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Abstract

Hybrid Electric Vehicles (HEVs) have risen in popularity in the last years. Therefore their fuel
efficiency becomes increasingly important to manufacturers to satisfy consumer expectations
and legal restrictions. The efficiency of a HEV depends strongly on the used operation strat-
egy. As operation strategies are typically complex their optimal parameters cannot easily be
determined.

In this thesis the operation strategy parameters of two HEV simulation models — Model A
and Model B — are optimized using metaheuristics. A main problem in HEV optimization are
the long simulation times of the simulation software. This has already been observed in [30]. A
main goal of this thesis is to decrease the number of simulations needed in a metaheuristic while
still getting good approximate solutions, and to this end different techniques are used.

First search space restrictions are imposed where applicable. Second a discretization of the
continuous search space is employed to enable the usage of a solution cache. Third different
regression models — based on neural networks and ensemble methods — are applied to replace
the simulation software as a part of the used fitness functions. Different regression models are
trained and compared in experiments. These methods are implemented into a new modular
optimization platform developed by the author.

Metaheuristic optimization algorithms like Particle Swarm Optimization (PSO), Active Co-
variance Matrix Adaption Evolution Strategy (Active CMA-ES), and a genetic algorithm (GA)
are adapted to incorporate trained regression models. For this purpose a two-phased optimiza-
tion scheme is proposed. The first phase is concerned with generating solutions which are subse-
quently used in the training of regression models. The second phase uses the regression models
in tandem with the simulation software. Different approaches to incorporating regression models
are explored, like switching fitness functions or filtering of bad solutions.

The results of the two-phased optimization experiments are compared to reference experi-
ments of an unmodified PSO and an Active CMA-ES. The two-phased optimization is able find
solutions of approximately the same quality as the reference experiments. The fitness values of
best solutions found in the reference experiments and the two-phased experiments differ only in
0.6% for Model A and 0.3% for Model B — a difference negligible in practice. As no reference
values exist for the models it is hard to estimate the overall efficiency of the found solutions.
Although the parameter settings for the models are in the expected range where one would ex-
pect good solutions. The required (overall) simulation time could be reduced by up to 27% if
compared to the reference experiments. Last an analysis of the model parameters for Model A
is given with the help of Self-Organizing Maps (SOMs).
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Kurzfassung

Elektrohybride Kraftfahrzeuge (HEVs) gewannen in den letzten Jahren zunehmend an Bedeu-
tung. Für die Hersteller wird es dadurch wichtiger deren Kraftstoffverbrauch zu senken um Kun-
denerwartungen als auch rechtliche Rahmenbedingungen zu erfüllen. Dabei ist der Kraftstoffver-
brauch von Hybridfahrzeugen stark von der verwendeten Betriebsstrategie abhängig. Diese ist
meist komplexer Natur, sodass deren optimalen Parametereinstellungen nicht einfach bestimmt
werden können.

In dieser Diplomarbeit werden die Parameter von zwei Hybridfahrzeugmodellen — Modell
A und Modell B — mit Hilfe von Metaheuristiken optimiert. Ein Hauptproblem dabei sind die
langen Simulationszeiten der eingesetzten Simulationssoftware. Dies wurde bereits in [30] er-
kannt. Daher liegt das Hauptaugenmerk auf der Reduzierung der benötigten Simulationsdurch-
läufe. Zu diesem Zweck werden verschiedene Methoden eingesetzt.

Verschiedene Suchraumeinschränkungen werden angewandt wo dies möglich ist. Weiters
wird der Suchraum diskretisiert um den Optimierungsmethoden die Verwendung eines Lösungs-
Caches zu ermöglichen. Zuletzt werden verschiedene, auf neuronalen Netzwerken und Ensemble-
Methoden basierende, Regressionsmodelle trainiert um die Simulation aus der verwendeten Fit-
nessfunktion zu entfernen. Die oben genannten Erweiterungen werden in einem zuvor vom Au-
tor entwickelten Optimierungsframework implementiert.

Unterschiedliche Metaheuristiken wie Particle Swarm Optimization (PSO), Active Cova-
riance Matrix Adaption Evolution Strategy (Active CMA-ES) und genetische Algorithmen wer-
den für die Verwendung von Regressionsmodelle adaptiert. Zu diesem Zweck wird eine zwei-
phasige Optimierungsstrategie entwickelt. In der ersten Phase werden Daten für das Training
der Regressionsmodelle gesammelt. In der zweiten Phase werden die Regressionsmodelle zur
Approximation von Fitnesswerten verwendet. Verschiedene Möglichkeiten zu deren Verwen-
dung, wie abwechselnde Verwendung von Regression und Simulation, als auch filtern mittels
Regression, werden analysiert.

Abschließend werden die Ergebnisse der zwei-phasigen Optimierung mit Referenzlösungen
von unmodifizierten Optimerungsalgorithmen verglichen. Dabei findet die zwei-phasige Opti-
mierung ähnlich gute Lösungen wie die Referenzmethoden. Die Zielfunktionswerte der besten
gefundenen Lösung aller Referenzoptimierungen und aller zwei-phasigen Optimierungen liegen
zwischen 0.6% (für Modell A) und 0.3% (für Modell B) — eine in der Praxis vernachlässigbare
Differenz. Die gefundenen Modellparametereinstellungen korrespondieren mit den Gebieten in
denen gute Lösungen erwartet werden. Die erforderliche Simulationszeit konnte mit der zwei-
phasigen Optimierung um bis zu 27% verringert werden. Die evaluierten Modellparameterein-
stellung werden für Modell A mit Hilfe von Self-Organizing Maps (SOMs) analysiert.
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CHAPTER 1
Introduction

1.1 Background & Motivation

For the longest time in automotive history a large part of developed vehicles has been powered
by internal combustion engines. Although the design of internal combustion engines changed
and improved over the last hundred years the main concept of combusting fossil energy stor-
ages stayed the same. During that time significant experience has been gained in the field of
combustion engine construction.

It is undeniable that the advances in the field of internal combustion engines led to more fuel
efficient vehicles and also that the CO2 emissions per vehicle have reduced, as for example the
2013 report [10] of the US Environmental Protection Agency shows. Nevertheless, the climate
change driving atmospheric CO2 concentration reaches higher levels each year. Consequently
any possible reduction of CO2 emission has to be pursued vigorously.

Therefore, in recent years, the automotive industry faces increasing pressure from nations
and potential customers to develop more efficient drive concepts. For example the European
Union passed legislation [12] in 2009 prescribing CO2 emission goals for the current decade.
The regulation requires that all newly registered (light-duty) vehicles in the European Union
emit less than 130 g km−1 by 2015 and further less than 95 g km−1 by 2020. Failure to do so
will result in penalties for the manufacturers.

Besides passing such large scale measures more often local communities pass their own
regulations concerning automotive vehicles. Examples for this can be found throughout the
European Union where so called low emission zones1 have been created — local areas where
only vehicles complying to an emission standard may enter (or enter at a lower fee). These
measures usually target more direct goals like reducing the emission of particulate matter —
environmental pollutants which have been linked to respiratory diseases like asthma.

Currently, several more innovative (and less direct) concepts for promoting fuel efficient and
lower emission technologies are set up throughout Europe. An excellent example for such a

1 see www.lowemissionzones.eu, retrieved 2013-03-15
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concept is the city of Madrid where electric vehicles and plug-in hybrid electric vehicles are
exempt of parking regulations2. Further the city provides several free charging stations. A
similar charging concept on a much larger scale is planned for London 2013, where about 1300
charging stations shall be built and made available for a low annual fee3.

Due to the regulations and promoting concepts mentioned above, the incentive for the auto-
motive industry to invest in alternative drive concepts has risen over the last years. As a typical
goal of the intended developments “pure” electric long range vehicles are conceived (also called
Zero Emission Vehicles (ZEVs) [21]), which by definition do not emit pollutants during opera-
tion4. According to [21] both fuel cell powered electric vehicles and battery powered vehicles
are seen as potential candidates for ZEVs for everyday use.

Although these technologies have been around for some time, there are still several draw-
backs associated with them. As drawbacks for fuel cells [21] lists cost-intensive production of
Hydrogen and of the required fuel cells, as well as high volumetric requirements and high mass
of the cell concept.

The specific short-comings of electric batteries differ between the battery types in use (e.g
Li-Ion, Pb/PbO2, Ni-Metal-hybrid, etc.), but some common problems can be found [21]. Typi-
cally the theoretical and — even more so — practical energy density is far lower than the energy
densities of gas, diesel or H2. Further batteries require additional control circuits and software
for managing their state of charge, as failing to do so would limit their lifespan further. To make
things worse their usual mode of operation is restricted to a rather small temperature range s.t.
the batteries may require additional heating and/or cooling. Their practical use is also limited by
their high recharge times although significant improvements have been made in recent years.

It can be seen that both energy technologies do not come close to their gas/diesel counterpart
in matters of everyday use. It is believed that further technological advances are able to estab-
lish the competitiveness of fuel cell and battery technologies. In the mean time some bridge
technologies can be employed to counter the environmental and economical problems (at least
partially) caused by the use of traditional internal combustion engines.

This is where hybrid drive concepts come into play. Hybrid drive concepts combine the ben-
efits of internal combustion engines with an alternative drive concept such as fuel cells or electric
batteries to limit the drawbacks of both technologies. For achieving this goal Hybrid Electric
Vehicles (HEVs) use both internal combustion engines and electric machines in its powertrain.
There are several ways how internal combustion engines and electric machines can be com-
bined, which is detailed in Chapter 2. In this diploma thesis only HEVs using electric batteries
as second energy storage are considered.

As mentioned in the beginning, today’s engineers may rely on years of experience if the
design and improvement of internal combustion engines is concerned. In the case of HEVs,

2 see
www.c40cities.org/media/case_studies/switching-to-an-alternative-clean-
transportation-the-promotion-of-electric-vehicles-in-madrid, retrieved 2013-03-15

3 see
www.london.gov.uk/priorities/transport/green-transport/electric-vehicles, re-
trieved 2013-03-15

4Emissions emitted during energy transformation e.g. production of H2 in the case of fuel cells or power gener-
ation in a coal power plant are not taken into account.
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however, this does not hold as — although the one of the first vehicles combining combustion
engines with an electric drive has been built in 1899 [21] — HEVs have become a viable concept
only recently due to advances in energy storage technologies. This lack of experience poses a
severe challenge in the construction of HEVs which have significantly more parameters in its
powertrain to be adjusted than a conventional vehicle5.

For example powertrain parameters for conventional vehicles are the ignition timing of the
engine or the transmission of the gear set. HEVs, on the other hand, possess further parameters
for the powertrain which have a much stronger influence on the overall behaviour of the vehicle.
Particularly, HEVs use different modes of operation like pure electric, hybrid, Internal Combus-
tion Engine (ICE)-only, recuperating or boosting having a large impact on the performance of
the vehicle. The current mode of operation is determined by different parameters like the current
speed, axle torque and the current charge state of the battery. Further HEVs often use a differ-
ent type of gear set, a so called planetary gear set (see Chapter 2) which allows the mechanical
coupling of an ICE with an electric machine. The parameters of this coupling greatly influence
the performance of the Hybrid Electric Vehicle (HEV).

With this explosion of the number of parameters controlling the behaviour of the powertrain,
it gets infeasible to test and optimize a HEV’s powertrain manually. Further as the testing of
a vehicle in a test bed setup is usually cost- and work-intensive, alternatives have been sought.
Therefore complex simulation software has been developed to simulate HEVs in a virtual setting
and to evaluate output values such as fuel consumption, CO2 emissions, temperatures, torques
or battery charging state post simulation. The simulation software considered in this paper is
GT-SUITE6.

This thesis targets the optimization of different parameters of a hybrid powertrain on differ-
ent driving cycles (see Chapter 2) using the above mentioned simulation software. The engineers
are able to model many aspects of the actual vehicle with different accuracy in the simulation
software i.e. using an engine map instead of simulating the complete engine, depending on the
task for which the model is needed. With a tuned model the software then allows to evaluate
different parameter settings in less time than by using the actual vehicle.

As the simulation software is proprietary no direct integration (with the software) can be
achieved to facilitate the optimization. Therefore the software is treated as black box system and
the methods for optimization employed in this thesis, are metaheuristic optimization techniques
(see Chapter 3) such as genetic algorithms, particle swarm optimization or evolution strategies.
Although the use of metaheuristics can — theoretically — not guarantee a successful optimiza-
tion, many practical applications on problems like antenna design or rotor blade design have
shown promising results.

The thesis builds upon the work of a previous thesis [31] and paper [30] which has shown the
feasibility of the task at hand and achieved first good results. Nevertheless [31] showed that even
with the available simulation software GT-SUITE, getting usable optimization results requires
a substantial amount of time. There are two main reasons for this problem. First, there are the
long simulation times of the models, ranging from a few minutes up to several hours, even with
large variance of computation times in the same model — depending on the parameter settings.

5 “Conventional vehicle” terms vehicles which are propelled by an Internal Combustion Engine (ICE) only
6trademark of Gamma Technologies, www.gtisoft.com
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Second, there is the lack of practical possibility for parallelizing the simulations, as GT-SUITE
is a proprietary software and requires an unique (costly) license for each parallel simulation
instance.

As metaheuristics typically rely upon a large number of fitness/objective function evaluations
— in this case simulations with different parameter settings — this is a severe restriction on the
efficiency and the effectiveness of the optimization. Therefore one major motivation of this
thesis is to explore ways how the number of unique simulations can be lowered or how the time
spent by the optimization in the simulation software can be reduced.

The methods to achieve this goal are manifold. First methods are employed to restrict the
search space of the optimization, by excluding unpromising parameter combinations, based on
the knowledge of an expert — typically the author of the model under evaluation. Second
the metaheuristics in use are adapted for faster convergence in promising regions of the search
space and third machine learning and regression techniques are introduced into the optimization
process to act as a fast (but less accurate) replacement for the simulation software.

As the above mentioned ideas are highly interchangeable, a proper software framework had
to be developed for this thesis. This has been done by the author in previous computer science
project, resulting in the “Yet Another Optimization Platform” (YAOP, see Chapter 4). This
optimization platform defines the basic structure of the optimization task and is designed to be
highly modular to allow for an easy integration of different ideas. Further it exposes a web
fronted for controlling the optimization platform.

Another motivation for the thesis and the previous computer science project arises from the
intended audience of the software system. On the one hand the users of the developed platform
are expected to be an automotive engineers and on the other hand metaheuristics and machine
learning techniques are powerful but complex tools on their own, best understood by computer
scientists knowledgeable in these areas. To allow an effective usage of the optimization software
without extensive knowledge in metaheuristics and machine learning techniques, feasible default
values for the parameters of the used algorithms are set.

1.2 Thesis overview

Chapter 2 introduces the basic concepts and terminology of HEVs, as well as the basic concepts
the used metaheuristics and machine learning techniques. In Chapter 3 previous work in the area
of HEV optimization is summarized. Further used improvements for the metaheuristics and ma-
chine learning techniques of the previous chapter are discussed. The concrete implementation of
the algorithms and introduced alterations are explained Chapter 4. The results of the conducted
optimization and regression experiments are given and analysed in Chapter 5. Chapter 6 con-
cludes this thesis by summarizing its main goals and achievements, as well as implying possible
future work in the area of HEV optimization.

4



CHAPTER 2
Basics

2.1 Hybrid Electric Vehicles

Before discussing optimization of hybrid electric vehicles, a short introduction to their concepts
and terminology is given. This section follows closely chapter 2 “Definitionen und Klassi-
fizierungen der Hybridkonzepte” of [21].

The most basic definitions needed for understanding the discussed concepts are that of a
hybrid vehicle and that of a hybrid electric vehicle. According to [21], a hybrid vehicle is a
vehicle with at least two different energy converters used for propulsion and two different and
integrated energy storage systems. In consequence a hybrid electric vehicle requires one of the
energy converters to be an electric drive (typically an electric machine) and one energy storage
to release its stored energy as electric power. The main electric energy storage system relevant
for the optimization process are electric batteries.

Another important term for understanding this thesis is the vehicle’s powertrain. The pow-
ertrain of a vehicle consists of all parts relevant for propelling the vehicle, beginning at the
vehicle’s engines, its shafts, the different gear sets and differentials, finally ending at the cars
drive axles.

A HEV’s powertrain can be implemented in different ways and with different degrees of
hybridization. This allows to classify the type of HEV in two different dimensions.

The first axis is the degree of hybridization, which refers — simplified — to the possible
reliance on the electric drive as main drive of the vehicle, at least for a period of time. [21]
distinguishes the following hybridization degrees:

• Micro hybrids — possess an additional electric starter motor. The electric motor is
mainly used for start/stop (see below) and as power generator for board electronics. This
allows that the power of the ICE can be solely used for propulsion.

• Mild hybrids — possess a low-power electric machine, which is used for boosting and
basic load-point shifting (see below). As well as for recuperation and as a small generator.
Further it may be possible to use the electric drive in a pure electric mode at low speeds.

5



• Full hybrids — possess a single or even multiple high-power electric machines. The
same functions as for mild hybrids apply, but on a larger scale. The ICE and the electric
drive can either be used exclusively or in a mixed drive mode.

• Plug-in hybrids — are today basically the same as full hybrids, but with the possibility to
charge the battery via the power grid. In the future [21] assumes that plug-in hybrids may
be more similar to pure electric vehicles, with an ICE as range extender which cannot be
used for propulsion directly, but only for charging the battery.

In this thesis two different HEV models are considered for optimization. The first model
— named “Model A” in the following — is classified as a plug-in hybrid and the second model
— called “Model B” further on — is classified as a mild hybrid. More information about the
vehicles dealt with in this paper can be found in Chapter 5

Hybridization concepts

The second axis for classification is the way how the HEV’s different drives and energy storages
are integrated. There are multiple ways for achieving this technically. Those relevant for the two
vehicles considered in this paper are discussed in the following.

Series hybrid

Figure 2.1: The concept of a series hybrid. (Source [21, p. 21] — modified, translated to
English)

6



Although non of the vehicles discussed in this thesis are dedicated series hybrids, “Model
A” is able to switch between a series hybrid mode and a power-split hybrid mode (see below).
In series hybrids the arrangement of electric drive and ICE is designed so that only the electric
drive can be used for propulsion directly. Therefore the ICE is mechanically decoupled from
the driving shaft. The setup is depicted in Figure 2.1. The main task of the ICE in this setup is
to charge the HEV’s battery. Further in some implementations of the concept it is also possible
to bypass the battery and to supply the ICE’s power directly to the electric engine. In both
cases a series hybrid needs at least two electric machines: one coupled to the driving shaft via a
differential and one used as generator. But the number of electric machines used for propulsion
is not limited to one, but can go up to be equal to the number of wheels (one engine per wheel)
— a special case called “wheel hub drive” or “electric transmission”.

Series hybrids have several advantages e.g. it is possible to start the ICE delayed and use
the electric drive for starting. Further it is possible to operate the ICE in its most fuel-efficient
or emission-optimal point as torque and engine speed do not need to be varied to fit the current
demands of the propulsion requirements. But there are also disadvantages as for example the
high energy losses due to the numerous energy conversion steps in the powertrain.

Parallel hybrid

Figure 2.2: Different concepts for parallel hybrids. (Source [21, p. 17] — modified, translated
to English)

In contrast to the series hybrids a parallel hybrid setup allows the ICE to propel the vehicle
without taking the detour via the electric drive. Thereby the energy loss is reduced in compari-
son to a series hybrid as fewer energy conversion steps are necessary. But this advantage costs
the parallel hybrid to possibility to operate the ICE independently from the current propulsion
requirements. This may lead to a more inefficient operation of the ICE compared to a series
hybrid. The electric machine is deployed as an alternative drive which may be used as an addi-
tional drive — or even stand-alone depending on the concrete realization. Parallel hybrids can
be built in different forms:

7



• With the electric machine placed on the same shaft as the ICE using torque addition (see
Figure 2.2a ).

• With the electric machine and the ICE coupled via a gear set (shown in Figure 2.2c ) e.g.
a planetary gear set (see below).

• With each the ICE and the electric drive attached to separate drive axles (shown in Figure
2.2b ).

In this thesis the torque addition implementation is of high importance as the vehicle “Model
B” is implemented as such.

Power-split hybrid

Figure 2.3: The concept of a power-split hybrid. (Source: [21, p. 17] — modified, translated to
English)

Power-split hybrids try to achieve some of the benefits from both serial and parallel hybrids.
Power-split hybrids are able to transfer the power output of the ICE to two paths. The mechanical
path is directly coupled with the driving axles. This allows the vehicle to use the ICE as drive
similar to parallel hybrids. The second path is the electrical path which allows to use the ICE to
charge the battery via a generator, even while the ICE is used for propulsion. Further a second
electric machine can be used as drive at the same time. The benefit of this behaviour is explained
below.

The mechanical means for establishing the two paths typically make use of planetary gear
sets (see below) for coupling the electric machines with both the ICE and the driving shaft.
These special means of coupling allow that both paths are able to operate in parallel, thereby
splitting the power output of the ICE — hence the name power-split hybrid.

8



Modes of operation

In contrast to conventional vehicles which do not allow for much variety in the way the power-
train is used in a specific driving situation (except for the choice of the shifting strategy), HEVs
possess a more diverse and dynamic powertrain setup. This variability allows choosing between
different modes of operation, dependent on the current vehicle parameters. The choice of the
current operational mode is typically not left to the driver but is performed by software whose
behaviour is defined in the vehicle’s operation strategy.

The definition of a “good” operation strategy has great influence on the performance, the
fuel consumption and therefore on the emissions of the HEV. Therefore the parameters of the
operation strategy are ideal targets for the optimization algorithms described in this thesis.

The following paragraphs describe a HEV’s possible modes of operation and their opera-
tional constraints. One has to be aware that the concrete implementation of these modes depend
on the vehicle at hand and may be realized in multiple ways — or not at all if the vehicle’s
concept does not allow for it, or if the operation strategy is not designed for using a specific
mode.

The actual realizations of the operational modes for the HEVs discussed in this paper are
described in Section 5.2.

Battery state of charge (SOC)

The battery’s State of Charge (SOC) is a parameter greatly influencing the operation strategy of
the vehicle. Its unit is dimensionless and indicates the remaining charge of the battery in percent.
Some operational modes of a HEV are only available at specific SOC ranges e.g. electric vehicle
mode, recuperation (see below).

Further the SOC takes a special role in the optimization of the powertrain (see Section 4.2
and Section 5.2), as it is usually required of an operation strategy to perform in such a way that
the SOCs at the beginning and at the end of a driving cycle (see Section 2.2) are approximately
equal i.e. balanced. Otherwise if the SOC at the end of the cycle is lower than at the beginning,
the strategy would not be comparable to another strategy with a balanced SOC. The first strategy
would achieve better results merely by draining the battery. On the other hand if the SOC
is higher at the end, the strategy could perform worse than a balancing strategy as it has not
drained the battery enough — even if the unbalanced one achieved better, an even better strategy
would be a similar one using the electric drive more effectively.

Start/stop

The idea of start/stop is to disable the ICE automatically while halting e.g. at traffic lights or
during traffic jams. Although start/stop systems are also available in conventional vehicles,
according to [21] HEVs may need less time for restarting the ICE by using the electric machine
as a starter.
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Recuperation

Recuperation or regenerative breaking terms the partial recovery of energy while decelerating.
Instead of using the vehicle’s breaks or its exhaust brake, a HEV is able use the generator for
decelerating while charging the vehicle’s battery. This improves the efficiency of the electric
drive. If needed, the remaining breaking energy is supplied conventionally. One has to be aware
that recuperation is only possible if the battery’s state of charge is low enough to cope with the
additional energy.

Load-point shifting

Besides recuperation, load-point shifting is another efficient technique for charging the HEV’s
battery. As the efficiency of ICEs is typically higher if the torque is near its peak for the current
engine speed [21], it is reasonable to raise the torque if feasible. This can be achieved by using
the torque not needed for propulsion for charging the battery by attaching the generator to the
powertrain and thereby increasing the load on the ICE.

Boosting

Boosting1 is to be understood as the use of the electric drive to support the ICE in propelling the
vehicle. This may be required during hard acceleration phases, where the ICE would not be able
to deliver the required power alone or if doing so would be inefficient for the ICE.

ICE-only mode

This propulsion mode is typically used if the state of charge is low and no “hybrid” mode is
applicable, but also if the battery is charged but the electric drive cannot operate at the current
speeds — either by boosting or through EV mode operation.

Electric Vehicle (EV) mode

Reciprocal to the ICE-only mode, the Electric Vehicle mode is the mode where the vehicle uses
only its electric machine(s) for propulsion. An usual usage of this mode is in urban environ-
ments at low speeds, where electric machines may operate for a longer period of time without
recharging. Further electric machines typically have higher torques at lower engine speeds than
ICEs, thereby reducing the required energy for driving the first few meters after stopping if com-
pared to an ICE. But depending on the available power output of the electric drive it may also
be possible to use the EV mode cross-country at higher speeds.

This is beneficial as electric machines typically have higher torques at lower engine speeds
than ICEs,

1The term “boosting” used in two-fold manner in this thesis. First it describes an operational mode of a HEV
and second it is a machine learning concept for improving the performance of learning algorithms. Therefore the
meanings should not be confused.
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Planetary gear sets

In parallel and power-split hybrid concepts, a way of coupling the ICE and the electric ma-
chine(s) is by using a planetary gear set. Planetary gear sets are important components for
realizing the different operational modes of a HEV and its gear ratio(s) directly influence the
performance characteristics of the vehicle. Consequently its gear ratio(s) are a viable target for
optimization.

Depicted in Figure 2.4 is the structure of such a gear set with its components. A planetary
gear set consists of three components connected to different stashes:

• the sun gear at the center of the gear set

• the planet gears connected with a the planetary carrier and surrounding the sun gear

• the gear ring, an inverted gear interacting with the planet gears.

Figure 2.4: The structure of a planetary gear set. (Source [21, p. 28] — modified, translated to
English)

A typical setup described in [21] connects the ICE’s stash with the planetary carrier, the
stash of an electric machine with the sun gear and the driving shaft with the gear ring. There are
two modes in which planetary gear sets are able to operate:
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• with a single fixed shaft and two rotatable shafts, enabling — depending on the fixed shaft
— either an ICE-only mode, an EV mode or a charging mode. Fixing a shaft leads also
leads to fixed gear ratios and it is important to choose proper ratios for a maximum of
performance.

• with all three shafts freely rotatable, allowing for either using the sun gear for charging
or inversely for boosting via the electric machine. In contrast to the mode above the gear
ratios in this mode are load dependent but the torques of the separate shafts are fixed.

2.2 Standardized driving cycles

An important characteristic for the driver of any vehicle is the vehicle’s every-day performance.
Besides the vehicle’s engine’s energy output and its maximum torque, it gets increasingly im-
portant to compare fuel consumption and emissions, before buying a specific vehicle. Therefore
these parameters are also important during design and construction of the vehicle.

Fuel consumption and emission differ greatly in every-day usage. So a standardized way
is needed to compare these measures. A solution to this problem provide standardized driving
cycles. These cycles predefine the targeted driving speed at any point of time of the cycle and its
environmental constraints e.g. ambient temperature, engine preheating, etc. This shall guarantee
that all measurements of fuel consumption, etc. for different vehicles are recorded with the same
constraints in place.

Besides comparing different vehicles with the help of a standardized driving cycle, it can
be used for comparing the same vehicle, with different parameter settings too. This approach is
used in this thesis when applying meta-heuristics to HEV simulation models.

Both the USA and the European Union define official driving cycles — the EPA US06 and
the NEDC — that are used for testing a vehicle’s compliance with the current fuel consump-
tion and emission standards. Due to the importance of these driving cycles they are used for
evaluating the simulation models in this thesis and are explained below.

EPA US06

In the USA the emission standards for different kinds of vehicles are regulated by the Clean Air
Act (CAA) in its latest version of 2008 [45]. According to the CAA, the United Stated Environ-
mental Protection Agency (EPA) is responsible for defining regulations and test procedures for
testing a vehicle’s compliance to the pollution standards defined by the CAA.

The standardized driving cycles of the EPA for light-duty vehicles i.e. passenger cars, are
the Federal Test Procedure (FTP) with a city and a highway version and the three Supplemental
Federal Test Procedure (SFTP)s. The SFTPs address specific short comings of the original
FTP. The EPA US06 is such a SFTP targeting higher speeds and a more aggressive driving
behaviour [1] the original FTP. The US06 driving cycle — depicted in Figure 2.5 — is one of
the cycles used in this thesis for assessing and optimizing different HEV parameter settings.

It can be seen that the US06 driving cycle depicted in Figure 2.5 is highly dynamic due to
short acceleration and braking phases. Further the cycle is rather short (600 seconds) which
results in short simulation times.
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Figure 2.5: A plot of the EPA US06 driving cycle

New European Driving Cycle (NEDC)

The New European Driving Cycle (NEDC) is currently the driving cycle relevant for measur-
ing fuel consumption and emissions for newly registered vehicles in the European Union [36].
The driving cycle is composed from two different driving cycles: the ECE-15 and the EUDC.
The ECE-15 is a city driving cycle and is repeated four times at the beginning of the NEDC
followed by a single iteration of the EUDC. Besides the US06 driving cycle, the NEDC is used
for assessing the fuel consumption during the optimization process used in this thesis.

In difference to the US06 driving cycle is significantly longer and less dynamic. The NEDC
is an artificial driving cycle consisting of linear acceleration and braking phases, interspersed
with with plateaus of constant speeds.

2.3 Metaheuristics and Optimization

Optimization deals with minimizing or maximizing some objective function (also called fitness
function). This thesis deals with continuous parameter optimization problems, with objective
functions f of the form f : Rd → R. In this thesis all optimization problems are treated as
maximization problems as by Definition 1 — see Section 4.2 for details.
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Figure 2.6: A plot of the New European Driving Cycle.

Definition 1. A continuous parameter maximization problem for some objective function f :
X → R, with X ⊆ Rn, is defined as follows. Find some global optimum ~x ∈ X such that
∀~s ∈ X : f(~x) ≥ f(~s) holds.

As mentioned in Chapter 1 the optimization process uses a black box simulation system for
implementing its objective function. Consequently mathematical techniques for solving systems
of equations and gradient descent methods are not applicable. Therefore the author relies on
metaheuristics which are able to operate on black box objective functions.

The main characteristic of any heuristic is that it is not guaranteed that the method finds a
global optimum of its search space. Hence, their performance on a specific problem can only be
evaluated empirically. Heuristics are usually problem-specific i.e. a heuristic designed for one
problem may be useless for another problem. Metaheuristics provide more abstract concepts
than conventional heuristics, as they define frameworks which in sequence use problem-specific
heuristics to create new solutions or to modify existing ones. A benefit of using metaheuristics
is the possibility to analyse the properties of the used metaheuristics in a generic way to un-
derstand specific properties of the metaheuristic itself e.g. like the schema theorem for genetic
algorithms or influences of metaheuristic-specific parameters on the search behaviour. The au-
thor therefore relies on metaheuristics which have been (empirically) proven to be effective on
other optimization problems. The basics of the used metaheuristics are explained below.

14



Genetic Algorithms (GA)

Genetic algorithms are a popular family of metaheuristics. Their general idea has been intro-
duced by J.H.Holland in 1975 [22]. Further information can be found in [4]. Genetic algorithms
are inspired by the concepts of evolution in biology.

In biology, evolution is the process how specific species/individuals came to fill their current
biological niche. According to evolution, existing species/individuals exist because their ances-
tors possessed specific attributes that allowed them to perform better in a reproductive sense,
than others in their current environment — this principle is also called natural selection. Further
it is assumed that the descendants share at least some of these attributes with their ancestors,
making them a similarly good “fit” to their current niche.

These principles are tried to be adapted to the field of optimization. Genetic algorithms
belong to the class of population-based heuristics as they deal with a set of possible solutions at a
time. Each solution is treated as an individual in a population and is encoded in a “chromosome”.
For each chromosome a fitness value can be calculated by means of the objective/fitness function
of the optimization problem. After an initial population is created a genetic algorithm typically
performs the following steps until some halting condition is fulfilled e.g. a number of iterations
or convergence of the population.

1. Selection — In the selection step individuals are selected which are allowed to pass parts
of their chromosome to the next generation. It is important that the selection is based on
the fitness value of the individuals for genetic algorithms to work. Often used selection
methods are roulette wheel selection, where a each individual is selected with a proba-
bility proportional to its fitness and tournament selection, where for each individual to be
selected two or more are randomly chosen and the best of these is then selected.

2. Recombination — The individuals selected in the previous step are then recombined into
new individuals. This step depends strongly on the encoding used for the chromosomes.
Usually the attributes (genes) of two individuals are intermingled to produce a new indi-
vidual.

3. Mutation — Commonly the recombination step reduces the variance in the attributes of
the new population. This is due to using the information of a small set of selected ances-
tors to create a larger set of descendants, thereby losing information from the individuals
not selected for recombination. As this behaviour would lead to fast convergence i.e. all
individuals become identical, a small percentage of each descendant’s genes are mutated
to introduce more variance into the new population. Again this steps depends on the en-
coding scheme used for the chromosomes.

GAs usually target combinatorial optimization problems in contrast to continuous optimiza-
tion problems, as some of the typically applied encoding/recombination/mutation concepts do
not apply well to continuous variables. Although binary encodings like gray coding can be used
for implementing continuous variables, a different encoding is used in this thesis as described in
Section 4.2.
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Nevertheless, due to modifications to the search space applied in this thesis (see Section 4.2),
it is possible to apply GAs on discrete variables at least for some phases of the optimization
process.

Evolution Strategies (ES)

Evolution Strategy (ES) have been introduced by Schwefel in [42] and are similar to genetic
algorithms, with a few but nevertheless important differences. Whereas genetic algorithms are
primarily used in combinatorial optimization, evolution strategies have been developed with
continuous optimization in mind. An overview can be found in [5] and [6]

In ES, like in genetic algorithms, solutions are encoded as chromosomes. Although unlike
in genetic algorithms, solutions are encoded as a real valued vector of the solution’s parame-
ters. Further the main operation in evolutionary strategies is not recombination but mutation.
Mutation is usually implemented as addition of a normally distributed vector to an individual’s
chromosome. The recombination step is often omitted.

For selection an own notation has been introduced. It distinguishes between two types of
evolutionary strategies.

1. (µ+ λ)-ES have a population size of µ and produce λ descendants per generation. From
this pool of µ+ λ individuals the best µ individuals are selected. This scheme introduces
a concept called elitism to the ES, where an individual may survive several generations
instead of one.

2. (µ, λ)-ES have a population size of µ and produce λ descendants per generation. The best
µ descendants then form the new population.

A commonly applied modification to mutation in ES is to use a separate normal distribution
with zero mean for each individual. The variances and covariances — the so called strategy
parameters — of these normal distributions are then included into the chromosomes of the indi-
viduals. The strategy parameters are then also prone to selection. This technique works well as
long as the number of dimensions is low as for higher dimensional counts the algorithm begins
to suffer from the “curse of dimensionality”. Alternative attempts for controlling the ES strategy
parameters are described in Section 3.3.

Particle Swarm Optimization (PSO)

Like GA and ES, Particle Swarm Optimization (PSO) is another metaheuristic mimicking nature.
Though PSO is not inspired by evolutionary concepts. PSO has been developed by Eberhart and
Kennedy in 1995 [27].

PSO tries to emulate the food search behaviour of birds, which have a tendency to cluster
around rich food sources. Similar to ES, PSO is typically used for continuous optimization
— although discrete variants like Binary-PSO exist. In PSO each solution is represented as a
particle, a real valued vector of the solution parameters, representing the position of the particle
in the search space. Further each particle possesses a velocity in the search space. Each particle
moves through the search space, evaluating the solution at its current position and orienting itself
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towards its own best solution and the globally known best solution. The exact steps executed in
each iteration are described below.

1. For each particle i, evaluate the objective function at its position ~xi.

2. For each particle update its own best solution ~bi and the globally known best solution ~g.

3. For each particle update its current velocity ~vi.

~vi = ~vi + φ1 · rand[0,1] ·(~bi − ~xi) + φ2 · rand[0,1] ·(~g − ~xi), φ1 = φ2 = 2 (2.1)

Where rand[0,1] is function providing uniform random values in the range [0, 1].

4. For each particle update its current position ~xi.

~xi = ~xi + ~vi (2.2)

There exist several variations of the update scheme like canonical particle swarm optimiza-
tion (see Section 3.2). As for GA and ES, the steps above are executed until some halting
condition is fulfilled.

2.4 Regression & machine learning techniques

According to [30] the evaluation of the used objective function requires a substantial amount of
time. This is due to the need to simulate a driving cycle with the simulation software “GT Suite”
for evaluating the objective function. The simulation poses a severe bottleneck to the whole
optimization. As a major intent of this thesis is to lower the time needed by the optimization
process, without increasing the number of parallel simulations, it is reasonable to think about
ways for replacing the evaluation model. This has already been proposed in [30].

A possible way to do this is by creating a regression model for the objective function or at
least for parts of the objective function (see Section 4.2). A regression model/function tries to
capture the hidden dependencies between some input variables in Rd and some output variable
in R. Regression models require preobtained data for model fitting. This data will further be
called training data or training set. In the case of the used objective functions the data is collected
from previous simulations during the optimization process.

It is distinguished between different types of regression:

• Parametric regression uses regression models ψβ1,...,βk(~x) of a predefined form e.g.
polynomial, exponential, logarithmic. The regression techniques are used to determine
the parameters βi, 1 ≤ i ≤ k of the regression function ψ : Rd → R.

• Non-parametric regression uses regression models of no predefined form. An exam-
ple for non-parametric regression models are regression splines like multivariate adaptive
regression splines [14].
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• Semi-parametric regression is a combination of parametric and non-parametric regres-
sion i.e. models which allow adaption of the model by modifying parameters of functions
included into the model as well as providing some variability in the form of the function.

The regression methods used in this thesis primarily are semi-parametric neural networks.
But also parametric and non-parametric techniques are employed. The basics of these techniques
are explained below. Advanced concepts used in the experiments are described in Section 3.5
and Section 4.3.

Linear regression

Linear regression is a form of parametric regression, where a linear function is used as regression
model. The task of the regression analysis is then to determine α, ~β of the function ψ below.

ψ
α,~β

(~x) = α+ ~βT~x (2.3)

The parameters of the linear model are chosen such that they minimize some error function
for a given set of training data (~xi, yi), 1 ≤ i ≤ m, with m the size of the training set. A
commonly used error function is the Sum of Squares Error (SSE).

SSE =
1

2

m∑
i=1

(yi − ψ(~xi, α, ~β))2 (2.4)

If the SSE is used as error function the method for determining the regression parameters is
called “least squares method”. The parameters can be calculated directly by setting their gradient
to zero as the SSE for linear regression is a convex function.

For another method to fit a linear regression models see the artificial neural network section
below.

Generalized linear regression

The concept of linear regression can be generalized by the use of basis functions φj : Rd → R.
These functions allow to use arbitrary function forms for regression. The regression model than
takes the following form.

ψ~β(~x) =

k∑
j=1

(βjφj(~x)) = ~βTφ(~x) (2.5)

where k is the number of basis functions and φ : Rd → Rk is the vector-valued function
combining the basis function. For example one-dimensional linear regression can be expressed
in the framework of generalized linear regression with the basis functions shown below.

φ(x) =

(
φ1(x)
φ2(x)

)
=

(
1
x

)
(2.6)
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The parameter values ~β for generalized linear regression are acquired by minimizing some
error function like SSE. In general it is not possible to minimize the error function by setting
its gradient to zero as the error function is not required to be convex. Therefore other methods
for function minimization are generally used, like gradient descent, Newton’s method or the
Levenberg-Marquardt algorithm (see Section 3.4).

If generalized linear regression is used the question arises which basis functions should be
chosen for fitting the training set. Unfortunately there is no direct answer to this question and if
no further information about the training set is available then proper basis functions have to be
determined experimentally.

Artificial Neural Networks (ANN)

The term Artificial Neural Network (ANN) refers to models and methods inspired by the work-
ings of biological neural networks. These biological networks are well known to possess excep-
tional computation, memory and learning capabilities. ANNs have been developed for different
kinds of purposes like simulating their biological counterparts to gain better understanding of
their workings, reconstructing damaged input signals, classification of inputs and — most rele-
vant for this paper — regression of input and output data.

The methods for implementing ANNs are as diverse as their intended purpose. Network
types that can be used for regression are for example radial basis networks or multi-layer per-
ceptrons, which are explained in the following. ANNs are usually classified as semi-parametric
regression techniques.

The Perceptron

Before introducing multi-layer perceptrons the model of a (single layer) perceptron is intro-
duced. Multi-layer perceptrons are an extension of the perceptron neural network model. The
perceptron has been devised by F. Rosenblatt [40]. A perceptron is a (very abstract) model of bi-
ological neuron and similarly possesses weighted inputs — the artificial equivalent to dendrites
— and a single output — equivalent to the axon. Figure 2.7 depicts the basic structure of the
perceptron model.

Figure 2.7: The structure of a perceptron.
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The function computed by a perceptron is shown in Equation 2.7. The parameters — called
“weights” in the ANN context — of the model are denoted as ~w. The weight vector is of the
same size as the input values ~x. It has to be noted that the inputs of the regression problem are
augmented by an additional first element which is always of the value 1. The additional value
is also called “bias” or “bias neuron” and is an elegant way to implement a constant offset to
the net (= netto input) function net : Rd → R. The net function is used to calculate the input
for the activation function from the inputs to the neuron. The activation function act : R → R
calculates the actual output of the perceptron.

ψ~w(~x) = act(~wT~x) (2.7)

There is a variety of activation functions like signum — used originally — or sigmoid func-
tions. Observe that if the identity function is used as the activation function then the perceptron
computes the same function as a multivariate linear regression. Therefore the training algorithms
for the perceptron can also be used as training algorithms for linear regression.

Several perceptron training algorithms exist. One of the most flexible — with regard to the
activation function — is the method of gradient descent applied to some error function (e.g.
SSE) of the perceptron output.

Multi-layer Perceptrons (MLP)

Minsky and Papert showed in [34] that the single layer perceptron — with specific activation
functions — has severe restrictions e.g. the XOR problem is not linearly separable. To overcome
these limitations one possibility is to use a Multi-Layer Perceptron (MLP). MLPs do not use a
single perceptron but several layers of perceptrons in sequence. Thereby the outputs of the
neurons in one layer are connected to the inputs in the next layer as depicted in Figure 2.8.

Figure 2.8: The schematic of a multi-layer perceptron.

This thesis uses layered feed-forward MLPs, where each neuron in layer i is connected to
all neurons in layer i + 1. Further each layer except the last (output) layer contains a single
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bias neuron whose output is always 1. The layers between the input and the output layer are
called hidden layers. The number of neurons in the hidden layers and their activation functions
greatly determine the class of functions which can be represented by a specific neural network.
In general MLPs tend to be more flexible with regard to the form of their output function than
generalized linear regression methods.

In the following the terminology needed for explaining the computation of the neural net-
work is introduced. Let ~x[l] be the input vector of layer l + 1 i.e. ~x[0] denotes the aug-
mented inputs of the whole neural network and ~x[l], 1 ≤ l ≤ L denotes the outputs of
layer l with L the number of layers. Accordingly the matrices w[l], 0 ≤ l < L denote the
augmented weights between the neurons of layer l and l + 1. Further let #(l) denote the
number of neurons in layer l, not including the bias neuron. Thereby the matrix component
w[l]ij , 0 ≤ i ≤ #(l), 1 ≤ j ≤ #(l + 1) belongs to the weight between neuron i of layer l and
neuron j of layer l + 1. The regression function ψ described by the network is then recursively
calculated as follows.

~x[0] =


1
x1
...

x#(0)


~x[l + 1] = act[l + 1](w[l]T

(
1
~x[l]

)
), 0 ≤ l < L

ψw[1],...,w[L−1](~x[0]) = ~x[L]

(2.8)

There remains the problem of learning the weight values of the MLP. The learning algorithm
most often explained in introductory lectures to neural network training is the (error) backprop-
agation algorithm [8], which is basically a gradient descent algorithm with a SSE error function.
The main problem solved by backpropagation is how the gradients of the neurons in the hidden
layers are computed.

Despite the popularity of backpropagation, it suffers from low convergence speed and is
prone to drop to local minima. Early experiments during the work on this thesis have shown
that backpropagation is not suitable for training neural networks for the regression problems in
this thesis. Therefore a different learning algorithm — the Levenberg-Marquardt algorithm for
neural networks (see Section 3.4) — is used for training the neural networks, which has been
observed to perform better and to converge faster than backpropagation.
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CHAPTER 3
State of the Art

3.1 Previous work

Introductory note: the mathematical variables, definitions and algorithms introduced in Chapter
2 are the same in their respective context and not described again. This holds true in the further
chapters too.

Optimization of HEVs

Early efforts in optimizing operation strategies of HEVs has been done by Johnson, Wipke
and Rausen in 2000. In [26] they developed a real-time control strategy for a parallel HEV
model. For optimization the commercial “VisualDOCTM” software1 is used to optimize the
strategy’s parameters on a surface fitted model obtained from Design of Experiments (DoE). The
optimization is carried out using Sequential Quadratic Programming. It is mentioned that the
simulation of the HEV model using the ADVISOR2 simulation software requires a substantial
amount of time — up to ten times longer than the models considered in this thesis, although the
simulation times cannot be directly compared due to the advancements in computational power.

Another approach for optimizing parallel HEVs is explored by Hu, Wang and Liao in [23].
Their intent is to minimize a multi-objective function compromised by the HEV’s fuel consump-
tion and several emissions by using a Genetic Algorithm (GA) variant for Pareto-optimization.
Thereby the multi-objective case is treated quite differently to the approach chosen in this thesis
(see Section 4.2 for a discussion). Further the paper does not address the computation times for
the simulation.

Last the paper [30] and master thesis of Krenek [31] is an important reference for this thesis.
The work deals first with the feasibility of using GT-Suite as objective function component and
applies different metaheuristics to Model B (see Section 5.2) of this thesis. Further a hybrid
optimization approach PSAGADO combining several metaheuristics has been developed. The

1 http://www.vrand.com/visualDOC.html, accessed 2013-06-15
2 Developed by the National Renewable Energy Laboratory (NREL) of the USA and commercialized by AVL.
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problems of the long computation times, parallelization problems due to license restrictions and
the ideas for the numerical restriction of some parameters and the use of approximative objective
functions — which are addressed in this thesis — are presented in its outlook, too.

Combining metaheuristics with regression techniques

In [2] an introduction to simulation optimization is given. The authors of the paper state that it
is common to use so called metamodels for simulation optimization to reduce computationally
expensive simulation times. A metamodel is some kind of algebraic representation of the simu-
lation i.e. some kind of regression function. It is stated that linear regression is one of the most
common techniques, but also neural networks are named as a type of metamodel in more recent
publications. According to [2] metamodels typically act as a filter which lets only solutions of a
specific estimated quality be passed to the simulation model.

A concrete example where neural networks have been used as a metamodel is given in [28],
where the physical parameters of a rectangular microstrip antenna are optimized. In contrast
to [2] the neural network — trained beforehand with data from experiments — is used solely as
objective function for the implemented GA, without ever relying on a more elaborate simulation
model.

Jin, Olhofer and Sendhoff developed a framework for combining evolutionary algorithms
with neural networks as metamodels in [25]. Besides the afore-mentioned filtering approach
— called “managed individuals” in the paper — a different usage scenario for metamodels
called “managed generations” is presented. Therein the neural network is used as main objective
function. Although every few generations the original simulation model is used to evaluate a
whole generation of individuals. Further the paper addresses the matter of retraining of the
regression models and suggests a novel method for using the covariance matrix of the CMA-ES
(see Section 3.3) algorithm for selecting new training samples.

3.2 Advances in PSO

In the years after its first introduction PSO has become a widely known technique for metaheuris-
tic optimization and has been adapted to an extensive set of optimization problems. Further the
number of PSO variants has grown nearly as fast. A good overview of these variants is given by
Poli and Kennedy in [37].

The modifications to the original PSO range from rather simple adaptions as the introduction
of velocity controlling parameters [43] to different neighbourhood topologies for the velocity
update. As the developed system is intended to be used by engineers with rather limited expe-
rience with metaheuristic techniques, a tradeoff between flexibility of adaption to the particular
to-be-optimized HEV model and general ease of use has to be made. According to these con-
siderations a rather simple PSO variant has been chosen, requiring few parameters to be set and
for whom reasonable standard settings are known.
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Canonical Particle Swarm Optimization

The original PSO as described in Section 2.3 suffers from unbounded velocities as also men-
tioned in [37]. The velocity of the particles tends to grow ever larger thereby leading to os-
cillations in the search space. A velocity-limiting constant Vmax may be used as in [27] s.t. if
||vi|| > Vmax then vi = sign(vi)Vmax to reduce this effects but it is noted in [37] that this is not
sufficient.

In [37] a PSO variant with a so called “constriction coefficient” is discussed, an adaption
originally proposed by Clerc [9]. This coefficient χ, 0 ≤ χ ≤ 1 is multiplied with the updated
velocity vi of each particle i. Thereby reducing the effective velocity of the particle. Further
it is noted in [37] that although for a properly chosen χ — about χ = 0.7298 — the algo-
rithm is proven to converge. These modifications yield the so called “Canonical Particle Swarm
Optimization”.

Also it is mentioned in [37] that the Canonical PSO can also be expressed by using a different
velocity update rule which uses an inertia weight. This adaption has been introduced in [43] and
is one of the earliest PSO variants. The Equation 2.1 controlling the velocity update is changed
to Equation 3.1.

~vi = ω~vi + φ1 · rand() · (~bi − ~xi) + φ2 · rand() · (~g − ~xi) (3.1)

The new inertia factor ω decays the memory of the previous direction of the particle each iter-
ation. By setting ω = 0.7928 and φ1 = φ2 = 1.49618 the algorithm becomes identical to the
Canonical PSO.

In this paper the Canonical PSO is implemented using the update rule with inertia, as this
variant is widely used and the author considers its parameters more intuitive than the variant
using the constriction coefficient.

3.3 Advances in Evolution Strategies

As mentioned in Section 2.3 managing the strategy parameters as part of the chromosome is a
common method for automatically controlling the search behaviour of the ES. Its drawback is
its limited scalability. In the following a different approach — the so called Covariance Matrix
Adaption — for adapting the strategy parameters is introduced. It is expected that the use of
this parameter adaption scheme leads to a faster convergence of the algorithm requiring fewer
evaluations of the costly objective function.

Covariance Matrix Adaption (CMA)

In [20] Hansen and Ostermeier introduced the Covariance Matrix Adaption (CMA) strategy for
adapting the strategy parameters of an ES. Instead of determining the strategy parameters of the
ES indirectly by exposing them to selection, CMA computes them directly from the previously
selected mutation steps. The underlying idea of CMA is that successful mutation steps from
the previous generation will likely be successful in the next generation. The strategy parameters

25



are therefore adapted such that previously successful mutation steps become more likely to be
produced again.

To explain the concept of the update scheme a special version of ES has to be introduced,
namely the (µw, λ)-ES. This ES variant is similar to the (µ, λ)-ES with the exception that a
weighted recombination is used. Weighted recombination computes a weighted-average chro-
mosome ~xw[j+ 1] from the individuals ~xi[j] of the current population — of size N — and a set
of associated weights ~wi, 1 ≤ i ≤ N as given in Equation 3.2. The computed weighted-average
chromosome then acts as the center for the mutation step in iteration j + 1. The newly gener-
ated individuals are seeded around this center according to the updated normal distribution of
iteration j + 1.

~xw[j + 1] =
1∑µ
i=1wi

µ∑
i=1

wi~xi[j] (3.2)

In the following the general idea of the update is explained but not the exact algorithm which
can be found in [20]. As it is rather lengthy to describe the algorithm without proper introduction
to its basic concepts. Although the algorithm for the CMA-ES variant which is actually used in
the experiments is given in Section 4.2.

1. Let C[j] be the covariance matrix of the used normal distribution with zero mean in it-
eration j. Then C[j] can be described by its eigenvalues and eigenvectors. Let B[j] be
a matrix with the normalized eigenvectors of C[j] as columns and D[j] be a diagonal
matrix containing the square roots of the according eigenvalues.

Further each individual i can be expressed as a tuple (~xw[j], ~zi[j]) where ~xw[j] is the
distribution center of iteration j and ~zi[j] ∼ N(0, I) is a standard normal-distributed
vector. The actual position ~xi[j] of individual i can be expressed as below.

~xi[j] = ~xw[j] + σB[j]D[j]~zi[j]︸ ︷︷ ︸
∼N(0,C)

(3.3)

2. Calculate the weighted average ~zw of the normal distribution realizations of the best µ in-
dividuals in iteration j. In this paper the implementation uses the arithmetic mean instead
of a weighted average.

3. Calculate C[j + 1] as below, where ccov is a constant weighting the influence of the pre-
vious iteration’s normal distribution.

C[j + 1] = (1− ccov)C[j] + ccov(B[j]D[j]~zw)(B[j]D[j]~zw)T (3.4)

The first component (1 − ccov)C[j] can be understood as a contraction of the axes of
highest variance of C[j] i.e. its eigenvectors/values. The second component rotates and
stretches C[j + 1] towards ~xw[j + 1].

The idea of using the best individuals’ mutation steps for adapting the covariance matrix of
the mutation distribution is extended further by using so called evolution paths. An evolution

26



path accumulates the information of successful mutation realizations over several generations.
To do this the termB[j]D[j]~zw in Equation 3.4 is replaced by the evolution path vector ~pc[j+1]
which is calculated as follows.

~pc[j + 1] = (1− cc)~pc[j] +
√
cc(2− cc)B[j]D[j]~zw[j + 1] (3.5)

Thereby ~pc[j+ 1] contains directional information from several generations with cc control-
ling the memorization time of the directional information. It can be seen that cc acts as an inverse
inertia factor. Further a second evolution path ~pσ is used for controlling the adaption speed of
the mutation’s step size σ independently of the adaption speed of the mutation’s direction. The
update for σ can be found in [20, p. 18].

The experiments in [20] showed that CMA-ES is a promising metaheuristic outperforming
ES with mutative control of strategy parameters and other ES variants on a set of test functions.

Active Covariance Matrix Adaption

Although CMA-ES showed a good performance compared to other ES techniques it is noted in
[20] that the adaption speed of the covariance matrix is somewhat slow. CMA-ES is expected to
require several hundred generations for fully adapting its mutation distribution. For the problem
at hand this is deemed infeasible due to the particularly high costs of function evaluations.

Therefore a variant of the CMA-ES is implemented for this thesis. The variant3 called Active
Covariance Matrix Adaption ES has been proposed by Jastrebski and Arnold in [24] and targets
the particular problem of slow adaption of the covariance matrix. Where CMA-ES uses the
information of successful mutation steps only, there Active CMA-ES uses additional information
about unsuccessful mutation steps. Therefore Equation 3.4 is modified to Equation 3.6 by using
the evolution path improvement and by adding a new term for incorporating information about
the current generation’s successful and unsuccessful mutations.

C[j + 1] = (1− ccov)C[j] + ccov~pc~p
T
c + βZ[j + 1] (3.6)

Z[j + 1] = B[j]D[j]
1

µ
(

µ∑
k=1

~zπk~z
T
πk
−

λ∑
k=λ−µ+1

~zπk~z
T
πk

)(B[j]D[j])T (3.7)

In Equation 3.7 π denotes the permutation ordering the individuals by their decreasing fitness
values. Therefore Z is a scaled and rotated covariance matrix which actively reduces the vari-
ance in the direction of the µ worst individuals of the current generation. The factor β controls
the influence of Z on the covariance matrix update.

The experiments in [24] show that ACMA-ES reaches predefined stop values on a set of test
functions, significantly faster than CMA-ES and the Hybrid-CMA-ES variant. Consequently the
author considers ACMA-ES as an ES variant particularly suited for optimizing functions with
high evaluation costs.

3 More specifically the algorithm is a variant of the Hybrid-CMA-ES described in [19], which has not been
accessible for the author.
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3.4 Advances in neural network training

As mentioned in Section 2.4 the “standard” training algorithm for neural networks, error back-
propagation, is deemed unusable for the requirements of this thesis. The use of the standard
backpropagation algorithm or improvements like resilient backpropagation [38] have resulted in
very slow convergence rates (even divergence at some times) and therefore long computation
times.

A research for different training algorithms has brought up some alternatives, ranging from
metaheuristic training techniques like using genetic algorithms [35] to standard numerical opti-
mization method like Newton’s optimization method, BFGS [39] and the Levenberg-Marquardt
algorithm [18]. The choice has finally fallen upon the Levenberg-Marquardt algorithm as the
results in [18] seem promising. Another reason for choosing the Levenberg-Marquardt algo-
rithm has been the availability of an easy-to-use library (see Section 4.1). This is an important
advantage as the proper implementation of a performance-critical numerical algorithm is not
easily done even if the algorithm is known as (constant) performance improvements achieved by
properly using CPU caches and memory alignments can be significant.

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm for minimizing least squares error functions with nonlin-
ear parameters has been developed independently by Levenberg in [32] and Marquardt in [33].
Marquardt describes the intent of the algorithm to combine both the gradient descent approach
and the Gauss-Newton algorithm for finding local optima for least squares problems.

The gradient descent approach is used by the standard backpropagation algorithm and basi-
cally steps iteratively along the direction of the negative gradient −J(w[l]) of the backpropa-
gated error.

The Gauss-Newton algorithm is another numerical optimization algorithm that can be used
to fit the nonlinear parameters ~β of a function f(~x, ~β) to a training set (~xi, yi), 1 ≤ i ≤ m.
The algorithm is derived by using the first-order Taylor polynomial F (~x, ~β + ∆~β) = f(~x, ~β) +
∇f(~x, ~β)∆~β to approximate the local neighbourhood of f(.). The approximation is then used
in the SSE function and the derivative of the SSE function is then set to zero to find an optimum
of the local approximation. The change of the parameters ∆~β can then be computed by equation
3.8.

∆~β = (JT (~β)J(~β))−1JT (~β)(~y − f(x, ~β)) (3.8)

The benefit of this optimization scheme is that additionally to the gradient J the information
of the Hessian matrix — JT (~β)J(~β is a linear approximation thereof — can be used. In general
this allows for a faster convergence if compared to gradient descent, though Marquardt names
divergence as a main problem of the algorithm in [33].

Therefore the Levenberg-Marquardt algorithm tries to interpolate between gradient descent
and the Gauss-Newton algorithm by changing the update rule of Gauss-Newton to Equation 3.9

∆~β = (JT (~β)J(~β) + λI)−1JT (~β)(~y − f(x, ~β)) (3.9)
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The new parameter λ is used to interpolate between the above mentioned methods. In the
first case if λ is large then the product of the gradient is irrelevant for the update and the equation
becomes similar to gradient descent. In the second case if λ is small then the equation is basically
the same as the equation for the Gauss-Newton algorithm. λ is updated each iteration depending
on the new value of the SSE function. If the update of the parameters would result in a larger
value for the SSE then λ is multiplied by some constant factor γ turning the algorithm towards
the more stable gradient descent. Otherwise if the SSE would be lower after the update then λ
is divided by γ.

In [18] the Levenberg-Marquardt algorithm is incorporated into the training of neural net-
works. This is done by adapting the traditional backpropagation method by exchanging the
gradient descent in the “weight space” with the Levenberg-Marquardt algorithm. The main
problem left is the computation of the Jacobian J i.e. the gradient which is solved in [18] by a
modification to the backpropagated error in the backpropagation algorithm.

It shall be noted that training algorithm for neural networks implemented by the used li-
brary4, is a modified version of the Levenberg-Marquardt algorithm using the exact Hessian
matrixH instead of the linear approximation JTJ .

3.5 Ensemble learning

Although neural networks which are complex enough can theoretically be used to fit any func-
tion, it is hard to determine the proper size to do so. On the one hand if the network is too small
i.e. consists of too few neurons, then the ANN cannot represent the training data adequately and
is said to underfit or to have a high bias. On the other hand if the network is too large then it
is prone to overfit the training data. In this case its generalization performance degrades signif-
icantly i.e. its ability to predict the correct values of new inputs is worsened. For the task at
hand both cases may worsen the effectiveness of the metaheuristics used to optimize the HEV
models.

Therefore further machine learning techniques are evaluated to determine if they provide
advantages over simple neural networks. The chosen techniques are of the family of the so called
ensemble (learning) methods. The general idea of ensemble methods is to combine several base
predictors — ANNs in this case — to create an ensemble of learners. In the following the
basic principles of the ensemble methods that are evaluated are explained. Further details on the
implemented methods are provided in Section 4.3.

Bootstrap Aggregating (Bagging)

Bootstrap Aggregating or “Bagging” for short is an ensemble method developed by Breiman
in [7]. It works by training K base predictors ϕk, 1 ≤ k ≤ K on different training sets

4 See http://www.alglib.net/dataanalysis/neuralnetworks.php for details; accessed
2013-05-30 11:50
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Tk = {(~xi, yi)|1 ≤ i ≤ N} for the same function. For predicting the target value y of some
input ~x the average of the trained predictors is used as described by equation 3.10.

ϕ(~x) =
1

K

K∑
k=1

ϕk(~x) (3.10)

As noted in [7] typically only a single training set T is available for the learning task. The
trick for applying bagging is therefore to sample K training sets Tk from the available set T to
mimic the existence of several different training sets. The sampling is performed with replace-
ment to approximate the underlying distribution of T .

In principle bagging works by reducing the variance of the used predictors through the av-
eraging step. Consequently the method is suited for improving unstable predictors like ANNs.
According to [7] the more unstable the used predictors, the higher the expected benefit of bag-
ging gets.

Boosting

Another family of ensemble methods are categorized as boosting algorithms. Contrary to bag-
ging, boosting algorithms are not concerned with trying to lower the variance of the base pre-
dictors in the first place, but to decrease the bias of them. Therefore boosting is expected to be
well suited for the use of so called weak learners/predictors — prediction models that achieve
marginally better results than random guessing [41]— as base predictors. The research of the
author showed that boosting is much more common if machine learning is applied to classifica-
tion tasks, such as the AdaBoost algorithm [13]. Nevertheless some boosting algorithms have
been specifically developed with regression problems in mind.

Gradient Boosting

Gradient Boosting and its variant Stochastic Gradient Boosting are such boosting algorithms and
have both been developed by Friedman in [16] and [15]. Gradient Boosting builds its ensemble
predictor iteratively as a sum of base predictors, each trained to correct the error of the previous
state of the ensemble predictor. Although the algorithm is specified for several different error
functions, in the following only the SSE function is used.

1. Let i = 0 and let φi(~x) be a constant estimate minimizing the error of the training set T .

2. Calculate the residual error rj = yj − φi(~xj), 1 ≤ j ≤ |T |

3. Find arg min
ρi+1,~βi+1

∑|T |
j=1(rj − ρi+1f(~xj , ~βi+1))

2 using line search, where f(.) is a
base predictor trained on T . It has to be considered that finding the optimal parameters
βi+1 of the regression model and the weight ρi+1 of the expansion step is non-trivial in
general.

4. Set i = i+ 1 and let φi(~x) = φi−1(~x) + ρif(~x, ~βi).

5. Repeat from step 2 until the maximum number of expansions has been reached.
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The decision to rely on the SSE function has been made as SSE is used as error function
for all other machine learning methods in this paper. Choosing a different error function would
be counterproductive as the ANNs are optimized to reduce the SSE function. Therefore using
another error measure is expected to lead to sub-optimal results.

Besides the original Gradient Boosting algorithm, the Stochastic Gradient Boosting [15] is
evaluated too. The Stochastic Gradient Boosting uses a similar approach to bagging in modify-
ing its training set T . For each iteration a different training set Ti is sampled from the original
training set T without replacement.
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CHAPTER 4
Implementation

4.1 Languages, libraries and licenses

Before discussing the implementation of the algorithms and concepts a short overview of used
programming languages, libraries, programs and licenses is given.

The main programming language used for the implementation is Python 2.71. Python is
a very high-level programming language possessing built-in support for procedural, object-
oriented and functional programming styles. The language has been chosen for its flexibility
and good library support for the problem at hand. Though the standard implementation of the
language is an interpreter, the performance is not limited thereby as only a small percentage of
the overall computation time during optimizaton is spent inside the interpreter. The remaining
time is taken up by the simulation software GT-Suite, which is used in version 7.2. Further the
time-intensive tasks such as neural network training or linear algebra operations (e.g. eigenvalue
decomposition) are handled by native libraries.

Neural network training is handled by ALGLIB2 in version 3.6.0. The library is dual-
licensed and available under the GNU General Public License (GPL) for non-commercial and
academic purposes. The library is written in C which allows the training of ANNs — one of the
most time-consuming tasks — to be performed faster than a pure Python library could have.

Linear algebra and advanced random functionality is provided by the scipy Python pack-
age. scipy relies on the well known BLAS and LAPACK libraries for implementing its linear
algebra functionality and is therefore sufficiently fast. The package is licensed under the BSD-
new license, which is considered GPL-compatible.

The results of GT Suite simulations are saved in a MySQL database. The connectivity is
provided by the MySQLdb Python package.

Many XML-based configuration files need to be read (e.g. GT Suite model files, optimization
platform configuration, algorithm configurations) and modified. As a typical SAX or DOM ap-

1www.python.org
2www.alglib.net
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proach to XML parsing would require substantial effort for extracting and storing the required in-
formation, an XML-to-Object-Mapper (XOM) is used. The XOM in use is the xmlflection
library which has been developed by the author for another project some years ago and is pro-
vided under the GNU Lesser General Public License (LGPL) license.

As a consequence of the libraries used above the current version of the optimization platform
has to be licensed under the GPL — mainly due to the restrictions of the ALGLIB library.

4.2 The “Yet Another Optimization Platform” (Yaop)

The different algorithms, post-processing capabilities and strategies for fitness evaluation which
are used in this thesis are integrated into the Yet Another Optimization Platform (Yaop). The
basics of the platform have been developed by the author in a precursive project addressing
some of the shortcomings of the optimization platform used in [31] e.g. multi-user support,
easier integration of new HEV models, and license scheduling/planning.

The entity — of the optimization platform — most relevant for the user3 is an optimization
project. A project encapsulates the HEV model to be optimized, the settings for the adjustable
model parameters, the optimization algorithm configuration and the configuration of the used
fitness function.

The platform consists of four main components each running in a separate process:

• The license scheduler manages the GT Suite licenses which are currently available for
use by optimization processes. Before a simulation is run, the optimization process must
request a license from the scheduler and has to release it after the simulation has finished.

• The license planner controls the availability of GT Suite licenses for optimization pro-
cesses over the course of a week. This is necessary as GT Suite licenses may be used by
users who use GT Suite directly. For reducing license conflicts between these different
usage scenarios only a portion of the overall available licenses is used by optimization
processes at a time i.e. half the number of bought licenses during office hours and no
restrictions on weekends.

• A web interface has been developed for creating, configuring and running optimization
processes. Further it provides functionality for configuring the license planning compo-
nent as well as the scheduler component.

• Each optimization project is run in a separate optimization process. Such a process car-
ries out the actual optimization, following the specified algorithm configuration. Further
they communicate with the license scheduler, the database and are controlled via the web
interface.

3 A user of Yaop is a person who wants to run an optimization on the platform, as well as a person who chooses
and configures the used optimization algorithm.
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Optimization algorithm template pattern and basic terminology

The two main principles of the platform’s design are modularity and transparency. First the
platform is designed in a modular way to allow a wide variety of optimization algorithms. For
achieving this goal the main loop of the optimization process follows the well known “Template
Method” design pattern originally identified in [11].

In the “Template Method” design pattern, the control flow and the steps of an algorithm are
outlined at an abstract level. The outlined steps themselves are implemented as callbacks to
interfaces which have to be implemented by the concrete parts of the algorithm (as described
below). Before the algorithm template itself is explained some terminology has to be introduced
for a better understanding of the design decisions.

In terms of the framework a potential solution is called a Run and a set of potential solutions
is called a population, a RunCollection, or a set of Runs. Runs contain an internal state
which is either

• unevaluated if the Run has not been passed through an evaluation scheme,

• valid if an objective function value has been assigned to the Run,

• or invalid if the Run represents a set of model parameters which are infeasible to be
solved by the evaluation scheme.

RunCollections are generated by the optimization algorithm, which is defined by an
algorithm configuration loaded from an XML file. The configuration defines the order of the
executed optimization algorithms, their algorithm-specific parameters and their termination cri-
teria. Further it determines the post-processing behaviour for potential solutions, as well as the
way how these solutions are expected to be evaluated. Last if a hybrid optimization scheme
is used i.e. if several different optimization algorithms are combined in sequence then the al-
gorithm configuration allows to specify sources for solutions. These sources are queried either
initially or when the algorithm becomes active the next time. Possible sources might be for
example the best solutions from a database, random solutions, or combinations thereof.

The metaheuristics have to implement the AbstractOptimizationAlgorithm inter-
face to be used by the platform. The required callbacks of the interface are described below.

• prepare is called initially to set up the algorithms inner state according to the passed
ParameterConfiguration, defining the parameters to be optimized, their bounds
and other optional options.

• passRunCollection is called on specific events like initialization or (re-)activation
of the algorithm and sends a new population to the algorithm. This method is essential for
the correct handling of hybrid algorithms.

• nextIteration is a method to implement an “Iterator” pattern [11] for generating new
RunCollections which are evaluated consecutively.
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• onRunCollectionFinished is a callback method to update the iterator’s state after
the objective function of the previously generated Runs have been evaluated. It is not
guaranteed by the framework that the set of previously generated Runs is the same as the
one passed to the method.

In general an optimization algorithm is at least wrapped inside one LoopController
which handles the chaining of several optimization algorithms within a loop. The controller
itself implements the AbstractOptimizationAlgorithm interface and acts as a proxy
for the controlled algorithm instances. It shall be noted that a LoopController may contain
further LoopControllers to achieve more complex optimization schemes.

Beside optimization algorithms, a main component of the template method are so called
PostProcessors. A PostProcessor is able to modify the population returned by an
optimization algorithm before and possibly after passing them to the evaluation scheme. Their
intended usage is to enforce search space restrictions without needing the actual optimization
algorithm to care about it.

Ideally the optimization algorithms should be implemented to deal transparently with an un-
known search space topology i.e. by holding no inner model or assumptions about the numerical
search space and by adopting the solutions passed to the algorithm at the above defined entry
points/methods. During development the transparency concept has been observed to be also
highly relevant in the design of hybrid metaheuristics. The author’s observation is that when im-
plementing optimization algorithms for the platform, one should follow a principle of minimal
state. Any internal state or “belief” stored inside an optimization algorithm might be rendered
irrelevant by another employed optimization algorithm. Rather the state should be transferred to
the used Runs as far as possible or recreated (and updated) when the control flow4 reverts back
to the optimization algorithm.

This kind of transparency enables a high reusability of the implemented optimization algo-
rithms, while specific restrictions on the optimization are outsourced into typically shorter (in
lines of code), less complex and more maintainable PostProcessors.

The optimization algorithm template is explained in the following.

1. The algorithm configuration is loaded from an XML file. A composite optimization algo-
rithm is constructed by using the AbstractOptimizationAlgorithmFactories
configured in the global Yaop configuration file.

2. All instantiated algorithms are prepared with a ParameterConfiguration cre-
ated from the optimization project’s settings (also an XML file).

3. The initial run source is invoked for the first algorithm, or an empty RunCollection
is passed to it if no run source is defined. These two actions are handled transparently as
the top-level LoopController proxies the appropriate method calls.

4. Until the top-level’s LoopController’s halting condition — for the conducted ex-
periments it is a fixed number of loop iterations — is triggered the following steps are
executed:

4 Note that control flow and data flow are strongly coupled in the framework.
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a) nextIteration is invoked on the top-level LoopController and returns a
new RunCollection.

b) The returned RunCollection is passed through the post-processors defined for
the currently active algorithm.

c) The post-processed set of Runs is passed through the evaluation scheme defined
for the currently active algorithm. ComputationStrategies implement the
evaluation scheme and are explained below.

d) The evaluated runs are optionally returned to the post-processors (in reversed order),
allowing them to react to the computation results.

e) Finally onRunCollectionFinished is called with the evaluated set of Runs
on the current algorithm for updating its state.

Objective/fitness functions

The above mentioned evaluation schemes are required to impose a total order on the returned
Runs for the optimization to function properly. This order is imposed by the objective/fitness
function of the ComputationStrategy assigned to the currently active optimization algo-
rithm.

The algorithms of the framework have to deal with two different kinds of objective func-
tions. First the exact “ground truth” objective which is calculated by using the target/output
values of a GT Suite simulation. Second the inexact fitness function provided by the learned
metamodels/regression models. Whereas the approximative metamodels try to automatically
mimic features of the exact fitness function, the objective function to be used with the simula-
tion model needs to be defined by the user of the platform.

Basic objective function

The objective function used in [31] is a function relative to some arbitrarily chosen reference
solution. Further the penalization of solutions with unbalanced SOC5 has been hard-coded in
the optimization framework. As the optimization platform developed for this thesis intends to
support a broader range of HEV models, some changes to objective function have been made.

Instead of using an arbitrary reference point, an absolute fitness function has been chosen.
Its design goal is to allow a fine-grained control for multi-objective optimization6. Let ti, 1 ≤
i ≤M be the output/target values of the HEV model e.g. fuel consumption, SOC deviation, etc.
for some input parameters ~x, with M as the number of output values selected for optimization.
Additionally the user has to specify — estimated — lower and upper bounds li, ui for each target
value ti. Let wi, 1 ≤ i ≤M be the weights associated with each target value. Consequently wi

5 see Section 2.1
6 The possibility to use Pareto-optimality has been declined in favour of a more direct influence on the optimiza-

tion, as well as for a broad range of implementable standard algorithms.
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can be used to either maximize or minimize ti — wi > 0 or wi < 0 respectively. Then the basic
objective function o(~x) is defined as in Equation 4.1.

o(~x) =
M∑
i=1

wi
ti − li
ui − li

(4.1)

The function is designed s.t. if ∀i, j : |wi| = |wj | a percental change of any ti within its
bounds li, ui has an equal absolute effect on o(~x) as the same percental change of another tj
within its respective bounds. Further the relative effect on the objective function for any ti can
be adjusted by using its weight wi. So far it is not possible to achieve non-linear weighting via
the framework. If such a behaviour is required then the appropriate function should be applied
directly to the HEV model’s output values in GT Suite.

Multi-case objective function

Another issue addressed with the new objective function is the possibility to evaluate multi-
case simulation models. GT Suite provides means to define different cases for a simulation
model. Each case assigns fixed values to model parameters not under optimization. These case
parameters are typically of environmental nature under which the HEV model shall be examined
e.g. different driving cycles, different initial SOCs, air resistance (wind), etc.

The platform provides different solutions for multi-case optimization. The user is able to
configure the platform s.t. either case averaging is used or the fitness of the best or worst case is
used. The fitness function is then one of the following.

oa vg(~x) =
1

|C|
∑
c∈C

o(~x) (4.2)

om in(~x) = min o(~x) (4.3)

om ax(~x) = max o(~x) (4.4)

Care has to be taken if either Equation 4.3 or 4.4 is used as multi-case objective function.
Different cases may have a different “base value” for some target value e.g. for fuel consumption
if the driving cycles are of different length. Therefore the fitness values for different cases might
not be comparable, leading to unintended search behaviour. A possible fix for this problem
would be to assign a weight to each case. This is currently not implemented as the intended
scenarios for multi-case optimization are unlikely to include such uncomparable case pairs and
the effect on Equation 4.2 is lessened by averaging.

Dealing with invalid parameter sets

As the objective functions defined above are only applicable with parameter sets compatible with
the HEV model at hand, a way has to be found to deal with invalid parameter sets. The reasons
for a parameter set being invalid are manifold. Usually these invalid parameter sets can be
divided into those which are knowable beforehand — e.g. gear sets underlie certain mechanical
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restrictions, or up- and down-shifting speeds need to be ordered correctly — and those which
result in problematic runtime behaviour — e.g. speed requirements of a driving cycle cannot be
met.

The first category of invalid parameter sets — those foreseeable by the user — should be
dealt with by repairing the affected sets if possible. In the terms of the optimization platform
repairing of solutions should be handled by some post-processor implementing a side condition.
The second category is harder to deal with as the simulation has possibly required some time
to deem the used parameters as invalid. Even if the the effecting parameters could be deter-
mined and repaired, a substantial amount of time would be required to resimulate the configured
model. Therefore a database cache is used to store invalid parameter sets and is queried before
a configured model is submitted to the simulation software. Invalid model configurations are
then removed from the current population and the optimization algorithm becoming active next
is required to fill the empty spot.

Computation strategies

The association of a Run with its fitness value is performed by a ComputationStrategy
which can be divided in exact and approximative computation strategies. If a hybrid optimization
algorithm is used then it is possible to select a ComputationStrategy per component or
falling back to a default strategy. This allows for a diverse set of evaluation schemes over
the course of the optimization. A topic of this thesis is to evaluate the viability of some of
these complex evaluation schemes. The different available ComputationStrategies are
described next.

GT Suite local & distributed computation strategy

The platform currently ships with two exact computation strategies, both relying on the eval-
uation of the HEV simulation model under optimization with GT Suite. The main difference
between the strategies are where the models are simulated.

• LocalGtSuiteComputationStrategy simulates the HEV model with the param-
eter sets of the passed RunCollection locally on the computer where the optimization
process is executed. The number of parallel simulations is restricted by the number of
local CPU cores and by the number of available licenses.

• RemoteGtSuiteComputationStrategy passes the HEV model instantiated with
the passed parameter sets to a running GT Suite Distributed Queue. The “Distributed
Queue” is a facility provided by GT Suite to queue simulation requests from several users
and to dispatch the queued models to different computation nodes. This allows the op-
timization process to use a cluster of computers for parallel execution, whereas the local
strategy is only able to use the multiple CPU cores on the local machine. Of course the
same license restrictions apply as on the local strategy.

Both implementations are able to execute multiple simulations at once as simulation is im-
portant for an efficient use of the available computational resources. Runs are submitted in
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batches per case if the HEV model is used for multi-case optimization i.e. for each parameter
set the first case is simulated before the second case of any other Run. By doing this invalid
parameter set can be detected and filtered early on. The remaining cases of the affecte Run
are then not simulated as a single invalid case renders the Run itself invalid. For achieving
the highest effectiveness with this evaluation scheme, the cases should be order by decreasing
aggressiveness i.e. the case most likely to fail should be simulated first.

Predicting computation strategy

A simple approximative evaluation scheme is the PredictingComputationStrategy
which requires an instance of a LearnerFactory to be passed. The passed factory is used
to create a Learner — an implementation of a regression technique — which is then either
trained with the data from the database, or whose previously saved state — called a continuation
in terms of the platform — is loaded from a file.

The trained Learner is used to predict the fitness of the passed Runs. Currently the
Learner is trained to predict the fitness value directly instead of predicting the single objective
function components, which is done to reduce the training times of the regression models. Addi-
tionally to predicting the fitness value, the PredictingComputationStrategy flags the
Run’s fitness as approximative s.t. the optimization algorithms may react to this circumstance.

The PredictingComputationStrategy allows to retrain the used regression model
after a specified number of evaluated populations. This is helpful if a hybrid optimization strat-
egy is employed to generate new exact solutions regularly. Currently it is not possible to retrain
a regression model and continuing the optimization e.g. by using an exact evaluation scheme
meanwhile. This would be beneficial as it may require some time to update the state of the
Learner (see Section 5.5). As in the current setup the computational resources used for train-
ing and simulation are not the same, doing so would allow to evaluate more exact solutions in
the same amount of optimization time. Due to the modularity of the platform this scheme may
be implemented easily in the future as another ComputationStrategy.

Filtering computation strategy

In the spectrum of exact and approximative evaluation schemes exist some interesting combina-
tions of those. The FilteringComputationStrategy is the first of two mixed evaluation
schemes.

The Runs passed to this computation strategy are assigned an exact fitness value by passing
the parameter sets to one of the GTSuiteComputationStrategies. Although, not the
whole RunCollection is evaluated exactly but a fraction of it. Only the best Runs — based
on their predicted fitness value — are be selected and in sequence passed to the simulation
software. The main benefit of this evaluation scheme is that the optimization algorithms can
not be misguided by inaccurate fitness values. Nevertheless the approximative fitness value may
have a misguiding effect on the selection of the best Runs. To mitigate the possible negative
influence on the optimization, not the best predicted Runs are selected, but a roulette-wheel
selection is carried out to select a predefined portion of the RunCollection.
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The usage of the FilteringComputationStrategy is limited to optimization algo-
rithms which are able to produce a larger number of descendants than the number of individ-
uals in the current population. Otherwise the population would be thinned out throughout the
optimization process requiring the empty spots to be refilled with random or elitist solutions.
Therefore this evaluation scheme is considered problematic if used in combination with PSO
and search space discretization (see Section 4.2 below). This is due to the PSO’s property that
the variance of the possible descendants of some solution is limited to a hyper-conical area
spanned by the weighted distances of the current solution to the global and local best solutions
respectively. The variability is reduced further by the discretization of the search space.

Extrapolating computation strategy

The second mixed evaluation scheme is the ExtrapolatingComputationStrategy. In
contrast to the filtering approach its computed fitness values are not exact but approximative.

The HEV models used by GT Suite can be configured to write the current values of the
model’s outputs, which are relevant for the objective function, to a file in regular periods e.g. the
fuel consumed up until now. GT Suite also allows to halt the simulation at the end of such a time
period. Then a trained Learner can be used to predict the value of the output at the end of the
cycle based upon the information collected during simulation. (see Section 4.3 for details).

This evaluation method has some drawbacks if multiple output values are used to evaluate
the objective function. Specifically, a single Learner is required per target value. Even if the
time required for training of these regression models can be kept low, the problem of model
selection has to be solved for each of the model’s outputs.

Postprocessing

Postprocessing of Runs has been introduced to relieve the optimization algorithms from menial
tasks as checking parameter bounds as well as to decouple other functionality used by sev-
eral optimization algorithms e.g. discretization, repairing of invalid solutions, or non-database
caching.

Discretization post-processor

A problem that may arise when continuous functions are optimized, is the occurrence of plateaus
in some regions of the fitness function i.e. larger areas where the slope/first-order derivation is
zero. If function evaluations are costly then computing multiple solutions in such a region is
a waste of computation time. In simulation this problem is worsened as any non-trivial model
possesses an inherent model error and a deviation between the calculated outputs and the actual
outputs is unavoidable. In consequence if the difference between the fitness of two solutions is
less then the expected deviation error then both solutions may simplified be considered of equal
quality. Therefore the term plateau shall be applied to areas of shallow slope/small first-order
derivation (less than the model error) in the context of simulation optimization.

A common technique to reduce computation times is to use a cache of already known results
which is also known as memoization. As it is unlikely to hit a specific solution twice in a suffi-
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ciently large continuous search space, speed ups achieved due to caching effects are expected to
occur rarely. A method to increase the possibility of a cache hit is to discretize the search space.
The possibility to discretize the search space is also discussed in [31]. “Similar” Runs are then
mapped to the same point in the search space, which allows cache hits to occur more frequently
if the optimization algorithm performs a locally restricted search.

A very simple discretization scheme is implemented by the LinearDiscretization
post-processor which defines a static discretization of the search space. The grain of the dis-
cretization is determined by two parameters (per input value) discretizationStart and
discretizationEnd which define the number of steps in the search space at the start and
at the end of the optimization respectively. The number of discretization points are linearly in-
terpolated during the optimization. This allows to start at with a very coarse grained space to
estimate the overall fitness distribution and to use a finer grained space afterwards.

A parameter set ~x is then mapped to its discretized parameter set d(~x) as follows. Let ~l be
the vector containing the lower bounds of all dimensions and let ~u be the vector of upper bounds
respectively. Let ~s be the vector of the number of discretization steps per dimensions and let ~s−1

denote its component-wise inverse.

~k = round

(
~x−~l

(~u−~l) ~s−1

)
(4.5)

d(~x) = ~l + ~k · (~u−~l) ~s−1 (4.6)

The discretized parameter set d(~x) can then be used twofold. Either the Run representing
~x is replaced by a Run representing d(~x) permanently, or only temporarily for evaluation and
is reverted to ~x afterwards. Both variants have advantages and drawbacks. If the “permanent
discretization” is used then the optimization algorithm operates with the parameter values which
have actually been evaluated. The algorithms do not need to deal with border cases like different
fitness values for the same parameter set, if the number of discretization steps changes. Further
algorithms which rely on estimated gradients are not confused by false plateaus inevitably in-
troduced by the temporary discretization scheme. On the other hand if permanent discretization
is used then optimization algorithms relying on relative steps in the search space e.g. like PSO,
may run into problems as they need to jump a minimal distance ∆~x[i] in some dimension i of
the search space. Only if some dimension i fulfills this requirement then the parameter set will
be mapped to a different point in the discretized search space. The minimal distance is given by
Equation 4.7.

∆~x[i] >
~u[i]−~l[i]

2~s[i]
(4.7)

Currently only the permanent variant has been implemented and the temporary variant is left
for future work due to time constraints.
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Discrete domain & integer domain post-processor

The DiscreteDomain and IntegerDomain post-processors work similar to the post-
processor described above, but have an entirely different intent. Both post-processors are used
to force a specific parameter either to be integer or to be of a value from some predefined set.

The DiscreteDomain post-processor is useful if a unchangeable discretization shall be
applied to a parameter or if the discretization points are not equidistant as enforced by the
Discretization post-processor. The IntegerDomain may further be used to express
boolean values if the bounds of the parameter are additionally set to [0, 1].

Inequality-coupled parameters post-processor

In some cases the need arises that some parameters need to adhere to some half-order, like up-
shifting speeds for consecutive gears e.g. the speed for the second gear has to be lower than the
speed for the third gear. The InequalityCoupledDomain post-processor allows to force
the value of a parameter to be less/greater-equal than the values of a set of other parameters.

If the restricted parameter violates these conditions it is repaired by determining the allowed
range of the parameter’s value and by uniformly sampling the parameter in this range. As a
consequence it is important which parameter is marked as restricted as the restricted one will
change its value while the other will keep its value. For example if two parameters a, b have
to conform to a ≤ b and a is restricted then a will be resampled. Further if for example three
parameters a, b, c have to adhere to a ≤ b∧ a ≤ c then a should be marked as its the infimum of
the imposed half-order. Otherwise the conditions would be expressed as b ≥ a and c ≥ a with
b, c as restricted parameters. In the worst case both b and c would change their value randomly
and the modified Run would probably be located farther away from the original Run. This may
hinder the effectiveness of the optimization scheme.

Available run sources

With different RunSources the platform provides ways to to couple multiple optimization
algorithms to different hybrid optimization algorithms by controlling how Runs are passed
from one algorithm to next. Besides the selection of the used optimization algorithms, the used
RunSources are the primary way to create new hybrid optimization schemes for the platform.
Basically there are three sources which can be accessed to retrieve Runs:

• The latest RunCollection generated by the previous optimization algorithm can be
used as a source 7.

• The database used to store Runs with exact fitness value can act as a source too.

• The Empty source can be used, whereas the optimization algorithm has to purge its cur-
rent population and to create a new one on its own.

Further each source might be accessed differently:
7Using the complete RunCollection of the previous algorithm is the default.
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• All Runs can be used if the previous algorithm acts as source.

• A random set of Runs can be selected from either the database.

• Only the best Runs are selected from either the database.

Finally multiple RunSources can be combined to a compound source either by

• using them in parallel to retrieve a fixed number of Runs,

• or by using a secondary RunSource to fill up the requested number of Runs if the main
RunSource is unable to satisfy the request.

RunSources are queried either at the first use of an optimization algorithm in the current
loop or if the hybrid optimization scheme switches from one algorithm to another.

Used Metaheuristics

The metaheuristic algorithms used in the experiments largely conform to the descriptions as
given in sections 2.3, 3.2, and 3.3, which in sequence correspond to the original proposals of
these algorithms — except recombinant random sampling which is a simple GA variant designed
for comparison purposes.

Special attention is payed to the circumstance that no selection scheme inside the optimiza-
tion algorithms uses a kind of fitness-proportional selection, as when exact and approximate
objective function values are not directly comparable as the actual and regressed values even
of the known solutions are likely to diverge. The author considers that rank-based selection
copes better with this effect if the exact and approximated fitness values do not differ beyond
given bounds (see Section 4.3 for details). The optimization algorithms have not been modified
further as the primary goal of this thesis is to evaluate the possibilities of integrating machine
learning methods with the these algorithms, as well as to integrate search space modifications.

PSO

The implementation of the Particle Swarm Optimization follows closely the CPSO variant de-
scribed in Section 3.2. It differs mainly in the way which solutions are accepted as global or
local best solution. The modification of this mechanism has been necessary as the PSO is in-
tended to be used alternately with the PredictingComputationStrategy and an exact
strategy. The update scheme has to distinguish approximate and exact fitness values, due to the
reason mentioned above. A Run ~x will replace a global or local best solution~b if

• o(~x) ≥ o(~b) and ~x 6= ~b holds,

• or if o(~b) is approximative and o(~x) is exact — this gives precedence to exact solutions to
correct for potential misguidance by approximated solutions.
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Further a randomization mechanism is introduced to escape local optima, by randomly re-
sampling a Run’s position and velocity, if it has not updated its personal best solution after a
specified number of iterations. The velocity is generally limited to a maximum velocity ex-
pressed as a percentage of the size of the search space’s dimensions e.g. a maximum velocity of
0.25 means that no particle will jump further than one quarter of a dimension’s size in any dimen-
sion. This adaption is introduced as the PSO is required to use larger values for φi, i ∈ {1, 2}
than usual — as given for the canonical PSO in [37] — to overcome the problems described in
the discretization section.

Active CMA-ES

The Active CMA-ES has basically been implemented according to [24]. No adaption to the
internal selection mechanism had to be introduced as the Active CMA-ES is intended to be used
with the FilteringComputationStrategy and is working with exact solutions all the
time. To enable the Active CMA-ES to be combined with other optimization algorithms, means
have to be developed to estimate the covariance matrix C[j], the step width σ and the mutation
center ~xw[j] from the passed RunCollection for the current iteration j. A way to do this is
given in Equation 4.8, and Equation 4.10 and Equation 4.11.

Let ~xi, 1 ≤ i ≤ N with N the size of the passed population, be the individuals of the passed
population. Let π denote the permutation ordering the individuals by their decreasing fitness
values. The normal distribution realizations ~zi of the individuals are estimated by using the new
mutation center ~xw[j] and the individuals’ positions ~xi, as given in Equation 4.9. Let ~zw be
the weighted averages of the normal distribution realizations zi of the best µ individuals of the
passed RunCollection.

~xw[j] =
1

N

N∑
i=1

~xi (4.8)

~zi =
~xi − ~xw[j]

||~xi − ~xw[j]||
(4.9)

C[j] = ~zw~z
T
w +

β

µ
(

µ∑
k=1

~zπk~z
T
πk
−

λ∑
k=λ−µ+1

~zπk~z
T
πk

) (4.10)

σ =

√√√√ 1

µ− 1

µ∑
i=1

(
||~xπi − ~xw[j]|| − 1

µ

µ∑
k=1

||~xπk − ~xw[j]||

)2

(4.11)

The remaining values are initialized as usual.

Recombinant random sampling (RRS)

For initial training of the regression models, it is important to accumulate a sufficient amount of
diverse training data. As explained in Chapter 5 the above mentioned algorithms showed some
problems in fulfilling these criteria. Therefore a simple GA variant has been implemented to
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generate an initial batch of solutions. The GA uses no special encoding of the individuals but
the vector representation ~xi of each individual 1 ≤ i ≤ N .

1. Generate N random individuals ~xi, 1 ≤ i ≤ N and evaluate them.

2. Sample R new individuals randomly.

3. N − R-times iterate the following steps to generate the remaining individuals of the new
population:

a) Use two tournament selections (with replacement) with tournament size k to deter-
mine two ancestors ~a,~b for the new individual ~xi.

b) Use ~a and ~b as the defining corners of a hypercube and randomly sample ~xi within
it.

c) Resample the value of any of ~xi’s dimensions with probability Pmut.

4. Evaluate the new generation and jump to step 2 unless some halting condition is met.

The selection pressure of the algorithm is mainly controlled by the tournament size k. The
variance of the population can either be controlled by means of the number R of randomly
generated individuals or by the mutation probability Pmut. TherebyR is intended to explore new
areas of the search space which is mainly interesting at the beginning of the optimization and for
creating diverse training data. Whereas Pmut has been introduced for later optimization phases
to escape local optima.

4.3 Applied regression & machine learning techniques

The methods explained in this section are considered as ensemble methods and follow the de-
scriptions in Section 3.5. The base learner for all ensemble methods are neural networks trained
with the Levenberg-Marquardt algorithm implementation of ALGLIB.

Error functions

The error measure for the used regression techniques is important for the training algorithm
being able to adequately describe the underlying model of the training data. For ease of imple-
mentation the SSE function is used as a well known error function by by all of the implemented
algorithms.

Although theoretical considerations suggest that the SSE values are not the main target of
regression model optimization in the context of this thesis. This is according to the fact that
the implemented optimization algorithms do not rely on an as-close-as-possible accuracy of the
target values predicted by the models. As all of the used optimization algorithms use rank-based
selection it is more important to predict the correct rank of some Run if compared to other
Runs. That means instead of trimming the regression models to fit the target values, it could be
more useful to train them to predict the total order of the evaluated Runs while neglecting the
actual target values. Therefore a new error measure is proposed in Definition 2.
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Definition 2. The Mean Total Order Deviation (MTOD) of a regression model ψ : X → R for
an objective function o : X → R and a set X with xi ∈ X, 1 ≤ i ≤ |X| is defined as follows.

Let πo be the permutation of all x ∈ X s.t. ∀1 ≤ i < j ≤ |X| : o(xπoi ) ≤ o(xπoj ) holds.
Let πψ be the permutation of all x ∈ X s.t. ∀1 ≤ i < j ≤ |X| : ψ(xπψi ) ≤ ψ(xπψj ) holds.
Further for any a, b ∈ X s.t. o(a) = o(b) with πo(a) < πo(b), if ψ(a) = ψ(b) holds, then
πψ(a) < πψ(b) has to hold i.e. if πo is sorted to match πψ then the sort has to be stable. MTOD
is then calculated as in Equation 4.12.

MTOD(X) =
1

|X|2

|X|∑
i=1

|πo(xi)− πψ(xi)| (4.12)

The MTOD value of a set measures the mean percental deviation of its elements from their
expected position in the total order induced by o(.), to their position in the total order induced by
ψ(.). The main problem with the MTOD error function is its non-derivability. Therefore it is not
possible to use the measure for regression model training with common numerical optimization
techniques. As a consequence a surrogate error function should be used which is derivable and
behaves similar to the MTOD. In Chapter 5 it is explored if the SSE is a suitable approximation
of the MTOD for the given problem.

Parallelization and function call dispatching

As the major reason for using regression techniques is to achieve a speed up in the optimization
process, it is important to make efficient use of the available computational resources. The
computational power of the computation nodes for the simulation cannot be used for training
regression models as other optimizations/simulations may require these resources.

Nevertheless parallelization is important to achieve an important practical speed up in the
training process. The IPython.parallel module is used to connect user machines into a
cluster, where new computational resource can be added or removed at any time. The ensem-
ble methods described in the next sub sections employ Dispatchers for invoking training
function calls. The concrete class of the Dispatcher determines how the passed function is
invoked. Currently Yaop supports a DefaultDispatcher invoking the functions directly
and an IPythonDispatcher delegating the function calls to the IPython.parallel
cluster. The call, transmission of the parameters as well as receiving the return value is handled
transparently by the Dispatcher.

Automatic (sub) model selection

Some of the ensemble methods require regression model selection steps during training. This
need arises as for some (sub) prediction task it is not known which regression model will fit
the underlying function best. If such a scenario is given then the ensemble methods typically
provide two different (sub) model selection methods.

• Training set based model selection selects the regression model whose prediction error
on the whole training set is the lowest. This method is fast as it only needs to compare the
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errors of the regression models on training set but also expected to overfit the training set.
This should result in a higher validation error.

• Validation set based model selection trains L equally parametrized regression models
ψl on subsets Tl, 1 ≤ l ≤ L randomly sampled without replacement from the original
training set T . The size of each Tl is determined by the validation percentage parameter
pval s.t. |Tl| = (1−pval)|T |. The validation errors on the sets Vl = T\Tl are then averaged
and the regression model whose parametrization lead to the lowest average validation error
is then selected and trained on the original training set T . It is expected that this method
leads to lower validation errors in general, but requiring a higher cost than the training set
based model selection. Usually one would employ a crossvalidation model selection as
it is done in Chapter 5 but its computational impact has been considered too high by the
author.

Bagging

The BaggingEnsemble predictor implements the bootstrap aggregation described in Section
3.5. The parameters of the regression model are

• the base learner factory used to create learners for the bagging ensemble,

• the size of the ensemble K,

• and the bagging percentage p controlling the size of each training set.

The training sets Tk, 1 ≤ k ≤ K are sampled with replacement from the original training
set T . The size of each Tk is given by |Tk| = p · |T |. Each of the calculated training sets Tk
is trained with its own base learner created by the base learner factory. As no dependencies
exist between the created learners, it is possible to dispatch all training function invocations in
parallel.

K-Means divide-and-conquer regression

A ensemble method not treated in Chapter 3 is the K-Means divide-and-conquer regression
implemented by the PartitioningLearner. The method is based on a similar method
given in [17] where a fuzzy C-Means clustering is used to partition the search space into non-
disjunct subsets for the subsequent training of neural networks for classification.

The idea of this regression ensemble is to partition the training set T into K disjunct subsets
Tk, 1 ≤ k ≤ K and to train a single base learner for each of these subsets. The partitioning is
performed by the K-Means++ algorithm described in [3]. This clustering algorithm is intended
to partition the search space s.t. similar input values belong to the same cluster. Further it is
believed that by using training sets with similar input values, it is possible to use simpler base
learners. As due to the nature of the HEV models, it is expected that the output values are similar
too. A similar assumption is made in [17]. Training a model with less parameters provides a
further speed up. Similar to the BaggingEnsemble it is possible to dispatch all training
function invocations in parallel.
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Another option during training is to overlap the the clusters with each other. Thereby the
closest data points of each other cluster are added to the currently trained cluster. The size of
the overlap is controlled by the overlap percentage parameter, which defines the number of data
points taken from other clusters as a fraction of the size of the current cluster. The number of
data points taken from an different cluster is indirectly proportional to the distance between the
current cluster center and the other cluster center.

A main problem is how the base learners for each cluster are chosen. There is no simple
answer to the question which base learner will produce the best results when used for prediction.
Therefore the PartitioningLearner provides the ability to train multiple different base
learners for each cluster and subsequently chooses the “best” one. But even if multiple learners
are trained per cluster deciding which regression model is the “best” is open question as it
could only be answered after using all the learners for prediction. To solve this problem the
PartitioningLearner provides automatic model selection as described above.

For predicting a new inputs the PartitioningLearner provides two possibilities. The
first method is to use the base predictor responsible for the closest cluster. The “closest” cluster
in this context is considered the cluster with the smallest distance between the new input and
the cluster’s center. Although different definitions of “closeness” could be applied like single-
linkage distance i.e. the smallest distance between the new input and any element of the cluster,
or complete-linkage distance i.e. the the largest distance between the new input and any element
of the cluster.

The second method uses the base learners of all clusters by combining their outputs indi-
rectly proportional to the distance of the new input ~x to the cluster centers as given by Equation
4.13. Let C denote the set of cluster centers ~ci, 1 ≤ i ≤ |C| and φi(.) denote the base learner
associated with cluster center ~ci. Further assume that ∀i < j : ||~x − ~ci|| ≤ ||~x − ~cj || holds i.e.
that C is ordered by increasing distance.

ψ(~x) =
1∑|C|

i=1 ||~x− ~ci||

|C|∑
i=1

ψi(~x)

||~x− ~c|C|−i+1||
(4.13)

Least-Squares Gradient Boosting with finite learner domains

Gradient boosting as described in Section 3.5 is implemented by LSGradientBooster using
a SSE function as error measure. In [16] the gradient boosting approach is described to select the
best predictor from a class of predictors for the current residual prediction step. The selection
is carried out only by using a training set T but no validation set. This setup is kept by the
implementation.

The domain of the class of predictors is finite as the LSGradientBooster takes a set of
LearnerFactories L as a parameter, which are used in sequence to create the tested base
predictors for each iteration of the gradient boosting algorithm. The line search in step 3 of the
boosting algorithm described in Section 3.5 is replaced by a direct determination of ρi+1.

This is done by treating the SSE function as a function of ρ only and by applying a modi-
fied linear least squares approach. This is possible as f(~xj , ~βi+1) — with xj ∈ T and ~beta ∈ L
— can be computed beforehand because both T and L are finite. The required values of f(.) can
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then be treated as constants. An optimum of the function SSE(T, ~β) = arg minρi+1

∑|T |
j=1(rj − ρi+1f(~xj , ~βi+1))

2

can then be deduced — by setting its first derivate to zero — as follows. Let fj = f(~xj , ~β).

δ

δρ

 |T |∑
j=1

(rj − ρfj)2
 = 0

2

|T |∑
j=1

(rj − ρfj)(−fj) = 0

−
|T |∑
j=1

rjfj +

|T |∑
j=1

ρf2j = 0

ρ =

∑|T |
j=1 rjfj∑|T |
j=1 f

2
j

(4.14)

It remains to be shown that the computed value of ρ is a minimum, by showing that the second-
order derivation is larger than zero.

δ

δ2ρ

 |T |∑
j=1

(rj − ρfj)2
 > 0

δ

δρ

− |T |∑
j=1

rjfj +

|T |∑
j=1

ρf2j

 > 0

|T |∑
j=1

f2j > 0

(4.15)

Equation 4.15 shows that ρ is a minimum of the SSE function if at fj 6= 0 holds for some j.
Gradient boosting has some drawbacks in terms of parallelization as only the base learners

passed to the LSGradientBooster can be executed in parallel for a single iteration of the
boosting algorithm. The iterative expansions have to be computed in series, therefore worsen-
ing the time needed for the ensemble training, regardless of the number of computation cores
available.

The maximum number of expansions E is a parameter of the algorithm. Further the bagging
percentage i.e. the percentage p of T used for training, can be specified too. If p < 1 holds then
the algorithm becomes the stochastic variant described in [15]. The sampling of the training sets
Ti for each expansion step 1 ≤ i ≤ E is performed without replacement (if p < 1).

Partial simulation and extrapolation

As mentioned in Section 4.2 it is possible to collect the output values of the simulated HEV
models at periodic time steps. In the partial simulation and extrapolation regression scheme, a

50



unique learner for each output value of the HEV, relevant for the calculation of the objective
function, is used.

It is expected that it is possible to increase the accuracy of the prediction by simulating the
first p percent of the driving cycle and then passing the HEV model parameters as well as the
collected output value at time step p ·D — where D is the duration of the whole driving cycle
— as inputs to a neural network for prediction. The information of the collected output value
is thereby extrapolated from time step p · D to time step D. The additional information from
time step p · D about the output value, which is to be predicted, is consequently also used as
additional input during training.

Time-progressive-learning ensembles

Time-progressive-learning ensembles are an extension of the extrapolation idea of the previous
section. Thereby the driving cycle is split into K time slices at the time steps ti, 1 ≤ i ≤ K
and a separate regression model is used for any of these time slices. The scheme further requires
such a set of regression models for each output of the HEV model, which is relevant for the
objective function.

For any output value v, a set of base learners is trained for each of the K time slices. A base
learner for such a time slice is expected to model the behaviour of the HEV model in that part
of the driving cycle. Any base learner ψi for time slice 1 < i ≤ K takes the following inputs.

• The inputs ~x of the HEV model — like any of the other regression schemes,

• and the collected output value vi−1 at time step ti−1.

These inputs are then used to train the base learner to predict the output value vti . For any
time slice the “best” predictor is selected by using automatic model selection as described above.

For prediction the input ~x is passed to ψ1. The prediction Ψ1 = ψ1(~x) and ~x is then passed
to ψ2 and so on. This is repeated until the output of ψK(~x,ΨK−1) = vK has been computed.
The output value is thereby predicted “progressively over time”.

An option of the time-progressive-learning ensemble is to use not only the tuples (~x, vi−1)
as training data for ψi(.), but also the predicted tuples (~x,Ψi−i). It is believed that by using
the predicted tuples additionally as “jitter” in the training set — a common technique in neural
network training — the function represented by the net can be smoothed to produce more accu-
rate predictions. The drawback of this method is that the training time is increased as a larger
training set is used and as all regression models of time slice i have to be computed before the
training for time slice i+ 1 can be started leading to a lower degree of parallelization.

51





CHAPTER 5
Experiments

5.1 Experimental setup

There are two different experimental setups used in this thesis. The first one is the setup of
the optimization platform as well as the computation nodes for the optimization experiments.
The Yaop software is installed on an VirtualBoxTM4.2 virtual machine on an Intel Core2 Quad
and is dedicated 2 cores (Intel VT-x enabled) and 1456 MB of RAM. The virtual machine runs
Fedora 17 and has the Yaop packages and GT Suite v7.2 installed. The “exact” computation
strategy in use is the RemoteGtSuiteComputationStrategy unless noted otherwise.
The GT Suite simulations are run on separate computation nodes with a Intel Xeon X5570
2.93GHz core and 12 GB RAM each. A maximum of 8 computation nodes is available, due to
license restrictions. As a consequence all populations have been chosen to be a multiple of 8 to
utilize the computational resources efficiently. Ideally a batch of 8 runs is executed at once and
finishes at approximately the same time. Simplying it can be said that batches form a hardware-
independent time measure1. The training of regression models during optimization is performed
on user PCs in virtual machines (see below).

The second setup is concerned with the training of regression models for the evaluation of
their performance, pre-optimization. The two setups are physically separated s.t. the computa-
tional power of the training setup cannot be used for training during optimization. The training
is performed using the IPythonDispatcher with its ipengines deployed in virtual ma-
chines running Linux Mint2. Two virtual machines are deployed, one on an Intel Core i7-2620M
with 4 dedicated cores (Intel VTx enabled) — one per ipengine — and another one on an
Intel i5-21xx with 4 dedicated cores.

1 In practice a new simulation is submitted as soon as a license is released. In most cases it is expected that this
happens nearly at once for all previously submitted simulations.

2 A different Linux distribution is used here due to network-related software problems in Fedora.
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Problems with high computation times

The limited computational resources for optimization have large impact on the number of con-
ducted tests. At most 10 different runs have been run per setup. For the control experiments
without search space discretization it is even less. Although the low number of runs makes sta-
tistical explanations problematic, it is shown that the behaviour of the algorithms is consistent
by using a qualitative approach.

5.2 HEV models for optimization

In the following the two HEV models under optimization are detailed and their parameters are
explained.

Model A

The first model — Model A further on — has been developed by the first author of [30] and
has the ability to act both as a series and a power-split hybrid. The vehicle relies on a single
ICE and two electric machines — termed “generator” and “motor” further on – for propulsion.
The ICE and the “generator” are directly coupled via a shaft, but may be detached by opening
a clutch. Though the distribution of the required power between the machines is variable and
is determined by the operation strategy. The ICE/generator unit and the “motor” are coupled to
the driving shaft by a planetary gear set. Although the ICE/generator unit can be mechanically
decoupled from the planetary gear set.

By using the above setup the following modes of operation are enabled.

• EV1 is a pure-electric mode for low vehicle velocities where only the electric “motor” is
used for propulsion. The ICE/generator unit is deactivated and detached from the plane-
tary gear set.

• EV2 is a pure-electric mode for high vehicle velocities where both electric machines are
used for propulsion. The “generator” is attached to the gear set, but the ICE is deactivated
and detached from the “generator”.

• ER1 is the first range-extension mode where the HEV is operated in a series hybrid setup.
Therefore the ICE/generator unit is decoupled from the planetary gear set and is used
to generate electrical power for the “motor” and for charging the battery. This range-
extension mode is typically used for low velocities.

• ER2 is the second range-extension mode where the HEV is operated in a power-split
setup. All clutches are closed and all machines are active and thereby the power output of
the ICE is split into a mechanical and electrical path. This mode is typically used for high
velocities.

The selection of the proper mode of operation is determined by the vehicle’s operation strat-
egy, which is pre-determined for the HEV. The behaviour of the strategy is parametrized by the
parameters explained in the next section.
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Parameters

• ringteeth determines the number of teeth for the ring gear of the planetary gear set. The
domain of the parameter is integer. Further the parameter has been limited to the values
{70, 80, 90, 100, 110, 120, 130} as using a finer grained domain is considered redundant.

• sunteeth determines the number of teeth for the sun gear of the planetary gear set. The
domain of the parameter is restricted to the values {20, 30, 40, 50, 60}. Let r be the num-
ber of ring teeth and s be the number of sun teeth. Then the following constraints have to
hold s.t. ringteeth and sunteeth form a valid parameter tuple.

– (r − s) mod 2 = 0

– r > s

The both constraints are enforced by the domains chosen for the parameters.

• generatorpowermin determines the minimal power output of the electric “generator”.
The domain of the parameter is integer and limited to [3, 20].

• torqueev1up ∈ [200, 800] determines the torque on the driving shaft above which no
switching from mode EV1 to EV2 is performed. The domain of the parameter is integer
as fractional values are not considered significant.

• speedev1up ∈ [60, 140] determines the vehicle speed required to switch from mode EV1
to EV2. The domain of the parameter is integer as fractional values are not considered
significant.

• torqueer1up ∈ [200, 1000] determines the axle torque above which no switching from
mode ER1 to ER2 is performed. The domain of the parameter is integer as fractional
values are not considered significant.

• speeder1up ∈ [40, 140] determines the vehicle speed required to switch from mode ER1
to ER2. The domain of the parameter is integer as fractional values are not considered
significant.

• speedermin ∈ [0, 80] determines the minimal vehicle speed required to switch from a
pure-electric mode to ER1. The domain of the parameter is integer as fractional values
are not considered significant. Further its value is required to be less than or equal to the
value of speeder1up.

• socband ∈ [0.01, 0.1] determines the allowed percental deviation of the battery’s initial
SOC — in both directions. Low values lead to higher rates of starting/stopping the ICE
as it is tried to keep the SOC nearly constant. Higher values lead to may lead to larger
deviations at the end of the simulated driving cycle and to a penalization of the solution
in sequence (as described in the next section). Further the socband determines when the
switch from pure-electric to range-extension modes is performed.
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• chargepowerhigh ∈ [20, 100] is the maximum power used to charge the battery. This
amount of power has to be generated if the SOC is far lower than the initial SOC.

• chargepowerlow ∈ [0, 30] is the minimum power used to charge the battery. This amount
of power has to be generated if the SOC is higher or only a bit lower than the initial SOC.
The domain is integer and the parameter’s value has to be lower than chargepowerhigh.
The actual power generated by the “generator” is determined by interpolating between
chargepowerlow and chargepowerhigh, depending on the SOC’s level in comparison to
the initial SOC.

• usepowerdemandcharge ∈ {0, 1} is boolean and indicates if the “generator” should try
to cover the current power requirement of the electric “motor”.

Objective function

Model A is evaluated on the EPA US06 driving cycle, as it is short driving cycle and as it is
designed to resemble “real” driving behaviour. As objective function the single case objective
function — as described in Section 4.2 — is used with a single target value. The fuelcons value
measures the fuel consumption in L/100km on the driving cycle plus a penalization for SOC
deviation. The penalization for a negative deviating SOC is calculated by estimating how much
fuel would be needed to charge the battery to its original state using the ICE/generator combo at
stop. It is possible that the penalization is negative if the SOC deviation is positive. The lower
bound

Model B (IFAHEV)

Model B is a version of the IFAHEV model in [31], but a larger set of parameters has been
chosen for the optimization. The operation strategy for Model B is specifically designed for the
NEDC as described in Section 2.2. As this model is protected by an NDA it is not allowed to
detail the achieved results as well as the model itself. Therefore the model serves mainly for
verification for some aspects of the evaluated methods.

Parameters

• GearRPMi, i ∈ {2, 3, 4, 5, 6, 7} determines the RPM whiche the ICE needs to reach to
switch from gear i− 1 to gear i.

• LPSx, x ∈ {ECE-15,EUDC} determines the percental load-point shifting during the
constant speed phases of the ECE-15 and EUDC parts of the NEDC respectively.

• LPSi, i ∈ {2, 3, 4, 5} determines the percental load-point shifting during different accel-
eration phases. LPS2 and LPS3 control the load-point shifting during the second and third
acceleration phase in the ECE-15 parts of the NEDC. LPS4 controls the load-point shift-
ing during the first two acceleration phases in the EUDC part of the NEDC and LPS5 in
the last two acceleration phases of the EUDC part.
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• EMVehicleSpeedx, x ∈ {ECE-15,EUDC} determines the vehicle speed up to which
acceleration is handled by the electric machine solely. The ECE-15 and EUDC variants
control this parameter for the respective phases of the driving cycle.

Objective function

As fitness function the single case objective function with two parameters has been used. The
first parameter is the fuel consumption and the second parameter is the SOC deviation. The
SOC deviation has been modified s.t. a deviation less than one percent does not contribute to the
fitness function. The weights of the parameters have been split 70/30. The estimated lower/upper
bounds chosen for the parameters, as well as the exact calculation of the fuel consumption with
SI units, cannot be given. Doing so would allow to reverse the fitness calculation giving insight
in protected data.

5.3 Experiments without discretization

The first set of experiments has been performed with the constraints of the parameters enabled,
but without discretization of the search space. Further only exact evaluation of the HEV models
is used using the RemoteGtSuiteComputationStrategy with 8 computation nodes at
maximum. The number evaluations per algorithm iteration has been set to be a multiple of 8
to maximize the load on the computation nodes if all computation nodes are available to the
simulation. For each model the empirical distribution of the measured simulation times is given
first. This time measures will be used throughout the chapter to determine the idealized duration
of the optimization experiments. Otherwise the real measured optimization times could be very
different, as for a large percentage of the time the computation nodes have been used for other
tasks too.

Results for Model A

From the experiments conducted for Model A, the simulation time measurements have been col-
lected. Overall 16892 simulations have been run during the experiments without discretization.
The collected data is depicted in the box plot in Figure 5.1. The different simulation times arise
as the simulation software computes the driving cycles with variable time steps i.e. one second
of the driving cycle might be simulated by a varying number of computation steps. Typical sim-
ulation times range from 6 to 10 minutes. The mean simulation time is 7.49 minutes. This value
will be used to compute the computation times for Model A further on.

PSO without discretization

The first set of experiments have been conducted with a PSO without discretization and with the
parameters set to the values in Table 5.1. The values for ω, φ1, and φ2 are the same as the values
for the Canonical PSO in [37].

Figure 5.2 shows the best fuel consumption values for each iteration for the conducted ex-
periments. Although the number of experiments is very low, the plots show a similar progression
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Figure 5.1: A box plot of the empirical distribution of the simulation times for Model A. Gener-
ated from 16892 simulations.

#Iterations #Particles ω φ1 φ2 #Non-impr. iterations before reset
200 16 0.7298 1.49618 1.49618 20

Table 5.1: Model A/B: Parameters for PSO without discretization

for the fuel consumption of the found solutions. The best fuel consumption found in these ex-
periments is about 5.83L/100km. All experiments found solutions below 6.0L/100km.

The first drop below a value of 5.9L/100km occurred for all experiments approximately after
100 iterations. An analysis of the cache hits showed that over all PSO experiments only 12 cache
hits occurred. As the simulations are — ideally — executed in batches of 8 and finish at the same
time, the time spent in the simulation software is 2.08 days per experiment, with the hardware
mentioned above. This is equal to 400 simulated batches.

Active CMA-ES without discretization

Next a set of experiments with the Active CMA-ES has been run. Again three experiments have
been conducted for with the settings given in Table 5.2. The values for β, ccov, cc, and cσ are
estimated as given in [24].

Figure 5.2 depicts the best fuel consumption values for each iteration for the conducted
Active CMA-ES experiments. It can easily been seen that the performance of the Active CMA-
ES is significantly worse than the performance of the PSO. The best parameter sets found have
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Figure 5.2: Model A: A plot of the best fuel consumption values per iteration for three PSO runs
without discretization.

a fuel consumption of 6.00L/100km which have been achieved by all experiments.
The question arises why the Active CMA-ES performs worse than the PSO. It may be an-
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#Iterations µ λ

200 4 16

Table 5.2: Model A/B: Parameters for Active CMA-ES without discretization

Figure 5.3: Model A: A plot of the best fuel consumption values per iteration for three Active
CMA-ES runs without discretization.

swered by comparing the variance of the solutions’ fuel consumptions per iteration. Therefore
these values are shown in the box plot in Figure 5.4 for the third PSO experiment and the first
Active CMA-ES experiment. These two experiments have been chosen as they show a similar
plateau of the fuel consumption value at the same time. It is assumed that for the HEV model at
hand, similar fuel consumption values correlate with plateaus in the search space. This assump-
tion is supported by the fact that the solutions for Active CMA-ES are sampled around a single
centroid. Therefore it is assumed that if the fuel consumption variance is low, then the variance
of the solutions’ parameters is low too.

The assumption above is further borne out if iteration 84 of the depicted PSO run is consid-
ered. Analysis of the PSO’s behaviour shows that after iteration 75 to iteration 83, several of the
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particles got resampled by the mechanism described in Section 4.2. This leads to an increase of
the solutions’ variance. The Active CMA-ES lacks a similar feature and is therefore unable to
escape the local plateau.

Although the variance of the solutions of the Active CMA-ES is lower than for the PSO,
only 25 database cache hits occurred overall experiments without discretization. The number of
batches simulated per experiment is with 400 the same as for the PSO.

Results for Model B

The simulation times for Model B have been collected and evaluated similarly to Model A. The
box plot in Figure 5.5 shows the distribution of the time measurements. The mean simulation
time is 8.65 minutes and has been calculated from 15769 simulations. It is further used to
determine the computation times of the experiments.

PSO without discretization

The PSO has been configured with the same parameter values as for Model A, which are given
in Table 5.1. As the actual fuel consumption values might not be published, the fitness values
for the evaluated solutions are given, where higher fitness values indicate better solutions. The
fitness values of the best solution in each iteration are shown in Figure 5.6. The best solution
found by the PSO experiments has a fitness value of −44.74. For all PSO experiments the best
solutions have been found during the last iterations of the optimization.

No cache hits occurred during the PSO experiments. Consequently 400 batches have been
simulated per experiment equalling a computation time of 2.4 days.

Active CMA-ES without discretization

The experiments with the Active CMA-ES have been conducted with the parameter settings
given in Table 5.2. Again the results of the Active CMA-ES have been worse than the PSO
results for each experiment. The best solution found has a fitness value of −54.71. The best
fitness values for each iteration are depicted in Figure 5.7. The Active CMA-ES exhibited similar
behaviour as in the experiments for Model A. Under the same assumption as for Model A that
similar fitness values correlate with similar regions in the search space, the algorithm shows little
variance in the generated solutions.

5.4 Two-phased optimization I

The second set of experiments deals with incorporating search space discretization and regres-
sion techniques into the optimization process. To do this the optimization is split into two phases.
In the first phase it is important to aggregate a diverse set of solutions which act as training data
for the used regression models. Nevertheless, the search space cannot be explored fully due to
its size. It is important not to waste too much computation time on search space areas which are
unlikely to be visited further in the optimization process, while still being able to classify these
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Figure 5.4: Model A: Comparison of the fuel consumption variance per iteration between a PSO
and an Active CMA-ES run.

areas correctly. Therefore a tradeoff has to be found between solution diversity and solution
quality.

During this phase the search space discretization is configured to be coarse-grained. The
number of discretization steps is kept at a constant level throughout this phase. The number of
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Figure 5.5: A box plot of the empirical distribution of the simulation times for Model B. Gener-
ated from 16892 simulations.

discretization points have been set to 6 for each dimension, except those discretized beforehand3.
Further for all experiments in the first phase the number of iterations has been reduced to 65.

Experiments with the Active CMA-ES have not been conducted because of the low variance
in the solutions generated in each iteration. It is expected that the Active CMA-ES would gen-
erate many duplicate solutions due to the introduced discretization. As explained below even
the PSO has problems in generating new solutions in a discretized setup, which supports the
decision above as the variance of the solutions generated by the Active CMA-ES is lower in
general.

Phase I results for Model A

PSO with discretization

For the PSO experiments with discretization the parameter settings from Table 5.3 have been
used. The values for φ1 and φ2 have been increased as early experiments with the PSO showed
that for values less than 2 the algorithm prematurely became stuck somewhere in the search
space. The reason for this behaviour is that the minimal velocity required to perform a jump in
the search space4 could not be maintained. The increase of φ1 and φ2 lessened the occurrence

3 This concerns only the following parameters of Model A: sunteeth, ringteeth, and usepowerdemandcharge
4 See Section 4.2 and Equation 4.7)
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Figure 5.6: Model B: A plot of the best fuel consumption values per iteration for two PSO runs
without discretization.

of this problem, but has not been able to mitigate it completely. Trying to increase the value of
ω lead to erratic jumps through the search space. Therefore its value has not been modified.
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Figure 5.7: Model B: A plot of the best fuel consumption values per iteration for three Active
CMA-ES runs without discretization.

#Iterations #Particles ω φ1 φ2 #Non-impr. iterations before reset
65 16 0.7298 2.0 2.0 20

Table 5.3: Model A/B: Parameters for PSO with discretization

For the setup described above 10 experiments have been run. The comprehensive results
are shown in Table 5.4. It can be seen that most of the time the PSO is able to find solutions
below 6.0L/100km, thereby beating the Active CMA-ES without discretization. Nevertheless
the solutions are still worse than results of the PSO experiments without discretization.

Up to iteration 65 the experiments without discretization would have computed 130 batches,
requiring 16.22 hours on the given hardware. The analysis of the results shows that the PSO with
discretization computes far less batches, due to a higher number of cache hits. Basic statistical
measures for the number of computed batches are given in Table 5.5.
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#Experiment Iteration Best solution (L/100km)
1 22 5.95

2 25 6.11

3 3 6.02

4 7 5.95

5 14 5.97

6 32 5.96

7 11 5.93

8 18 6.07

9 39 5.96

10 18 5.91

Mean: 5.98 L/100km Std. dev.: 0.06

Table 5.4: Model A: Results for the PSO in phase I

Min. #batches Max. #batches Mean Standard deviation
PSO 32 107 67.1 25.99
RRS 104 130 120.4 7.57

Table 5.5: Model A: Statistical measures about the computed batches in phase I

Recombinant Random Sampling with discretization

The biggest benefit of the PSO with discretization — good results with fewer computations — is
also one of its biggest drawbacks if a regression model has to be trained. The solutions computed
in the first phase of the optimization will be used as training data for the regression models. The
number of training samples is an important factor for the performance of these models.

Therefore the Recombinant Random Sampling (RRS) algorithm described in Section 4.2 has
been evaluated on the model, with discretization enabled. The configuration of the algorithm is
given in Table 5.6. The tournament size k has been set to a low value as early experiments
showed that using a larger value lead to strong elitism and converged too fast to a single points
in the search space. The number of randomly generated solutions R has been set rather high to
increase the probability to generate a diverse set of training data. The mutation for recombined
individuals has been disabled to favor randomly generated solutions as source of entropy.

#Iterations #Individuals R k Pmut

65 16 5 2.0 0.0

Table 5.6: Model A/B: Parameters for Recombinant Random Sampling with discretization

Table 5.7 shows the results of 10 conducted experiments. It can be seen that the RRS gen-
erates not as good solutions as the discretized PSO, which might be due to the high randomness
present in the algorithm. Nevertheless the RRS outperforms the Active CMA-ES algorithm.
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#Experiment Iteration Best solution (L/100km)
1 9 6.01

2 36 5.98

3 8 6.04

4 57 6.04

5 59 6.00

6 62 6.06

7 56 5.99

8 50 6.02

9 40 6.00

10 27 6.04

Mean: 6.02 L/100km Std. dev.: 0.02

Table 5.7: Model A: Results for the RRS in phase I

As expected the number of evaluated batches could be increased, thereby generating more
training data at the cost of longer computation times. The corresponding data is shown in Table
5.5.

Phase I results for Model B

PSO with discretization

For Model B 10 experiments with the discretized PSO variant have been conducted. The param-
eters of the PSO are given in Table 5.3. The results of the experiments are collected in Table 5.8.
The PSO with discretization has not found solutions as good as the unconstrained PSO, but still
outperformed the Active CMA-ES.

#Experiment Iteration Best solution
1 65 −51.61

2 65 −47.21

3 65 −53.50

4 65 −55.05

5 65 −47.99

6 65 −51.34

7 64 −54.98

8 64 −54.48

9 65 −50.56

10 65 −52.71

Mean: −51.94 Std. dev.: 2.62

Table 5.8: Model B: Results for the PSO in phase I
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The best solutions found by the algorithm have been generated in the very last iterations of
each experiment. It seems plausible that the PSO requires more iterations to converge to better
solutions. This assumption is supported by considering the number of evaluated batches in Table
5.9. These are substantially higher than for Model A and indicate that new areas of the search
space are still explored.

Min. #batches Max. #batches Mean Standard deviation
PSO 107 130 121.30 8.55
RRS 113 130 123.60 6.54

Table 5.9: Model B with discretization: Statistical measures about the computed batches in
phase I

Recombinant Random Sampling with discretization

The experiments run with RRS for Model B follow the same settings as for Model A and are
given in Table 5.6. The results of the experiments show that for Model B the RRS performs
considerably better than the PSO in phase I. The number of computed batches is similar to those
for Model A (see Table 5.9).

#Experiment Iteration Best solution
1 46 −51.16

2 19 −47.62

3 33 −47.53

4 21 −47.95

5 65 −47.69

6 53 −49.20

7 26 −46.91

8 59 −47.81

9 49 −48.50

10 7 −47.68

Mean: −48.20 Std. dev.: 1.14

Table 5.10: Model B: Results for the RRS in phase I

5.5 Evaluation of regression techniques

The next step in the phased optimization approach is the training of the regression model used
in phase 2. The regression models use the same HEV model parameters as input, which the op-
timization algorithms are allowed to adjust during optimization. If not mentioned otherwise the
target value of the regression models is the output of the objective function of the optimization.
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In this intermediate step it has to be decided how the regression model shall be parametrized.
For this cause different regression models are evaluated using cross-validation. The setup of the
experiments is the following.

An exemplary RRS experiment of phase I is selected for Model A and Model B. The solu-
tions of these experiments are then used as training data for the regression techniques. For both
HEV models an experiment with a larger set generated solutions has been chosen to provide
enough data for the training process. The training set for Model A contain 905 solutions and the
set for Model B contains 863 solutions. Before cross-validation is applied to the training data,
the data set is shuffled. Otherwise the order of the solutions — as generated by the optimization
algorithm — would bias the folds to contain rather similar data. This could worsen the prediction
performance on the validation fold. Further on all experiments use 10-fold cross-validation.

In the tables in the following sections, some acronyms and terms reappear several times.
Their meaning is described in the following.

• Time . . . the required computation time

• tMSE . . . average Mean Square Error on the training set over all cross-validation folds

• vMSE . . . average Mean Square Error on the validation set over all c.-v. folds

• tMTOD . . . average Mean Total Order Deviation on the training set over all c.-v. folds

• vMTOD . . . average Mean Total Order Deviation on the validation set over all c.-v. folds

Further all tables containing results are sorted by their vMTOD value.

Neural network experiments

The first regression model which has been explored are neural networks. These use the Levenberg-
Marquardt training algorithm as implemented by ALGLIB. The activation function of neurons
contained in the hidden layers is sigmoidal and the activation function of the output layer neu-
rons is linear. The input normalization is directly handled by the used neural network library.
This setups also holds true for the base learners of the following ensemble method experiments.

Different network architectures with up to two hidden layers have been evaluated. For the
networks with a single hidden layer the number of neurons have been chosen to be a multiple
of the input layer. A special case of the neural networks are those without hidden layer as
they represent a linear regression. Further for each architecture different values for the weight
decay parameter of the neural network have been chosen. According to the documentation of
the neural network library, Tikhonov regularization is used as weight decay term in the error
function. This method penalizes the use of large weights in the network, which consequently
reduces the variance of the network output.

The results of the neural network experiments for Model A are given in Table 5.11 and the
results for Model B in Table 5.12. Both tables are sorted by their average MTOD value —
as discribed in Section 4.3 — of the validation sets over all folds. It can be seen that sorting
the results by their validation MSE — the mean of the SSE error function — would result in
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Layers Decay Time (sec) tMSE vMSE tMTOD vMTOD
12,12,1 1.0 6.45 1.37 6.25 0.0746 0.0952
12,24,24,1 1.0 332.65 0.04 6.75 0.0173 0.0959
12,12,1 0.001 8.26 1.52 7.13 0.0752 0.0993
12,24,1 1.0 22.78 1.30 7.46 0.0612 0.1004
12,12,12,1 1.0 21.02 0.94 8.85 0.0640 0.1042
12,72,1 1.0 338.83 0.06 8.20 0.0203 0.1060
12,12,1 0.1 5.91 2.04 6.45 0.0796 0.1069
12,48,1 1.0 156.09 0.14 7.34 0.0300 0.1072
12,24,1 0.1 31.63 0.39 8.55 0.0511 0.1089
12,12,12,1 0.1 25.72 0.73 8.49 0.0644 0.1103
12,24,24,1 0.1 302.42 0.05 10.15 0.0139 0.1104
12,12,12,1 0.001 26.05 0.93 8.61 0.0691 0.1106
12,72,1 0.1 118.34 0.01 8.86 0.0069 0.1112
12,24,1 0.001 40.23 0.36 9.51 0.0479 0.1113
12,48,1 0.1 140.66 0.04 10.03 0.0166 0.1178
12,24,24,1 0.001 165.66 0.03 13.38 0.0138 0.1240
12,48,1 0.001 152.13 0.02 11.80 0.0131 0.1281
12,72,1 0.001 182.50 0.00 12.93 0.0008 0.1308
12,1 1.0 0.10 15.08 15.76 0.1502 0.1512
12,1 0.1 0.12 15.08 15.76 0.1502 0.1512
12,1 0.001 0.27 15.08 15.76 0.1502 0.1512

Legend Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm

Table 5.11: Model A: Neural network results

a different order. As both orderings are only marginally different, the MSE may be used as a
derivable approximation of the MTOD.

It is interesting to see that for both HEV models very different network architectures are
rated best. Therefore it seems unavoidable to evaluate a large set of neural networks for each
new HEV model, to deduce proper regression models.

Least-Squares Gradient Boosting

Gradient Boosting experiments have been conducted for Model A with two different sets of base
learner candidates.

• The weak learner set contains a linear regression model and networks with a single hidden
layer with either 3 or 6 neurons.

• The medium set contains a linear regression model and networks with a single hidden
layer with 6, 12, or 24 neurons.
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Layers Decay Time (sec) tMSE vMSE tMTOD vMTOD
14,84,1 1.0 163.14 0.30 804.89 0.0034 0.0674
14,84,1 0.1 160.48 0.01 892.20 0.0010 0.0794
14,14,1 0.1 4.72 832.70 1762.95 0.0605 0.0888
14,14,1 0.001 4.80 974.58 1900.66 0.0626 0.0891
14,84,1 0.001 128.41 0.02 1281.89 0.0002 0.0929
14,56,1 1.0 55.14 12.16 1284.58 0.0130 0.0939
14,28,28,1 1.0 104.06 286.41 1819.73 0.0587 0.0952
14,28,1 0.1 14.02 288.42 1812.49 0.0416 0.0952
14,14,1 1.0 4.04 1044.52 2132.58 0.0644 0.0953
14,56,1 0.1 59.56 20.98 1498.88 0.0115 0.0956
14,28,1 1.0 14.41 324.84 1731.42 0.0398 0.0959
14,28,28,1 0.1 104.23 303.18 2121.63 0.0575 0.0996
14,28,28,1 0.001 98.23 400.33 2204.43 0.0605 0.1005
14,56,1 0.001 65.70 14.16 1811.86 0.0097 0.1029
14,28,1 0.001 14.85 350.42 1885.74 0.0417 0.1032
14,14,14,1 0.1 15.15 1112.13 2105.18 0.0893 0.1050
14,1 1.0 0.13 1646.20 1741.05 0.1035 0.1068
14,1 0.1 0.13 1646.15 1741.15 0.1035 0.1068
14,1 0.001 0.19 1646.15 1741.17 0.1035 0.1068
14,14,14,1 0.001 15.11 1572.44 2689.04 0.1073 0.1167
14,14,14,1 1.0 15.31 1356.03 2618.17 0.0960 0.1259

Legend Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm

Table 5.12: Model B: Neural network results

Both learner sets are evaluated with stochastic gradient boosting and simple gradient boost-
ing. For the stochastic variant the sampled training sets are 0.5 and 0.75 times the size of the
original training set. The number of expansion steps is fixed to 16. The results of the experiments
are given in Table 5.13

Examination of the data shows that the training errors for the experiments without stochastic
boosting are lower than the training errors of their base learners (as given in the previous section).
This implies that boosting is able to reduce the training error as expected. This is detailed in
Table 5.14 where the progression of the error values is shown for each expansion step for an
exemplary experiment.

The regression method behaves differently if the stochastic variant is used. The performance
worsens as the used training sets grow smaller and expansion steps tend to increase the MSE
on both the training and the validation set. Another observation is that the gradient boosting
approach seems to overfit the training data thereby resulting in high validation errors.

Due to the unpromising results for Model A the gradient boosting experiments for Model B
have been omitted.
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Learner set Training set size Time (sec) tMSE vMSE tMTOD vMTOD
medium 1.0 183.88 0.16 5.49 0.0330 0.0984
medium 0.75 161.49 1.00 7.89 0.0639 0.1122

weak 1.0 30.75 1.49 7.18 0.0789 0.1213
weak 0.75 24.94 5.70 12.36 0.1142 0.1538

medium 0.5 137.97 8.86 17.36 0.1304 0.1636
weak 0.5 20.21 23.24 34.68 0.1710 0.1854

Legend Learner set — the set of used base learner candidates
Training set size — the factor determining the size of the sampled training sets

Table 5.13: Model A: LS Gradient Boosting results

#Expansion ρ Layers tMSE vMSE tMTOD vMTOD
0 1.0217 12,24,1 0.7219 5.9861 0.0625 0.0894
1 1.3739 12,24,1 0.4181 6.2430 0.0522 0.0869
2 1.0839 12,12,1 0.3035 6.8463 0.0471 0.0872
3 1.1446 12,12,1 0.2396 6.9097 0.0415 0.0908
4 1.2013 12,12,1 0.2025 6.8802 0.0388 0.0937
5 1.0397 12,6,1 0.1616 6.7969 0.0344 0.0952
6 1.2797 12,12,1 0.1576 6.8794 0.0345 0.0964
7 1.0159 12,6,1 0.1555 6.9151 0.0338 0.0966
8 0.2521 12,6,1 0.1544 6.9226 0.0335 0.0966
9 1.0061 12,24,1 0.1544 6.9226 0.0335 0.0966
10 1.0061 12,24,1 0.1544 6.9226 0.0335 0.0966
11 1.0061 12,24,1 0.1544 6.9225 0.0335 0.0966
12 1.0061 12,24,1 0.1544 6.9225 0.0335 0.0966
13 1.0201 12,6,1 0.1518 7.1598 0.0330 0.0983
14 1.0061 12,24,1 0.1518 7.1598 0.0330 0.0983
15 1.0061 12,24,1 0.1518 7.1597 0.0330 0.0983

Legend
#Expansion — index counting the number of neural networs trained on residuals
ρ — the weight for computed for the added base learner
Layers — the number of neurons per layer

Table 5.14: Model A: Example for the expansion steps of a medium learner set

Bagging

The Bagging experiments have been conducted for both HEV models with the neural network
architectures already evaluated in the neural network experiments. The number of learners per
ensemble has been fixed to 24. Different sample sizes for the used training sets have been used
too. The results for Model A are given in table 5.15 and for Model B in Table 5.16.

The experiments clearly show that, although the training error may be higher for a bagging
ensemble if compared to their single network counterparts, the validation error drops signifi-
cantly. Further bagging seems to favor large neural networks by reducing their variance through
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Layers Decay Training set size Time (sec) tMSE vMSE tMTOD vMTOD
12,24,24,1 1.0 1.25 653.30 0.89 5.00 0.0339 0.0783
12,24,24,1 1.0 1.0 790.51 0.82 5.18 0.0337 0.0795
12,24,24,1 1.0 0.75 478.34 1.46 5.37 0.0421 0.0804
12,12,12,1 1.0 1.0 86.64 1.02 4.46 0.0495 0.0821
12,12,12,1 1.0 1.25 87.37 1.05 4.67 0.0511 0.0826
12,12,1 1.0 1.25 23.43 1.47 4.13 0.0631 0.0831
12,12,12,1 1.0 0.75 70.47 1.41 4.84 0.0513 0.0832
12,12,1 1.0 1.0 23.80 1.43 4.10 0.0637 0.0841
12,24,1 1.0 1.25 66.21 1.07 5.46 0.0488 0.0842
12,12,1 0.001 1.25 20.82 1.28 4.09 0.0616 0.0860
12,72,1 1.0 1.0 837.09 1.10 6.59 0.0371 0.0863
12,12,1 1.0 0.75 39.29 1.87 4.68 0.0650 0.0865
12,24,1 1.0 1.0 67.31 1.14 5.53 0.0488 0.0867
12,72,1 1.0 0.75 633.84 1.91 7.26 0.0464 0.0871
12,72,1 1.0 1.25 851.83 1.12 6.82 0.0371 0.0884
12,12,1 0.001 1.0 21.21 1.31 4.47 0.0623 0.0888
12,24,1 1.0 0.75 50.41 1.87 6.51 0.0535 0.0890
12,12,1 0.001 0.75 17.20 1.70 5.12 0.0640 0.0909

Legend
Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm
Training set size — the factor determining the size of the sampled training sets

Table 5.15: Model A: Bagging results

averaging. An examination of the behaviour of the validation error when adding a new base
learner base learner shows that it leads to a decrease of the error almost any time — even if
the ensemble is nearly complete. It seems possible that by adding further base learners, the
validation error may be reduced further.

The obvious drawback back of the bagging approach is the rise in computation time. But
due to the independence of single neural networks for other networks in the ensemble, bagging
is an ideal candidate for massive parallelization.

Least-Squares K-Means divide-and-conquer regression

Least-Squares divide-and-conquer regression has been performed on both the training sets of
Model A and Model B. The neural network architectures trained for each cluster are given in
Table 5.17. The neural network to be used for a cluster is selected using automatic sub-model
selection with validation sets, as described in Section 4.3. The number L of networks trained for
validation is set to 5 and the validation percentage is set to 0.1.

Experiments have been conducted with 5, 10, and 15 clusters as well as overlap percentages
of 0, 0.15, 0.3, and 0.5. As prediction methods both variants described in Section 4.3 have been
used. The results for Model A with “closest” cluster prediction are given in Table 5.13 and the
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Layers Decay Training set size Time (sec) tMSE vMSE tMTOD vMTOD
14,84,1 0.1 1.25 738.27 80.99 518.72 0.0219 0.0554
14,84,1 0.1 1.0 811.22 82.84 546.64 0.0223 0.0556
14,84,1 0.1 0.75 517.38 142.41 582.41 0.0284 0.0578
14,56,1 1.0 1.0 225.25 98.54 560.74 0.0251 0.0588
14,56,1 1.0 1.25 223.40 99.64 583.61 0.0248 0.0599
14,84,1 1.0 1.0 558.09 107.60 685.97 0.0227 0.0605
14,84,1 1.0 1.25 554.26 105.65 678.21 0.0226 0.0609
14,56,1 1.0 0.75 176.78 160.64 636.96 0.0303 0.0625
14,14,1 0.001 1.0 16.37 735.58 1196.59 0.0442 0.0649
14,14,1 1.0 1.0 16.59 719.32 1204.91 0.0442 0.0654
14,14,1 0.001 1.25 16.43 729.18 1210.51 0.0440 0.0675
14,84,1 1.0 0.75 419.10 213.81 878.19 0.0316 0.0686
14,14,1 1.0 1.25 16.50 716.79 1236.42 0.0450 0.0692
14,14,1 0.001 0.75 12.69 804.17 1279.30 0.0476 0.0692
14,14,1 1.0 0.75 18.79 798.94 1299.85 0.0470 0.0699

Legend
Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm
Training set size — the factor determining the size of the sampled training sets

Table 5.16: Model B: Bagging results

Model A Model B
Layers Decay Layers Decay
12,1 0.1 14,1 0.1
12,3,1 0.1 14,3,1 0.1
12,3,1 1.0 14,3,1 1.0
12,6,1 0.1 14,7,1 0.1
12,6,1 1.0 14,7,1 1.0
12,12,1 0.1 14,14,1 0.1
12,12,1 1.0 14,14,1 1.0
12,24,1 0.1 14,28,1 0.1
12,24,1 1.0 14,18,1 1.0

Table 5.17: Neural network archictures for LS K-Means divide-and-conquer regression

results for Model B are shown in Table 5.19.
Compared to the other regression techniques the validation error is rather high for both

HEV models. The results for “distance weighted” prediction are similar to those using “closest
cluster” prediction and are not able to lower the validation error significantly. Therefore the
results of this prediction method have been omitted.

In another set of experiments the automatic sub-model selection has been changed to use
training set based selection and their findings are depicted in Table 5.20 for Model A and in
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Ov.% #Clusters Time (secs) tMSE vMSE tMTOD vMTOD
0.5 5 120.64 3.25 15.89 0.0749 0.1298
0.15 5 102.77 3.78 16.77 0.0757 0.1399
0.3 10 96.79 4.99 21.39 0.0886 0.1489
0.0 5 97.30 4.41 21.45 0.0833 0.1495
0.5 10 111.09 5.05 20.04 0.0840 0.1502
0.5 15 136.07 4.87 27.23 0.0912 0.1524
0.15 10 79.93 5.10 21.79 0.0881 0.1554
0.3 5 110.27 21.38 35.42 0.1113 0.1572
0.0 10 78.79 4.80 27.52 0.0807 0.1577
0.15 15 93.03 4.29 28.22 0.0745 0.1578
0.3 15 114.50 4.44 28.55 0.0860 0.1641
0.0 15 117.12 4.75 32.37 0.0803 0.1660

Legend Ov.% — the overlap percentage
#Clusters — the number of clusters

Table 5.18: Model A: LS K-Means divide-and-conquer regression results, with validation set
based model selection, predicting with the closest cluster only

Ov.% #Clusters Time (secs) tMSE vMSE tMTOD vMTOD
0.15 5 116.60 1245.05 2003.80 0.0863 0.1068
0.3 5 125.18 1137.92 2063.40 0.0821 0.1091
0.5 5 94.72 1244.60 2016.64 0.0888 0.1114
0.0 5 112.16 1260.83 2446.94 0.0872 0.1131
0.0 10 48.74 1008.44 2988.64 0.0814 0.1143
0.3 10 57.57 1138.64 2824.10 0.0830 0.1146
0.5 10 64.02 1191.69 2813.99 0.0817 0.1147
0.5 15 64.62 973.77 3510.19 0.0733 0.1188
0.15 10 50.53 1058.02 2831.55 0.0800 0.1190
0.15 15 53.62 956.81 4256.36 0.0768 0.1256
0.0 15 52.14 1027.64 4299.10 0.0761 0.1288
0.3 15 58.03 866.24 4311.31 0.0736 0.1302

Legend Ov.% — the overlap percentage
#Clusters — the number of clusters

Table 5.19: Model B: LS K-Means divide-and-conquer regression results, with validation set
based model selection, predicting with the closest cluster only

Table 5.21 for Model B. It can be seen that the training error is far lower than in the experiments
with validation set based selection. Although the validation error is increased further as the
training set based selection mechanism favors overfitting.

The most interesting result of these experiments is that automatic model selection based on
validation sets is able to improve the validation performance, if compared to training set based

75



model selection. This approach might also be useful for the gradient boosting approach.

Ov.% #Clusters Time (secs) tMSE vMSE tMTOD vMTOD
0.5 5 21.83 0.06 14.89 0.0160 0.1408
0.15 5 18.33 0.03 19.21 0.0105 0.1444
0.0 5 18.71 0.02 18.30 0.0084 0.1487
0.3 5 19.98 0.02 18.52 0.0097 0.1512
0.15 10 15.44 0.00 30.03 0.0044 0.1616
0.0 10 16.51 0.01 28.45 0.0047 0.1619
0.3 10 19.56 0.01 27.84 0.0057 0.1639
0.5 10 20.12 0.01 25.65 0.0057 0.1642
0.5 15 20.67 0.00 37.00 0.0045 0.1675
0.3 15 18.01 0.00 36.06 0.0040 0.1705
0.15 15 14.96 0.00 35.62 0.0039 0.1708
0.0 15 14.73 0.00 37.94 0.0036 0.1752

Legend Ov.% — the overlap percentage
#Clusters — the number of clusters

Table 5.20: Model A: LS K-Means divide-and-conquer regression results, with training set based
model selection, predicting with the closest cluster only

Ov.% #Clusters Time (secs) tMSE vMSE tMTOD vMTOD
0.3 5 10.75 55.07 3749.14 0.0161 0.1247
0.5 5 11.55 61.10 3486.46 0.0180 0.1250
0.15 5 9.85 51.31 3622.05 0.0155 0.1287
0.3 10 10.90 9.45 4064.00 0.0077 0.1293
0.0 5 8.82 27.64 4233.74 0.0126 0.1320
0.5 10 11.76 12.99 4865.17 0.0088 0.1359
0.15 10 10.16 10.24 4829.17 0.0076 0.1377
0.5 15 12.75 6.50 5398.87 0.0063 0.1402
0.0 15 10.94 4.15 6434.68 0.0057 0.1444
0.0 10 9.49 9.46 5328.93 0.0073 0.1521
0.3 15 11.80 5.21 6666.51 0.0065 0.1548
0.15 15 11.37 4.89 6259.56 0.0059 0.1555

Legend Ov.% — the overlap percentage
#Clusters — the number of clusters

Table 5.21: Model B: LS K-Means divide-and-conquer regression results, with training set based
model selection, predicting with the closest cluster only
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Partial simulation and extrapolation

In contrast to the regression techniques evaluated above, partial simulation and extrapolation
does not try to predict the fitness value for given parameter set but the output values of the HEV
models directly. So for Model A a single neural network tries to predict the fuel consumption
output of the model. For Model B two separate neural networks are used, the first one predicts
the fuel consumption and the second one for predicts the SOC deviation.

In the experiments for both HEV models 25%, 50%, and 75% of the respective driving cycles
are simulated. The neural network for Model A which predicts the fuel consumption then takes
the last fuel consumption value generated by the simulation as additional input. The same holds
true for the first neural network of Model B. Its second neural network takes the last known value
of the SOC deviation as additional input.

The results for Model A are given in Table 5.22. The prediction results for the fuel consump-
tion of Model B are given in Table 5.23 and the SOC deviation results are summed up in 5.24.
The MSE values of the neural networks used for Model B are omitted, as they would allow to
deduce the actual fuel consumption and SOC deviation of Model B.

The extrapolation results for Model A are very promising. The MTOD values for the valida-
tion sets are comparable between the fitness predicting neural networks and the neural networks
extrapolating the fuel consumption. The reason is that Model A uses only a single output value
to compute its fitness value. The scaling between the fuel consumption and the fitness value is
linear and would not change the order of the solutions. Therefore it can be said that the best
regression models for each simulated portion of the driving cycle exhibit lower validation errors
than the best neural networks experiments. In the experiments where 75% of the driving cycle
are simulated, the regression models even outperform the bagging ensembles trained for Model
A. Although this comes at the cost of simulating the a larger portion of the driving cycle.

The MTOD values for Model B cannot be directly compared as the fitness value of a solution
is a linear combination of multiple output values of the HEV model, which might change the
order of the solutions. Nevertheless it can be seen that the validation errors for fuel consumption
and SOC deviation are rather low. If the experiments, where 75% of the driving cycle are
simulated, are considered then the validation errors are for both output values are close to zero.
Further these prediction results are achieved by a linear regression model. In the case of Model
B it seems possible to simulate only the first 75% of the NEDC driving cycle s.t. the expected
quality of the solutions changes much.

Finally the observation can be made that for all extrapolation experiments it holds true that
the prediction performance is increased if the simulated portion of the driving cycles are in-
creased. Partial simulation and extrapolation seems to be a good option if the simulation time of
a HEV model shall be decreased and very accurate predictions are required — which cannot be
achieved with non-extrapolating prediction techniques.

Time-progressive-learning ensembles

Time-progressive learning as described in Section 4.3 have been applied on the fuel consump-
tion output of Model A. The results are given in Table 5.25. Different numbers of time slices
have been evaluated. Further experiments with jitter and validation set based automatic model
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selection have been conducted. If validation sets are used for model selection then 3 validations
with a validation percentage of 0.1 are conducted per base learner. For each time slice, neural
networks with a single hidden layer of the sizes 0, 0.25, 0.5, 1, 3, and 6 times the number of
input layer neurons are trained.

The results show that validation error is about the same as for neural networks. Analysis of
the validation errors of each time slice show that in general the error during the first time slices is
the highest and then drops in successive slices. This correlates with the observation that the fuel
consumption — which is given in L/100km — fluctuates at the beginning of the driving cycle. It
is assumed that time-progressive-learning ensembles perform better if monotonic output values
shall be predicted. Unfortunately the use of jitter could not improve the validation error.

5.6 Two-phased optimization II

The regression models evaluated in the previous step are now used in the second optimization
phase. As regression model the best bagging ensemble parametrization has been chosen for
both HEV models, as they provided the best performance but the extrapolation methods. In
the second optimization phase two different schemes for the combination of the optimization
techniques with the regression model have been explored. Both methods are similar to the
methods described in [25].

The first method incorporates a PSO with a PredictingComputationStrategy as
follows.

1. For k iterations repeat the following

a) Generate a new population p using the PSO algorithm.
b) Evaluate p with using the trained regression model.

2. Take the last generated population p and evaluate it with the simulation software.

3. Pass p to the PSO algorithm and update its internal state as described in Section 4.2.

4. Until some halting condition has been met, repeat from step 1.

The second method combines a FilteringComputationStrategywith an Active CMA-
ES algorithm. Thereby the parameter λ is set to large value s.t. large number of descendants
is generated in each generation. The λ new descendants are then evaluated using the trained
regression model. The best 16 individuals of the previous step are then passed back into the
Active CMA-ES algorithm. The remaining individuals are discarded.

Besides these two new setups, the number of discretization points in each dimension of the
search space are increased from 5 to 15. Further the used regression models are retrained every
15 iterations to incorporate the new solutions. In the case of the PSO scheme described above
only the iterations of the outer loop are counted. All optimization algorithms are run for 60
(outer loop) iterations in phase II. This number has been chosen as the reference optimization
algorithms without discretization have not improved the fitness significantly after 120 to 150
iterations. If phase I and phase II are combined then overall number of iterations sums up to
125.
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Phase II results for Model A

PSO with generational re-evaluation

The parameter settings for the PSO in phase II are nearly the same as in phase I and are given
in Table 5.26. It has initially been intended to start the PSO from the best solutions found
in phase I. The idea has been discarded as first experiments showed that the PSO converges
within a few (outer loop) iterations even if only few solutions are taken from the database.
Therefore population is initially sampled randomly. For each outer loop iteration, seven inner
loop iterations are performed. Due to time constraints it has not been possible to experiment
with more settings for the inner loop. For all experiments a bagging ensemble with 24 neural
networks is used. The architecture of the used neural networks is (12, 24, 24, 1), with a weight
decay of 1.0 and with a training set size factor set to 1.0.

The result for 10 PSO experiments in phase II are given in Table 5.27. It has even been
possible to achieve results of approximately the same quality as the best found solution for
Model A, in a few of the experiments. The number of computed batches is, similar to phase
I, very low and a summary is given in Table 5.28. The average number of computed batches,
if RRS is used in phase I, is 181.8. This is far lower than the number of computed batches
for the optimization algorithms without discretization. If the algorithms without discretization
are run for 125 iterations 250 batches are computed. This results in a effective speedup of the
optimization of 27%.

Active CMA-ES with filtering

In phase II experiments with the Active CMA-ES are run again with filtering enabled. The al-
gorithm generates 100 potential solutions to be evaluated by with the trained regression model.
The best 16 solutions are then evaluated with the simulation software. The initial population is
generated by using the 30 best solutions from phase I, as well as 20 random solution from phase
I. The best solution are used to start in proximity to good areas in the search space. The random
solution are added to increase the values in the estimated covariance matrix. The initial estima-
tion of the algorithm state i.e. centroid, σ, and covariance matrix, is carried out as described in
Section 4.2.

For all experiments a bagging ensemble with 24 neural networks is used. The architecture
of the used neural networks is (12, 24, 24, 1), with a weight decay of 1.0 and with a training set
size factor set to 1.0. The configuration of the Active CMA-ES is summarized in Table 5.29.

The results of the experiments are given in Table 5.30. Interestingly the performance of the
Active CMA-ES has been vastly improved by implementing the regression models for filtering.
It even outperforms the PSO in phase II in terms of solution quality. Figure 5.8 shows the vari-
ance in the fuel consumption every two iterations for an exemplary Active CMA-ES run. It can
be clearly seen that the variance is far higher than in the original Active CMA-ES experiments.

The number of computed batches is given Table 5.28. If summed with the RRS in phase I
the 238.8 batches are computed on average over the whole two-phased optimization. Compared
to the optimizations without discretization the speed up is about 4.5%.
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Figure 5.8: Model A: Fuel consumption variance per iteration of an exemplary Active CMA-ES
run in phase II.

Phase II results for Model B

Active CMA-ES with filtering

The Active CMA-ES has also been applied to Model B in phase I. The settings for the algorithm
are given in Table 5.31. The number of best solutions taken from phase 2 has been reduced
if compared to Model A, as first experiments showed that the estimated parameters for the ES
resulted in a narrow search area. Further an additional mechanism has been implemented to
double σ if there had been no improvement for 8 iterations. This is necessary as otherwise σ
grew smaller each iteration — a problem not exhibited in Model A. Consequently the search
stagnated. Repeated doubling of σ solved the issue.

The results are given in Table 5.32. With the modifications mentioned above the performance
of the algorithm has been boosted significantly. The best solution for Model B has even been
found by the Active CMA-ES in phase 2.

The number of computed batches is given Table 5.33. If summed with the RRS in phase I
the 242.4 batches are computed on average over the whole two-phased optimization. Compared
to the optimizations without discretization the speed up is about 3%.

5.7 Analysis of the evaluated HEV model parameter sets

In this section an analysis of the parameter sets for Model A is given. It is not only important
to find good parameter settings for the HEV model. Its further important to understand which
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parameter settings yield the best solutions, which of the optimized parameters have high or low
influence on the fuel consumption, and what discriminates good from bad solutions.

As the parameter space of the HEV model is high-dimensional, a proper analysis is dif-
ficult, as correlations might be hard to detect — especially if they are non-linear. Therefore
a Self-Organizing Map (SOM) is trained on the evaluated solutions. A SOM is an unsuper-
vised machine learning technique described in [29], which creates a non-linear two-dimensional
mapping of a high-dimensional space. The trained SOM consists of units (points) which are
connected in a two-dimensional grid. Each unit has an assigned position the high-dimensional
space, which is determined by the training process. The inputs i.e. the HEV model parameter
sets, are then projected to the closest unit in the search space. Due to the non-linearity of the
mapping areas of the same size in the grid of units, may map to areas of different sizes in the
input space.

The following SOMs are generated with the SOMToolbox software5 created by the “Institute
of Software Technology and Interactive Systems” of the “Technical University of Vienna”. The
inputs for the SOM training are the solutions generated by an exemplary two-phased optimiza-
tion, with a RRS as first phase and an Active CMA-ES as second phase. Maps with different
sizes have been created and their quantization errors and topological errors have been analysed
to ensure that the SOMs are properly trained. The following visualizations are displayed on a
selected 50x40 SOM.

(a) Hit histogram: Red indicates a high number
of mapped solutions.

(b) U-Matrix: Blue indicates short distances
and red indicates long distances between units.

Figure 5.9: Basic SOM unit measures

First the trained SOM gives insight into the distribution of the solutions generated by the
optimization algorithm. A hit histogram visualizing the number of mapped solutions per unit is
depicted in Figure 5.9. The more solutions are mapped to a unit the darker the unit is colored.
Further the image displays a U-Matrix as described in [44]. A U-Matrix shows the distances —
in the input space — between neighbouring units in the grid. From the information contained in
both visualizations it can be deduced that the optimization algorithm generates a large number

5 http://www.ifs.tuwien.ac.at/dm/somtoolbox/index.html, accessed: 2013-08-21
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of solution in the right half of the map which maps to a rather small area in the input space. In
the following it can be seen that this area also contains the best solutions of the optimization
algorithm.

Figure 5.10: Model A: Component planes for the solutions of the evaluated optimization exper-
iment.
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In Figure 5.10 the Component Planes visualization is shown. Component Planes are de-
scribed in [46]. A Component Plane shows the distribution of the values for single input space
dimension. The planes are useful to detect correlations between data points mapped to the same
area in the grid. The plane in the upper left corner shows the distribution of the fuel consumption,
where blue areas indicate low fuel consumption. The best solutions — below 5.9 L/100km —
are clustered in the upper right corner of the map. It can be seen that fuel consumption correlates
inversely with the number of teeth in the sun gear of the planetary gear set. A lower number of
teeth for the ring gear can be found in bad solutions. Further it can be observed for good solu-
tions that the switch between the operational modes EV1 to EV2 and ER1 to ER2 should not be
inhibited by lower axle torque values.

Although the Component Planes of the SOM above indicate correlations between lower fuel
consumptions and some parameter values, it is not possible to distinguish between the good
solutions — fuel consumptions about 5.95 L/100km — and the best solutions — below 5.9
L/100km. Therefore a 30x20 SOM has been trained on the best 20% of solutions generated by
the optimization process. The Component Planes for this map are depicted in Figure 5.11. It
should be mentioned that the parameter values are no longer distributed across their complete
value range in the new SOM. The visualization shows that the solutions with the lowest fuel
consumptions possess a large number of teeth in the ring gear. The influence of the SOC band
cannot be determined as its value range in the SOM above is narrow and about 0.52 and 0.6.
Finally the chargepowerhigh parameter should not be set near its lower bound.
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Figure 5.11: Model A: Component planes for the best 20% of the evaluated solutions. The color
scale is adapted to parameter values of the best 20% of solutions.
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Layers Decay Time (sec) tMSE vMSE tMTOD vMTOD
13,13,1 0.1 14.96 0.01 0.02 0.0615 0.0810
13,13,13,1 0.1 46.40 0.00 0.03 0.0497 0.0824
13,26,1 1 34.86 0.01 0.02 0.0665 0.0829
13,26,26,1 1 256.18 0.00 0.02 0.0603 0.0838
13,78,1 0.1 433.81 0.00 0.03 0.0343 0.0853
13,78,1 0.001 200.72 0.00 0.06 0.0096 0.1175
13,52,1 0.001 188.52 0.00 0.06 0.0125 0.1213
13,1 0.1 0.12 0.07 0.08 0.1505 0.1536
13,1 0.001 0.14 0.07 0.08 0.1505 0.1536
13,1 1 0.11 0.07 0.08 0.1505 0.1536

Model A: Results for extrapolation after simulating 25% of the EPA US06 driving cycle

Layers Decay Time (sec) tMSE vMSE tMTOD vMTOD
13,13,13,1 0.1 39.25 0.00 0.01 0.0489 0.0703
13,13,13,1 1 39.03 0.01 0.01 0.0637 0.0746
13,78,1 1 203.06 0.01 0.01 0.0681 0.0751
13,52,1 1 98.99 0.01 0.01 0.0690 0.0754
13,13,1 0.1 14.83 0.00 0.01 0.0555 0.0756
13,1 1 0.10 0.01 0.01 0.0899 0.0914
13,26,1 0.001 75.73 0.00 0.04 0.0350 0.0934
13,26,26,1 0.001 256.32 0.00 0.04 0.0088 0.0978
13,78,1 0.001 295.65 0.00 0.05 0.0084 0.1095
13,52,1 0.001 202.77 0.00 0.05 0.0126 0.1126

Model A: Results for extrapolation after simulating 50% of the EPA US06 driving cycle.

Layers Decay Time (sec) tMSE vMSE tMTOD vMTOD
13,78,1 1 186.94 0.00 0.00 0.0351 0.0387
13,1 0.001 0.13 0.00 0.00 0.0357 0.0388
13,1 0.1 0.12 0.00 0.00 0.0357 0.0388
13,52,1 1 80.85 0.00 0.00 0.0352 0.0388
13,26,1 0.001 66.75 0.00 0.01 0.0244 0.0522
13,13,13,1 0.001 71.39 0.00 0.01 0.0240 0.0530
13,26,26,1 0.001 246.93 0.00 0.01 0.0101 0.0647
13,78,1 0.001 252.53 0.00 0.02 0.0116 0.0668
13,52,1 0.001 176.02 0.00 0.02 0.0146 0.0685

Model A: Results for extrapolation after simulating 75% of the EPA US06 driving cycle

Legend Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm

Table 5.22: Model A: Neural network results for extrapolating the fuel consumption Results
with intermediate validation error have been omitted from all tables.
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Layers Decay Time (sec) tMTOD vMTOD
15,30,30,1 0.001 295.65 0.0196 0.0463
15,15,1 0.001 29.82 0.0268 0.0468
15,15,15,1 0.001 67.09 0.0279 0.0477
15,30,1 0.001 83.81 0.0272 0.0567
15,30,1 1 21.16 0.1327 0.1370
15,90,1 1 154.20 0.1328 0.1370
15,1 1 0.10 0.1330 0.1375
15,1 0.1 0.10 0.1330 0.1376
15,1 0.001 0.11 0.1330 0.1376

Model B: Results for fuel consumption extrapolation after simulating 25% of the NEDC driving cycle.

Layers Decay Time (sec) tMTOD vMTOD
15,30,30,1 0.001 323.23 0.0187 0.0350
15,15,15,1 0.001 49.45 0.0221 0.0351
15,30,1 0.001 83.41 0.0188 0.0369
15,15,1 0.001 27.15 0.0243 0.0406
15,60,1 0.001 169.02 0.0207 0.0459
15,30,1 1 22.25 0.1116 0.1153
15,90,1 1 137.00 0.1117 0.1153
15,1 1 0.11 0.1121 0.1157
15,1 0.1 0.12 0.1121 0.1158
15,1 0.001 0.13 0.1121 0.1158

Model B: Results for fuel consumption extrapolation after simulating 50% of the NEDC driving cycle.

Layers Decay Time (sec) tMTOD vMTOD
15,1 0.001 0.11 0.0000 0.0000
15,1 0.1 0.11 0.0001 0.0003
15,90,1 0.001 306.70 0.0011 0.0016
15,1 1 0.10 0.0013 0.0017
15,30,30,1 0.001 262.21 0.0016 0.0019
15,30,1 1 25.03 0.0157 0.0182
15,60,1 1 85.22 0.0158 0.0184
15,90,1 1 180.87 0.0158 0.0184
15,15,15,1 1 22.84 0.0426 0.0460
15,30,30,1 1 121.78 0.0434 0.0468

Model B: Results for fuel consumption extrapolation after simulating 75% of the NEDC driving cycle.

Legend Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm

Table 5.23: Model B: Neural network results for extrapolating the fuel consumption. Results
with intermediate validation error have been omitted from all tables.
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Layers Decay Time (sec) tMTOD vMTOD
15,30,30,1 1 369.18 0.0086 0.0542
15,90,1 1 608.95 0.0097 0.0553
15,60,1 1 240.18 0.0109 0.0557
15,15,15,1 1 48.48 0.0207 0.0575
15,15,1 0.001 13.42 0.0344 0.0615
15,90,1 0.001 244.17 0.0017 0.0789
15,60,1 0.001 121.77 0.0021 0.0857
15,1 0.1 0.13 0.1001 0.1057
15,1 0.001 0.17 0.1000 0.1057
15,1 1 0.13 0.1001 0.1057

Model B: Results for SOC deviation extrapolation after simulating 25% of the NEDC driving cycle.

Layers Decay Time (sec) tMTOD vMTOD
15,30,30,1 1 297.73 0.0085 0.0442
15,90,1 1 661.64 0.0095 0.0510
15,15,1 1 9.98 0.0342 0.0534
15,60,1 1 355.25 0.0108 0.0536
15,30,30,1 0.1 246.30 0.0056 0.0538
15,90,1 0.001 255.12 0.0017 0.0765
15,60,1 0.001 123.63 0.0021 0.0768
15,1 1 0.13 0.1001 0.1057
15,1 0.1 0.12 0.1001 0.1058
15,1 0.001 0.13 0.1001 0.1058

Model B: Results for SOC deviation extrapolation after simulating 50% of the NEDC driving cycle.

Layers Decay Time (sec) tMTOD vMTOD
15,1 0.001 0.10 0.0014 0.0015
15,1 0.1 0.11 0.0018 0.0022
15,15,1 0.001 10.21 0.0031 0.0040
15,30,30,1 1 205.98 0.0033 0.0052
15,1 1 0.11 0.0043 0.0055
15,60,1 1 188.42 0.0056 0.0140
15,60,1 0.001 117.49 0.0030 0.0188
15,90,1 0.001 265.08 0.0019 0.0202
15,30,30,1 0.001 222.93 0.0031 0.0215

Model B: Results for SOC deviation extrapolation after simulating 75% of the NEDC driving cycle.

Legend Layers — the number of neurons per layer
Decay — the value for the weight decay parameter of the training algorithm

Table 5.24: Model B: Neural network results for extrapolating the SOC deviation. Results with
intermediate validation error have been omitted from all tables.
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K Val. Jitter Time (sec) tMSE vMSE tMTOD vMTOD
3 N N 385.97 0.00 0.04 0.0433 0.0917
2 N N 373.65 0.00 0.04 0.0410 0.0942
5 N N 597.07 0.00 0.04 0.0461 0.0957
5 Y Y 46726.49 0.01 0.04 0.0494 0.0990
2 N Y 816.68 0.00 0.05 0.0337 0.1017
5 N Y 2221.32 0.01 0.04 0.0468 0.1059
3 N Y 1220.32 0.01 0.05 0.0463 0.1068
2 Y Y 10405.43 0.01 0.04 0.0476 0.1075
3 Y Y 24850.91 0.02 0.05 0.0502 0.1078
2 Y Y 2701.68 0.00 0.03 0.0390 0.1174

Legend
K — the number of time slices
Val. — ’Y’ if validation set based automatic sub-model selection is used
Jitter — ’Y’ if the predicted values of a time slice are used as training data for the next slice

Table 5.25: Model A: Time-progressive-learning ensemble results

#Iterations (outer/inner) #Particles ω φ1 φ2 #Non-impr. iterations before reset
60/7 16 0.9 2.0 2.0 20

Table 5.26: Model A: Parameters for PSO in phase II

#Experiment Iteration Best solution (L/100km)
1 35 5.93

2 34 5.97

3 41 5.97

4 39 5.89

5 12 6.10

6 59 5.90

7 11 6.01

8 32 5.88

9 40 5.98

10 24 5.93

Mean: 5.95L/100km Std. dev.: 0.06

Table 5.27: Model A: Results for the PSO in phase II

Min. #batches Max. #batches Mean Standard deviation
PSO 36 113 61.4 22.87
A. CMA-ES 114 120 118.4 2.33

Table 5.28: Model A: Statistical measures about the computed batches in phase II
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#Iterations µ λ (unfiltered/filtered) #Best/Random solutions from DB
60 4 100/16 30/20

Table 5.29: Model A: Parameters for Active CMA-ES in phase 2

#Experiment Iteration Best solution (L/100km)
1 56 5.87

2 52 5.92

3 20 5.89

4 31 5.89

5 49 5.87

Mean: 5.89L/100km Std. dev.: 0.02

Table 5.30: Model A: Results for the Active CMA-ES in phase II

#Iterations µ λ (unfiltered/filtered) #Best/Random solutions from DB
60 4 100/16 20/20

Table 5.31: Model B: Parameters for Active CMA-ES in phase 2

#Experiment Iteration Best solution
1 58 −46.13

2 39 −46.65

3 58 −44.61

4 43 −46.09

5 52 −45.82

Mean: −45.86 Std. dev.: 0.68

Table 5.32: Model B: Results for the Active CMA-ES in phase II

Min. #batches Max. #batches Mean Standard deviation
A. CMA-ES 114 120 118.8 2.4

Table 5.33: Model B: Statistical measures about the computed batches in phase II
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CHAPTER 6
Conclusion & Future Work

In this thesis different metaheuristic optimization algorithms have been applied to improve the
fuel consumption of two different hybrid electric vehicles. The different hybridization concepts
relevant for the optimized HEVs have been described. The first model — Model A — is built
with two electric machines and a single ICE. The vehicle is able to operate as a series hybrid
as well as a parallel hybrid. The second model — Model B — is a parallel hybrid with a
single ICE and a single electric machine. The actual mode of operation is determined by the
vehicles’ operation strategy. The operation strategies respond to configurable parameters, which
are optimized with the metaheuristics described in this thesis.

The metaheuristics used in this thesis are implemented in a new optimization platform — the
“Yet Another Optimization Platform” — developed by the author. The platform is highly mod-
ular and allows to integrate new optimization algorithms easily. The implemented optimization
algorithms can be configured with configuration files. These files also allow the user to combine
several algorithms into new hybrid optimization schemes, without programming effort. In the
scope of this thesis a Particle Swarm Optimizer, an Evolution Strategy with Covariance Matrix
Adaption and a simple Genetic Algorithm have been implemented.

The optimization platform further allows to modify potential solutions independently of the
used optimization algorithms, with so called post-processors. Different post-processors have
been implemented to constrain the allowed values for the operation strategy parameters. It is
possible to enforce specific parameter domains such as integer domains and domains with pre-
defined values. Modelling of simple inequations between the several parameters has also been
implemented as a post-processor.

For the concerned HEVs, simulation models are already available. The HEV models are
simulated with the GT Suite simulation software. During simulation the models follow a spec-
ified driving cycle, which determines for each simulated second the expected vehicle speed.
The fuel consumption as well as the SOC deviation of the battery are measured throughout the
driving cycle. The collected outputs are then used to calculate an objective value for a specific
operation strategy parameter set. The framework implements configurable objective functions
which are able to weight different optimization objectives.
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A main problem in HEV optimization are the long simulation times. Metaheuristics usually
require a substantial number of objective function evaluations. In the case of HEV optimization,
evaluating the objective function requires to run a simulation of the HEV model. The high
computation times thereby limit the practical applicability of metaheuristics. This problem has
already been mentioned in [31]. In this thesis it is tried to lower the negative effects of high
computation times. For this cause different approaches are implemented.

First it is tried to restrict the search space of the optimization algorithms with the post-
processors described above. Second it has been observed that small changes in the operation
strategy parameters often have no relevant effect on the fuel consumption of the vehicles. There-
fore the search space is discretized and a cache is used for already computed solutions. The
discretization increases the probability of a cache hit without large negative effects on the per-
formance of the optimization algorithms. Experiments show that the number of simulation runs
required to find good initial solutions can be decreased.

Third it is tried to replace the HEV simulations with predictions from trained regression
models. As regression models, artificial neural networks have been chosen in the thesis as
they are able to fit a wide range of functions in practice. Further different ensemble methods
combining multiple neural networks have been implemented to reduce the error of the regression
models. Theoretical considerations about the properties of the required error measures have been
made and came to the conclusion that it is not of primary import to predict the exact value of the
replaced objective function. But rather its total order induced on the solutions. To address this
issue a new error measure, the “Mean Total Order Deviation” has been introduced.

Gradient Boosting is one of the implemented ensemble methods. It tries to match not only
the original target value, but also the residual errors of the previously trained regression models
by chaining multiple neural networks. Experiments show that Gradient Boosting is able to re-
duce the training errors, but worsens the validation errors if compared to single neural networks.

Bagging is another ensemble method, which tries to reduce the variance of overfitting neu-
ral networks by averaging the outputs of several networks. The experiments have shown that
Bagging yields better validation results than simple neural networks.

It is further tried to cluster the training data with a K-Means++ algorithm and to train a neural
network per cluster. Automatic model selection — based either on training sets or validation sets
— has been implemented to find proper neural networks for the ensemble.

Next a combination of simulation and prediction has been evaluated. The first part of the
driving cycle is simulated and the intermediate outputs of the model — as well as the operation
strategy parameters — are passed to a trained neural network. The network is trained to extrap-
olate the intermediate output values for the rest of the driving cycle. The experiments show that
the validation performance can be enhanced significantly using this technique. For Model B it
is even possible to predict the HEV outputs, after simulating 75% of the NEDC driving cycle,
nearly perfectly.

Last it is tried to split the driving cycle into slices of equal size. Neural networks are trained
to fit the intermediate HEV outputs of these slices. The networks are then used for prediction
in a cascade. Although the validation error could not be enhanced further. Nevertheless it has
been observed that the highest errors occur directly at the beginning of the driving cycle. It is
expected that its due to strong fluctuations of the output values at the beginning of the simulation.
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It is suggested to use output values with monotonic behaviour over the simulated time span, if
possible. This might enhance the prediction performance in the first time slices.

The trained regression models are then incorporated into a new two-phased optimization
approach. The first phase uses optimization algorithms to sample training data for the subsequent
training of the regression models. In the second phase the optimization algorithms are intended
to use the regression models as their objective function and to evaluate only selected solutions
directly. For measuring the effectiveness of the implemented improvements a set of reference
optimization’s with a PSO and an Active CMA-ES algorithm have been run. It has been shown
that the PSO performed far better than the ES, as the ES exhibited low variance in its solutions.

The experiments for the first phase showed that a PSO with a coarse grained search space,
is able to find good solutions for both Models while using less computational resources due
to the effects of discretization. Although a genetic algorithm has been used in the first phase
to generate solutions for the subsequent training of regression models, as the PSO produces
too few solutions. For the second phase a bagging predictor has been chosen as regression
model for both HEV models. In the second phase a PSO uses the regression model as main
objective function and evaluates only every seventh iteration with the simulation software. The
experiments showed that for Model A the PSO is able to achieve similar good solutions as the
reference optimization’s in 73% of the time. Further an Active CMA-ES has been run using the
regression models as filter for solutions which shall be evaluated with the simulation software.
The problem concerning the solution variance is removed by this approach. The algorithm
achieved as good results as the reference optimization’s for Model A and even better results for
Model B. Although the required time could only be reduced by 3 to 4%.

The quality of the found solutions is expected to be in viable ranges for the models. It is
problematic to determine if the solutions are near the optimum or better than solutions found by
other methods, as no other reference solutions exist1. Although it can be said that the devised
parameter settings are found in areas of the parameter space which have been expected to contain
good solutions.

Finally the parameter sets for Model A have been analysed with the help of SOMs. The
analysis showed that a low fuel consumption requires a high number of teeth for both the sun
gear and the ring gear of the vehicle’s planetary gear set. Further low axle torque values should
not inhibit the switch between different modes of operation.

The experiments have shown that there are still open issues with the introduced improve-
ments. First the effect of search space discretization on the used algorithms has to be analysed
more thoroughly. The behaviour of some algorithms changes drastically with its introduction,
e.g. PSO particles require a specific minimal velocity to change their position. Measures have to
be taken to cope with these effects or new optimization algorithms have to be developed, which
are able to mix discrete and continuous optimization. Another issue with the current imple-
mentation of search space discretization is its static behaviour. Ideally the discretization should
adapt to the responsiveness of the search space dimension. The discretization algorithm could
be modified to dynamically add or remove discretization points in specific areas based on the

1 The solutions for a variant of Model B in [31] cannot be directly compared, as a different objective function
has been used.
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distribution of the objective values of the surroundings. In this case, optimization algorithms
would be needed which are able to react to a changing search space.

Second the optimization algorithms should be further improved to deal with changing ob-
jective functions. Currently the effects of using multiple objective functions are not well under-
stood. Further experiments should be designed to measure potential misguidance of the opti-
mization process by badly approximating regression models. Optimization algorithms could be
designed to treat the return value of a objective function not only as a concrete value but as a
probability distribution which incorporates the quality of the used approximation.

Third the used regression models may be revised as they currently do not include information
about the structure of the approximated HEV model. It could be beneficial to try to automatically
deduce surrogate models for the HEV model at hand. Also currently no input parameter selection
is performed for the trained neural networks. Doing so may help to stabilize the networks further
as unnecessary inputs are removed. Further it could be tried to use different base learners than
neural networks. Especially for the filtering approach, methods like tabu list or artificial immune
systems could be implemented to filter potential solutions not only by their predicted objective
value, but also directly by their parameter settings.

Fourth completely different approaches for HEV optimization could be explored. Currently
only the parameters of a fixed operation strategy are optimized. It might be possible to deduce
complete operation strategies by using techniques like genetic programming. An even more
radical approach could be to move the optimization process into vehicle itself s.t. the vehicle
may adapt to the current driving situation based on an inner model of itself, which would require
the development of real-time capable optimization algorithms.
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