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Kurzfassung

Die Anzahl der Lösungen für ein computationelles Problem kann enorm sein, weshalb
die Ausgabe aller Möglichkeiten oft nicht ratsam ist. Daher sollte ein Solver nur eine
kleine Anzahl aller Lösungen berechnen. Dies sollte jedoch keine willkürliche Auswahl
an Lösungen sein, sondern eine Sammlung möglichst unterschiedlicher, damit der*die
Nutzer*in den gesamten Lösungsraum besser erfassen kann.

Ausgehend davon beschäftigt sich die vorliegende Arbeit mit dem Problem der Berech-
nung einer Sammlung möglichst unterschiedlicher Antworten auf Datenbankabfragen –
mit besonderem Fokus auf konjunktive Abfragen – und der Berechnung einer Sammlung
möglichst unterschiedlicher Modelle aussagenlogischer Formeln. Dabei handelt es such
um zwei der grundlegendsten Probleme in der Datenbanktheorie und der künstlichen
Intelligenz. Zur Analyse dieser Probleme werden Techniken aus der parametrisierten Kom-
plexität verwenden, insbesondere wird die Komplexität der Probleme an Azyklizitätsmaße,
i.e., Baumweite und Hyperbaumweite, geknüpft.

Es werden sowohl theoretische Ergebnisse als auch konkrete Algorithmen angegeben,
die so detailliert erklärt werden, dass eine Implementierung unkompliziert erfolgen
kann. Konkret werden drei XP dynamische Programmieralgorithmen präsentiert, die
jeweils für azyklische konjunktive Abfragen, konjunktive Abfragen mit Negation oder
aussagenlogische Formeln entwickelt wurden. Für fixe Datenbankabfragen erster Ordnung
wird darüber hinaus eine FPT-Kernelisierungsprozedur angegeben. Abschießend werden
für die behandelten Probleme auch neue theoretische untere Schranken angeführt, welche
außerdem zu den in der gegenwärtigen Arbeit etablierten oberen Schranken passen.
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Abstract

The number of solutions to a computational problem can be tremendous and thus,
presenting them all to the user is often not advisable. Instead, a solver should only
output a small number of all solutions. However, these should not be arbitrary solutions
but a diverse collection such that the user obtains a better grasp on the whole solution
space.

Tackling this problem, in this thesis, we formally analyze the problem of computing a
diverse collection of answers to database queries – in particular conjunctive queries (CQ) –
and computing a diverse collection of models of propositional formulae (SAT). These
are two of the most fundamental problems that arise in database theory and artificial
intelligence. For our analysis, we apply techniques of parameterized complexity and to
that end, we tie the complexity of the problems to acyclicity measures, i.e., treewidth
and hypertreewidth.

We give theoretical results as well as concrete algorithms that are explained in such
detail that an implementation thereof is straightforward. Concretely, we present three
XP dynamic programming algorithms. These are designed for acyclic conjunctive queries,
conjunctive queries with negation, and propositional formulas, respectively. Furthermore,
for fixed first order database queries, we give an FPT kernelization procedure. As for
theoretical results, we provide novel lower bounds for the diversity problems which match
the upper bounds provided by the algorithms.
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CHAPTER 1
Introduction

Most computational problems are defined with some notion of solution. That is, for an
instance I of some computational problem X there is a set of solutions S(I). For example,
one would call a truth assignment γ that satisfies a propositional formula φ a solution of
the propositional satisfiability problem (SAT). Likewise, one can consider the answers
to a conjunctive database query to be the solutions of the conjunctive query answering
problem (CQ). There are many well established questions to analyze in combination with
the problem X (e.g., “Is there a solutions?” or ‘’How many solutions are there?”). These
questions all ask for/investigate/. . . different properties of S(I), therefore highlighting
different aspects of X which in return leave us with a better understanding of the
computational problem.

However, we would like to make a case for the fact that there is an important perspective
when handling S(I) which is at the moment not well understood theoretically. That is,
how to navigate through S(I) without materializing the possibly enormous number of
solutions. The reason for this is it that although all elements of S(I) are solutions to the
instance I, it is often not possible to model every aspect of a real world problem into I.
This could be the case because it is not feasible to model some preference or something
may have just been forgotten. Thus, an element of S(I) still may not solve the real world
problem and we need to search for a real solution in S(I).

To further motivate this, consider a variation of the car dealership example of Hebrard
et al. (2005). Let us say that I models the preference of a customer and S(I) are all
cars that match these restrictions. Now, in a large dealership, it would not be feasible
for the clerk to go through all cars S(I) with the customer. Instead, it would be better
for them to go through a rather small list of cars that are very different to each other.
With this, the clerk can rule out certain types of cars which the customer dislikes. In
contrary, if there is a car among them that almost fits the customers desires, the clerk
should concentrate on cars that are similar to this car.
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1. Introduction

This example gives us two basic problems to solve when wanting to navigate through S(I):
the diversity problem – how to find a small collection D ⊆ S(I) of diverse solutions –
and the similarity problem – how to find a small collection S ⊆ S(I) of similar solutions.
These are dual to each other but require similar techniques (Hebrard et al., 2005; Eiter
et al., 2013). We will mostly focus on the diversity problem, however we also explain how
results carry over to the similarity problem.

In the literature, the diversity problem has been considered for many well known compu-
tational problems. This was done for (mixed) integer programming (Danna and Woodruff,
2009), answer set programming (Eiter et al., 2013), constraint satisfaction problems (Petit
and Trapp, 2015; Ingmar et al., 2020), SAT (Nadel, 2011), and database queries (Drosou
and Pitoura, 2010; Vieira et al., 2011; Deng and Fan, 2014). However, most techniques
that have been developed are of heuristic nature and/or have worst case exponential
runtime bounds. To that end, algorithms which are provably optimal and which are also
tractable in the worst case are still missing for a lot of the mentioned problems.

1.1 Problem Statement

In this thesis we consider the problem of finding diverse solutions to database queries and
models of propositional formulae (Diverse-SAT). For database queries, we will mostly
focus on conjunctive queries (Diverse-CQ) and extensions thereof. The aim of this thesis
is to present novel algorithms and complexity theoretical results for these problems.

For this, one first needs to formally specify what a diverse collection of solutions is. There
is no one correct way to formalize this as it heavily depends on the context. Yet, as
Ingmar et al. (2020) point out, it is natural to define the diversity of a collection by
pairwisely comparing elements (solutions) and aggregating these values. Furthermore,
one may want each pair of solutions to satisfy a minimal diversity property. The most
basic example of such a constraint is that solutions are at least distinct from each other,
i.e., to ask for a set of diverse solutions.

However, allowing diversity measures in such generality may make the problems appear
harder in theory than they are when working with real world diversity measures. Thus,
often concrete diversity measures are analyzed in the literature. The most basic are
based on the pairwise Hamming distance of solutions (if they are either functions or sets).
Usually, either the sum of the Hamming distances or the minimal pairwise Hamming
distance is then considered as the diversity of the collection of solutions (Hebrard et al.,
2005; Baste et al., 2019, 2022; Hanaka et al., 2021a,b). We will mostly restrict ourselves
to these diversity measures in this thesis. Thus, unless mentioned otherwise, we mean
this type of diversity (exact formal definitions are given in Chapter 4).
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1.2. The Approach Taken

1.2 The Approach Taken
Classical complexity theory does not offer much insight into the problems at hand. This
is because for both, SAT and CQ, just asking whether there exists some solution at all
is already NP-hard. Hence, also finding multiple solutions which are additionally diverse
to each other is intractable (Hebrard et al., 2005). Thus, we use acyclicity measures and
parameterized complexity to analyze so-called islands of tractability. Informally speaking,
we tie the hardness of an instance to its degree of cyclicity which in turn allows us to
treat the problems SAT and CQ as if they were (almost) tractable.

With this, we can formally analyze how diversity impacts the hardness of the problems
and establish when and in what sense computing diverse collections of solutions is
tractable. Recall, that we only want to compute a small number of diverse solutions.
Thus, following in the footsteps of Baste et al. (2019), we will consider the number of
sought-after solutions as a parameter. This approach based in parameterized complexity
sets this thesis apart from previous work in the area of diverse database query answering
and SAT.

1.3 Outline and Overview of Results
The structure and the main contributions of this thesis are as follows: Firstly, an overview
of related work is given in Chapter 2. Then, in Chapter 3, relevant notions and definitions
are fixed. This includes notions of acyclicity, a short recapitulation of parameterized
complexity, basic propositional logic, and basic database theory. Chapter 4 then focuses
on the paradigm of diversity and the concrete problems that this thesis deals with.

Subsequently, the main results of the thesis are presented in Chapters 5 through 7.
We start by tackling Diverse-CQ in Chapter 5, presenting a dynamic programming
algorithm and a matching complexity theoretical lower bound. Furthermore, we also give
a kernelization algorithm which is significantly better than the dynamic programming
algorithm when we can assume the query to be fixed.

In Chapter 6, we slightly extend our query language. On the one hand, we show that
introducing unions makes it intractable to find even two diverse solutions to acyclic
queries. On the other hand, we show that when introducing negations, an only slightly
more restrictive acyclicity measure is sufficient to guarantee tractability. To that end, we
also present a dynamic programming algorithm for this acyclicity measure.

Then, in Chapter 7, we turn our attention to Diverse-SAT. Diverse-SAT can be reduced
to a fragment of Diverse-CQ with added negations and hence, the previous results are
transferrable. Furthermore, we present an improved dynamic programming algorithm,
which only depends on a less restrictive acyclicity measure. Lastly, we briefly consider
formulae in disjunctive normal form, give a complexity theoretical lower bound, and
discuss a worst case optimal brute force approach for certain cases.

Finally, we conclude in Chapter 8 and give some directions for future work.
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CHAPTER 2
Related Work

There exists a rich history of computing diverse solutions dating back to the 2000s
(Bailleux and Marquis, 1999; Crescenzi and Rossi, 2002; Angelsmark and Thapper, 2004;
Ziegler et al., 2005; Hebrard et al., 2005, 2007). In this chapter, we present works with
results similar in nature to the ones of this thesis.

Analyzing the diverse variant of problems from the perspective of parameterized com-
plexity with the number of sought-after solutions being a parameter rather recently came
up as a research interest. To the best of our knowledge, the starting point can be traced
back to an unpublished manuscript by Michael R. Fellows where the Diverse X Paradigm
is outlined (according to Baste et al., 2019).

This is picked up by Baste et al. (2019) who consider the d-Hitting Set and Feedback
Vertex Set problem. They managed to prove FPT results for both problems by using
a network flow formulation where the size of a solution is considered as an additional
parameter.

More recently, Baste et al. (2022) present a general method to solve the diverse variants
of vertex related problems (e.g., Vertex Cover) with the help of treewidth. They,
furthermore, show that several diverse graph theory problems admit polynomial kernels.

In the work of Hanaka et al. (2021b) (see also Hanaka et al., 2021a), the authors show
how to use the color-coding technique and randomization to achieve FPT results for many
graph related problems. This includes, for example, finding diverse l-paths. Moreover,
they show that finding diverse spanning trees is possible in polynomial time.

A related, slightly different line of research focused on finding pairs of diverse solutions.
That means that they consider the number of sought-after solutions to be fixed to two.
Hardness results thus severely limit which parameterized algorithms can exist.

Crescenzi and Rossi (2002) look at binary constraint satisfaction problems and manage to
show a complete classification in style similar to Schaefer (1978). In particular, they show
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2. Related Work

that computing two diverse solutions of 2-SAT or Horn-SAT instances is intractable in
general. In fact, it is only doable in polynomial time in the following two trivial cases: if
setting all variables to false and setting all variables to true works, or if flipping all truth
values of a satisfying assignment is again a satisfying assignment.

In the work of Fomin et al. (2020), the authors look at the problem of finding a diverse
pair of maximum matchings. Although finding a maximum matching in arbitrary graphs
is possible in polynomial time, finding a diverse pair is NP-complete (follows from Holyer,
1981). Fomin et al. (2020) show, however, that this is possible in polynomial time on
bipartite graphs and they give an FPT algorithm for general graphs where the parameter
is the target diversity instead of the number of sought-after solutions.
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CHAPTER 3
Preliminaries

In this chapter we will fix the terminology used throughout the whole thesis and intro-
duce some theoretical background. This includes notions of acyclicity, parameterized
complexity, basic propositional logic, and basic database theory.

We start by fixing some notation. In formulae, we will use lower case letters (x) to
denote variables and upper case letters (X) to denote sets of variables. By slight abuse
of notation, we will treat tuples and sets in the same way when no confusion arises. For
a set of sets A we write A as a shorthand for A∈A A. For positive integers n ∈ N we
denote {0, . . . , n} by [n]. We use A

n to denote the n element subsets of A.

Let f : X → A be some function and Y an arbitrary set. We call f |Y : X ∩ Y → A
defined by f |Y (y) = f(y), y ∈ X ∩ Y the restriction of f on Y . Conversely, if Y ⊆ X
we call the function f : X → A an extension of f |Y : Y → A. We write f ∼= h to
denote that two functions f : X → A, h : Z → B agree on X ∩ Z, i.e., f |X∩Z = h|X∩Z .
Furthermore, for f ∼= h we define the (well-defined) functions f ∪ h : X ∪ Z → A ∪ B
and f ∩ h : X ∩ Z → A ∩ B. For x ∈ X, z ∈ Z, y ∈ X ∩ Z we define (f ∪ h)(x) = f(x),
(f ∪ h)(z) = h(z), and (f ∩ h)(y) = f(y) = h(y). Lastly, we define f(Y ) = {f(y) : y ∈ Y }
and f(x1, . . . , xn) = (f(x1), . . . , f(xn)) for (x1, . . . , xn) ⊆ X.

3.1 Hypergraphs and Acyclicity
We assume the reader is familiar with basic graph theory. We will use the term graph to
refer to simple graphs, i.e., finite undirected graphs where edges are only drawn between
exactly two vertices. In contrast, a hypergraph is a tuple H = (V, E) where V is a finite
set of elements called vertices or nodes and E ⊆ 2E \ ∅ is a set of edges. Therefore,
hypergraphs are a strict generalization of graphs. When the vertex and edge set are not
explicitly named, we will refer to the vertex set by V (H) and the edge set by E(H). For
the sake of simplicity, we neglect hypergraphs with isolated vertices. For graphs G we

7



3. Preliminaries

denote the subgraph induced by V ′ ⊆ V (G) as G[V ′] = (V ′, E(G) ∩ V ′
2 ). When possible,

we will always assume that a tree T is rooted in some r ∈ V (T ). Then, for a t ∈ V (T ),
we denote the subtree rooted in t by Tt.

Acyclic graphs are an important class of graphs for which many computational problems
become efficiently solvable. The same is true for hypergraphs, but there are multiple
notions of acyclicity when working with hypergraphs (see Brault-Baron, 2016). We only
require the so-called α-acyclicity and we will therefore call hypergraphs acyclic if they
are α-acyclic.

Definition 1 (Join tree, α-acyclicity). A join tree of a hypergraph H is a tree T together
with a labeling λ : V (T ) → E(H) that satisfies the following properties:

1. The labeling λ is a bijection.

2. For every vertex v ∈ V (H), the set Tv = {t ∈ V (T ) : v ∈ λ(t)} induces a
subtree T [Tv].

A hypergraph H is called (α-)acyclic if there exists a join tree of H.

Given a hypergraph, one can check in linear time whether it is acyclic and in the case
where it is acyclic, also the join tree can be computed in linear time (Graham, 1979; Yu
and Özsoyoğlu, 1979; Tarjan and Yannakakis, 1984).

To extend the class of (hyper)graphs for which computational problems are efficiently
solvable, generalizations of acyclicity are regularly considered. The most prominent
notions being treewidth (Robertson and Seymour, 1984) to generalize acyclic graphs and
hypertreewidth (Gottlob et al., 2002a) to generalize acyclic hypergraphs. These express
the degree of cyclicity of a graph, where high values correspond to highly cyclic graphs.
To define these notions we first need to define tree and hypertree decompositions.

Definition 2 (Tree decomposition). A tree decomposition of a hypergraph H is a tree T
together with a labeling χ : V (T ) → 2V (H) that satisfies the following properties:

1. Every v ∈ V (H) appears in some χ(t), t ∈ V (T ).

2. Every edge e ∈ E(H) is fully contained in some χ(t), t ∈ V (T ).

3. For every v ∈ V (H), the set Tv = {t ∈ V (T ) : v ∈ χ(t)} induces a connected
subtree T [Tv].

For a subtree T ′ of T we write χ(T ′) as a shorthand for χ(V (T ′)).

Definition 3 (Hypertree decomposition). A hypertree decomposition of a hypergraph H
is a tree T together with two labeling χ : V (T ) → 2V (H), λ : V (T ) → 2E(H) that satisfies
the following properties:

8



3.2. Parameterized Complexity

1. The tuple (T, χ) is a tree decomposition of H.

2. For each t ∈ V (T ) we have χ(t) ⊆ λ(t).

3. For each t ∈ V (T ) we have λ(t) ∩ χ(Tt) ⊆ χ(t).

With this we can proceed to define treewidth and hypertreewidth.

Definition 4 (Treewidth). The width of a tree decomposition (T, χ) is maxt∈V (T ) |χ(t)|−1
and the treewidth tw(H) of a hypergraph H is the minimal width over all tree decompo-
sitions of H.

Definition 5 (Hypertreewidth). The width of a hypertree decomposition (T, χ, λ) is
maxt∈V (T ) |λ(t)| and the hypertreewidth hw(H) of a hypergraph H is the minimal width
over all hypertree decompositions of H.

Examples of join trees, tree decompositions, and hypertree decompositions are given in
Sections 3.3 and 3.4.

Both width optimal tree and hypertree decompositions can be computed in polynomial
time for classes of hypergraphs with bounded tw(H) and hw(G) (Bodlaender, 1996;
Gottlob et al., 2002a), respectively, and thus, algorithms which work well with low width
decompositions can be used on these graph classes. This is also precisely the reason why
we need property three of Definition 3. Without this property, even identifying graph
classes of bounded hypertreewidth would be NP-hard (Gottlob et al., 2009). Furthermore,
it is know that hw(H) ≤ 3 · tw(H)+2 (Adler et al., 2007) and thus, algorithms that profit
from low hypertreewidth are preferable to algorithms that profit from low treewidth.

To simplify algorithms that use tree decompositions, one often assumes the decomposition
to be in some normal form. For that matter, a nice tree decomposition (Kloks, 1994)
is a tree decomposition (T, χ) where each node p ∈ V (T ) is either a leaf, an introduce
node, a forget node, or a join node. An introduce node has a single child t ∈ V (T ) with
χ(t) ⊆ χ(p) and |χ(t)| + 1 = |χ(p)| (the element x ∈ χ(p) \ χ(t) is introduced). A forget
node has a single child t ∈ V (T ) with χ(t) ⊇ χ(p) and |χ(t)| − 1 = |χ(p)| (the element
x ∈ χ(t) \ χ(p) is forgotten). Lastly, a join node has exactly two children t1, t2 ∈ V (T )
and χ(t1) = χ(p) = χ(t2). Transforming an arbitrary tree decomposition (T, χ) into a
nice tree decomposition (T ′, χ′) can be done efficiently, does not increase the width of
the decomposition, and only increases the number of nodes by a constant factor (Kloks,
1994).

3.2 Parameterized Complexity
In classical complexity theory, one only analyzes the impact of the instance size on the
asymptotic runtime of an algorithm. This, thus, conceals the fact that different parts of
instances may impact the runtime in different ways. Consider for example the problem

9



3. Preliminaries

of answering a database query. Classically one would call this problem intractable in
general. However, the reason why answering database queries is feasible in practice
can be attributed in part to the fact that real world queries are usually very small (in
comparison to the database) and the size of the query is the root of the intractability
(Vardi, 1982).

The framework of parameterized complexity tries to provide a formal body to conduct
these more fine grained analyses and was pioneered by Downey and Fellows in the 1980s
and 1990s (Downey and Fellows, 1999). A more recent introduction can be found in
Cygan et al. (2015), Downey and Fellows (2013). The idea of parameterized complexity is
to describe an instance I by its size n and an additional parameter k ∈ N (in our example
the size of the query |Q|). This additional parameter k can be any positive integer
associated with the instance but should ideally explain the high asymptotic runtime of
an algorithm and be reasonably small in practice. Therefore, the number of sought-after
solutions k in a diversity problem or acyclicity measures are suitable parameters.

The first important parameterized complexity class is FPT. An algorithm A is called fixed-
parameter tractable (FPT) if it runs in time f(k) · nc, where f is a computable function, c
a constant, k the parameter, and n the size of the instance. A parameterized decision
problem X is called FPT (or is in the class FPT) if there exists an FPT algorithm A that
solves X . Importantly, the degree of the polynomial dependency on n does not depend
on the parameter. For XP problems precisely this restriction is weakened.

A parameterized algorithm A is said to run in XP time (XP algorithm) if it terminates
after at most O(nf(k)) steps, where f is a computable function, k the parameter, and n
the size of the instance. Analogously, a parameterized decision problem X is in the
class XP if there exists an XP algorithm A that solves X .

An important question in parameterized complexity is whether a problem admits an FPT
algorithm, an XP algorithm, or neither. The most successful tool to establish negative
results are, as in classical complexity theory, reductions, in this case fpt-reductions. An
fpt-reduction R maps instances I of X with parameter k to instances R(I) of X ′ with
parameter k′ such that

• I is a Yes-instance if and only if R(I) is a Yes-instance,

• the parameter k′ is less or equal to h(k), where h is a fixed computable function
(fixed by R), and

• R can be computed in time f(k) · nc, where n is the size of I, and c a constant
(fixed by R).

The classes FPT and XP are closed under fpt-reductions. But not all problems that are
assumed to not be in FPT are assumed to be XP-hard. Most importantly, these are
problems that lie in the so called weft hierarchy, i.e., the classes W[1], W[2], . . . , W[P ].
These classes are not defined by the runtime of the algorithms that solve its problems

10



3.3. Propositional Formulae

and a proper definition is omitted at this point. For this theses it is just important to
note that they are also closed under fpt-reductions and are nested with the classes FPT
and XP as follows:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP
Deciding whether a graph has an independent set of size at least k is a classical
W[1]-complete problem (k is the parameter). The parameterized problem Independent-
Set is formally defined as follows:

Independent-Set
Input: A graph G and a positive integer k.
Parameter: k.
Solution: A set I ⊆ V (G) with |I| ≥ k and such that each pair of vertices from

I is not adjacent in G.

It is widely assumed that FPT ̸= W[1] (see Flum and Grohe, 2006; Downey and Fellows,
2013) and hence, for practical purposes W[1]-hardness suffices to rule out the existence
of an FPT algorithm. To rule out the existence of an XP algorithm, is suffices to show
that a problem remains NP-hard even when the parameter is assumed to be bounded by
some constant.

3.3 Propositional Formulae
A propositional formula is a well-formed formula where the building blocks are (proposi-
tional) variables (x1, x2, . . . ), the unary negation symbol (¬), and the logical connectives
and (∧) and or (∨). A positive or negated variable is called literal and a disjunction
of literals a clause. A truth assignment is a mapping γ : X → {0, 1} where X is a set
of variables. We denote the set of variables that appear in a formula φ by var(φ). Let
γ : X → {0, 1} be a truth assignment such that var(φ) ⊆ X. We evaluate φ under γ by
replacing all variables in φ in accordance to γ and by interpretating the logical connectives
in the usual way. If γ satisfies φ, i.e., φ evaluates to true (1) under γ, we write γ ⊨ φ.

A truth assignment that satisfies φ and is defined on exactly var(φ) is called a model
of φ and the set of all models of φ is denoted by M(φ). With this we can define the
well-known computational problem SAT:

Propositional Satisfiability (SAT)
Input: A propositional formula φ.
Solution: A model γ ∈ M(φ).

Deciding whether a proposition formula has a model is classically NP-complete (Cook,
1971; Levin, 1973).
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A formula φ is in disjunctive normal form (DNF) if it is a disjunction of conjunctions,
i.e., of the form φ = n

i=1 Di, where Di are of the form Di = mi
j=1 li,j and li,j are literals.

Conversely, φ is said to be in conjunctive normal form (CNF) if it is a conjunction of
disjunctions, i.e., of the form φ = n

i=1 Ci, where Ci are clauses Ci = mi
j=1 li,j and li,j

are again literals. It is often simpler to use set notation when handling formulae in CNF.
For this, by abuse of notation, we say φ = {C1, . . . , Cn}. W.l.o.g we always assume Di

and Ci to neither have duplicate literals nor dual literals. This can be ensured by a
simple preprocessing step.

Example 1. φ = (x ∨ y) ∧ (¬x ∨ y) ∧ (y ∨ z) ∧ (¬y ∨ u) ∧ (u ∨ v) is a CNF formula
and ψ = (¬x ∧ y ∨ ∧z) ∨ (y ∧ z) ∨ (x ∧ ¬z) is a DNF formula. The truth assignment
γ = {x → 1, y → 1, z → 0, u → 1, v → 0} is a model of φ.

We will refer to the problems where the input formulae must be in CNF or DNF as
CNF-SAT and DNF-SAT, respectively.

It is well known that it remains NP-complete to decide whether a CNF formula has model
while it is possible to decide this for a DNF formula in polynomial time (Karp, 1972).

To describe the structure of a propositional formula φ in CNF we will use two graphs.
Firstly, the primal graph Gp(φ) of φ has var(φ) as its vertex set and an edge is drawn
between two variables x, y if and only if they appear together in some clause Ci, i.e.,
{x, y} ⊆ var(Ci). Secondly, the incidence graph Gi(φ) of φ is a bipartite graph with
vertex sets var(φ) and φ = {C1, . . . , Cn}. A variable x is connected to a clause Ci if and
only if x ∈ var(Ci). The primal treewidth twp(φ) is the treewidth of Gp(φ) and, likewise,
the incidence treewidth twi(φ) is the treewidth of Gi(φ). It is known that a formula
with primal treewidth k has at most an incidence treewidth of k + 1 (Kolaitis and Vardi,
2000).

Example 2. The primal and incidence graph of the formula φ of Example 1 can be seen
in Figure 3.1. The clauses are C1 = x∧y, C2 = ¬x∧y, C5 = y ∧z, C4 = ¬y ∧u, C5 = u∧v.
In Figure 3.2, width optimal nice tree decompositions thereof are depicted.

Lastly, we note that the primal treewidth can equivalently be defined as the treewidth
of the hypergraph of φ. The hypergraph of φ has again var(φ) as its vertex set but for
each clause Ci a single edge is drawn, i.e., the edge var(Ci). Furthermore, in this setting
it would make sense to consider the hypertreewidth and CNF formulae with acyclic
hypergraphs. However, it is already NP-hard to decide whether a formula has a model
even when the formulae are restricted to CNF formulae with acyclic hypergraphs (Samer
and Szeider, 2010). Thus, considering this structural restriction cannot lead to tractable
algorithms that find diverse solutions and is thus not further considered.
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3.4 Basic Database Theory
A relational schema R is a set of relation symbols R = {R1, . . . , Rn}, each having a fixed
arity mi ∈ N. An instance I over a relational schema R consists of a domain dom(I) and
assigns each relation symbol Ri a relation RI

i ⊆ dom(I)mi . We also call I a database and
the RI

i are the relations (tables) of the database. W.l.o.g. we will assume that dom(I)
only consists of the elements which also appear in at least one table.

Using the relation symbols of a relation schema R as predicates, we can construct first
order (FO) formulae φ over R. These consist of atoms Ri(Z), negations (¬), conjunctions
(∧), disjunctions (∨), and universal (∀x) and existential quantifiers (∃x). They are
structured in the natural way and Z is an mi-tuple of variables.

A mapping γ : Z → dom(I) satisfies an atom Ri(Z) over the database I if γ(Z) ∈ RI
i .

By the usual inductive definition we say that a mapping γ : X → dom(I) satisfies the
formula φ(X) with free variables X over I if φ evaluates to true under γ (the quantifiers
quantify over dom(I)). We omit the reference to I if the database is clear from the
context.

A query Q over a relational schema R is of the form Q : ans(X) ← φ(X), where φ is a
first order formula over R with free variables X. An answer of Q with respect to some
database I is a mapping γ : X → dom(I) that satisfies φ. The set of all answers is
denoted as I(Q). With this we can define the problem of first order query evaluation.

First Order Query (FOQ)
Input: A query Q and database I over a relational schema R.
Solution: A mapping γ ∈ I(Q).

Deciding whether an arbitrary first order query has a solutions over a database is well
know to be PSPACE-complete. (Chandra and Merlin, 1977):

We call Q a conjunctive query with negation (CQ¬) if φ is of the form ∃Y ψ(X, Y ) and ψ
is a conjunction of literals, i.e., ψ = m

j=1 Lj and each Lj is a literal. If all literals are
positive, we refer to Q as a conjunctive query (CQ). Conjunctive queries are one of the
most basic and important database queries and correspond to select-from-where SQL
statements and select-project-join relational algebra expressions.

A slightly larger class of queries are unions of conjunctive queries (UCQs). There, φ is
of the form l

j=1 ∃Yjψj(X, Yj) and each ψj is a conjunction of atoms. The set of answers
corresponds to the union of the answers to ans(X) ← ∃Yjψi(X, Yj), hence the name.

We denote the restrictions of the computational problem FOQ to CQ¬, CQ, and UCQ
also by CQ¬, CQ, and UCQ, respectively. Deciding whether there exists a solution is
NP-complete for all three problems (Chandra and Merlin, 1977).
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We remark at this point that we neither allow constants nor equalities in queries as these
can be removed by a simple preprocessing step. Furthermore, from this point forward
we will assume that each variable appears at most once in an literal of a CQ¬/CQ and
the set of variables of two distinct literals must differ by at least one variable. These
restrictions simplify the augmentations below without impairing the generality of the
statements made in this thesis (cf. Gottlob et al., 2001).

To describe the structure of a CQ¬ Q, we define the hypergraph H(Q) of Q as the
hypergraph with vertex set var(φ) and an edge Zi for each literal Li(Zi). In accordance
with the nomenclature for propositional formulae, we call tw(H(Q)) the primal treewidth
of Q and denote it by twp(Q).

We call a CQ Q an acyclic conjunctive query (ACQ) if the hypergraph H(Q) is acyclic
and a join tree/hypertree decomposition of H(Q) also called a join tree/hypertree
decomposition of Q. As each atom has a distinct set of variables, we can 1-1 associate
the variable sets λ(t) of a join tree (T, λ), t ∈ V (T ) with the atoms of Q. We will thus
consider λ(t) to be an atom and Q : ans(X) ← ∃Y t∈V (T ) λ(t). Likewise, we define
hw(Q) = hw(H(Q)) and, for hypertree decompositions (T, χ, λ) of Q, we treat λ(t) to
be a set of atoms of Q.

Example 3. The query

Q : ans(x1, . . . , x8) ← R1(x1, x2, x3) ∧ R2(x2, x3, x4) ∧ R3(x4, x5)
∧ R4(x4) ∧ R5(x5, x6) ∧ R6(x7, x8)

is acyclic, while the query

Q′ : ans(x1, x2, x3, x4) ← R1(x1, x2) ∧ R2(x2, x3) ∧ R3(x1, x3) ∧ R4(x3, x4)

is cyclic due to the cycle within R1(x1, x2), R2(x2, x3), and R3(x1, x3). The hyper-
graphs H(Q) and H(Q′) can be seen in Figure 3.3. In Figure 3.4, a join tree of Q is
depicted in addition to a width-optimal hypertree decomposition of Q′. The values λ(t)
are depicted as (sets of) atoms.

Analogously, a union of conjunctive queries Q : ans(X) ← l
j=1 ∃Yjψj(X, Yj) is called a

union of acyclic conjunctive queries (UACQs) if all ans(X) ← ∃Yjψi(X, Yj) are acyclic.

We will refer to the computational problem FOQ where we restrict ourselves to ACQs
and UACQs also as ACQ and UACQs, respectively. Finding a solutions is doable in
polynomial time for these problems due to Yannakakis’ algorithm (Yannakakis, 1981).
In contrast, parameterized by the primal treewidth twp(Q) and hypertreewidth hw(Q),
respectively, for CQ¬ and CQ it is W[1]-hard and in XP to decide whether there exists a
solutions over some database (Gottlob et al., 2002a,b). Moreover, the stronger parameter
of primal treewidth is needed for CQ¬ as the problem remains NP-hard even on CQs¬

with acyclic hypergraphs (Samer and Szeider, 2010).
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CHAPTER 4
Diversity and Problem Definitions

The approach to diversity used in this thesis loosely follows the Diverse X Paradigm
published by Baste et al. (2019) (which, according to them, was proposed by Michael
R. Fellows). In the Diverse X Paradigm, the X stands for a problem where the instances
and solutions are defined, but not the question or task. A generic problem in this setting
looks as follows:

X
Input: An instance I of problem X .
Solution: A solution γ of X for the instance I.

We denote in this generic setting the set of solutions of an instance I by S(I).

Now, one can ask many different questions about X and complexity results may not
be translatable from one variant of the problem to the other. Classically, one would
ask if there exists a solutions, i.e., the question “S(I) ̸= ∅?”. However, there are many
other natural questions to answer about S(I). This includes the questions: “How many
different solutions are there in S(I)?”, “How does an example of a solution γ ∈ S(I)
look like?”, and “How does the whole set of solutions S(I) look like?”. These correspond
to different variants of the problem that originate from the same definition of instance
and solution, namely a non-emptiness problem, a counting problem, a search problem,
and an enumeration problem. Analyzing one and the same problem from these different
perspectives leads to a deeper understanding of said problem.

Problems that are “easy to decide, but hard to count” (e.g. DNF-SAT) exemplify that
results from one variant are not immediately transferrable to another variant. Thus, to
ensure that no confusion arises, when talking about the complexity of the problem X , we
refer to the question whether there is a solution γ ∈ S(I), i.e., “S(I) ̸= ∅?”.
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The Diverse X Paradigm tries to bridge the gap between asking for a single solution (a
γ ∈ S(I)) and asking for all solutions (the whole set S(I)), by asking for a fixed number
of solutions k (where k is usually small), which, as an additive property, are in some
sense diverse to each other. This paradigm can thus be applied, similar as the questions
above, to most computational problems and adds another perspective from which to look
at a problem. It just requires an additional function δ (diversity measure) that expresses
the diversity of a set of solutions. The diverse version of the problem X is defined as:

Diverseδ-X
Input: An instance I of problem X and positive integers k, d.
Question: Do there exist (pairwise distinct) solutions γ1, . . . , γk ∈ S(I) of I such

that δ(γ1, . . . , γk) ≥ d?

We usually consider the number of sought-after solutions k as a parameter to the problem
Diverseδ-X . Furthermore, we will differentiate between bag and set semantics, i.e, where
two solutions γi, γj , i ̸= j are allowed to coincide and where they have to be distinct,
respectively. The problem Diverseδ-X can then be analyzed as a parameterized decision
problem. In this thesis, we will mostly deal with two diversity measures: δsum and δmin.
These are, summed Hamming distance and minimal Hamming distance. For this purpose
assume, as is the case for all problems considered in this thesis, that the solutions
γ1, . . . , γk are mappings γi : X → A. The Hamming distance ∆ of two solutions γi, γj is
then defined as

∆(γi, γj) =
x∈X

γi(x) ̸= γj(x).

The diversity measures are then, respectively, defined as

δsum(γ1, . . . , γk) =
1≤i<j≤k

∆(γi, γj),

δmin(γ1, . . . , γk) = min
1≤i<j≤k

∆(γi, γj).

We will write Diversesum-X for Diverseδsum-X , and Diversemin-X for Diverseδmin-X . Further-
more, we will use Diverse-X as a shorthand if a statement holds for Diversesum-X and
Diversemin-X both for set and bag semantic. Thus, for example, if we say Diverse-X is
solvable in polynomial time, we mean that all four problems are solvable in polynomial
time, and if we say Diverse-X is NP-hard, we mean that all four problems are NP-hard,
independently.

In total, Figure 4.1 summarizes the diversity problems considered in this thesis and there
connections. An arrow indicates that the problem at the tip is strictly more general
than the problem at the shaft. The connection between Diverse-SAT and Diverse-CQ¬

is due to a reduction and discussed in Chapter 7. Furthermore, Figure 4.1 also depicts
which acyclicity measures are relevant for which problems. Thus, we usually consider
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the diversity problem parameterized by k plus the depicted acyclicity measure (if any
is depicted). How to associate an incidence treewidth to a propositional formula not in
CNF will also be discussed in Chapter 7.

Diverse-UCQ

Diverse-CQ

Diverse-CQ¬

Diverse-SAT

Diverse-CNF-SAT Diverse-DNF-SATDiverse-ACQ

Diverse-UACQ

Diverse-FOQ

twp

twi

(twi)

hw

Figure 4.1: Relevant problems and their connections.

In the remainder of this section, we discuss some design decisions. Firstly, we allow
solutions to appear multiple times in the list γ1, . . . , γk, i.e., we consider bag semantics, as
our methods consider partial solutions on the way to compute the whole solutions. These
partial solutions necessarily need to be allowed to coincide. Therefore, the central ideas
can more easily be understood when we also allow the whole solutions to coincide. We
will, however, whenever possible explain how to get from bag semantics to set semantics.
Set semantics naturally makes more sense from a practical point of view, as distinct
solutions are surely preferable for the user.
The Diverse X Paradigm allows us to consider a large variety of different diversity
problems. This, however, is a rather simple way to express what diversity means and
much more can be said about the structure of δ (see Ingmar et al. (2020)). Nevertheless,
both Diversesum-X and Diversemin-X are surly very basic and natural diversity problems.
They are in particular often the problems under consideration when diversity is analyzed
from a complexity theoretical point of view (Baste et al., 2019, 2022; Hanaka et al.,
2021a,b). Furthermore, analyzing Diverseδ-X for arbitrary δ may result in hardness
results solely due to the fact that we allow “unnatural” diversity measure.
Dual to diversity problems are so called similarity problems (cf. Hebrard et al., 2005;
Eiter et al., 2013). Similarity problems ask for a small subset of similar solutions, i.e,
which for example have low δsum. However, although this may not be the intended use,
the same semantic can be achieved in the Diverse X Paradigm by defining the measure of
diversity such that high value express low diversity and low values express high diversity
(for example we can define σ = −δsum). It is thus not necessary to introduce the a
separate Similarσ-X problem. In fact, in Chapters 5 to 7 we will also discuss how to solve
Diverseδ-X for a class of diversity measures greater than just δsum and δmin. This class
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includes diversity measures which intuitively rather measure the similarity of a collection
of solutions than its diversity.
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CHAPTER 5
Diversity in Conjunctive Queries

In this chapter, we will tackle the problem Diverse-CQ, providing theoretical analysis and
concrete algorithms. We will proceed in the following way: Firstly, we consider the case
of acyclic conjunctive queries parameterized by the number of sought-after solutions k.
To that end, an algorithm is presented in Section 5.1 that runs in polynomial time when k
is bounded. The algorithm is inspired by Yannakakis’ algorithm (Yannakakis, 1981) and
can be seen as an extension thereof. Then, in Section 5.2, we explain how the result
on ACQs can be used to solve the general problem Diverse-CQ and we discuss some
modifications that are possible. Lastly, in Section 5.3, the W[1]-hardness of Diverse-ACQ
is shown. There, we also look at what happens when either the database or the query
is assumed to be fixed. Rather surprisingly, fixing the query turns out to be a weaker
restriction than fixing the database for Diversesum-ACQ (bag semantics).

5.1 Algorithm for Acyclic Conjunctive Queries
In the following, we design a dynamic programming algorithm that solves Diverse-ACQ
by using a join tree as a guide. First, we fix some notation. Let R be a relation scheme
and I a matching database. Furthermore, let Q : ans(X) ← ∃Y φ(X, Y ) be an ACQ
with φ = n

i=1 Ai and each atom Ai = Ri(Zi) for some predicate Ri ∈ R and Zi ⊆ X ∪ Y .
For an atom Ri(Zi), define I(Ri(Zi)) as the set of mappings I(ans(Zi) ← Ri(Zi)), i.e.,
where α(Zi) ∈ RI . For the sake of succinctness, we just write δ if the statements hold for
both δsum and δmin.

Moreover, we also assume a join tree (T, λ) of Q to be given. For subtrees T ′ of T we
define φT ′ = t∈V (T ′) λ(t) and QT ′ : ans((X ∪ Y ) ∩ var(φT ′)) ← φT ′ . Notice that QT ′

has no existentially bound variables and thus, QT is not necessarily equal to Q but
I(Q) = {γ|X : γ ∈ I(QT )}. Furthermore, we have

max
γ1,...,γk∈I(QT )

δ(γ1|X , . . . , γk|X) = max
γ1,...,γk∈I(Q)

δ(γ1, . . . , γk).
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Thus, by defining δX(γ1, . . . , γk) = δ(γ1|X , . . . , γk|X), solving Diverse-ACQ for Q is
(almost) the same as solving DiverseδX

-ACQ for QT . Notice that this works for summed
and minimal Hamming distance. To that end, we also define ∆X(γi, γj) = ∆(γi|X , γj |X).

For two subtrees T1 and T2 of T where the respective roots are connected by an edge,
we denote the subtree with the vertices V (T1) ∪ V (T2) ⊆ V (T ) by T1 ∪ T2. By abuse of
notation, we denote the one vertex graph ({t}, ∅) by t.

The algorithm will compute the following relationship for subtrees T ′ of T with root
t ∈ V (T ′):

DT ′ ⊆ I(λ(t))k × [|X|] k(k−1)
2

Intuitively, a tuple (α1, . . . , αk, d1,2, . . . , dk−1,k) shall appear in DT ′ if there exist answers
γ1, . . . , γk to the query encoded in T ′ which extend α1, . . . , αk and each pair γi, γj , i < j
achieves the diversity di,j . Put differently, d1,2, . . . , dk−1,k is a possible combination of
pairwise diversities if answers to the subproblem locally need to look like α1, . . . , αk.
Formally, DT ′ is defined as

DT ′ = {(α1, . . . , αk, d1,2, . . . , dk−1,k) : α1, . . . , αk, ∈ I(λ(t)),
γ1, . . . , γk ∈ I(QT ′),
γ1 ∼= α1, . . . , γk

∼= αk,

di,j = ∆X(γi, γj), 1 ≤ i < j ≤ k}.

We note that di,j = ∆X(γi, γj) is clearly never larger than |X|.
The algorithm will proceed as follows. First, the sets Dt are computed for all one vertex
subtrees t ∈ V (T ) and then, by traversing the tree T bottom-up, the sets DT ′ are
computed for increasingly large subtrees. For this, let t be an inner node with Tt being
the subtree rooted in t. Furthermore, let t1, . . . , tmt be its children and assume each DTti

to already be computed. We compute DTt by computing the sets

Dt ⇝ Dt ∪ Tt1

⇝

DTt1

⇝ Dt ∪ Tt1 ∪Tt2

⇝

DTt2

⇝ · · · ⇝ Dt ∪ mt
i=1 Tti

⇝

DTtmt

= DTt (5.1)

in this order. These sets can be computed with the help of the subsequent lemmata.
Lastly, the maximal achievable diversity can easily be read off from DT .

Lemma 1. Let t be a node in T . Then

Dt = {(α1, . . . , αk, d1,2, . . . , dk−1,k) : αl ∈ I(λ(t)), di,j = ∆X(αi, αj)} (5.2)

and Dt can be computed in time O(|I(λ(t))|k · k2 · |var(λ(t))|).

Proof. Equation 5.2 follows directly, as the only extensions are α1, . . . , αk themselves.
Furthermore, the time bound is achieved by iterating through all (α1, . . . , αk) ∈ I(λ)k

and naively computing ∆X(αi, αj).
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Lemma 2. Let t1 and t2 be two adjacent vertices in T and let t1 be the parent of t2.
Furthermore, let T1 and T2 be two disjoint subtrees of T (V (T1)∩V (T2) = ∅) with roots t1
and t2, respectively. Then, DT1 ∪ T2 =

{(α′
1, . . . , α′

k, d1,2, . . . , dk−1,k) : α′
l ∈ I(λ(t1)), α′′

l ∈ I(λ(t2)), α′
l

∼= α′′
l , l = 1, . . . , k,

(α′
1, . . . , α′

k, d′
1,2, . . . , d′

k−1,k) ∈ DT1 ,

(α′′
1, . . . , α′′

k, d′′
1,2, . . . , d′′

k−1,k) ∈ DT2 ,

di,j = d′
i,j + d′′

i,j − ∆X(α′
i ∩ α′′

i , α′
j ∩ α′′

j ), 1 ≤ i < j ≤ k}.

(5.3)

Additionally, the set DT1 ∪ T2 can be computed in time O(|D|2 · k · (k + |Z|)) given DT1

and DT2, where D is the larger of the two sets DT1 , DT2, and Z is the larger set of
variables from var(λ(t1)) and var(λ(t2)).

Proof. First assume (α′
1, . . . , α′

k, d1,2, . . . , dk−1,k) to be a tuple in the set on the right-hand
side of Equation 5.3 and let α′′

l , d′
i,j witness this. To that end, let γ′

1, . . . , γ′
k ∈ I(QT1),

γ′′
1 , . . . , γ′′

k ∈ I(QT2) witness that (α′
1, . . . , α′

k, d′
1,2, . . . , d′

k−1,k) ∈ DT1 and, analogously,
(α′′

1, . . . , α′′
k, d′′

1,2, . . . , d′′
k−1,k) ∈ DT2 We conclude that γ′

1 ∪γ′′
1 , . . . , γ′

k ∪γ′′
k are in I(QT1 ∪ T2)

and we compute

∆X(γ′
i ∪ γ′′

i , γ′
j ∪ γ′′

j ) = ∆X(γ′
i, γ′

j) + ∆X(γ′′
i , γ′′

j ) − ∆X(γ′
i ∩ γ′′

i , γ′
j ∩ γ′′

j )
= d′

i,j + d′′
i,j − ∆X(α′

i ∩ α′′
i , α′

j ∩ α′′
j )

= di,j .

Hence, (α′
1, . . . , α′

k, d1,2, . . . , dk−1,k) ∈ DT1 ∪ T2 .

For the reverse direction, consider a (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ DT1 ∪ T2 and let
γ1, . . . , γk ∈ I(QT1 ∪ T2) witness this. For l = 1, . . . , k we define γ′

l = γl|var(φT1 ) ∈ I(QT1),
γ′′

l = γl|var(φT2 ) ∈ I(QT2) . Then, by definition of DT1 and DT2 ,

(γ′
1|var(λ(t1)), . . . , γ′

k|var(λ(t1)), ∆X(γ′
1, γ′

2), . . . , ∆X(γ′
k−1, γ′

k)) ∈ DT1 ,

(γ′′
1 |var(λ(t2)), . . . , γ′′

k |var(λ(t2)), ∆X(γ′′
1 , γ′′

2 ), . . . , ∆X(γ′′
k−1, γ′′

k )) ∈ DT1 ,

and we compute

di,j = ∆X(γi, γj)
= ∆X(γ′

i, γ′
j) + ∆X(γ′′

i , γ′′
j ) − ∆X(γ′

i ∩ γ′′
i , γ′

j ∩ γ′′
j ).

Hence, the tuple (α1, . . . , αk, d1,2, . . . , dk−1,k) is also in the set on the right-hand side of
Equation 5.3.

Computing DT1 ∪ T2 can be done in the following way: First, project DT2 onto the variables
Z = var(λ(t1)) ∩ var(λ(t2)), i.e, compute

D′
T2 = {(α′′

1|Z , . . . , α′′
k|Z , d′′

1,2, . . . , d′′
k−1,k) : (α′′

1, . . . , α′′
k, d′′

1,2, . . . , d′′
k−1,k) ∈ DT2}.
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5. Diversity in Conjunctive Queries

Then, join DT1 and D′
T2 on the variables Z, i.e., compute

D′
T1 ∪ T2 = {(α′

1, . . . , α′
k, d′

1,2, . . . , d′
k−1,k,d′′

1,2, . . . , d′′
k−1,k) :

(α′
1, . . . , α′

k, d′
1,2, . . . , d′

k−1,k) ∈ DT1 ,

(α′′
1, . . . , α′′

k, d′′
1,2, . . . , d′′

k−1,k) ∈ D′
T2 ,

α′
l|Z = α′′

l , l = 1, . . . , k}.

Lastly, we just need to compute the values di,j as described in Equation 5.3, i.e, we
compute

DT1 ∪ T2 = {(α′
1, . . . , α′

k,d1,2, . . . , dk−1,k) :
(α′

1, . . . , α′
k, d′

1,2, . . . , d′
k−1,k, d′′

1,2, . . . , d′′
k−1,k) ∈ D′

T1 ∪ T2 ,

di,j = d′
i,j + d′′

i,j − ∆X(α′
i|Z , α′

j |Z), 1 < i ≤ j < k}.

All of this can naively be done in time O

|DT1 | · |DT2 | ·k · k+ var(λ(t1)) + var(λ(t2))


by using nested loops. This completes the proof.

With this we finalize the algorithm and bound its overall runtime.

Theorem 1. Let R be a relation scheme, I a compatible database, and Q a compatible
acyclic conjunctive query with free variables X. Then the problem Diverse-ACQ can be
solved in time O(|RI |2k · (|X| + 1)k(k−1) · k2 · |var(A)| · |Q|), where RI is the table from I
with the most rows and A is the atom with the highest number of variables. In particular,
the problem Diverse-ACQ is in XP when parameterized by the number of sought-after
solutions k.

Proof. Firstly, computing a join tree (T, λ) in the required time bound is no problem (Gra-
ham, 1979; Yu and Özsoyoğlu, 1979; Yannakakis, 1981). Then, using Lemmata 1 and 2,
we can compute DT in the required time bound. For this we proceed as described (see
Equation 5.1) and apply Lemma 1 once for each node and Lemma 2 once for each edge, i.e.,
each lemma O(|Q|) many times. Furthermore, notice that |DT ′ | ≤ |RI |k · (|X| + 1)

k(k−1)
2

for each subtree T ′ of T by definition.

We can compute (gray brackets are for set semantics)

max
γ1,...,γk∈I(Q)

(γi ̸=γj for i ̸=j)

δsum(γ1, . . . , γk) = max
γ1,...,γk∈I(QT )

(γi|X ̸=γj |X for i ̸=j)

δsum(γ1|X , . . . , γk|X)

= max
γ1,...,γk∈I(QT )

(∆X(γi,γj)>0 for i ̸=j) 1≤i<j≤k

∆X(γi, γj)

= max
(α1,...,αk,d1,2,...,dk−1,k)∈DT

(di,j>0 for 1≤i<j≤k) 1≤i<j≤k

di,j ,
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max
γ1,...,γk∈I(Q)

(γi ̸=γj for i ̸=j)

δmin(γ1, . . . , γk) = max
γ1,...,γk∈I(QT )

(γi|X ̸=γj |X for i ̸=j)

δmin(γ1|X , . . . , γk|X)

= max
γ1,...,γk∈I(QT )

(∆X(γi,γj)>0 for i ̸=j)

min
1≤i<j≤k

∆X(γi, γj)

= max
(α1,...,αk,d1,2,...,dk−1,k)∈DT

(di,j>0 for 1≤i<j≤k)

min
1≤i<j≤k

di,j .

Thus, we can read off the maximal possible diversity from DT for summed and minimal
Hamming distance as well as for set and bag semantics in the required time bound.

Example 4. An execution of the described algorithm on the query Q of Example 3 can
be seen in Figure 5.1. For this, the database I in use is also depicted in the figure. For a
node t, the set DTt is computed by considering the children subtrees from left to right.
For the sake of succinctness, tuples (α1, α2, d1,2) ∈ DT ′ are omitted if there is a strictly
better tuple (α1, α2, d′

1,2) ∈ DT ′ , i.e., d1,2 < d′
1,2.

5.2 Lifting the ACQ-Algorithm
In the following, we will consider some slight modification and extensions that allow the
ACQ-Algorithm to solve Diverseδ-ACQ for more general δ and the more general problem
Diverse-CQ. Furthermore, we discuss how to achieve exponential speedups for the case of
δ = δsum and how to reconstruct k witnessing answers γ1, . . . , γk with maximal diversity.

5.2.1 Reconstructing Witnesses
Reconstructing witnessing diverse answers is possible in the usual way by backtracking top-
down. To see this, let t be an inner node and let t1, . . . , tm be its children in the order they
were considered by the algorithm. Now let Tt,ts = t l

i=1 Tts . The algorithm computes
the tuples in DTt,ts

by justifying them with tuples from DTt,ts−1
and DTts

. Concretely,
for each tuple (α1, . . . , αk, d1,2, . . . , dk−1,k) in DTt,ts

, the algorithm “knows” about a tuple
(α1, . . . , αk, d′

1,2, . . . , d′
k−1,k) in DTt,ts−1

and about a tuple (αts
1 , . . . , αts

k , dts
1,2, . . . , dts

k−1,k)
in DTts

with di,j = d′
i,j + dts

i,j − ∆X(αi ∩ αts
i , αj ∩ αts

j ), 1 ≤ i < j ≤ k. In total, the
algorithm can keep track of the tuples

(αt1
1 , . . . , αt1

k , dt1
1,2, . . . , dt1

k−1,k) ∈ DTt1
, . . . , (αtm

1 , . . . , αtm
k , dtm

1,2, . . . , dtm
k−1,k) ∈ DTtm

that justify each (αt
1, . . . , αt

k, dt
1,2, . . . , dt

k−1,k) ∈ DTt . That means that for we have
αt1

l
∼= αt

l , . . . , αtm
l

∼= αt
l and

dt
i,j = ∆X(αt

i, αt
j) +

m

s=1
dts

i,j − ∆X(αt
i ∩ αts

i , αt
j ∩ αts

j ).
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R2(x2, x3, x4)

R3(x4, x5)R1(x1, x2, x3)

R5(x5, x6)R4(x4) R6(x7, x8)

α1 α2

x4 x4 d1,2
0 0 0
0 1 1
1 0 1
1 1 0

α1 α2

x5 x6 x5 x6 d1,2
0 1 0 1 0
0 1 0 2 1
0 1 1 0 2
0 2 0 1 1
0 2 0 2 0
0 2 1 0 2
1 0 0 1 2
1 0 0 2 2
1 0 1 0 0

α1 α2

x4 x5 x4 x5 d1,2
0 0 0 0 0
0 0 1 1 2
0 0 3 1 2
1 1 0 0 2
1 1 1 1 0
1 1 3 1 1
3 1 0 0 2
3 1 1 1 1
3 1 3 1 0

α1 α2

x4 x5 x4 x5 d1,2
0 0 0 0 0
0 0 1 1 2
1 1 0 0 2
1 1 1 1 0

α1 α2

x4 x5 x4 x5 d1,2
0 0 0 0 1
0 0 1 1 3
1 1 0 0 3
1 1 1 1 0

α1 α2

x4 x5 x4 x5 d1,2
0 0 0 0 3
0 0 1 1 5
1 1 0 0 5
1 1 1 1 2

α1 α2

x7 x8 x7 x8 d1,2
5 7 5 7 0
5 7 8 8 2
8 8 5 7 2
8 8 8 8 0

α1 α2

x1 x2 x3 x1 x2 x3 d1,2
3 2 2 3 2 2 0
3 2 2 3 4 4 2
3 4 4 3 2 2 2
3 4 4 3 4 4 0

α1 α2

x2 x3 x4 x2 x3 x4 d1,2
2 2 0 2 2 0 0
2 2 0 2 4 1 2
2 4 1 2 2 0 2
2 4 1 2 4 1 0

α1 α2

x2 x3 x4 x2 x3 x4 d1,2
2 2 0 2 2 0 0

α1 α2

x2 x3 x4 x2 x3 x4 d1,2
2 2 0 2 2 0 3

RI
2

2 2 0
2 4 1

RI
3

0 0
1 1
3 1

RI
1

3 2 2
3 4 4

RI
4

0
1

RI
5

0 1
0 2
1 0

RI
6

5 7
8 8

Figure 5.1: Solving Diverse-ACQ with the help of a join tree.
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Now, if we start with a tuple (αr
1, . . . , αr

k, dr
1,2, . . . , dr

k−1,k) ∈ DTr in the root and track
down all justifications recursively, we get

dr
i,j = ∆X(αr

i , αr
j) +

t∈V (T )
∆X(αt

i, αt
j) − ∆X(αp(t)

i ∩ αt
i, α

p(t)
j ∩ αt

j),

where p(t) is the parent of t ∈ V (T ) \ {r}. Thus, by the properties of a join tree,

dr
i,j = ∆X(

t∈V (T )
αt

i,
t∈V (T )

αt
j).

Consequently, we can compute the witnesses t∈V (T ) αt
1, . . . , t∈V (T ) αt

k ∈ I(Q) by ad-
ditional bookkeeping. This bookkeeping clearly does not increase the runtime of the
algorithm.

5.2.2 Exponential Speedup

In the proofs above, the exponential dependency arises due to the possibly exponential
size of the data structure DT ′ . Thus, by reducing the size of the data structure, an
exponential speedup is possible. This is important for Diversesum-ACQ (bag semantics)
as it is possible to reduce the size of DT ′ to |I(λ(t))|k. The idea is to only keep track of
the maximal achievable overall diversity instead of all pairwise diversities, i.e., the data
structure

D′
T ′ = {(α1, . . . , αk, d) : (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ DT ′ ,

d =
1≤i<j≤k

di,j ,

d is maximal for (α1, . . . , αk)}

is sufficient. We claim without formal proof that this data structure can also be maintained
in the proven time bounds and thus, the problem Diversesum-ACQ (bag semantics) can
be solved in time O(|RI |2k · k2 · |var(A)| · |Q|). Most crucial for a formal proof is the fact
that it is possible to compute the diversity of a collection of solution by combining the
diversities achieved on each individual variable, i.e.,

δsum(γ1, . . . , γk) =
x∈X

δsum(γ1|{x}, . . . , γk|{x}). (5.4)

Note that Equation 5.4 does not hold it we replace δsum with δmin.

Similarly, for Diversesum-ACQ with set semantics only the summed diversity d and
whether partial solutions are different from each other is relevant. Thus, following data
structure suffices (bi,j are Boolean values indicating whether the extensions γi, γj of αi, αj

need to be distinct from each other on the X variables or are allowed to coincide on
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the X variables):

D′′
T ′ = {(α1, . . . , αk, b1,2, . . . , bk−1,k, d) : (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ DT ′ ,

d =
1≤i<j≤k

di,j ,

d is maximal for (α1, . . . , αk),
bi,j = (di,j > 0), for 1 ≤ i < j ≤ k}.

The size of this data structure is never more than |I(λ(t))|k · 2
k(k−1)

2 and thus, we
claim (again without proof) that Diversesum-ACQ (set semantics) can be solved in time
O(|RI |2k · 2k(k−1) · k2 · |var(A)| · |Q|).

5.2.3 Generalizing the Diversity Measure
Intuitively, to solve Diverse-ACQ, the presented algorithm computes all possible simulta-
neously achievable pairwise distances of solutions and then selects the collection with the
highest overall diversity. Thus, how the overall diversity is computed is only relevant
in the final step and, hence, it is possible to solve Diverseδ-ACQ in the time bound of
Theorem 1 for any “reasonable” diversity measure δ that stems from combining pairwise
Hamming distances.

Corollary 1. Let f : k≥1 N
k(k−1)

2 → Q be a function such that f(d1,2, . . . , dk−1,k) is
computable in time O(k2) and define δ(γ1, . . . , γk) = f(∆(γ1, γ2), . . . , ∆(γk−1, γk)). Then,
Theorem 1 also holds for Diverseδ-ACQ (set and bag semantics).

Proof. We can copy the first part of the proof to Theorem 1 and then compute (gray
brackets are for set semantics):

max
γ1,...,γk∈I(Q)

(γi ̸=γj for i ̸=j)

δ(γ1, . . . , γk) = max
γ1,...,γk∈I(QT )

(γi|X ̸=γj |X for i ̸=j)

δ(γ1|X , . . . , γk|X)

= max
γ1,...,γk∈I(QT )

(∆X(γi,γj)>0 for i ̸=j)

f(∆X(γ1, γ2), . . . , ∆X(γk−1, γk))

= max
(α1,...,αk,d1,2,...,dk−1,k)∈DT

(di,j>0 for 1≤i<j≤k)

f(d1,2, . . . , dk−1,k).

Thus, analogously to before, we can read off the maximal possible diversity from DT .

Both δsum and δmin fall into this category of diversity measures (f = and f = min,
respectively). But this also shows that we can solve some similarity problems in the time
bound of Theorem 1. For example, following functions work:

σsum(γ1, . . . , γk) = −
1≤i<j≤k

∆(γi, γj),

σmax(γ1, . . . , γk) = − max
1≤i<j≤k

∆(γi, γj).
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5.2.4 From Diverse-ACQ to Diverse-CQ

We now turn our attention to the more general problem Diverse-CQ. The concepts of
hypertree decompositions and hypertreewidth (Gottlob et al., 2002a) were precisely
developed to bridge the graph between ACQs and CQs. In the following, we will outline
the steps required to apply the developed algorithm from Section 5.1 to arbitrary CQs
(cf. Gottlob et al., 2002a; Pichler and Skritek, 2013).

To that end, let I be a database instance, Q be a CQ, and (T, χ, λ) a hypertree de-
composition thereof. Furthermore, let X be the free variables, Y the bound variables,
and ω the width of (T, χ, λ). Due to Gottlob et al. (2002a), we can assume that each
atom A of Q appears in some λ(t), t ∈ V (T ) and var(A) ⊆ χ(t). With such a hypertree
decomposition, we can compute a new query ACQ Q and new database I such that
I(Q) = I(Q) (Gottlob et al., 2002a; Pichler and Skritek, 2013).

The new query is
Q : ans(X) ← ∃Y

t∈V (T )
Rt(χ(t)),

where Rt are fresh relation symbols and the tables RI
t are obtained by joining all tables

corresponding to the atoms in λ(t) and projecting the result onto χ(t). We have to
perform at most ω joins to compute RI

t and thus, Q and I are at most polynomially
larger than Q and I, if we assume ω to be bounded by a constant. Lastly, note that all
these steps, including computing a width optimal hypertree decomposition, can be done
in polynomial time if hw(Q) is assumed to be bounded by a constant (Gottlob et al.,
2002a). This argumentation implies the corollary below.

Corollary 2. The problem Diverse-CQ lies in XP parameterized by the number of
sought-after solutions k plus the hypertreewidth of the query hw(Q).

Proof. This is a direct consequence of the above argumentation combined with Theorem 1.

Example 5. The cyclic conjunctive query Q′ considered in Example 3 together with a
database I can be transformed into the acyclic conjunctive query

Q′ : ans(x1, x2, x3, x4) ← Rt1(x1, x2, x3) ∧ Rt2(x1, x3) ∧ Rt3(x3) ∧ Rt4(x3, x4)

with the help of the hypertree decomposition HD(Q′) = (T, χ, λ) (also from Example
3). The accompanied tables are as follows: RI

t1 is the join of RI
1 and RI

2, RI
t2 = RI

3, RI
t3

is the projection of RI
2 onto the second column, and RI

t4 = RI
4. The query Q′ is clearly

acyclic as (T, χ) is a join tree thereof.
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5.3 Data-, Query-, and Combined Complexity

When analyzing database queries it is very important to specify which parts of the input
are considered to be fixed. To that end, one usually considers the data-, query-, and
combined complexity of database queries (Vardi, 1982):

Data Complexity: The query is assumed to be fixed and the impact of the database
on the runtime is analyzed.

Query Complexity: The database is assumed to be fixed and the impact of the
query on the runtime is analyzed.

Combined Complexity: Neither the database nor the query is assumed to be fixed
and the overall runtime is analyzed.

The practical reason for the distinction is the fact that real world databases can easily
have multiple terabyte of data while the queries are usually tiny in comparison. Thus,
assuming the query to be fixed is reasonable in practice. Nevertheless, from a theoretical
point of view and to more thoroughly understand the problems, all three cases are of
interest.

Note that deciding the existence of an answering to general CQs is NP-hard query
complexity (thus also for combined complexity), while deciding this for FO queries only
requires logarithmic space data complexity (Chandra and Merlin, 1977; Vardi, 1982).
However, recall also that answering ACQs is tractable combined complexity (Yannakakis,
1981).

In the following, we will consider the problem Diverse-ACQ more thoroughly from these
three perspectives. To that end, Theorem 1 already showed the XP-membership in the
combined complexity case. Moreover, the argumentation in Section 5.2.2 shows that
Diversesum-ACQ (set and bag semantics) is FPT query complexity.

Subsequently, we will show the W[1]-hardness of Diverse-ACQ in the combined complexity
case, thus establishing that the existence of an FPT algorithm is unlikely and the
described algorithm is in fact optimal. Thereafter, we show that Diversesum-ACQ (only
bag semantics) can be solved in polynomial time when the database is assumed to be
fixed and k is given in unary. Lastly, if we assume the query to be fixed, we show that
Diverse-ACQ (all cases) becomes FPT parameterized by k and NP-hard without the
parameter. In fact, we show that Diverse-FOQ is already in FPT. Rather surprising, the
problem Diversesum-ACQ does not follow the usual trend where fixing the query makes
the problem easier than when fixing the database. These results for Diverse-ACQ are
summarized in Table 5.1.
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Complexity Diversity Semantics Lower Bound Upper Bound
combined δsum, δmin bag/set W[1] XP

data δsum, δmin bag/set NP FPT
query δsum bag P
query δsum set FPT
query δmin bag/set XP

Table 5.1: Results for Diverse-ACQ.

5.3.1 W[1]-Hardness - Combined complexity
We show that Diverse-ACQ is W[1]-hard, parameterized by the number of sought-after
solutions k. This will be done by reducing the W[1]-hard Independent-Set problem to
Diverse-ACQ, where the size of the sought-after independent set k′ is the parameter.

Theorem 2. The problem Diverse-ACQ is W [1]-hard parameterized by k, the number of
sought-after solutions.

The problem remains W [1]-hard even when restricted to relation symbols of arity at most
two and queries Q without bound variables.

Proof. We proceed by first giving the reduction and then proving its correctness.

Reduction. Let (G, k′) be an instance of Independent-Set with V (G) = {v1, . . . , vn}
and E(G) = {e1, . . . , em}. We use the relation scheme R with relation symbols
R, R1, . . . , Rm. The symbol R is of arity one while the symbols R1 through Rm are
of arity two. The query Q is defined as

Q : ans(v, x1, . . . , xm) ← R(v) ∧ R1(v, x1) ∧ · · · ∧ Rm(v, xm)

and is clearly acyclic. Furthermore, Q contains no bound variables. For the database I,
we define the domain as dom(I) = {0, 1, . . . , n} and the tables as

RI = {(i) : vi ∈ V (G)},

RI
j = {(i, i) : vi is not incident to ej}

∪ {(i, 0) : vi is incident to ej}, j = 1, . . . , m.

The number of sought-after solution is k = k′ and the target diversity is

dsum = k(k − 1)
2 (m + 1), dmin = m + 1,

respectively for δsum and δmin. The Diversesum-ACQ instance is (R, I, Q, k, dsum) (set
and bag semantics) while the Diversemin-ACQ instance is (R, I, Q, k, dmin) (set and bag
semantics) and both can clearly be computed in polynomial time.
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Correctness. First observe that I(Q) consists of exactly n answers γ1, . . . , γn, as the
value of γi(v) already fixes the remaining variables. Let the answers be indexed such
that γi(v) = i. In all four cases, the target diversity can only be achieved when all k
answers differ pairwise on all variables. Hence, we do not need to differentiate between
set and bag semantics. An answer γi differs from a different answer γj on xl exactly
when vi and vj are not both incident to el. Thus, γi and γj differ on all variables if
and only if vi and vj are not adjacent. Therefore, a set {vi1 , . . . , vik

} of k vertices is an
independent set if and only if the tuple (γi1 , . . . , γik

) has diversity (at least) dsum or dmin,
in the respective cases.

Example 6. An example of the reduction used in the proof can be seen in Figure 5.2.
The corresponding query is

Q : ans(v, x1, . . . , x8) ← R(v) ∧ R1(v, x1) ∧ R2(v, x2) ∧ R3(v, x3) ∧ R4(v, x4)
∧ R5(v, x5) ∧ R6(v, x6) ∧ R7(v, x7) ∧ R8(v, x8).

v1 v2

v3

v4

v5

v6

e1

e2

e3 e4

e5

e6

e7

e8

RI
1

1 0
2 0
3 3
4 4
5 5
6 6

RI
2

1 0
2 2
3 3
4 0
5 5
6 6

RI
3

1 0
2 2
3 3
4 4
5 0
6 6

RI
4

1 1
2 0
3 0
4 4
5 5
6 6

RI
5

1 1
2 2
3 0
4 0
5 5
6 6

RI
6

1 1
2 2
3 0
4 4
5 0
6 6

RI
7

1 1
2 2
3 3
4 0
5 0
6 6

RI
8

1 1
2 2
3 3
4 4
5 0
6 0

RI

1
2
3
4
5
6

Figure 5.2: An example illustrating the W[1]-hardness proof (combined complexity).

5.3.2 Polynomial Time Membership - Query Complexity
Note, that the algorithm presented in Section 5.1 computes some information multiple
times. The reason being, that, for any permutation π, (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ DT ′

if and only if (απ(1), . . . , απ(k), dπ(1),π(2), . . . , dπ(k−1),π(k)) ∈ DT ′ (assume di,j = dj,i

for i > j). This redundancy makes the algorithm conceptually simpler and does not
impact the runtime too much when k is small in comparison to the tables RI , R ∈ R.
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However, when considering query complexity, the tables RI are assumed to be constant.
Hence, assuming them to be large in comparison to k is not justified. In fact, removing
the redundancy combined with the argumentation after presented in Section 5.2.2 leads to
a polynomial-time algorithm for Diverse-ACQ (bag semantics) query complexity, where
k is not considered as a parameter but given in unary.

Theorem 3. Let I be a database matching a relation scheme R. Then the problem
Diversesum-ACQ (bag semantics) is solvable in polynomial time, when the database is
fixed to I and the relation scheme to R. Furthermore, we assume k, the number of
sought-after solutions, to be given in unary.

Proof (sketch). We alter the algorithm from Section 5.1 by slightly redefining DT ′ to
remove redundant rows. For this, let everything else be defined as before. We furthermore
assume there to be an order ⪯ on the elements of I(λ(t)) for each t ∈ V (T ). We now
only introduce a row into D′

T ′ for each tuple (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ DT ′ where
α1 ⪯ · · · ⪯ αk. Furthermore, as explained in Section 5.2.2, it suffices for D′

T ′ to not
contain (d1,2, . . . , dk−1,k) but instead the maximal possible d = 1≤i<j≤k di,j . That
said, D′

T ′ is defined as

D′
T ′ = {(α1, . . . , αk, d) : αl, ∈ I(λ(t)), γl ∈ I(QT ′), γl

∼= αl, l = 1, . . . , k,

α1 ⪯ · · · ⪯ αk,

d =
1≤i<j≤k

∆X(γi, γj),

d is maximal for (α1, . . . , αk)}.

Thus, each D′
T ′ consists of

|I(λ(t))| + k − 1
k


=


|I(λ(t))| + k − 1

|I(λ(t))| − 1


≤ (k + |I(λ(t))|−1)|I(λ(t))|−1 = O(k|I(λ(t))|−1)

rows due to basic combinatorics. Note that this is polynomial as |I(λ(t))|, i.e., the
number of rows in a database table, is considered to be constant and |k| is polynomial
in k, where |k| denotes the size of the representation of k.

Now, it is clear that the exponential dependency in Lemmata 1 and 2 arises from the
exponential sizes of DT ′ . As this is now no longer the case, both can be restated with
polynomial runtimes and thus also Theorem 1. This completes the proof.

Theorem 3 requires the assumption that k is given in unary as k appears in the runtime
and integers can be exponentially larger than their representation. This assumption is
insofar justified, as, otherwise, there would be no time for the algorithm to even consider
k different solutions. Hence, the algorithm would have to reason about solutions without
being allowed to materialize them.
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Concluding, we note that we find it wise to perform these redundancy elimination in
any implementation of the algorithm, even when the database cannot be assumed to be
small and k to be large. As already noted, the redundancy is added for the sole reason
on simplicity.

5.3.3 FPT-Membership - Data Complexity
For the analysis of the data complexity, it is actually not necessary to restrict the form of
the database query. For any fixed first order database query, it is possible to evaluate the
query in polynomial time (Vardi, 1982). Doing this results in a table of answer tuples.
Throughout this section, we may therefore assume w.l.o.g. that the query is of the form
Q : ans(x1, . . . , xm) ← R(x1, . . . , xm) and the database I consists of a single relation RI .
In other words, RI is the set of answer tuples of the original query over the original
database.

Our goal is to prove FPT-membership of the diversity problem. To this end, we apply a
kernelization that allows us to iteratively reduce the size of the database until it is bounded
by a function of m and k, i.e., the query and the parameter. Let X = {x1, . . . , xm}. More-
over, for each assignment α : Z → dom(I) with Z ⊆ X let I(Q)α = {γ ∈ I(Q) : γ ∼= α},
i.e., the set of answer tuples that coincide with α on Z. The key to our kernelization is
the following reduction rule Redt for t ∈ {1, . . . , m}:

(Redt) If for some α : Z → dom(I) with Z ∈ X
m−t , the set I(Q)α has more than t!2 · kt

elements, then do the following: select (arbitrarily) t · k solutions Γ ⊆ I(Q)α that
pairwisely differ on all t variables X \ Z. Then remove the tuples corresponding to
assignments I(Q)α \ Γ from RI .

The following lemma states the crucial properties of this reduction rule for its layerwise
(i.e., for increasing t) exhaustive application:

Lemma 3. Let t ∈ {1, . . . , m} and suppose that all sets I(Q)α′ with α′ : Z ′ → dom(I)
and Z ′ ∈ X

m−(t−1) have cardinality at most (t − 1)!2 · kt−1. Then the reduction rule Redt

is well-defined and safe. That is:

“well-defined”: If for some α : Z → dom(I) with Z ∈ X
m−t , the set I(Q)α has more than t!2 · kt

elements, then there indeed exist t · k solutions Γ ⊆ I(Q)α that pairwisely differ on
all variables in X \ Z.

“safe”: Let Iold denote the database instance before an application of Redt and let Inew
denote its state after applying Redt. Let γ1, . . . , γk be solutions in Q(Iold). Then
there exist solutions γ′

1, . . . , γ′
k in Q(Inew) with δsum(γ′

1, . . . , γ′
k) ≥ δsum(γ1, . . . , γk)

and δmin(γ′
1, . . . , γ′

k) ≥ δmin(γ1, . . . , γk), i.e., the diversity achievable before deleting
tuples from the database can still be achieved after the deletion. Furthermore, if
γ1, . . . , γk are pairwise distinct, it is also possible to pick γ′

1, . . . , γ′
k pairwise distinct.
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Proof. Let t ∈ {1, . . . , m} and suppose that all sets I(Q)α′ with α′ : Z ′ → dom(I) and
Z ′ ∈ X

m−(t−1) have cardinality at most (t − 1)!2 · kt−1. Furthermore, the subsequent
argumentation is equally valid for δsum and δmin, hence, we will simply use δ.

“well-defined”. Let α be of the form α : Z → dom(I) with Z ∈ X
m−t and assume that

|I(Q)α| > t!2 · kt. For arbitrary γ ∈ I(Q)α, we define the set Cγ as

Cγ = {γ′ ∈ I(Q)α : ∆(γ, γ′) < t},

i.e., Cγ contains the solutions whose distance from γ is less than t or, equivalently, that
agree with γ on at least one variable from X \ Z. Hence, we have

Cγ =
x∈X\Z

I(Q)α∪{x→γ(x)}

and thus, the size of Cγ is at most t · (t − 1)!2 · kt−1 by the assumption of the lemma.

Now, iteratively select elements γi for i ∈ {1, . . . , t · k} with γi ∈ I(Q)α \ i−1
j=1 Cγj , i.e.,

arbitrarily choose γ1 ∈ I(Q)α, then γ2 ∈ I(Q)α \ Cγ1 , then γ3 ∈ I(Q)α \ (Cγ1 ∪ Cγ2), etc.

We claim that such elements γi for i ∈ {1, . . . , t · k} indeed exist, i.e., for every
i ∈ {1, . . . , t · k}, |I(Q)α \ i−1

j=1 Cγj | > 0. Indeed, by the assumption |I(Q)α| > t!2 · kt

and the above considerations on the size of Cγ for arbitrary γ, we have:

|I(Q)α \
i−1

j=1
Cγj | ≥ t!2 ·kt − (i−1) · t · (t−1)!2 ·kt−1 > t!2 ·kt − (t ·k) · t · (t−1)!2 ·kt−1 = 0.

Now set Γ = {γ1, . . . , γt·k} ⊆ I(Q)α. By the construction, we have that γi differs from γj

for j < i on all variables X \ Z as γi ̸∈ Cγj . Hence, Redt is well-defined, i.e., the
desired t · k solutions indeed exist.

“safe”. Let Iold denote the database instance before applying Redt and let Inew denote its
state after an application of Redt, i.e., Q(Inew) = (Q(Iold) \ Q(Iold)α) ∪ Γ. Now consider
arbitrary solutions γ1, . . . , γk ∈ Q(Iold). We have to show that there exist solutions
γ′

1, . . . , γ′
k solutions in Q(Inew) with δ(γ′

1, . . . , γ′
k) ≥ δ(γ1, . . . , γk) and which are distinct

to each other if γ1, . . . , γk are distinct to each other.

Assume that, for some i ∈ {1, . . . , k}, γi gets removed by Redt, i.e., γi ∈ Q(Iold)α \ Γ.
We claim that there exists a solution γ′

i that was not removed, i.e., γ′
i ∈ Γ ⊆ Q(Inew),

with the property δ(γ1, . . . , γi−1, γ′
i, γi+1, . . . , γk) ≥ δ(γ1, . . . , γk) and γ′

i is distinct to
γ1, . . . , γi−1, γi+1, . . . , γk if γi was distinct to them.

For arbitrary j ̸= i, we define the set Γj ⊆ Γ as Γj = {γ′ ∈ Γ : ∆(γ′, γj) < ∆(γi, γj)},
i.e., Γj contains those elements of Γ whose distance from γj is smaller than the distance
between γi and γj . We will show below that |Γj | ≤ t holds. In this case, we have

|Γ \
i ̸=j

Γj | ≥ t · k − t · (k − 1) = t ≥ 1
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That is, Γ \ i ̸=j Γj ≠ ∅. In other words, we can choose a solution γ′
i from Γ that

differs from all γj at least as much as γi did. Hence, such γ′
i indeed has the property

δ(γ1, . . . , γi−1, γ′
i, γi+1, γk) ≥ δ(γ1, . . . , γk) and is distinct to γj if γi was distinct to γj .

By iterating this argument for every i ∈ {1, . . . , k}, we may conclude that there exist
solutions γ′

1, . . . , γ′
k ∈ Inew with δ(γ′

1, . . . , γ′
k) ≥ δ(γ1, . . . , γk) and γ′

1, . . . , γ′
k are pairwise

distinct if γ1, . . . , γk are.

It only remains to show that |Γj | ≤ t really holds. As γi and any element γ′ ∈ Γ ⊆ Q(Iold)α

agree on the variables Z, a lower diversity can only be achieved by γ′, if γj and γ′ agree
on some variable x ∈ X \ Z. We define

Γ(x)
j = {γ′ ∈ Γ : γ′(x) = γj(x)}.

Hence,
Γj ⊆

x∈X\Z

Γ(x)
j .

Now, if some γ′ is in Γ(x)
j , all other γ′′ ∈ Γ, γ′ ̸= γ′′ are not in Γ(x)

j as γ′ and γ′′ differ on
x ∈ X \ Z by construction of Γ. Therefore, |Γ(x)

j | ≤ 1 and

|Γj | ≤
x∈X\Z

|Γ(x)
j | ≤ |X \ Z| = t.

This completes the proof.

With this lemma, we are now ready to prove that Diverse-ACQ and, more generally,
Diverse-FOQ is in FPT data complexity.

Theorem 4. The problem Diverse-FOQ parameterized by the number of sought-after
solutions k is in FPT data complexity.

Proof. For data complexity, the query is considered as fixed. Hence, we can evaluate the
FOQ in polynomial time and we may restrict our attention to the case that the query is
of the form Q : ans(x1, . . . , xm) ← R(x1, . . . , xm) and the database I consists of a single
relation RI .

We apply Red1 through Redm to I in this order exhaustively. Initially, for Z ∈ X
m , we

have Z = X and hence, for every α : Z → dom(I) ∈ I(Q), we have I(Q)α = {α}. In
particular, |I(Q)α| = 1 ≤ 0!2 · k0. Hence, if Red1 is applicable, then the preconditions of
Lemma 3 are fulfilled and exhaustive application of Red1 does not alter the status of the
Diverse-FOQ problem. After exhaustive application of Red1, if now Red2 is applicable,
then the preconditions of Lemma 3 are fulfilled and exhaustive application of Red2 does
not alter the status of the Diverse-FOQ problem, etc.

Finally, after exhaustive application of Redm, let I∗ denote the resulting database
instance. Note that, for t = m, we have X

0 = {Z ⊆ X : |Z| = 0} = ∅. and
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|Q(I∗)α| ≤ m!2 · km for any α : ∅ → dom(I∗). In particular, this means that such an
assignment α does not bind any variables in X. Hence, Q(I∗)α = Q(I∗) and, therefore,
|Q(I∗)| ≤ m!2 · km. By the form of Q (with a single atom) and I∗ (with a single relation),
this means that also |I∗| ≤ m!2 · km holds. Diverse solutions can then be computed in
FPT time by brute force.

It remains to show that the exhaustive application of Red1 through Redm is in FPT.
Note that the number of subsets Z ∈ X

m−t is bounded by 2m, where m is considered to
be constant in case of data complexity. For every such set of variables Z ⊆ X, we iterate
through all solutions γ ∈ I(Q) for the current database instance I and group by α = γ|Z .
We then count the size of I(Q)α for each α and, if Redt with t = |Z| is applicable, we
greedily compute Γ by computing t · k − 1 sets Cγj as defined in the proof of Lemma 3.
We then update the database such that Q(Inew) = (I(Q) \ I(Q)α) ∪ Γ, where Inew is the
new database. All this can clearly be done in FPT time.

5.3.4 NP-Hardness - Data Complexity
We now study the data complexity of the Diverse-ACQ problem in the “unparameterized”
case, i.e., the size k of the sought-after set of solutions is part of the input and no longer
considered as parameter. It will turn out that this problem is NP-hard and, actually,
NP-complete, provided that k is given in unary. Our NP-hardness proof will be by
reduction from the Independent-Set problem, where we restrict the instances to graphs
of degree at most 3. It was shown by Alimonti and Kann (1997) that this restricted
problem remains NP-complete. The idea of Alimonti and Kann (1997) is to apply the
following transformation for each vertex of degree greater than 3: suppose that v has
degree greater than 3; then replace v by a path v1, v2, v3, where 2 edges containing v are
connected to v1 and the remaining edges of v are connected to v3. Thus, v1 and v2 have
degree less than or equal to 3 while the degree of v3 is strictly less than the degree of v.
Furthermore, the original graph has an independent set of size k if and only if the new
one has an independent set of size k + 1 as picking v1 and v3 corresponds to picking v.
Exhaustive application of this transformation yields an instance of Independent-Set
where every vertex in the graph has degree ≤ 3.

Theorem 5. The problem Diverse-ACQ is NP-hard data complexity (considered without
a parameter). It is NP-complete provided that the size of the sought-after set of solutions k
is given in unary.

Proof. The NP-membership is immediate: compute I(Q) (which is feasible in polynomial
time when considering the query as fixed), then guess a subset S ⊆ I(Q) of size k and
check in polynomial time that S has the desired diversity.

For the NP-hardness, we define query Q independently of the instance of Independent-
Set as

Q : ans(x1, x2, x3, x4, x5) ← R(x1, x2, x3, x4, x5).
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Now let (G, k′) be an instance of Independent-Set where each vertex of G has degree
at most 3. Furthermore, let V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}.

The database I consists of a single relation RI with n tuples (= number of vertices in G)
over the domain dom(I) = {free1, . . . , freen, taken1, . . . , takenm}. The i-th tuple in RI

will be denoted (ei,1, . . . , ei,5). For each vi ∈ V (G), the values ei,1, . . . , ei,5 ∈ dom(I) are
defined by an iterative process:

1. The iterative process starts by initializing all ei,1, . . . , ei,5 to freei for each vi ∈ V (G).

2. We then iterate through all edges ej ∈ E(G) and do the following: Let vi and vi′

be the two incident vertices to ej and let t ∈ {1, . . . , 5} be an index such that ei,t

and ei′,t both still have the values freei and freei′ , respectively. Then set both ei,t

and ei′,t to takenj .

Note that, in the second step above when processing an edge ej , such an index t must
always exist. This is due to the fact that, at the moment of considering ej , the vertex vi

has been considered at most twice (the degree of vi is at most 3) and thus, for at
least three different values of t ∈ {1, . . . , 5}, the value ei,t is still set to freei. By the
analogous consideration for vertex vi′ we conclude that, for at least three different values
of t ∈ {1, . . . , 5}, the value ei′,t is still set to freei′ . Hence, by the pigeon hole principle,
there exists t ∈ {1, . . . , 5} such that ei,t and ei′,t both still have the values freei and
freei′ , respectively.

After the iterative process, the database I is defined by

RI = {(ei,1, ei,2, ei,3, ei,4, ei,5) : i = 1, . . . , n}.

Moreover, the number of sought-after solutions is set to k = k′ and the target diversity is
set to dsum = 5 · k(k−1)

2 and dmin = 5 in case of the Diversesum-ACQ and Diversemin-ACQ
problems, respectively. The resulting instances for Diversesum-ACQ and Diversemin-ACQ
are thus of the form (I, Q, k, dsum) and (I, Q, k, dmin), respectively. Both can clearly be
computed in polynomial time.

It remains to show the correctness of the reduction, i.e., the graph G = (V (G), E(G))
has an independent set of size k′ if and only if there exists S ⊆ I(Q) with |S| = k and
diversity ≥ dsum respectively ≥ dmin.

The answers I(Q) are trivially {γ1, . . . , γn} with γi(xt) = ei,t for each t ∈ {1, . . . , 5}.
Furthermore, for both Diversesum-ACQ and Diversemin-ACQ, the target diversity can
only be achieved by k answers that pairwisely differ on all 5 variables x1, . . . , x5. Hence,
we do not need to distinguish between set and bag semantics.

Now suppose that graph G has an independent set of size k, say {vi1 , . . . , vik
}. We claim

that then {γi1 , . . . , γik
} is a subset of I(Q) with the desired diversity, i.e., any two an-

swers γir and γis differ on all 5 variables. Suppose to the contrary that γir (t) = γis(t) holds

38



5.3. Data-, Query-, and Combined Complexity

for some t ∈ {1, . . . , 5}. By our construction of RI , this can only happen if γir (t) ̸= freeir

and γis(t) ̸= freeis . Hence, γir(t) = γis(t) = takenj for some j ∈ {1, . . . , m} holds.
Again by our construction of RI , this means that both vir and vis are incident to the
edge ej . This contradicts the assumption that both vir and vis are contained in an
independent set.

Conversely, suppose that there exists a subset S ⊆ I(Q) of size k with the desired target
diversity. Let S = {γi1 , . . . , γik

}. We claim that then {vi1 , . . . , vik
} is an independent set

of G. Suppose to the contrary that it is not, i.e., two vertices vir and vis are incident
to the same edge ej . Then, by our construction of I, there exists t ∈ {1, . . . , 5} with
γir (t) = γis(t) = takenj . This means that the target diversities dsum and dmin cannot be
reached by S, which is a contradiction.

Example 7. An example of the reduction used in the proof above can be seen in
Figure 5.3. Recall, the query is

Q : ans(x1, x2, x3, x4, x5) ← R(x1, x2, x3, x4, x5).

s

v1 v2

v3

v4

v5

v6

e1

e2

e3 e4

e5

e6

e7

RI

taken1 taken2 taken3 free1 free1
taken1 taken4 free2 free2 free2
taken5 taken4 free3 taken6 free3
taken5 taken2 free4 free4 free4
taken7 free5 taken3 taken6 free5
taken7 free6 free6 free6 free6

Figure 5.3: An example illustrating the NP-hardness proof (data complexity).
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CHAPTER 6
Introducing Unions and Negations

In this chapter, we allow slightly more general queries than in the previous chapter. To
that end, we introduce unions in Section 6.1 and negated atoms in Sections 6.2 and 6.3.

6.1 The Case of Unions of Acyclic Conjunctive Queries
We turn our attention to Unions of Conjunctive Queries (UCQs) and, in particular, to
Unions of Acyclic Conjunctive Queries (UACQs). Of course, all hardness results proved
for CQs and ACQs carry over to UCQs and UACQs, respectively. Furthermore, the
FPT-membership data complexity is already proven in Theorem 5.

It remains to study the query complexity and combined complexity of UCQs and, more
interestingly, UACQs. It turns out that in this case, the union makes the problem
significantly harder than for ACQs. We show next that Diverse-UACQ is NP-hard
even in a very restricted setting, namely a union of two ACQs and with the number of
sought-after solutions k = 2. The proof will be by reduction from a variant of the List
Coloring problem, which we introduce next:

A list assignment C assigns each vertex v of a graph G a list of colors C(v) ⊆ {1, . . . , l},
where l ∈ N. Then a coloring is a function c : V (G) → {1, . . . , l} and it is called
C-admissible if each vertex v ∈ V (G) is colored in a color of its list, i.e., c(v) ∈ C(v), and
adjacent vertices uv ∈ E(G) are colored with different colors, i.e., c(u) ̸= c(v). Formally,
the problem is defined as follows:

List Coloring
Input: A graph G, an integer l ∈ N, and a list assignment C : V (G) → 2{1,...,l}

Question: Does a C-admissible coloring c : V (G) → {1, . . . , l} exist?
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Clearly, List Coloring is a generalization of 3-Colorability and, hence, NP-complete.
It was shown by Chlebík and Chlebíková (2006), that the List Coloring problem
remains NP-hard even when assuming that each vertex of G has degree 3, G is bipartite,
and l = 3. This restriction will be used in the proof of the following theorem.

Theorem 6. The problem Diverse-UACQ is NP-hard query complexity (and, hence,
also combined complexity). The problem remains NP-hard even if the number of sought-
after solutions is bounded by 2 and the UACQ is restricted to at most two conjuncts
and contains no existential variables. The problem is NP-complete if the number of
sought-after solutions k is given in unary.

Proof. The NP-membership in the case of k being given in unary is immediate: guess k
assignments to the free variables of query Q, check in polynomial time that they are
solutions, and verify in polynomial time that their diversity is above the desired threshold.

For the NP-hardness, first observe that δsum and δmin coincide if we only allow two
solutions. Hence, we may use a single diversity function δ to prove the NP-hardness for
both Diversesum-UACQ and Diversemin-UACQ.

For our problem reduction, we consider a fixed database I over a fixed schema, which
consists of 9 relation symbols

R{1}, R{2}, R{3}, R{1,2}, R{1,3}, R{2,3}, R{1,2,3}, S, S′

The relations of the database are defined as follows:

RI
{1} = {(1, 1, 1)}, RI

{1,2} = {(1, 1, 1), (2, 2, 2)},

RI
{2} = {(2, 2, 2)}, RI

{1,3} = {(1, 1, 1), (3, 3, 3)},

RI
{3} = {(3, 3, 3)}, RI

{2,3} = {(2, 2, 2), (3, 3, 3)},

RI
{1,2,3} = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}, SI = {(0)}, S′I = {(1)}.

Now let (G, l, C) be an arbitrary instance of List Coloring, where each vertex of G
has degree 3, G is bipartite, and l = 3. That is, G is of the form G = (V ∪ V ′, E)
for vertex sets V, V ′ and edge set E with V = {v1, . . . , vn}, V ′ = {v′

1, . . . , v′
n}, and

E = {e1, . . . , e3n}. Note that |V | = |V ′| and |E| = 3 · |V | as each vertex in G has degree
three and G is bipartite.

From this we construct a UACQ Q as follows: we use the 3n + 1 variables x1, . . . , x3n, y
in our query. For each i ∈ {1, . . . , n}, we write eji,1 , eji,2 , eji,3 to denote the three edges
incident to the vertex vi. Analogously, we write ej′

i,1
, ej′

i,2
, ej′

i,3
to denote the three edges

incident to the vertex v′
i.
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The UACQ Q is then defined as Q : ans(x1, . . . , x3n, y) ← φ ∨ ψ with

φ =
n

i=1
RC(vi)(xji,1 , xji,2 , xji,3) ∧ S(y),

ψ =
n

i=1
RC(v′

i)(xj′
i,1

, xj′
i,2

, xj′
i,3

) ∧ S′(y)

Moreover, we set the target diversity to d = 3n + 1 and we are looking for k = 2 solutions
to reach this diversity. Observe that each variable appears exactly once in φ and once
in ψ, which makes both formulae trivially acyclic. Furthermore, Q contains no existential
variables.
The intuition of the big conjunction in φ (resp. ψ) is to “encode” for each vertex vi

(resp. v′
i) the 3 edges incident to this vertex in the form of the 3 x-variables with the

corresponding indices. The relation symbol chosen for each vertex vi or v′
i depends on the

color list for this vertex. For instance, if C(v1) = {2, 3} and if v1 is incident to the edges
e4, e6, e7, then the first conjunct in the definition of φ is of the form R{2,3}(x4, x6, x7).
Note that the order of the variables in this atom is irrelevant, since the R-relations
contain only tuples with identical values in all 3 positions. Intuitively, this ensures that a
vertex (in this case v1) gets the same color (in this case color 2 or 3) in all its incident
edges (in this case e4, e6, e7).
The reduction is clearly feasible in polynomial time. For the correctness of the reduction,
observe that diversity d = 3n + 1 can only be achieved by two answers γ, γ′ that differ
on all variables. Thus, we do not need to differentiate between set and bag semantics.
Due to the y variable with possible values 0 and 1, one answer has to satisfy φ while
the other answer satisfies ψ. W.l.o.g., let γ satisfy φ and let γ′ satisfy ψ. The intuition
behind the reduction is that γ tells us how to color the vertices in V while γ′ tells us
how to color the vertices in V ′.
We have to show that (G, l, C) is a positive instance of List Coloring if and only if
(Q, I, 2, 3n + 1) is a positive instance of Diverse-UACQ.

For the “only if”-direction, suppose that (G, l, C) is a positive instance of List Coloring,
i.e., graph G has a C-admissible coloring c : V ∪ V ′ → {1, 2, 3}. From this, we construct
the assignments γ and γ′ to the 3n + 1 variables in Q as follows: γ(y) = 0 and γ(xji,1) =
γ(xji,2) = γ(xji,3) = c(vi) for every i ∈ {1, . . . , n} and, analogously, γ′(y) = 1 and
γ′(xj′

i,1
) = γ′(xj′

i,2
) = γ(xj′

i,3
) = c(v′

i) for every i ∈ {1, . . . , n}.

We first have to verify that γ is a solution of φ and γ′ is a solution of ψ. We only
do this for γ. The argumentation for γ′ is analogous. S(γ(y)) = S(0) is clearly con-
tained in database I. Now consider an arbitrary index i ∈ {1, . . . , n}. The atom
RC(vi)(xji,1 , xji,2 , xji,3) is sent to RC(vi)(c(vi), c(vi), c(vi)) by γ. By the above construc-
tion of database I, the tuple (c(vi), c(vi), c(vi)) is indeed contained in relation RI

C(vi).

It remains to show that the two assignments γ and γ′ differ on every variable. Let xjr,t

and xj′
s,u

with r, s ∈ {1, . . . , n} and t, u ∈ {1, 2, 3} denote the same variable. By our
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construction of the R-atoms in φ and ψ, this means that ejr,t and ej′
s,u

denote the same
edge in G and vr and v′

s are the two endpoints of this edge. Since c is a C-admissible
coloring, we have c(vr) ̸= c(v′

s). Moreover, by our definition of γ and γ′, we have
γ(xjr,t) = c(vr) and γ′(xj′

s,u
) = c(v′

s). Hence, γ and γ′ indeed differ on an arbitrarily
chosen variable and, thus, on every variable.

For the “if”-direction, suppose that (Q, I, 2, 3n + 1) is a positive instance of the problem
Diverse-UACQ, i.e., there exist two solutions γ and γ′ with diversity 3n + 1. This means
that γ and γ′ differ on every variable, in particular on y. Hence, one of the solutions is an
answer of φ and one of ψ. W.l.o.g., let γ be an answer of φ and let γ′ be an answer of ψ.
From this, we construct the following coloring c : V ∪ V ′ → {1, 2, 3}: c(vi) = γ(xji,1) and
c(v′

i) = γ′(xj′
i,1

) for every i ∈ {1, . . . , n}.

We have to show that c is C-admissible. Consider an arbitrary edge e with endpoints vr

and vs for r, s ∈ {1, . . . , n}. By our construction of Q, there exist indices t, u ∈ {1, 2, 3},
such that xjr,t and xj′

s,u
denote the same variable. Since γ and γ′ have diversity 3n+1, the

assignments γ and γ′ differ on every variable. In particular, we have γ(xjr,t) ̸= γ′(xj′
s,u

).
Moreover, by our definition of coloring c and the database I, we have c(vr) = γ(xjr,1) =
γ(xjr,t) and c(v′

s) = γ′(xj′
s,1

) = γ′(xj′
s,u

). Hence, c assigns different colors to the two
arbitrarily chosen, adjacent vertices vr and v′

s and, therefore, to any adjacent vertices
of G. That is, c is C-admissible.

Example 8. Consider the graph depicted in Figure 6.1. The above reduction would
construct the query

Q : ans(x1, . . . , x12, y) ← φ ∨ ψ

with

φ = R0(y) ∧ R1(x1, x2, x3) ∧ R2(x4, x5, x6) ∧ R3(x7, x8, x9) ∧ R4(x10, x11, x12),
ψ = R′

0(y) ∧ R′
1(x1, x4, x7) ∧ R′

2(x2, x5, x10) ∧ R′
3(x3, x8, x11) ∧ R′

4(x6, x9, x12).

The results for Diverse-UACQ are summarized in Table 6.1.

Complexity Diversity Semantics Lower Bound Upper Bound
combined δsum, δmin bag/set NP for k ≤ 2 NP

data δsum, δmin bag/set NP FPT
query δsum, δmin bag/set NP for k ≤ 2 NP

Table 6.1: Results for Diverse-UACQ.

6.2 Primal Treewidth Algorithm
In the remainder of this chapter, we will tackle the problem Diverse-CQ¬, i.e., we consider
conjunctive queries with possibly negated atoms. As a first step, we describe a dynamic
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Figure 6.1: An example graph to illustrate the reduction (Diverse-UACQ).

programming algorithm that uses a tree decomposition of the primal graph as a guide
to solve Diverse-CQ¬. This will be an XP algorithm combined complexity, where the
number of sought-after solutions and the primal treewidth of the query are taken as
parameters. Recall that CQ¬ remains NP-hard on queries with acyclic hypergraph
(Samer and Szeider, 2010) and thus, an XP algorithm is unlikely to exist for the weaker
parameter hypertreewidth.

To describe the algorithm, let Q : ans(X) ← ∃Y φ(X, Y ) be a CQ¬, I a database,
and (T, χ) a nice tree decomposition of H(Q) with root r. Furthermore, let φ = n

i=1 Li

for literals Li. We define for subtrees T ′ of T the formula

φT ′ =
i=1,...,n

var(Li)⊆χ(T ′)

Li

and query QT ′ : ans(χ(T ′)) ← φT ′ . Although some variables of χ(T ′) may no longer
be part of φT ′ , we assume that var(φT ′) = χ(T ′) always holds to spare ourselves from
tedious but simple technical details. As before and by abuse of notation, we will denote
the one vertex subtree ({t}, ∅) of T just by t.

Notice that QT = QTr is the same as Q but where all variables are assumed to be
unbound and thus, I(Q) = {γ|X : γ ∈ I(QT )}. Furthermore, as before, for δ = δsum or
δ = δmin we have

max
γ1,...,γk∈I(QT )

δ(γ1|X , . . . , γk|X) = max
γ1,...,γk∈I(Q)

δ(γ1, . . . , γk).

Thus, by defining δX(γ1, . . . , γk) = δ(γ1|X , . . . , γk|X), solving Diverse-CQ¬ for Q is
(almost) the same as solving DiverseδX

-CQ¬ for QT . Notice that this works for summed
and minimal Hamming distance. Further, let us define ∆X(γi, γj) = ∆(γi|X , γj |X).
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The dynamic programming algorithm will compute the set

Dt ⊆ (χ(t) → dom(I))k × [|X|] k(k−1)
2

bottom-up for each t ∈ V (T ). The intended meaning of Dt is such that a tuple
(α1, . . . , αk, d1,2, . . . , dk−1,k) is in Dt if it is possible to extend the mappings α1, . . . , αk

to mappings γ1, . . . , γk which all satisfy the query corresponding to the whole subtree
rooted in t and, simultaneously, each pair γi, γj , i < j achieves the diversity di,j . Put
differently, Dt keeps track of all simultaneously achievable pairwise diversities for solutions
to a subproblem per local variable assignment. Formally, we define Dt as

Dt = {(α1, . . . , αk, d1,2, . . . , dk−1,k) : α1, . . . , αk : χ(t) → dom(I),
γ1, . . . , γk ∈ I(QTt),
γ1 ∼= α1, . . . , γk

∼= αk,

di,j = ∆X(γi, γj), 1 ≤ i < j ≤ k}.

The subsequent lemmata show how to compute Dt depending on the type of node t.

Lemma 4. Let t be a leaf node of T . Then

Dt = {(α1, . . . , αk, d1,2, . . . , dk−1,k) : α1, . . . , αk : χ(t) → dom(I),
α1, . . . , αk ∈ I(Qt),
di,j = ∆X(αi, αj), 1 ≤ i < j ≤ k}. (6.1)

Furthermore, the set Dt can be computed in time O(dom(I)k·|χ(t)|(|Q| · |RI | + k2 · χ(t)))
where |RI | is the size of the largest database table.

Proof. Observe that χ(t) = χ(Tt) and α1, . . . , αk are the only extensions of α1, . . . , αk.
Hence, Equation 6.1 holds.

The set Dt can be computed by considering all dom(I)k·|χ(t)| possibilities of α1, . . . , αk

and using the Equation 6.1. Checking whether an αi is an answer to Qt can be done in
time O(|Q| · |RI |) by naively checking whether αi satisfies all literals whose variables are
covered by χ(t), i.e., checking whether each instantiated atom appears (respectively does
not appear) in the database. The overall runtime follows, as computing each ∆X(αi, αj)
only takes time O(k2|χ(t)|).
Lemma 5. Let p be an introduce node of T which introduces the variable z and let t be
its child. Then

Dp = {(α1 ∪ β1, . . . , αk ∪ βk, d′
1,2, . . . , d′

k−1,k) : (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ Dt

β1, . . . , βk : {z} → dom(I),
α1 ∪ β1, . . . , αk ∪ βk ∈ I(Qp)
d′

i,j = di,j + ∆X(βi, βj), 1 ≤ i < j ≤ k}.

(6.2)
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Furthermore, the set Dp can be computed in time O(|Dt| · dom(I)k · (|Q| · |RI | + k2))
given the set Dt, where |RI | is the size of the largest database table.

Proof. We start by proving Equation 6.2. First notice that χ(Tt) ∪ {z} = χ(Tp) and thus,
φTt ⊆ φTp . Furthermore, any variable of χ(Tt) connected to z in Gp(φ), i.e., in a literal
with z, has to appear in χ(p) due to the properties of a tree decomposition. We can
therefore also conclude that φTp = φTt ∪ φp.

Now, let αl, βl, γl, di,j , d′
i,j be such that the tuple (α1 ∪ β1, . . . , αk ∪ βk, d′

1,2, . . . , d′
k−1,k)

is in the set on the right-hand side of Equation 6.2, and let γl be witnesses the fact that
(α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ Dt. Importantly, γl ∈ I(QTt), αl ∪ βl ∈ I(Qp) and thus,
γl ∪ βl ∈ I(QTp). Furthermore, for 1 ≤ i < j ≤ k, we have:

d′
i,j = di,j + ∆X(βi, βj)

= ∆X(γi, γj) + ∆X(βi, βj)
= ∆X(γi ∪ βi, γj ∪ βj).

Thus, (α1 ∪ β1, . . . , αk ∪ βk, d′
1,2, . . . , d′

k−1,k) is in Dp by definition.

For the reverse direction, let (α1, . . . , αk, d′
1,2, . . . , d′

k−1,k) ∈ Dp and let γ1, . . . , γk ∈ I(QTp)
witness this. Thus, we can immediately conclude that γ1|χ(p), . . . , γk|χ(p) ∈ I(Qp) while
γ1|χ(Tt), . . . , γk|χ(Tt) ∈ I(QTt). Furthermore, for 1 ≤ i < j ≤ k, we have:

d′
i,j − ∆X(γi|{z}, γj |{z}) = ∆X(γi, γj) − ∆X(γi|{z}, γj |{z})

= ∆X(γi|χ(Tt), γj |χ(Tt))

Thus, (γ1|χ(t), . . . , γk|χ(t), d′
1,2 − ∆X(γ1|{z}, γ2|{z}), . . . , d′

i,j − ∆X(γk−1|{z}, γk|{z})) ∈ Dt

and defining βl = γl|{z} ensures that (α1, . . . , αk, d′
1,2, . . . , d′

k−1,k) is in the set on the
right-hand side of Equation 6.2. The equation is consequently valid.

The set Dp can be computed by considering all elements (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ Dt

and using Equation 6.2. Per element we iterate through all dom(I)k possibilities for
β1, . . . , βk and check α1 ∪ β1, . . . , αk ∪ βk ∈ I(Qp) as before in time O(|Q| · |RI |). Lastly,
we have to compute d′

i,j which takes constant time per (i, j) pair. Thus, everything put
together, Dp can be computed in the required time bound.

Lemma 6. Let p be a forget node of T and t its child. Then

Dp = {(α1|χ(p), . . . , αk|χ(p), d1,2, . . . , dk−1,k) : (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ Dt}. (6.3)

Furthermore, the set Dp can be computed in time O(|Dt| · (k · χ(t) + k2)) given the set Dt.

Proof. The equation directly follows from the fact that QTp = QTt and χ(p) ⊆ χ(t). Also,
Equation 6.3 immediately tells us how to compute Dp in time O(|Dt| · (k · χ(t) + k2))
from Dt.
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Lemma 7. Let p be a join node of T with children t and t′. Then

Dp = {(α1, . . . , αk, d′′
1,2, . . . , d′′

k−1,k) : (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ Dt

(α1, . . . , αk, d′
1,2, . . . , d′

k−1,k) ∈ Dt′

d′′
i,j = di,j + d′

i,j − ∆X(αi, αj), 1 ≤ i < j ≤ k}.

(6.4)

Furthermore, the set Dp can be computed in time O(|Dt| · |Dt′ | · k2 · |χ(p)|) given the
sets Dt and Dt′.

Proof. We start by proving Equation 6.4. First notice that χ(Tt) ∪ χ(Tt′) = χ(Tp) and
thus, φTt ∪ φTt′ ⊆ φTp . But even more, if two variables appear in the same literal,
they have to appear together in either Tt or Tt′ and therefore, we can observe that
φTt ∪ φTt′ = φTp .

We start with a (α1, . . . , αk, d1,2, . . . , dk−1,k) ∈ Dt and (α1, . . . , αk, d′
1,2, . . . , d′

k−1,k) ∈ Dt′ .
Now let γ1, . . . , γk ∈ I(QTt) and γ′

1, . . . , γ′
k ∈ I(QTt′ ) witness this, respectively. By the

above observation, γ1 ∪ γ′
1, . . . , γk ∪ γ′

k ∈ I(QTp) and, for 1 ≤ i < j ≤ k, we have:

∆X(γi ∪ γ′
i, γj ∪ γ′

j) = ∆X(γi, γj) + ∆X(γ′
i, γ′

j) − ∆X(γi ∩ γ′
i, γj ∩ γ′

j)
= di,j + d′

i,j − ∆X(αi, αj).

Hence, (α1, . . . , αk, d1,2 + d′
1,2 − ∆X(α1, α2), . . . , dk−1,k + d′

k−1,k − ∆X(αk−1, αk)) ∈ Dp.

Conversely, let (α1, . . . , αk, d′′
1,2, . . . , d′′

k−1,k) ∈ Dp, witnessed by γ1, . . . , γk ∈ I(QTp).
Thus, we can immediately conclude that the restrictions γ1|χ(Tt), . . . , γk|χ(Tt) are in I(QTt)
while the restrictions γ1|χ(Tt′ ), . . . , γk|χ(Tt′ ) are in I(QTt′ ). This implies that

(γ1|χ(p), . . . , γk|χ(p), ∆X(γ1|χ(Tt), γ2|χ(Tt)), . . . , ∆X(γk−1|χ(Tt), γk|χ(Tt))) ∈ Dt,

(γ1|χ(p), . . . , γk|χ(p), ∆X(γ1|χ(Tt′ ), γ2|χ(Tt′ )), . . . , ∆X(γk−1|χ(Tt′ ), γk|χ(Tt′ ))) ∈ Dt′ .

Lastly, we can compute for 1 ≤ i < j ≤ k:

d′′
i,j = ∆X(γi, γj)

= ∆X(γi|χ(Tt), γj |χ(Tt)) + ∆X(γi|χ(Tt′ ), γj |χ(Tt′ )) − ∆X(γi|χ(p), γj |χ(p)),

implying that (α1, . . . , αk, d′′
1,2, . . . , d′′

k−1,k) is in the set on the right-hand side of Equa-
tion 6.4. The equation is consequently valid.

The bound on the runtime can be achieved by a naive implementation using nested loops
with the help of Equation 6.4.

These lemmata put together then imply the following theorem.
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Theorem 7. Let Q be a conjunctive query with negation and free variables X, I a database
with largest table RI , and (T, χ) a nice tree decomposition of Gp(Q). Then Diverse-CQ¬

can be solved in time O(|V (T )| ·dom(I)2·k·(ω+1) ·(|X|+1)k(k−1) ·(|Q| · |RI |+k2 ·ω)), where
k is the number of sought-after solutions and ω is the width of the tree decomposition. In
particular, the problem Diverse-CQ¬ is in XP combined complexity when parameterized
by the number of sought-after solutions k plus the primal treewidth twp(Q) of the query.

Proof. The algorithm computes the sets Dt for each t ∈ V (T ) by a bottom-up procedure.
For this, we have to apply exactly one of the lemmata once for each t ∈ V (T ) . This is
clearly possible in the required time bound.

For the final step of the algorithm, let r be the root of T and we can compute (gray
brackets are for set semantics)

max
γ1,...,γk∈I(Q)

(γi ̸=γj for i ̸=j)

δsum(γ1, . . . , γk) = max
γ1,...,γk∈I(QT )

(γi|X ̸=γj |X for i ̸=j)

δsum(γ1|X , . . . , γk|X)

= max
γ1,...,γk∈I(QT )

(∆X(γi,γj)>0 for i ̸=j) 1≤i<j≤k

∆X(γi, γj)

= max
(α1,...,αk,d1,2,...,dk−1,k)∈Dr

(di,j>0 for 1≤i<j≤k) 1≤i<j≤k

di,j ,

max
γ1,...,γk∈I(Q)

(γi ̸=γj for i ̸=j)

δmin(γ1, . . . , γk) = max
γ1,...,γk∈I(QT )

(γi|X ̸=γj |X for i ̸=j)

δmin(γ1|X , . . . , γk|X)

= max
γ1,...,γk∈I(QT )

(∆X(γi,γj)>0 for i ̸=j)

min
1≤i<j≤k

∆X(γi, γj)

= max
(α1,...,αk,d1,2,...,dk−1,k)∈Dr

(di,j>0 for 1≤i<j≤k)

min
1≤i<j≤k

di,j .

Thus, we can read off the maximal possible diversity from Dr for summed and minimal
Hamming distance as well as for set and bag semantics in the required time bound.

Lastly, as computing a width optimal nice tree decomposition is even possible in FPT time
when parameterized by the treewidth (Kloks, 1994; Bodlaender, 1996), XP-membership
follows immediately.

Example 9. An execution of the described algorithm can be seen in Figure 6.2. The
query is

Q : ans(x, y, z, u, v) ← ¬R1(x, y) ∧ ¬R2(x, y) ∧ ¬R3(y, z) ∧ ¬R4(y, u) ∧ ¬R5(u, v)

and the database is given by

RI
1 = {0, 0}, RI

2 = {1, 0}, RI
3 = {0, 0}, RI

4 = {1, 0}, RI
5 = {0, 0}, dom(I) = {0, 1}.
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Figure 6.2: Solving Diverse-CQ¬ with the help the primal treewidth.
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For the sake of succinctness, tuples (α1, α2, d1,2) ∈ Dt are omitted if there is a strictly
better tuple (α1, α2, d′

1,2) ∈ Dt, i.e., d1,2 < d′
1,2.

Concluding the description of the algorithm, we note that the ideas described in Sections
5.2.1 to 5.2.3 can also be applied to the primal treewidth algorithm (without full formal
proofs). First of all, this means that we can construct k solutions that witness the
maximal possible diversity by a bit of bookkeeping. For this the algorithm would again
just have to keep track of the justifications for elements being in the sets Dt and then,
combine the various local variable assignments that belong together.

Secondly, when we are interested in the problem Diversesum-CQ¬ (set or bag semantics),
it is possible to combine the pairwise diversities di,j into a singe value d = 1≤i<j≤k di,j .
It is only necessary to keep the maximal possible diversity achievable per α1, . . . , αk

combination. Thus, for bag semantics we can drop the factor (|X| + 1)k(k−1) in the
runtime, and for set semantics we can replace it with a factor of 2k(k−1). Consequently,
when the number of domain elements |dom(I)| is bounded or part of the parameter,
it is possible to solve Diversesum-CQ¬ in FPT time. This is for example the case when
encoding a SAT instance into a CQ¬ (see Section 7.3 for more details).

Furthermore, for Diversesum-CQ¬ (bag semantics) another exponential speedup is pos-
sible. Notice that Lemma 7 is the reason why the factor 2 appears in the exponent of
dom(I)2·k·(ω+1). This is because we need to combine every tuple from Dt with every
tuple from Dt′ . However, if there is a single diversity value d per α1, . . . , αk combination,
we only need to combine each element in Dt with a single element in Dt′ . Thus, by
assuming Dt and Dt′ to be sorted, this step is also possible in time dom(I)k·(ω+1).

Lastly, we can solve Diverseδ-CQ¬ in XP time for the more general diversity measures
described in Section 5.2.3.

6.3 Fine Grained Analysis
Finally, we again turn our attention to the differences between data-, query-, and combined
complexity for Diverse-CQ¬. It turns out that most of the ideas used in Chapter 5 apply
here as well, and we just need to gather the arguments.

We start with combined complexity. Theorem 7 states that Diverse-CQ¬ is in XP combined
complexity but, in fact, the proof of Theorem 2 already implies that Diverse-CQ¬ is
W[1]-hard even if we restrict ourselves to queries with bounded primal treewidth.

Corollary 3. The problem Diverse-CQ¬ is W [1]-hard combined complexity with the
parameter being the number of sought-after solutions k plus the treewidth twp(Q) of the
query Q.

In fact, the problems remain W [1]-hard for queries without negated atoms, without bound
variables, and the treewidth being bounded by 1.
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Proof. The proof of Theorem 2 actually already proves this corollary as the query used
in the reduction is a CQ, has no bound variables, and has treewidth 1.

We continue with query complexity. NP-hardness follows in the “unparameterized” case
as deciding whether even a single solution of a CQ exists is already NP-hard (Chandra
and Merlin, 1977).

Furthermore, XP-membership follows from the combined complexity case. But, as was for
Diversesum-ACQ, in the case of Diversesum-CQ¬ we can do a bit better. The discussion
at the end of the previous section (dom(I) is fixed) in fact implies that Diverse-CQ¬ is
FPT query complexity.

Corollary 4. The problem Diversesum-CQ¬ is FPT parameterized by the number of
sought-after solutions k plus the primal treewidth twp(Q) of the query Q.

The case of data complexity is also easily taken care of. First notice that FPT-membership
is already shown in Theorem 5. Furthermore, the NP-hardness of the “unparameterized”
case follows already from the NP-hardness proof of Diverse-ACQ.

Corollary 5. The problem Diverse-CQ¬ is NP-hard data complexity. In fact, the problem
remains NP-hard for queries without bound variables, without negated atoms, and the
treewidth being bounded by 4.

Proof. Revisting the proof of Theorem 5, we notice that the query in use has the desired
properties and thus, the proof also proves this corollary.

The results for Diverse-CQ¬ are summarized in Table 6.2.

Complexity Diversity Semantics Lower Bound Upper Bound
combined δsum, δmin bag/set W[1] XP

data δsum, δmin bag/set NP FPT
query δsum bag/set FPT
query δmin bag/set XP

Table 6.2: Results for Diverse-CQ¬.
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CHAPTER 7
Diversity in Propositional

Satisfiability

In this chapter, we tackle the problem Diverse-SAT. To that end, we will proceed as follows:
First, we consider the formulae to be in CNF and analyze the problem parameterized by
the number of sought-after solutions plus the incidence treewidth. The FPT-membership
of Diversesum-CNF-SAT follows from an extension of Courcelle’s Theorem (Courcelle,
1990) and is presented in Section 7.1. The technique used exemplifies how Courcelle’s
Theorem can generally be used to ensure FPT-membership of diversity problems.

Then in Section 7.2, a dynamic programming algorithms is presented that runs in time
XP time and solves the more general problem Diverse-CNF-SAT. This algorithm can
also be slightly modified to run in FPT time for the problem Diversesum-CNF-SAT.

In Section 7.3, we show how this carries over to Diverse-SAT. Moreover, in case of primal
treewidth, we show how, by encoding the propositional formula into a CQ¬, we can use
the algorithm from Section 6.2 to solving Diverse-SAT.

Lastly, we consider the case of Diverse-DNF-SAT in Section 7.4.

7.1 FPT-Membership
We turn our attention to the problem Diversesum-CNF-SAT parameterized by the
incidence treewidth. As bounded primal treewidth implies bounded incidence treewidth
(Kolaitis and Vardi, 2000), the achieved FPT result also implies FPT-membership of
Diversesum-CNF-SAT parameterized by the primal treewidth.

The basic form of Courcelle’s Theorem allows us to answer questions expressible in
monadic second order logic (MSO) about graphs of bounded treewidth in linear time
(Courcelle, 1990). To show that it is also possible to compute diverse solutions in the
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7. Diversity in Propositional Satisfiability

same setting, we will use an extension introduced by Arnborg et al. (1991). They showed
that certain optimization problems are also solvable in linear time on graphs of bounded
treewidth. To understand the extension, the reader is first reminded of what MSO logic
is.

MSO logic is an extension of FO logic where instead of only allowing basic quantification,
one is allowed to quantify over monadic predicates (predicates of arity one). We will use
set notation for monadic predicates and write a ∈ A instead of A(a). When quantifying
over sets (monadic predicates), we will use upper case letters (∃X) and when quantifying
over domain elements, we will use lower case letter (∃x).

We will use MSO logic to express graph properties and thus, only require predicates of
arity one and two. Furthermore, we will allow our graphs in this section to have multiple
kinds of edges and the vertices to possibly be colored. The semantics of G ⊨ ψ for a
graph G and MSO formula ψ is then defined in the usual way. That is, the domain
elements are the vertices of G, predicates of arity two correspond to the different kinds
of edges of the graph, and predicates of arity one correspond to colors.

The optimization variant of Courcelle’s Theorem can then be stated as follows:

Theorem 8 (Arnborg et al., 1991). Let G be a graph, ψ(Y1, . . . , Yl) an MSO formula
with free (set) variables Y1, . . . , Yl, and g : Nl → N a linear function. Then

max
A1...,Al⊆V (G)
G⊨ψ(A1,...,Al)

g(|A1|, . . . , |Al|)

can be computed in time f(tw(G), |ψ|, |g|) · |G| for some computable function f .

We now want to apply Theorem 8 to Diversesum-CNF-SAT. To this end, let φ be a
propositional formula in CNF. In this section, we differentiate the two kinds of vertices,
i.e., clauses and variables, in Gi(φ) by the colors C and X, respectively. Furthermore,
we differentiate two kinds of edges in Gi(φ). If the variable x appears positively in the
clause c, then the edge xc corresponds to the atom e+(x, c) and otherwise to the atom
e−(x, c).

Now consider the following MSO formula:

ζ(B) : ∀x : (x ∈ B → x ∈ X)

∧ ∀c :


C(c) → ∃x :

(x ∈ B ∧ e+(x, c)) ∨ (x ̸∈ B ∧ e−(x, c))



The intended meaning of ζ is to interpret a set of variables B ⊆ var(φ) as the variable
assignment γB : var(φ) → {0, 1} defined by γB(x) = 1 for x ∈ B and γB(x) = 0 for x ̸∈ B.
Then, the models of ζ exactly correspond to the models of φ, as γB satisfies φ if and only
if Gi(φ) ⊨ ζ(B).
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7.1. FPT-Membership

To get from the formula ζ representing the solutions to a formula ψ and linear function g
that represents the diversity problem, we first introduce a macro for the symmetric
difference of two sets. We write A = B∆C for

∀v : v ∈ A ↔ (v ∈ B ↔ v ̸∈ C).

Now consider the formula ψ and function g (gray part is needed for set semantics):

ψ(A1,2, . . . , Ak−1,k) : ∃B1, . . . , Bk

i=1,...,k

ζ(Bk) ∧
1≤i<j≤k

Aij = Bi∆Bj ∧ ∃x : x ∈ Ai,j ,

g(y1, . . . , y k(k−1)
2

) =
k(k−1)

2

i=1
yi.

In ψ, the sets B1, . . . , Bk play the role of the k sought-after solutions of φ while
A1,2, . . . , Ak−1,k are all the symmetric differences. Thus, we can compute,

max
A1,2,...,Ak−1,k⊆V (G)
G⊨ψ(A1,2,...,Ak−1,k)

g(|A1,2|, . . . , |Ak−1,k|) = max
B1,...,Bk⊆V (G)

G⊨ζ(B1),...,ζ(Bk)
Bi ̸=Bj for i ̸=j

1≤i<j≤k

|Bi∆Bj |

= max
B1,...,Bk⊆V (G)

G⊨ζ(B1),...,ζ(Bk)
Bi ̸=Bj for i ̸=j

1≤i<j≤k

∆(γBi , γBj )

= max
γ1,...,γk∈M(φ)
γi ̸=γj for i ̸=j

δsum(γ1, . . . , γk).

Combining these arguments with Theorem 8 shows that we can solve the problem
Diversesum-CNF-SAT in linear time on formulae of bounded incidence treewidth and
with a bound on k.

Corollary 6. The problem Diversesum-CNF-SAT (set and bag semantics) can be solved
in time f(twi(φ), k) · |φ|, where φ is the input formula, k is the number of sought-after
solutions, and f is a computable function.

This method can clearly be used for many different Diversesum-X problems. The important
ingredients are the following:

• We need to convert each instance I into a graph G(I).

• We need to express the solutions S(I) via sets of vertices.

• We need to be able to identify solutions, i.e., the corresponding set of vertices, via
an MSO formula ζ.

• The diversity in a collection of solutions has to be the same as the diversity in the
corresponding vertex sets.
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7. Diversity in Propositional Satisfiability

Corollary 7. Let X be a problem, G(I) a graph associated with an instance I of X ,
ι : S(I) → 2V (G(I)) an injective function, and ζ(B) an MSO formula such that G(I) ⊨ ζ(B)
if and only if B is in the image of ι. If ∆(γi, γj) = |ι(γi)∆ι(γj)| and G(I) can be efficiently
computed, then Diversesum-X can be solved in time f(tw(G(I)), k) · |G(I)|.

For example, Corollary 7 implies FPT-membership of Diversesum-Vertex-Cover and
Diversesum-Independent-Set. However, to be in alignment with our definition of ∆
and δsum for that matter, we have to represent solutions S ⊆ V (G) by their characteristic
function 1S : V (G) → {0, 1}. Note that ∆(1S , 1S′) = |S∆S′|.
Concluding this section, the reader is reminded that the FPT algorithms constructed
in the proof of Courcelle’s Theorem or the extensions by Arnborg et al. (1991) for
that matter are not well suited for practical applications. The problem being that the
function f grows absurdly fast. Thus, the main benefit of these tools is in the ability to
classify problems. Corollary 6 and 7 should be understood in the same way and to that
end, the algorithm presented in the following is of independent interest.

7.2 Incidence Treewidth Algorithm
In this section we will design a dynamic programming algorithm which uses a tree decom-
position of the incidence graph of the input formula as a guide to solve Diverse-CNF-SAT.

Henceforth, let φ be propositional formula in CNF, X the variables that appear in φ,
and (T, χ) a nice tree decomposition of Gi(φ) with root r. Each χ(t) consists of variables
and clauses. Therefore, let C(t) ⊆ χ(t) be the clauses and X(t) ⊆ χ(t) the variables.
Furthermore, let C(Tt) = C(V (Tt)) and X(Tt) = X(V (Tt)) for subtrees Tt of T
rooted in t.

We note that a clause C ∈ φ is satisfied if any of its literals is set to true (1). Thus, if a
partial assignment α : Z → {0, 1}, Z ⊆ var(φ) sets a literal in C to true (1) we already
know that every extension γ : var(φ) → {0, 1}, α ∼= γ satisfies C. Thus, we will relax
our definition of ⊨ in this section and write α ⊨ C in such a case. Moreover, for a set of
clauses C we write α ⊨ C when α ⊨ C holds for every C ∈ C.

The dynamic programming algorithm will compute the set

Dt ⊆ (X(t) → {0, 1})k × (2C(t))k × [|X(Tt)|]
k(k−1)

2

bottom-up for each t ∈ V (T ). The intended meaning of Dt is such that a tuple
(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) is in Dt if it is possible to extend the mappings
α1, . . . , αk to mappings γ1, . . . , γk which all satisfy all forgotten clauses plus the clauses
in S1, . . . , Sk, and simultaneously each pair γi, γj , i < j achieves the diversity di,j . Put
differently, Dt keeps track of all simultaneously achievable pairwise diversities for solutions
to a subproblem per local variable assignment. The concrete subproblem is determined
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7.2. Incidence Treewidth Algorithm

by t and S1, . . . , Sk. Formally, we define Dt as

Dt = {(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) : αl : X(t) → {0, 1}, l = 1, . . . , k,

γl : X(Tt) → {0, 1}, γl
∼= αl,

Sl ⊆ C(t), γl ⊨ (C(Tt) \ C(t)) ∪ Sl,

di,j = ∆(γi, γj), 1 ≤ i < j ≤ k}.

Note that the set Dt consists of at most 2k·χ(t) · (|X(Tt)| + 1)
k(k−1)

2 elements, each of size
at most k · χ(t) + k(k−1)

2 .

Lemma 8. Let t be a leaf node of T . Then

Dt = {(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) : αl : X(t) → {0, 1}, l = 1, . . . , k,

Sl ⊆ C(t), αl ⊨ Sl,

di,j = ∆(αi, αj), 1 ≤ i < j ≤ k}. (7.1)

Furthermore, the set Dt can be computed in time O(2k·|χ(t)|k · |χ(t)| · (|var(C)| + k)),
where C ∈ C(t) is the clause with the most variables.

Proof. Observe that α1, . . . , αk are the only extensions of α1, . . . , αk and, furthermore,
(C(Tt) \ C(t)) ∪ Si = Si. Thus, Equation 7.1 holds.

The set Dt can be computed by considering all possibilities of (α1, . . . , αk, S1, . . . , Sk)
and using Equation 7.1. There are 2k·|χ(t)| possibilities and checking whether an αi sets
a literal in every clause of Si to true can be done naively in time O(|Si| · |var(C)|). The
overall runtime follows, as computing ∆(αi, αj) only takes time O(|X(t)|).

Lemma 9. Let p be an introduce node of T which introduces the variable x and t is
its child. Let C(p, x, 1) be the clauses from C(p) in which x appears positively and let
C(p, x, 0) be the clauses in which x appears negatively. Then

Dp = {(α′
1, . . . , α′

k, S′
1, . . . , S′

k, d′
1,2, . . . ,d′

k−1,k) :
(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) ∈ Dt

βl : {x} → {0, 1}, l = 1, . . . , k,

α′
l = αl ∪ βl,

S′
l \ C(p, x, βl(x)) = Sl,

d′
i,j = di,j + ∆(βi, βj), 1 ≤ i < j ≤ k}. (7.2)

Furthermore, the set Dp can be computed in time O(2k·|χ(p)||X(Tp)| k(k−1)
2 · k · (k + |χ(t)|))

given the set Dt.
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Proof. First let (α′
1, . . . , α′

k, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k) be a tuple in the set on the right-
hand side of Equation 7.2 and let αl, βl, Sl, di,j witness this. Furthermore, let γ1, . . . , γk be
extensions which witness that (α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) is in Dt, i.e., each
γl satisfies (C(Tt) \ C(t)) ∪ Sl and ∆(γi, γj) = di,j . Thus, as C(Tp) = C(Tt), C(p) = C(t),
and βl satisfies C(p, x, βl(x)), we can conclude that the variable assignment γl ∪βl satisfies
(C(Tp) \ C(p)) ∪ Sl ∪ C(p, x, βl(x)) ⊇ (C(Tp) \ C(p)) ∪ S′

l . We can also compute for each
1 ≤ i < j ≤ k:

∆(γi ∪ βi, γj ∪ βk) = ∆(γi, γj) + ∆(βi, βk)
= di,j + ∆(βi, βk)
= d′

i,j .

Hence, (α′
1, . . . , α′

k, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k) is in Dp as each γl ∪ βl is an extension
of α′

l.

For the reverse direction, let (α′
1, . . . , α′

k, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k) ∈ Dt be an arbi-
trary tuple witnessed by γ′

1, . . . , γ′
k. We define αl = α′

l|X(t), βl = α′
l|{x}γl = γ′

l|X(Tt),
di,j = ∆(γi, γj), and Sl = S′

l \ C(p, x, γ′
l(x)). By the definition of C(p, x, γ′

l(x)) it is clear
that γl must satisfy Sl. Furthermore, the variable x cannot appear in any clause of
C(Tt) \ C(t) due to the properties of a tree decomposition. Thus, γl additionally satisfies
C(Tt) \ C(t) = C(Tp) \ C(p). This implies that (α1, . . . , αk, S1 . . . , Sk, d1,2, . . . , dk−1,k)
appears in Dt, witnessed by γ1, . . . , γk. Lastly, we note that

d′
i,j = ∆(γ′

i, γ′
j)

= ∆(γi, γj) + ∆(γ′
i|{x}, γ′

j |{x})
= di,j + ∆(βi, βj)

and hence, (α′
1, . . . , α′

k, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k) appears in the set on the right-hand
side of Equation 7.2.

We compute Dp as follows by using Equation 7.2: We first compute C(p, x, 1) and C(p, x, 0)
in time O(|C(p)| · |var(C(p))|). We then iterate through all 2k·|X(p)|2k·|C(p)| · |X(Tp)| k(k−1)

2

possibilities for (α′
1, . . . , α′

k, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k). We then compute αl, Sl, di,j as
described by the equation. Then, by using appropriate data structure, we can check
whether (α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) is in Dt or not. This all takes per tuple
only time O(k · |X(p)| + k · |C(p)| + k2). In total, computing Dp only requires time
O(2k·|χ(p)||X(Tp)| k(k−1)

2 · k · (k + |χ(t)|)).

Lemma 10. Let p be an introduce node of T which introduces the clause C and t is its

58



7.2. Incidence Treewidth Algorithm

child. Then

Dp = {(α1, . . . , αk, S′
1, . . . , S′

k, d1,2, . . . ,dk−1,k) :
(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) ∈ Dt,

L = {l ∈ {1, . . . , k} : αl ⊨ C},

Sl ⊆ S′
l ⊆ Sl ∪ {C}, l ∈ L,

S′
l = Sl, l ∈ {1, . . . , k} \ L}. (7.3)

Furthermore, the set Dp can be computed in time O(|Dt| ·(2k ·(k ·χ(t)+k2)+k · |var(C)|))
given the set Dt.

Proof. Due to the properties of a tree decomposition and the incidence graph, no variables
that appear in C can already have been forgotten, i.e., they cannot be in X(Tp) \ X(p).
Therefore, any extension of αi onto the variables X(Tp) can only satisfy C if αi already
satisfies C. Thus, the tuples in Dp are the same as the tuples in Dt except that we may
add C to a set of clauses Sl if αl satisfies C. This is exactly what Equation 7.3 states.

Computing Dp is very simple as this just corresponds to duplicating each line of Dt up
to 2k times, adding C to the clause sets or not. Checking whether we are allowed to add C
requires per element in Dt and per l = 1, . . . , k the check αl ⊨ C, which can be done in time
O(|var(C)|). Thus, naively we require time O(|Dt| · (2k · (k · χ(t) + k2) + k · |var(C)|)).

Lemma 11. Let p be a forget node of T which forgets the variable x and t is its child.
Then

Dp = {(α1|X(p), . . . , αk|X(p), S1, . . . , Sk,d1,2, . . . , dk−1,k) :
(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) ∈ Dt}.

Furthermore, the set Dp can be computed in time O(|Dt| · (k · χ(t) + k2)) given the set Dt.

Proof. One just has to observe that extensions of α′ : X(p) → {0, 1} are also extensions
of α : X(t) → {0, 1}. Computing Dp comes down to a projection, hence the time
requirement.

Lemma 12. Let p be a forget node of T which forgets the clause C and t is its child.
Then

Dp = {(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . ,dk−1,k) :
(α1, . . . , αk, S′

1, . . . , S′
k, d1,2, . . . , dk−1,k) ∈ Dt,

S′
l = Sl ∪ {C}, l = 1, . . . , k}.

Furthermore, the set Dp can be computed in time O(|Dt| · (k · χ(t) + k2)) given the set Dt.
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Proof. Here, one just has to observe that (C(Tp) \ C(p)) ∪ S1 = (C(Tt) \ C(t)) ∪ S1 ∪ C.
Also, computing Dp just corresponds to dropping elements and deleting columns from Dt.
Hence, it is doable in time O(|Dt| · (k · χ(t) + k2)).

Lemma 13. Let p be a join node of T with children t′ and t′′. Then

Dp = {(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) :
(α1, . . . , αk, S′

1, . . . , S′
k, d′

1,2, . . . , d′
k−1,k) ∈ Dt′ ,

(α1, . . . , αk, S′′
1 , . . . , S′′

k , d′′
1,2, . . . , d′′

k−1,k) ∈ Dt′′ ,

Sl = S′
l ∪ S′′

l , l = 1, . . . , k,

di,j = d′
i,j + d′′

i,j − ∆(αi, αj), 1 ≤ i < j ≤ k}. (7.4)

Furthermore, the set Dp can be computed in time O(|Dt′ | · |Dt′′ | · k · (k + |χ(p)|)) given
the sets Dt′ and Dt′′.

Proof. Let (α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) be a tuple in the set on the right-hand
side of Equation 7.4 and let S′

l, S′′
l , d′

i,j , d′′
i,j witness this. Furthermore, let γ′

1, . . . , γ′
k wit-

ness that (α1, . . . , αk, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k) is in Dt′ and, analogously, let γ′′
1 , . . . , γ′′

k

witness that (α1, . . . , αk, S′′
1 , . . . , S′′

k , d′′
1,2, . . . , d′′

k−1,k) is in Dt′′ . Thus, each γ′
l satisfies

(C(Tt′) \ C(t′)) ∪ S′
l and each γ′′

l satisfies (C(Tt′′) \ C(t′′)) ∪ S′′
l . Together, γ′

l ∪ γ′′
l satisfy

(C(Tp) \ C(p)) ∪ Sl. Computing

∆(γ′
i ∪ γ′′

i , γ′
j ∪ γ′′

j ) = ∆(γ′
i, γ′

j) + ∆(γ′′
i , γ′′

j ) − ∆(γ′
i ∩ γ′′

i , γ′
j ∩ γ′′

j )
= d′

i,j + d′′
i,j + ∆(αi, αj)

ensures that (α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) is in Dp.

For the reverse direction, let (α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) be in Dp and let
γ1, . . . , γk witness this. We define γ′

l = γl|X(Tt′ ), γ′′
l = γl|X(Tt′′ ), d′

i,j = ∆(γ′
i, γ′

j), and
d′′

i,j = ∆(γ′′
i , γ′′

j ). Notice that di,j = d′
i,j + d′′

i,j − ∆(αi, αj). Furthermore, let S′
l be the

clauses from Sl that are satisfies by γ′
l and analogously let S′′

l be the clauses from Sl

that are satisfies by γ′′
l . As γl satisfies Sl, it has to be the case that S′

l ∪ S′′
l = Sl.

Furthermore, each forgotten clause C ∈ C(Tp) \ C(p) either has to be forgotten in
the subtree Tt′ or Tt′′ . Thus, also all variables from C appear in the same subtree
and hence, γ′

l satisfies the forgotten clauses C(Tt′) \ C(t′) while γ′′
l satisfies the forgot-

ten clauses C(Tt′′) \ C(t′′). Consequently, (α1, . . . , αk, S′
1, . . . , S′

k, d′
1,2, . . . , d′

k−1,k) ∈ Dt′

and (α1, . . . , αk, S′′
1 , . . . , S′′

k , d′′
1,2, . . . , d′′

k−1,k) ∈ Dt′′ . Put together, this ensures that
(α1, . . . , αk, S1, . . . , Sk, d1,2, . . . , dk−1,k) also appears in the set on the right-hand side
and hence, Equation 7.4 holds.

Computing Dp via Equation 7.4 requires us to go through all pairs of elements in Dt′

and Dt′′ . A naive implementation using nested loops achieves the required runtime.

With these lemmata we can describe the whole algorithm and bound its runtime.
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Theorem 9. Let φ be a formula in CNF, X = var(φ), C ∈ φ the clause with the
most variables, and (T, χ) a nice tree decomposition of Gi(φ). Then, Diverse-CNF-SAT
can be solved in time O(4k·(ωi+1) · (|X| + 1)k(k−1) · k2 · ωi · |var(C)| · |V (T )|), where k is
the number of sought-after solutions and ωi is the width of the tree decomposition. In
particular, the problem Diverse-CNF-SAT is in XP when parameterized by the number
of sought-after solutions k plus the treewidth of Gi(φ).

Proof. The Lemmata 8 through 13 ensure that we can compute the table Dt for each
t ∈ V (T ) by a bottom-up procedure in the required time bound. We can then read of
the maximal diversity achievable by k models of φ at the root r ∈ V (T ). This is true as
C(Tr) = φ, X(Tr) = var(φ), and (gray brackets are for set semantics)

max
γ1,...,γk∈M(φ)
(γi ̸=γj for i ̸=j)

δsum(γ1, . . . , γk) = max
γ1,...,γk∈M(C(Tr))

(γi ̸=γj for i ̸=j) 1≤i<j≤k

∆(γi, γj)

= max
(α1,...,αk,C(r),...,C(r),d1,2,...,dk−1,k)∈Dr

(di,j>0 for 1≤i<j≤k) 1≤i<j≤k

di,j ,

max
γ1,...,γk∈M(φ)
(γi ̸=γj for i ̸=j)

δmin(γ1, . . . , γk) = max
γ1,...,γk∈M(C(Tr))

(γi ̸=γj for i ̸=j)

min
1≤i<j≤k

∆(γi, γj)

= max
(α1,...,αk,C(r),...,C(r),d1,2,...,dk−1,k)∈Dr

(di,j>0 for 1≤i<j≤k)

min
1≤i<j≤k

di,j .

The right-hand side can clearly be obtained from Dr in the required time bound. This
completes the proof.

Example 10. An execution of the described algorithm can be seen in Figure 7.1, solving φ
of Examples 1 and 2. For the sake of succinctness, tuples (α1, α2, S1, S2, d1,2) ∈ DT ′

are omitted if there is a strictly better tuple (α1, α2, S′
1, S′

2, d′
1,2) ∈ DT ′ , i.e., S1 ⊆ S′

1,
S2 ⊆ S′

2, d1,2 ≤ d′
1,2, and the tuples are distinct to each other.

Concluding the description of the algorithm, we once again note that the ideas described
in the Sections 5.2.1 to 5.2.3 can also be applied to the incidence treewidth algorithm
(without full formal proofs). Reconstructing solutions works in the same way as before.
The algorithm needs to keep track of why it is justified to add a tuple to Dt and then, at
the end of the algorithm, one needs to follow the justification of the tuple in Dr which
has the highest diversity (and satisfies C(r)).

Furthermore, when we are interested in the problem Diversesum-CNF-SAT (set or bag
semantics), it is possible to combine the pairwise diversities di,j into a single value
d = 1≤i<j≤k di,j . It is also only necessary to keep the maximal possible diversity
achievable per α1, . . . , αk, S1, . . . , Sk combination. Thus, for bag semantics we can drop
the factor (|X| + 1)k(k−1) in the runtime, and for set semantics we can replace it with a
factor of 2k(k−1). This gives us for both cases an FPT algorithm.
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α1 α2

x y x y S1 S2 d1,2
0 0 0 0 0
0 0 0 1 C1 1
0 0 1 0 C1 1
0 0 1 1 C1 2
0 1 0 0 C1 1
0 1 0 1 C1 C1 0
0 1 1 0 C1 C1 2
0 1 1 1 C1 C1 1
1 0 0 0 C1 1
1 0 0 1 C1 C1 2
1 0 1 0 C1 C1 0
1 0 1 1 C1 C1 1
1 1 0 0 C1 2
1 1 0 1 C1 C1 1
1 1 1 0 C1 C1 1
1 1 1 1 C1 C1 0

α1 α2

x y x y d1,2
0 1 0 1 0
0 1 1 0 2
0 1 1 1 1
1 0 0 1 2
1 0 1 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

α1 α2

x y x y S1 S2 d1,2
0 1 0 1 C2 C2 0
0 1 1 0 C2 2
0 1 1 1 C2 C2 1
1 0 0 1 C2 2
1 0 1 0 0
1 0 1 1 C2 1
1 1 0 1 C2 C2 1
1 1 1 0 C2 1
1 1 1 1 C2 C2 0

α1 α2

x y x y d1,2
0 1 0 1 0
0 1 1 1 1
1 1 0 1 1
1 1 1 1 0

α1 α2

y y d1,2
1 1 1

α1 α2

z z S1 S2 d1,2
0 0 0
0 1 C3 1
1 0 C3 1
1 1 C3 C3 0

S1 S2 d1,2
C3 1

C3 1
C3 C3 0

α1 α2

y y S1 S2 d1,2
0 0 C3 1
0 0 C3 1
0 0 C3 C3 0
0 1 C3 C3 2
1 0 C3 C3 2
1 1 C3 C3 1

α1 α2

y y d1,2
0 0 0
0 1 2
1 0 2
1 1 1

α1 α2

y y d1,2
1 1 2

α1 α2

v v S1 S2 d1,2
0 0 0
0 1 C5 1
1 0 C5 1
1 1 C5 C5 0

S1 S2 d1,2
C5 1

C5 1
C5 C5 0

α1 α2

u u S1 S2 d1,2
0 0 C5 1
0 0 C5 1
0 0 C5 C5 0
0 1 C5 C5 2
1 0 C5 C5 2
1 1 C5 C5 1

α1 α2

u u d1,2
0 0 0
0 1 2
1 0 2
1 1 1

α1 α2

u u S1 S2 d1,2
0 0 0
0 1 C4 2
1 0 C4 2
1 1 C4 C4 1

S1 S2 d1,2
C4 2

C4 2
C4 C4 1

α1 α2

y y S1 S2 d1,2
0 0 C4 C4 2
0 1 C4 C4 3
1 0 C4 C4 3
1 1 C4 2
1 1 C4 2
1 1 C4 C4 1

α1 α2

y y d1,2
0 0 2
0 1 3
1 0 3
1 1 1

α1 α2

y y d1,2
1 1 3

x, y, C2 y, C3

y

y

y

y

y

x, y

x, y

x, y, C1

C3

z, C3

y, C4

C4

u,C4

u

u,C5

C5

v, C5

Figure 7.1: Solving Diverse-CNF-SAT with the help of the incidence treewidth.
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7.3. From Diverse-SAT over Diverse-CNF-SAT to Diverse-CQ¬

Lastly, we can solve Diverseδ-CNF-SAT in the time bound given in Theorem 9 for more
general diversity measures δ as described in Section 5.2.3.

7.3 From Diverse-SAT over Diverse-CNF-SAT to
Diverse-CQ¬

In classical complexity theory, it does not make much sense to distinguish between
the problems SAT and CNF-SAT. The reason being that an arbitrary propositional
formula φ can be transformed in polynomial time into a CNF formula ψ which is satisfiable
if and only if φ is satisfiable. To that end, most SAT-solvers require the input formula to
be in CNF, as only such formulae are expressable in the most prevalent input format
DIMACS CNF.

The most widely known method to perform this transformation is Tseitin transformation,
named after Grigori Tseitin (Tseitin, 1983). This is an iterative process that introduces
new variables Y such that finally

φ(X) ≡ ∃Y ψ(X, Y ),

where X are the variables used in φ and X, Y are the ones used in ψ. Thus, it is clear
that satisfiability is preserved, but k maximally diverse models γ1, . . . , γk ∈ M(ψ) of ψ
need not necessarily correspond to k maximally diverse models γ1|X , . . . , γk|X ∈ M(φ)
of φ. However, this problem can be eradicated by computing the diversity of a pair
γi, γj ∈ M(ψ) with a different function ∆X .

Let δX , ∆X again be defined as

δX(γ1, . . . , γk) = δ(γ1|X , . . . , γj |X), ∆X(γi, γj) = ∆(γi|X , γj |X),

where δ is either δsum or δmin. Then it is clear that (gray brackets are for set semantics)

max
γ1,...,γk∈M(φ)
(γi ̸=γj for i ̸=j)

δsum(γ1, . . . , γk) = max
γ1,...,γk∈M(ψ)

(γi|X ̸=γj |X for i ̸=j) 1≤i<j≤k

∆X(γi, γj),

= max
γ1,...,γk∈M(ψ)

(∆X(γi,γj)>0 for i ̸=j)

δX(γ1, . . . , γk),

max
γ1,...,γk∈M(φ)
(γi ̸=γj for i ̸=j)

δmin(γ1, . . . , γk) = max
γ1,...,γk∈M(ψ)

(γi|X ̸=γj |X for i ̸=j)

min
1≤i<j≤k

∆X(γi, γj)

= max
γ1,...,γk∈M(ψ)

(∆X(γi,γj)>0 for i ̸=j)

δX(γ1, . . . , γk).

Therefore, to solve the problem Diverse-SAT, it suffices to use the incidence treewidth
algorithm when we swap δ for δX and ∆ for ∆X .

Corollary 8. Let φ be a propositional formula, ψ the satisfiability-equivalent formula
obtained by Tseitin transformation, X = var(ψ), C ∈ ψ the clause with the most variables,
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and (T, χ) a nice tree decomposition of Gi(ψ). Then the problem Diverse-SAT can be
solved in time O(4k·(ωi+1) ·(|X|+1)k(k−1) ·k2 ·ωi · |var(C)| · |V (T )|), where k is the number
of sought-after solutions and ωi is the width of the tree decomposition. In particular,
the problem Diverse-SAT is in XP when parameterized by the number of sought-after
solutions k plus the treewidth of Gi(ψ).

Proof (sketch). The Lemmata 8 through 13 remain true when we swap ∆ for ∆X . Thus,
Theorem 9 remains true when we consider the diversity measure δX instead of δ and, for set
semantics, we consider two models γi, γj ∈ M(ψ) to be distinct only if ∆X(γi, γj) > 0.

We now turn our attention to the step from Diverse-CNF-SAT to Diverse-CQ¬. To
that end, it is well know that every CNF formula φ can be encoded into a CQ¬ (see
for example Lanzinger, 2021). The idea is that each clause C in φ is satisfied by all but
one assignment αC : var(C) → {0, 1}. The assignment αC that does no satisfy C has
to set each literal in C to false (0). This assignment can thus also be excluded by the
single negative literal ¬RC(var(C)) in a CQ¬ and the corresponding database I also
only needs a single tuple per clause, i.e., RI

C = {αC(var(C))} suffices. In total, the query
is Q : ans(var(φ)) ← C∈φ ¬RC(var(C)) and the database I consists of the tables RI

C .
This encoding is such that I(Q) = M(φ) and hence, solving Diverse-CNF-SAT for φ is the
same as solving Diverse-CQ¬ for I, Q. We can therefore use the primal treewidth algorithm
for Diverse-CQ¬ to solve Diverse-CNF-SAT and, even more generally, Diverse-SAT.

Corollary 9. Let φ be a propositional formula, ψ the satisfiability-equivalent formula
obtained by Tseitin transformation, X = var(ψ), and (T, χ) a nice tree decomposi-
tion of the primal graph Gp(ψ). Then the problem Diverse-SAT can be solved in time
O(4k·(ωp+1) · (|X| + 1)k(k−1) · (|ψ| + k2 · ωp) · |V (T )|), where k is the number of sought-
after solutions, ωp is the width of the tree decomposition, and |ψ| is the number of symbols
in the formula ψ. In particular, the problem Diverse-SAT is in XP when parameterized
by the number of sought-after solutions k plus the treewidth of Gp(ψ).

Proof. We can obtain Q and I from ψ as detailed before. Furthermore, let Y be the
variables introduced by Tseitin transformation, i.e., φ = ∃Y ψ. We define the query
QY : ans(var(φ)) ← ∃Y C∈φ ¬RC(var(C)) and thus, as I(Q) = M(ψ), it is clear that
I(QY ) = M(∃Y ψ) = M(φ). Furthermore, notice that Gp(ψ) and H(QY ) have the same
tree decompositions. Therefore, applying Theorem 7 to the instance QY , I and tree
decomposition (T, χ) proves the corollary.

Example 11. The query and database used in Example 9 is obtained by transforming
the formula φ of Example 1 into a CQ¬. Thus, also the example execution of the primal
treewidth algorithm for Diverse-CQ¬ depicted in Figure 6.2 can be seen as an example
execution of the primal treewidth algorithm for Diverse-SAT.

We now have two algorithms to choose from to solve Diverse-SAT. Recall, however, that
every class of graphs with bounded primal treewidth also has bounded incidence treewidth
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while the reverse statement is not necessarily true (Kolaitis and Vardi, 2000). Same
applies to the parameter dual treewidth which is often also considered in this setting (see
for example Samer and Szeider, 2010). Thus, the incidence treewidth algorithm can be
seen as a bit more general.

But, in the case of Diversesum-SAT (bag semantics), the primal treewidth algorithm has
a significant advantage. We argued at the end of Section 6.2 that we can decrease the
exponential asymptotic runtime of 4k·(wp+1) to 2k·(wp+1) in this case. Note that the same
idea does not work for the incidence treewidth algorithm and thus, in this case, we are
still left with 4k·(wi+1).

Consequently, it is not always clear which of the two algorithm should be preferred.
A comparison of both algorithm on benchmarks would therefore be helpful but this is
outside the scope of this thesis.

7.4 The Case of Diverse-DNF-SAT
We now turn our attention to Diverse-DNF-SAT. In contrast to the fragment CNF-SAT,
the fragment DNF-SAT of SAT is tractable without any additional parameter like
incidence treewidth. Thus, we can also hope for Diverse-DNF-SAT to be tractable
parameterized only by the number of sought-after solutions k. We show that this is at
least the case for Diversesum-DNF-SAT (bag semantics) when k is bounded. However,
we also show that Diversesum-DNF-SAT (bag semantics) and, even more generally, that
Diverse-DNF-SAT is W[1]-hard. Thus, although the algorithm described in the following
section to some extend brute forces the problem, there likely does not exist a significantly
better method from a theoretical point of view – in particular no FPT algorithm.

7.4.1 Brute Force Approach
In the following, let φ = n

i=1 Di be a propositional formula in DNF, i.e., each Di is
of the form Di = mi

j=1 li,j , where each li,j is a literals. We assume that each variable
appears at most once in each conjunct Di as multiple occurrences are either redundant
or make Di unsatisfiable. We define the variable assignment αDi : var(Di) → {0, 1} by

αDi(x) = 1 x appears in Di,
0 ¬x appears in Di.

Thus, by definition αDi ⊨ Di and every extension γ : var(φ) → {0, 1} of αDi satisfies φ.

Conversely, every model γ : var(φ) → {0, 1} of φ must satisfy at least one conjunct Di

and hence, must be an extension of αDi . Thus, the maximal possible diversity can be
computed with the help of

max
γ1,...,γk∈M(φ)

δ(γ1, . . . , γk) = max
α1,...,αk∈{αD1 ,...,αDn }

max
γ1,...,γk:var(φ)→{0,1}

γ1∼=α1,...,γk
∼=αk

δ(γ1, . . . , γk). (7.5)
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Furthermore, the inner maximum can be directly computed without needing to go through
all extensions.

Lemma 14. Let α1, . . . , αk ∈ {αD1 , . . . , αDn} be variable assignments. Furthermore, for
each x ∈ var(φ) let

d(α1, . . . , αk, x) =


l(k − l) l > k

2 of the variable assignments set x to 1,

l(k − l) l > k
2 of the variable assignments set x to 0,

⌊k
2 ⌋⌈k

2 ⌉ otherwise.

Then

max
γ1,...,γk:var(φ)→{0,1}

γ1∼=α1,...,γk
∼=αk

δ(γ1, . . . , γk) =
x∈var(φ)

d(α1, . . . , αk, x). (7.6)

Proof. For j = 1, . . . , k let αDij
be αj and let γj : var(φ) → {0, 1} be an extension of

αj : var(Dij ) → {0, 1}. The important observation is the fact that the values of γj(x)
for x ∈ var(φ) \ var(Dij ) do not impact that γj satisfies φ. Thus, they only impact the
achieved diversity and are in the best case picked to maximize the diversity of the values
γ1(x), . . . , γk(x). Put differently, we can maximize independently for each x ∈ var(φ),
i.e.,

max
γ1,...,γk:var(φ)→{0,1}

γ1∼=α1,...,γk
∼=αk

δ(γ1, . . . , γk) =
x∈var(φ)

max
γ1,...,γk:{x}→{0,1}

γ1∼=α1,...,γk
∼=αk

δ(γ1, . . . , γk).

We now show that

max
γ1,...,γk:{x}→{0,1}

γ1∼=α1,...,γk
∼=αk

δ(γ1, . . . , γk) = d(α1, . . . , αk, x).

If l > k
2 variables assignments αj set x to 1, the best we can do is set x to 0 in the

remaining k−l variable assignment. Doing this, we get diversity l(k−l) = d(α1, . . . , αk, x),
i.e., d(α1, . . . , αk, x) is exactly the maximal possible diversity on the variable x. The case
that l > k

2 variable assignments set x to 0 follows analogously. Lastly, if neither more
than half of the variable assignments fix x to 0 nor to 1, the best we can do is to set x
to 0 in half the cases and to 1 in the other half. If k is odd, we have to set x to either 0
or 1 one more time than the other. This gives us a diversity of ⌊k

2 ⌋⌈k
2 ⌉ = d(α1, . . . , αk, x),

i.e., d(α1, . . . , αk, x) is exactly the maximal possible diversity on the variable x.

Consequently Equation 7.6 is valid.

Equations 7.5 and 7.6 give a straightforward way to determine the maximal achievable
diversity and thus, a procedure based on this solves Diversesum-DNF-SAT (bag semantics).

Theorem 10. Let φ be a formula in DNF. Then, Diversesum-DNF-SAT (bag semantics)
can be solved in time O(|φ|k+1 · k), where k is the number of sought-after solutions. In
particular, Diversesum-DNF-SAT (bag semantics) is in XP.
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Proof. Let n be the number of conjuncts in φ. This runtime is achieved by a naive
implementation that iterates trough the nk possibilities for α1, . . . , αk ∈ {αD1 , . . . , αDn}
and computes the maximal possible diversity as Equations 7.5 and 7.6 suggest. Computing
d(α1, . . . , αk, x) can clearly be done in time O(k) and has to be performed once for each
variable in var(φ). Correctness of this procedure is guaranteed by Lemma 14.

Concluding, we note that also determining k witnessing solutions can be done, straight-
forwardly, in the given time bound.

7.4.2 W[1]-Hardness
We now show the W[1]-hardness of Diverse-DNF-SAT with the number of sought-after
solutions k being the parameter. For this we give a reduction from the Independent-Set
problem, where the parameter is the size of the sought-after independent set k′.

Theorem 11. The problem Diverse-DNF-SAT is W [1]-hard parameterized by the number
of sought-after solutions k.

Proof. We first give a reduction form Independent-Set to Diverse-DNF-SAT and then
prove its correctness.

Reduction. Let (G, k′) be an instance of Independent-Set with V (G) = {v1, . . . , vn}
and E(G) = {e1, . . . , em}. We will use the variables

e1
1, . . . , e1

m, . . . , en
1 , . . . , en

m,

e∗
1, . . . , e∗

m

and the conjuncts
D1, . . . , Dn

for the definition of our Diverse-DNF-SAT instance. We note that each variable will
appear in each conjunct. Let t = 1, . . . , m and i, j = 1, . . . , n. Each variable ej

t shall only
appear positively in the conjunct Di if i = j and vi is not incident to et, and otherwise
negatively. Each variable e∗

t appears positively in Di if vi is incident to et and otherwise
negatively.

The number of solutions one is allowed to pick is k = k′ and the minimum target diversity
is

dsum = k(k − 1)m, dmin = 2m,

respectively for Diversesum-DNF-SAT and Diversemin-DNF-SAT. The instances are
( n

i=1 Di, k, dsum) and ( n
i=1 Di, k, dmin), respectively. Both can clearly be computed in

polynomial time.

Correctness. First notice that φ = n
i=1 Di has exactly n models, which are αD1 , . . . , αDn .

Recall that we defined

αDi(x) = 1 x appears in Di,
0 ¬x appears in Di,
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for variables x ∈ var(Di) = var(φ). The idea of the reduction is that picking the vertices
vi1 , . . . , vik

corresponds to picking the models αDi1
, . . . , αDik

and vice versa. This is done
as the conjuncts are constructed such that each αDi sets exactly m variables to true,
one for each edge. Furthermore, the target diversity is so high, that k models can only
achieve this diversity if each model sets m different variables to true. Thus, we also do
not have to differentiate between set and bag semantics. The variables ei

1, . . . , ei
m are

“non competitive” for a model αDi as, if any, only this model can set these variables to
true. However, if vi is incident to et, the variable ei

t is set to false while the variable e∗
t is

set to true. But, the model αDi has to “compete” with the model corresponding to the
other vertex vj incident to et for e∗

t . Thus, only either αDi or αDj can be picked when
meeting the target diversity. It is therefore clear that vi1 , . . . , vik

is an independent set
of size k if and only if (αDi1

, . . . , αDik
) is a tuple of k distinct models with diversity (at

least) dsum or dmin, respectively.

Example 12. Consider the instance (G, k′) of Independent-Set with k′ = 2 and with
graph G′ depicted in Figure 7.2. Our problem reduction yields the following formula φ
in DNF:

φ : (¬e1
1 ∧ ¬e1

2 ∧ ¬e2
1 ∧ ¬e2

2 ∧ ¬e3
1 ∧ ¬e3

2 ∧ e∗
1 ∧ e∗

2)
∨ (¬e1

1 ∧ ¬e1
2 ∧ ¬e2

1 ∧ e2
2 ∧ ¬e3

1 ∧ ¬e3
2 ∧ e∗

1 ∧ ¬e∗
2)

∨ (¬e1
1 ∧ ¬e1

2 ∧ ¬e2
1 ∧ ¬e2

2 ∧ e3
1 ∧ ¬e3

2 ∧ ¬e∗
1 ∧ e∗

2).

One can see that models corresponding to rows two and three maximize diversity for k = 2,
and vertices v2, v3 form an independent set of size k′ = 2.

v1

v2

v3

e1

e2

Figure 7.2: A graph used for the DNF reduction.
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CHAPTER 8
Conclusion and Future Work

Baste et al. (2019) initiated the study of diversity problems from the perspective of
parameterized complexity. In this thesis, we followed in their footsteps and took a
look at database querying problems as well as SAT. To that end, we showed how to
solve Diverse-CQ, Diverse-CQ¬, and Diverse-SAT by leveraging the acyclicity measures
treewidth and hypertreewidth. The developed dynamic programming algorithms only
require polynomial time if we assume the parameter to be bounded. Our algorithms can
be broadly applied to diversity problems and even to the dual similarity problem.

Furthermore, for the database problems, we showed that an FPT algorithm is unlikely
due to W[1]-hardness. In fact, Diverse-ACQ is already W[1]-hard and adding unions to
the query language increases the complexity of the diversity problem considerable. For
this, we showed that the very restrictive case of Diverse-UACQ is already NP-hard even
if we bound the number of sought-after solutions by two.

Nevertheless, for fixed first order queries, we also presented an FPT kernelization process.
This algorithm may prove to work well in practice as assuming the query to be fixed seems
to be reasonable since the size of a real world query usually is only tiny in comparison to
the size of the database.

Lastly, we showed that the problem Diverse-DNF-SAT is already W[1]-hard while
Diversesum-DNF-SAT (bag semantics) is in XP.

Hence, especially, we were able to classify the diverse variant of many natural problems
solvable in polynomial time. This is of interest as the classification is only known for a
handful of problems and it exemplifies that the complexity of these problems is a priori
not at all clear. Our results show that these problems can remain solvable in polynomial
time (the best case), be in FPT or XP, or it can be NP-hard to find even a constant
number of diverse solutions (usually the worst case).
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Future Work. As far as the problems considered in this thesis are concerned, it would
be interesting to consider further structural restrictions and parameters. For CQ¬, the
acyclicity notion β-acyclicity (Brault-Baron, 2012; Brault-Baron et al., 2015) and the
novel complementary acyclicity measure nest-set-width (Lanzinger, 2021) seem to be a
promising starting point. For SAT, the parameters considered by Sæther et al. (2015)
could be analyzed first as they have already been used to establish tractable fragments
when interested in counting the number of models.

On a different note, it would also be of interest to formally prove the intuitive difference in
hardness between diversity measures. In this thesis, in particular when considering query
complexity and SAT, it seems as if Diversemin-X is slightly harder than Diversesum-X . To
that end, recall that we showed that Diversesum-CNF-SAT is FPT while we were only
able to prove XP-membership for Diversemin-CNF-SAT. However, we could not rule out
the existence of an FPT algorithm for Diversemin-CNF-SAT.

From a more high level point of view, analyzing the diverse variant of problems from
the perspective of parameterized complexity is quite new and thus, still wide open to
further research. As the diversity paradigm can be applied to almost any computational
problem, the possible new directions are likewise almost countless.
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