intersection- and traffic-design and also allows for step by step execution of any
given simulation. This makes it possible to run each simulation on a second by second
basis using self designed traffic networks, while the framework handles all the aspects of
the actual traffic flow such as acceleration, deceleration, stopping at intersections and
lane merging. Additionally the Traffic Control Interface or TraCI for short provides
full control during the simulation using a python client to change traffic light behavior
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and retrieve values of simulated objects such as vehicle speed, wait times, queue lengths
in intersections and all other required environment information needed for the training
of the traffic light model and for measuring the effectiveness of a given solution. This
versatile toolset for realistic traffic simulations makes SUMO a popular framework used
in many different areas such as analysis of congestion impact in the works of Malik
et al. [MKAS19], simulation and analysis of CO2 emissions in the case of Vidali et al.
[VPA+20] or even analysis of energy consumption in wireless sensor networks in road
networks as utilized by Kabrane et al. [KKE+17]. One important caveat that should
be noted is that SUMO allows for a much more detailed representation of the state of a
traffic network as opposed to the real world. This must be considered especially in the
case of a machine learning model that is trained using the accurate information provided
by the simulation but is expected to perform in a real life environment. This will be
further discussed in Chapter 6. In summary, a full SUMO-Simulation consists of two
parts. For one there is the road network file stored in XML format which models the
actual network with its roads and intersections and also additional information such as
traffic light cycles, priority rules, allowed turns and so on. Secondly, there is the route
file which is also stored as XML stores all available routes (i.e. what sequence of lanes
can be taken by a vehicle from entry to exit of the network) and it also contains all cars
that are generated into the simulation with their assigned timestamp for entry and which
of the predefined routes the car will take. The following sections explain the networks
and routes used for training and performance measurement and the reasoning behind the
setup in more detail.

4.2 Traffic Networks
As mentioned above, the first part of a SUMO-Simulation is the road network file. This
section goes over the networks designed for training and testing of the algorithms. There
are two simulation setups that are used to test the performance of the proposed algorithm
and highlight its strengths and limitations. First is the experiment network which consists
of five traffic lights with a center traffic light that is connected to the other four in the
form of a cross in order to have a large amount of additional information that can be
used from surrounding traffic lights. The second setup is a real world example consisting
of three intersections in the inner city of Christchurch, New Zealand to test the proposed
concept combined with the insights gained from the experiment phase in Chapter 5 on
actual traffic data and in a realistic setting. The process of adapting the algorithm to
this real world example not only allows for measurements of effectiveness on real data but
also provides information on implementation steps and challenges faced in the application
of the concept in the field.

4.2.1 Experiment Network

The experiment network is the main environment for performance measurement and for
the comparison of the collaborative algorithm against the non-collaborative baseline and
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Figure 4.1: Experiment Network - Setup Figure 4.2: Experiment Network - Lanes

against commonly used fixed time intervals. As such it is designed to provide a stable
setting in which the algorithms can be compared without a lot of additional variables
that could influence the results (e.g. complex constellations of one way roads or difficult
merging lanes). As stated above the experiment network is composed of a total of five
traffic lights in a cross shape with the center traffic light in the middle being connected
to the other four as shown in Figure 4.1. Each road contains three lanes in each direction
for a total of six lanes with the left most lane allowing for left turns only and the right
most lane allowing for right turns and straight crossing as shown in Figure 4.2.

Furthermore the roads in the network are all of identical length which is either 100, 200
or 400 meters based on which simulation type is chosen. This is implemented to analyse
the impact of increasing distance between intersections and measure how much the value
of information provided by neighboring traffic lights decreases with distance. While the
corners of the roads appear to be connected in Figure 4.1, in the actual simulation the
cars are spawned at the start of each respective road and also phase out the end without
the corner turn being regarded or accounted for as valid routes.

Lastly the available light phases for each traffic light within the network are identical as
well. The available phases are NORTH-SOUTH, NORTH-SOUTH-LEFT, EAST-WEST
and EAST-WEST-LEFT with the ’LEFT’ phases allowing for left turns only and the
other two phases allowing for straight crossing as well as right turns as shown in Figure 4.3.

Figure 4.3: Experiment Network - Light phases of traffic lights
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4.2.2 Real World Network - Intersections of Christchurch NZ
The second network is modeled after a series of three intersections on Montreal St. in
Christchurch New Zealand. The exact intersections are Montreal St and Hereford St,
Montreal St and Worcester St and Montreal St and Gloucester St. This specific case
was chosen because the City Council of Christchurch provides a tool called Intersection
traffic counts database1 containing traffic counts of several intersections throughout the
city from 2017-2021. This includes not only total traffic in the intersection but detailed
counts per lane and turns taken in 15 minute intervals for the entirety of the 24 hour
time frame as shown in Figure 4.4. Figure 4.4 also highlights the section used in the
simulation. Furthermore the City Council of Christchurch provided values of the actual
cycle times corresponding to the traffic count measurements upon request which are the
timings used for the final real world experiment in Chapter 5.

Figure 4.4: Selected intersection shown in the Intersection traffic counts database

Figure 4.5 shows the intersection of Montreal St. and Hereford St. and its SUMO
equivalent. Since New Zealand traffic rules require left-hand traffic this detail was
changed in the simulation to keep traffic rules in line with other simulations. Due to
the nature of the network this has no impact on the functionality of the simulation
as a whole and the provided real life data can be used almost as is. One required
change is that in order to preserve right and left hand turns from the side lanes the
counts have to be mirrored to the opposing lane. As shown in Figure 4.6 the resulting

1https://ccc.govt.nz/transport/improving-our-transport-and-roads/traffic-count-data/intersection-
traffic-counts-database/
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Figure 4.5: Intersection in Christchurch vs SUMO-Model

SUMO-Simulation thus has the lightphases NORTH-SOUTH-1 and EAST-WEST-1 for
the intersections of Montreal St and Hereford St and Montreal St and Gloucester St and
the phases NORTH-SOUTH-2 and EAST-WEST-2 for the intersection of Montreal St
and Worcester St in accordance with their real life counterparts.

Figure 4.6: Available lightphases for the Christchurch SUMO-Model

4.3 Simulation Cases
The second part of each SUMO-Simulation is the route file which defines the available
routes in the network and also stores at which point in time each car will spawn into
the simulation and which route it will take. Both the route information as well as the
specific car information is automatically generated by a separate algorithm based on the
chosen simulation network, desired distribution, time frame and total number of cars for
the episode. The four crucial aspects of each simulation case are the time frame of the
case, the number of cars generated within that time frame, the distribution with which
the cars are generated and the probability with which each route is assigned to a car.

4.3.1 Experiment Network
Each test case of the experiment network is designed to simulate an hour of traffic plus
additional time steps for the agents to clear all intersections. The total number of time
steps for an episode in the experiment network is 4000 steps (3600 + 400) with the
additional 400 steps providing a buffer for clearing all intersections which is especially
important during the early training stages as the agent is expected to require more time
to clear the entire intersection at the start of the training phase and it can potentialy
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receive many positive rewards in these buffer steps where no additional vehicles are
created. For the experiment network the main focus of the test cases is the evaluation of
the collaborative feature of the traffic light agents. To this end, it is important to test
how information provided by neighboring traffic lights factors into the decision making of
an agent. The value of this information is expected to vary greatly depending on traffic
load which is why the test cases are designed to create either low, medium or high traffic
situations. The distribution of traffic over the available time steps is for the most part
modeled after a Weibull distribution, as shown in Figure 4.7 which is generated using the
numpy.random.weibull with the shape parameter a = 2. This distribution was chosen
because it models the steep ramp up of rush hour traffic which then gradually declines
towards the end of the rush hour. Since the experiment featured in Chapter 5 also tests

Figure 4.7: Weibull Distribution for High Traffic in 100m Experiment Simulation

for the robustness to alternate distributions, different robustness test cases are generated
as well. These alternate distributions are firstly two separate Weibull distributions within
the simulated hour to create two peaks in a short time span and secondly a uniform
distribution to create a constant load of traffic as is the case for most rush hour phases.
The resulting traffic load over the given time frame for both distributions is shown in
Figure 4.8 and Figure 4.9 respectively. Both figures depict the generated load of 3000
vehicles in a 60 minute time frame.

The total number of cars generated for each simulation based on distance between
intersections and chosen traffic load are listed in Table 4.1. The resulting traffic situations
for the 100m distance-mode network with 1000, 3000 and 4000 cars are shown in
Figures 4.10, 4.11 and 4.12 respectively.

Finally the routes which are taken by each car are assigned based on the predefined turn
probabilities denoting whether a car goes straight, left or right at each intersection it
encounters. For the experiment setup the starting point is chosen with equal probability
for each edge of the simulation where cars spawn in and out of the simulation. From
there a car has a 80% probability of going straight. If the car falls within the 20% that
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Figure 4.8: Double Weibull Distribution Figure 4.9: Uniform Distribution

Distance-Mode Cars - Low Traffic Cars - Medium Traffic Cars - High Traffic
100m 1000/2000 3000 4000
200m 1500 3000 5000
400m 2000 3500 6000

Table 4.1: Final values for traffic scenarios - Experiment Network

Figure 4.10: Low Traffic Figure 4.11: Medium Traffic

Figure 4.12: High Traffic

take a turn there is a 66.6% chance that it goes right and a 33.3% chance for a left turn.
Based on these probabilities all routes are assigned for the generated cars.

4.3.2 Real World Network - Intersections of Christchurch NZ
For the second simulation network which is modeled after the intersections of Christchurch
NZ the test cases are based directly on traffic counts provided by the traffic count database2

2https://ccc.govt.nz/transport/improving-our-transport-and-roads/traffic-count-data/intersection-
traffic-counts-database/
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Simulation Net-
work

Cars - Low Traffic Cars - Medium Traffic Cars - High Traffic

Christchurch
NZ

1100 1300 1700

Table 4.2: Final values for traffic scenarios - Real World Network

provided by the city council of Christchurch NZ. As shown in Figure 4.13 both the full
daily counts of the observed cars as well as the actual counts per time of day are provided
by the traffic count database.

Figure 4.13: Traffic count for survey period in Montreal St and Hereford St

The resulting values for low, medium and high traffic are used as test cases and are shown
in Table 4.2. For these scenarios, the evening peak represents the high traffic scenario,
the morning peak is the medium traffic scenario and the midday measurements represent
the low traffic scenario.

Lastly, the turn distribution which denotes with which probability a car spawns at a given
entry point and whether it goes straight, left or right at each encountered intersection can
be derived from the traffic counts. Figure 4.14 shows the counts for each lane which can
be used to calculate the percentage values of cars in each lane and those can subsequently
be used for the probability of the traffic routes in the final simulation. Thus all test cases
are based on percentages derived from real life empirical values.

Figure 4.14: Turn distribution of Montreal St and Hereford St
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CHAPTER 5
Evaluation

To preface the evaluation of the algorithm, an overview of the system which was used to
develop, train and test the collaborative Q-learning solution is shown below.

Experiment Environment
Operating System Windows 10 Pro 64-Bit
CPUs Intel Core i5-6600K | 4 cores @ 3.9GHz
Main Memory 16 GB DDR4 RAM
GPU Nvidia GeForce GTX 980 | 4 GB

GDDR5 RAM
Python Version 3.9.7
Tensorflow Version 2.5.0

The evaluation is structured into two different main sections, which is first an evaluation
based on the experiment setup discussed in Chapter 4 which aims to test the strengths
and weaknesses of the system plus the impact of certain design decisions and second
an evaluation of the real world example of three intersections in Christchurch NZ to
confirm the algorithm’s performance on a real environment with real data. Furthermore,
all comparisons among algorithms are structured in the same way which features a low,
medium and high traffic scenario with 30 randomly generated test cases (one test case
contains one hour of traffic) for each scenario. This is done to ensure that the results are
reproducible and all algorithms are compared based on the same scenarios. The main
metrics used for comparison are the total cumulative wait time over all intersections,
which represents the efficiency of traffic handling as a whole, and the mean cumulative
wait time per vehicle which represents the perceived efficiency for people in traffic.
Aside from answering the three research questions revisited below, this chapter also
evaluates the algorithms strengths and weakness in regard to the three different state
representation approaches (complex, simple, optimal), the three different synchronisation
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Collaboration-
Type

Sync-Type Reward G/Y Phase

disjoint / simple /
complex / optimal

async /sync / cy-
cled

cumwait / queue 10s | 4s

Training
Episodes

Training
Epochs

Batch Size Number of Cars

100 500 100 4000
Simulation-
Environment

State Size Hidden Layers Max Time
Steps

experiment /
christchurch /
single

80 4x400 4000

Learning Rate
α

Gamma Memory Size

0.001 0.75 600/50.000

Table 5.1: Notation example for model-parameters

schemes (asynchronous, synchronous, cycled), impact of distance between intersections
and robustness regarding a change in traffic load and distribution. Furthermore it aims
to answer the three research questions revisited below.

1. Does the performance improvement of state-of-the-art reinforcement learning solu-
tions for smart traffic lights proposed for single intersections hold for more complex
traffic light grids with multiple intersections? Specifically is there a statistically
significant drop in performance improvement over fixed time intervals?

2. Does collaboration among agents in a grid of traffic lights lead to a significant
improvement in either cumulative wait time for the entire cluster of intersections
or the average cumulative wait time per vehicle over non-collaborative agents?

3. Can the proposed collaborative approach achieve significant improvement over
highly optimized real world intervals in terms of total wait time or mean vehicle
wait time?

Since the full overview of parameters for each model is quite extensive and a large
assortment of different models is discussed in this chapter, the notation shown in Table 5.1
will be used to document the exact attributes of each model. To provide a better
understanding of this notation to the reader the following gives a short explanation of
each parameter.

• Collaboration-Type refers to the type of state representation and information
from adjacent traffic lights used. Disjoint refers to the non-collaborative baseline
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solution proposed by Vidali et al. [VCVB19] and simple/complex/optimal refer to
the state representations discussed in Chapter 3. To shortly revisit these types, the
simple collaboration receives only the currently active traffic light phase of adjacent
intersections, the optimal collaboration receives the active light phase and the state
representation of the relevant lanes that contain traffic headed for the intersection
and lastly, the complex collaboration receives the entire state representation of
adjacent intersections as well as the currently active light phase.

• Sync-Type refers to the synchronisation schemes discussed in Chapter 3. The
three synchronisation schemes are denoted asynchronous, synchronous and cycled.
The asynchronous scheme does not sync up the decisions of agents and thus, each
agent might change their light phase at different time steps within the simulation.
The synchronous scheme ensures that all agents decide their next action at the
same time step. Finally, the cycled scheme ensures that adjacent agents decide
their action steps in an alternating pattern which is offset by half a cycle length (a
light cycle consists of the yellow phase duration plus the green phase duration. In
the experiment example green phase time G = 10s and yellow phase time Y = 4s,
the full cycle length is C = 14s).

• Reward denotes the reward metric used for training the model. While most models
are built using the cumulative wait time function, this chapter also discusses queue
lengths as an alternative reward function that can be implemented more easily in a
real world application.

• G/Y Phase defines the green phase and yellow phase duration which, together
define the total phase time between an agent’s decisions.

• Training Episodes defines the number of 1-hour simulation episodes that are run
during the training phase. 100 training episodes result in a total of 100 hours of
simulated traffic generated for training. In order to have comparable results this
parameter is set to 100 for all models and will thus be omitted in subsequent model
overviews.

• Training Epochs refers to the number of training rounds done during the experi-
ence replay phase. With 500 training epochs the deep neural network is trained
on 500 batches of randomized experience samples after each training episode. Just
like training episodes, this parameter is fixed for all models and will be omitted in
following model overviews

• Batch Size denotes the sample size that is pulled from the experience store during
each training epoch to train the deep neural network. The batch size is also fixed
for all following models and thus omitted.

• Number of Cars defines the total number of cars in the randomly generated
traffic scenario of a training episode.
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• Simulation Environment shows which intersection simulation was used to train
the model. Possible values are experiment, experiment-medium, experiment-long
for simulations with 5 intersections and varying road lengths, christchurch for the
simulation of the real world example and single for the remodeled single intersection
feature in the work of Vidali et al. [VCVB19].

• State Size is the exact size of the input vector according to the collaboration type
that was used.

• Hidden Layers defines the number of hidden layers and their respective widths
(i.e. number of neurons in each layer). Since the input size varies based on
the selected Collaboration-Type it is necessary to fine tune the hidden layers
accordingly. The choice of depth and width of hidden layers is often a difficult
problem when optimizing a deep learning solution and as such it might require
exhaustive parameter search and trial and error. D. Stathakis [Sta09] provides a
comprehensive overview for best practices on this topic.

• Max Time steps defines at which time step the simulation is ended. This includes
buffer steps on top of the 3600 (60 minutes) for which cars are generated so the
model can experience the ramp down of clearing the intersection of all traffic.

• Learning Rate is the α parameter of the deep learning model and is fixed for all
of the following models.

• Gamma denotes the weight with which the model regards possible future rewards
as opposed to the reward received directly for a given action. This parameter is
fixed for all models as well.

• Memory Size is the minimum and maximum number of samples stored in the
experience replay store. The minimum defines a set number of experiences that
need to be stored before the neural network starts the learning process. When
the maximum number of experiences is reached the oldest experience is removed
with each newly gained experience. This parameter is fixed for all of the following
models and will be omitted.

5.1 Isolated Intersection
In order to have a benchmark of the single intersection problem discussed by Vidali et al.
[VCVB19] with controlled parameters similar to those of the experiment setup discussed
in Chapter 4 and to confirm the performance shown in the referenced work, this problem
was first remodeled with some slight adaptations. The single intersection in the referenced
paper features roads with four lanes in each direction and a length of 750m for each
road. The number of lanes was reduced to three (removing one center lane which allowed
for straight crossing only) and the length of incoming roads was reduced to 100m. The
shorter roads are more realistic in an urban setting and it is also a more feasible range to
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5.1. Isolated Intersection

Collaboration-
Type

Sync-Type Reward G/Y Phase

disjoint async cumwait 10s | 4s
Number of Cars Simulation-

Environment
State Size Hidden Layers

1500 single 80 4x400

Table 5.2: Single Intersection - Disjoint Model Parameters

monitor in a real world application as detection of vehicles over a span of 750m is not
covered by literature working on traffic detection in intersections and can potentially be
very difficult. The exact model parameters of the single intersection model implemented
here are shown in Table 5.2. Figures 5.1 and 5.2 show the improvement of negative

Figure 5.1: Training improvements in referenced paper (2019, Vidali et al. [VCVB19])

rewards received over the training of the algorithm from the works of Vidali et al. and the
remodeled intersection implemented here respectively. Despite the adaptions made to the
intersection, the performance is certainly comparable as in both cases the improvements
are in the range of a factor of 6-7 from the start of the training phase versus the fully
trained model. The exact values are expected to vary as the algorithm was trained on
scenarios featuring 1500 cars within the hour instead of 4000 cars within 90 minutes
(parameters used by Vidali et al.). The reduced number of cars is an approximation of
the same scenario given the shortened simulation time and heavily reduced road length.

The fixed time interval to which the algorithm was compared also slightly deviates from
the one used in the referenced paper which was {30, 4, 15, 4, 30, 4, 15, 4} for the action set
{NSA, NSLA, EWA, EWLA} with the 4 second yellow phases added between green
phases. The adapted cycle used in this evaluation is {38, 4, 10, 4, 38, 4, 10, 4} and it should
be noted that the results of the fixed time interval are not fully optimized in this setting
as it was designed to better utilize the green wave effect in the experiment setup with five
intersections. To achieve this, the probability for left turns in intersections was reduced
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Figure 5.2: Training improvements for remodeled intersection

to 30% of turning vehicles going left instead of right (from 50% as used by Vidali et al.).
Subsequently the straight advance settings which are NSA and EWA received longer
green phases and the NSLA and EWLA green phases were shortened thus giving the
fixed timings more of a green wave over all intersections. Figure 5.3 shows the resulting

Figure 5.3: DQN Agent versus Fixed Time Intervals - Single Intersection

total wait times over all three traffic scenarios including the standard deviation on 30
1-hour episodes for each scenario. The findings of the repeat experiment are in line with
the findings of Vidali et al. which shows the strength of the algorithm for low to medium
traffic situations.
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Collaboration-
Type

Sync-Type Reward G/Y Phase

disjoint / optimal
/ complex / simple

cycled cumwait 10s | 4s

Number of Cars Simulation-
Environment

State Size Hidden Layers

4000 experiment varying varying

Table 5.3: Experiment Setup - Varying Collaboration Type Models

5.2 Experiment Setup - Evaluation
As mentioned previously the main goal of the experiment setup evaluation is the compar-
ison of the proposed collaborative deep learning approach against the baselines of fixed
time intervals and the non-collaborative solution developed by Vidali et al. [VCVB19].
The definition of the simulation environment used for this evaluation is discussed in
Chapter 4. Due to the increased complexity of multiple intersections and the possible
interacting effects they have on each other, the approach designed in Chapter 3 does
not feature a single generalized solution but different design choices for collaboration
and synchronisation between agents and as such these choices need to be considered for
each implementation depending on their benefits and drawbacks. In order to provide a
better understanding of these benefits and drawbacks and measure the actual impact they
have on the solution the following section evaluates performance based on the different
collaboration types, synchronisation schemes, impact of collaboration with increasing
distance between intersections and the robustness of the solution based on the three
different traffic distributions discussed in Section 4.3.1. Additionally the robustness
section explores how the choice of traffic load during training effects the performance of
the resulting model (i.e. how a model trained on mainly low traffic volumes performs in
high traffic scenarios and vice versa). For all design choices models were trained with a
given choice and the remaining model parameters fixed for all solutions. The results are
compared to two baseline solutions. The first baseline solution is the fixed time interval
agent which cycled through its phases based on the schedule {38, 4, 24, 4, 38, 4, 24, 4}.
Secondly the non-collaborative solution by Vidali et al. is taken as a second baseline
solution which also serves the purpose of evaluating in which situations collaboration
does not provide sufficient improvements.

5.2.1 Collaboration Types - Evaluation
The collaboration types proposed in Section 3.2.1 define to what extent information of
neighboring intersections is shared between agents. The three types complex, simple and
optimal are compared to fixed time intervals and the non-collaborative solution, which are
in the following denoted as fixed and disjoint respectively. Table 5.3 shows the training
parameters set for all reviewed models. All four models were trained using identical
synchronisation, reward function, green/yellow phases, and the number of cars of the
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randomly generated training episodes was set to 4000. All models were trained for 100
training episodes of 4000 time steps each, which feature 500 training epochs for the deep
neural network after each training episode for a total of 50.000 epochs. The resulting
state sizes and width of hidden layers vary as each collaboration type has different input
sizes depending on the type and number of neighboring intersections. For the center
traffic light with four neighbors the input sizes for [disjoint, simple, optimal, complex]
are [80, 88, 136, 408] according to the state representation of Section 3.2.1. Figure 5.4

Figure 5.4: Negative Reward per Episode - Collaboration Types

shows the negative rewards received per training episode over all 100 episodes. Despite
the difference in collaboration all four models converge at roughly the same rate and reach
similar negative reward values for their final training episode. This is to be expected
as due to the training strategy the ϵ parameter which defines with which probability
the agent chooses either a random action or uses the DQN to predict the best action
starts off at 1 (resulting in exclusively random decision) is adjusted towards 0 (exclusively
DQN predictions) with each training episode based on the total number of training
episodes. For 100 training episodes this results in the ϵ parameter being adjusted by
0.01 towards 0 after each training episode. While the resulting models converge at
about the same rate, the finale episode results of [disjoint, simple, optimal, complex] =
[13621, 12113, 7244, 10843] show a slight improvement of all three collaboration types
over the disjoint alternative. Especially the optimal collaboration type which ended the
training phase with a substantial improvement of a factor 1.88 lower negative reward
than the disjoint baseline.

While the training results show how well the design parameters allow for optimizing
the reward function they do not guarantee performance in an actual traffic setting. To
measure the performance of the models under traffic conditions that vary from the high
traffic scenarios they were trained with, Figure 5.5 and Figure 5.6 show results of each
model measured by the core metrics of total cumulative wait time per test case and mean
vehicle wait time per test case. Measurements were taken based on a set of 30 randomly
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Figure 5.5: Total Wait Time over 30 Repeat Experiments - Collaboration Types

Figure 5.6: Mean Vehicle Wait Time over 30 Repeat Experiments - Collaboration Types
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Collaboration-
Type

Sync-Type Reward G/Y Phase

optimal cycled / sync /
async

cumwait 10s | 4s

Number of Cars Simulation-
Environment

State Size Hidden Layers

4000 experiment 136 4x400

Table 5.4: Experiment Setup - Varying Synchronisation Scheme Models

generated test cases for each scenario (low traffic 1000, low traffic 2000, medium traffic,
high traffic). Both for total wait times as well as mean wait time per vehicle, the smart
traffic light agents outperform the fixed time interval by a large margin. While this is a
promising result it should be noted that the phase times used were recommended by the
SUMO framework and are not the result of a traffic study as would be the case in a real
world example and it is thus expected to be less than optimal. The simple collaboration
type which only encodes the currently active light phase of neighboring intersections
appears to result in a decrease in performance even when compared to the disjoint model.
While the complex model shows the most promising results for high to medium traffic
situations it does drop off and become less stable as the traffic load decreases which
might be an indication that the more complex model scheme results in overfitting to
the high traffic scenario the model was trained with. Overall the most stable and well
performing model is the one using optimal collaboration. The mean vehicle wait times
have significantly less outliers over all scenarios when compared to the other models
and it performs well in terms of total sum of wait time in all four evaluated scenarios
improving on the disjoint baseline in all respects. Even if the complex collaboration
type ahcieves the best performance, this comes at the expense of significant signalling
overhead, model complexity and some overfitting making it less efficient for low traffic
conditions.

5.2.2 Synchronisation Schemes - Evaluation

Synchronisation of agent decisions in a collaborative system such as the one discussed
here is essential as it defines for how long a neighboring agent’s decision remains valid and
when the information becomes deprecated. The three synchronisation schemes discussed
in Section 3.2.2 are asynchronous, synchronous and cycled decision making. Table 5.4
shows the training parameters for all models reviewed in this section. Again the models
compared below are the baseline solutions using fixed time intervals and the disjoint
solution which does not use collaboration among agents. All three models were trained
using the optimal collaboration type and the same reward function, green/yellow phases
and number of cars for training scenarios. Figure 5.7 shows the received negative rewards
received during training. Again the models converge at roughly the same pace but since
all collaborative agents use the optimal collaboration type, the disjoint solution performs
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Figure 5.7: Negative Reward per Episode - Synchronisation Schemes

slightly worse as expected from the findings of Section 5.2.1. The exact values of the
final training episode ([disjoint, async, sync, cycled] = [13621, 9222, 9250, 7244]) show
similar performance for synchronous and asynchronous decision making and further
improvement for cycled synchronisation. Again the performance measurements shown

Figure 5.8: Total Wait Time over 30 Repeat Experiments - Synchronisation Schemes

in Figure 5.8 and Figure 5.9 were taken on 30 test cases for each traffic scenario. As
expected, the mean wait times shown in Figure 5.9 are more stable than those shown
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Figure 5.9: Mean Vehicle Wait Time over 30 Repeat Experiments - Synchronisation
Schemes

in Figure 5.6 due to the collaboration type that was used. Analysis of the total sum
of wait time in the cluster of intersections shows that for medium and high traffic the
synchronous scheme is actually performing slightly better. This is potentially due to
high traffic scenarios benefiting most from the green wave effect which is supported most
by the synchronous scheme. Figure 5.8 also shows that for low traffic scenarios cycled
synchronisation is preferable because adjacent traffic lights can react faster as they do not
have to wait for a full cycle length before readjusting and can instead readjust after half
a cycle of 7 seconds. Despite the fact that there is not really an imbalance in approaching
vehicles in any direction, which is not often the case in the real world, synchronised
decision making still performs really well and is expected to perform even better when
there are certain imbalances in a given direction allowing for a decision hierarchy as
discussed in Section 3.2.2.

5.2.3 Robustness - Evaluation
The robustness of the proposed solution is tested in two separate regards. First is the
versatility of the algorithm to cope with traffic loads that differ from the scenarios it
was trained on. To this end the comparison features two models. One was trained
on the low traffic scenario (2000 cars per episode) and the second model was trained
on the high traffic scenario (4000 cars per episode). Both models are tested for their
downwards/upwards compatibility in dealing with scenarios that feature a much lower
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Collaboration-
Type

Sync-Type Reward G/Y Phase

optimal cycled cumwait 10s | 4s
Number of Cars Simulation-

Environment
State Size Hidden Layers

4000 / 2000 experiment 136 4x400

Table 5.5: Experiment Setup - Varying Traffic Load during Training

and higher traffic load than what they were trained on respectively. The second part
of the robustness evaluation explores robustness regarding traffic distribution differing
from the Weibull distribution the model was trained on. This specifically refers to the
double-Weibull and uniform distributions shown in Figure 4.8 and Figure 4.9 as opposed
to the original Weibull distribution of Figure 4.7 on which the model was originally
trained. The parameters of the two different models mentioned above are shown in
Table 5.5. Both use the optimal collaboration type and cycled synchronisation with
one having been trained exclusively on episodes featuring the low traffic scenario with
2000 cars over 4000 time steps, while the second one was trained on the very high traffic
scenario with 4000 cars.
In order to measure the downwards compatibility of a model facing much lower traffic

Figure 5.10: Robustness on Lower Traffic Scenario

than what it was originally trained on, Figure 5.10 shows the results for the low traffic
scenario featuring 2000 cars. In this graph DQN - High Traffic Training refers to the
model trained on 4000 cars and DQN - Low Traffic Training refers to the one trained
on 2000 cars. Interestingly the performance here is almost identical despite one having
been trained on exactly this scenario while the high traffic DQN was trained on scenarios
featuring twice the traffic load. Based on this the solution seems to be highly robust in
regard to lower traffic scenario.
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This robustness does not hold up in the opposite direction as the model trained on

Figure 5.11: Comparison of varying Traffic Scenarios

low traffic can not cope with traffic drastically higher than what it experienced during
training. Figure 5.11 visualizes this problem as the models performance completely
breaks down on the high traffic scenario featuring 4000 cars (denoted High Traffic Load
in Figure 5.11). Upon further investigation, the breakdown of performance is attributed
to the agent facing state representations it has never experienced during training which
results in more or less random decisions in these situations. In the worst case scenario
this can lead to a complete deadlock where the state stops changing because no car can
pass the intersection and the agents decision for the deadlock state does not allow for any
cars to pass. An example of such a deadlock situation is shown in Figure 5.12 where the

Figure 5.12: Possible Deadlock Situation

lanes are completely blocked resulting in no further state changes and the agents decision
for NORTH-SOUTH-Advance does not result in any vehicle clearing the intersection.
While this situation should never occur with a properly trained agent, it is important
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to account for this problem by implementing a fail safe to clear potential deadlocks. A
simple solution to preventing full deadlocks is checking if an agent decision resulted in no
state change and the new decision is identical to the one before. In this case an agent can
choose the action with the second highest Q-Value to unblock the intersection. The main
insight however is the importance of having an agent experience the maximum expected
traffic load during the training phase for it to learn how to handle them effectively as
the training does not appear to result in overfitting for high traffic scenarios and instead
still performs very good on low traffic scenarios as well. To evaluate the robustness in

Figure 5.13: Robustness on varying Traffic Distribution

regards to the traffic distribution, the traffic scenarios with their respective number of
vehicles were recreated with different underlying distributions. Thus for each of the four
traffic scenarios (1000, 2000, 3000, 4000) 30 test cases were generated for both alternative
distributions in order to compare the results and evaluate the performance under these
changing circumstances. Figure 5.13 clearly shows that there are no performance drop offs
due to changes in the distribution. For the uniform test cases, the more even distribution
of traffic with lower peak numbers even resulted in an improvement of total wait time for
the same number of vehicles over all traffic scenarios.

5.2.4 Distance between Intersections - Evaluation
In order to apply the concept of collaborative reinforcement learning agents to entire
traffic grids it is important to measure the drop off in effectiveness with increasing distance
between intersections to decide at which point parts of the grid can be viewed as disjoint
due to collaboration no longer being effective. To evaluate this effect this section compares
the improvement of the collaborative optimal solution over the non-collaborative disjoint
solution for three experiment setups with distances between intersections of 100m, 200m
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Collaboration-
Type

Sync-Type Reward G/Y Phase

optimal cycled cumwait 10s | 4s
Number of Cars Simulation-

Environment
State Size Hidden Layers

4000 / 5000 /
6000

experiment:
100m / 200m /
400m<

136 4x400

Table 5.6: Experiment Setup - Varying Distance Between Intersections

and 400m respectively. The exact model parameters are listed in Table 5.6. All models
are trained on their respective high traffic scenario as defined in Table 4.1 and tested for
low,medium and high traffic load. As there are two low traffic scenarios defined for the
100m experiment setup, the one chosen here features 1000 cars. In addition a second
model is trained for each experiment setup featuring the same parameters except for the
collaboration type which is the disjoint solution of Vidali et al. Figure 5.14 features the

Figure 5.14: Collaborative vs. Disjoint Solution - Varying Intersection Distance

results of all three distance modes with the dotted lines showing the non-collaborative
results. The evaluation clearly shows that while the optimal solution is better for the
100m and 200m case they are almost identical for 400m. This indicates that given the
maximum allowed speed of the simulation which is 50km/h 400m is the cut off where the
utility of collaboration between agents becomes negligible. To better visualize the exact
factors by which the improvement drops off, Figure 5.15 shows these factors calculated for
each of the 30 test cases. For the low traffic scenario the collaborative solution improved
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Collaboration-
Type

Sync-Type Reward G/Y Phase

optimal cycled cumwait /
queuelength

10s | 4s

Number of Cars Simulation-
Environment

State Size Hidden Layers

4000 experiment 136 4x400

Table 5.7: Experiment Setup - Queue Length Reward Function

the total wait time on average by approximately 14% over the disjoint solution which
dropped to 8% for 200m and 4% for 400m. Respectively for medium and high traffic
load these percentage values are 10%, 5%, 0% and 9%, 3%, 0%. These values are highly

Figure 5.15: Improvement over Baseline Disjoint Solution

dependent on the phase time between agent decisions and on the speed limit of the
roads between intersections but it shows the importance of considering this effect when
implementing a collaborative system.

5.2.5 Alternative Reward Function - Evaluation
This subsection explores the viability of using a simpler reward function which uses the
queue lengths as denoted in Equation 3.3 as opposed to the cumulative wait time per
vehicle. The measurement of exact cumulative wait times for each vehicle waiting in
a given intersection can become difficult in a real world setting which is why this is
discussed as an alternative if the former function proves infeasible in certain scenarios.

The two models that are compared here use cycled synchronisation, the optimal collabora-
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tion type as defined in Table 5.7 and only differ in the reward function that is used during
training. Since the two models use different reward functions the negative reward per

Figure 5.16: Wait Times of Training Episodes - Alternate Reward Function

episode is not comparable and Figure 5.16 shows the total sum of wait time per training
episode instead. It is important to note that this is the exact metric for which the the
primary reward function attempts to optimize its policy which makes the similarity in
resulting performance surprising. The queue length metric encodes less information in
the sense that it does not punish for instance a single vehicle waiting indefinitely as this
car will only represent one vehicle in the queue on each decision step. This problem
is solved by using cumulative wait time as a vehicle waiting for a long time will keep
increasing the negative reward until it is allowed to pass the intersection. Despite this the
alternate metric achieved very similar results during training with the small caveat that
the model using the queue length metric was more unstable during its final 20 training
episodes where performance dropped on a few episodes. While the results look promising
in regard to the training reward the actual evaluation on randomised test data shows a
crucial problem of the alternate reward function which is the deadlock problem shortly
discussed in Section 5.2.3. As shown in Figure 5.17 the results of the alternate reward
function show a very large standard error due to complete deadlocks occurring in certain
test cases. These deadlocks occur even for the high traffic scenario on which the model
was trained.
Further research is required to determine how to alleviate this deadlock problem, but if
the test cases where the model entered a deadlock are filtered out the results as shown in
Figure 5.18 while comparable and below the fixed time interval baseline still falls behind
the model using the cumulative wait time reward. Ultimately the results indicate that
the benefit provided by the simplicity of the queue length is outweighed by the drop in
performance. It is important to note that the complexity of the reward function only
factors in when training the model further. It is important to note again that if a model
is considered fully trained it can operate in any environment that can provide the state
representation it was trained on and does not require the information of the reward
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Figure 5.17: Alternate Reward Function - Results with Deadlocks

function. The main benefit of having a reward function that can be measured in a real
life implementation is to continuously generate training experiences and further train the
model.

Figure 5.18: Altenrate Reward Function - Results without Deadlocks

5.3 Real World Example - Evaluation
As discussed in Chapter 4 the real world example consists of three adjacent traffic lights
in the city of Christchurch NZ which are the intersections of Montreal St and Hereford
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Collaboration-
Type

Sync-Type Reward G/Y Phase

optimal / disjoint sync cumwait 16s | 4s
Number of Cars Simulation-

Environment
State Size Hidden Layers

1700 christchurch 43 / 30 4x200

Table 5.8: Christchurch Setup - Optimal and Disjoint Model

St, Montreal St and Worcester St and Montreal St and Gloucester St. In addition to
providing the exact traffic counts for all three intersections on the 26.03.2018 through
the intersection traffic counts database1 the Christchurch City Council Traffic Signals
Team upon request also provided the exact phase time logs for the entire 24 hours span
on 26.03.2018 given the information shown in Figure 5.19 as the traffic lights are not
completely fixed but may also react as actuated agents. This information was used to
remodel the intersections and generate the test cases and run the experiments on the
resulting simulation.

Figure 5.19: Phase Time Logs - Christchurch NZ

For the evaluation of the real world example, the parameters selected for the collaborative
model were based on the insights of the experiment evaluation. As shown in Table 5.8
chosen state representation is the optimal collaboration type as it showed the most
stable results across all traffic scenarios. Furthermore for the synchronisation scheme
the synchronised type was chosen as the Christchurch example features a large main
road which only allows for one-way traffic. This means that there is a sensible decision
hierarchy that can be used allowing for the algorithm to utilize the green wave effect. The
one-way traffic is allowed in the SOUTH-NORTH direction and thus the synchronized
decisions are made first by the southernmost agent and with minimal delay by the
following neighbor and so on. For the green/yellow phase time the green phase time was
increased by 6 seconds allowing for better utilization of the green wave effect with less
phase changes overall. Lastly the hidden layer width was adjusted to 200 as the input size
for the experiment simulation was a lot smaller with 43 bits for the collaborative solution

1https://ccc.govt.nz/transport/improving-our-transport-and-roads/traffic-count-data/intersection-
traffic-counts-database/
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and 30 for the disjoint solution. The number of cars generated in the training phase are
1700 in line with maximum traffic load measured by the the Christchurch City Council
Traffic Signals Team. Additionally the underlying distribution for traffic generation was
switched from the Weibull distribution depicted in Figure 4.7 to a uniform distribution in
accordance with the traffic distributions depicted in Figure 4.13. Similar to the experiment

Figure 5.20: Negative Reward per Episode - Christchurch Simulation

setup where the collaboration already showed decent improvements in the negative reward
received in the training phase this was also the case for the real world example. The exact
values of the last training episode respectively was: [disjoint, cycled] = [7284, 6165].
It is important to note that the real life experiment features a system of intersections
that is simpler than the fully connected experiment network with equally distributed
traffic load. For all three traffic lights there are only two light phases and the main road
is a one-way street. Furthermore the intersections timings are optimized and regulated
by the Sydney Coordinated Adaptive Traffic System[SD80]. Due to these circumstances
this highly optimized semi-fixed implementation performs a lot better than the fixed
time solution used in Section 5.2. This is confirmed by Figure 5.21 which shows the sum
of wait times per test case. Here the fixed time solution actually outperforms the disjoint
alternative on all three evaluated traffic scenarios. The collaborative solution shows
promising results for the low and medium traffic scenarios where the total waiting time
was reduced significantly when compared to the fixed time solution but the evaluation
clearly indicates that the fixed time interval becomes increasingly efficient as the traffic
load increases. This is in line with the findings of Vidali et al. [VCVB19] where the
fixed time solution outperformed the algorithm on very high traffic load in a single
intersection. In regard to perceived efficiency measured by mean wait time per vehicle
as shown in Figure 5.22 there is not really any significant improvement. While the
collaborative approach resulted in more stable wait means the fixed time solution resulted
in a lower median wait time over the 30 experiments. In order to better visualize the
results, Figure 5.23 shows the improvements by factor over the fixed time results. For
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Figure 5.21: Total Wait Time over 30 Repeat Experiments - Christchurch Simulation

Figure 5.22: Mean Vehicle Wait Time over 30 Repeat Experiments - Christchurch
Simulation
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this comparison each test case result from the collaborative and the disjoint solution was
compared to that specific result with fixed time intervals. This shows that on average the
collaborative solution improves the total wait time by 10% − 13% for low and medium
traffic while the non-collaborative solution performs 30% − 32% worse. In case of the
high traffic scenario the collaborative algorithm performs 0.5% worse on average.

Figure 5.23: Improvement over Optimized Fixed Time Intervals

Overall it can be said that the collaborative solution improves the total wait time of
the intersection for low to medium traffic situations over fixed time intervals while still
achieving similar results for very high traffic load even for the case of the optimized
Christchurch NZ intersections. Here the non-collaborative solution proposed by Vidali et
al. falls behind showing that an approach that does not utilize collaboration in closely
connected intersections can not compete with an optimized fixed time interval even for
low traffic scenarios.
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CHAPTER 6
Real Life Applicability

The aim of this chapter is to summarize and discuss the real life applicability of the
proposed algorithm by looking at the implementation steps and the technology required
to migrate the system from the simulation framework to the actual intersections it is
supposed to manage. A core issue in machine learning solutions is the famous cold start
problem which is most prominent in recommender systems[LKH14]. In the context of
traffic management this poses a problem if the agent is deployed before training and is
supposed to learn within a real life environment resulting in terrible traffic management
until the agent improves. One of the main benefits of the proposed solution is that due
to modern traffic micro-simulation frameworks such as SUMO this is a non-issue here,
as the initial training can be exclusively done within the simulation before the system
is migrated to the real world. Thus the applicability for real life implementation is
structured into two main parts which are first the conceptualisation and training within
the simulation framework and secondly the migration of the pre-trained solution to the
real world.

6.1 Conceptualisation and Training
This section summarizes the steps required for conceptualizing and implementing a solu-
tion for a given set of intersections on the exemplary implementation of the Christchurch
NZ intersection, which has not only provided performance measurements of the proposed
solution against a real optimized system of traffic lights, but also proved the collaborative
Q-Learning solution can quickly be adapted to a given set of real intersections. The
conceptualisation and training of the system consists of three core components which are
the construction of the simulation environment as closely to the real world intersections
as possible, the definition of the traffic distribution and traffic load either based on actual
traffic counts or approximation and lastly the selection of collaboration type and preferred
synchronisation for each agent in the system. The selection of the collaboration type
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here also includes the adaption of the state and action space based on the light phases,
number of lanes and allowed turns as discussed in Chapter 3.

The construction of the simulation , which is the first step, is straight forward
and only requires knowledge of the number of lanes, light phases, exact road lengths and
the exact traffic rules of the given network which includes allowed turns per lane and
also the speed limit. For the intersections of Christchurch NZ the information of road
measurements and traffic rules was retrieved using google maps and google streetview
and the light phases were confirmed by the Christchurch City Council Traffic Signals
Team. This information is used to construct the system in a given micro simulation tool
like SUMO. In essence, any micro simulation tool can be used that meets the two core
requirements which are identification of exact vehicle positions at any given time step
and tracking of wait times of each vehicle to allow for calculation of the cumulative wait
time reward metric.

Traffic distribution and maximum traffic load is the second requirement for the
conceptualisation phase. As shown by the evaluation in Chapter 5 it is important to train
the agent on the maximum expected traffic load for optimal results since the trained
agent scales well to lower than expected traffic loads but can not handle scenarios that
go far beyond the maximum traffic load it experienced during training. Furthermore the
simulation requires approximate probabilities for each possible turn to randomly generate
traffic for training and testing. Idealy these probabilities come from traffic counts taken
in the real intersection but the evaluation has shown that the agent is robust to changes
in the traffic distribution which promises decent results even when the simulated traffic
is only based on a rough estimate. Figure 4.4 for instance contains all the information
required for randomly generated traffic in the Christchurch NZ example.

Lastly, the non-fixed design decisions of the collaborative system need to be
defined. These design decisions include the adaptation of the state space, the adjustment
of the agent’s hidden layer width and the choice of collaboration type and synchronisation
scheme. While the state space of a single agent in the experiment setup featured 20 cells
per lane (10 for straight and right-turn traffic and 10 for left-turn traffic) this number
is not fixed and has to be adapted to the road length, desired granularity and most
importantly the available light phases. The choice of discretization into state-cells should
be made based on which lanes are relevant to certain light phases. In the example of
the experiment setup the intersections have two separate light phases which required
discretization into two cell-lanes as shown in Figure 6.1. The example of Christchurch NZ
on the other hand had only one light phase for NORTH-SOUTH bound traffic as shown in
Figure 6.2 which is why a single cell-lane is sufficient to convey the required information of
the state space. The final design decisions are the selection of the collaboration type and
the synchronisation scheme. For the collaboration types, the evaluation has shown very
promising results for the complex and the optimal collaboration type, but over all there
is no clear cut answer to which combination of collaboration type and synchronisation
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scheme is the best choice and they should instead be viewed as a tool set with different
strengths and weaknesses. To this end, the evaluation done in this thesis provides an
overview of potential benefits and drawbacks to help with these design decisions, but
further research is certainly required on these topics.

Figure 6.1: Cell Discretization - Experiment Setup

Figure 6.2: Cell Discretization - Christchurch NZ

6.2 Real World Migration
The solution proposed by this thesis keeps the conceptualisation, development and
training fully within the given simulation framework, which means that this first phase
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produces a fully trained agent without any hardware requirements, that can later be
deployed to an intersection as is. This section gives an overview of the challenges and
requirements for deploying the trained agents in the real world with possible technologies
that could be used to solve these issues. While this thesis does not discuss a solution that
continuously improves based on experiences after deployment in the field, this could be
added in future work and the necessary requirements are also briefly mentioned here. For
the migration of the trained agents to the real world there are three core problems that
need to be addressed. The first challenge is recreating the state-representation in a real
world setting which means detecting cars based on the lane discretization which splits the
lane into cells and detects the presence of vehicles in these cells. The second challenge is
allowing communication between this mechanism and the actual agent which controls
the light phases. With these two problems solved, the system can be migrated to the real
world for the non-collaborative solution proposed by Vidali et al.. For the collaborative
solution proposed by this thesis, the final requirement is communication between adjacent
intersections in order to share the currently active light phase and state representation in
real time. For the sake of this discussion the setting of the implementation is limited to
traffic with a speed limit of 50km/h. The evaluation has shown that for the given speed
limit, collaboration becomes ineffective at around 200m − 300m, which means that a
system can be viewed as disjoint and communication is no longer required beyond that
range. Thus, a fully operational collaborative solution has to be capable of communicating
with adjacent traffic lights within this 200m − 300m range.

State-Representation is the first and possibly the most challenging problem for a
real world implementation of this system. It should be noted that this is also one of the
strong points of the solution proposed in this thesis as the state-representation was kept
simple compared to other state-of-the-art reinforcement learning approaches, such as the
solution proposed by Kumar et al.[KMGK21] which not only requires vehicle position for
cell discretization but also exact speed measurements of each vehicle within the system.
Thus, the only required information is presence of a vehicle in a given cell. In recent
years a lot of research has been done in the field of image based vehicle recognition, and
as shown in the work of Wang et al.[WZSZ09] which was done in 2009, this problem
could already be considered partially solved in terms of vehicle recognition from a camera
mounted sufficiently high above a given intersection to provide a birds eye view. While
AI based image recognition is capable of providing the required information, there are
two main weaknesses of such an implementation which is on one hand a decrease in
accuracy in poor lighting or weather conditions, for instance at night or during heavy
rain, and on the other hand the possible difficulty to find a spot where the cameras can
be mounted to provide a sufficiently wide range of view to cover all of the required cell
discretization. An alternative solution could be proposed using small and cost efficient
wireless magnetic sensors as discussed by Sifuentes et al.[SCPA11]. These small sensors
could be used to directly represent each cell with a single sensor per cell. Liangliang
et al.[LZXJ19] proposed a wireless cloud based solution that utilizes these sensors to
measure occupancy in parking spaces as shown in Figure 6.3 which in essence solves
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the exact problem of cell discretization for the proposed algorithm. The main benefits
of this solution are its resistance to poor lighting and weather conditions and the fault
tolerance provided by a modular system, as a single faulty sensor will only result in
missing information of a single cell. As a drawback, in a city wide solution, maintenance
of these sensors could become very expensive which is why further research is required
on their life cycle and feasability.

Figure 6.3: Wireless Vehicle Detection (image by Liangliang et al.[LZXJ19])

Intersection Communication poses a less complex problem as this has been dis-
cussed in length in literature for traffic regulation ([DMP+21],[LZXJ19],[ZYC09]) and
is used for instance in common adaptive traffic light systems that use inductive loops
to detect vehicles in the intersection or similar systems that require communication of
wireless components in a network. This problem is also addressed by the actual solution
implemented in the real world example of Christchurch NZ where SCATS (Sydney Co-
ordinated Adaptive Traffic System) already solves this problem. The system shown in
Figure 6.3 also covers this problem using wireless sensors. The total communication cost
of information gathered within the intersection is also not problematic as the discussed
solution uses at most 20 cells or 20 bits of information per incoming lane.

Collaboration Communication is the third core problem of a potential real life
implementation. Due to the design of the system, collaborative communication can be
restricted to only the immediate neighborhood which keeps the total load of received and
transmitted communication small. Even for the complex collaboration type which utilizes
all of the available state information from neighboring intersections this only requires
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sending of 82 bit of information to each neighboring agent (or 328 bit of transmitted
information in the case of four neighboring agents) and 328 bit of received information
from four neighboring agents at each decision step, which in the case of the experiment
discussed in this thesis are 14 second intervals. Thus, the total cost of communication
required for the most expensive collaboration type is a total of 656 bits every 14 seconds.
Also the size of the fully trained complex model is around 75MB which easily fits on
common microcontrollers. The optimal collaborative model is even more efficient with a
size of just 8MB. A fully collaborative system could thus be constructed from a single
microcontroller in each intersection that communicates with neighboring controllers with
a built in LTE module or in case of physically close intersections even a standard 802.11ax
wireless LAN connection with repeaters. Alternatively the system can also be built on
already existing infrastructure which in the case of Christchurch NZ would already be
fully provided by SCATS1. Here communication in a distributed system of all intersections
has already been implemented based on the scheme shown in Figure 6.4. Overall, SCATS
generally provides all of the required infrastructure with the only exception being the
range of the inductive loop technology used for vehicle detection. While the system does
utilize this technology it only covers the front of the queue to detect the presence of a
waiting vehicle in a given lane. For further research it would be sufficient to extend this
infrastructure to allow for full lane discretization to build a real life prototype.

Figure 6.4: Sydney Coordinated Adaptive Traffic Systems

1https://www.scats.nsw.gov.au/
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CHAPTER 7
Conclusion and Discussion

In this final conclusion chapter the three research questions will each be revisited and
answered in detail based on the insight gained from the evaluation of the algorithm.
Lastly, all additional findings regarding benefits and drawbacks of the proposed solution
will be summarized and discussed along with possible future work and improvements.

7.1 Research Question 1 - Non-Collaborative Approach
Does the performance improvement of state-of-the-art reinforcement learning
solutions for smart traffic lights proposed for single intersections hold for
more complex traffic light grids with multiple intersections? Specifically is
there a statistically significant drop in performance improvement over fixed
time intervals? The goal of this research question is to highlight a weak point of
state-of-the-art solutions that are implemented and tested only for single intersections and
confirm the need to further improve on them by utilizing the potential for collaboration, as
an intersection can very rarely be seen as an isolated system. To answer this question the
Q-learning approach proposed by Vidali et al.[VCVB19] was implemented, the findings
for a single intersection were confirmed and the solution was applied to a more complex
grid of five intersections to measure if the improvement over fixed time intervals holds
in this system. While the results of Chapter 5 show great improvement over the fixed
time intervals for both the single intersection as well as the the grid of the experiment
setup these results are not a direct indicator for real life results. The purpose of the
fixed time interval used in the experiment setup is to provide a baseline by which the
results of a single intersection and the selected grid of five intersections can be compared.
Unlike with the real life example discussed in Section 7.3 the fixed time intervals used
here are not optimized for the grid and as such the magnitude of improvement is not
expressive. Figure 7.1 shows the factor by which the total wait time is decreased over
the fixed time interval across the 30 test cases per traffic scenario with the error bar
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Traffic Scenario Fixed In-
tervals

Disjoint - Single
Intersection

Disjoint - Five In-
tersections

Performance
Drop-Off (from
Single to Five)

Low Traffic 1 0.14 ± 0.01 0.27 ± 0.04 92.85%
Medium Traffic 1 0.27 ± 0.03 0.48 ± 0.04 77.78%
High Traffic 1 0.42 ± 0.06 0.63 ± 0.06 50%

Table 7.1: Factor Improvement: Disjoint over Fixed Time

depicting the standard deviation. For instance a factor of 0.3 on medium traffic can be
interpreted as the solution achieving on average 0.3 ∗ waittimefixedtime for the 30 test
cases generated with the medium traffic scenario. The exact values of the improvement

Figure 7.1: Improvement over Fixed Time Interval with Disjoint Solution

are listed in Table 7.1 and it is shown that the loss in performance improvement for all
three traffic scenarios is certainly significant. The research question is answered by the
fact that the performance improvement of the disjoint algorithm does not hold up in a
more complex system in regard to the metric of total wait time. This loss in performance
decreases with increasing traffic load but it is certainly significant for all scenarios. It
could be argued that simply approximating low, medium and high traffic scenarios for
comparison of a single intersection to five intersections is not accurate in measuring the
drop in performance but it should nonetheless be considered as an indicator that the
performance does not hold. Additionally this finding is reinforced by the evaluation of
the real world example in Section 5.3 which has shown that the state-of-the-art solution
of Vidali et al.[VCVB19] can not compete with highly optimized fixed time intervals in
multiple intersections contrary to the findings of Vidali et al. in a single intersection.
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Traffic Scenario Disjoint Optimal Complex Simple
Very Low Traffic 2279.61 ±

865.71
1937.79 ±
408.63

2392.61 ±
898.48

2585.15 ±
947.16

Low Traffic 6400.77 ±
1334.86

5823.16 ±
888.58

5880.28 ±
885.54

6657.17 ±
1285.20

Medium Traffic 14267.23 ±
2600.15

12918.40 ±
1669.07

12393.26 ±
1370.95

14392.04 ±
2618.69

High Traffic 34151.01 ±
5573.055

31030.95 ±
4691.27

28172.29 ±
4124.42

33925.44 ±
5951.16

Table 7.2: Average Sum of Wait Time per Intersection - Collaboration Types

7.2 Research Question 2 - Improvement by Collaboration

Does collaboration among agents in a grid of traffic lights lead to a
significant improvement in either cumulative wait time for the entire
cluster of intersections or the average cumulative wait time per vehicle
over non-collaborative agents?
To answer the second research questions the results for total wait times within the
intersections and the mean wait times per vehicles are again summarized in Figure 7.2
and Figure 7.3 respectively. As discussed in Chapter 5 the best performing collaboration
type for very low and low traffic was the optimal type while the complex type showed
the best results for medium to high traffic scenarios. Overall the most stable model was
the one built using the collaborative optimal type which is why this was chosen to be
compared to the disjoint solution in terms of statistically significant improvements in
this section. The exact values of the test results are shown in Table 7.2 and Table 7.3.

Figure 7.2: Average Sum of Wait Time - Disjoint Solution and Collaboration Types

Since the criterion used for this research question is a statistically significant improvement
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Figure 7.3: Mean Wait Time per Vehicle - Disjoint Solution and Collaboration Types

Traffic Scenario Disjoint Optimal Complex Simple
Very Low Traffic 10.22 ± 5.36 7.39 ± 1.24 7.67 ± 1.02 11.95 ± 3.40
Low Traffic 11.96 ± 1.66 10.27 ± 1.13 9.94 ± 0.89 12.35 ± 1.67
Medium Traffic 15.32 ± 1.97 14.18 ± 1.35 13.85 ± 1.10 15.54 ± 1.52
High Traffic 28.24 ± 3.83 24.87 ± 3.54 22.15 ± 2.95 25.54 ± 3.49

Table 7.3: Mean Wait Time per Vehicle - Collaboration Types

in terms of total wait time or mean wait time per vehicle, the result of the test cases
were evaluated using a one-tailed t-test, α = 0.05 and the following hypotheses:

H0 : Samplecollaborative >= Sampledisjoint

Ha : Samplecollaborative < Sampledisjoint

In order to reject the null hypothesis in favor of the alternative hypothesis p−value < 0.05
is required. Statistical significance testing of the collaborative optimal results versus the
disjoint results reported above yielded a p − value < 0.001 for all four traffic scenarios in
terms of sum of wait time as well as mean vehicle wait time which clearly shows that the
performance improvement by collaboration is statistically significant.

7.3 Research Question 3 - Real World Example
Can the proposed collaborative approach achieve significant
improvement over highly optimized real world intervals in terms of
total wait time or mean vehicle wait time?
The third research question is geared towards measuring the performance of the solution
in a competitive real world setting. In order to answer this question the chosen benchmark
are the intersections of Christchurch NZ which were remodeled in SUMO. As mentioned
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previously the intersections in Christchurch NZ are managed by the Christchurch City
Council Traffic Signals Team which kindly provided the traffic count data as well as
phase time logs for the measured intervals. The intersections phase times are optimized
by SCATS1 which is used for monitoring, managing and optimizing traffic flow for
Christchurch’s intersections resulting in much more efficient pseudo-fixed timings than
those featured in the experiment setup.

Figure 7.4: Average Sum of Wait Time - Christchurch Intersections

Figure 7.5: Mean Wait Time per Vehicle - Christchurch Intersections

To quickly summarize the setting again the disjoint solution and the collaborative solution
was evaluated against the optimized fixed time interval for the three intersections shown
in Figure 4.4. The low, medium and high traffic scenarios are based on the midday
traffic, morning peak and evening peak shown in Figure 4.13 respectively. Section 5.3

1https://www.scats.nsw.gov.au/
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Traffic Scenario Fixed Disjoint Optimal
Low Traffic 15284.53 ±

351.97
16205.27 ±
687.12

14081.47 ±
668.36

Medium Traffic 18451.73 ±
480.53

19624.27 ±
876.48

17409.9 ±
1111.55

High Traffic 26716.2 ±
833.56

31242.10 ±
2096.27

27566.17 ±
2028.36

Table 7.4: Average Sum of Wait Time per Intersection - Christchurch Intersections

Traffic Scenario Fixed Disjoint Optimal
Low Traffic 5.71 ± 0.15 6.24 ± 0.27 5.23 ± 0.26
Medium Traffic 5.85 ± 0.15 6.40 ± 0.30 5.55 ± 0.36
High Traffic 6.44 ± 0.21 7.70 ± 0.50 6.69 ± 0.49

Table 7.5: Mean Wait Time per Vehicle - Christchurch Intersection

summarized the results of this evaluation showing that the highly optimized fixed time
intervals are very efficient for the available real world data as they outperformed the
disjoint non-collaborative solution for all three traffic scenarios. The collaborative solution
did however show very promising results for low to medium traffic and comparable results
for the high traffic scenario.

In order to provide a concrete answer to the research question at hand, the results for
the sum of wait time and mean wait time per vehicle shown in Figure 7.4 and Figure 7.5
and summarized in Table 7.4 and Table 7.5 are tested for statistical significance based
on the same testing scheme used in Section 7.2. Thus a one-tailed t-test with α = 0.05
and the following hypotheses is used to confirm significance:

H0 : Samplecollaborative >= Samplefixed

Ha : Samplecollaborative < Samplefixed

For the sums of wait times per intersection, both the small and medium traffic scenario
results yielded a p−value < 0.001 which shows a significant improvement in performance.
For the high traffic scenario the hypotheses were reversed to check if the model is
performing significantly worse than the fixed time interval and with a resulting p−value =
0.041 it can be said that for α = 0.05 the resulting total wait time is indeed significantly
worse.
While the results for total wait time are all significant in either a positive or negative
sense the significance testing for the mean vehicle wait time yielded p − values =
[0.055, 0.13, 0.23] for low, medium and high traffic scenarios which shows that for α = 0.05
the reduction in mean vehicle wait time is neither significantly better nor worse than
that of optimized fixed time intervals. It should be noted that the results for the low
traffic scenario almost reached the threshold for significance. The definitive answer to
the research question at hand is that the collaborative Q-learning solution was shown to
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bring significant improvement over the intervals of a highly optimized solution regarding
the total wait time in the given intersections. However the experiment could not confirm
a significant improvement for very high traffic loads and for mean vehicle wait times in
general.

7.4 Summary and Discussion

7.4.1 Contributions

In summary, the answers to the three research question posed in this thesis provide
three core contributions to the field of traffic management with reinforcement learning
technologies. The first research question confirmed the drop in performance of state-of-
the-art solutions in more complex traffic light grids and thus the need for improvement
through for instance collaboration among agents to provide a competitive approach in
this field. The answer to the second research question confirmed that collaboration
and synchronisation among agents leads to a significant improvement on these non-
collaborative state-of-the-art solutions, which warrants further research in this direction.
Lastly the answer to the third research question shows that the benefit of collaboration
amongst agents as proposed by this thesis results in a solution that can compete and
for low to medium traffic load even outperform a highly optimized system taken from
a real world example of three intersections with real traffic data. Furthermore the
evaluation of the proposed solution has provided additional insights on the impact of
various design decisions in a collaborative system and on the robustness of such a system
to varying traffic loads and road lengths. Due to the nature of urban traffic, there are
many parameters that are not constant and vary from intersection to intersection and
this results in necessary adjustments that need to be made to the proposed solution. The
most essential of these design decisions were discussed and evaluated by this work and as
such this thesis provides knowledge on how a concrete solution should be adjusted based
on the underlying variables. This includes the road length at which collaboration is no
longer effective, which for 50km/h was shown to be at around 300m − 400m. In a larger
system or with different speed limits this threshold might vary, but the evaluation does
strongly suggest that this threshold exists in every system and should be considered. In
terms of collaboration and synchronisation the thesis provides insight on the strengths
and weaknesses of each approach. Here, synchronous decision making and the complex
collaboration type showed the most promising results for very high traffic load, while
cycled synchronisation and the optimal collaboration type showed to be most stable and
effective solution for low to medium traffic. In order for the collaboration types to function
as intended, the state space also needs to be adjusted according to the circumstances
in the given intersection. This work proposed a general guideline to define the cell
discretization for any given intersection by linking the cells to the corresponding light
phases as discussed in Chapter 6. While further research should be done into deriving a
fixed scheme for discretizing lanes in an optimal way, the concept discussed here is a first
step and provides a viable strategy that is applicable to any given intersection. Another
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crucial finding is the algorithm’s robustness to low traffic scenarios. The evaluation has
shown that agents with the optimal collaboration type that are trained on the maximum
expected traffic load using a Weibull distribution for traffic ramp up do not show any
signs of overfitting and perform very well on low traffic scenarios as well, while agents
that are faced with much higher traffic scenarios than those experienced during training
can not properly manage traffic resulting in a massive drop in performance or even
deadlocks. This highlights the importance of either estimating the maximum possible
load for a system or generally overloading it during model training. While all of the
design decisions summarized here can not simply be generalized and need to be made
individually for a given system, it can be said that the work done during the evaluation
of the algorithm provides a first overview of the strengths and weaknesses which is crucial
to making an informed decision in the design process and for future work in this field.

7.4.2 Future Work and Discussion
This final section of the thesis will discuss possible future work and in which aspects
the research conducted in this work can be expanded upon to provide further insight
and understanding of efficient traffic management using the collaborative multi agent
reinforcement learning approach proposed here. In summary, there are three separate key
areas of the implementation that can benefit greatly from future work. These three areas
being the conceptualisation phase of a concrete solution, the real life implementation and
lastly further research into the strengths and weaknesses of the solution in larger and more
complex systems or even entire city grids. While the thesis explored the effects of different
design steps which included the three collaboration types, the three synchronisation
schemes and the adjustment of cell discretization and subsequently the state and action
space and also the width and depth of the hidden layers of the reinforcement learning
model, there is no deterministic decision process for making these decisions. This means
that currently the optimal combination needs to be chosen based on best practices or if the
resources allow it, by simulating all possible combinations in a grid search. To this end, it
would be interesting for future work to further explore the impact of these design decisions,
possibly proposing a process that chooses these parameters based on certain features of
the underlying system of intersections thus providing an informed recommendation for
the design of these systems. The second area is the real life application of the solution
which has been discussed in Chapter 6. While the conceptualisation and the training of
the model can be contained within the simulation framework, the final implementation
has to be migrated to the actual intersections that are supposed to be controlled by
the system. Possible solutions for the challenges of this endeavor have been shown in
Chapter 6 but it should be noted that ultimately the usefulness of the proposed system
hinges on the feasibility of a real life implementation with all the pitfalls and difficulties
that come with moving from the simulation framework to the real world. The last point
of discussion for future work that is brought up in this section is further research into
the impact this scalable concept of immediate neighborhood collaboration has in larger
systems and how it compares to solutions that aim to fully optimize entire systems. Due
to resource limitation and the defined scope of this work, the collaboration was limited to
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the experiment setup featuring five intersections which was chosen to answer the research
questions and provide further insight on the impact of certain design decisions on the
systems behavior. For further research, it is important to expand this setup to larger
grids in order to measure if the shown improvements hold up there and also look deeper
into large scale effects such as the green wave effect over longer distances with multiple
intersections. This is essential to confirm if limiting the collaboration to the immediate
neighborhood has an adverse effect on these large scale concepts or if the solution can
actually reproduce these effects. Since the process of extending this solution to large
grids is iterative and can slowly be deployed throughout the entire city intersection by
intersection, it is also potentially interesting to look further into how well a collaborative
agent can utilize the consistency of neighboring traffic lights that operate on fixed time
intervals instead of assuming a fully collaborative system. This is important as some
intersections might not require further optimization or simply will not be upgraded due
to the limited resources available for urban planing.
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