
Erklärung der Unterschiede in
den Entscheidungsgrenzen

trainierter Klassifikationsmodelle

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Karl Maier, BSc
Matrikelnummer 01426356

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 1. September 2022
Karl Maier Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Explaining the Differences of
Decision Boundaries in Trained

Classifiers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Karl Maier, BSc
Registration Number 01426356

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Vienna, 1st September, 2022
Karl Maier Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Karl Maier, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. September 2022
Karl Maier

v

Kurzfassung

Seit dem Aufkommen der Black Box Society [Pas15] werden die Entscheidungen von
Modellen im Bereich des Maschinellen Lernens zunehmend unverständlicher wegen ihrer
hohen Komplexität. Stattdessen muss man sich beim Vergleichen von Modellen auf Güte-
kriterien verlassen, die jedoch eine zu ungenaue Abbildung der Realität sind [DVK17].
Weiters werden die externen Anforderungen immer höher, Entscheidungen transparent
darzulegen. Mit XAI (Deutsch: erklärbare künstliche Intelligenz) Methoden kann man
Einsicht in die Vorgänge eines Modells erlangen. Darunter ist SHAP [LL17] als Methode
besonders interessant, da sie aufgrund ihrer speziellen Eigenschaften erlaubt, eine Erklä-
rung selbst als Modell zu behandeln. Aber es gibt noch wenige Ansätze, um Modelle zu
vergleichen. Mit DiRo2C [Sta21] wurde direktes Erklärbar-Machen mittels eines Vereini-
gungsmodells für Klassifikationsmodelle vorgeschlagen. In dieser Masterarbeit stelle ich
die Methode Mocca-SHAP vor, die SHAP verwendet um sowohl traditionelle Erklärungen
als auch Erklärungen für das Vereinigungsmodell zu erzeugen. Mit Supervised Clustering
[LEL19] werden die Erklärungen in eine modulare, hierarchische Struktur eingeteilt. In
SHAP Dependence Plots [LEL19] lassen sich viele Erklärungen aggregiert darstellen und
der Effekt eines Attributs auf eine Zielvariable interpretieren. Group Counterfactual
Explanations unterstützen dabei, kausale Zusammenhänge zu verstehen. So tritt man
mit den Erklärungen selbst in eine Konversation und interpretiert sie interaktiv. Ich
evaluiere im Kontext der Endanwendung mittels kontrollierter Experimente, wo die zu
erklärenden Unterschiede bekannt sind. Dabei kommen quantitative und qualitative
Qualitätsmetriken zum Einsatz. Zu den Quantitativen zählen Fidelity, Complexity und
Generation Time. Qualitativ evaluiere ich bezugnehmend auf Millers wünschenswerte
Eigenschaften von Erklärungen [Mil19] Contrastiveness, Selectiveness, Causality und
Interactivity, die zusammen Contextuality ausmachen.

vii

Abstract

Since the rise of the black box society [Pas15] in the last decade, the decisions of machine
learning models are increasingly less understandable because of their high complexity.
Instead, data scientists have to rely on performance metrics when comparing models
during development, selection or monitoring. But a single metric is a too simplistic
description of most real-world tasks [DVK17]. Also, law makers increasingly require
transparency of automated decisions. With interpretability methods in the field of XAI
one can gain insights into the inner workings of a single model. Among them, SHAP
[LL17] is especially interesting because of its special properties, that allow an explanation
to be treated as a model. But there is a lack of systematic ways of comparing multiple
models. With DiRo2C [Sta21], differences are sought to be explained directly with the
difference classifier, an intermediate model, that merges the outputs of two classifiers.
In this master thesis I propose Mocca-SHAP, which uses SHAP to create traditional
explanations and explanations for the difference classifier. Supervised clustering [LEL19]
creates modular, hierarchical groupings of explanations. SHAP Dependence Plots [LEL19]
aggregate many explanations to allow interpretation of how a feature affects an outcome.
Group Counterfactual Explanations aid in understanding causal relations. With this,
one can interact in a conversational way with the explanations. I evaluate in the context
of the end task in controlled experiments with a priori known differences that are to be
found on a variety of quantitative and qualitative quality metrics. Quantitative metrics
include Fidelity, Complexity and Generation Time. Qualitatively, I evaluate with regard
to Miller’s desirable properties for explanations [Mil19] Contrastiveness, Selectiveness,
Causality and Interactivity, which together make up Contextuality.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Existing Work . 2
1.3 Solution . 3
1.4 Research Contributions . 4
1.5 Structure of the Thesis . 4

2 Background 5
2.1 Machine Learning Models . 5
2.2 Interpretability . 7
2.3 Overview about Interpretability Methods 9
2.4 SHAP . 12
2.5 Traditional Approaches to Model Comparison 21
2.6 DiRo2C . 23
2.7 Summary . 25

3 Research Methodology 27
3.1 Design Science . 27
3.2 Literature Review . 28
3.3 Experiments . 29
3.4 Summary . 32

4 Difference Recognition Tasks 33
4.1 Running Example . 34
4.2 One Classifier Ignores a Feature . 37
4.3 Gaussian Quantiles . 40
4.4 Census Income (Adult) . 43
4.5 Boston Housing . 45

xi

5 Mocca-SHAP 47
5.1 Requirements and Limitations . 47
5.2 Design Process . 48
5.3 Testable Design Proposition . 58
5.4 Implementation . 60
5.5 Summary . 62

6 Experiments 63
6.1 Running Example . 63
6.2 One Classifier Ignores a Feature . 71
6.3 Gaussian Quantiles . 80
6.4 Census Income (Adult) . 89
6.5 Boston Housing . 98
6.6 Summary . 112

7 Conclusion and Future Work 115
7.1 Conclusion . 115
7.2 Future Work . 116

List of Figures 119

List of Tables 125

List of Algorithms 127

Acronyms 129

Bibliography 131

CHAPTER 1
Introduction

Because of the rise of the black box society in the last decade [Pas15], data scientists are
increasingly unaware of the reasons of the predictions of their machine learning models.
A black box model is a model, that makes predictions without explaining why. Other
models can be interpretable by looking at their inner weights, like linear models, which are
termed inherently interpretable models. In the field of Explainable Artificial Intelligence
(XAI), one seeks to explain the behaviour post-hoc of a black box with interpretability
methods. In this master thesis, I focus on the goal of understanding the differences in
classifiers, which are a type of predictive machine learning model.
This section explains, why there is a need for comparing machine learning models not
only by using traditional performance metrics but also interpretability methods. Further,
existing work is described and how this research aims to help. Then I describe the
structure of this master thesis.

1.1 Problem Statement
1.1.1 Motivation

1.1.2 Iterative Model Development
The process of developing supervised machine learning models is iterative, for example
when employing a standard process model like the CRoss Industry Standard Process
for Data Mining (CRISP-DM) [WH00]. When incrementally refining predictive models,
there is a need for comparing them. This is usually done by measuring performance, like
accuracy or Root Mean Square Error (RMSE). At the end of development, a selection
is done which also requires comparison [SSSEA19]. However, Doshi-Velez and Kim
[DVK17] argued, that a single metric is a too simplistic description of most real-world
tasks. Therefore, decisions are based on an incomplete explanation of their performance.
They state that the criterion of choice in this case is interpretability.

1

1. Introduction

Because of the Rashomon effect there might be two models with equal performance, but
different inner workings [B+01]. Interpretability can be used to uncover such differences
[BB21, p. 266].

Even after deployment, there is a need to constantly compare models when new data is
available, because one model could perform better than another if concept drift occurred
[Nat07].

1.1.3 Right to Explanation
Regulators are also addressing the problem of transparency and hidden biases with
the General Data Protection Regulation (GDPR) [Eur16, PGG+19]. More recently,
the European Commission proposed the "Artificial Intelligence Act" [Eur21], which
takes transparency one step further. The requirements will be stricter for applications
interacting with humans, applications that detect emotions, categorize based on biometric
data or transform content. Doshi-Velez and Kim further note, that "interpretability can
assist in qualitatively ascertaining whether other desiderata — such as fairness, privacy,
reliability, robustness, causality, usability and trust — are met" [DVK17].

1.1.4 Problem Statement
Data scientists are facing the aforementioned problems of limited expressiveness of
traditional performance metrics for model comparison and increasingly pervasive laws.
They further require a comparison method to be model-agnostic, because they may want
to choose from models of different types during model selection. Therefore, there is a
need for global understanding of the differences between models which can be satisfied
with model-agnostic interpretability methods.

1.2 Existing Work
This section gives an overview about existing work on model comparison using inter-
pretability and focusing on global model understanding rather than just instance-level
understanding.

Most interpretability methods are designed to explain a single model. With these, one
has to generate explanations for each model to be compared separately and then try to
interpret what is different.

Explanations in their simplest form are feature importances and are also used to compare
models [ZWM+18, BB21].

More detailed methods that visually explain a model’s input-output relation are also
used to compare models [KPN16, BB21]. Biecek and Burzykowski give an example of
how to compare using Partial Dependence (PD) plots [Fri01] by plotting the dependence
curve for each model into the same graph [BB21, p. 213]. The authors further show an

2

1.3. Solution

instance-level example in which they use side-by-side force plots of SHAP Values [LL17]
to compare multiple explanations of different models [BB21, p. 164].

A more direct approach is taken by Staufer and Rauber with Difference Recognition
of 2 Classifiers (DiRo2C). They define an intermediate model that combines the target
models’ predictions and apply an improved version of LOcal Rule-based Explanations
(LORE) [GMR+18a] on it to explain at the instance-level, but also propose a global-level
extension method. [Sta21]

Except for DiRo2C, I found no other works that have a direct focus on model comparison
with interpretability and treat the models as black-boxes.

1.3 Solution
I propose the new method Model comparison with clustered difference classifier SHAP
values (Mocca-SHAP). It is focused on classifiers, just as DiRo2C [Sta21] does and builds
on the same idea of explaining the outputs of the difference classifier. In contrast, it uses
SHapley Additive exPlanations (SHAP) [LL17] as the underlying method along with its
global-level extensions and combines traditional explanations for individual classifiers
and explanations for the difference classifier in one method. With that, it can be used to
compare any kind of classifier because it treats them as black-box models.

1.3.1 Research Questions
Given a data set to be explained, where some instances are classified differently and two
classifiers, I address the research question:

To what extent can SHAP Values, generated for a reformulated difference classification
task, improve the process of understanding, why certain instances in a data set are
classified differently by the given classifiers?

In order to achieve that, I break it down into smaller research questions:

1. What are appropriate quality metrics on which to compare different model compar-
ison methods?

2. Given the difference classification problem formulation proposed with DiRo2C
[Sta21], which of the possible variations (binary classification, full multiclass classifi-
cation or partial multiclass classification) is suited best for the chosen interpretability
method SHAP?

3. Which of the extensions methods of SHAP are suited best to facilitate global-level
model understanding?

4. Which are appropriate means to create more targeted local explanations for groups
of instances?

3

1. Introduction

5. How does the proposed method perform in terms of the quality metrics specified
compared to a baseline approach and DiRo2C in controlled experiments with
artificial and benchmark tasks?

1.4 Research Contributions
With Mocca-SHAP I intend to address the sparse research in the area of model comparison
using interpretability. In the long run, it should enable data scientists to achieve their
goals better by providing an alternative which explicitly focuses on comparison. It should
support them in all stages of a data science process: (1) during iterative development
to identify strengths and weaknesses early for potential optimizations, (2) during model
selection, because the Rashomon effect [B+01] may have unknown consequences, (3) after
model deployment, to identify how models respond to data drift.

1.5 Structure of the Thesis
This work is organized as follows. In Chapter 2, I explain the basic concepts such as
predictive machine learning models, interpretability and explanations, give an overview
about interpretability methods and model comparison methods with interpretability. In
Chapter 3, I describe the methodology Design Science and how I apply it in this work.
I also show how literature is reviewed and how metrics are selected for evaluating in
controlled experiments. In Chapter 4, I describe three tasks based on artificial data
sets and two tasks based on benchmark data sets, and what is to be expected from
the explanations. In Chapter 5, I describe how the artifact is iteratively developed
and assessed, how I automate metric calculation and share implementation details. In
Chapter 6, I describe the experiments themselves and my findings. Finally, in Chapter 7,
I summarize my findings and provide future research directions.

4

CHAPTER 2
Background

This chapter explains the basic parts needed to understand Mocca-SHAP. First, I explain
which machine learning model types there are and which are in the focus of this thesis.
I continue to define interpretability and what explanations are. Then I show different
approaches at categorizing interpretability methods and explanations. Next, I give an
overview about interpretability methods that are relevant for this work and go into
detail about SHAP. Finally, I describe the traditional way of comparing models using
interpretability and explain DiRo2C’s more direct approach with the difference classifier.

2.1 Machine Learning Models
In this work I focus on predictive machine learning models. They are also called supervised
machine learning models, and need a definition of a ground truth before the training
phase in contrast to unsupervised machine learning models. There are basically two
types of predictive models: [HTFF09]

• Regression Model: The predicted output ŷ is a continuous number.

• Classifier : The predicted output ŷ is a categorical label. The possible values are
called classes. [HTFF09]

A data set X is used to train a supervised model, with a part reserved for evaluating its
performance, which is called the test set. An explanation data set can be a separate data
set or the training or test set and is used to generate explanations with an interpretability
method. X is a matrix that contains the rows or instances x(i), with i being the number of
the instance. Each instance has multiple values, one per feature j. The columns of X are
denoted by xj and a single value within the matrix is denoted by x

(i)
j . An interpretability

5

2. Background

method requires as input a trained machine learning model with a prediction function f̂
that estimates a target variable y with the prediction ŷ (see Equation 2.1). [Mol20, p. 14]

f̂(x(i)) = ŷ (2.1)

Probabilistic Classifiers

Probabilistic classifiers expose probability estimates for each class and predict the label
with the highest class probability. Thus, they can be seen as regression models, that have
an additional stage which determines the final label. Many classifier implementations
(e.g. scikit-learn [PVG+11]) allow to predict probabilities based on internal measures
that quantify how confident a classifier is about a prediction. As output, the classifier
gives a vector with an estimate per class. The estimates are normalized, so that they
sum up to 1. This information can be leveraged by interpretability methods that work
with continuous targets. I distinguish two prediction spaces of classifiers: [BN06]

• Probability space: Its range is [0, 1]. If no internal probability estimate is available
from a classifier, labels can be transformed to 0s and 1s with one-hot encoding to
resemble probabilities. [BN06]

• Log of odds space: Probabilities can be transformed to odds ratios by dividing the
probability of an event happening by the probability of an event not happening.
Further taking the logarithm results in log of odds, also called log odds. The value
range is a centered space around 0, which stretches on both sides to infinity. The
transformation is also called the logit function, and defined as logit(p) = log(p

1−p)
for probability p. It has the advantage that updating probabilities can be done by
addition of log odds values instead of doing complex operations in probability space.
This combines well with the additive feature attributions that are part of SHAP
and is used heavily in the research of Lundberg et al. [LL17, LEL19, LEC+20].
But one needs to be cautious, because the lowest and highest probability values 0%
and 100% map to −∞ and ∞, and thus break further operations. [BN06]

The probability estimates may be distorted by characteristics of the classifier, which
is not so much of a problem when comparing classifiers of the same type but could
lead to biased explanations when comparing classifiers of different types. Platt scaling
[Pla99] and Isotonic Regression [ZE02] can be used to calibrate probability estimates
of a classifier. These methods are supported in recent machine learning frameworks1.
[NMC05]

1scikit-learn Probability calibration: https://scikit-learn.org/stable/modules/
calibration.html

6

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

2.2. Interpretability

Types of Classifiers

The simplest classifier is the binary classifier. It predicts a label that can present itself as
one of two possible classes. Sometimes, they are referred to as the positive and negative
label. In probability space, this can be described as a regression task to predict the
probability of the positive label and a binarization stage with a cut-off value of 0.5. Or,
it can be described as a multi-output regression task to estimate each class’ probability
and a classification stage, which predicts the class with the highest probability. The
second form is necessary in case of multiclass classification, where the target includes
more than two classes. [BN06, HTFF09]

2.2 Interpretability
According to Doshi-Velez and Kim [DVK17], interpretability means that a system can
explain its reasoning, allowing it to be verified for soundness. Yet as they further
explain, there is little consensus on what interpretability is. Miller uses Biran and
Cotton’s work [BC17] to define interpretability as "the degree to which an observer can
understand the cause of a decision." [Mil19, p. 14]. Kim et al. define it differently as
"a method is interpretable if a user can correctly and efficiently predict the method’s
results" [KKK16, p. 7]. I argue that a good explanation should serve both. Although
the term interpretability is used more often, explainability is tightly tied to it, as Adadi
and Berrada note, that "interpretable systems are explainable if their operations can be
understood by human" [AB18, p. 5].

2.2.1 Explanations
The output of an interpretability method, ready for interpretation, is termed explanation
in this work. Miller’s major findings in his survey [Mil19] are, that there are four
important properties for explanations:

• They should be contrastive. That means, that explanations state why something
was predicted instead of something else. E.g. counterfactual explanations are
contrastive, described in Section 2.3.

• They should be selected, which means, that humans do not want complete explana-
tions, but rather one or two selected reasons.

• Showing causal links is more important than stating probabilities. An explanation
may state the probability that it is true or use probabilities to explain. Both can
be helpful, but probabilities alone have been found to be unsatisfying.

• Explanations should be social. This means that explanations are a transfer of
knowledge from the explainer to the explainee, or an interaction. In this thesis, I
refer to this property as interactivity. [Mil19]

7

2. Background

These findings converge on one point: that explanations are contextual. The author
explains in more detail, that "While an event may have many causes, often the explainee
cares only about a small subset (relevant to the context), the explainer selects a subset of
this subset (based on several different criteria), and explainer and explainee may interact
and argue about this explanation." [Mil19, p. 6] This shall be the guiding principle while
developing the artifact.

2.2.2 Taxonomy of Interpretability Methods
According to Carvalho, Pereira and Cardoso [CPC19], machine learning interpretability
can be divided into several categories, which I describe in the next sections.

Intrinsic vs. Post Hoc

A model can be intrinsically interpretable by constraining its complexity. But in real
world settings the best performing models are often ensemble models or very complex
models such as deep neural networks which are not intrinsically interpretable [CPC19,
p. 2]. Still, they have a use case in surrogate models, which are discussed in more detail
in Chapter 2.3.

Post hoc interpretability refers to methods, that help in interpreting models after they
are trained. They can be further distinguished into model-specific and model-agnostic
methods. [CPC19]

Model-Specific vs. Model-Agnostic

If an interpretability method makes use of knowledge it extracts from a model’s internals,
such as learned weights, it is considered a model-specific method. If a method makes no
assumptions on the underlying model and treats it as a black box, it is a model-agnostic
method and can be applied to any model. In a process model like CRISP-DM, a model is
incrementally developed. Also, it is repeatedly compared to its preceding version, which
allows the use of both model-agnostic and model-specific methods. But if one wants to
select one of several models of different types, only model-agnostic methods can be used.
[CPC19]

In this thesis I choose to only include model-agnostic methods for maximum flexibility.

2.2.3 Scope of Interpretability
Carvalho, Pereira and Cardoso [CPC19] differentiate between interpretation on the global
and the local level:

• Global model interpretability: In order for a model to be interpretable on a global
level, the question "how do parts of the model affect predictions" [CPC19, p. 14]
needs to be answered. I will describe an example for this in more detail in Section

8

2.3. Overview about Interpretability Methods

2.3. This is a modular view. A holistic view is barely achievable in practice, because
it would be necessary to understand the relation between data input and prediction
space distribution in its entirety. [CPC19]

• Local model interpretability: Local model interpretability explains, why the model
arrived at a specific prediction for a single instance, also called instance-level
interpretability, or for a group of instances. Such an explanation has high local
accuracy, and does not need to be accurate on a global level. [MCB20, CPC19]

Adadi and Berrada [AB18] further differentiate global model interpretability on a modular
level, which explains only part of a model in contrast to global model interpretability.

Global explanations can also be created by accumulating local explanations. Pedreschi et
al. [PGG+19, p. 8] describe such a procedure for the local explainers LORE [GMR+18a]
and Anchors [RSG18]. SHAP dependence plots [LEL19, p. 8] work in a similar manner.

2.3 Overview about Interpretability Methods
Molnar distinguishes different types of possible results of interpretation methods [Mol20,
p. 25], which I describe in the following sections. According to Adadi and Berrada [AB18,
p. 17], amongst model-agnostic methods visualization is the most human-centered. So
in order for statistics and other results to be the most comprehensible by humans, they
should be visualized. [Mol20]

Feature Summary Statistics

In the simplest case, the result is a single number per feature to describe feature
importances, sometimes called feature attributions [CPC19, p. 21]. It can be an absolute
number, denoting the magnitude of importance, like the Permutation Feature Importance
[B+01, FRD19]. It can also be a real number, denoting a specific increase or decrease of a
target variable like it is the case with SHAP Values [LL17]. As a visualization technique,
bar plots are commonly used. [Mol20]

A more complex result is a statistic which includes feature attributions for many feature
values, like Partial Dependence (PD) [Fri01]. This method shows the marginal effect of a
feature on the outcome. It can reveal, if the relationship between the features and the
target is linear, monotonic or complex. The partial dependence function is estimated for
a feature, and applied to every observed feature value. This results in pairs of feature
values and average outcome values. It is best visualized as a scatter plot. Extension
methods have been proposed that can explain a feature’s importance and interactions
[GBM18]. The main drawback is, that this method assumes independence of the features.
Accumulated Local Effects (ALE) [AZ20] plots tackle this disadvantage and provide an
unbiased result. They are also able to show interactions, but their interpretation requires
more expertise. [Mol20]

9

2. Background

Data Points

Example-based interpretability methods yield data points as a result, that explain the
distribution of the model’s output or local properties around an instance of interest. It
only makes sense, if an instance’s feature values themselves are meaningful as explanations.
With a high number of features it may not be interpretable any more. [Mol20]

Most important for my work are Counterfactuals [WMR17, DMBB20]. These methods
explain by stating instances, that are similar to an instance of interest but are predicted
differently, telling you what needs to be changed for the output to change. The resulting
instances are actually perturbed versions of the instance of interest. This satisfies the
contrastiveness property of explanations, and by keeping the number of modifications
low, they are also selective. [Mol20, WMR17, DMBB20]

Model Internals

Some models can be interpreted using knowledge about their internal behaviour. By
definition, these methods are model-dependent. Even though I limit my research to
model-agnostic methods, some knowledge about interpretability methods based on model
internals is required. This is because methods for intrinsically interpretable models fall
into this category, and they are used in conjunction with surrogate models, described in
the next section. But I cover the basic types first: [Mol20]

• Decision Tree: A decision tree is generally considered to be interpretable, if it does
not have too many nodes and levels. Starting from the root node, each node splits
the data set by a certain feature and cut-off value. The leaf nodes are finally used
to predict a label based on the label of the majority of training data instances
ending up in it. This way, one can reproduce, how the model arrives at a decision.
Decision trees allow to calculate feature importances from model internals via the
Gini importance (also called Mean Decrease in Impurity) [B+01]. An advantage is,
that a tree structure can capture interactions between features. Yet, trees fail to
represent linear relationships, because they need to be approximated by a series
of cut-off values in multiple nodes. They are also very sensitive to changes in
the training data, meaning that slight changes might result in very different trees.
[Mol20]

• Decision Rules: Decision rules state conditions and an outcome. They can be sets
(unordered) or lists (ordered). A default rule defines what is predicted if no other
rule applies. Just like decision trees, decision rules are bad at describing linear
relationships. They can also be derived from a decision tree’s internal structure.
[Mol20, Sta21]

• Linear Model: A linear model can be interpreted by its learned weights. Each
feature has an associated weight, that denotes its influence on the outcome. The
biggest advantage of this method is linearity. Furthermore, the effects are additive,

10

2.3. Overview about Interpretability Methods

meaning that they add up to the final outcome. It is also possible for a linear model
to incorporate an interaction term, to explain interactions. Still, with strongly
correlated features it is problematic to estimate the weights because it may not
be possible to determine to which of the features the effect attributes. Another
disadvantage is that the standard linear regression model assumes normality of the
target, but this can be tackled with generalized linear models. The only relations,
that it can model, are linear relations. But with transformations, it is possible to
model other relations. [Mol20]

Surrogate Models

A black-box model can be explained by another model, which is an intrinsically inter-
pretable model and has been trained to model the predictions of the black-box model.
This is called a surrogate model. By seeing the simpler model as a proxy for the complex
model, one can draw conclusions about its behaviour. When training the surrogate model,
its fit to the predictions of the black-box model is optimized, instead of the true labels
of the dataset, because the goal is to understand the behaviour of the black-box model,
not the relation between the features and the target. Such an interpretability method is
described by Hall et al. [HGKP20, p. 11]. Of course, it is not possible to understand
the feature-target relation of any sufficiently complex black-box model by a surrogate
model of limited complexity. But it can provide an overview for the data scientist at
work. This disadvantage does not hold on the local level, when the goal is to understand
the behaviour around an instance of interest. [HGKP20, Mol20]

Examples of methods based on surrogate models include:

• Local Interpretable Model-agnostic Explanations (LIME) [RSG16]: Ribeiro et al.
proposed a method that focuses on local surrogate models. In order to train
this local model, they proposed an algorithm that generates new instances, based
on perturbations of instances from the original dataset, which are weighted by
proximity to a instance of interest. Its initial implementation uses a linear model,
but could in theory use any surrogate model. With the submodular pick algorithm
(SP-LIME) [RSG16], the authors also proposed a global interpretability method,
which picks a set of individual instances, that best represent the model’s behaviour
on a global level while at the same time restricting the number of instances to the
minimum for selectiveness. [RSG16]

• LOcal Rule-based Explanations (LORE) [GMR+18a]: This is another method that
generates synthetic instances around an instance of interest and trains a local model
on this data. The local model consists of decision rules, that explain the reasons of
a decision, and counterfactual rules. [GMR+18a]

11

2. Background

2.4 SHAP
The interpretability method, that Mocca-SHAP is based on, is SHapley Additive ex-
Planations (SHAP) [LL17]. It has been proposed by Lundberg and Lee, and is an
instance-level interpretability method. It unifies six existing methods [RSG16, SGK17,
BBM+15, LC01, ŠK14, DSZ16] and is based on the game-theoretical concept of Shapley
values [Sha53]. The resulting explanations are additive feature attributions. They are
also models themselves with unique properties and can be used to base other explanations
on. There are several extension methods, that allow global model interpretability: SHAP
Summary Plots and SHAP Dependence Plots. [LL17, LEL19]

SHAP Values consist of a base value s0 and a vector of additive feature attributions s,
that sum up to the model’s predicted value ŷ. The base value is the value, that would
have been predicted, if no feature was present. [LL17, Mol20]

Regression Tasks

Example: A regression task with the three features x1, x2 and x3, one numerical target
variable y and a regression model f̂(x) to approximate the target variable with ŷ is given.
Assuming, that the feature attributions calculated by the SHAP algorithm for a specific
instance are s = (−5, 10, 0)T and the base value s0 = 5, then they together sum up to
the model’s predicted value of ŷ = 10. Further, they denote that x3 has no effect on
the target, because s3 = 0. While x1 has a decreasing effect, x2 has an increasing effect
on the target that exceeds x1’s effect. The base value explains, that if all features were
absent, a value of 5 would be predicted.

Classification Tasks

SHAP Values only work with numeric outcomes. So for classification problems, one
cannot explain the predicted labels directly. As discussed in Section 2.1, regression-based
explainers can leverage probability estimates or their transformed alternative, log of odds
estimates.

Example: Assuming, that the target variable of the previous example has a range of
(0, 10], then it can be discriminated into low values in the range (0, 5] and high values
in the range (5, 10]. The class for the lower range is termed 0 and that of the upper
range 1. A probabilistic classifier is trained to predict these two classes. Its output is a
probability vector, which has to sum up to 1. E.g. ŷ = (0, 1)T means, that the classifier
assigns 100% to class 1 and 0% to class 0. The class with the highest probability in this
case is class 1, which is actually predicted. For binary classifiers like in this example it
seems trivial, because the probability of one class is the inverse of the other class, but
for multiclass classifiers this distinction is required. The function to be explained is now
not a single target variable anymore, but two target variables (or q variables for q target
classes of the classification task). I assume that for the instance described in the previous
example it calculates the SHAP Values of s0 = (0, −1, 0)T and a base value of s0

0 = 1 for

12

2.4. SHAP

class 0; and another probability vector s1 = (0, 1, 0) and base value s1
0 = 1 for class 1,

which is the inverse probability. From this, I can interpret that with all features absent
the classifier predicts class 0 with 100% and class 1 with 0%. Only feature x2 has an
effect on the outcomes, because its SHAP Values for classes 0 and 1 are non-zero. In
this case it increases the predicted class 1 probability by 100% and decreases the class 0
probability by 100%. In this thesis, I combine all SHAP Value vectors into a matrix of
dimension p × q and the base values into a vector of length q for p features and q classes.

2.4.1 Theoretical Background
The task of explaining a prediction can be seen as a cooperative game as in game theory,
and therefore be explained using Shapley values [Sha53]. We can see the prediction task
as a game, the features as players (called feature coalition), the prediction as the payout
and the Shapley values as the distribution of the payout to the players. This is closely
related to the weights in a linear regression model, where the solution to the distribution
of the payout are the feature weights. Shapley values are contrastive, because they denote
the change in outcome if a feature was absent. LIME [RSG16] tries to estimate the
weights using a local regression model. With Shapley Values, this is the average marginal
contribution of a feature value across all possible coalitions. The explanation model is
defined as g for an original model f as in Equation 2.2, where z� ∈ {0, 1}M is the coalition
vector, M the maximum coalition size, sj ∈ R the feature attribution for feature j and
s0 the base value. [Mol20, Sha53]

g(z�) = s0 +
M�

j=1
sjz�

j (2.2)

But most machine learning model implementations require all features to be present.
Absence can be simulated by replacing a feature value with a random sample from the
data set. This needs to be done for every possible feature coalition: (1) Estimate the
outcome for a coalition. (2) Estimate the outcome where the feature of interest has been
replaced by a randomly drawn value. The difference is the marginal contribution, which
is then averaged across all possible feature coalitions. The sampling step can be done
multiple times to get a better approximate. [Mol20, Sha53]

2.4.2 Special Properties
SHAP Values have special properties, that enable treating them as models and trans-
forming and aggregating them. The properties are described differently by Lundberg
and Lee than by Shapley [Mol20]:

• Local Accuracy: This property corresponds to the efficiency property of the Shapley
value, where the sum of feature attributions has to match the difference of the
prediction for an instance and the average prediction.

13

2. Background

• Missingness: This property has not been described by Shapley [Sha53]. With this,
Lundberg explicitly defines, that a constant feature has to have a SHAP Value of 0.

• Consistency: This property corresponds to the Shapley properties linearity, dummy
and symmetry. These follow from consistency. It means, that "if a model changes
so that the marginal contribution of a feature value increases or stays the same
(regardless of other features), the Shapley value also increases or stays the same."
[Mol20]. E.g. if in a retrained model of the example shown above feature x2’s effect
increases, then s2 > 10 has to be true. [LL17, Mol20, Sha53]

2.4.3 Unification of Interpretability Methods

Lundberg and Lee [LL17] argue, that their interpretability method unifies six existing
approaches to local interpretability, listed below. [LL17]

• LIME [RSG16]: This method builds a local model, e.g. a linear model around an
instance of interest, using a newly generated neighborhood and special weighting
of the instances. This actually corresponds to the KernelSHAP algorithm with a
different weighing function. The local linear model allows for interpretation of the
weights as additive feature attributions. [LL17]

• DeepLIFT [SGK17]: This is a model-dependent explainer for deep neural networks,
where SHAP’s model-dependent optimized algorithm for neural networks is based
on. It also explains by means of additive feature attributions.

• Layer-Wise Relevance Propagation [BBM+15]: This method is another model-
dependent explainer for deep neural networks, similar to DeepLIFT. [LL17]

• Shapley regression values [LC01]: Shapley Values are based on the idea of measuring
the effect on the outcome when a feature is absent. With this algorithm, the model
is retrained with all possible combinations of missing features. Apart from being
very inefficient for complex models, that require much time for training, it is not
always possible to retrain the model. In post-hoc interpretability tasks one often
only has access to a trained model and data. [LL17]

• Shapley sampling values [ŠK14]: In contrast to Shapley regression values, this
method approximates the effect of a feature being absent by replacing its value
with samples from other instances and then taking the average. [LL17]

• Quantitative input influence [DSZ16]: This is a broader framework, in which feature
attributions are calculated identically to Shapley sampling values, but has been
independently proposed. [LL17]

14

2.4. SHAP

2.4.4 Algorithms to Compute SHAP Values
The simplest model-agnostic approach was described by Shapley [Sha53], and has been
refined by Štrumbelj and Kononenko [ŠK14], now termed Shapley sampling values. Its
time complexity is O(M2M), because it completely enumerates the space of masking
patterns. A slightly more efficient implementation can be found in the SHAP python
package2 with the shap.explainers.Exact explainer [Lun21]. [LL17]

Lundberg and Lee prove, that SHAP Values can be computed by solving a linear regression
problem using a special weighing kernel. They term this algorithm Kernel SHAP [LL17].
They note, that it has better sample efficiency than using the default approach described
in the previous paragraph. LIME computes feature attributions in a similar manner, but
by using a different weighing kernel, one based on proximity. [LL17]

Further model-dependent algorithms have been proposed, that make use of extra knowl-
edge about the model to speed up computation. First, there is Deep SHAP [LL17] for deep
neural networks, which works similarly like DeepLIFT [SGK17], but has been adapted to
yield feature attributions that satisfy SHAP’s special properties. And second, there is
Tree SHAP [LEL19] for decision trees and tree-based ensemble models. [LL17, LEL19]

For this thesis, I limit my selection to model-agnostic algorithms, to be able to demonstrate
my proposed method for explaining differences between models in a consistent, general way.
Of these, I choose the original algorithm described by Shapley [Sha53] as implemented
in the SHAP Python package. Kernel SHAP would have been a valid choice as well,
but either of the two suffices. In practical scenarios, one might choose one of the faster
model-dependent algorithms, if deep neural networks or tree-based models are to be
explained.

2.4.5 Global Explanations
When SHAP Values are calculated for an entire data set, they can be combined to
explain a model’s behaviour on the global level. They can be aggregated to obtain feature
importances or plot for a feature like is done with SHAP Summary Plots and SHAP
Dependence Plots. In the following sections, I explain them in more detail.

Until now, I have described how SHAP can be used to explain a single instance. But
by combining many instances’ explanations, a model’s behaviour can be explained on
the global level. Lundberg, Erion and Lee propose SHAP Summary Plots and SHAP
Dependence Plots as global level extension methods [LEL19], which I describe in the
following sections.

SHAP Feature Importance

Considering, that large absolute values imply importance, one can calculate the average
magnitude of the SHAP Values per feature as in Equation 2.3. s denotes the SHAP

2Python package shap: https://github.com/slundberg/shap

15

https://github.com/slundberg/shap

2. Background

Values, p the number of features, q the number of classes and n the number of instances.
As implemented in the SHAP Python package, feature importances are visualized in
a bar chart, with features sorted in descending order by their importance. This way,
the most important features can be spotted fast. See Figure 2.1 for an example, where
the features Relationship and Age are of highest importance. The disadvantage of this
statistic is, that details are hidden in the aggregated values. [LEC+20]

�q
k=1

�n
i=1 |si,j,k|

nq
, ∀j = 1, . . . , p (2.3)

Figure 2.1: SHAP Feature Importances of classifier A for the positive class’ log odds
estimates of the Adult (Census Income) example. Features are sorted in descending order
by their importance.

SHAP Summary Plots

SHAP Summary Plots also allow to interpret feature importances, but in more detail. A
chart actually shows the SHAP Value distribution per feature, with features ordered by
their importance. They were originally proposed as an alternative to traditional violin
plots, which are also used to visualize distributions, but they do not rely on a smoothing
kernel and just stack scattered points with similar values. This way, dots pile up in dense
areas of the distribution. In contrast to SHAP Feature Importances, one can detect
groups of instances by a feature’s effect. For example, Figure 2.2 shows that the most
important feature Relationship either has a negative or a positive effect on the outcome,
with no cases in between. The authors further propose to color the instances by the
actual feature value, which allows a rough interpretation about effects of different feature
values. In the example, I interpret that low values of the second most important feature
Age have a decreasing effect on the outcome, while high values have an increasing effect,
with a gradual shift in between. [LEL19]

16

2.4. SHAP

Figure 2.2: SHAP Summary Plot of classifier A for the positive class’ log odds estimates
of the Adult (Census Income) example. Features are sorted in descending order by their
importance.

SHAP Dependence Plots

SHAP Dependence Plots make interpretation of the type of relation between feature and
effect on the outcome easier than with SHAP Summary Plots. Instead of encoding the
actual feature value of each instance in the color domain, it is visualized as a separate
axis. A SHAP Dependence Plot is created for one feature at a time, depicting its feature
values on the x-axis vs. its SHAP Values on the y-axis in a scatter plot with one dot per
instance. There is a close connection to Partial Dependence (PD)-plots [Fri01]. With
both SHAP Dependence Plots and PD-plots one can draw conclusions about how an
outcome changes if a feature changes. [LEL19]

In the following paragraphs, I present some examples to compare interpretation with
PD-plot and SHAP Dependence Plots.

Constant Relation: In Figure 2.3 you can see a feature that has no effect on the
outcome. In this case, the dependence curve is constant. Both methods perfectly describe
this behaviour: SHAP Dependence Plots with scatter points, PD with a line. But the y
axes of the plots are different: For SHAP Dependence Plots, it is constantly zero, which
means that this feature neither increases nor decreases the outcome for every instance.
With PD-plots, it is constantly 0.5, which happens to be the decision boundary value for
probability estimates of this binary classifier. The close relation between the two is, that
SHAP Dependence Plots in this case resemble a mean centered version of the PD-plots.

Linear Increase/Decrease: There may be a linear relation between a feature and an
outcome, as shown in Figure 2.4. It can be either increasing or decreasing.

17

2. Background

Figure 2.3: SHAP Dependence Plot (left) and PD-plot (right) of classifier A’s positive
class probability estimates vs. x2, running example, described in Section 4.1. Both
perfectly describe the constant shape of the dependence curve.

Figure 2.4: SHAP Dependence Plot and PD-plot of classifier A’s positive class log odds
estimates vs. x2, "One Classifier Ignores a Feature" example, described in Section 4.2.
Both perfectly describe the linear increasing relation.

Monotonic Increase/Decrease: A more general way is to describe the relation as
monotonically increasing or decreasing, without assuming linearity. See Figure 2.5 for an
example

Concave/Convex: When the dependence curve forms a low after decreasing mono-
tonically or a high after increasing monotonically and then reverses direction, it is called
concave and convex respectively. See Figure 2.6 for an example.

Step Up/Down: The dependence curve may also be of a step-like nature, as shown
in Figure 2.7.

Other Nonlinear Relation: In real-world settings, a dependence curve can be any
arbitrary shape. Most of the time, it is possible to describe parts of the curve with the
previous terms.

18

2.4. SHAP

Figure 2.5: SHAP Dependence Plot and PD-plot of difference class (1, 1)’s log odds
estimates vs. x2, "One Classifier Ignores a Feature" example, described in Section 4.2.
Both show a monotonically increasing curve.

Figure 2.6: SHAP Dependence Plot and PD-plot of classifier B’s negative class log odds
estimates vs. x1, Gaussian Quantiles example, described in Section 4.3. Both approaches
show the convex shape of the dependence curve, which is increasing at first, and decreases
again around 0, forming a global high. The SHAP Dependence Plot additionally shows
vertical spread, which is especially big on the lower and upper end. This is caused by
interaction effects.

A disadvantage of PD-plots is, that the resulting curve only shows the average effect. But
because of interactions with other features, there may be different relations present. SHAP
Dependence Plots show variance on the y-axis, and with interactions, instances are much
more dispersed. By visualizing another feature’s values in the color dimension, it enables
interpretation of feature interactions. See Figure 2.8 for an example. [LEL19, Mol20]

Model Output Spaces: But which output space is suited best for interpretation?
Lundberg uses log of odds in his works for classification tasks [LL17, LEL19, LEC+20].
But he further notes, that this depends on the type of the model [Lun]. If probability
estimates are available and they are mostly soft probability estimates, then the log of odds
output space is preferable. Soft probability estimates are in contrast to hard probability
estimates not only either 0% or 100% for a class, but mostly between these extremes.

19

2. Background

Figure 2.7: SHAP Dependence Plot and PD-plot of classifier A’s positive class probability
estimates vs. x1, running example, described in Section 4.1. Both approaches show the
step up at approx. 0, below and above it is constant.

Figure 2.8: SHAP Dependence Plot and PD-plot of difference class (0, 1)’s log odds
estimates vs. x1, "One Classifier Ignores a Feature" example, described in Section 4.2. In
the SHAP Dependence Plot, the instances are colored by their x2 value from blue to red
for increasing x2 values, which allows one to see, that the dependence curve is steeper for
higher x2 values than for lower values. The PD-plot is misleading as it just shows the
average effect.

In Figures 2.9, 2.10 and 2.11 you can see the SHAP Dependence Plots of feature x2 and
the various model output spaces for classifier A of task "One Classifier Ignores A Feature"
(described in Section 4.2), a logistic regression classifier. The simplest feature-effect
relation is the one in the log of odds output space, because it is linear. The other output
spaces result in a more complex relation, which is shaped sigmoid and includes vertical
spread. The vertical spread accounts to feature interaction. The only drawback of using
log of odds space is, that values are not as intuitive as interpreting changes in percent.
This drawback is outweighed by the fact, that log of odds values are naturally additive.
In all my experiments, I use the log of odds space.

20

2.5. Traditional Approaches to Model Comparison

Figure 2.9: one-hot encoded
class label SHAP Values

Figure 2.10: Probability
SHAP Values

Figure 2.11: Log of Odds
SHAP Values

Clustering

Lundberg and Lee propose a new method for clustering, termed supervised clustering
[LEL19]. This should not be confused with the term "supervised" as in the sense that
"supervised machine learning" works with known true labels. In fact, the true labels
are not required by any SHAP method at all. I interpret, that the authors wanted to
highlight, that this form of clustering is not only based on the features, but also on
the predictions of the model. This clustering method applies a hierarchical clustering
algorithm on the explanations themselves, the SHAP Values. They state, that this solves
one of the most challenging problems in clustering: The problem of how to assign feature
weights, which is equivalent to the question about how to determine a distance matrix.
SHAP Values are always in the unit of the outcome space, which is the same for every
feature, thus there is no need for scaling or determining weights. The authors further
note, that hierarchical clustering encodes many possible groupings of instances within the
hierarchical structure. The previously presented global extension methods can also be
applied to a group of instances, which allows one to get local explanations in a modular
way. [LEL19]

2.5 Traditional Approaches to Model Comparison
A lot of research has been conducted on interpretability methods that seek to explain
single models, as can be seen in the collections in the books of Molnar [MCB20] and
Biecek [BB21]. Yet there has not been done much research on comparing models using
interpretability. In most works, this is done by visualizing the explanations for the
models side-by-side or plotting them into the same chart. These are described now in
the following sections.

2.5.1 DALEX R package

Biecek states in the paper of his R package DALEX [Bie18], standing for Descriptive
mAchine Learning EXplanations, that all described explainers can be natively used to
compare models. He suggests the use of side-by-side bar charts for feature importances,

21

2. Background

obtained with the method proposed by Fisher, Rudin and Dominici [FRD19] (see Figure
2.12). He further suggests to visualize PD profiles in a single chart (see Figure 2.13).
For comparing local explanations he suggests to use side-by-side charts that show SHAP
Values (see Figure 2.14). [Bie18]

Figure 2.12: Feature importances for three different models [BB21, p. 200ff.].

Figure 2.13: Partial dependence profiles for two different models, each chart shows one
feature [BB21, p. 217].

2.5.2 Prospector analytics system

Krause et al. proposed an interactive visual analytics system, called Prospector [KPN16].
It uses PD-plots in the same way how Biecek uses them to compare feature effects for

22

2.6. DiRo2C

Figure 2.14: SHAP values of a single instance for four different models [BB21, p. 164ff.].

multiple models. But Prospector adds features for interactive instance-level interpretation,
which is required to be done manually with Biecek’s tools. [KPN16]

2.5.3 Manifold framework
Zhang et al. proposed another framework for interpretation of models, called Manifold
[ZWM+18]. It combines a model performance comparison graph and feature importance
comparison graph in one dashboard. [ZWM+18]

2.5.4 explAIner framework
The proposed visual analytics framework explAIner of Spinner et al. [SSSEA19] is
tightly integrated with the iterative process of model building and provides single model
explainers as well as multi-model explainers. Different explainers can be used, but most of
the listed ones only support deep learning models. For example, the black-box explainers
LIME [RSG16] and ANCHORS [RSG18] are supported. Yet, the authors do not explicitly
describe, how comparison works. [SSSEA19]

2.6 DiRo2C
The instance-level interpretability method Difference Recognition of 2 Classifiers (DiRo2C)
[Sta21] takes a different approach. Instead of visualizing explanations side-by-side or two
explanations in the same chart, Staufer and Rauber propose to explain differences directly
by reformulating the explanation task via a difference classification task. It applies an
adapted variant of the local interpretability method LORE [GMR+18a] to explain an
instance with the difference classifier. This variant uses a genetic neighborhood generation

23

2. Background

algorithm to create synthetic instances with which a local decision tree surrogate model
is trained, which in turn is used to derive a decision rule set. The final explanation is
a description of local differences. Further, an extension was proposed that allows to
explain globally, by iterating over instances of a sample of the data set, generating the
neighborhood for each and merging them into a single data set before training a surrogate
decision tree and deriving rules. It uses a 10% sample in the reference implementation.
Because the explanation itself is a decision tree surrogate model, further explanations
can be derived, e.g. feature importances from model internals. [Sta21]

2.6.1 Difference Classifier
In this section I describe the difference classifier, as used by Staufer and Rauber in DiRo2C
[Sta21] and investigate possible variations and extensions for probability estimates to
tackle research question #2.

DiRo2C is based on an abstraction of the problem of applying an interpretability method
to compare models via the use of an intermediate classification problem. The so-called
difference classifier is explained by a normal interpretability method. It is not an actual
classifier that needs to be trained, and thus is not an approximation. Instead, it is a
merger of the outputs of the individual classifiers. The difference classification problem
can be formulated in different ways, each including different classes. Staufer and Rauber
proposed two forms: (1) the binary difference classifier and (2) the multiclass difference
classifier. I also look into possible other variations and examine them in the next sections.
[Sta21]

Binary Difference Classifier

In the simplest form, the binary difference classifier, it tells whether the individual
classifiers predict equal labels or different labels. Equal labels are predicted as class 0
(negative label) and different labels as class 1 (positive label). It can be described using
a simple decision rule, where ŷ is the prediction of a classifier, as shown below. In this
way, it works for classifiers with any number of classes.

if ŷA = ŷB, then label 0, else 1

Multiclass difference classifier

The multiclass difference classifier predicts a separate class per type of difference or
equality. I start with the definition of the simpler case, where two binary classifiers are
compared. Then it has the two difference classes (0, 1) and (1, 0) and the two equality
classes (0, 0) and (1, 1):

• if ŷA = 0 ∧ ŷB = 0, then label 0 (called (0, 0))

• if ŷA = 0 ∧ ŷB = 1, then label 1 (called (0, 1))

24

2.7. Summary

• if ŷA = 1 ∧ ŷB = 0, then label 2 (called (1, 0))

• if ŷA = 1 ∧ ŷB = 1, then label 3 (called (1, 1))

The general definition for merging the outputs of multiclass difference classifiers is shown
below. This problem formulation includes m2 classes, where m is the number of classes
of the individual classifiers. It includes m equality classes and m2 − m difference classes.
This can be seen as the classes in the confusion matrix of the predictions of classifier A
vs. classifier B.

• if ŷA = 0 ∧ ŷB = 0, then label 0 (called (0, 0))

• if ŷA = 0 ∧ ŷB = 1, then label 1 (called (0, 1))

• if ŷA = 0 ∧ ŷB = 2, then label 2 (called (0, 2))

• . . .

• if ŷA = 0 ∧ ŷB = m − 1, then label m − 1 (called (0, m − 1))

• if ŷA = 0 ∧ ŷB = m, then label m (called (0, m))

• . . .

• if ŷA = 1 ∧ ŷB = m, then label 2m (called (1, m))

• . . .

• if ŷA = m ∧ ŷB = m, then label m2 (called (m, m))

2.7 Summary
In this section, I have described that this work focuses on classifiers. But because of
the nature of the chosen interpretability method SHAP it is necessary to treat them
as regression models. Two output spaces of classifiers can be used for explanations:
probability and log of odds space. I have defined the terms interpretability and expla-
nations. Explanations are contextual, which includes that they should be contrastive,
selective, social and that probabilities are not as important as causations [Mil19]. To
tackle the problem that this thesis addresses, model-agnostic post hoc interpretability
methods are required. Yet in the case of surrogate models, intrinsic interpretability and
model-specific extension methods may be used as well. I have described both global
and local level understanding. I have given an overview about the explanation types
feature summary statistics, data points (including counterfactual explanations), model
internals and surrogate models. I described SHAP [LL17] and how the special properties
allow to derive feature importance measures and aggregate local explanations to explain
globally with SHAP Summary Plots and SHAP Dependence Plots [LEL19]. I have

25

2. Background

further described algorithms to compute them and how they can be used in conjunction
with classification tasks and that they are suited well for clustering. I have also given
an overview about traditional model comparison approaches using interpretability and
described the more targeted approach of DiRo2C [Sta21] with the difference classifier.

26

CHAPTER 3
Research Methodology

In this work I use Design Science by Hevner et al. [HMPR04] as the scientific method
to iteratively develop and evaluate the artifact Mocca-SHAP. The strategies described
in the evaluation framework by Pries-Heje et al. [PHBV08] assist during evaluation. In
Section 3.1, I describe how I fit my research into this framework. In Section 3.2, I review
literature regarding interpretability and related work, that targets model comparison with
interpretability. In Section 3.3, I describe how I select data sets, set up the experiments
and evaluate.

3.1 Design Science
Design Science [HMPR04] is one of the foundational paradigms of the information systems
discipline. Its goal is to create new and innovative artifacts, rather than describing or
predicting behaviour. It offers a conceptual framework and research guidelines. In the
following sections, I describe how I fit my research into this framework and how the
research guidelines are taken into account. [HMPR04]

3.1.1 Research Cycle
Design Science research can be seen from the Three Cycle View [Hev07] and the three
pillars that the closely related cycles connect (shown in Figure 3.1):

• Environment: People and organizations in my environment includes data scientists
and their stakeholders. Data scientists have a need which the artifact should satisfy,
termed Relevance Cycle. Their stakeholders are their employer, their customers
and the lawmaker. Employer and customer require the development process to be
transparent and the final selection to yield optimal and unbiased results. Further,
they are required to comply with the GDPR [Eur16]. [HMPR04]

27

3. Research Methodology

Additions to the
Knowledge Base

Environment IS Research Knowledge Base

People
ïRoles
ïCapabilities
ïCharacteristics

Organizations
ïStrategies
ïStructure & Culture
ïProcesses

Technology
ïInfrastructure
ïApplications
ïCommunications
Architecture
ïDevelopment
Capabilities

Foundations
ïTheories
ïFrameworks
ïInstruments
ïConstructs
ïModels
ïMethods
ïInstantiations

Methodologies
ïData Analysis
Techniques
ïFormalisms
ïMeasures
ïValidation Criteria

Develop/Build
ïTheories
ïArtifacts

Justify/Evaluate
ïAnalytical
ïCase Study
ïExperimental
ïField Study
ïSimulation

Assess Refine

Business
Needs

Applicable
Knowledge

Application in the
Appropriate Environment

Relevance Rigor

Additions to the
Knowledge Base

Environment IS Research Knowledge Base

People
ïRoles
ïCapabilities
ïCharacteristics

Organizations
ïStrategies
ïStructure & Culture
ïProcesses

Technology
ïInfrastructure
ïApplications
ïCommunications
Architecture
ïDevelopment
Capabilities

Foundations
ïTheories
ïFrameworks
ïInstruments
ïConstructs
ïModels
ïMethods
ïInstantiations

Methodologies
ïData Analysis
Techniques
ïFormalisms
ïMeasures
ïValidation Criteria

Develop/Build
ïTheories
ïArtifacts

Justify/Evaluate
ïAnalytical
ïCase Study
ïExperimental
ïField Study
ïSimulation

Assess Refine

Business
Needs

Applicable
Knowledge

Application in the
Appropriate Environment

Relevance Rigor

Figure 3.1: The Design Science research cycle [HMPR04].

• Knowledge base: I am building on the previous research about interpretability eval-
uation [PHBV08, DVK17], model comparison [Bie18, Fri01, ZWM+18, SSSEA19,
Sta21], and all the previous research on model interpretability, especially SHAP
[LL17]. With the artifact, I can contribute to the research about model comparison,
uses of SHAP in new ways and a prototypical implementation that may be used by
anyone free to use or extend. This is called the Rigor Cycle. [HMPR04]

• Information systems research: With the previous two points providing interacting
context to my work, this is the main part where I develop the artifact iteratively
and evaluate it in comparison to other methods. This cycle of assessment and
refinement is called the Design Cycle. [HMPR04]

3.2 Literature Review
Via an initial recommendation by my advisor of the book "Interpretable Machine Learning"
by Molnar [Mol20] I was able to get an overview about interpretability methods. With
discussions about the notion of the difference classifier, initially proposed by Staufer and
Rauber [Sta21], I was able to find a state-of-the art approach about model comparison
with interpretability. Via a reference in the book of Molnar, I discovered another book
on the topic: "Explanatory Model Analysis" by Biecek and Burzykowski [BB21]. It
too was of great help at understanding and categorizing interpretability methods and
further showed examples of comparing models with interpretability. I followed the cited
literature in the books and complemented that by using the Google Scholar search
engine with common terms like interpretability and explainability in conjunction with

28

3.3. Experiments

machine learning to discover evaluation strategies and surveys regarding interpretability
methods. The selected results are listed below. Further, I used the term model comparison
additionally to discover other approaches, which are described in Section 2.5.

• Surveys about interpretability methods:

– "Machine Learning Interpretability: A Survey on Methods and Metrics" by
Carvalho, Pereira and Cardoso [CPC19]

– "Peeking inside the black-box: A survey on Explainable Artificial Intelligence
(XAI)" by Adadi and Berrada [AB18]

– "A Survey of Methods for Explaining Black Box Models" by Guidotti et al.
[GMR+18b]

– "Perturbation-Based Explanations of Prediction Models" by Robnik and Bo-
hanec [RŠB18]

• Literature about interpretability method evaluation:

– "Towards A Rigorous Science of Interpretable Machine Learning" by Doshi-
Velez and Kim [DVK17]

– "Explanation in Artificial Intelligence: Insights from the Social Sciences" by
Miller [Mil19]

– "Evaluating Explanation Without Ground Truth in Interpretable Machine
Learning" by Yang, Du and Hu [YDH19]

– "Explainability Fact Sheets: A Framework for Systematic Assessment of Ex-
plainable Approaches" by Sokol and Flach [SF20]

3.3 Experiments
According to Doshi-Velez and Kim, "core methods work should demonstrate generalizability
via careful evaluation on a variety of synthetic and standard benchmarks" [DVK17] in
machine learning model interpretability. Iteratively, I develop a method and evaluate in
comparison to a baseline and State-of-the-art (SOA) method. Qualitative and quantitative
quality metrics assist during comparison. Evaluation is done in an application-grounded
manner in the context of the end task, which is noted by Doshi-Velez and Kim to be
the preferred way for evaluating an interpretability method for a concrete application
[DVK17]. At first in a lab setting, then in a benchmark setting using real world datasets
as suggested in the evaluation framework by Pries-Heje et al [PHBV08].

In this section, I describe the selection of data sets, the types of differences that can be
introduced into the classifiers and finally evaluation with regards to a selection of quality
metrics.

29

3. Research Methodology

3.3.1 Data Sets

In this work I use tabular data sets, although extensions with support for text and image
exist for SHAP. But this would be out of scope. I do not restrict the feature types, they
can be any type, including categorical and numerical types. I will use artificial data
sets in binary classification tasks to demonstrate how the method works. I will use two
data sets published by Staufer and Rauber [SR21b, SR21a] and develop further ones as
required in a similar fashion. To demonstrate in a benchmark setting, I will use real-world
data sets. The first one is the Adult data set, which is also known as Census Income
data set and was used by Staufer and Rauber [Sta21], available in the UCI Machine
Learning Repository [DG17]. Its target is a binary label. To evaluate the methods on
a multiclass-classification task as well, I choose the Boston Housing data set [HJR78],
which was recommended by my advisor along with a difference recognition task.

3.3.2 Controlled Experiments

To be able to do a controlled experiment, I need to know before training, what the
ground truth of differences is that are to be explained. There are different options
used throughout this work, all based on artificial difference introduction methods. In
the simpler examples inherently interpretable models are used, and therefore an exact
description of their differences can be derived by looking at their model internals. But
for more complex models, this is not possible anymore. Then it is necessary to rely on
knowledge about the differences and check, in which ways the classifiers have picked
them up. Non-artificial difference introduction methods include comparing classifiers
with different inherently known characteristics and classifiers trained on different parts
of a data set, which is known to have a concept drift. But to demonstrate basic efficacy
of the artifact, the artificial methods listed below are sufficient:

• Synthetic training data set generation: If the training data sets are generated
synthetically, it is possible to generate different distributions and therefore influence
how classifiers work internally.

• Set a feature to a constant value: Setting a feature in the training data set to a
constant value makes it effectively unusable for a classifier. Therefore, it needs to
rely on other features for making decisions.

• Transform features with mathematical operations: In the simplest case, a constant
value is added to or subtracted from each feature value. Other transformations are
also possible.

• Change labels with rule-based logic: The true labels used to train a classifier can
also be modified. Using a rule-based logic, certain instances are selected for which
labels are set to a specific value.

30

3.3. Experiments

3.3.3 Evaluation
The artifact is evaluated ex post in the context of the application with experimental designs
and a domain expert, according to the design science evaluation strategies suggested by
Pries-Heje et al. [PHBV08]. Ex post means, that the artifact is implemented first and
then evaluated. Experimental designs allow automatic computation of quality measures,
which are described in Section 3.3.3. These experimental designs are run in a laboratory
setting with controlled parameters. In the evaluation framework of Doshi-Velez and
Kim [DVK17], this serves a function level evaluation, which is appropriate, when the
interpretability method has been evaluated on the human level before, as is the case
with SHAP [LL17]. Since they are applied in a different way and extended, they need
to be evaluated in user opinion studies again. But because of the resource constraints
of this master thesis, which may include time and access to domain experts [VPHB12],
I am doing this in a descriptive way with myself as a domain expert only. As Hevner
[HMPR04] notes, this is appropriate if the artifact is especially innovative and other
forms are not feasible. However, a follow-up user study is necessary to fully test the
hypotheses with a broader audience, and this thesis can only indicate if the developed
artifact is a promising approach. [DVK17, HMPR04, PHBV08, VPHB12]

To answer research question #1, a variety of quality metrics is selected that are then
used to evaluate the developed artifact in comparison to the SOA and a baseline. Some
are quantifiable, some need qualitative description. Molnar [Mol20] writes in his book
about evaluation metrics and properties of explanations. This is mostly based on the
works of Doshi-Velez and Kim [DVK17], Robnik and Bohanec [RŠB18] and on the survey
of Miller [Mil19]. Adadi and Berrada further mention in their survey, that Miller’s is
the most significant attempt at linking human science and XAI. Carvalho, Pereira and
Cardoso [CPC19] describe qualitative metrics that impact comprehensibility in more
detail. [AB18, CPC19, Mol20]

Fidelity measures, how precisely the explanation is able to approximate the model.
Generally, this answers the question: "Can I correctly predict the model’s outcomes?".
It can be measured with the same techniques, that the performance of a classifier is
measured. These include Precision, Recall, Accuracy and F1 score but is calculated based
on the predictions of the explanation and the predictions of the classifier to be explained.
Some explanations like surrogate models directly allow to predict instances, while other
explanation types may require a proxy. [RŠB18, Mol20]

Complexity measures, how many cognitive chunks an explanation contains. A cognitive
chunk refers to the basic unit an explanation is made of. For example, surrogate decision
rules can be measured by their total number of constraints. This quantifiable metric can
be used to qualitatively evaluate selectiveness, or sometimes called sparsity. Humans
want explanations to be selective, thus to focus only on the most important aspects, and
not to be complete. [DVK17, Mol20]

Generation time measures, how long explanation generation actually takes on a target
machine. This is expected to resemble the algorithmic complexity, which can only be

31

3. Research Methodology

compared in general for the methods. [RŠB18]

By taking into account these quantifiable metrics, I will evaluate qualitatively how well
the explanations satisfy Miller’s desirable properties of explanations contrastiveness,
selectiveness, causality and interactivity, together making up contextuality [Mil19].
They are described in Section 2.2.1.

Further properties have been proposed to be desirable for explanations, but with those
mentioned above I have put together a selection that covers the most important aspects,
while being feasible to evaluate within the limits of this thesis. For example, Robnik and
Bohanec [RŠB18] define the properties of explanations with expressive power, translucency,
portability and algorithmic complexity. Portability will be ensured during development and
algorithmic complexity described with complexity. The authors further define the quality
of explanations with accuracy, fidelity, consistency, stability, comprehensiblity, certainty,
degree of importance, novelty and representativeness. A part of these will be covered
with the selected metrics. Carvalho, Pereira and Cardoso [CPC19] define the quality
metrics in a different way with form of cognitive chunks, number of cognitive chunks,
compositionality, monotonicity and other interactions and uncertainty and stochasticity.
This is yet another view on the same properties. [RŠB18, CPC19]

3.4 Summary
I am using the methodology of Design Science [HMPR04] when building the method
Mocca-SHAP to ensure relevance, which means that the needs of data scientists and their
stakeholders are met, and rigor, which means that I build on previous scientific work
about interpretability methods and related work about model comparison and add to
this knowledge base with my research. Building the artifact involves a cycle of refinement
and assessment, for which I selected two artificial data sets and two real-world data sets.
I will create further ones if necessary. Evaluation is done in controlled experiments, for
which I have put together artificial difference introduction methods. The quantifiable
metrics fidelity, complexity and generation time are automatically derived for each task.
Taking these into account, I will qualitatively evaluate Mocca-SHAP’s explanations with
regards to Miller’s desirable properties [Mil19] contrastiveness, selectiveness, causality and
interactivity in comparison to the SOA approach and a baseline. This answers research
question #1. However, a follow-up user opinion study is required to fully evaluate the
artifact.

32

CHAPTER 4
Difference Recognition Tasks

In this section, I describe the difference recognition tasks on which Mocca-SHAP will be
evaluated in comparison to DiRo2C and a baseline. Three tasks are based on artificial
data sets with two features and two tasks are based on benchmark data sets with more
than two features.

• In the Running example, the task is to compare two simple decision trees that have
three distinct parts in the feature space where they predict differently.

• In the One Classifier Ignores a Feature example, the task is to compare two logistic
regression classifiers, where one of them is only able to make use of one of the two
features during training. Two parts in the feature space are predicted differently,
but their description involves feature-interdependent rules.

• In the Gaussian Quantiles example, the task is to compare two SVCs. One part
in the feature space is predicted differently. It cannot be described analytically
anymore, but is in the shape similar to a ring.

• In the Adult example, the task is to compare two ensemble classifiers trained on
the well-known Census Income data set, also known as the Adult data set. One
classifier is trained with a data set were one feature has a constant value added
to it, which results in it predicting the negative label more often than the other
classifier on the unmodified data.

• In the Boston Housing example, the task is to compare three MLP classifiers, that
have been trained on the Boston Housing data set where the goal is to predict a
three-class target.

33

4. Difference Recognition Tasks

4.1 Running Example

This simple example is to show how Mocca-SHAP, DiRo2C and the baseline approach
basically work. The data set and the task were originally published by Staufer and Rauber
[SR21b]. The data set is generated synthetically, has a small size with 300 instances
and two numerical features and is easily visualizable in a two dimensional scatter plot.
Two separate groups are present in the data, one associated with class 0 and the other
with class 1, making it a binary classification task. Both groups’ instances are sampled
from a normal distribution and transformed differently. They are linearly separable by
feature x1 without causing misclassifications. 80% of the data set are used for training
and 20% for evaluating classifier performance. The classifiers to be compared are decision
trees. Classifier A is trained on the original version and achieves perfect accuracy. Two
manipulations are applied to the data set used to train and evaluate classifier B:

1. if x1 < 150 ∧ x1 > 0 ∧ x2 > −100 ∧ x2 < 100, then change label to 0

2. if x1 < 0 ∧ x1 > −200 ∧ x2 ≥ 100, then change label to 1

Classifier B also achieves perfect accuracy on its held out test set. As the data set to
generate explanations for, A’s test set will be used. Both classifiers are simple enough to
be considered interpretable with A having three and B having eleven decision nodes. A
plot of their decision boundaries is shown in Figure 4.1. The different inner workings
result in three areas being classified differently, as can be seen in the decision boundaries
of the difference classifier in Figure 4.2. The difference classifier predicts one instance as
(0, 1) and eight instances as (1, 0). Although the classifiers offer probability estimates,
there is no advantage in using them. Both classifiers only predict either 0% or 100% for
a class, which makes the probability estimates equal to the one-hot encoded labels.

4.1.1 Ground Truth

Because small decision trees are inherently interpretable, I can comprehend how they
decide internally by looking at their inner structure. Figure 4.3 shows their decision nodes.
From this, I manually derive a decision rule set that perfectly describes the differences.
The rules are listed below. Values have been rounded to one decimal for display.

1. if −203.8 < x1 ≤ −8.5 ∧ x2 > 97.5, then (0, 1)

2. if −16.4 < x1 ≤ −8.5 ∧ x2 ≤ −108.2, then (0, 1)

3. if −8.5 < x1 ≤ 150.7 ∧ −108.2 < x2 ≤ 97.5, then (1, 0)

4. else, the classifiers predict equal labels

34

4.1. Running Example

200 100 0 100 200 300

x1

250

200

150

100

50

0

50

100

150

x
2

A

0

1

200 100 0 100 200 300

x1

B

0

1

Figure 4.1: Each classifier’s decision boundaries, overlaid by a scatter plot of the instances
to be explained of the running example. The color denotes the true label as present in
the original data set.

200 100 0 100 200 300

x1

250

200

150

100

50

0

50

100

150

x
2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

0 1

predictions of B

0

1

p
re

d
ic

ti
o
n
s
 o

f
A

22 1

8 29

Figure 4.2: Difference classifier decision boundaries, overlaid by a scatter plot of the
instances to be explained (left) and number of these instances per class (right) of the
running example.

4.1.2 Evaluation
Fidelity will be calculated on a separate explanation test set consisting of 10.000 instances
where each feature has been sampled from a normal distribution with a standard deviation
of 100. A scatter plot and the difference classifier class counts are shown in Figure 4.4.

35

4. Difference Recognition Tasks

node #1
gini = 0.0

samples = 127
value = [127, 0]

class = 0

node #2
gini = 0.0

samples = 113
value = [0, 113]

class = 1

node #0
x1 <= -8.54
gini = 0.5

samples = 240
value = [127, 113]

class = 0

node #4
gini = 0.0

samples = 12
value = [12, 0]

class = 0

node #5
gini = 0.0

samples = 6
value = [0, 6]

class = 1

node #3
x1 <= -16.37
gini = 0.44

samples = 18
value = [12, 6]

class = 0

node #6
gini = 0.0

samples = 116
value = [116, 0]

class = 0

node #8
gini = 0.0

samples = 7
value = [7, 0]

class = 0

node #9
gini = 0.0

samples = 24
value = [0, 24]

class = 1

node #2
x2 <= -108.16

gini = 0.09
samples = 134
value = [128, 6]

class = 0

node #7
x1 <= -203.78

gini = 0.35
samples = 31
value = [7, 24]

class = 1

node #1
x2 <= 97.53

gini = 0.3
samples = 165

value = [135, 30]
class = 0

node #10
gini = 0.0

samples = 75
value = [0, 75]

class = 1

node #0
x1 <= 150.74

gini = 0.49
samples = 240

value = [135, 105]
class = 0

Figure 4.3: Classifier A’s (left) and B’s (right) decision nodes of the running example
task.

300 200 100 0 100 200 300 400

x1

300

200

100

0

100

200

300

400

x
2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

0 1

predictions of B

0

1

p
re

d
ic

ti
o
n
s
 o

f
A

4050 661

3259 2030

Figure 4.4: Difference classifier decision boundaries, overlaid by a scatter plot of the
explanation test instances (left) and number of instances per class (right) of the running
example.

36

4.2. One Classifier Ignores a Feature

4.2 One Classifier Ignores a Feature

To demonstrate the methods’ workings in a slightly more complex setting, I developed a
task based on a small, two dimensional data set and a binary target variable. Data set
and the code for generating it can be found online1. The feature values of the instances
were sampled from normal distributions and transformed differently for each label using
randomly chosen parameters, such that both distributions are overlapping and no perfect
separation is possible. The classifiers are of type logistic regression and thus inherently
interpretable by their model weights. Their decision boundaries can be seen in Figure
4.5. Please note, that classifier B does not discriminate at x2 = 0, but at approx. 22.1.
Of the 300 instances, 150 have been used for training and 150 for evaluating classifier
performance. The test set also serves for explanation generation.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

A

0

1

100 0 100 200 300

x1

B

0

1

Figure 4.5: Each classifier’s decision boundaries, overlaid by a scatter plot of the instances
to be explained of the "One Classifier Ignores a Feature" example. The color denotes the
true label as present in the original data set. Please note, that although the original data
set is plotted for classifier B, it has only seen informative x2 values during training.

In contrast to classifier A, B has been trained a modified version of the data set, where
feature x1 has been set to 0, thus making it non-informative to this classifier. The result
is, that it can only rely on feature x2 for decisions. As can be seen in the scatter plot
including the decision boundaries of the difference classifier in Figure 4.6, there are two
areas classified differently. In total there are 22 instances classified (0, 1) and 15 instances
classified (1, 0). The classifiers offer probability estimates, that resemble their certainty
about the predicted labels. In Figure 4.7 you can see a plot of the probability estimates
of the individual classifiers and in Figure 4.8 a plot of the difference classifier’s probability
estimates.

1Data set available here: https://doi.org/10.5281/zenodo.6502643

37

https://doi.org/10.5281/zenodo.6502643

4. Difference Recognition Tasks

100 0 100 200 300

x1

300

200

100

0

100

200
x
2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

0 1

predictions of B

0

1

p
re

d
ic

ti
o
n
s
 o

f
A

57 9

6 78

Figure 4.6: Difference classifier decision boundaries, overlaid by a scatter plot of the
instances to be explained (left) and number of instances per class (right) of the "One
Classifier Ignores a Feature" example.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

A

100 0 100 200 300

x1

B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Probability estimates for class 1 of classifiers A and B of the "One Classifier
Ignores a Feature" example. Instances are colored by their true label.

4.2.1 Ground Truth
The differences to be found can be defined with decision rules by using the regression
weights of the classifiers. They can be seen in Table 4.1. Note, that β1 of B is 0 and
thus x1 has no influence on the outcome. The rules can be derived by evaluating the
regression model y = β0 + β1x1 + β2x2 at y = 0 for each classifier and combining them
afterwards. A log of odds value of zero means, that a classifier is predicting 50%, which is
the exact decision boundary between the two labels of a binary classifier. For classifier B, I
calculate the decision boundary with x∗

2 = −β0/β2 = 22.1. For classifier A, I calculate the

38

4.2. One Classifier Ignores a Feature

x1

300

200

100

0

100

200

x
2

(0, 0)

x1

(0, 1)

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

(1, 0)

100 0 100 200 300

x1

(1, 1)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.8: Probability estimates for all classes of the difference classifier of the "One
Classifier Ignores a Feature" example. Instances are colored by their estimated probability.

decision boundary of x2 as a function of x1 with x�
2(x1) = −β0

β2
− β1

β2
x1 = −45.4 + 0.808x1.

Combining this knowledge, I get the decision rules listed below. The feature thresholds
have been rounded to one decimal and factors to three decimals for display.

β0 β1 β2
A 1.317 -0.023 0.029
B -0.379 0 0.017

Table 4.1: Learned weights of the logistic regression classifiers.

1. if x1 > 83.7 ∧ 22.1 < x2 ≤ −45.5 + 0.808x1, then label (0, 1)

2. if x1 ≤ 83.7 ∧ −45.5 + 0.808x1 < x2 ≤ 22.1, then label (1, 0)

3. else, then the classifiers predict the same labels

39

4. Difference Recognition Tasks

4.2.2 Evaluation

Fidelity will be calculated on a separate explanation test set consisting of 10.000 instances
where each feature has been sampled from a normal distribution with a standard deviation
of 100. They were centered to the crossing point between classifier A and B’s decision
boundaries. See the confusion matrix and scatter plot in Figure 4.9.

300 200 100 0 100 200 300 400

x1

300

200

100

0

100

200

300

400

x
2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

0 1

predictions of B

0

1

p
re

d
ic

ti
o
n
s
 o

f
A

4213 1021

1188 3578

Figure 4.9: Difference classifier decision boundaries, overlaid by a scatter plot of the
explanation test set instances (left) and number of instances per class (right) of the "One
Classifier Ignores a Feature" example.

4.3 Gaussian Quantiles

This model comparison task and the data set have been originally published by Staufer and
Rauber [SR21a]. I have set another parameter of the classifiers, that enables probability
predictions and I changed the train/test split to increase the number of instances in
the explanation data set. It is an artificially generated data set with two features. The
instances were sampled from a two-dimensional normal distribution and separated by a
concentric circle, so that approx. half of the instances are assigned label 0 and the other
half label 1. It is split randomly into a training and a test set by sampling 50% each.
A Support Vector Classifier (SVC) with a radial basis function kernel is trained and
evaluated on this data, subsequently called classifier A. It will be compared to classifier
B, another SVC, which is trained on a different data set, that has been generated with a
different covariance parameter. But for generating explanations, the test set of the first
data set is used. See Figure 4.10 for the classifiers’ decision boundaries. The result is,
that 55 instances are classified (1, 0) which are aligned in the shape of a ring, as seen
from a scatter plot of x1 vs. x2. See the decision boundaries of the difference classifier
and instance counts per class in Figure 4.11. The plots for the probability estimates of
the difference classifier are shown in Figure 4.12.

40

4.3. Gaussian Quantiles

200 100 0 100 200

x1

200

100

0

100

200

x
2

A

0

1

200 100 0 100 200

x1

B

0

1

Figure 4.10: Each classifiers’ decision boundaries, overlaid by a scatter plot of the
instances to be explained of the Gaussian Quantiles example. The color denotes the true
label as present in the original data set.

200 100 0 100 200

x1

200

100

0

100

200

x
2

(0, 0)

(1, 0)

(1, 1)

0 1

predictions of B

0

1

p
re

d
ic

ti
o
n
s
 o

f
A

150 0

55 95

Figure 4.11: Difference classifier decision boundaries, overlaid by a scatter plot of the
instances to be explained (left) and number of instances per class (right) of the Gaussian
Quantiles example.

4.3.1 Ground Truth

Because the individual classifiers are too complex to be interpretable by model internals,
I cannot define specific rules that resemble a ground truth. As can be seen from the plots
in Figure 4.10, the classifiers didn’t learn an exact circular shape, but a distorted version
of it. So I need to rely on the knowledge, that the differences are arranged in the shape
similar to a ring.

41

4. Difference Recognition Tasks

x1

200

100

0

100

200

x
2

(0, 0)

x1

(0, 1)

200 100 0 100 200

x1

200

100

0

100

200

x
2

(1, 0)

200 100 0 100 200

x1

(1, 1)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12: Probability estimates for all classes of the difference classifier of the Gaussian
Quantiles example. Instances are colored by their estimated probability.

4.3.2 Evaluation
Fidelity will be calculated on a separate explanation test set consisting of 10.000 instances
where each feature has been sampled from a normal distribution with a standard deviation
of 100. A scatter plot and the confusion matrix are shown in Figure 4.13.

300 200 100 0 100 200 300 400

x1

300

200

100

0

100

200

300

400

x
2

(0, 0)

(1, 0)

(1, 1)

0 1

predictions of B

0

1

p
re

d
ic

ti
o
n
s
 o

f
A

4332 0

1635 4033

Figure 4.13: Difference classifier decision boundaries, overlaid by a scatter plot of the
explanation test set instances (left) and number of instances per class (right) of the
Gaussian Quantiles example.

42

4.4. Census Income (Adult)

4.4 Census Income (Adult)
This is the first real-world data set, that is used to demonstrate the interpretability
methods in a benchmark setting. It can be found in the UCI machine learning repository
[DG17]. The original goal for this data set is to predict whether an individual’s income
exceeds $50,000 a year. There are twelve features of which eight are categorical and four
are continuous. The target is binary and has the labels False (≤$50,000 income) and
True (>$50,000 income). The data set consists of 32,561 instances of which 70% are
used for training the classifiers, 15% for evaluating their performance, 100 instances for
generating explanations and 4785 instances for evaluating the explanation performance.
The classifiers used are XGBoost [CG16] classifiers, which are ensembles methods based
on decision trees. Generally, ensemble methods have a high complexity and their internal
structure is not considered interpretable [MCB20]. The classifiers natively support
probability estimates per class. To introduce differences, I will identify an influential
feature, that can be modified and is then expected to show up in the explanations.

In Figure 4.14 you can see the feature importances, as calculated from model internals of
classifier A. The calculation is based on the relative contribution a feature has on the
resulting trees, called gain. This procedure is equal to that for Random Forests [AR19].
I choose Hours per week as the feature to be modified, because it is in the mid-range
and therefore does not introduce too many differences when modified and is a continuous
feature, which can be easily modified by adding or subtracting constant values. Adding 10
(hours) and training classifier B on the modified version results in five instances classified
(True, False) in the data set to be explained. In the explanation test set, this results in
238 instances classified (True, False) and 8 classified (False, T rue). So there is a clear
tendency for B to predict label False more often than A. See the counts per class in
Figure 4.15.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Importance

Relationship

Education-Num

Capital Gain

Age

Hours per week

Capital Loss

Occupation

Sex

Workclass

Marital Status

Country

Race

F
e
a
tu

re
s

Figure 4.14: Feature importance of Classifier A, trained on the original Adult data.

The feature importances did not change in the retrained classifier with the modified

43

4. Difference Recognition Tasks

False True

predictions of B

False

True

p
re

d
ic

ti
o
n
s
 o

f
A

78 0

5 17

0

10

20

30

40

50

60

70

False True

predictions of B

False

True

p
re

d
ic

ti
o
n
s
 o

f
A

3854 8

238 685

500

1000

1500

2000

2500

3000

3500

Figure 4.15: Difference classifier class counts of the data set to be explained (left) and
explanation test set (right) of the Adult example.

index 34 49 53 54 60
Feature
Age 50 32 46 32 42
Workclass 4 4 4 4 4
Education-Num 13 13 10 13 10
Marital Status 2 2 2 2 4
Occupation 5 12 14 12 4
Relationship 4 4 4 4 0
Race 4 4 4 4 4
Sex 1 1 1 1 0
Capital Gain 0 0 0 0 0
Capital Loss 0 0 0 0 2444
Hours per week 45 40 48 44 40
Country 39 39 39 39 39

Table 4.2: Instances to be explained, classified (True, False), of the Adult example.

training data set. This is because the data transformation is of a linear nature. Classifier
B achieves a very similar accuracy of 86% compared to classifier A with 87% on A’s test
set. In a practical scenario, 1% accuracy difference might not be enough of a reason
to choose one classifier. You can see the instances to be explained, that are classified
(True, False), in Table 4.2. They have different values in features Age, Education-Num
and Hours per week. But all of them have the same feature value for Workclass, Race,
Capital Gain and Country. Instance #60 is furthermore different in features Marital
Status, Relationship, Sex and Capital Loss.

Because of the complexity of the classifiers, it is not possible anymore to know all the
effects that this modification has. But I expect the explanations to include the feature
Hours per week as one reason amongst possible others.

44

4.5. Boston Housing

4.5 Boston Housing
This is the second real-world data set. It was first published by Harrison and Rubinfeld
[HJR78]. The original version can be downloaded from StatLib2. The original target is to
predict house prices and thus a continuous variable, but it has been divided up into the
three classes 0, 1 and 2. It is the first multiclass classification task used in the experiments.
The two features B and CHAS are removed due to an ethical problem. There is one
ordinal feature, AGE, which has three levels. The other features are continuous numbers.

In this experiment, the three classifiers A, B and C are compared. Thus it is also the first
experiment, in which more than two classifiers are compared. They are all of type Multi-
layer Perceptron (MLP), a kind of neural network. This type is generally considered as
not being interpretable [Mol20]. The implementation shipped with scikit-learn [PVG+11]
is used. Each classifier has the same configuration, including 16 neurons and no hidden
layers, which means they are only capable of representing linear separable functions. Each
is further configured with a logistic sigmoid activation function and a regularization term
set to 10−5. The classifiers natively support probability and log-transformed probability
estimates per class.

Classifier A is trained on the unmodified version of the data set, whereas B and C are
trained on modified data. In B’s training data, AGE is inverted: a value of 0 turns to 2,
a value of 2 turns to 0 and a value of 1 stays the same. In C’s training data, the true
labels of a group of instances are changed. These instances are part of a cluster of a
clustering based on the three features LSTAT, ZN and CRIM. The instance numbers
per difference class are shown in Figure 4.16 for the two comparison pairs A vs. B and
A vs. C. In Tables 4.3 and 4.4 the feature values are shown for all instances classified
differently. I expect from the interpretability methods that they include the features used
in the manipulations in the explanations. In the comparison of A and B I further expect
global-level understanding of the differences and in the comparison of A and C I expect
them to narrow the differences down to a certain area in the feature space. There is no
test data set available in this case, but I evaluate with regards to the knowledge about
the modifications.

0 1 2

predictions of B

0

1

2

p
re

d
ic

ti
o
n
s
 o

f
A

76 13 0

0 58 1

0 3 95

0 1 2

predictions of C

0

1

2

p
re

d
ic

ti
o
n
s
 o

f
A

86 3 0

2 52 5

0 2 96

Figure 4.16: Difference class counts of classifiers A vs. B (left) and A vs. C (right) for
the explanation data set, Boston Housing example.

2http://lib.stat.cmu.edu/datasets/boston, accessed on 12 March 2022

45

http://lib.stat.cmu.edu/datasets/boston

4. Difference Recognition Tasks

CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO LSTAT

index Label

8 (0, 1) 3.8 0 18.10 0.77 6.25 2 2.30 24.0 666 20.2 14.19
28 (0, 1) 2.2 0 19.58 0.60 5.85 2 2.42 5.0 403 14.7 11.64
40 (0, 1) 2.3 0 19.58 0.60 6.32 2 2.10 5.0 403 14.7 11.10
42 (0, 1) 1.1 0 8.14 0.54 5.70 2 3.82 4.0 307 21.0 18.26
74 (0, 1) 0.6 0 21.89 0.62 5.73 2 2.07 4.0 437 21.2 17.25
151 (0, 1) 0.9 0 8.14 0.54 6.02 2 4.44 4.0 307 21.0 17.07
152 (0, 1) 2.3 0 19.58 0.60 5.88 2 2.39 5.0 403 14.7 12.03
157 (0, 1) 1.0 0 21.89 0.62 5.76 2 2.35 4.0 437 21.2 17.31
180 (0, 1) 0.3 0 21.89 0.62 5.69 2 1.79 4.0 437 21.2 17.19
196 (0, 1) 0.9 0 8.14 0.54 5.61 2 4.35 4.0 307 21.0 16.80
238 (0, 1) 0.0 0 13.89 0.55 5.89 1 3.11 5.0 276 16.4 13.51
244 (0, 1) 0.3 0 21.89 0.62 5.69 2 1.81 4.0 437 21.2 17.35
245 (0, 1) 1.2 0 8.14 0.54 6.14 2 3.98 4.0 307 21.0 18.72
51 (1, 2) 0.3 0 7.38 0.49 6.31 0 5.42 5.0 287 19.6 6.15
34 (2, 1) 4.6 0 18.10 0.72 3.56 2 1.61 24.0 666 20.2 7.12
77 (2, 1) 0.1 33 2.18 0.47 6.62 1 3.37 7.0 222 18.4 8.93
101 (2, 1) 0.1 0 11.93 0.57 6.79 2 2.39 1.0 273 21.0 6.48

Table 4.3: Instances to be explained, classified differently by A and B, of the Boston
Housing example.

CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO LSTAT

index Label

8 (0, 1) 3.8 0 18.10 0.77 6.25 2 2.30 24.0 666 20.2 14.19
40 (0, 1) 2.3 0 19.58 0.60 6.32 2 2.10 5.0 403 14.7 11.10
238 (0, 1) 0.0 0 13.89 0.55 5.89 1 3.11 5.0 276 16.4 13.51
23 (1, 0) 0.8 0 8.14 0.54 5.60 2 4.45 4.0 307 21.0 16.51
156 (1, 0) 0.8 0 8.14 0.54 5.65 2 4.45 4.0 307 21.0 16.48
22 (1, 2) 0.1 60 1.69 0.41 6.58 0 10.71 4.0 411 18.3 5.49
55 (1, 2) 0.5 20 3.97 0.65 7.23 1 2.12 5.0 264 13.0 9.52
68 (1, 2) 0.0 90 2.97 0.40 7.09 0 7.31 1.0 285 15.3 7.85
122 (1, 2) 0.0 85 4.15 0.43 6.52 0 8.54 4.0 351 17.9 6.36
206 (1, 2) 0.1 80 1.91 0.41 5.94 0 10.59 4.0 334 22.0 5.57
34 (2, 1) 4.6 0 18.10 0.72 3.56 2 1.61 24.0 666 20.2 7.12
101 (2, 1) 0.1 0 11.93 0.57 6.79 2 2.39 1.0 273 21.0 6.48

Table 4.4: Instances to be explained, classified differently by A and C, of the Boston
Housing example.

46

CHAPTER 5
Mocca-SHAP

In this work, I propose the classifier comparison method Model comparison with clustered
difference classifier SHAP values (Mocca-SHAP). At its core is the instance-level inter-
pretability method SHAP [LL17], which enables global and modular level explanations
with SHAP Dependence Plots [LEL19]. Two types of explanations can be interpreted:
traditional, side-by-side explanations for the target classifiers and explanations for the
difference classifier. The difference classifier is an intermediate model that merges the
outputs of two classifiers that are to be compared. It has been proposed by Staufer and
Rauber [Sta21] and I am extending it to support SHAP. It further offers an interactive
way to investigate modular parts of the explanation space in a hierarchical way, based on
the supervised clustering approach of Lundberg [LEL19]. To enable causal interpretation,
group counterfactual explanations are included in each modular explanation.

In this chapter, I describe Mocca-SHAP’s requirements and limitations, the design process
about how I incrementally develop and integrate findings from the experiments. Then I
show how quantitative quality metrics can be automatically derived from explanations of
Mocca-SHAP, DiRo2C and a baseline. Finally, I describe details about the implemented
tools and conducted experiments, and where to find them.

5.1 Requirements and Limitations
Mocca-SHAP focuses on classifiers, so it does not support comparing regression models
or non-predictive models. But it supports any kind of classifier, by treating them as
black-boxes. It supports comparing binary as well as multiclass classifiers. Multioutput
classifiers are out of scope for this work. I also restrict the data types to tabular data
sets in this work, although SHAP could support image or other types as well. The tools
I implement take as input an explanation data set and require access to the prediction
function of two trained classifiers with a scikit-learn-like interface [PVG+11]. These
classifiers are subsequently referred to as A and B. The true labels of the data set are

47

5. Mocca-SHAP

not required. The output space can be chosen based on the capabilities of the compared
classifiers. The algorithm used to compute SHAP Values in the experiments is the
optimized exact algorithm, but can be changed for another. Only two classifiers can be
compared at a time. To compare more than two, the task needs to be broken down into
multiple pairwise comparisons, as is done in the Boston Housing experiment.

5.2 Design Process
5.2.1 Probabilistic Extension of the Difference Classifier
Some interpretability methods like SHAP are able to leverage probability estimates of
classifiers. Staufer and Rauber [Sta21] have only proposed the binary and multiclass
difference classifier variants that predict labels based on simple rules, which I extend for
class probability estimates. As mentioned in Section 2.1, probabilistic classifiers have to
meet two requirements: (1) the label with the highest estimated class probability has to
match the predicted label and (2) that the class probability vector sums up to 1.

By treating the probability estimates of the classifiers as independent events, I can
calculate the joint certainty of a specific class of the multiclass difference classifier easily
by multiplying two probability estimates, as shown in Equation 5.1. i, j are classes of the
individual classifiers, (i, j) is a class of the multiclass difference classifier and ŷ

(i,j)
d the

merged probability of the difference classifier for a specific class. Both requirements for
classifiers are satisfied: (1) summing up the merged probabilities for all class combinations
always results in 1, and (2) the class label with the highest probability matches the
predicted label as determined by the rules shown in the last section.

ŷ
(i,j)
d = ŷi

Aŷj
B (5.1)

Yet I have not found a solution for the binary difference classifier. It is not sufficient to
build on the probability estimates of the multiclass difference classifier and sum up all
difference class estimates into one number and all equality class estimates into one number,
because then there is a mismatch between the predicted label as determined by the
rules shown in Section 2.6.1 and the highest estimated class probability. Consider e.g. a
classification problem with the three classes 0, 1 and 2: Classifier A predicts for an instance
the class probability vector (0.5, 0.3, 0.2) and classifier B (0.5, 0.2, 0.3). Thus, both A and
B predict the label 0, because it has the highest class probability. The multiclass difference
classifier has the classes (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and (2, 2),
and estimates a class probability vector of (0.25, 0.15, 0.1, 0.15, 0.06, 0.09, 0.1, 0.04, 0.06)
for this instance. Because the predicted label is 0 (equal), the estimated probability
for this class must also be higher than that for the other class. But actually, the
sum of the probability estimates for the equality classes is lower than that for the
difference classes (0.37 < 0.63). This violates one of the requirements for probabilistic
classifiers and therefore the binary difference classifier is not suited for use with the
chosen interpretability method SHAP.

48

5.2. Design Process

Other Variations of the Multiclass Difference Classifier

Other variations would be possible as well, like simplifying the multiclass difference
classifier by combining only the equality classes into a single class and leaving the
difference classes separate. But then again the requirements for probabilistic classifiers
would not be satisfied anymore.

Difference Classifier with Truthfulness

Another variation could take the true labels into account, with the additional assumption
that they are known for the explanation data set. Now ŷ is a predicted label of a classifier
for an instance with the true label y. See below the rules for determining the label in the
simplest case with binary classifiers:

• if y = 0 ∧ ŷA = 0 ∧ ŷB = 0, then label 0

• if y = 0 ∧ ŷA = 0 ∧ ŷB = 1, then label 1

• if y = 0 ∧ ŷA = 1 ∧ ŷB = 0, then label 2

• if y = 0 ∧ ŷA = 1 ∧ ŷB = 1, then label 3

• if y = 1 ∧ ŷA = 0 ∧ ŷB = 0, then label 4

• if y = 1 ∧ ŷA = 0 ∧ ŷB = 1, then label 5

• if y = 1 ∧ ŷA = 1 ∧ ŷB = 0, then label 6

• if y = 1 ∧ ŷA = 1 ∧ ŷB = 1, then label 7

But this restricts the types of interpretability methods that can be used to explain the
task. Methods like SHAP and DiRo2C are based on perturbing instances and measuring
the effect on the outcome. Thus, they need to be able to test arbitrary input to the
classifier, but this problem formulation allows to only predict instances with known true
labels. There is a workaround: By actually training an intermediate classifier and not
relying on conversion rules the task could be approximated. But as this introduces an
additional error, I do not investigate it further in this work.

5.2.2 Selection of a Global Extension Method
SHAP Dependence Plots have been noted in Section 2.4.5 to be one of the global extension
methods, based on SHAP Values. For a couple of reasons, I selected them as the main
global interpretability method for my work. (1) They allow for interpreting the relation
between an input feature and its effect on the outcome, assuming that all other features
are fixed. This is known as the marginal effect of a feature, and is widely used with PD-
plots and ALE-plots. (2) Compared to PD-plots, SHAP Dependence Plots additionally

49

5. Mocca-SHAP

visualize interaction effects via vertical spread in the scatter plot. By additionally coloring
each instance by another feature value allows to interpret, to what extent interaction
effects with that feature account for deviations in the effect. (3) Compared to SHAP
Summary Plots, the feature-output relation is easier to interpret. While these plots
actually contain the same information, it is in different dimensions. [LEL19]

5.2.3 Explanations for the Individual Classifiers
The traditional way of comparing classifiers with SHAP is to generate SHAP Values
individually for each classifier, create plots side-by-side and interpret what is different.
For binary classifiers, it is enough to visualize one of the two classes. For multiclass
classifiers, each class needs a separate plot.

Consider the dependence plots for classifier A and B of x1 of the running example (see
Section 4.1 for the task description), shown in the left two scatter plots in Figure 5.1.
Ignore the coloring for now. You can see the actual feature values of x1 on the x-axis
and the SHAP Values of x1 (s(x1)) on the y-axis. The SHAP Values are in the units of
the model output space they were created for, which is probability in this case. Each
dot corresponds to one instance of the data set. This allows me to interpret, that x1 has
a step-like relation with its effects: Up to a certain point, it has a constant decreasing
effect on the outcome of approx. -0.5 (or -50%), while above approx. x1 > 0 it has an
increasing effect of approx. 0.5 (or +50%). The effect of x1 for classifier B is different.
There is a more gradual change from a decreasing effect of low feature values to an
increasing effect for high feature values. Also, for some instances it has a different effect
while having the same feature value. This can be seen as vertical spread. It is the result
of interaction with other features - in this case x2, as it is the only other feature. x2 has
an influence on x1’s effect. In contrast, there is no vertical spread visible in classifier A’s
dependence plot.

200 100 0 100 200 300

x1

0.5

0.0

0.5

s
(x

1
)

A

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 100 0 100 200 300

x1

B

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 100 0 100 200 300

x1

B A

Figure 5.1: Individual classifiers’ SHAP Dependence Plots (left and middle) and difference
dependence plots (right) for x1’s effect on class 1’s probability outcome, running example.

Coloring instances by their predicted class: As Miller [Mil19] notes, "probabilities
are not as important as causal links". Adding another dimension by coloring the instances
depending on their difference classifier label, causal links can be established between
probabilities and difference classes. Have a look again at the two left plots in Figure 5.1.

50

5.2. Design Process

I have coloured each instance by its actual class. Each class name is made up of A’s and
B’s actually predicted label.

E.g. class (0, 1) (blue) means, that A predicts class 0 and B class 1. There is only one
instance coloured blue, and it deviates from other instances with similar x1 values (lower
than 0), in that it has a less decreasing effect on classifier B’s outcome than the others.
The effect on A is not different from similar instances, which are of class (0, 0). It allows
me to reason, that x1’s attribution is not decreasing the probability outcome as much in a
certain case as for other instances with x1 < 0. Considering, that the vertical deviation is
the result of another feature influencing x1’s effect, it has to be a combination of another
feature and x1’s effects that causes B to classify this particular instance differently than
A.

Now consider class (1, 0) (orange). On B, these instances are in a straight horizontal
line, each having a decreasing effect, while the other instances with x1 > 0 have either
an effect close to 0 or an increasing effect. Just like for the instance classified (0, 1), the
other feature influences x1’s attribution.

Difference dependence plots: To ease interpretation, I added a third plot to A and
B’s dependence plots, which shows the difference between A and B’s SHAP Values. You
can see it in the right plot in Figure 5.1. It allows to interpret, to what extent and for
which feature values classifier B overestimates (positive differences) and underestimates
(negative differences) classifier A. Overestimation in probability space means, that the
effect a feature has is increasing the predicted probability for the class, thus forcing
the prediction more towards this class. Underestimation means, that it is forcing the
prediction away from this class.

A grey horizontal line at zero makes it easier to distinguish over- and underestimation.
For multiclass classification tasks like in the Boston Housing experiment, I switched to
placing the plots per feature on top of each other in order to be able to visualize the
different classes’ effects in columns. This behaviour is implemented in the prototypical
tools, because it supports both types in a general way.

Now have a look again at the right plot in Figure 5.1. You see, that the instances below
a feature value of 0 all have a SHAP Value difference close to 0, except the instance in
blue. It is actually classified 1 by B and 0 by A. Classifier B overestimates its effect,
according to this plot, because it has a high positive SHAP Value difference. This can
actually be considered a satisfactory explanation for humans, because it explains, why
this abnormal classification of the blue instance might have happened in contrast to the
normal classifications of the green instances. The picture is not yet complete, because we
are looking at one feature only.

Consider the instances classified (1, 0) in the difference dependence plot in Figure 5.1.
They have abnormally low SHAP Value differences, thus, B is underestimating the effect
on class 1. This explanation is satisfactory, because it explains why it decides against

51

5. Mocca-SHAP

class 1 and predicts class 0. If it would have been higher, like for the instances in red, it
might have predicted class 1 just like classifier A.

5.2.4 Explanations for the Difference Classifier
Besides the individual explanations, Mocca-SHAP includes explanations for the difference
classifier, which are not to be confused with the SHAP Value differences. The difference
classification task includes m2 classes, with m being the number of target classes of the
original classification task. They relate to the confusion classes if comparing classifier
A’s to B’s predicted classes. Therefore, dependence plots can be created for each class
and feature. The number of plots poses a potential problem.

Problem break-down: One way to tackle this is by reducing the number of plots one
has to interpret at a time. One class can be put into focus and compared to a selection
of other classes. It is sufficient to repeat this for all difference classes, but equality classes
can also be put into focus. It depends on the task, which other classes to select. Classes
without instances may be skipped.

In Figure 5.2 you can see the difference classifier dependence plots with class (0, 1) in
focus (middle). I have chosen classes (0, 0) and (1, 1) for reference and omitted class
(1, 0). Ignore the counterfactual legend and vertical lines for now. Each dependence plot
shows the effect, that feature x1 has on the joint predicted probability, that a certain
class combination has. The middle plot shows the effect on A’s predicted probability for
class 0 times B’s predicted probability for class 1. In the same manner, the other two
plots show joint effects for the classes (0, 0) and (1, 1).

• From the left plot, I interpret that values of x1 smaller than 0 have an increasing
effect on the probability that A predicts for class 0 and that B predicts for class 0
(or difference classifier class (0, 0)’s outcome for short). In contrast, higher values
have a decreasing effect. One instance stands out, the instance in blue. For it, the
increasing effect is lower.

• From the middle plot, I interpret that there is a constant effect close to zero for
feature values all over the range. Except for the instance in blue, because for it
x1 has an increasing effect on the probability that A predicts for class 0 and B for
class 1 (or difference classifier class (0, 1)’s outcome for short).

• From the right plot, I interpret that x1 values lower than 0 have a decreasing
effect on the probability that A predicts for class 1 and that B predicts class 1
(or difference classifier class (1, 1)’s outcome for short). For values between 0 and
approx. 150, there are instances for which it has a decreasing effect and instances,
for which it has an increasing effect. But for now it is only relevant that higher
value than 150 have a clear increasing effect on the probability that A predicts for
class 1 and B for class 1.

52

5.2. Design Process

By combining the knowledge now gained about the instance classified 0 by A and 1 by B,
I reason that this is because of another feature influencing the effect of x1 to be more
increasing on the class (0, 1)’s outcome and at the same time less increasing on the class
(0, 0)’s outcome.

200 100 0 100 200 300

x1

0.5

0.0

0.5

s
(x

1
)

Class (0, 0)'s outcome

Counterfactuals

-203.8: 1x (0, 0)

-8.5: 1x (1, 1)

200 100 0 100 200 300

x1

Class (0, 1)'s outcome

200 100 0 100 200 300

x1

Class (1, 1)'s outcome

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 5.2: Difference classifier dependence plots for x1 with class (0, 1) in focus, running
example.

Group counterfactual explanations: Still, I am not able to answer the most impor-
tant question: "What needs to change for certain instances which are currently classified
differently to be classified equally?", which refers to the need of humans for contrastive
explanations [Mil19]. To answer this question, I propose group counterfactual explana-
tions. Each consists of a single feature value, that, if replacing all feature values in the
group of instances with it, flips each instance’s prediction. Single feature counterfactual
explanations are the preferred type according to Verma et al. [VDH20] because they are
the simplest and easiest to understand. With the algorithm shown in 5.1, every feature is
treated as a continuous variable and two group counterfactual explanations are searched
for every feature: One denoting an upper boundary and one a lower boundary, which can
be visualized in the dependence plots to support causal interpretation. The algorithm
requires as input (1) the prediction function f(x) of the difference classifier, (2) a group
of instances X for which to find counterfactual explanations (3) a step size s at which to
increase and decrease feature values, (4) the limits l−, l+ at which to stop the search, (5)
the feature j for which to find the boundaries. It returns a lower and an upper feature
value.

The computed counterfactuals are visualized as vertical lines in each dependence plot to
mark the boundary. Have a look again at Figure 5.2, where the dashed line denotes the
lower counterfactual for the instance in blue and the dotted line its upper counterfactual.
From this I can reason, that within these two boundaries, the instance in blue is classified
as class 0 by A and class 1 by B. Yet if its x1 value would be -203.8, classifier B would
flip and also predict class 0, just like A. If it was -8.5, classifier A would flip and also
predict class 1, just like B.

Please note, that sometimes there is only one boundary, or none at all, depending on
which counterfactuals the algorithm finds. Also, care needs to be taken when interpreting
them, because it treats the feature as being a continuous variable. It can be applied to

53

5. Mocca-SHAP

categorical types as well, if they are encoded as numbers, but then it just searches for
two arbitrary counterfactual explanations.

Algorithm 5.1: Computation of Group Counterfactual Explanations
Data: f(x), X, s, l−, l+, j
Result: b−, b+

1 b− ← min(Xj);
2 b+ ← max(Xj);
3 y� ← f(X(0));
4 while any f(X) is equal to y� do
5 b− ← b− − s;
6 if b− ≤ l− then
7 b− ← −∞;
8 break
9 end

10 Xj ← b−;
11 end
12 Xj ← b+;
13 while any f(X) is equal to y� do
14 b+ ← b+ + s;
15 if b+ ≥ l+ then
16 b+ ← ∞;
17 break
18 end
19 Xj ← b+;
20 end

5.2.5 Local Explanations
Until now, I have put together all instance-level explanations (SHAP Values) to explain
the global level. Global-level explanations are not suited to explain complex behaviour,
but explanations with local validity are. Because all the extension methods of SHAP
are just based on multiple instances’ explanations, they can explain arbitrary subsets of
explanations.

Consider again the running example, with the global dependence plots of the difference
classifier shown in Figure 5.2. We know, that an interacting feature is causing the higher
increase in effect of the probability of class (0, 1) for low x1 feature values, specifically
for the instances in the range between the two counterfactuals. Because there is only one
other feature, it is simple, which one to investigate further. I extract a subset of instances,
based on the condition −203.8 < x1 < −8.5. Now I create difference classifier dependence
plots for this subset, now referred to as node α. I refer to it as a node, because it can be
seen as part of a modular, hierarchical structure. The sibling node is called ¬α. Plots

54

5.2. Design Process

for the effect of x2 for both nodes are shown in Figure 5.3. I include the sibling node
just for reference, to get a more complete understanding of the data. We now can see,
that the instance in blue is different from other instances in node α, in that it has a
higher x2 value. There is a step-like relation, with x2 having a higher increasing effect
on (0, 1)’s probability and bigger decreasing effect on (0, 0)’s probability. There are also
other instances with higher x2 values, as can be seen in the reference subset ¬α. We can
see one lower counterfactual at x2 = 97.5, which helps me determine a boundary. Finally,
I reason that instances fulfilling −203.8 < x1 < −8.5 (part of node α) are classified 1 by
B while being classified 0 by A, if and only if x2 is greater than 97.5.

0.5

0.0

0.5

N
o
d
e

¬

s
(x

2
)

Class (0, 0)'s outcome Class (0, 1)'s outcome Class (1, 1)'s outcome

200 100 0 100 200

x2

0.5

0.0

0.5

N
o
d
e

s
(x

2
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 100 0 100 200

x2

200 100 0 100 200

x2

Counterfactuals

97.5: 1x (0, 0)

Figure 5.3: Difference classifier dependence plots for node α and all instances not part of
node α with class (0, 1) in focus, running example.

Supervised clustering (described in Section 2.4.5) groups instances by explanation similar-
ity and because it exposes a hierarchical clustering structure, there is the possibility to
investigate local explanations in a modular way. The tree-like structure can be descended
in a top-down approach and allows for an interactive, conversational understanding of
the explanations. As input to the clustering algorithm, I am passing the concatenated
difference classifier SHAP Values.

With the interactive top-down approach, each lower (more detailed) explanation gets
a context: that of the upper levels. Thus, I am addressing contextuality, the essential
finding of Miller [Mil19]. He argues, that "While an event may have many causes, often
the explainee cares only about a small subset (relevant to the context), the explainer selects
a subset of this subset (based on several different criteria), and explainer and explainee
may interact and argue about this explanation." [Mil19]. In this manner, I interpreted
the explanations during the experiments.

Have a look at the difference class dependence plots for x2 of the "One Classifier Ignores
a Feature" example (see Section 4.2 for the task description) in Figure 5.4. It shows plots
for class (0, 1) in the middle, (0, 0) on the left and (1, 1) on the right, plus counterfactuals
for the instances classified (0, 1) (blue). The SHAP Values are now in log odds instead

55

5. Mocca-SHAP

of probabilities. I have picked three nodes from the clustering hierarchy and created
dependence plots for them (rows 2-4), along with the plots for the global level (first row),
termed "root node". The name of the nodes describes their path within the hierarchy.
The letter ’L’ stands for left child, ’R’ for right child. Choosing the nodes is up to the
data scientist. Here I first selected the nodes LR and LL, because they contained all
instances classified (0, 1). But it appeared to me, that node LR contained too diverse
information, so I split it again into nodes LRL and LRR. Then, I descended each node a
bit further to reduce the number of instances, but without loosing any of the instances
classified (0, 1), to finally arrive at the selection of nodes LLR, LRL and LRRRR.

On the global level (root node, first row) I interpret, that the effect of x2 on the predicted
probability of class (0, 0) is increasing for low feature values and decreasing for high
feature values, with the shape of the relation curve being monotonically decreasing. The
effect on class (1, 1) is the opposite. The effect on class (0, 1) is shaped concave, with
peak values having an increasing effect and the rest a decreasing effect. Now what does
that explain about the instance classified (0, 1)? Because of the concave shape of the
(0, 1) curve, I can expect their increasing effect to lower if their x2 value was higher or
lower. If it was lower, the effect on (0, 0) would increase. If it was higher, the effect on
(1, 1) would increase. The counterfactuals actually confirm this observation: at x2 = 22.1,
B now flips its prediction to conclude with A on class 0, while at x2 = 202.8, A flips its
prediction to conclude with B on class 1.

From the local dependence plots, I can see that the behaviour is different from the global
view, because the upper counterfactual is different in each node. It is highest in node
LRL and lowest in node LRRRR. But the lower counterfactual is the same for all. Now
have a look at the scatter plots with decision boundaries in Figure 5.5, each depicting one
of the local nodes. The decision boundaries are visualized by colouring the background
in the color of the actually predicted class. The horizontal dashed lines show the x2
counterfactuals of each node. You can see, that every node contains instances, that are
close to one part of the decision boundary of (0, 1), node LLR at the upper left boundary
between (0, 1) and (1, 1), node LRL at the lower boundary between (0, 1) and (0, 0) and
node LRRRR at the peak of (0, 1) which is adjacent to (0, 0), (1, 1) and (1, 0).

56

5.2. Design Process

10

0

10

R
o
o
t

N
o
d
e

s
(x

2
)

Class (0, 0)'s outcome Class (0, 1)'s outcome Class (1, 1)'s outcome

22.1: 9x (0, 0)

202.8: 9x (1, 1)

10

0

10

N
o
d
e
 L

L
R

s
(x

2
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

22.1: 4x (0, 0)

150.6: 4x (1, 1)

10

0

10

N
o
d
e
 L

R
L

s
(x

2
)

22.1: 3x (0, 0)

202.8: 3x (1, 1)

200 0 200

x2

10

0

10

N
o
d
e
 L

R
R

R
R

s
(x

2
)

200 0 200

x2

200 0 200

x2

Counterfactuals

22.1: 2x (0, 0)

57.3: 2x (1, 1)

Figure 5.4: Difference classifier dependence plots of feature x2 with instances classified
(0, 1) in focus (blue), "One Classifier Ignores a Feature" example.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

Node LLR

100 0 100 200 300

x1

Node LRL

100 0 100 200 300

x1

Node LRRRR

(0, 1)

(1, 0)

(1, 1)

Figure 5.5: Scatter plot of the instances of the interpreted nodes explaining difference
class (0, 1), "One Classifier Ignores a Feature" example.

57

5. Mocca-SHAP

5.2.6 Interpretation Order
Each feature needs separate dependence plots. For the artificial examples in this thesis,
which only have two features, this is no problem. But in which order should they be
investigated, if there are more features? One could use one of the individual classifier’s
feature importances as calculated with the algorithm described in Section 2.4.5 to
determine an order. But an ordering based on relevance for interpreting differences might
be preferable. We can derive a feature importance from the SHAP Value differences in
the same manner and use that.

5.3 Testable Design Proposition
To automatically derive the quantifiable quality metrics, I need to narrow down their
definition.

5.3.1 Fidelity
Fidelity measures, how well the explanation is able to predict the model’s behaviour. In
each experiment, I use a separate test data set. Any of the performance measures can be
used, like Accuracy, F1 Score, Precision and Recall. I select F1 Score, because it is a
balanced version of Precision and Recall and is naturally calculated per class [Pow08].
This allows me to evaluate Fidelity for each class separately.

DiRo2C internally uses an intermediate surrogate model, a decision tree, from which it
derives rules that are output for interpretation of the user. This tree can be directly used
to evaluate against the model to be explained.

Because DiRo2C in its current implementation only supports explaining the binary
difference classifier when multiclass classifiers are compared, I break down the explanation
task into multiple tasks by reformulating the multiclass difference classification task for
DiRo2C in a one-vs-rest manner. So the first task is to explain class (0, 1) vs. all other
classes, the second to explain class (1, 0) vs. all other classes and so on.

The surrogate decision tree as an intermediate result of each of these explanations can be
directly used to predict new instances. Trees with varying complexity are then obtained
by pruning the full tree one step at a time using cost complexity pruning, with the
implementation provided by scikit-learn [PVG+11] based on the algorithm of Breiman et
al. [BFOS84, p. 66]. The trivial tree, consisting only of one node, is removed. They are
sorted by their number of leaf nodes in descending order.

As a baseline, I choose surrogate decision rules derived from a decision tree which has
been trained on the explanation data set to predict the difference classifier labels. It
combines the widely used interpretability method of surrogate decision rules and Staufer
and Rauber’s notion of the difference classifier. But in contrast to DiRo2C, no new
instances are generated for training the surrogate decision tree. Also, I am not creating
an explanation per difference classifier class in a one-vs-rest manner, but just one to

58

5.3. Testable Design Proposition

explain all classes which can be evaluated in one go. This is because there is not the
same limitation as with DiRo2C not supporting comparison of multiclass classifiers. To
derive explanations with different complexities, the same pruning technique as described
in the last paragraph is used.

Mocca-SHAP does not support predicting unseen instances out-of-the-box. Instead it is
a visual, interactive framework. But I build a proxy task around it, that allows to predict
unseen instances and captures the core idea of the modular, hierarchically clustered
explanations.

At first, the clustering structure is obtained. Then, counterfactuals are calculated for
each cluster node and for all classes of the difference classifier. Because counterfactuals
denote upper and lower boundaries for a feature, I can derive a decision rule from each.

Consider an example where we want to do this for instances in a cluster that are classified
0 by A and 1 by B. If the lower counterfactual explanation is x1 = 0 → (0, 0) and the
upper counterfactual x1 = 100 → (1, 1), then the range between them can be described
with the decision rule 0 < x1 < 100. It describes the range, in which the focus instances
are classified differently.

There might be other features with counterfactuals in this cluster node as well. In that
case, they are combined with a logical and (∧). This results in a single decision rule for
the cluster, which explains why these instances are classified differently. Now we have it
in the same form as in the baseline and DiRo2C.

On the global level, we now get one decision rule per difference classifier class. But
which decision rule now applies to a new instance? This can be solved with explanation
similarity. First, generate the SHAP Values for the new instance. Then, find the instance
of the data set with the most similar explanation and get that one’s decision rule. Use
this decision rule to predict the new instance’s difference classifier class.

How do I evaluate on the local levels? We can obtain slices through the clustering
hierarchy, where each slice contains clusters, such that all instances of the data set are
included once in a slice. We start with the first slice, including node L and node R, the
two child nodes of the root node. Then, we replace the node with the biggest cluster
distance with its child nodes, and use that as the resulting set of cluster nodes as the next
slice. This process is repeated, until we arrive at the leaf nodes. The cluster distance is a
measure that represents the heterogeneity within a cluster. So in each step, we replace
the most heterogeneous cluster with more specific ones.

5.3.2 Complexity

Because now all approaches to be compared include decision rules, we have a common
basis on which to compare complexity. It is measured as the number of constraints that
the decision rules are made of.

59

5. Mocca-SHAP

5.3.3 Generation Time
Because of the long generation time, two machines are used to run the experiments.
Therefore, care needs to be taken when comparing generation time. The default machine
is an Apple MacBook Pro with an Intel R� CoreTM i5-4278U CPU @ 2.60GHz. The aiding
machine is an Amazon EC2 instance with an Intel R� Xeon R� CPU E5-2676 v3 @ 2.40GHz
and was used to generate the DiRo2C explanations for the benchmark experiments.

5.4 Implementation

5.4.1 Programming Language and Libraries
I choose Python as the programming language, with which I implement the tools needed
for running the experiments, and Jupyter Notebooks to set up the experiments and
create the visualizations. The reason being, that I am already familiar with them and
because Lundberg also published his package shap for Python [LL17]. The machine
learning library scikit-learn [PVG+11] is used, because it includes many classifier
types and has been used by Staufer and Rauber for evaluating DiRo2C [Sta21], of which
some explanation tasks are used in this work. Another library, XGBoost [CG16], is
used for training ensemble classifiers for the benchmark experiments. For data handling,
transformation and visualization, the packages numpy1, scipy [VGO+20] and pandas2

are used. For creating plots, matplotlib [Hun07] and seaborn [Was21] are used.

5.4.2 Reproducibility
All data set splits for train and test data are done with a random number generator
where a fixed initialization seed is set to be reproducible across runs. The prototypically
implemented tools and the notebooks used to conduct the experiments are shared in a
git repository3. A README.md file is also included, which contains information about
how to set up a Python environment with the same packages and package versions.

5.4.3 Surrogate Decision Rules
The interpretability method of surrogate decision rules is used in the baseline and DiRo2C.
To be able to interpret the most important rules first, they are sorted by support. Support
measures the number of training instances covered with the rule. Within a rule the
constraints are sorted by the feature’s importance, as calculated from the surrogate
decision tree. The implementation used offers importance measures as the normalized
total reduction of the Gini criterion brought by each feature [sld]. The complexity of
decision rules is calculated by counting all constraints, or more precisely, by the total
number of relational operators.

1numpy: https://github.com/numpy/numpy
2pandas: https://github.com/pandas-dev/pandas/
3mocca-shap: https://github.com/karltm/mocca-shap

60

https://github.com/numpy/numpy
https://github.com/pandas-dev/pandas/
https://github.com/karltm/mocca-shap

5.4. Implementation

5.4.4 Mocca-SHAP
Log of Odds Transformation

In case the log of odds outcomes are chosen to be explained with Mocca-SHAP, simply
applying the logit function to transform probabilities may introduce larger rounding
errors than computing them from values in log-probability space. If probabilities are
very small, then the log-probability space introduces less errors because of the way, that
numbers are represented in computers. Furthermore, many scikit-learn classifiers directly
support log-probability prediction. Instead of division that is done in probability space to
obtain the odds ratio, subtraction is used in log-space. See Equation 5.2 for the formula.
log(p) is a direct output of the difference classifier. log(1−p) is the inverse log-probability,
which can be calculated by adding up all other classes’ outcomes in probability space.
Fortunately, the package scipy provides an optimized function with logsumexp4 for
that.

logit(p) = log(p

1 − p
) = log(p) − log(1 − p) (5.2)

Visualizations

In SHAP dependence plots, it may happen that interesting instances cannot be seen
anymore because they are overridden by other instances. To avoid this, I implement
that the focus instances are plot in front of all other instances. Focus instances are all
instances that have a difference classifier label equal to the current class in focus. If no
class is in focus, all instances that have a difference class label are in focus, because they
generally are of a lower number than those that have an equality class label and I want
to focus on the differences.

Clustering Algorithm

For clustering the difference classifier SHAP Values, I am using the same algorithm as
Lundberg in his proposed supervised clustering approach [LEL19]. He used Euclidian
distances and hierarchical clustering with complete linkage, as implemented in the package
scipy [VGO+20]. To make use of all explanation information, the three-dimensional
SHAP Values need to be transformed from a dimension of n × p × q to n × pq for n
instances, p features and q classes of the difference classifier.

Clusters in the cluster hierarchy are referred to as cluster nodes or just nodes, and are
named according to their relative position to the root: For each link in the path down
to a node it receives the letter L if it is left and R if it is right. A convenience function
descend has been implemented to be able to quickly get to the lowest node, that still
contains the same focus instances.

4scipy.special.logsumexp: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.special.logsumexp.html, accessed: 2022-05-03

61

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html

5. Mocca-SHAP

The proxy that enables predicting new instances is based on SHAP Value similarity. This
is implemented with scikit-learn’s K-Nearest Neighbors (KNN) classifier. By setting the
number of neighbors to one, it predicts the cluster with the most similar explanation.

5.5 Summary
In this section I have described how I developed Mocca-SHAP incrementally and how the
findings during the experiments contributed to that. I have answered research question
#2 by extending the notion of the difference classifier for probability support, developed
further variants and found out, that only the multiclass difference classifier is suited
for use with SHAP Values. Research Question #3 was answered by selecting SHAP
Dependence Plots as a suitable global extension method, which also support explaining
modular parts of the explanation. I have also described how I arrived at the side-by-side
SHAP Dependence Plots explaining the individual classifiers and the additional difference
SHAP Values. I have shown various approaches to feature importances, and have
proposed group counterfactual explanations, which are included in SHAP Dependence
Plots when a focus class is set. They enable causal interpretations, which otherwise
would be hard to interpret from the plots alone. To answer research question #4, I
have proposed a clustering approach, that makes it possible to interpret parts of the
explanation in a modular way based on similarity of the SHAP Values. Together with
the group counterfactual explanations, this allows me to define a proxy that can be used
to explain new instances and automatically derive quality metrics. In the last section, I
have shared implementation details and how the results can be reproduced or used to
conduct further research.

62

CHAPTER 6
Experiments

In this section, I describe the experiments that have been conducted to demonstrate
Mocca-SHAP’s basic working and assess on a range of automatically measured and
qualitatively described quality metrics in comparison to a baseline and DiRo2C.

6.1 Running Example
This initial example serves to demonstrate how the methods basically work. The classifiers
A and B predict differently in three areas of the feature space, with one area having no
instances in the explanation data set. All values shown in decision rules are rounded to
one decimal for display. These precisions are also used as the step sizes in the Mocca-
SHAP algorithm for generating group counterfactual explanations. Typically, features
in explanations would be sorted in descending order by their importances, but this has
been overridden with the default order to ease comparison.

6.1.1 Baseline
Training the surrogate decision tree takes less than a second and results in a tree with
a depth of three and eleven nodes. To be able to interpret explanations with different
complexities, I prune it back one node at a time until the minimal depth of one is reached.
This yields four trees, which I interpret in descending order by complexity. In each
explanation I visualize the tree and interpret the derived decision rules and watch them
evolve. In the last explanation, I arrive at the full tree again, which seems to be the
most useful because it is still simple enough to be interpretable and predicts all focus
instances correctly. The derived decision rules for the difference classes are listed below
and a plot of their decision boundaries is shown in Figure 6.1.

1. if −25.5 < x1 ≤ 148.0 ∧ x2 > −140.1, then (1, 0)

63

6. Experiments

200 100 0 100 200 300

x1

250

200

150

100

50

0

50

100

150

x
2

Rule #

other

1

2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 6.1: Decision boundaries of the fourth baseline explanation, running example.
The instances shown are from the explanation data set and are colored by their difference
classifier label.

2. if −207.0 < x1 ≤ −25.5 ∧ x2 > 109.4, then (0, 1)

3. else, both classifiers predict the same label

This explanation achieves a fidelity of 79% F1 score for class (0, 1) with three constraints
and 80% F1 score for class (1, 0) also with three constraints. When comparing the
boundaries to the ground truth, I notice that the upper x2 boundary is missing in the
second decision rule. There are no training instances in this area, so the decision tree
was not able to know how this area should be classified. Also, a decision rule to describe
the smaller (0, 1) differences for low x2 values is missing completely. There are also no
instances in the area from which the surrogate model could have learned the correct class.

6.1.2 DiRo2C
In contrast to the baseline, DiRo2C generates one explanation per class of the difference
classifier. In total, generation takes approx. seven minutes. The explanation with class
(0, 1) in focus includes a tree, which has a depth of four and includes 13 nodes. In the
same manner as in the baseline approach, pruning yields now three trees with different
complexities. The last explanation also explains the single instance of the explanation
data set with the label (0, 1) and includes a decision rule which does not apply to any
instances in the explanation data set. The decision rules are listed below. Figure 6.2
shows the decision boundaries of the explanation and a scatter plot of DiRo2C’s generated
instances.

1. if −207.0 < x1 ≤ 96.2 ∧ x2 > 99.1, then (0, 1)

2. if −16.7 < x1 ≤ −5.9 ∧ x2 ≤ −108.3, then (0, 1)

64

6.1. Running Example

(a) Scatter plot of the generated instances.

200 100 0 100 200 300

x1

250

200

150

100

50

0

50

100

150

x
2

Rule #

other

1

2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Decision boundaries of the decision rules.

Figure 6.2: Third DiRo2C’s explanation for difference class (0, 1), running example.

3. else, then not (0, 1)

DiRo2C performs worse for class (0, 1) than the baseline, it achieves only 71% with six
constraints. You can see in Figure 6.2a, that the upper area contains only a few generated
instances and thus the surrogate tree is not able to learn the correct boundaries for this
class. But in contrast to the baseline, it did describe the second area on the bottom with
decision rule 2.

The explanation with class (1, 0) in focus includes a tree with a depth of four and offers
four explanations with different complexities after pruning. At the last explanation, all
instances of the explanation data set with the label (1, 0) are explained. There is just one
decision rule, shown below. Its decision boundaries and a scatter plot of the generated
instances are shown in Figure 6.3.

1. if −8.5 < x1 ≤ 151.1 ∧ −107.9 < x2 ≤ 97.4, then (1, 0)

2. else, then not (1, 0)

For class (1, 0), it achieved 100% F1 score with four constraints.

6.1.3 Mocca-SHAP
I choose to explain the probability space with Mocca-SHAP. But the classifiers estimate
only hard probabilities, which means they either predict 0% or 100% for a class. Because
of this, the exposed probability estimates are equal to the one-hot encoded labels.
Generation takes approx. 20 seconds.

I start by visualizing the feature importances of the individual classifiers, shown in Figure
6.4. Feature x2 is of no importance to A. This is because of the missingness property of

65

6. Experiments

(a) Scatter plot of the generated instances.

200 100 0 100 200 300

x1

250

200

150

100

50

0

50

100

150

x
2

Rule #

other

1

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Decision boundaries of the decision rules.

Figure 6.3: Fourth DiRo2C explanation for difference class (1, 0), running example.

SHAP and the fact that the mean absolute SHAP Value of x2 is exactly 0. So while A
bases its decisions solely on x1, B uses both features.

0.0 0.1 0.2 0.3 0.4

Importance

x1

x2

F
e
a
tu
re

Classifier

A

B

Figure 6.4: Individual classifiers’ feature importances, running example.

The constant effect of x2 on A’s probability estimate of class 1 can be seen clearly in
the individual SHAP Dependence Plots in Figure 6.5, because all SHAP Values are in a
horizontal line at 0. Note, that only the effect on class 1’s outcome is shown, because for
binary classifiers class 0’s outcome is just the inverse and thus includes no additional
information. x1’s dependence plot for A is in the shape of a step, having a constantly
negative effect up to a certain point and a constantly positive effect above. In contrast,
classifier B’s dependence curves are more complex, with multiple steps and vertical
dispersion, which results from feature interactions. It depends on the combination of
feature values of x1 and x2 for B to decide which class to assign to an instance. For low
values of x2 (below approx. -100), both classifiers agree on assigning either class 0 or
class 1, i.e. in this range their decision boundaries are identical. For values of x2 between
approx. -100 and 100, the classifiers either agree on class 1 or class 0 (red and green
dots), but there are also some where they disagree, with classifier A assigning class 1 and
classifier B assigning class 0 (orange dots). These are instances that have higher values
for x1 as can be seen in the first row middle figure. For higher values of x2 above approx.
100, the classifiers again agree on class 0 or 1, save for one instance (blue dot) that has a
low value for x1.

66

6.1. Running Example

0.5

0.0

0.5

s
(x

1
)

A

(0, 0)

(0, 1)

(1, 0)

(1, 1)

B

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

B A

200 0 200

x

0.5

0.0

0.5

s
(x

2
)

200 0 200

x

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 0 200

x

Figure 6.5: Individual and difference dependence plots, running example. The first row
shows x1’s effects, the second x2’s effects on class 1’s outcome.

I continue by interpreting dependence plots for SHAP Value differences, shown in the
right column. They have the advantage, that I can interpret over- and underestimation
of classifier B. B overestimates the outcome for low x1 values (below approx. 0). In one
case (blue dot) this overestimation is especially big, which could explain why B predicts
class 1 in this case instead of class 0 like A. Furthermore, B underestimates the outcome
for medium values of x1 between approx. 0 and 100. This could explain why certain
instances are classified (1, 0) (orange). For low x2 values it overestimates the outcome
(below approx. -200), but without any instances classified differently. For medium values
it underestimates the outcome (from approx. -200 until 100) in certain cases (orange
dots), which could explain why they are classified 0 by B instead of 1 like A. For high
values it overestimates the outcome (above approx. 100), where there is one instance
with peak overestimation (blue dot), which could explain why it is classified 1 by B and
0 by A.

Difference classifier dependence plots, including group counterfactual explanations, allow
interpretation with causal links. In Figure 6.6 I have created them for x1 with class
(0, 1) in focus and in comparison with the effects on class (0, 0) and (1, 1)’s outcomes.
For brevity, class (1, 0) is excluded from the plots. x1’s effect on class (0, 1)’s outcome
is marginally higher in between the counterfactual boundaries. Thus, the probability
predicted for class (0, 1) of these instances is slightly higher. But the instance classified
(0, 1) has an especially high SHAP Value. To investigate the behaviour in this range in
more detail, I extract a subset with all instances in the range (-203.8, -8.5) and call it
node α.

Next, I investigate x2’s effects for instances part of node α and those not part of it
separately, as shown in Figure 6.7. Now I can see, that the magnitude of the step-shaped
relation depends on x1: if the instances are part of node α, the increase in (0, 1)’s outcome

67

6. Experiments

200 100 0 100 200 300

x1

0.5

0.0

0.5

s
(x

1
)

Class (0, 0)'s outcome

Counterfactuals

-203.8: 1x (0, 0)

-8.5: 1x (1, 1)

200 100 0 100 200 300

x1

Class (0, 1)'s outcome

200 100 0 100 200 300

x1

Class (1, 1)'s outcome

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 6.6: Difference classifier dependence plots for x1 with class (0, 1) in focus, running
example.

for x2 > 97.5 is much bigger than for instances not part of it. Also, node α only contains
instances which A classifies as 0 and B as either 0 or 1, while the other node ¬α contains
mainly instances that A classifies as 0 and B as 0 or 1.

0.5

0.0

0.5

N
o
d
e

¬

s
(x

2
)

Class (0, 0)'s outcome Class (0, 1)'s outcome Class (1, 1)'s outcome

200 100 0 100 200

x2

0.5

0.0

0.5

N
o
d
e

s
(x

2
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 100 0 100 200

x2

200 100 0 100 200

x2

Counterfactuals

97.5: 1x (0, 0)

Figure 6.7: Difference classifier dependence plots for node α and all instances not part of
node α with class (0, 1) in focus, running example.

Mocca-SHAP achieves the highest overall fidelity for class (0, 1) with 97% compared to
the other approaches, although it did not find the the second area classified differently
for low x2 values.

I continue by putting class (1, 0) into focus. The dependence plots for x1 are shown in
Figure 6.8. This time, class (0, 1) is omitted for brevity. The effect of x1 on class (1, 0)’s
outcome is constant and marginally lower than 0 for low feature values and high feature
values, but higher for medium values as can be seen in the middle figure. To investigate
further, I extract instances between the two counterfactual boundaries in the range (-8.6,
150.8), and call the new node β.

In Figure 6.9 you can see dependence plots for x2, with instances part of node β in the
second row and those not part of β in the first row for reference. Most of the vertical

68

6.1. Running Example

200 100 0 100 200 300

x1

0.5

0.0

0.5

R
o
o
t

N
o
d
e

s
(x

1
)

Class (0, 0)'s outcome

Counterfactuals

-8.6: 8x (0, 0)

150.8: 8x (1, 1)

200 100 0 100 200 300

x1

Class (1, 0)'s outcome

200 100 0 100 200 300

x1

Class (1, 1)'s outcome

Figure 6.8: Difference classifier dependence plots for x1 with class (1, 0) in focus, running
example.

dispersion previously observed breaks down to simpler step-like relations. Only between
the two counterfactual explanations in the range (-108.2, 97.6), instances in node β are
classified (1, 0), and have SHAP Values with greater magnitude than the instances not
in β. This has an increasing effect on the probability of (1, 0). Also, in the right plot
of node β you can see, that x2 has a bigger decreasing effect on the probability of (1, 1)
for these instances. This distinguishes them from the red instances, which are classified
(1, 1). They are the only other instances in node β.

0.50

0.25

0.00

0.25

N
o
d
e

¬

s
(x

2
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 100 0 100 200

x2

0.50

0.25

0.00

0.25

N
o
d
e

s
(x

2
)

Counterfactuals

-108.2: 8x (1, 1)

97.6: 8x (1, 1)

200 100 0 100 200

x2

200 100 0 100 200

x2

Figure 6.9: Difference classifier dependence plots for node β and all instances not part of
node β with class (1, 0) in focus, running example.

I conclude, that B predicts 1 while A predicts 0 for instances having −203.8 < x1 ≤
−8.6 ∧ x2 > 97.5 and, that B predicts 0 while A predicts 1 for instances having −8.6 <
x1 ≤ 150.7 ∧ −108.2 < x2 ≤ 97.5. In Figure 6.10 you can see a scatter plot of the
instances in nodes α and β.

Mocca-SHAP achieves 100% with four constraints for class (1, 0), just like DiRo2C.

69

6. Experiments

200 100 0 100 200 300

x1

250

200

150

100

50

0

50

100

150

x
2

Node

(0, 0)

(0, 1)

200 100 0 100 200 300

x1

Node

(1, 0)

(1, 1)

Figure 6.10: Scatter plots for instances of nodes α and β and their counterfactual
boundaries (dashed lines), running example.

6.1.4 Comparison

You can further see a plot of the achieved F1 scores for explanations with different
complexities as automatically calculated in Figure 6.11. In the automatic runs, not only
explanations for the two difference classes (0, 1) and (1, 0) are evaluated, but also for the
equality classes (0, 0) and (1, 1). Counterfactuals can be computed in the same way for
equality classes, and denote the feature value, which the instances would have to assume
for the difference classifier class to change.

• Explanations for class (0, 0): Both DiRo2C and Mocca-SHAP perform very similarly
over different degrees of complexity, and both achieve higher F1 scores than the
baseline.

• Explanations for class (0, 1): Note, that both Mocca-SHAP and the baseline
generated only one explanation, because of the simplicity of the task. Therefore,
there is no curve, but only dots in the graph. They both achieved higher fidelity
than DiRo2C, with Mocca-SHAP scoring highest.

• Explanations for class (1, 0): Note, that Mocca-SHAP generated only one expla-
nation because of the simplicity of the task. At this level of complexity (four
constraints), both Mocca-SHAP and DiRo2C achieve the highest fidelity, which is
higher than the maximally achieved fidelity of the baseline with a complexity of
three.

• Explanations for class (1, 1): The baseline achieves only low fidelity and does not
offer more complex explanations like Mocca-SHAP and DiRo2C. Mocca-SHAP
achieves a marginally higher fidelity than DiRo2C.

70

6.2. One Classifier Ignores a Feature

1 2 3 4 5 6 7 8

Constraints

0.5

0.6

0.7

0.8

0.9

1.0

F
1
 S

c
o
re

(0, 0)

Approach

diro2c

shap

baseline

1 2 3 4 5 6

Constraints

(0, 1)

1 2 3 4

Constraints

(1, 0)

2 4 6 8 10

Constraints

(1, 1)

Figure 6.11: Explanation fidelity on the running example test set for explanations with
different complexities.

Generation time was the longest for DiRo2C with seven minutes, followed by Mocca-SHAP
with 20 seconds. The baseline generation finished nearly instantly.

6.1.5 Summary

Mocca-SHAP achieved highest fidelity in the automatic evaluation for all four difference
classifier classes, while DiRo2C was on the same level in three of them. DiRo2C performed
bad on the (0, 1) explanations. This was an obstacle during interpretation as well, because
it missed one boundary of the decision rule for difference class (0, 1). Also, it took the
longest to generate. The only advantage of DiRo2C was, that it was the only method
which found a decision rule for the second part of the (0, 1) differences with lower x2
values, which does not include any examples in the data set.

6.2 One Classifier Ignores a Feature
In this artificial task, the goal is to explain one area classified (0, 1) and another classified
(1, 0), each with one horizontal boundary and one tilted boundary, that is, it is not axis-
aligned. All values shown in decision rules are rounded to one decimal for display. These
precisions are also used as the step sizes in the Mocca-SHAP algorithm for generating
group counterfactual explanations. Typically, features in explanations would be sorted in
descending order by their importances, but this has been overridden with the default
order to ease comparison.

6.2.1 Baseline

The baseline approach generated a surrogate decision tree with a depth of four, which, if
pruned down to minimal depth, offers five explanations to interpret. Generation time
was less than a second. Explanation (1) does not describe the difference classes at all,
(2) only has a coarse rule describing the (0, 1) differences: x1 > 174.8 ∧ x2 > 23.9, (3)
adds a rule describing the (1, 0) differences: x1 ≤ 69.8 ∧ −29.9 < x2 ≤ 23.9, (4) adds
an upper boundary to the first rule and (5) adds another rule describing (0, 1). Finally,

71

6. Experiments

the rule set explains every instance classified differently. They are listed below and a
visualization of their decision boundaries is shown in Figure 6.12.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

Rule #

other

1

2

3

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 6.12: Decision boundaries of the 5th baseline explanation, "One Classifier Ignores
a Feature" example. The instances shown are from the explanation data set and are
colored by their difference classifier label.

1. if x1 > 174.8 ∧ 23.9 < x2 ≤ 134.3, then (0, 1)

2. if x1 ≤ 69.8 ∧ −29.9 < x2 ≤ 23.9, then (1, 0)

3. if 93.3 < x1 ≤ 174.8 ∧ 23.9 < x2 ≤ 39.4, then (0, 1)

4. else, both classifiers predict the same label

This explanation achieves a F1 score of 81.5% for class (0, 1) with seven constraints.
The difference area is approximated with two rectangular shapes, one with its right side
open, as can be seen in Figure 6.12. On class (1, 0), this explanation achieves a F1 score
of 73.3% with three constraints. The difference area is approximated with only one
rectangular shape, which is open to the left.

6.2.2 DiRo2C
In total, generation took approx. 14 minutes. I start by interpreting the explanation
for difference class (0, 1). A scatter plot of the generated instances is shown in Figure
6.13a. The surrogate tree has a depth of 12. Pruning it back to the minimal tree yields
23 explanations. I choose the fifth explanation as the final explanation, because the more
detailed ones don’t lead to new insights and because every instance of the explanation
data set which is classified (0, 1) is explained. I derive the decision rules listed below.
They are visualized in Figure 6.13b.

72

6.2. One Classifier Ignores a Feature

(a) Scatter plot of the generated instances.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

Rule #

other

1

2

3

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Decision boundaries of the decision rules.

Figure 6.13: Last interpreted explanation of DiRo2C’s explanation for difference class
(0, 1), "One Classifier Ignores a Feature" example.

1. if x1 > 118.5 ∧ 21.9 < x2 ≤ 99.8, then (0, 1)

2. if 93.7 < x1 ≤ 118.5 ∧ 22.0 < x2 ≤ 48.8, then (0, 1)

3. if x1 > 185.8 ∧ 99.8 < x2 ≤ 166.9, then (0, 1)

4. else, then not (0, 1)

This explanation achieves a F1 score of 87% and thus scores higher than the baseline. It
is also more complex with ten constraints, but still interpretable. Seen from the decision
boundary plot in Figure 6.13a, the differences are is described with three boxes, of which
two are open to the right. This is a more accurate approximation compared to the
baseline.

I continue by interpreting the explanation for difference class (1, 0). The surrogate tree
has a depth of 13 and offers 48 explanations to interpret after pruning. I choose the
seventh explanation, as the further ones do not lead to new insights. The decision rules
of that explanation are listed below and a plot of their decision boundaries is shown in
Figure 6.14.

1. if x1 ≤ 38.2 ∧ −29.9 < x2 ≤ 22.1, then (1, 0)

2. if 38.2 < x1 ≤ 59.3 ∧ −11.7 < x2 ≤ 22.1, then (1, 0)

3. if x1 ≤ 1.0 ∧ −79.7 < x2 ≤ −29.9, then (1, 0)

4. if 59.3 < x1 ≤ 76.4 ∧ 3.9 < x2 ≤ 22.0, then (1, 0)

5. else, then not (1, 0)

73

6. Experiments

(a) Scatter plot of the generated instances.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

Rule #

other

1

2

3

4

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Decision boundaries of the decision rules.

Figure 6.14: Last interpreted explanation of DiRo2C’s explanation for difference class
(1, 0), "One Classifier Ignores a Feature" example.

This explanation achieves a F1 score with 90%, which is higher than the baseline. It
includes 14 constraints. As we can see in Figure 6.14a, the differences are is approximated
with four rectangles, of which two are open on the left.

6.2.3 Mocca-SHAP
All preconditions are met for explaining the log of odds space: Both classifiers offer
probability estimates and none of the estimated probabilities for the explanation data
set is an extreme value of either 0% or 100%. With that, generation took approx. seven
minutes. I start by interpreting the individual classifiers’ feature importances, shown in
Figure 6.15. Classifier B is different from A in that x1 has no importance at all to it.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Importance

x1

x2

F
e
a
tu
re

Classifier

A

B

Figure 6.15: Individual classifiers’ feature importances, "One Classifier Ignores a Feature"
example.

This is confirmed in the individual dependence plots for the effects on class 1’s outcome
shown in Figure 6.16: x1 has no effect on B’s outcomes, because its effect is constantly 0.
On A’s class 1 outcome, it has a linearly decreasing effect. In contrast, x2’s effect is similar
for both classifiers, which is linearly increasing, but less steep for B. According to the
difference dependence plots in the right column, up to a certain point B underestimates
the effect of x1 on class 1’s outcome compared to A, and overestimates the effect above.

74

6.2. One Classifier Ignores a Feature

Furthermore, it overestimates the effect of x2 up to a certain point and underestimates
its effect above. You can see that instances classified (1, 0) (orange) are located below
the horizontal line at s = 0 in x1’s difference dependence plot, and that the instances
classified (0, 1) are located above this line. Vice versa, this is the case for x2’s difference
dependence plots, except that some instances classified (1, 0) are above the line.

10

5

0

5

s
(x

1
)

A

(0, 0)

(0, 1)

(1, 0)

(1, 1)

B

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

B A

400 200 0 200

x

10

5

0

5

s
(x

2
)

400 200 0 200

x

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

400 200 0 200

x

Figure 6.16: Individual and difference dependence plots, "One Classifier Ignores a Feature"
example.

I continue by interpreting difference classifier dependence plots with a focus on the
instances classified (0, 1). I apply clustering as described in Section 5.2.5 to obtain
clusters according to the difference classifier SHAP Values. The lowest node, that
contains all instances classified (0, 1) is L. Its child nodes LL and LR are of very different
size (intra-cluster distance of 25 and 107), so I split the larger node (LR) again into
LRL and LRR. Now I descend each cluster node to the point where their distances are
about equal (intra-cluster distances of 25, 29 and 27), resulting in nodes LLR, LRL and
LRRRR. Their dependence plots are shown in Figure 6.17, along with plots for the global
level. x1’s lower counterfactual varies for all interpreted nodes. x2’s upper counterfactual
varies too, but its lower counterfactual is equal across all nodes.

I conclude, that generally B tends to estimate label 1 more often than A when x2 >
22.1 ∧ x1 > 90.8, because of the counterfactuals of x1 and x2 that do not vary across
the interpreted clusters. But the upper boundary of x2 and the lower boundary of x1
depend on both features’ values. Examples for such are shown below in the rules derived
for the local cluster nodes. You can see scatter plots of each node’s instances with the
counterfactual explanations in Figure 6.18.

• Node root: if x1 > 90.8 ∧ 22.1 < x2 ≤ 202.7, then (0, 1)

• Node LLR: if x1 > 186.6 ∧ 22.1 < x2 ≤ 150.5, then (0, 1)

75

6. Experiments

4

2

0

2

4

R
o
o
t

N
o
d
e

s
(x

1
)

Class (0, 0)'s outcome Class (0, 1)'s outcome Class (1, 1)'s outcome

90.8: 9x (1, 1)

4

2

0

2

4

N
o
d
e
 L

L
R

s
(x

1
)

186.6: 4x (1, 1)

4

2

0

2

4

N
o
d
e
 L

R
L

s
(x

1
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)
90.8: 3x (1, 1)

200 100 0 100 200 300

x1

4

2

0

2

4

N
o
d
e
 L

R
R

R
R

s
(x

1
)

200 100 0 100 200 300

x1

200 100 0 100 200 300

x1

Counterfactuals

96.1: 2x (1, 1)

10

0

10

R
o
o
t

N
o
d
e

s
(x

2
)

Class (0, 0)'s outcome Class (0, 1)'s outcome Class (1, 1)'s outcome

22.1: 9x (0, 0)

202.8: 9x (1, 1)

10

0

10

N
o
d
e
 L

L
R

s
(x

2
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

22.1: 4x (0, 0)

150.6: 4x (1, 1)

10

0

10

N
o
d
e
 L

R
L

s
(x

2
)

22.1: 3x (0, 0)

202.8: 3x (1, 1)

200 0 200

x2

10

0

10

N
o
d
e
 L

R
R

R
R

s
(x

2
)

200 0 200

x2

200 0 200

x2

Counterfactuals

22.1: 2x (0, 0)

57.3: 2x (1, 1)

Figure 6.17: Difference classifier dependence plots with instances classified (0, 1) in focus
(blue), "One Classifier Ignores a Feature" example.

76

6.2. One Classifier Ignores a Feature

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

Node LLR

100 0 100 200 300

x1

Node LRL

100 0 100 200 300

x1

Node LRRRR

(0, 1)

(1, 0)

(1, 1)

Figure 6.18: Scatter plot of the instances of the interpreted nodes explaining difference
class (0, 1), "One Classifier Ignores a Feature" example.

• Node LRL: if x1 > 90.8 ∧ 22.1 < x2 ≤ 202.7, then (0, 1)

• Node LRRRR: if x1 > 96.1 ∧ 22.1 < x2 ≤ 57.2, then (0, 1)

Mocca-SHAP achieves a marginally higher F1 score for class (0, 1) with 88% than DiRo2C
while also being less complex with nine constraints compared to ten constraints. From
the plot including the counterfactual explanations for each cluster interpreted in Figure
6.18, you can see that nodes LLR and LRRRR nicely approximate the difference area.
Node LRL’s counterfactuals are close to the global counterfactuals, thus they do not
explain the local behaviour so well.

Next, I investigate the difference classifier dependence plots with a focus on instances
classified (1, 0). One split of the focus instances seems sufficient, because the intra-cluster
distances are quite similar with 25 and 34. Please note, that all instances classified (1, 0)
are contained in node LRR, so the first split assigns part of them into LRRL and part
into LRRR. I create dependence plots for these nodes, shown along with the global level
in Figure 6.20. Now there is a varying upper counterfactual boundary for x1. x2’s lower
counterfactual varies just slightly but its upper counterfactual is the same across all
nodes.

I conclude, that B tends to estimate label 0 more often than A when x2 ≤ 22.1∧x1 ≤ 83.5,
because the corresponding counterfactuals stay the same across all clusters interpreted.
But the lower boundary of x2 and the upper boundary of x1 depend on both features’
values. Examples for such are shown below in the rules derived for the local cluster nodes.
You can see scatter plots of each node’s instances with the counterfactual explanations
in Figure 6.19.

• Node root: if x1 ≤ 83.5 ∧ −58.3 < x2 ≤ 22.1, then (1, 0)

• Node LRRL: if x1 ≤ 50.2 ∧ −55.5 < x2 ≤ 22.1, then (1, 0)

77

6. Experiments

• Node LRRR: if x1 ≤ 83.5 ∧ −58.3 < x2 ≤ 22.1, then (1, 0)

Mocca-SHAP achieves a lower F1 score with 82% that DiRo2C, but a higher score than
the baseline. As can be seen in the plots of the nodes including the counterfactuals in
Figure 6.19, the two local explanations are quite similar. Node LRRR could have been
broken down once again to highlight local differences.

100 0 100 200 300

x1

300

200

100

0

100

200

x
2

Node LRRL

100 0 100 200 300

x1

Node LRRR

Figure 6.19: Scatter plot of the instances of the interpreted nodes explaining difference
class (1, 0), "One Classifier Ignores a Feature" example.

78

6.2. One Classifier Ignores a Feature

4

2

0

2

4

R
o
o
t

N
o
d
e

s
(x

1
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

83.6: 6x (0, 0)

4

2

0

2

4

N
o
d
e
 L

R
R

L

s
(x

1
)

50.3: 4x (0, 0)

200 100 0 100 200 300

x1

4

2

0

2

4

N
o
d
e
 L

R
R

R

s
(x

1
)

200 100 0 100 200 300

x1

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

200 100 0 100 200 300

x1

83.6: 2x (0, 0)

10

0

10

R
o
o
t

N
o
d
e

s
(x

2
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

-58.3: 6x (0, 0)

22.2: 6x (1, 1)

10

0

10

N
o
d
e
 L

R
R

L

s
(x

2
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

-55.5: 4x (0, 0)

22.2: 4x (1, 1)

200 0 200

x2

10

0

10

N
o
d
e
 L

R
R

R

s
(x

2
)

200 0 200

x2

200 0 200

x2

-58.3: 2x (0, 0)

22.2: 2x (1, 1)

Figure 6.20: Difference classifier dependence plots with instances classified (1, 0) in focus
(orange), "One Classifier Ignores a Feature" example.

79

6. Experiments

6.2.4 Comparison
As can be seen in Figure 6.21, Mocca-SHAP beats the baseline in terms of the highest
achieved fidelity, but DiRo2C achieves even higher fidelity, at the cost of higher complexity.
This shows a disadvantage of Mocca-SHAP: it can only be as accurate to the underlying
classifiers, as the data set allows it. DiRo2C has an advantage, since it is able to generate
more instances in sparse areas.

0 25 50 75 100

Constraints

0.4

0.6

0.8

1.0

F
1
 S

c
o
re

(0, 0)

Approach

diro2c

shap

baseline

0 20 40 60

Constraints

(0, 1)

0 25 50 75 100

Constraints

(1, 0)

0 25 50 75 100

Constraints

(1, 1)

Figure 6.21: Explanation fidelity on the "One Classifier Ignores a Feature" example test
set for explanations with complexities up to 100 constraints.

While all approaches allowed to interpret with a varying degree of detail, the baseline
explanation was just enough to get a general understanding and offered no option to
investigate in more detail. With DiRo2C it was possible to increase the complexity of
the generated decision rules as desired, at the cost of strongly increasing complexity.

Only Mocca-SHAP allowed me to interpret that the (0, 1) differences have a common,
global lower decision boundary and the (1, 0) differences a common, global upper decision
boundary, and that the reason for this is that B ignores feature x1.

DiRo2C explanation generation took the longest with approx. 14 minutes, followed by
Mocca-SHAP with approx. seven minutes. The baseline generated the explanation nearly
instantly.

6.2.5 Summary
Both Mocca-SHAP and DiRo2C achieve reasonable levels of fidelity in the automatic
evaluation, but the baseline is restricted too much by its simplicity. DiRo2C even
offers more complex explanations, but only at very high cost of complexity. When I
interpreted the explanations, both Mocca-SHAP and DiRo2C allowed me to get a good
understanding of the observed differences. But DiRo2C took the longest when generating
its explanations.

6.3 Gaussian Quantiles
In this artificial task, the goal is to explain a ring-shaped area where classifier A predicts
1 and classifier B 0. There are no cases where A predicts 0 and B 1. All values shown

80

6.3. Gaussian Quantiles

in decision rules are rounded to one decimal for display. These precisions are also used
as the step sizes in the Mocca-SHAP algorithm for generating group counterfactual
explanations. Typically, features in explanations would be sorted in descending order by
their importances, but this has been overridden with the default order to ease comparison.

6.3.1 Baseline
The baseline approach generated a surrogate decision tree with a depth of eight, which,
if pruned down to minimal depth, offers 23 explanations to interpret. Generation time
was less than a second. In total, I interpreted the first 14 explanations. The last of them
does not cover instances #124, #155, #169, #203 and #221 of the explanation data
set, which are classified differently, but it would be possible to explain them with an
explanation with higher complexity. The decision rules derived from the tree are listed
below and a visualization of their decision boundaries is shown in Figure 6.22.

200 100 0 100 200

x1

200

100

0

100

200

x
2

Rule #

other

1

2

3

4

5

(0, 0)

(1, 0)

(1, 1)

Figure 6.22: Decision boundaries of the 14th baseline explanation, Gaussian Quantiles
example. The instances shown are from the explanation data set and are colored by their
difference classifier label.

1. if 91.4 < x1 ≤ 120.1 ∧ −94.0 < x2 ≤ 78.1, then (1, 0)

2. if −130.0 < x1 ≤ −100.1 ∧ −94.0 < x2 ≤ 104.0, then (1, 0)

3. if −100.1 < x1 ≤ 91.4 ∧ 103.4 < x2 ≤ 133.4, then (1, 0)

4. if −53.5 < x1 ≤ 71.0 ∧ −127.6 < x2 ≤ −94.0, then (1, 0)

5. if 45.9 < x1 ≤ 91.4 ∧ −94.0 < x2 ≤ −77.3, then (1, 0)

6. else, both classifiers predict the same label

81

6. Experiments

The five rectangular areas approximate the ring shape quite nicely, as can be seen in
the decision boundary plot in Figure 6.22. But on the lower left, there is a gap. The
explanation achieves 70% F1 score with 20 constraints.

6.3.2 DiRo2C
In total, generation took approx. 39 minutes. A scatter plot of the generated instances
is shown in Figure 6.23. The tree explaining (1, 0) has a depth of 18 and offers 23
intermediate steps after pruning. I interpreted the first eight explanations. The decision
rules of the last explanation interpreted are shown below and a visualization of the
decision boundaries is shown in Figure 6.24. It does not explain the instances #155,
#169, #203, #214 and #252. The 20th Explanation could explain them, but is not easily
interpretable, because it contains 87 constraints. You can see it in Figure 6.25.

Figure 6.23: Scatter plot of the instances
generated by DiRo2C, Gaussian Quantiles
example.

200 100 0 100 200

x1

200

100

0

100

200

x
2

Rule #

other

1

2

3

4

5

(0, 0)

(1, 0)

(1, 1)

Figure 6.24: Decision boundaries of the
DiRo2C 8th explanation with explanation
data set instances.

1. if −78.9 < x1 ≤ 82.2 ∧ −131.1 < x2 ≤ −87.9, then (1, 0)

2. if 97.5 < x2 ≤ 134.8, then (1, 0)

3. if −142.0 < x1 ≤ −92.5 ∧ −87.9 < x2 ≤ 97.5, then (1, 0)

4. if 96.6 < x1 ≤ 131.3 ∧ −87.9 < x2 ≤ 97.5, then (1, 0)

5. if 72.7 < x1 ≤ 96.6 ∧ −87.9 < x2 ≤ −37.9, then (1, 0)

6. else, then not (1, 0)

The 8th explanation achieves a F1 score of 70% with 18 constraints. As you can see
in the decision boundary plot in Figure 6.24, the rule describing the upper part of the

82

6.3. Gaussian Quantiles

Figure 6.25: Decision boundaries of the DiRo2C 20th explanation with explanation data
set instances.

ring is missing a left and right boundary. In the scatter plot of the generated training
instances in Figure 6.23 you can see, that in these two particular areas there are less
instances which might have caused the inaccuracy. Also, in the way more complex (87
constraints) 20th explanation, the error with the missing x1 boundary on the upper part
of the ring still persists on the left side as you can see in Figure 6.25. You can also see,
how the decision tree approximates the ring-shaped structure.

6.3.3 Mocca-SHAP
I choose to explain the log of odds output space of the classifiers. In total, generation
took approx. 14 minutes. For interpreting the individual classifiers’ effects, I just create
dependence plots for the effect on class 1’s outcome. For interpreting the difference
classifier’s effects, I select the classes (0, 0), (1, 0) and (1, 1) for brevity and leave out
class (0, 1), because no instances are classified like that and no counterfactual explanation
suggests that this class could be predicted.

First, I create dependence plots for each individual classifier and for their difference
SHAP Values, as shown in Figure 6.26. The effect of both features on the class 1 outcome
of both classifiers is very similar. It is shaped concave. But for B, the effect is less steep.
This results in B overestimating medium feature values and underestimating low and
high feature values, as can be seen in the difference dependence plots in the right column.
The instances classified (1, 0) (blue) appear over the entire value range of each feature.
From this plot I cannot explain why they are classified differently.

I continue by interpreting the difference classifier dependence plots. The instances
classified (1, 0) are split into the cluster nodes RL and RR, and the lowest cluster nodes,
that contain the two groups, are nodes RLR and RRRL. The plots for the global level
and these two nodes are shown in Figure 6.27.

83

6. Experiments

0

10

20

s
(x

1
)

A B

Label

(0, 0)

(1, 0)

(1, 1)

Label

(0, 0)

(1, 0)

(1, 1)

B A

(0, 0)

(1, 0)

(1, 1)

200 0 200

x

0

10

20

s
A
(x

2
)

200 0 200

x

Label

(0, 0)

(1, 0)

(1, 1)

Label

(0, 0)

(1, 0)

(1, 1)

200 0 200

x

Figure 6.26: Individual and difference dependence plots, Gaussian Quantiles example.
The first row shows x1’s effects, the second x2’s effects.

Globally, the two features have a similar shape of their effects. x1’s and x2’s effects on
(0, 0)’s outcome are shaped convex, while the effects on (1, 1)’s outcome are inverted, in
a concave shape. The effects on (1, 0)’s outcome have two high points: one for lower
feature values, and one for higher values. In between, bigger vertical dispersion is present,
where the instances classified (1, 0) (blue) have higher SHAP values than other instances,
especially those classified (0, 0) (red). The global counterfactual explanations suggest
that the differences occur in this specific range between the two high-points of (1, 0)’s
dependence curves only.

In the the next lower level of the cluster hierarchy, node RLR contains instances classified
(1, 0) with either low or high x1 values and node RRRL those with either low or high x2
values. Furthermore, node RLR includes mainly instances for which B underestimates
the effect of x1 and node RRRL those, for which B underestimates the effect of x2. So
these two clusters also separate the over- and underestimation effects intertwined in the
global difference dependence plots interpreted earlier. The decision rules derived from
these cluster nodes are listed below.

• Root Node: if −131.2 < x2 ≤ 136.2 ∧ −143.8 < x1 ≤ 132.3, then (1, 0)

• Node RLR: if −113.6 < x2 ≤ 123.3 ∧ −143.8 < x1 ≤ 132.3, then (1, 0)

• Node RRRL: if −131.2 < x2 ≤ 136.2 ∧ −96.6 < x1 ≤ 93.2, then (1, 0)

This explanation achieves a F1 score of only 39% with eight constraints. This is a lot
less than the baseline and DiRo2C. From the dependence plots in Figure 6.27 I can see
that there are opposing effects present in the two clusters. Each lower part is increasing
monotonically and each upper part decreasing monotonically. I expect each part having

84

6.3. Gaussian Quantiles

40

20

0

20

R
o
o
t

N
o
d
e

s
(x

1
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

-143.8: 55x (1, 1)

132.4: 55x (1, 1)

40

20

0

20

N
o
d
e
 R

L
R

s
(x

1
)

-143.8: 32x (1, 1)

132.4: 32x (1, 1)

200 100 0 100 200

x1

40

20

0

20

N
o
d
e
 R

R
R

L

s
(x

1
)

200 100 0 100 200

x1

Label

(0, 0)

(1, 0)

(1, 1)

200 100 0 100 200

x1

-96.6: 23x (1, 1)

93.3: 23x (1, 1)

20

0

20

R
o
o
t

N
o
d
e

s
(x

2
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

-131.2: 55x (1, 1)

136.3: 55x (1, 1)

20

0

20

N
o
d
e
 R

L
R

s
(x

2
)

Label

(0, 0)

(1, 0)

(1, 1)

-113.6: 32x (1, 1)

123.4: 32x (1, 1)

300 200 100 0 100 200

x2

20

0

20

N
o
d
e
 R

R
R

L

s
(x

2
)

300 200 100 0 100 200

x2

300 200 100 0 100 200

x2

-131.2: 23x (1, 1)

136.3: 23x (1, 1)

Figure 6.27: Difference classifier dependence plots for the root node, node RLR and
RRRL, Gaussian Quantiles example.

85

6. Experiments

different counterfactual explanations, but with the supervised clustering approach it is
not possible to separate parts like that. With each split, a part of the instances with
lower and upper feature values would be put together again, because of their similarity.
The solution is to manually split the clusters at the threshold 0. Splitting node RLR
by x1 results in nodes left and right, and splitting node RRRL by x2 results in nodes
bottom and top. In Figure 6.28, relevant dependence plots are shown for them. Now the
counterfactual explanations are as expected closer to the instances, and also show the
boundary to class (0, 0), which was missed before. The decision rules derived from these
nodes are listed below.

• Left: if −91.7 < x2 ≤ 108.3 ∧ −143.3 < x1 ≤ −63.2, then (1, 0)

• Right: if −113.6 < x2 ≤ 123.3 ∧ 52.0 < x1 ≤ 132.3, then (1, 0)

• Top: if 92.4 < x2 ≤ 136.2 ∧ −96.6 < x1 ≤ 93.2, then (1, 0)

• Bottom: if −131.2 < x2 ≤ −81.2 ∧ −89.4 < x1 ≤ 89.0, then (1, 0)

This explanation now achieves a F1 score of 53% with 16 constraints. This is lower
than the baseline and DiRo2C, but is also less complex. In Figure 6.29 you can see in
scatter plots of the two features, that node RLR actually contains the instances of the
left and right side of the ring and node RRRL those of the bottom and top side of the
ring. Figure 6.30 shows scatter plots of nodes left and right in the first row and nodes
bottom and top in the second row.

86

6.3. Gaussian Quantiles

40

20

0

20

N
o
d
e
 l
e
ft

s
(x

1
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

-143.3: 13x (1, 1)

-63.1: 13x (0, 0)

40

20

0

20

N
o
d
e
 r

ig
h
t

s
(x

1
)

Label

(0, 0)

(1, 0)

(1, 1)

52.0: 19x (0, 0)

132.4: 19x (1, 1)

200 100 0 100 200

x1

40

20

0

20

R
o
o
t

N
o
d
e

s
(x

1
)

200 100 0 100 200

x1

200 100 0 100 200

x1

-143.8: 55x (1, 1)

132.4: 55x (1, 1)

20

0

20

N
o
d
e
 b

o
tt

o
m

s
(x

2
)

Class (0, 0)'s outcome Class (1, 0)'s outcome Class (1, 1)'s outcome

-131.2: 13x (1, 1)

-81.1: 13x (0, 0)

20

0

20

N
o
d
e
 t

o
p

s
(x

2
)

Label

(0, 0)

(1, 0)

(1, 1)

92.4: 10x (0, 0)

136.3: 10x (1, 1)

300 200 100 0 100 200

x2

20

0

20

R
o
o
t

N
o
d
e

s
(x

2
)

300 200 100 0 100 200

x2

300 200 100 0 100 200

x2

-131.2: 55x (1, 1)

136.3: 55x (1, 1)

Figure 6.28: Difference classifier dependence plots for the manually interpreted parts,
Gaussian Quantiles example.

87

6. Experiments

200 100 0 100 200

x1

200

100

0

100

200

x
2

(0, 0)

(1, 0)

(1, 1)

200 100 0 100 200

x1

x
2

(0, 0)

(1, 0)

(1, 1)

Figure 6.29: Instances of node RLR (left) and node RRRL (right), Gaussian Quantiles
example.

x1

200

100

0

100

200

x
2

(0, 0)

(1, 0)

(1, 1)

x1

x
2

(0, 0)

(1, 0)

(1, 1)

200 100 0 100 200

x1

200

100

0

100

200

x
2

(0, 0)

(1, 0)

(1, 1)

200 100 0 100 200

x1

x
2

(0, 0)

(1, 0)

(1, 1)

Figure 6.30: Instances of the manually investigated parts, Gaussian Quantiles example.
The top row shows the left and right part of node RLR and the bottom row shows the
bottom and top part of node RRRL.

88

6.4. Census Income (Adult)

6.3.4 Comparison
You can see the results of the automatic evaluation in Figure 6.31. All approaches achieve
good results when explaining class (0, 0). As we already know from manual interpretation,
Mocca-SHAP is not good at explaining class (1, 0) with low complexity explanations,
because of the way the clustering algorithm works. This goes until approx. a complexity
of 30, from where it achieves similar performance like the baseline and DiRo2C. The
same problem prevents Mocca-SHAP from achieving good fidelity for class (1, 1), where
the results are worse. Both the baseline and DiRo2C achieve very good results on this
class.

The Mocca-SHAP explanation with the manual workaround achieved a F1 score of 53%
with 16 constraints, while the baseline achieved 46% and DiRo2C 41% with 18 constraints
on the explanation test set. Therefore, it performs better than the baseline and DiRo2C
at this level of complexity.

Generation time of DiRo2C was highest with 39 minutes, followed by Mocca-SHAP with
14 minutes and nearly instant generation of the baseline.

0 15 30 45 60 75 90

Constraints

0.0

0.2

0.4

0.6

0.8

1.0

F
1
 S

c
o
re

(0, 0)

Approach

diro2c

shap

baseline

0 15 30 45 60 75 90

Constraints

(1, 0)

0 15 30 45 60 75 90 105

Constraints

(1, 1)

Figure 6.31: Explanation fidelity on the Gaussian Quantiles example test set for explana-
tions with complexities of up to 100 constraints.

6.3.5 Summary
With this example, I have shown how a weakness of the clustering used in Mocca-SHAP
can be manually tackled, such that it can achieve a better performance than DiRo2C and
the baseline explanations with similar complexity. Also, I have shown that the fidelity of
DiRo2C depends heavily on the genetic instance generation algorithm, and that it can
worsen the explanation compared to the baseline.

6.4 Census Income (Adult)
In this benchmark task, the goal is to explain why classifier B predicts label False more
often than A, because its training samples have been manipulated: 10 was added to
feature Hours per week. Please note, that all thresholds in decision rules are rounded
to full numbers for display. These precisions are also used as the step sizes in the
Mocca-SHAP algorithm for generating group counterfactual explanations.

89

6. Experiments

6.4.1 Baseline
The baseline approach generated a decision tree with a depth of seven, which, if pruned
down to the minimal depth of one, offers ten explanations with different degrees of
complexity to interpret. Generation time was less than a second. The three most
important features are Hours per week, Relationship and Age, as shown in Figure 6.32. I
interpreted all explanations. All instances classified differently are explained by the final
explanation. The decision rules derived from the tree are listed below.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Importance

Education-Num

Relationship

Age

Capital Gain

Occupation

Capital Loss

Hours per week

Country

Sex

Race

Marital Status

Workclass

F
e
a
tu

re
s

Figure 6.32: Baseline’s feature importances of the Adult example.

1. if Education-Num > 12 ∧ Relationship > 4 ∧ Occupation > 11 ∧ Hours per week ≤
48, then (True, False)

2. if Education-Num > 12 ∧ Relationship > 4 ∧ 48 < Age ≤ 60 ∧ Occupation ≤
11 ∧ Hours per week ≤ 48, then (True, False)

3. if Education-Num ≤ 12 ∧ Capital Gain ≤ 3649 ∧ Capital Loss > 2173, then
(True, False)

4. if 10 < Education-Num ≤ 12 ∧ Relationship ≤ 4 ∧ Age > 38 ∧ Capital Gain ≤
3649 ∧ Occupation > 14 ∧ Capital Loss ≤ 2173, then (True, False)

5. else, both classifiers predict the same label

To conclude, I can only estimate that certain Education-Num, Relationship and Capital
Gain feature value combinations are responsible for the instances classified differently.
Actually, these are just the top three most important features for classifier A, as described
in the task description in Section 4.4. The explanation does not hint at Hours per week
as the cause of the differences. It achieves 21% F1 score with 20 constraints on the test
set.

90

6.4. Census Income (Adult)

6.4.2 DiRo2C
In total, generation took approx. 1.5 hours. Care needs to be taken during interpretation,
because DiRo2C has no direct support for categorical or integer numerical features. It
treats all features as continuous numbers. This is no issue for the classifiers, because they
treat all input features as continuous numbers too. But this leads to unrealistic instances
being generated and longer generation time.

A scatter plot of the generated data set to explain class (True, False) and the feature
importances are shown in Figure 6.33. The resulting tree has a depth of 16 and offers 88
explanations with different degrees of complexity after pruning. I interpreted the first six.
The last of these explains all instances of the explanation data set classified differently
except #60. Also, no other explanation with higher complexity is able to explain this
instance. The decision rules of the last explanation interpreted are shown below. The
last rule can be ignored, because negative Capital Gain values are not valid.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Importance

Relationship

Hours per week

Capital Gain

Age

Occupation

Education-Num

Workclass

Marital Status

Capital Loss

Country

Race

Sex

F
e
a
tu

re
s

Figure 6.33: Scatter plot of the instances generated by DiRo2C for the two most important
features (left) and feature importances (right) of the explanation for difference class
(True, False), Adult example.

1. if Relationship > 3 ∧ 41 < Hours per week ≤ 52, then (True, False)

2. if Relationship ≤ 3 ∧ Capital Gain > 7575, then (True, False)

3. if 3 < Relationship ≤ 4 ∧ Hours per week ≤ 41, then (True, False)

4. if Relationship > 4∧Capital Gain ≤ −1844∧Hours per week ≤ 41, then (True, False)

5. else, then not (True, False)

DiRo2C is able to generate an explanation for class (False, T rue) too, although no
instances are classified like that in the explanation data set. The algorithm only generated

91

6. Experiments

five instances that are classified (False, T rue) and 13,981 other instances. The decision
rules of the second explanation suggest, that this difference class occurs very rarely, only
if instances with a certain Race have a high Capital Loss or instances of certain countries
with very high Hours per week. The second rule can be ignored, because there is no
Relationship value of 9.

1. if Race ≤ 3 ∧ Capital Loss > 1803, then (False, T rue)

2. if Relationship = 9 ∧ Capital Loss ≤ 1803 ∧ Country > 18, then (False, T rue)

3. if Capital Loss ≤ 1803 ∧ Hours per week > 56 ∧ Country ≤ 18, then (False, T rue)

4. else, then not (False, T rue)

To conclude, from these explanations I can assume that B estimates label True more
often for instances that have Relationship equal to Husband or Wife and work for 42-52
hours, for instances that are neither Husband or Wife and have a high Capital Gain
of over 7575 and for instances that are Husband and work for 41 hours or less. This
interpretation mentions the artificially manipulated feature Hours per week, in contrast to
the baseline explanation where it seemed only a minor part. It also achieves a marginally
higher fidelity with 23% and has eleven constraints (one more than the baseline).

6.4.3 Mocca-SHAP
Generation took approx. three hours. I choose to explain the log of odds output space.
First, I plot the feature importances of the individual classifiers, as shown in Figure 6.34a.
Relationship is the most important feature, followed by Capital Gain, Age, Education-Num
and Hours per week. Hours per week is of higher importance to B than to A and has the
highest average absolute differences, as shown in the difference feature importances plot
in Figure 6.34b.

I continue by creating the individual and difference dependence plots for feature Hours
per week (see Figure 6.35), which has the highest difference feature importance. A and
B’s dependence curves are similar and can be broken down into three parts:

1. Low feature values have a constantly negative effect on the outcome.

2. Medium feature values have a linearly increasing effect on the outcome.

3. High feature values have a constantly positive effect on the outcome.

But B’s first part is prolonged in comparison to A’s, moving parts (2) and (3) to higher
feature values. This results in negative SHAP Value differences around Hours per week =
40, which are positive with approx. 0.5 above approx. 50 and below 30. But why is B
overestimating the outcome for low and high feature values? This may be to compensate

92

6.4. Census Income (Adult)

0.0 0.2 0.4 0.6 0.8 1.0

Importance

Relationship

Capital Gain

Age

Education-Num

Hours per week

Occupation

Sex

Marital Status

Capital Loss

Workclass

Race

Country

F
e
a
tu

re

Classifier

A

B

(a) Individual feature importances.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

SHAP value

Hours per week

Relationship

Education-Num

Age

Occupation

Capital Gain

Capital Loss

Workclass

Race

Sex

Marital Status

Country

Hours per week

Relationship

Education-Num

Age

Occupation

Capital Gain

Capital Loss

Workclass

Race

Sex

Marital Status

Country

+0.34

+0.09

+0.05

+0.04

+0.02

+0.01

+0.01

+0

+0

+0

+0

+0

(b) Difference feature importances.

Figure 6.34: Different feature importance measures, Adult example.

0 20 40 60 80

Hours per week

1

0

1

s
(H

o
u
rs

 p
e
r

w
e
e
k
)

A

0 20 40 60 80

Hours per week

B

Label

(False, False)

(True, False)

(True, True)

Label

(False, False)

(True, False)

(True, True)

0 20 40 60 80

Hours per week

B A

Figure 6.35: Individual and difference dependence plots for feature Hours per week and
its effect on class True’s outcome, Adult example.

for its lower SHAP base value, which is lower by approx. 0.5 than A’s. Taking this into
account, I can explain why these different classifications occur with just a single feature:

Explanation for the five instances classified (True, False) (blue): B tends to estimate
label False more often than A because Hours per week’s increasing effect on label True
happens for higher feature values than in A.

To quantify the offset of B’s dependence curve to A’s, I move it until both classifiers’
dependence curves are aligned above each other, as can be seen in Figure 6.36. This
requires to subtract 10 (hours) from the feature values and 0.6 log of odds from the
SHAP Values.

To provide a more specific explanation, that takes into account other preconditions that
are required for an instance to be classified (True, False), I continue to interpret the
difference classifier dependence plots with this class in focus compared to the equality
classes (False, False) and (True, True), after generating the clustering structure and
computing the counterfactuals. In total, I investigate five cluster nodes besides the root
node: RLR, RLL, RLLL and RLLR. Next, I describe my interpretations for the three

93

6. Experiments

0 20 40 60 80

Hours per week

1.0

0.5

0.0

0.5

s
(H

o
u
rs

 p
e
r

w
e
e
k
) A

B*

Figure 6.36: Dependence plots of classifier A overlaid by a modified version of classifier
B’s dependence plot, Adult example.

features with the highest difference feature importances:

Hours per week’s global effect on class (True, False)’s outcome has a convex shape, while
(False, False)’s is decreasing and (True, True)’s increasing, as can be seen in Figure
6.37. The counterfactual boundaries suggest that the differences are local to the range
(34, 55).

0 20 40 60 80

Hours per week

1

0

1

s
(H

o
u
rs

 p
e
r

w
e
e
k
)

Class (False, False)'s outcome

0 20 40 60 80

Hours per week

Class (True, False)'s outcome

0 20 40 60 80

Hours per week

Class (True, True)'s outcome

34.0: 5x (False, False)

55.0: 5x (True, True)

Label
(False, False)

(True, False)

(True, True)

Figure 6.37: Global difference classifier dependence plots for feature Hours per week,
Adult example.

Relationship is actually a categorical feature, encoded with full numbers. Still, I can
analyze the dependence plot, but need to be aware that there is no ordering in the
numbers. Its global effect on (True, False)’s outcome is decreasing slightly at first until
3, then increasing, as can be seen in Figure 6.38. (True, True)’s plot is similar, but
steeper and (False, False)’s is inverted. Node RLR contains one focus instance with
a feature value of 0 and a counterfactual explanation at 3, where the label flips to
(False, False) because of the slightly decreasing effect on (True, False)’s outcome and
the slightly increasing effect on (False, False)’s outcome. For a feature value of 4 or
5, the label flips to (True, True) (not shown in figure), because the effect reverses and
increases stronger for this class. Node RLL contains the other four focus instances with
a Relationship value of 4. Their lower counterfactual explanation is at 3, where they flip
to (False, False).

94

6.4. Census Income (Adult)

2

0

2

R
o
o
t

N
o
d
e

s
(R

e
la

ti
o
n
s
h
ip

)

Class (False, False)'s outcome Class (True, False)'s outcome Class (True, True)'s outcome

Label
(False, False)

(True, False)

(True, True)

2

0

2

N
o
d
e
 R

L
R

s
(R

e
la

ti
o
n
s
h
ip

)

Counterfactuals

3.0: 1x (False, False)

0 2 4

Relationship

2

0

2

N
o
d
e
 R

L
L

s
(R

e
la

ti
o
n
s
h
ip

)

0 2 4

Relationship

0 2 4

Relationship

Counterfactuals

3.0: 4x (False, False)

Figure 6.38: Difference classifier dependence plots for feature Relationship, Adult example.
The first row shows the global effects and the other show local effects.

Education-Num’s global effect on (True, False)’s outcome is increasing, as can be seen
in Figure 6.39. (True, True)’s is increasing too, but steeper, while (False, False)’s is
decreasing. The focus instances have Education-Num values between 10 and 13. Nodes
RLR and RLLR contain the two focus instances with a lower feature value. At their lower
counterfactual boundary, their label flips to (False, False). At its upper counterfactual
boundary the focus instance of node RLR flips to (True, True) as expected, but that
of node RLLR flips first to (False, False) and then finally to (True, True). As can
be seen in the local dependence plots, the curves have local disturbances causing this
intermediate label. Node RLLL includes the three focus instances with higher Education-
Num values. They just have a lower counterfactual explanation at 12, where the label
flips to (False, False), as can be seen in the plots of the third row.

Below are the derived decision rules listed, that explain difference class (True, False):

• Root Node: if 34 < Hours per week ≤ 54 ∧ Education-Num > 8 ∧ Age > 26 ∧
Capital Gain ≤ 56, then (True, False)

• Node RLR: if 34 < Hours per week ≤ 44∧Relationship ≤ 2∧8 < Education-Num ≤
12 ∧ Age > 35 ∧ 2 < Occupation ≤ 4 ∧ Capital Gain ≤ 56 ∧ Capital Loss >
2384 ∧ Sex ≤ 0, then (True, False)

• Node RLL: if 34 < Hours per week ≤ 54 ∧ Relationship > 3 ∧ Education-Num >
9 ∧ Age > 26 ∧ Capital Gain ≤ 56 ∧ Capital Loss ≤ 1447, then (True, False)

95

6. Experiments

2

0

2

R
o
o
t

N
o
d
e

s
(E

d
u
c
a
ti

o
n
-N

u
m

)

Class (False, False)'s outcome Class (True, False)'s outcome Class (True, True)'s outcome

8.0: 5x (False, False)

2

0

2

N
o
d
e
 R

L
R

s
(E

d
u
c
a
ti

o
n
-N

u
m

)

8.0: 1x (False, False)

13.0: 1x (True, True)

2

0

2

N
o
d
e
 R

L
L
L

s
(E

d
u
c
a
ti

o
n
-N

u
m

) Label

(False, False)

(True, False)

(True, True)

12.0: 3x (False, False)

3 6 9 12 15

Education-Num

2

0

2

N
o
d
e
 R

L
L
R

s
(E

d
u
c
a
ti

o
n
-N

u
m

)

3 6 9 12 15

Education-Num

3 6 9 12 15

Education-Num

9.0: 1x (False, False)

12.0: 1x (False, False)

Figure 6.39: Difference classifier dependence plots for feature Education, Adult example.
The first row shows the global effects and the other show local effects.

• Node RLLL: if 34 < Hours per week ≤ 45∧3 < Relationship ≤ 4∧Education-Num >
12 ∧ Age > 26 ∧ Capital Gain ≤ 56 ∧ Capital Loss ≤ 1447, then (True, False)

• Node RLLR: if 44 < Hours per week ≤ 54∧Relationship > 3∧9 < Education-Num ≤
11 ∧ 44 < Age ≤ 59 ∧ Occupation > 13 ∧ Capital Gain ≤ 56 ∧ Capital Loss ≤
1447 ∧ 1 < Workclass ≤ 5 ∧ Sex > 0 ∧ Marital Status ≤ 2 ∧ Country > 0, then
(True, False)

To conclude, I estimate that the different effect of Hours per week is responsible for B
classifying more instances as False than A, under the condition that it is a value in the
range (34, 54], has an Education-Num value above 8, an Age value above 26 and a Capital
Gain value of 56 or lower. This explains the artificial modification of Hours per week
very well. In contrast to DiRo2C and the baseline it also detects that this feature is of
highest importance for the differences. I also notice, that none of the approaches explains
with just this feature, and that all include other features as well. It might be that it
is not possible to attribute the effect completely to the original cause. Mocca-SHAP’s

96

6.4. Census Income (Adult)

explanation achieves a 54% F1 score with a complexity of 34 constraints, which is much
higher than both DiRo2C and the baseline. But it is also more complex, with DiRo2C
having only 20 constraints.

6.4.4 Comparison

Generating the Mocca-SHAP explanations took twice as long as the DiRo2C explanations.
But most time was spent calculating counterfactual boundaries. With a more efficient
algorithm it could be sped up drastically. The fidelities achieved during the automatic
evaluation are shown in Figure 6.40.

• Explanations for class (False, False): All approaches achieve a similarly high
fidelity for higher complexities. But Mocca-SHAP achieves lower fidelities for
explanations with approx. less than 25 constraints.

• Explanations for class (False, T rue): Although DiRo2C generated explanations for
class (False, T rue), which has no instances in the explanation data set, it achieved
a F1 score of 0% for all of them on the test set. But this is an especially hard task,
because this is a minority class with only eight instances. The other approaches
cannot create explanations for a class without any instances in the explanation
data set.

• Explanations for class (True, False): Mocca-SHAP achieves the highest F1 score
with 54%.

• Explanations for class (True, True): For low complexities, the baseline and DiRo2C
achieve high fidelities (DiRo2C the highest with 71%), but then tend to overfit for
explanations with more than approx. 20 constraints and their fidelity decreases
again. Here, Mocca-SHAP exceeds with a maximum achieved of 81%.

0 25 50 75 100

Constraints

0.0

0.2

0.4

0.6

0.8

F
1

 S
c
o
re

(False, False)

Approach

diro2c

shap

baseline

2 4 6 8

Constraints

(False, True)

0 20 40 60

Constraints

(True, False)

0 25 50 75 100

Constraints

(True, True)

Figure 6.40: Explanation fidelity on the Adult example test set for explanations with
complexities of up to 100 constraints.

97

6. Experiments

6.4.5 Summary
Mocca-SHAP not only achieved the highest fidelity on the explanation test set for the
explanations interpreted but also the final the highest overall class fidelities. Both DiRo2C
and Mocca-SHAP came up with decision rules, that explain that the modified feature
Hours per week is local to a specific range. Only Mocca-SHAP stated, that this feature
is of highest importance for the differences. In the baseline explanation, only half of the
rules included one boundary for this feature.

6.5 Boston Housing
In this final task, I compare the explanations’ qualities for multiple multiclass classifiers
in a benchmark setting. Classifier A was trained on the original data, B on data where
feature AGE was inverted and C on data where the label for a cluster selected by LSTAT,
ZN and CRIM was changed. There is no test data set for this example, instead I rely on
knowledge about the modifications. Please note, that all thresholds in decision rules for
ordinal and categorical features are rounded to full numbers, for CRIM to one decimal
and all other features to two decimals for display. These precisions are also used as the
step sizes in the Mocca-SHAP algorithm for generating group counterfactual explanations.

6.5.1 Baseline
Total generation time was less than a second. As can be seen in Figure 6.41, the three
most important features in both explanations are LSTAT, NOX and RM.

Comparison of A and B

The explanation for A and B’s differences consists of a surrogate decision tree with a
depth of eight, which, if pruned down to the minimal depth of 1, offers 19 explanations

0.0 0.1 0.2 0.3 0.4 0.5

Importance

LSTAT

NOX

RM

RAD

CRIM

PTRATIO

DIS

INDUS

TAX

AGE

ZN

F
e
a
tu
re
s

(a) A vs. B

0.0 0.1 0.2 0.3 0.4 0.5

Importance

LSTAT

NOX

RM

RAD

ZN

PTRATIO

DIS

CRIM

TAX

AGE

INDUS

F
e
a
tu
re
s

(b) A vs. C

Figure 6.41: Baseline’s feature importances of the Boston Housing example.

98

6.5. Boston Housing

with different complexities to interpret. I interpreted all of them, because only the last
explanation includes a decision rule that explains the instance classified (1, 2). The
decision rules derived from this explanation consist of 41 constraints and are listed below:

1. if 12.61 < LSTAT ≤ 17.72 ∧ NOX > 0.59 ∧ RM ≤ 6.09 ∧ CRIM ≤ 1.0, then (0, 1)

2. if 9.48 < LSTAT ≤ 12.61 ∧ NOX > 0.59 ∧ INDUS > 18.84, then (0, 1)

3. if LSTAT > 17.52 ∧ NOX ≤ 0.59 ∧ CRIM ≤ 1.4 ∧ PTRATIO > 20.60, then (0, 1)

4. if 16.72 < LSTAT ≤ 17.52 ∧ NOX ≤ 0.59 ∧ 2.27 < DIS ≤ 5.52, then (0, 1)

5. if LSTAT ≤ 9.48 ∧ NOX ≤ 0.74 ∧ RM ≤ 6.62 ∧ RAD > 6.00 ∧ CRIM ≤ 5.0, then
(2, 1)

6. if 12.61 < LSTAT ≤ 14.31 ∧ NOX > 0.59 ∧ CRIM > 1.0 ∧ DIS > 2.12, then (0, 1)

7. if 9.48 < LSTAT ≤ 16.72 ∧ NOX ≤ 0.59 ∧ 16.20 < PTRATIO ≤ 16.50 ∧ DIS > 2.27,
then (0, 1)

8. if LSTAT ≤ 9.48 ∧ RM > 6.62 ∧ PTRATIO > 20.60, then (2, 1)

9. if LSTAT ≤ 6.26 ∧ RM ≤ 6.62 ∧ RAD ≤ 6.00 ∧ INDUS > 4.65, then (1, 2)

10. else, both classifiers predict the same label

Nothing in this explanation hints at the modification done to the training data of classifier
B. Instead, it is misleading by assigning high importance to feature NOX (ranked second).

Comparison of A and C

The explanation for A and C’s differences consists of a decision tree with a depth of eight
and offers 17 explanations to interpret. I interpreted the first eleven. The decision rules
derived from the last explanation consist of 18 constraints and are listed below:

1. if 16.42 < LSTAT ≤ 16.72 ∧ NOX ≤ 0.59 ∧ DIS > 2.27, then (1, 0)

2. if LSTAT ≤ 9.62 ∧ RM ≤ 6.60 ∧ RAD ≤ 15.00 ∧ ZN > 58, then (1, 2)

3. if 9.62 < LSTAT ≤ 11.37 ∧ NOX > 0.59, then (0, 1)

4. if LSTAT ≤ 9.22 ∧ RM > 6.60 ∧ PTRATIO > 20.60, then (2, 1)

5. if LSTAT ≤ 9.22 ∧ RM > 6.60 ∧ PTRATIO ≤ 20.60 ∧ CRIM ≤ 0.0, then (1, 2)

6. else, both classifiers predict the same label

Here too, nothing hints at the modification done to classifier C. Feature NOX is again
assigned high importance, although it is not involved.

99

6. Experiments

6.5.2 DiRo2C
In total, generation took approx. three hours on the Amazon EC2 instance.

Comparison of A and B

Even though no instances in the explanation data set are classified (1, 0), I also interpret
this class’ explanation. As can be seen in Figure 6.42, the feature importances of the
explanations share one commonality: The two most important features are LSTAT and
AGE. The scatter plots of these two features reveal (see Figure 6.43), that the differences
are present in certain areas. Note, that DiRo2C generated unrealistic instances with
feature values outside the range of valid values, but this is no issue for the classifiers and
has to be taken into account during interpretation.

0.0 0.1 0.2 0.3 0.4 0.5

Feature Importance

AGE

LSTAT

CRIM

RM

ZN

RAD

DIS

INDUS

PTRATIO

TAX

NOX

F
e
a
tu

re

Class

(0, 1)

(1, 0)

(1, 2)

(2, 1)

Figure 6.42: A vs. B: DiRo2C’s feature importances for the difference class explanations.

Explanation with class (0, 1) in focus: The generated focus class instances appear mainly
for high LSTAT and high AGE values, as can be seen in the scatter plot in Figure 6.43.
I interpret the first four explanations. The decision rules of the last explanation are
listed below. Rules #1 and #2 explain 12 of the 13 instances classified (0, 1) in the
explanation data set, but instance #238 is neither explained by this explanation nor by
any explanation with higher complexity. But certain constraints are unnecessary: Rule
#1 contains a constraint for CRIM with a negative threshold, which can be ignored
because CRIM may assume only positive values. Rule #2 can be ignored, because the
highest AGE value possible is 2.

1. if 8.53 < LSTAT ≤ 17.18 ∧ AGE > 1 ∧ CRIM > −5.7, then (0, 1)

2. if LSTAT > 17.18 ∧ AGE > 2, then (0, 1)

100

6.5. Boston Housing

Figure 6.43: A vs. B: DiRo2C’s generated instances of the interpreted difference class
explanations, Boston Housing example.

3. if LSTAT > 17.18 ∧ 1 < AGE ≤ 2, then (0, 1)

4. else, then not (0, 1)

Explanation with class (1, 0) in focus: The generated focus instances appear mainly for
high LSTAT and low AGE values, whereas the explanation data set does not contain
any instances classified like that. I interpret the first two explanations, with the last one
yielding these decision rules:

1. if AGE ≤ 1 ∧ LSTAT > 10.53, then (1, 0)

2. else, then not (1, 0)

Explanation with class (1, 2) in focus: The generated focus instances appear mainly for
low LSTAT and low AGE values. I interpret the first two explanations, with the last
one yielding the decision rules listed below. The first rule explains the single instance
classified (1, 2) of the explanation data set.

101

6. Experiments

1. if AGE ≤ 1 ∧ LSTAT ≤ 11.44, then (1, 2)

2. if AGE > 1 ∧ LSTAT ≤ 7.76 ∧ RAD ≤ 12.09, then (1, 2)

3. else, then not (1, 2)

Explanation with class (2, 1) in focus: The generated focus instances appear mainly for
low LSTAT and high AGE values. I interpret the first five explanations, with the last one
yielding the decision rules listed below. Rule #2 explains two of the three instances of
the explanation data set, but instance #51 is not explained by this or any more complex
explanation.

1. if 2.38 < LSTAT ≤ 12.12 ∧ AGE > 1 ∧ PTRATIO ≤ 18.09, then (2, 1)

2. if 2.38 < LSTAT ≤ 12.12 ∧ AGE > 1 ∧ PTRATIO > 18.09, then (2, 1)

3. if LSTAT ≤ 9.81 ∧ AGE = 1, then (2, 1)

4. else, then not (2, 1)

I conclude that mainly the features AGE and LSTAT are responsible for the different
classifications. B tends to predict a higher label than A for LSTAT values greater than
8.53 and AGE values of 2, or for LSTAT values lower than 11.44 and AGE values of 0.
B tends to predict a lower label for LSTAT values greater than 10.53 and AGE values of
0 or 1, or LSTAT values in the range (2.38, 12.12] and AGE values of 2.

This interpretation lists the actually modified feature AGE as being responsible, but
without knowing about the nature of the modification.

Comparison of A and C

As can be seen in Figure 6.45, the feature importances of the explanations share one
commonality: The two most important features are LSTAT and ZN. The scatter plots of
these two features shown in Figure 6.44 reveal, that the differences are roughly present
in separate areas.

Explanation with class (0, 1) in focus: Generated focus instances appear mainly for high
LSTAT and low ZN values. I interpret the first two explanations, with the last one
yielding the decision rules listed below. The first rule explains two of the three instances
of the explanation data set classified (0, 1), but instance #8 is neither explained by this
nor by any explanation with higher complexity.

1. if ZN ≤ 23 ∧ LSTAT > 8.62 ∧ TAX ≤ 603, then (0, 1)

2. else, then not (0, 1)

102

6.5. Boston Housing

Figure 6.44: A vs. C: DiRo2C’s generated instances of the interpreted difference class
explanations, Boston Housing example.

Explanation with class (1, 0) in focus: Generated focus instances appear mainly for
medium LSTAT and low ZN values, and high LSTAT and medium ZN values. I interpret
the first two explanations. Unfortunately, no explanation with higher complexity is able
to explain the two instances of the explanation data set classified (1, 0). The decision
rules at the last explanation interpreted are listed below. Interestingly, rule #1 is not
based on the two overall most important features LSTAT and ZN.

1. if CRIM ≤ 7.6 ∧ RM ≤ 6.10 ∧ TAX > 344, then (1, 0)

2. else, then not (1, 0)

Explanation with class (1, 2) in focus: Generated focus instances appear mainly for
medium LSTAT and medium to high ZN values. I interpret the first two explanations.
The last explanation interpreted consists of the rules listed below, and explains all five
instances of the explanation data set classified (1, 2).

1. if ZN > 15 ∧ LSTAT ≤ 14.48, then (1, 2)

103

6. Experiments

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Feature Importance

ZN

LSTAT

CRIM

RM

TAX

RAD

AGE

INDUS

DIS

PTRATIO

NOX

F
e
a
tu

re

Class

(0, 1)

(1, 0)

(1, 2)

(2, 1)

Figure 6.45: A vs. C: DiRo2C’s feature importances for the difference class explanations.

2. else, then not (1, 2)

Explanation with class (2, 1) in focus: Generated focus instances appear mainly for low
LSTAT and low to medium ZN values. I interpret the first two explanaitons, with the
last one yielding the rules listed below. The second rule explains the two instances of the
explanation data set classified (2, 1).

1. if 3.48 < LSTAT ≤ 10.47 ∧ ZN ≤ 23 ∧ RM > 6.83, then (2, 1)

2. if LSTAT ≤ 10.47 ∧ ZN ≤ 23 ∧ RM ≤ 6.83, then (2, 1)

3. else, then not (2, 1)

I conclude that mainly the features ZN and LSTAT are responsible for the different
classifications. C tends to predict a higher label than A for LSTAT greater than 8.62
and ZN lower than 23, and for LSTAT lower than 14.48 and ZN greater than 15. C
tends to predict a lower label than A for low LSTAT and low ZN ; medium LSTAT and
medium ZN ; high LSTAT and high ZN. Furthermore for LSTAT lower than 10.47 and
ZN lower than 23.

This interpretation misses one of responsible features: CRIM.

6.5.3 Mocca-SHAP
I choose to explain the log of odds output space. With that, generation takes approx.
one hour.

104

6.5. Boston Housing

To start, I plot the feature importances of the individual classifiers, as shown in Figure
6.46. They are all similar. But to each classifier, feature LSTAT is far more important
than any other feature. The individual dependence plots of LSTAT (see Figure 6.47)
reveal a similar effect across all classifiers. Low values (approx. below 10) increase the
chances for label 2. In the range of 5 to 15, label 1’s chances are at a peak. And for values
above 10, label 0’s chances are highest. You can see, that the ranges are overlapping, so
other feature values also contribute to a lesser extent. But this feature roughly allows
that either labels 0 or 1 are predicted in the lower range up to 10 and that either labels 1
or 2 are predicted above 10.

0.0 0.2 0.4 0.6 0.8 1.0

Importance

LSTAT

ZN

INDUS

CRIM

RAD

TAX

RM

AGE

DIS

PTRATIO

NOX

F
e
a
tu
re

Classifier

A

B

C

Figure 6.46: SHAP feature importances of the individual classifiers, Boston Housing
example.

Comparison of A and B

The main differences between A and B’s global influences can be narrowed down to just
two features: AGE and LSTAT. Both have much higher difference SHAP Values than
the other features (see Figure 6.48a). It is especially interesting, that AGE ranks higher
than LSTAT, although having only medium influence to each individual classifier.

AGE ’s individual dependence plots are shown in Figure 6.49. In contrast to LSTAT, these
are not similar between A and B. For A, AGE = 0 increases class 0 and 1’s outcomes
and decreases 2’s. AGE = 2 increases class 2’s outcome and decreases the others. In
contrast, B is estimating an increase in class 1’s outcome for AGE = 2 and a decrease in
its outcome for AGE = 0. The other classes’ effects are not that clear. This explains,
why B is overestimating the label in certain cases:

Explanation for class (1, 2): B overestimates the increasing effect of low AGE (= 0) on
class 2’s outcome. This explains one instance of the explanation data set being classified
(1, 2).

105

6. Experiments

2

0

2

s
(A

)
Class 0's outcome Class 1's outcome Class 2's outcome

Label

0

1

2

2

0

2

s
(B

)

10 20 30

LSTAT

2

0

2

s
(C

)

10 20 30

LSTAT

10 20 30

LSTAT

Figure 6.47: SHAP dependence plots of feature LSTAT, Boston Housing example.
Instances are colored by the label predicted by each classifier.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

SHAP value

AGE

LSTAT

INDUS

RAD

TAX

ZN

CRIM

PTRATIO

DIS

RM

NOX

AGE

LSTAT

INDUS

RAD

TAX

ZN

CRIM

PTRATIO

DIS

RM

NOX

+0.13

+0.09

+0.04

+0.03

+0.03

+0.03

+0.02

+0.02

+0.01

+0.01

+0

(a) Comparison of A and B

0.00 0.02 0.04 0.06 0.08 0.10 0.12

SHAP value

ZN

LSTAT

CRIM

TAX

RAD

INDUS

RM

AGE

PTRATIO

DIS

NOX

ZN

LSTAT

CRIM

TAX

RAD

INDUS

RM

AGE

PTRATIO

DIS

NOX

+0.13

+0.12

+0.1

+0.07

+0.05

+0.04

+0.03

+0.03

+0.02

+0.02

+0

(b) Comparison of A and C

Figure 6.48: Difference feature importances, Boston Housing example.

The AGE effects can be broken down into simpler effects. The first two child nodes of the
root node obtained with the supervised clustering approach are a sufficient simplification,
and can be roughly described by their LSTAT values. Node L contains instances mainly
with LSTAT values up to 10 and node R all above. As can be seen in the difference
dependence plots for these nodes in Figure 6.50, the AGE effect on class 0’s outcome in
node L is decreasing linearly while increasing linearly in node R. This explains, why B is
overestimating the label in certain cases:

106

6.5. Boston Housing

0.4

0.2

0.0

0.2

s
(A

)

Class 0's outcome Class 1's outcome Class 2's outcome

Label

0

1

2

0 1 2

AGE

0.4

0.2

0.0

0.2

s
(B

)

0 1 2

AGE

0 1 2

AGE

Figure 6.49: SHAP dependence plots of AGE, Boston Housing example.

0.50

0.25

0.00

0.25

0.50

N
o
d
e
 L

s
B

s
A

Class 0's outcome Class 1's outcome Class 2's outcome

0 1 2

AGE

0.50

0.25

0.00

0.25

0.50

N
o
d
e
 R

s
B

s
A

0 1 2

AGE

0 1 2

AGE

Label

(0, 0)

(0, 1)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

Figure 6.50: SHAP difference dependence plots of AGE, Boston Housing example. Each
row shows instances of one cluster.

Explanation for class (0, 1): For LSTAT values above 10, B underestimates the effect of
high AGE (= 2) on class 0’s outcome and overestimates that on class 1’s outcome, which
leads to (0, 1) classifications. This explains 12 of the 13 instances of the explanation data
set classified (0, 1), which have AGE = 2.

Next, I interpret the difference dependence plots of LSTAT for node R, which contains
instances having LSTAT values below 10. The effects can be broken down by plotting
separately for each possible value of AGE, as shown in Figure 6.51. This reveals, that B
overestimates class 2’s outcome while underestimating class 1’s outcome for AGE = 0 in
certain cases, and vice versa for AGE values of 1 and 2:

• Explanation for class (1, 2): For LSTAT values below 10 and low AGE (= 0), B

107

6. Experiments

0.2

0.0

0.2

A
G

E
 =

 0
s
B

s
A

Class 0's outcome Class 1's outcome Class 2's outcome

0.2

0.0

0.2

A
G

E
 =

 1
s
B

s
A

2 4 6 8 10

LSTAT

0.2

0.0

0.2

A
G

E
 =

 2
s
B

s
A

2 4 6 8 10

LSTAT

2 4 6 8 10

LSTAT

Label

(0, 0)

(0, 1)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

Figure 6.51: SHAP difference dependence plots of AGE, Boston Housing example. Each
row shows instances of one cluster.

overestimates the effect of LSTAT on class 2’s outcome, while underestimating the
effect on the other classes, which leads to difference class (1, 2). This explains the
instance classified (1, 2) of the explanation data set.

• Explanation for class (2, 1): For LSTAT < 10 and AGE values of 1 or 2, B
overestimates class 1’s outcome and underestimates class 2’s outcome. The effect
for AGE = 1 is not as pronounced as for AGE = 2, but still visible. See how the
green dots are located above the zero line in the second row, second column and
third column and also in the third row, second column and third column. This
explains the three instances classified (2, 1) of the explanation data set.

In the same manner, the difference dependence plots of LSTAT for node L are split for
the different AGE values. See Figure 6.52. The data is sparse for AGE values of 0, but
this does not hinder interpretation:

Explanation for class (0, 1): For LSTAT > 10 and AGE values of 1 or 2, B is overes-
timating class 1’s outcome and underestimating class 0’s outcome. This happens to a
greater extent when AGE is 2. This explains all 13 instances classified (0, 1).

In the final step I create dependence plots for the difference classifier. For this task, it is
sufficient to interpret for each of the three occurring difference classes the global level
and the the lowest node that contains all focus instances. For brevity, the plots are not
included here, but the decision rules derived from the group counterfactual explanations

108

6.5. Boston Housing

0.2

0.0

0.2

A
G

E
 =

 0
s
B

s
A

Class 0's outcome Class 1's outcome Class 2's outcome

0.2

0.0

0.2

A
G

E
 =

 1
s
B

s
A

10 15 20 25 30 35

LSTAT

0.2

0.0

0.2

A
G

E
 =

 2
s
B

s
A

10 15 20 25 30 35

LSTAT

10 15 20 25 30 35

LSTAT

Label

(0, 0)

(0, 1)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

Figure 6.52: SHAP difference dependence plots of AGE, Boston Housing example. Each
row shows instances of one cluster.

are listed below. Note, that they cannot be interpreted as a list or set of decision rules
together, because each describes a difference class in a one-vs-rest manner.

• Class (0, 1): if 10.24 < LSTAT ≤ 19.16 ∧ ZN ≤ 5 ∧ CRIM ≤ 6.1 ∧ AGE > 0, then
(0, 1)

• Class (1, 2): if 4.51 < LSTAT ≤ 6.27 ∧ ZN ≤ 89 ∧ INDUS ≤ 8.14 ∧ CRIM ≤
14.6 ∧ 6.20 < RM ≤ 7.74 ∧ 4.27 < RAD ≤ 12.72 ∧ 1.90 < DIS ≤ 5.65 ∧ AGE ≤
0 ∧ PTRATIO > 17.34, then (1, 2)

• Class (2, 1): if 5.97 < LSTAT ≤ 9.05 ∧ ZN ≤ 81 ∧ INDUS ≤ 19.61 ∧ CRIM ≤
12.8 ∧ RM ≤ 7.21 ∧ DIS ≤ 4.17 ∧ AGE > 0, then (2, 1)

I conclude that mainly the features AGE and LSTAT are responsible for the different
classifications. For low LSTAT values in the range (4.51, 9.05], B tends to predict a
higher label when AGE is 0 and it tends to predict a lower label when AGE is 1 or 2.
For high LSTAT values in the range (10.24, 19.16], B tends to predict a higher label
when AGE is 2 or 1.

This nicely captures the modification introduced into feature AGE of classifier B.

109

6. Experiments

Comparison of A and C

Unlike in the previous comparison, there are no features that stand out by their high
difference feature importances, as shown in Figure 6.48. Instead, I analyze one after the
other, in descending order by their importance, until I can explain all instances classified
differently.

The biggest deviations between the individual classifiers’ SHAP Values occur in feature
ZN. This is especially interesting as it is ranked higher than LSTAT, which is most
important to each individual classifier. Looking at its difference dependence plots (see
Figure 6.53), I realize that for values higher than 0, there are big differences in the
dependence curves. Since the majority of instances has a value of 0, this concerns only a
special part.

1

0

1

s
A
(Z

N
)

Class 0's outcome Class 1's outcome Class 2's outcome

1

0

1

s
C
(Z

N
)

Label

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

0 20 40 60 80 100

ZN

1

0

1

s
C

s
A

0 20 40 60 80 100

ZN

0 20 40 60 80 100

ZN

Figure 6.53: SHAP difference dependence plots of ZN, Boston Housing example.

Explanation for class (1, 2): For ZN > 0, C overestimates class 2’s outcome and underes-
timates the others. This explains five instances classified (1, 2) of the explanation data
set.

LSTAT ’s difference dependence plots are simpler and easier to interpret, if I only show
instances having ZN = 0, as shown in Figure 6.54.

• Explanation for class (2, 1): Instances classified like that have especially low feature
values. At this point in class 2’s dependence plot, C underestimates class 2’s

110

6.5. Boston Housing

10 20 30

LSTAT

0.4

0.2

0.0

0.2

0.4

s
C

s
A

Class 0's outcome

10 20 30

LSTAT

Class 1's outcome

10 20 30

LSTAT

Class 2's outcome

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

Figure 6.54: SHAP difference dependence plots of LSTAT for instances having ZN = 0,
Boston Housing example.

outcome slightly. At the same time C overestimates class 1’s outcome. This
explains the two instances classified (2, 1) of the explanation data set.

• Explanation for (0, 1): Instances classified like that have slightly higher LSTAT
values. In this range, C overestimates class 1’s outcome and underestimates class
0’s outcome. This explains the three instances classified (0, 1).

• Explanation for (1, 0): Instance classified like that again have slightly higher LSTAT
values, where C switches to underestimating class 1’s outcome and overestimating
class 0’s outcome. This explains the two instances classified (1, 0).

In the final step I create dependence plots for the difference classifier. For this task, it
is sufficient to interpret for each of the four occurring difference classes the global level
and the the lowest node that contains all focus instances. For brevity, the plots are not
included here, but the decision rules derived from the group counterfactual explanations
are listed below.

• Class (0, 1): if 10.48 < LSTAT ≤ 14.89 ∧ ZN ≤ 1 ∧ 12.37 < INDUS ≤ 22.10 ∧
CRIM ≤ 4.3 ∧ 4.81 < RM ≤ 7.33 ∧ AGE > 0 ∧ DIS ≤ 6.59 ∧ 13.36 < PTRATIO ≤
20.73, then (0, 1)

• Class (1, 0): if 16.33 < LSTAT ≤ 16.71 ∧ ZN ≤ 0 ∧ 7.13 < INDUS ≤ 9.14 ∧ 0.6 <
CRIM ≤ 1.1 ∧ 5.22 < RM ≤ 5.75 ∧ RAD ≤ 5.93 ∧ 288 < TAX ≤ 326 ∧ AGE >
1 ∧ DIS > 2.93 ∧ 20.58 < PTRATIO ≤ 21.38, then (1, 0)

• Class (1, 2): if 3.58 < LSTAT ≤ 11.58 ∧ ZN > 16 ∧ INDUS ≤ 16.12 ∧ CRIM ≤
42.3 ∧ RM ≤ 8.63 ∧ RAD ≤ 13.35 ∧ AGE ≤ 1 ∧ DIS > 1.94, then (1, 2)

• Class (2, 1): if 6.05 < LSTAT ≤ 7.41∧ZN ≤ 18∧9.80 < INDUS ≤ 19.61∧CRIM ≤
8.6 ∧ RM ≤ 7.17 ∧ AGE > 1 ∧ DIS ≤ 4.17, then (2, 1)

I conclude that mainly the features ZN and LSTAT are responsible for the different
classifications. C tends to predict a higher label than A for LSTAT values in the range

111

6. Experiments

(6.05, 14.89]. For higher LSTAT values in the range (16.33, 16.71], C tends to estimate
a lower label. This is true mainly for instances having ZN = 0. If the instances have
ZN > 16, C tends to predict label 2 more often.

Similarly like DiRo2C, Mocca-SHAP identified the features ZN and LSTAT to be
responsible for the differences, but failed to highlight the relevance of CRIM.

6.5.4 Summary

Both Mocca-SHAP and DiRo2C provided useful explanations, while the baseline failed
to do that. Instead, it is misleading by assigning high importance to feature NOX, which
is completely disregarded by Mocca-SHAP and DiRo2C.

In the comparison of A and B, both Mocca-SHAP and DiRo2C correctly identified, that
AGE is of greatest relevance to the differences. Also, both explained in a close relation
with feature LSTAT, with which it interacts tightly as I found out with Mocca-SHAP.
The closest hint at the cause of the different behaviour was shown in the dependence plots
in Figures 6.49 and 6.50, because with these I was able to interpret that the classifiers
associate a different class order with the AGE values. DiRo2C failed to explain the
instances #238 and #5, which are boundary cases when considering that they have an
AGE value of 1. Further note, that only DiRo2C is able to explain difference classes not
present in the explanation data set, in this case (1, 0), thus completing the picture.

In the comparison of A and C, both Mocca-SHAP and DiRo2C correctly identified
that features ZN and LSTAT are relevant to the differences, but failed to highlight the
significance of CRIM, because for both, it was sufficient to just explain using the first
two features. Mocca-SHAP ranked CRIM third most important in the difference feature
importances and DiRo2C fourth most important, so I consider Mocca-SHAP to be a bit
closer to identifying it than DiRo2C. Although DiRo2C explains class (1, 0) using CRIM,
it fails to pick up the relevance of the two other features.

In terms of generation time, Mocca-SHAP was faster by needing only one hour compared
to three hours of DiRo2C.

6.6 Summary
With these experiments I answer research question #5.

In the running example, I have demonstrated the basic workings of the compared methods.
DiRo2C has a weakness, because the fidelity of the explanation is heavily dependent on
the initialization parameters in the sampling step. In this particular run, it has scored
poorly compared to the other methods, but it may perform very well on another run.
Mocca-SHAP beats both the baseline and DiRo2C in terms of maximally achieved fidelity,
although its explanation for (0, 1) misses a small part of the feature space. This is because
it can only explain differences that are covered with instances in the explanation data set.

112

6.6. Summary

In the One Classifier Ignores a Feature example, I have shown how the methods perform
when confronted with a task, that is hard to describe with step-like explanations. Mocca-
SHAP beats the baseline in terms of achieved fidelity on the most detailed level interpreted.
I have shown a drawback of it, because its finest level of detail is restricted by the
explanation data set, whereas DiRo2C is able to offer more complex explanations with
higher fidelity. But both approaches yielded useful explanations. I have also shown,
how Mocca-SHAP breaks down the explanation in a modular way into simple local
explanations, without the need to interpret single instance’s explanations. And I have
demonstrated that Mocca-SHAP offers superior interpretation options, because it allowed
me to reason about the nature and causes of the differences.

In the Gaussian Quantiles example, I have shown how the methods perform on an
especially tricky task, where the differences are in the shape of a ring in the two
dimensional feature space. Mocca-SHAP makes high errors and mixes the inner circle
with the ring heavily because of its supervised clustering approach being based on
explanation similarity alone. With manual intervention, it achieved higher fidelity than
explanations of the other approaches with comparable complexity.

In the Adult example, I have evaluated the methods in a benchmark setting with binary
classifiers. Mocca-SHAP achieved the highest overall fidelities. Mocca-SHAP and DiRo2C
both explained sufficiently by including the feature that was modified, whereas the baseline
failed. I have also shown for Mocca-SHAP, how I interpreted in a conversational way each
feature’s effects. For some features it was sufficient to interpret on the global level, for
others I was able to interpret local explanations in the context of the global explanation.

In the Boston Housing example, I have evaluated the methods in a benchmark setting by
comparing three multiclass classifiers. Both Mocca-SHAP and DiRo2C’s explanations
have been useful in explaining with the most relevant features, but DiRo2C was not able
to explain certain boundary cases, which would have been interesting. DiRo2C hindered
interpretation, because it included explanations for unrealistic instances. The baseline
explanations were not useful, because they included unimportant features ranked high. I
have demonstrated contextuality in a different way here with Mocca-SHAP by exploring
different effects for certain feature value combinations, based on a combination of local
explanations gathered by the supervised clustering approach and manual separation.

Generation time was lower for Mocca-SHAP than for DiRo2C, except in the Adult
example. A big portion of Mocca-SHAP’s generation time is spent searching for group
counterfactuals. The algorithm is as of now very inefficient and could be optimized,
and in practical scenarios it is not necessary to calculate them for all modular local
explanations. I consider SHAP Value generation the limiting factor in the long run. But
when switching to faster approximate methods or model-specific methods, this could be
sped up as well to be applicable in real-world settings.

113

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion
In this master thesis I have proposed the new model comparison method Mocca-SHAP to
address the need of data scientists for comparing classifiers with interpretability methods.
It is based on the difference classifier, proposed by Staufer and Rauber [Sta21]. I have
extended it to support the model-agnostic instance-level interpretability method SHAP.
I have shown, that only the multiclass difference classifier variant suits it in a general
way. And I have developed an interactive framework with a focus on global-level model
understanding with the possibility to investigate local explanations in a modular way, as
desired, with the supervised clustering approach proposed by Lundberg [LL17]. For this,
the instance-level explanations of SHAP Values are visualized together in SHAP Depen-
dence Plots. This framework consists of the traditional explanations for the individual
classifiers and explanations for the difference classifier. I furthermore proposed group
counterfactual explanations to aid in causal interpretations. For evaluation, I compared
Mocca-SHAP to DiRo2C [Sta21], which is the original work based on the difference clas-
sifier, and a surrogate decision tree that explains the difference classifier as the baseline.
For this comparison, I conducted three experiments based on artificial data sets and two
experiments based on real-world data sets, all with artificially introduced differences as a
ground truth. I measured Fidelity, Complexity and Generation Time. Furthermore, I
evaluated qualitatively how Miller’s desirable properties for explanations contrastiveness,
selectiveness, causal links and interactivity are met, which together make up contextuality.
According to the research question, I show that Mocca-SHAP outperforms the baseline
and performs similar to DiRo2C, while offering superior interactivity and contextual
explanations and taking less time to generate in most experiments. I have also shown
different strengths and weaknesses of Mocca-SHAP and DiRo2C, which I explain in the
following paragraphs in more detail.

DiRo2C is less stable than Mocca-SHAP: In both the running example and Gaussian

115

7. Conclusion and Future Work

Quantiles example DiRo2C achieved poor fidelity due to bad initialization. But regener-
ating with different initialization is costly, because of the long generation time.

Supervised clustering is not a general solution: Mocca-SHAP does not perform well on
all types of differences. In certain cases, manual intervention was needed, as shown in the
Gaussian Quantiles example and Boston Housing example. This is due to the clustering
algorithm used. Potential fixes are discussed in the next section, in 7.2. Because of the
conversational, interactive nature of Mocca-SHAP, I do not consider it a big problem.

DiRo2C fails to explain boundary cases: In the experiments, DiRo2C did not come up
with explanations for all instances, especially boundary cases were often left unexplained.
This did not happen with Mocca-SHAP or the baseline approach.

Mocca-SHAP fails to detect differences not present in data set: It is not able to directly
explain differences, that are not present in the data set, while DiRo2C can do that.
While both methods are based on instance generation, they may lead to decision rules in
DiRo2C but are only taken into account in the feature attributions of the instances to
be explained in Mocca-SHAP. This further means, that Mocca-SHAP can only be as
accurate as the given data set allows it. I have shown this for DiRo2C in the running
example, where it worked well. In the Adult example, it found explanations, but they did
not generalize well.

Contribution compared to the State of the Art

With Mocca-SHAP, I have enriched the research built upon the notion of the difference
classifier, which was initially published with DiRo2C [Sta21]. With this I am also con-
tributing to the sparse research that directly seeks to make differences between classifiers
interpretable. Furthermore, I have extended the difference classifier for probability
estimates.

With this work I have run experiments built on the instance-level interpretability method
SHAP and its global extension method SHAP Dependence Plots [LEL19] within new
areas of application. I have also investigated operations between SHAP Values of different
classifiers with the difference SHAP Values, which are only possible because of the
unique properties of SHAP Values that allow them to be treated as explanation models
themselves. I have also applied the supervised clustering approach by Lundberg [LL17]
and built group counterfactual explanations on top of their results.

7.2 Future Work
Human-level Evaluation

Because of the time and resource constraints within this master thesis, I ran experiments
on my own as a domain expert. Yet, further investigation is needed, to fully test the
newly proposed model comparison method. A user study should be done in a follow-up
research and evaluate with multiple independent domain experts in the context of specific

116

7.2. Future Work

real-world tasks with a priori known differences that are to be explained. This can be
either with a smaller number of participants in the exact end task or with a larger number
of participants in a simplified task [DVK17].

Larger Number of Features

I evaluated only on tasks with data sets, that have a small to medium number of
features. But I have shown techniques on how to find features relevant for the differences
and proposed multiple importance measures. In a future work, it should be further
investigated with data sets including a large number of features.

Comparison of Classifiers of Different Types

In Section 2.1 I have noted, that to avoid additional errors, I am comparing only classifiers
of the same type. Yet the method developed treats the classifiers as black boxes, so it is
able to compare any classifiers. If all compared classifiers support probability estimates,
this output space can be compared as well. But as I noted, they may need to be calibrated
to be comparable. Further work should investigate, if fidelity does not worsen too much
under these circumstances.

Possible Extensions of the Tools

During development of the tools, I have noted possible extensions and further investiga-
tions.

As the clustering algorithm, I have used the same that Lundberg used [LEL19]. But
during the Gaussian Quantiles experiment, this algorithm failed to break down the
explanation space sufficiently, because it is based only on SHAP Value similarity. A
different approach could take into account the features and the SHAP Values, which
might solve the problem.

In the Boston Housing experiment, I have compared more than two classifiers, by
breaking down the task into pairwise comparisons. A different approach could extend
the difference classification problem to solve this task. It could also be extended for
multi-output classifiers.

Because SHAP natively supports image and text data, future work could look into
comparison of classifiers with this type of data. Within this limited work, it was not
possible to investigate that.

Also, SHAP natively explains regression models. It would be interesting, to see a
different problem formulation for difference recognition between regression models, e.g.
by explaining the residuals between two models’ outputs: ŷB − ŷA.

As already noted during the experiments, the group counterfactual explanation generation
algorithm is in its default implementation very inefficient and could be optimized. And
it lacks direct support for categorical feature types.

117

7. Conclusion and Future Work

Finally, I have to note that while the compared methods Mocca-SHAP and DiRo2C are
very different in their workings, they have different strengths and weaknesses. Future
research could investigate, how they can be combined most efficiently to get a more
complete understanding of the differences between classifiers. One option is to apply
DiRo2C to the instances of a local Mocca-SHAP explanation. Another option is to use
the genetic neighborhood generation algorithm of DiRo2C and calculate SHAP Values
for these.

118

List of Figures

2.1 SHAP Feature Importances of classifier A for the positive class’ log odds
estimates of the Adult (Census Income) example. Features are sorted in
descending order by their importance. 16

2.2 SHAP Summary Plot of classifier A for the positive class’ log odds estimates
of the Adult (Census Income) example. Features are sorted in descending
order by their importance. 17

2.3 SHAP Dependence Plot (left) and PD-plot (right) of classifier A’s positive
class probability estimates vs. x2, running example, described in Section 4.1.
Both perfectly describe the constant shape of the dependence curve. . . . 18

2.4 SHAP Dependence Plot and PD-plot of classifier A’s positive class log odds
estimates vs. x2, "One Classifier Ignores a Feature" example, described in
Section 4.2. Both perfectly describe the linear increasing relation. 18

2.5 SHAP Dependence Plot and PD-plot of difference class (1, 1)’s log odds
estimates vs. x2, "One Classifier Ignores a Feature" example, described in
Section 4.2. Both show a monotonically increasing curve. 19

2.6 SHAP Dependence Plot and PD-plot of classifier B’s negative class log odds
estimates vs. x1, Gaussian Quantiles example, described in Section 4.3. Both
approaches show the convex shape of the dependence curve, which is increasing
at first, and decreases again around 0, forming a global high. The SHAP
Dependence Plot additionally shows vertical spread, which is especially big
on the lower and upper end. This is caused by interaction effects. 19

2.7 SHAP Dependence Plot and PD-plot of classifier A’s positive class probability
estimates vs. x1, running example, described in Section 4.1. Both approaches
show the step up at approx. 0, below and above it is constant. 20

2.8 SHAP Dependence Plot and PD-plot of difference class (0, 1)’s log odds
estimates vs. x1, "One Classifier Ignores a Feature" example, described in
Section 4.2. In the SHAP Dependence Plot, the instances are colored by their
x2 value from blue to red for increasing x2 values, which allows one to see,
that the dependence curve is steeper for higher x2 values than for lower values.
The PD-plot is misleading as it just shows the average effect. 20

2.9 one-hot encoded class label SHAP Values 21
2.10 Probability SHAP Values . 21
2.11 Log of Odds SHAP Values . 21
2.12 Feature importances for three different models [BB21, p. 200ff.]. 22

119

2.13 Partial dependence profiles for two different models, each chart shows one
feature [BB21, p. 217]. 22

2.14 SHAP values of a single instance for four different models [BB21, p. 164ff.]. 23

3.1 The Design Science research cycle [HMPR04]. 28

4.1 Each classifier’s decision boundaries, overlaid by a scatter plot of the instances
to be explained of the running example. The color denotes the true label as
present in the original data set. 35

4.2 Difference classifier decision boundaries, overlaid by a scatter plot of the
instances to be explained (left) and number of these instances per class (right)
of the running example. 35

4.3 Classifier A’s (left) and B’s (right) decision nodes of the running example
task. 36

4.4 Difference classifier decision boundaries, overlaid by a scatter plot of the
explanation test instances (left) and number of instances per class (right) of
the running example. 36

4.5 Each classifier’s decision boundaries, overlaid by a scatter plot of the instances
to be explained of the "One Classifier Ignores a Feature" example. The color
denotes the true label as present in the original data set. Please note, that
although the original data set is plotted for classifier B, it has only seen
informative x2 values during training. 37

4.6 Difference classifier decision boundaries, overlaid by a scatter plot of the
instances to be explained (left) and number of instances per class (right) of
the "One Classifier Ignores a Feature" example. 38

4.7 Probability estimates for class 1 of classifiers A and B of the "One Classifier
Ignores a Feature" example. Instances are colored by their true label. . . . 38

4.8 Probability estimates for all classes of the difference classifier of the "One
Classifier Ignores a Feature" example. Instances are colored by their estimated
probability. 39

4.9 Difference classifier decision boundaries, overlaid by a scatter plot of the
explanation test set instances (left) and number of instances per class (right)
of the "One Classifier Ignores a Feature" example. 40

4.10 Each classifiers’ decision boundaries, overlaid by a scatter plot of the instances
to be explained of the Gaussian Quantiles example. The color denotes the
true label as present in the original data set. 41

4.11 Difference classifier decision boundaries, overlaid by a scatter plot of the
instances to be explained (left) and number of instances per class (right) of
the Gaussian Quantiles example. 41

4.12 Probability estimates for all classes of the difference classifier of the Gaussian
Quantiles example. Instances are colored by their estimated probability. . 42

4.13 Difference classifier decision boundaries, overlaid by a scatter plot of the
explanation test set instances (left) and number of instances per class (right)
of the Gaussian Quantiles example. 42

120

4.14 Feature importance of Classifier A, trained on the original Adult data. . . 43
4.15 Difference classifier class counts of the data set to be explained (left) and

explanation test set (right) of the Adult example. 44
4.16 Difference class counts of classifiers A vs. B (left) and A vs. C (right) for the

explanation data set, Boston Housing example. 45

5.1 Individual classifiers’ SHAP Dependence Plots (left and middle) and difference
dependence plots (right) for x1’s effect on class 1’s probability outcome,
running example. 50

5.2 Difference classifier dependence plots for x1 with class (0, 1) in focus, running
example. 53

5.3 Difference classifier dependence plots for node α and all instances not part of
node α with class (0, 1) in focus, running example. 55

5.4 Difference classifier dependence plots of feature x2 with instances classified
(0, 1) in focus (blue), "One Classifier Ignores a Feature" example. 57

5.5 Scatter plot of the instances of the interpreted nodes explaining difference
class (0, 1), "One Classifier Ignores a Feature" example. 57

6.1 Decision boundaries of the fourth baseline explanation, running example. The
instances shown are from the explanation data set and are colored by their
difference classifier label. 64

6.2 Third DiRo2C’s explanation for difference class (0, 1), running example. . 65
6.3 Fourth DiRo2C explanation for difference class (1, 0), running example. . 66
6.4 Individual classifiers’ feature importances, running example. 66
6.5 Individual and difference dependence plots, running example. The first row

shows x1’s effects, the second x2’s effects on class 1’s outcome. 67
6.6 Difference classifier dependence plots for x1 with class (0, 1) in focus, running

example. 68
6.7 Difference classifier dependence plots for node α and all instances not part of

node α with class (0, 1) in focus, running example. 68
6.8 Difference classifier dependence plots for x1 with class (1, 0) in focus, running

example. 69
6.9 Difference classifier dependence plots for node β and all instances not part of

node β with class (1, 0) in focus, running example. 69
6.10 Scatter plots for instances of nodes α and β and their counterfactual boundaries

(dashed lines), running example. 70
6.11 Explanation fidelity on the running example test set for explanations with

different complexities. 71
6.12 Decision boundaries of the 5th baseline explanation, "One Classifier Ignores

a Feature" example. The instances shown are from the explanation data set
and are colored by their difference classifier label. 72

6.13 Last interpreted explanation of DiRo2C’s explanation for difference class (0, 1),
"One Classifier Ignores a Feature" example. 73

121

6.14 Last interpreted explanation of DiRo2C’s explanation for difference class (1, 0),
"One Classifier Ignores a Feature" example. 74

6.15 Individual classifiers’ feature importances, "One Classifier Ignores a Feature"
example. 74

6.16 Individual and difference dependence plots, "One Classifier Ignores a Feature"
example. 75

6.17 Difference classifier dependence plots with instances classified (0, 1) in focus
(blue), "One Classifier Ignores a Feature" example. 76

6.18 Scatter plot of the instances of the interpreted nodes explaining difference
class (0, 1), "One Classifier Ignores a Feature" example. 77

6.19 Scatter plot of the instances of the interpreted nodes explaining difference
class (1, 0), "One Classifier Ignores a Feature" example. 78

6.20 Difference classifier dependence plots with instances classified (1, 0) in focus
(orange), "One Classifier Ignores a Feature" example. 79

6.21 Explanation fidelity on the "One Classifier Ignores a Feature" example test
set for explanations with complexities up to 100 constraints. 80

6.22 Decision boundaries of the 14th baseline explanation, Gaussian Quantiles
example. The instances shown are from the explanation data set and are
colored by their difference classifier label. 81

6.23 Scatter plot of the instances generated by DiRo2C, Gaussian Quantiles exam-
ple. 82

6.24 Decision boundaries of the DiRo2C 8th explanation with explanation data set
instances. 82

6.25 Decision boundaries of the DiRo2C 20th explanation with explanation data
set instances. 83

6.26 Individual and difference dependence plots, Gaussian Quantiles example. The
first row shows x1’s effects, the second x2’s effects. 84

6.27 Difference classifier dependence plots for the root node, node RLR and RRRL,
Gaussian Quantiles example. 85

6.28 Difference classifier dependence plots for the manually interpreted parts,
Gaussian Quantiles example. 87

6.29 Instances of node RLR (left) and node RRRL (right), Gaussian Quantiles
example. 88

6.30 Instances of the manually investigated parts, Gaussian Quantiles example.
The top row shows the left and right part of node RLR and the bottom row
shows the bottom and top part of node RRRL. 88

6.31 Explanation fidelity on the Gaussian Quantiles example test set for explana-
tions with complexities of up to 100 constraints. 89

6.32 Baseline’s feature importances of the Adult example. 90
6.33 Scatter plot of the instances generated by DiRo2C for the two most important

features (left) and feature importances (right) of the explanation for difference
class (True, False), Adult example. 91

6.34 Different feature importance measures, Adult example. 93

122

6.35 Individual and difference dependence plots for feature Hours per week and its
effect on class True’s outcome, Adult example. 93

6.36 Dependence plots of classifier A overlaid by a modified version of classifier
B’s dependence plot, Adult example. 94

6.37 Global difference classifier dependence plots for feature Hours per week, Adult
example. 94

6.38 Difference classifier dependence plots for feature Relationship, Adult example.
The first row shows the global effects and the other show local effects. . . 95

6.39 Difference classifier dependence plots for feature Education, Adult example.
The first row shows the global effects and the other show local effects. . . 96

6.40 Explanation fidelity on the Adult example test set for explanations with
complexities of up to 100 constraints. 97

6.41 Baseline’s feature importances of the Boston Housing example. 98
6.42 A vs. B: DiRo2C’s feature importances for the difference class explanations. 100
6.43 A vs. B: DiRo2C’s generated instances of the interpreted difference class

explanations, Boston Housing example. 101
6.44 A vs. C: DiRo2C’s generated instances of the interpreted difference class

explanations, Boston Housing example. 103
6.45 A vs. C: DiRo2C’s feature importances for the difference class explanations. 104
6.46 SHAP feature importances of the individual classifiers, Boston Housing exam-

ple. 105
6.47 SHAP dependence plots of feature LSTAT, Boston Housing example. Instances

are colored by the label predicted by each classifier. 106
6.48 Difference feature importances, Boston Housing example. 106
6.49 SHAP dependence plots of AGE, Boston Housing example. 107
6.50 SHAP difference dependence plots of AGE, Boston Housing example. Each

row shows instances of one cluster. 107
6.51 SHAP difference dependence plots of AGE, Boston Housing example. Each

row shows instances of one cluster. 108
6.52 SHAP difference dependence plots of AGE, Boston Housing example. Each

row shows instances of one cluster. 109
6.53 SHAP difference dependence plots of ZN, Boston Housing example. 110
6.54 SHAP difference dependence plots of LSTAT for instances having ZN = 0,

Boston Housing example. 111

123

List of Tables

4.1 Learned weights of the logistic regression classifiers. 39
4.2 Instances to be explained, classified (True, False), of the Adult example. 44
4.3 Instances to be explained, classified differently by A and B, of the Boston

Housing example. 46
4.4 Instances to be explained, classified differently by A and C, of the Boston

Housing example. 46

125

List of Algorithms

5.1 Computation of Group Counterfactual Explanations 54

127

Acronyms

ALE Accumulated Local Effects. 9, 49

CRISP-DM CRoss Industry Standard Process for Data Mining. 1, 8

DALEX Descriptive mAchine Learning EXplanations. 21

DiRo2C Difference Recognition of 2 Classifiers. vii, ix, 3–5, 23, 24, 26, 33, 34, 47, 49,
58–60, 63–66, 69–71, 73, 74, 77, 78, 80, 82–84, 86, 89, 91, 96–98, 100, 101, 103, 104,
112, 113, 115, 116, 118, 121–123

GDPR General Data Protection Regulation. 2, 27

KNN K-Nearest Neighbors. 62

LIME Local Interpretable Model-agnostic Explanations. 11, 14, 15

LORE LOcal Rule-based Explanations. 3, 9, 11, 23

MLP Multi-layer Perceptron. 33, 45

Mocca-SHAP Model comparison with clustered difference classifier SHAP values. vii,
ix, 3–5, 12, 27, 32–34, 47, 52, 59, 61–63, 65, 68–71, 77, 78, 80, 81, 89, 96–98, 112,
113, 115, 116, 118

PD Partial Dependence. 2, 9, 17–20, 22, 49, 119

RMSE Root Mean Square Error. 1

SHAP SHapley Additive exPlanations. vii, ix, 3, 5, 6, 12, 25, 28, 30, 31, 47–49, 66,
115–117

SOA State-of-the-art. 29, 31, 32

SVC Support Vector Classifier. 33, 40

XAI Explainable Artificial Intelligence. vii, ix, 1, 31

129

Bibliography

[AB18] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A
survey on explainable artificial intelligence (XAI). IEEE Access, 6:52138–
52160, 2018.

[AR19] Amjad Abu-Rmileh. The multiple faces of ‘Feature importance’ in
XGBoost. https://towardsdatascience.com/be-careful-
when-interpreting-your-features-importance-in-xgboost-
6e16132588e7, 2019. Accessed: 2022-01-07.

[AZ20] Daniel W Apley and Jingyu Zhu. Visualizing the effects of predictor variables
in black box supervised learning models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 82(4):1059–1086, 2020.

[B+01] Leo Breiman et al. Statistical modeling: The two cultures. Statistical
Science, 16(3):199–231, 2001.

[BB21] Przemyslaw Biecek and Tomasz Burzykowski. Explanatory Model Analysis.
Chapman and Hall/CRC, New York, 2021.
https://pbiecek.github.io/ema/, accessed on 16 November 2021.

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015.

[BC17] Or Biran and Courtenay Cotton. Explanation and justification in machine
learning: A survey. In IJCAI-17 Workshop on Explainable AI (XAI),
volume 8, pages 8–13, 2017.

[BFOS84] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone.
Classification And Regression Trees. Routledge, 1984.

[Bie18] Przemysław Biecek. DALEX: Explainers for complex predictive models in
R. The Journal of Machine Learning Research, 19(1):3245–3249, 2018.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and
Machine Learning, volume 4. Springer, 2006.

131

https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
https://pbiecek.github.io/ema/

[CG16] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New
York, NY, USA, 2016. ACM.

[CPC19] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine
learning interpretability: A survey on methods and metrics. Electronics,
8(8):832, 2019.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
http://archive.ics.uci.edu/ml, accessed on 16 November 2021.

[DMBB20] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. Multi-
objective counterfactual explanations. In International Conference on Par-
allel Problem Solving from Nature, pages 448–469. Springer, 2020.

[DSZ16] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via
quantitative input influence: Theory and experiments with learning systems.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 598–617,
2016.

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[Eur16] European Commission. General data protection regulation, 2016.
https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32016R0679, accessed on 12 November 2021.

[Eur21] European Commission. Artificial intelligence act, 2021.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:52021PC0206, accessed on 10 August 2022.

[FRD19] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are
wrong, but many are useful: Learning a variable’s importance by studying
an entire class of prediction models simultaneously. Journal of Machine
Learning Research, 20(177):1–81, 2019.

[Fri01] Jerome H Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, pages 1189–1232, 2001.

[GBM18] Brandon M Greenwell, Bradley C Boehmke, and Andrew J McCarthy.
A simple and effective model-based variable importance measure. arXiv
preprint arXiv:1805.04755, 2018.

[GMR+18a] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi,
Franco Turini, and Fosca Giannotti. Local rule-based explanations of black
box decision systems. arXiv preprint arXiv:1805.10820, 2018.

132

http://archive.ics.uci.edu/ml
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

[GMR+18b] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black
box models. ACM Computing Surveys (CSUR), 51(5), 2018.

[Hev07] Alan R Hevner. A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19(2):4, 2007.

[HGKP20] Patrick Hall, Navdeep Gill, Megan Kurka, and Wen Phan. Machine learning
interpretability with H2O driverless AI. H2O.ai, 2020.
http://docs.h2o.ai, accessed on 21 November 2020.

[HJR78] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the
demand for clean air. Journal of Environmental Economics and Management,
5(1):81–102, 1978.

[HMPR04] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, pages 75–105, 2004.

[HTFF09] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, volume 2. Springer, 2009.

[Hun07] John D. Hunter. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[KKK16] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not
enough, learn to criticize! Criticism for interpretability. In Advances in
Neural Information Processing Systems, pages 2280–2288, 2016.

[KPN16] Josua Krause, Adam Perer, and Kenney Ng. Interacting with predictions:
Visual inspection of black-box machine learning models. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pages
5686–5697. ACM, 2016.

[LC01] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory
approach. Applied Stochastic Models in Business and Industry, 17(4):319–
330, 2001.

[LEC+20] Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex DeGrave, Jordan M
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and
Su-In Lee. From local explanations to global understanding with explainable
AI for trees. Nature Machine Intelligence, 2(1):56–67, 2020.

[LEL19] Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent individual-
ized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888,
2019.

133

http://docs.h2o.ai

[LL17] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems, pages
4765–4774, 2017.

[Lun] Scott M. Lundberg. An introduction to explainable AI with
Shapley values. https://shap.readthedocs.io/en/latest/
example_notebooks/overviews/An%20introduction%20to%
20explainable%20AI%20with%20Shapley%20values.html. Ac-
cessed: 2022-03-14.

[Lun21] Scott M. Lundberg. Exact explainer. https://shap.readthedocs.io/
en/latest/example_notebooks/api_examples/explainers/
Exact.html, 2021. Accessed: 2021-11-22.

[MCB20] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Quantifying
model complexity via functional decomposition for better post-hoc inter-
pretability. In Peggy Cellier and Kurt Driessens, editors, Machine Learning
and Knowledge Discovery in Databases, pages 193–204, Cham, 2020. Springer
International Publishing.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267:1–38, 2019.

[Mol20] Christoph Molnar. Interpretable Machine Learning. lulu.com, 2020.
https://christophm.github.io/interpretable-ml-book/, ac-
cessed on 21 November 2020.

[Nat07] Shyam Varan Nath. Champion-challenger based predictive model selection.
In Proceedings 2007 IEEE SoutheastCon, pages 254–254. IEEE, 2007.

[NMC05] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities
with supervised learning. In Proceedings of the 22nd International Conference
on Machine Learning, ICML ’05, pages 625–632, New York, NY, USA, 2005.
Association for Computing Machinery.

[Pas15] Frank Pasquale. The black box society. Harvard University Press, 2015.

[PGG+19] Dino Pedreschi, Fosca Giannotti, Riccardo Guidotti, Anna Monreale, Sal-
vatore Ruggieri, and Franco Turini. Meaningful explanations of black box
AI decision systems. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):9780–9784, 2019.

[PHBV08] Jan Pries-Heje, Richard Baskerville, and John R Venable. Strategies for
design science research evaluation. In Proceedings of the European Conference
on Information Systems, pages 255–266, 2008.

134

https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/explainers/Exact.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/explainers/Exact.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/explainers/Exact.html
https://christophm.github.io/interpretable-ml-book/

[Pla99] John Platt. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in Large Margin
Classifiers, 10(3):61–74, 1999.

[Pow08] David Powers. Evaluation: From precision, recall and F-factor to ROC,
informedness, markedness & correlation. Machine Learning Technology, 2,
2008.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RŠB18] Marko Robnik-Šikonja and Marko Bohanec. Perturbation-based explanations
of prediction models. In Human and Machine Learning, pages 159–175.
Springer, 2018.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I
trust you?" Explaining the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1135–1144, 2016.

[RSG18] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-
precision model-agnostic explanations. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[SF20] Kacper Sokol and Peter Flach. Explainability fact sheets: A framework for
systematic assessment of explainable approaches. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, pages 56–67,
2020.

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning im-
portant features through propagating activation differences. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, page 3145–3153. JMLR.org, 2017.

[Sha53] Lloyd S Shapley. A value for n-person games. Contributions to the Theory
of Games, 2(28):307–317, 1953.

[ŠK14] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and in-
dividual predictions with feature contributions. Knowledge and Information
Systems, 41(3):647–665, 2014.

[sld] scikit-learn developers. sklearn.tree.DecisionTreeClassifier.
https://scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeClassifier.html. Accessed: 2022-03-
13.

135

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

[SR21a] Andreas Staufer and Andreas Rauber. Gaussian quantiles datasets - DiRo2C.
Zenodo, https://doi.org/10.5281/zenodo.5362220, 2021.

[SR21b] Andreas Staufer and Andreas Rauber. Running example datasets - DiRo2C.
Zenodo, https://doi.org/10.5281/zenodo.5325335, 2021.

[SSSEA19] Thilo Spinner, Udo Schlegel, Hanna Schäfer, and Mennatallah El-Assady.
explAIner: A visual analytics framework for interactive and explainable
machine learning. IEEE Transactions on Visualization and Computer
Graphics, 26(1):1064–1074, 2019.

[Sta21] Andreas Staufer. Recognition of Differences between two Binary Black Box
Classifiers to create Explanations using Model-Agnostic Methods. Master’s
thesis, TU Wien, 2021.

[VDH20] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual expla-
nations for machine learning: A review. arXiv preprint arXiv:2010.10596,
2020.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods, 17:261–272, 2020.

[VPHB12] John Venable, Jan Pries-Heje, and Richard Baskerville. A comprehensive
framework for evaluation in design science research. In Processdings of
the International Conference on Design Science Research in Information
Systems, pages 423–438. Springer, 2012.

[Was21] Michael L. Waskom. seaborn: Statistical data visualization. Journal of
Open Source Software, 6(60):3021, 2021.

[WH00] Rüdiger Wirth and Jochen Hipp. CRISP-DM: Towards a standard process
model for data mining. In Proceedings of the 4th International Conference
on the Practical Applications of Knowledge Discovery and Data Mining,
pages 29–39, 2000.

[WMR17] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual
explanations without opening the black box: Automated decisions and the
GDPR. Harv. JL & Tech., 31:841, 2017.

136

https://doi.org/10.5281/zenodo.5362220
https://doi.org/10.5281/zenodo.5325335

[YDH19] Fan Yang, Mengnan Du, and Xia Hu. Evaluating explanation without ground
truth in interpretable machine learning. arXiv preprint arXiv:1907.06831,
2019.

[ZE02] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into
accurate multiclass probability estimates. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 694–699, 2002.

[ZWM+18] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert.
Manifold: A model-agnostic framework for interpretation and diagnosis of
machine learning models. IEEE Transactions on Visualization and Computer
Graphics, 25(1):364–373, 2018.

137

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Existing Work
	Solution
	Research Contributions
	Structure of the Thesis

	Background
	Machine Learning Models
	Interpretability
	Overview about Interpretability Methods
	SHAP
	Traditional Approaches to Model Comparison
	DiRo2C
	Summary

	Research Methodology
	Design Science
	Literature Review
	Experiments
	Summary

	Difference Recognition Tasks
	Running Example
	One Classifier Ignores a Feature
	Gaussian Quantiles
	Census Income (Adult)
	Boston Housing

	Mocca-SHAP
	Requirements and Limitations
	Design Process
	Testable Design Proposition
	Implementation
	Summary

	Experiments
	Running Example
	One Classifier Ignores a Feature
	Gaussian Quantiles
	Census Income (Adult)
	Boston Housing
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

