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Kurzfassung

Vermischung spielt bei der Auslegung, Optimierung und Betriebsweise groÿer Wirbel-

schichten eine Schlüsselrolle um deren E�zienz zu steigern.

Diese Arbeit untersucht das seitliche Mischverhalten in einem Kaltmodell einer Blasen-

bildenden Wirbelschicht bei unterschiedlichen, zum Vergasungs- und Verbrennungsprozess

passenden, Betriebsbedingungen.

Die Analysen wurden mittels digitaler Bildanalyse durchgeführt. Dafür wurde ein Ob-

jektdetektierungsalgorithmus entwickelt und validiert. Anschlieÿend wurden zwei theore-

tisch unterschiedliche Modelle implementiert (Einzelpartikelverfolgung, multiple Partikel-

streuung).

Alle für die Auswertung notwendigen Parameter wurden untersucht. Dabei wurde der

Ein�uss der Mischzellenbreite bei der Einzelpartikelverfolgungsmethode gefunden. Ohne

diesen Parameter, welcher weitere Untersuchungen benötigt, können nur Gröÿenbereiche

der Dispersionskoe�zienten angegeben werden.

Die Verläufe von beiden Methoden sind miteinander vergleichbar. Dennoch sind jene

Werte der Einzelpartikelverfolgung höher.

Hinaufskalierte Dispersionskoe�zienten der Einzelpartikelverfolgung liegen in einem

Bereich zwischen 0.0064 und 0.112m2 s−1 was sie vergleichbar mit Literaturwerten1 (0.0001

bis 0.1m2 s−1) macht.

1siehe (Niklasson et al.; 2002, Seite 3)
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Abstract

Mixing is an important key issue in large �uidized beds to design, optimize and control

the reactors e�ciency.

This thesis investigates lateral fuel mixing in a cold �ow model at several operation

conditions, relevant to gasi�cation and combustion processes.

The analysis was done with digital image analysis. A new object detection algorithm

was developed and validated. Furthermore two di�erent analysis models were developed

(single particle tracking and multiple particle spreading).

Further on several algorithm settings are investigated. Thereby the in�uence of the

mixing cell length on single particle tracking was found out. Without this parameter,

which needs further investigation, only a range of dispersion coe�cients can be given.

The trends of both methods are comparable. Nevertheless the values are higher for

the single particle tracking method.

Scaled up single particle tracking dispersion coe�cient results are in the range of

0.0064 to 0.112m2 s−1 which makes them comparable to those found in literature2 (0.0001

to 0.1m2 s−1).

2see (Niklasson et al.; 2002, page 3)
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Chapter 1

Introduction

1.1 Motivation

The world's energy consumption is increasing. Furthermore, fossil fuels (coal, oil, gas)

and uranium will run out someday. Therefore it is essential to develop new technologies

based on renewable energy sources. E�cient use of renewable energy, especially biomass,

reduces the emission of climate active gases (keyword CO2 footprint). Further on transport

distances and energy import dependency are reduced. This independence decreases the

political in�uence of exporting countries.

A major problem with most renewable energy sources is that availability and demand

is not always simultaneous. However this is needed to ensure electrical power grid stability

(Leitner; 2010, page 2). Therefore energy storage is needed. Storing a huge amount of

energy over a long time is one of the biggest problems and the importance is increasing

by extending the use of renewable energy sources.

Biomass is chemically bounded energy. It can be used whenever it is needed and

therefore it acts as energy storage. The bounded energy can be converted into electricity by

burning biomass. The hot exhaust gases are converted into mechanical (engine or turbine)

and afterwards into electrical (generator) energy. In case of combustion, biomass is burned

directly. A di�erent approach is gasi�cation. Under special conditions (e.g. limited

amount of oxygen), biomass can be converted into gas. After some additional conditioning

steps high-grade synthesis gas is produced. This gas can be burned directly in gas engines
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or gas turbines to produce heat and power. Alternatively Synthetic Natural Gas (SNG),

Hydrogen, or high quality liquid fuels (Fischer-Tropsch) diesel can be produced.

At Vienna University of Technology a dual �uidized bed gasi�cation process has been

developed. This process is successfully demonstrated in industrial scale in Güssing (8 MW)

and Oberwart (10 MW). Currently a large application (GoBiGas project, Gothenburg,

Sweden) based on this knowledge is under construction. The aim of this project is to

produce in a �rst step 20 MW SNG and in the end 100 MW.

Compared to Austria there are no allowances for biomass power plants in Sweden.

Therefore this technology can only be used, if it is price-competitive by its own. This

can only be achieved, if it has an accurate size. Most of Austrians large biomass power

plants are sized around 10 MWfuel, input (upper limit to get allowances). Compared to

this, the GoBiGas project is planned with a fuel input of 32 MWfuel, input for its �rst step

(REPOTEC; 2013).

The sizes of these power plants are di�erent and therefore requirements change. To

build such large applications it is important to make them as e�cient as possible, especially

if they have to be price-competitive without any �nancial support. This can be achieved

if the whole process is split up, analysed and optimised part by part and as a whole.

2
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1.2 Aim of the Work

One of these previous mentioned process parts is the fuel distribution.

In case of combustion the fuel should be well distributed to avoid strong over- or

understochiometric regions, which would lead to unbalance. This can be done by multiple

fuel feeding points (Highley and Merrick; 1971), which leads to high investment costs. In

contrast it can be reached if the fuel particles spread on their own in a controlled way.

In case of gasi�cation it is important that almost no fuel reaches the outlet side to

ensure a high conversion rate/e�ciency.

In both cases it is important to know the in�uence of di�erent parameters (e.g. opera-

tion conditions, installed internals) on the mixing to design the reactor in an appropriate

way.

To test multiple di�erent combinations a lab scale model is needed. A common way

to study �uidized beds is to use a cold �ow model1.

There are multiple ways to measure spreading, or mixing. Mostly it is done by mea-

suring time-resolved concentrations on single or multiple positions.

In this work the investigation is done by digital image analysis. Two new algorithms

are developed to follow a single particle (single particle tracking), or a batch of parti-

cles (multiple particle spreading). After applying the expression proposed by Einstein

in (Einstein; 1906) the dispersion coe�cient2 is estimated under di�erent conditions3.

Furthermore the work investigates the in�uence of chosen parameters.

1described in Sect. 2.1 (page 4)
2see Sect. 2.3.1 (page 11)
3see Sect. 4.2 (page 67)
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Chapter 2

Theory

This chapter gives a short summary on the underlying theory. Among others the term

"�uidized bed" is explained and which problems are commonly encountered when applying

laboratory results on industrial applications. Furthermore a short introduction to digital

image analysis is given.

2.1 Fluidized Beds

"Fluidization is an operation which puts solid particles in a �uid like state through sus-

pension1 in a gas or liquid." (Kunii and Levenspiel; 1991, page 1). As shown in Fig. 2.1

(page 5) a �uid is passed through an amount of particles, called bed.

2.1.1 Characterisation of Fluidized Beds

Depending on the super�cial velocity, a ratio between �uid �ow and cross section of the

empty bed, �uidized beds behave in di�erent ways, as illustrated in Fig. 2.1 (page 5).

In Fig. 2.1 (page 5) c) and d) behave di�erently. In c) the �uidization medium is

liquid and in d) it is gas. Compared to a liquid-solid system the bed height of a bubbling

�uidized bed is, due to instabilities of bubbles and channelling, not much higher than the

one with minimum �uidization. In literature they are sometimes called aggregative or

heterogeneous �uidized bed as well. By further increasing the super�cial velocity a bed

1A suspension is a dispersion where unsolvable solid particles are thinly dispersed in a �uid phase.
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reaches a turbulent �uidization state and afterwards pneumatic transport. In the last

case the bed material is transported with the �uid.

Describing all the phenomena for the di�erent systems is beside the purpose of this

work. Therefore it is referenced to (Kunii and Levenspiel; 1991).

Figure 2.1: Characterisation of �uidized beds (Kunii and Levenspiel; 1991, Fig. 1, page

2)

This work investigates bubbling �uidized beds, because they are common in industrial

combustion and gasi�cation.

Grace et al. describe in (Grace et al.; 1997, page 12) a way to categorise �uidized beds

with a diagram displayed in Fig. 2.2 (page 6).
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Figure 2.2: Flow regime map for gas-solid �uidization. Heavy lines indicate transition

velocities, while the shaded region is the typical operation range of bubbling �uidized

beds (Bi and Grace, 1995b) (Grace et al.; 1997, Fig. 1.4 on page 12)
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2.1.2 Bed Material

Physical properties of the solid particles used as bed material in�uence the �uid dynamics

of the whole system. According to literature the most common way to categorise particles

with similar �uid dynamics was found by Geldart in (Geldart; 1973) and is displayed in

Fig. 2.3 (page 7). The particles are classi�ed by their diameter and di�erence in densities

(solid-gas). Typical bed materials for gasi�cation and combustion are in group B, sand-

like.

Figure 2.3: Classi�cation of particles by Geldart (Kunii and Levenspiel; 1991, Fig. 9,

page 78)
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2.2 Scaling

To investigate a �uidized bed small units are usually used, mainly due to cost reasons.

Fluidized beds are often used for combustion or other chemical applications with high

temperatures. To simplify experiments, investigating �uid dynamics of �uidized beds,

these models operate under cold conditions. Therefore they are called "cold �ow models".

To draw inferences from experiments under cold conditions the model needs an appro-

priate design and the results have to be scaled up afterwards.

2.2.1 Cold Flow Model

A cold �ow model is compared to a pilot plant or an industrial application a much smaller

model of a reactor. It is called cold �ow model, because it usually operates under ambient

conditions. This means for instance that it works with ambient temperature instead of

e.g. 900 ◦C.

Several physical properties are depending on the temperature, especially those from

gases. For instance the viscosity (values are from (Kothandaraman and Subramanyan;

2004, page 24)) of air changes from 16.03× 10−5m2 s−1 at 900 ◦C to 1.56× 10−5m2 s−1 at

20 ◦C. The di�erence is about a factor of 10.

Scaling needs to be done following a theoretically-derived set of scaling laws which

respect the conservation equations of mass and momentum.

The most common scaling laws are those formulated by (Glicksman et al.; 1994) (see

Sect. 2.2.2 (page 9)).

There are several factors that have an important in�uence on the results, but describing

all of them is beside the purpose of this work. An example is, that the reactors volume

to surface ratio is di�erent between cold �ow model and industrial application. Therefore

the surface (compared to the volume) of a cold �ow model is much higher, and wall e�ects

are maybe dominating. To reduce this e�ect a large model is needed.

The cold �ow model used in this work and the way to scale up the results is described

in Sect. 3.5 (page 55).
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2.2.2 Scaling Laws

The following equations represent the dimensionless parameters formulated by

(Glicksman et al.; 1994, eq. 35 on page 343), also known as scaling laws:

u0
2

g · L
(2.2.1)

ρs
ρf

(2.2.2)

ρs · u0
µ

(2.2.3)

ρf · u0 · L
µ

(2.2.4)

Gs

ρs · u0
(2.2.5)

bed geometry (2.2.6)

ϕ (2.2.7)

particle size distribution (2.2.8)

To ensure similarity between two systems they need an identical geometry, scaled by a

factor. This means that all lengths are scaled by the same factor. Due to manufacturing

limitations (tolerances, cost reasons) it is not always possible to fully ensure this.

After choosing one property, all the others are �xed. A common way is to chose air at

ambient temperature as �uid. Therefore the other parameters (e.g. bed material density)

are given.

A major problem is typically to �nd an appropriate bed material with the needed

density. Additionally it should be cheap, not reactive with air and not hazardous. Fur-

thermore, to ensure �uid dynamically similarity, it has to be in the same Geldart group.

9



CHAPTER 2. THEORY

2.3 Mixing

Mixing is a very important phenomenon for the performance of industrial applications. In

case of combustion, fast mixing is intended for good fuel burn out (Pallarès et al.; 2007).

In gasi�cation a lower mixing level is needed, because the gasi�cation reactions are slower

compared to combustion (Gómez-Barea and Leckner; 2010).

To increase the performance of reactors it is important to control mixing within the

reactor design. Therefore the in�uence of di�erent parameters needs to be known.

In �uidized beds �uid dynamics are complex, because of particle gas interactions. This

makes Computational Fluid Dynamics (CFD) time consuming and therefore expensive.

Thus it is common to use empirical methods to investigate �uid dynamics and mixing.

Mixing (in �uidized beds) is often split up into two parts, the vertical and horizontal

(lateral). If the bed height is much lower than the bed width (typical for commercial

gasi�ers and boilers (Knoebig et al.; 1999; Sette; 2013)), vertical mixing is much faster

(Ito et al.; 1999).

To simplify the complex �uid dynamics, lateral solids mixing is often described as

random walk process2. According to the random walk theory an overall macroscopic

movement can be calculated from many microscopic movements.

The order of magnitude de�ning a macroscopic length depends on the phenomena

studied. In molecular di�usion it is given by the mean free path. Molecular velocities

between one collision and the next one are not relevant, but global movements at a scale

larger than that in-between collisions (i.e. larger than the mean free path) is the correct

one for analysis.

Lateral solids mixing is "expressed as an averaged dispersion coe�cient, although the

mixing process is highly convective" (Pallarès et al.; 2007, page 930).

The term dispersion has several meanings. In matters of transport (and �uid dynam-

ics) it is the expansion from one substance into another medium. It is the combination

of convection and di�usion. The overall mixing is described by an di�usion like equation.

The two dimensional form is expressed in Eq. (2.3.1) (page 10).

∂C

∂t
= Dx ·

∂2C

∂x2
+Dy ·

∂2C

∂y2
(2.3.1)

2(Pearson; 1905)
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The equation is quite easy to solve, if reactor dimensions and dispersion coe�cients are

known. Finding the dispersion coe�cient is the overall purpose of this work.

2.3.1 Dispersion Coe�cient

The solids dispersion coe�cient has the same unit as the di�usion coe�cient (m2 s−1).

Typical values for molecular di�usion coe�cients for gases are around 10−5 to 10−4m2 s−1,

for liquids around 10−9m2 s−1 (common organic solvents, mercury and molten iron) and

10−30 to 10−12m2 s−1 for solids (Cussler; 1997). A lateral solid dispersion coe�cient for

fuel particles found for a �uidised bed under hot conditions has the order of 0.1m2 s−1

(Niklasson et al.; 2002).

According to Einstein the dispersion coe�cient can be evaluated from experimental

data by using Eq. (2.3.2) (page 11) which was proposed in (Einstein; 1906).

Dx =
∆x2

2 ·∆t
(2.3.2)

The dispersion coe�cient can be de�ned for di�erent directions. In case of a sym-

metrical bed and an even gas nozzles distribution it can be assumed that the dispersion

coe�cients are equal in both horizontal directions.

Dx = Dy = D (2.3.3)

2.3.2 Solid Mixing in Bubbling Fluidized Beds

Mixing is caused by bubbles rising through the bed material and erupting at the surface

(Shi and Fan; 1985).

Bubbles rising through the bed material are e�ected by coalescence (see Fig. 2.4

(page 12)). This means that with increasing distance from the distribution plate bub-

bles grow together. This, simpli�ed, results in an increase of the bubble rising speed. The

higher speed and bubble volume results in more energetic eruptions.

In previous 2D experiments the mixing behaviour was investigated. It was found that

mixing patterns establish, which are structured in horizontally aligned vortexes generated

by the bubble �ow (Pallarès and Johnsson; 2006; Pallarès et al.; 2007; Soria-Verdugo et al.;

2011). Regions with upwards moving direction are established in the main bubble paths,
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Figure 2.4: Dalton's bubble coalescence model (Yang; 2003, �gure 13, page 73)

while downwards moving �ows are in the nearby emulsion phase induced by the emulsion

drift (displayed in Fig. 2.5 (page 12)).

 mixing cell

Figure 2.5: Mixing patterns without coalescence forming a mixing cell

The width of mixing cells increase with the in�uence of bubble coalescence, therefore

they grow with bed height. If the bubble coalescence can be avoided e.g. with internals,

this e�ect is reduced or non-existing.
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2.4 Digital Image Analysis

Visual observations have always been very important. In former times it was only possible

to describe them. With the development of cameras it is possible to record and "save"

them. A couple of years ago the development of computers and cameras has reached a

stage where they are quite cheap and powerful.

Moore proposed in (Moore; 1965) that the number of transistors on a chip roughly

doubles every two years (Moore's law). Figure 2.6 (page 13) shows that his prediction was

correct. As a result of this rapid development, nowadays a personal computer is strong

Figure 2.6: Moore's Law

enough to process a lot of data. Further on it is possible for every scientist and engineer

to use their own computers to process image analysis. Hence this is a reason why digital

image processing is rapidly expanding (Jähne; 2005, page 3).
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By looking at today's pocket camera resolution (around 10 mega pixels) it can be seen

that we are talking from about 10 (in case of a greyscale image) to 30 (in case of a colour

image) million data cells per image. In case the interest lies on video analysis it should

be mentioned that a standard video has about 24 frames (images) per second, but mostly

a smaller resolution. All in all it is a lot of data.

2.4.1 Image

On the technical point of view an image is a huge array of digital numbers, or in other

words, a multidimensional matrix. Two dimensions are needed to de�ne the x and y

coordinates of each element, called pixel. Pixel is an abbreviations of the word picture

element (Jähne; 2005, page 31). Each pixel could have either one, in a greyscale (intensity)

image, or three values, in a colour image. Fig. 2.7 (page 14) visualises this.

Figure 2.7: RGB image (Cattin; 2008, Fig. 2.22 on slide 30)

2.4.2 Colourspaces

The following section introduces two di�erent colour spaces. The �rst one, RGB, is used

by most cameras to store the sensor information. The second one, HSV, is needed for the

colour classi�cation (see Sect. 3.2 (page 29)).

2.4.2.1 RGB - Red Green Blue

The Red, Green and Blue (RGB) colour space is based on the idea that every colour is

a combination of red, green and blue. With these three parameters a three dimensional

14
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matrix, or cube as displayed in Fig. 2.8 (page 15) and Fig. 2.9 (page 15), is de�ned, where

every parameter goes from 0 to 100 percent.

Figure 2.8: RGB colour cube (Cattin; 2008, Fig. 2.23 on slide 30)

There are 2 extreme cases. Case one is, that all three parameters are at 100%. This

is the point where the resulting colour is white. The other is, that everything is zero.

Here the resulting colour is black. Based on di�erent combinations di�erent colours are

possible (displayed in Fig. 2.9 (page 15)).

Figure 2.9: RGB colour cube with colour combinations (Burger and Burge; 2009, Fig. 8.1

on page 186)
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2.4.2.2 HSV - Hue, Saturation and Value

This colour space describes colours by their hue, saturation and value. Sometimes it is

also called HSB (hue, saturation and brightness).

According to its mathematical de�nition it is a cylinder. As it can be seen in Fig. 2.10

(page 16), hue is the angle, saturation the radius and value the height of the cylinder. As

described in (Burger and Burge; 2009, page 205) it is traditionally shown as upside-down,

six-sided pyramid. A coloured visualisation is displayed in Fig. 2.11 (page 16).

Figure 2.10: HSV cylinder with colour combinations (Burger and Burge; 2009, Fig. 8.13

on page 209)

Figure 2.11: HSV hexagonal cone (Cattin; 2008, Fig 2.25 on slide 33)
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2.4.3 Conversion to Greyscale

Converting a colour image to greyscale means, that an equivalent grey or luminance value

Y for every pixel is computed. Burger and Burge describe in (Burger and Burge; 2009,

page 201) that there are several ways to do this. If the colour space is RGB, the simplest

one is to use an average value based on the red, green and blue values.

The perception is that red and green are brighter than blue. Therefore the result

appears to be too dark in the red and green areas and too bright in the blue one. That is

the reason why a weighted sum is used instead.

2.5 Image Noise

Image noise, or often just called noise, is a measuring error from the image sensor. The

signals are a�ected by electronic noise. As a result wrong colour values are returned.

Wrong means that they have no connection to the original image content. There are

several approaches to reduce this e�ect and many of them are used camera intern. Going

deeper into this complex topic is beside the purpose of this work.

2.6 Perspective View

The whole work is based on the analysis of horizontal movements of a particle from one

point to another. The surface of the �uidized bed is not always completely �at and parallel

to the camera sensor, therefore three dimensional movements are recorded. Without the

information of the distance between camera and particle an exact measurement is not

possible. If assumed that the information of interest is just the horizontal movement than

this would not be a problem as long as the camera sensor has the same size as the observed

area. For the cold �ow model area of 900 cm2 this would be really expensive.

A cheaper approach is to use a lens which projects the large area on a much smaller

sensor. There are some physical limitations which should not be ignored.

The most important one is the perspective. If an object is closer to the camera it

appears bigger than one that is more far away. In case the same object, but with a

di�erent distance, is projected onto the same sensor then the angle of view is di�erent.
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This means if an object is close to the camera a lens with a greater angle, often called

as wide-angle, is needed. In contrast, if the distance of the object to the lens increases a

lens with a smaller angle, telephoto-lens, is required. The angle of view, according to the

focal distance, can be seen in Fig. 2.12 (page 18).

180°

75° 63° 43°
29°

18°

10°
7.5°

5°

8 mm

28 mm 35 mm 50 mm
85 mm 135 mm

250 mm
350 mm 500 mm

Figure 2.12: Angle of view for various focal distances

Based on the geometric information (correlation of distance and angle of view) the fol-

lowing can be seen. A particle, located close to the side of the cold �ow model, changing

its distance to the camera produce a horizontal movement. The amount of this is depend-

ing on the angle of view and the di�erence in distance. The di�erence of a 10 cm increase,

according to the chosen angle of view, can be seen in Fig. 2.13 (page 18). Further on it is

angle for focal length: 18 mm angle for focal length: 105 mm

a ba baa

3
0

 c
m

10 20 30 40 50 60 70 80 90 100 110 120 130

distance [cm]

Figure 2.13: Diagonal angle of view of used lens. Used focal distance was about 50 mm.

Dashed lines show the angle of view for a point 10 cm more far away.

shown additionally, that if a particle reduces the distance to the camera, for example if a

bubble ejects a particle, it might be out of range and not detected any more.
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The de�nition of the angle of view is based on the longest length, the diagonal (see

Fig. 2.14 (page 19)).

Figure 2.14: Angles of view for di�erent lengths
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Method

There are several steps needed to extract desired data from video �les. The wanted

data (particle centroid coordinates and size) must be detected and classi�ed. Figure 3.1

(page 21) shows two possible ways to do it. The left part shows the old and the right

the new algorithm developed within this thesis. As it can be seen, the main parts are the

same.

In both algorithms a mask, which is used to detect the objects, is created. In case of

the old algorithm three (one for each colour) di�erent masks are de�ned. Therefore the

object detection is called for all di�erent colours separately and the results are already

categorised.

In contrast, the new algorithm is more complex. First some �lters are applied before

the mask is generated. This mask is valid for all colours and extracts the particles.

Consequently the particles have to be classi�ed, based on their colours, afterwards.

The following sections describe the di�erent steps of the new algorithm.
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�lter

mask

classi�cation

image

convert to greyscale

increase contrast

select values based
on colour ranges detect contours

�ll contours

object detection

categorise every
pixel per object

classify object
based on area/-
category ratio

categorised by
mask de�nition

list of coordinates,
area and category

Figure 3.1: Basic detection algorithm steps with two implementations. Left part describes

the old, right the new algorithm.
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3.1 Particle Detection

There are many ways to extract particles from an image, but most of them have similar

steps. As already described a mask is needed. This mask is used to �lter some parts from

the rest of the image.

Afterwards these extracted parts have to be identi�ed as objects. This means that

connected areas have to be found. There are several ways how this can be done. In this

work the focus lies on the detection of connected coloured regions to extract them and

compute their centroid coordinates. These objects, now seen as particles, are classi�ed

afterwards before they are used for further calculations.

Previous Algorithm In the previous algorithm the mask creation and categorisa-

tion was done in a single step. It was done by �ltering the image with a speci�c �lter for

one colour (e.g. red). As described in Sect. 3.2.1 (page 29) some kind of colour borders are

needed. Therefore an upper or lower limit for red and green together with two di�erent

limits for blue (has two di�erent areas) are used.

It is very important to mention that it was just an upper or lower limit. By looking

at the RGB cube (Fig. 2.8 (page 15)) de�ning a region with just one limit means that it

always has to go until the maximum or minimum values (to the outer sides of the cube).

It is not possible to de�ne some regions in the middle with just one limit. Therefore it is

more complicated, if possible, to use di�erent colours in parallel.

The created mask (for a speci�c colour) is used to detect the objects afterwards.

Because it was just de�ned for one colour the found objects are already categorised. The

biggest advantage of this code is, that it is really fast. As most important disadvantage

the greater colour de�nition sensitivity is pointed out. More on this and the problems

with it are described in Sect. 3.1.1 (page 24).

Idea of New Algorithm The idea of the new detection algorithm is, that it extracts

those areas detected as particles �rst and categorises them afterwards. To �nd those

regions, several steps are needed.

First is computed by detecting the edges of all particles and �lling those contours

afterwards.
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The mask is analysed to �nd connected regions (true values of the binary image),

the particles. Further on the colour of each selected pixel is categorised based on the

de�nitions, chosen in Sect. 3.2.1 (page 29). The results of these main steps are shown in

Fig. 3.2 (page 23).

(a) original (b) greyscale (c) edges

(d) �lled edges (e) applied mask (f) applied mask on white back-

ground

(g) categorised particles

Figure 3.2: Main steps of the new algorithm displayed as images. Applied mask is printed

on white background for presentation purpose, therefore (f) is an optional plot.

As result a list of all particles with category, frame number (time), area and coordinates

of their centre is returned.
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3.1.1 Creating a Mask

A mask is a kind of selector, a binary image (values of each pixel is either true (1) or false

(0)). It describes with its Boolean values if a pixel should be chosen or not. Compared to

the original image this is a data reduction of more than two thirds (extremely depending

on the storage implementation).

It is needed to separate the particles pixels from those of the bed material. In other

words, the particles are extracted. There are several di�erent ways the mask can be

computed.

One is to �nd those regions with similar colours by checking its colours with a lookup

table and use the result of this step as mask (old algorithm). This method is really fast,

because it just checks every pixel with RGB colour borders.

In this work a more complex way with edge detection and �lling was chosen. The

reason for this was, that the old algorithm is very sensitive to a good colour de�nition list.

This means if a colour is not in the colour list, the pixel was not selected by the mask.

In other words this means, that the area of a particle is wrong or multiple particle (with

wrong and smaller areas) are detected.

Figure 3.3a (page 24) shows the shape of a particle. In case some parts are covered,

or the colour intensity is di�erent a particle might look like the one displayed in Fig. 3.3b

(page 24). If the middle section is not de�ned in the colour range, these pixels are not

selected. As result Fig. 3.3c (page 24) will run through the object detection process

and instead of one large particle two smaller ones are extracted (with di�erent centroid

coordinates).

(a) particle(b) covered (c) split

Figure 3.3: Colour sensitivity demonstration
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Contrary the new algorithm detects the particle shape and classi�es it based on the

mean category. Therefore the whole particle is detected.

In case the colour borders (of the old algorithm) are extended, it is likely that some

parts are detected which are not correct. For instance it has been observed that the old

algorithm often detects parts of the bed material as particles, because it looks bluish if

the ultraviolet (UV) lamp is too close.

Summarised this means that the old algorithm could separate particles, if speci�c

colours are not de�ned and the new always detects the whole particle before it is cate-

gorised afterwards.

3.1.1.1 Edge Detection

Figure 3.4a (page 25) shows the values of red, green and blue from a part (dotted line

in Fig. 3.4b (page 25)) of the image. This plot, called histogram, shows that there are
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(a) histogram (b) dotted line shows the histogram origin

Figure 3.4: Colour histogram and its location

huge gradients for each colour. To see the intensity di�erence the image is converted into

greyscale (see Fig. 3.5a (page 26)). The used data type is unit8, de�ned from 0 to 255.

Therefore the ordinate goes from 0 to 255.

According to literature, there are several ways to compute the location on the actual

edge. In this work a method based on the second derivative is used. The second derivative

measures the local curvature of a function. Figure 3.6 (page 26) illustrates the idea behind

this.
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(a) histogram of greyscale image (b) dotted line shows the histogram origin

Figure 3.5: Greyscale histogram and its location
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Figure 3.6: Principle of edge detection with the second derivative: original function (a),

�rst derivative (b) and second derivative (c). Edge points are located where the second

derivative crosses through zero (Burger and Burge; 2009, Fig. 6.9 on page 143)
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3.1.1.2 Filling

Soille wrote in his book, that "holes of a binary image correspond to the set of its regional

minima which are not connected to the image border" (Soille; 1999, page 173-174). The

author provided an algorithm to close those holes which was used in this work. The result

of the �lled contours can be seen in Fig. 3.2d (page 23).

3.1.2 Region Detection

This is a very important step in the detection algorithm. Now the connected regions

(often called connected components) are detected.

In literature this step is categorised as a segmentation step. Jähne describes in his

book (Jähne; 2005, page 454-458) that this is quite a complex algorithm. According to him

it is theoretically not possible to solve it in a direct way, which makes it time consuming.

Going deeper into this algorithm is beyond the purpose of this work. As a result, a list of

objects with centroid coordinate and area is returned.

3.1.3 Particle Classi�cation

In a �rst approach the mean colour was used to classify particles. It was found that this is

not working for two reasons. First, if multiple particle stick together the calculated mean

colour leads to wrong classi�cations. Second, dark particle edges changes the mean colour.

Furthermore this e�ect increases for smaller particles, because the particles circumference

compared to its area is larger.

On the right bottom side of Fig. 3.7 (page 28) two connected particles can be seen.

By comparing these images with Fig. 3.2a (page 23) it can be seen that their colours are

di�erent. In conclusion, this approach was discarded and a new one was developed, where

every pixel is categorised.

Based on the classi�cation borders (see Sect. 3.2 (page 29)) every pixel of each particle

is classi�ed. Each category is checked if the colour is inside the colour borders.

Afterwards the particle is categorised based on the main category. Sometime it hap-

pens that particles stick together. By just categorising the particle to the main category

an information loss is produced. Therefore the particle is sorted into several categories,
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(a) Particle with mean colour (b) Particles with mean colour on

white background

Figure 3.7: Particle mean colour

if the amount of categorised pixels reaches a certain level. This level is very important.

Imagine if just one pixel is detected in a second category. Without this level the particle

would be sorted into a second category.

As described before, it is sorted into several categories. This means that the same

detected particle is in multiple categories, with the same size and coordinate.

This simpli�cation does of course have an in�uence on the results. Wrong centroid

coordinates leads to di�erent dispersion coe�cients (see Sect. 3.4.2 (page 49)).

Shorter distances are more a�ected than long ones. For single particle tracking the

problem with connected particles was observed very rarely, probably because the surface

times are quite low. Therefore a �lter to split connected particles was not developed.

In contrast, in multiple particle spreading experiments only one colour was used.

Therefore it would be interesting to separate connected particles of the same colour as

well. Especially the results in the beginning are a�ected, because there are many particles

located close to each other.

Such a �lter should split particles. Further on it should be avoided that the area of

these particles is changed. Developing and validating such a �lter is di�cult and therefore

time consuming, which is the main reason why it was not developed during this work and

hence not used.
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3.2 Colour Classi�cation

During the experiments videos are recorded. These videos contain information (size,

location) of coloured particles. To increase the contrast between bed material and particles

the experiments are carried out under UV light conditions with special coloured particles

(see Sect. 4.1.2 (page 63)). These particles have to be categorised, based on their colours.

The problem is that the colour of each detected pixel per particle is not exactly the same.

Reasons for this are various. For example the particles could be covered by a thin layer

of bed material decreasing the intensity of the colour. If the coat thickens is di�erent,

the colour can be in�uenced by the particle material, because it is not fully covered.

Furthermore the intensity of a particles colour is depending on the strength of the UV

radiation. There are some small bed material particles above the bed. This decrease the

recorded particle colour intensity. Additionally it is depending on the distance particle-

lamp and particle-camera.

To classify a particle, some kind of colour ranges are needed. These limits should be

as narrow as possible to exclude all other colours and as wide as necessary to include

all colours of a single category. Additionally it would be preferable that the borders

are described by the same parameters for each category and with as less parameters

as possible. Furthermore a way should be chosen which is not CPU-intensive to use

afterwards, because, as described in Sect. 3.1.3 (page 27), this classi�cation is called very

often during the extraction algorithm. Finding these borders is described in the next

section.

3.2.1 Find Classi�cation Borders

The classi�cation borders were found by recording several videos with many same coloured

particles. To �nd possible errors in the detection algorithm a video without any particles

was recorded additionally.

Sometimes it has been seen that there are some unpainted areas on the particles,

because the UV active paint adhere not really good on the aluminium1 surfaces. To �nd

the in�uence of this, a video with unpainted particles was recorded.

1more on particles see Sect. 4.1 (page 60)
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All these video �les were analysed to �nd all di�erent, unique, colours. Therefore all

"particles" have been extracted by using the extraction algorithm described in Sect. 3.1

(page 22).

From these regions (detected as particles) a list of all colour values of each pixel was

extracted. Figure 3.8 (page 31) shows the extraction result. The amount of the di�erent

colours (per video �le) is represented in the diameter of each data point. This plot also

visualises, that there are overlapping regions between the colours.

Choosing classi�cation borders is nothing else, than setting limits for di�erent areas,

or in this case volumes. For the colours extracted in the video with red particles (see

Fig. 3.9 (page 32)), this could be described by a rectangular prism.

In contrast, it is not possible to de�ne a narrow border prism for the white particle

video (see Fig. 3.10 (page 32)).

This problem was solved by converting the colours into the HSV colour space. As

written in Sect. 2.4.2.2 (page 16) here the colours are de�ned by their hue, saturation

and value. Especially the �rst parameter is very important. All the converted colours

can be seen in Fig. 3.11 (page 33). Figure 3.12a (page 33) only includes the red data and

Fig. 3.12b (page 33) red and white.

Now the limits can be de�ned by six values, a lower and upper limit for each parameter

(hue, saturation and value). After removing overlapping regions with other colours the

borders were set. The limits for the red class can be seen in Fig. 3.13 (page 34). All limits

with colours are represented in Fig. 3.14 (page 35) and Fig. 3.15 (page 36). Figure 3.16

(page 36) shows them without the colours.
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Figure 3.8: Detected colours. The amount of a speci�c colour, detected in a video, is used

as circle diameter. Larger circles are colours (per video �le) more often detected.
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(a) three dimensional (b) two dimensional

Figure 3.9: Colours found in video with red particles. The amount of a speci�c colour,

detected in a video, is used as circle diameter. Larger circles are more often detected

colours.

(a) three dimensional (b) two dimensional

Figure 3.10: Colours detected in videos with red and white particles
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(a) three dimensional (b) from above

Figure 3.11: Converted colours in HSV colour space

(a) HSV colours of red particle video (b) HSV colours of red or white particle video

Figure 3.12: HSV colours of a single video �le and in combination with a second one
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Figure 3.13: HSV colours of red video and classi�cation limits
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Figure 3.14: Converted colours of all particles and their borders in a large graph seen

from aerial perspective
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(a) above (b) rotated

Figure 3.15: Converted colours of all particles and their borders

(a) three dimensional (b) above

Figure 3.16: Classi�cation borders in HSV space. White border is displayed in black.
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3.2.2 Veri�cation

To verify the chosen borders the video �les were analysed again to see if some of the

particles are sorted into wrong categories.

The results of this can be seen in Table 3.1 (page 38). This table shows that the

percentage of particles detected in the wanted category varies between 49.19 and 91.42

%. Additional it is shown, that the quality of the categorised particles is good (98.44 to

99.30%). This means that if something is categorised, then it is in the correct category.

The small percentages of detected particles per category for green and yellow occur from

the very tight border de�nitions for these two regions. This was necessary, because the

detected colours are quite similar. The pink section was chosen quite small as well, because

of superimpositions with the white and red regions.

This approach was chosen, because the possibility that a particle is detected is higher

if there are more particles in the bed. Of course not everything will be categorised, but

the sum of the percentages per category for yellow and green is greater than 100 percent.

In conclusion there are more detections on the end.

3.2.3 Algorithm Limitation

Particles close to the edge of the video are not categorised correctly, because the contour

is not closed. As result the contour mask cannot be �lled and runs by itself through the

object detection algorithm, producing many small particles. In case these objects can be

classi�ed, multiple particle are extracted.

This problem was neglected, because if something is very close to the wall it will

be removed anyway during the wall check. Furthermore the size of detected particles is

checked. Therefore it should be removed as well, because their sizes are much smaller.
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particle colour

red green yellow pink white unpainted no

amout of used particles 27 10 10 6 6 6 0

cl
as
si
�e
d
as

red 12647 0 0 19 7 0 0

green 0 4938 145 0 0 0 0

yellow 0 66 10462 0 0 0 0

pink 0 0 0 4121 69 0 0

white 101 12 4 33 10734 0 0

not categorised 1320 5023 8408 1657 931 8 0

total amount of detected 14068 10039 19019 5830 11741 8 0

amount of categorised 12748 5016 10611 4173 10810 0 0

amount of not categorised 1320 5023 8408 1657 931 8 0

percentage of detected particles per category

cl
as
si
�e
d
as

red 89.90 0.00 0.00 0.33 0.06 0 0

green 0.00 49.19 0.76 0.00 0.00 0 0

yellow 0.00 0.66 55.01 0.00 0.00 0 0

pink 0.00 0.00 0.00 70.69 0.59 0 0

white 0.72 0.12 0.02 0.57 91.42 0 0

particle categorised 90.62 49.97 55.79 71.58 92.07 0 0

particle not categorised 9.38 50.03 44.21 28.42 7.93 100 0

percentage of categorised particles per category

cl
as
si
�e
d
as

red 99.21 0.00 0.00 0.46 0.06 0 0

green 0.00 98.44 1.37 0.00 0.00 0 0

yellow 0.00 1.32 98.60 0.00 0.00 0 0

pink 0.00 0.00 0.00 98.75 0.64 0 0

white 0.79 0.24 0.04 0.79 99.30 0 0

Table 3.1: Colour border veri�cation results
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3.3 Analysis Models

In this work two di�erent analysis methods were developed. Both of them are described

in this section.

3.3.1 Single Particle Tracking

The aim of this method is to follow a single particle during a long time. Based on its

movements the dispersion coe�cient is calculated with Eq. (2.3.2) (page 11).

In a �uidised bed the particle is not always on the surface and can therefore not be

followed by a video camera, all the time. The only way to compute the movement is to

use its coordinates and the time di�erence whenever it appears.

Some of these assumed movements are not correct, because the particle movement

might intersect with a wall. In other words, it maybe would like to move through a wall.

As a result of this intersection the particle will be detected somewhere else. To reduce

the in�uence of this, those movements are removed during the calculation ("wall-check").

This is done by computing a mean dispersion coe�cient of all valid movements. Based on

the current value of the dispersion coe�cient and the time needed for each movement, the

Einstein equation is used again to compute a mean expected distance. If one point (centre

coordinate of a detected particle) of a movement is closer to the wall than this distance,

then both movements, using this point, are removed. As it can be seen in Fig. 3.17

(page 40) the movement is only removed for one coordinate, because it could be valid for

the other.
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Figure 3.17: Selected movements during wall check
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To reduce the in�uence of large dispersion coe�cients based on points close to the wall

the following model was developed. As already described before, the mean value of the

dispersion coe�cient is used to compute the expected distance between observations. In

case of a large coe�cient the corresponding distance would be quite big. If this happens

many points close to the walls are removed. If the mean dispersion coe�cient without these

movements is much lower than the distance is shorter and some of the removed movements

might be valid. To avoid this e�ect, the mean dispersion coe�cient is increased whenever

nothing was removed. This means that it is checked (e.g. with 10 percent of Dmean) if

something is too close to a wall. In case it is, these movements are removed and the mean

value is calculated again. Otherwise the percentage is increased. This should prevent

that too many movements are removed by the algorithm. Figure 3.18 (page 42) shows

the implementation of this. It is executed for every colour and direction. The percentage

values used are prede�ned with 0.0001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9 and 1 times Dmean.
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Figure 3.18: Algorithm to remove wall e�ects per direction
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According to the mixing cell theory (see Sect. 2.3.2 (page 11)) only those movements

from one mixing cell into another are interesting. It is checked, if the distance of a

movement is larger than 50 percent of the mixing cell distance. Just half of the length

is used, because it could move into two mixing cells (left and right or top and bottom

side), depending on the direction (remember that the dispersion coe�cient is computed

per dimension). In case the distance is smaller, the end point of the movement is dropped

and the distance is checked with the starting point and the next point.

Figure 3.19 (page 43) shows the implementation. The distance between point two,

three, four and �ve to point one is checked. Only distance one to �ve is long enough. The

horizontal distance and the time between point one and �ve is used as movement.

1

2

3

4

5
used movement

Figure 3.19: Used movement into another mixing cell

It is very important to use the time di�erence between point one and �ve and not

the one between four and �ve, otherwise the dispersion coe�cient would be completely

di�erent, because the time needed for a long distance is too short.

It is essential that the �rst detection point is used. Otherwise a particle always visible

during a long movement would not generate any usable movement. This happens, because

the particle must be quite fast to travel a certain distance in a very short time, otherwise

the movement is removed all the time.
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3.3.2 Multiple Particle Spreading

The idea of this analysis method is, that a batch (e.g. 70) of similar particles are dropped

at once. The dispersion coe�cient is computed by using the distance from every point to

the drop point and the time di�erence to the dropping time.

Due to Eq. (2.3.2) (page 11) the dispersion coe�cient converges to zero for a limited

length and an increasing time. This means in theory that after a certain time the particles

are homogeneously mixed.

Figure 3.20 (page 44) illustrates an experiment. The particles are dropped in one

corner and spread over time into all directions. As shown the drop point is not always

directly in the corner and the particles are not dropped at a single point, but close to each

other. Especially the second point has a great in�uence on the results.

(a) start (b) time one (c) time two

(d) time three (e) horizontal end (f) summary

Figure 3.20: Illustration of a multiple particle spreading experiment. Stop areas are

marked in red on the top and left side.
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The dispersion coe�cient is calculated (per direction) with the distance between each

particle centroid coordinate and the drop point, together with their time di�erence. In

case not everything is dropped at exactly one point, the dispersion coe�cient calculated

in the second frame is quite high (very low time).

In the �rst frame, where something is detected, the mean centroid coordinate of all

particles is computed and used as reference afterwards. In the second frame, where some-

thing is detected, each new coordinate is checked with the reference.

In case the particles have not moved from their drop points they will produce dispersion

coe�cients in the second frame as well (distance from each centroid coordinates to the

drop point is calculated and used). The distance is quite low, but the time is extremely

short. If something is detected in the second frame, it is 1/24 second. Subsequently

the produced dispersion coe�cient is unreasonable high (e.g. see start point in Fig. 5.10

(page 82)).

This e�ect could be avoided if only those particles are counted which leave the drop

area, but this results in the question which reference point should be used.

In theory the computation of the dispersion coe�cient should be stopped when the

�rst particle reaches an opposite wall. Practically the possibility that a particle is detected

directly at the wall is quite low, therefore a so called "stop area" is de�ned. This is an

area close to the wall and marked in red in Fig. 3.20 (page 44). This "stop area" is used to

stop the algorithm. Further investigation is needed to determine the question if it should

stop at the �rst detection in the stop area or at a certain detection frequency.

The dispersion coe�cient is only calculated if something is detected. To compute

mean values of multiple experiments, data for every time step is needed. In case nothing

was detected at a certain time (frame), the data is linearly interpolated.
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3.4 Parameter Investigation

Parameters had to be chosen during the analysis. This section gives some background

information about the in�uence of these parameters.

3.4.1 Lower Greyscale Image Border

Between the steps of converting an image into greyscale and detecting the edges some

dark sections are removed. This is necessary to remove almost black areas and increase

the quality of the detected particles. Otherwise it is possible that some black intensities

are slightly di�erent (keyword image noise) and they are detected as objects. By looking

on Fig. 3.5a (page 26) it can be seen that there are some small changes in intensity which

are not related to coloured particles. These sections are just cut out, by de�ning a certain

level and removing everything below it.

The impact from this step is displayed in Fig. 3.21 (page 47). From top to bottom the

level is increased from 0 (nothing) up to 150. For the used data type (uint8, de�ned from

0 to 255) 150 is about 58.82 %.

The applied mask is printed on white instead of black background. This helps to see

the mask area. Everything connected, and not white, will be detected as object (particle)

and run through the classi�cation process (described in Sect. 3.1.3 (page 27)).

In Fig. 3.22 (page 48) the remaining particles are classi�ed. It can be seen that the

amount of particles and their sizes decreases by increasing the limit value.

Dark colours on the particles edges are removed by increasing the parameter. Nev-

ertheless these pixels are not categorised anyway. In case they are not removed before,

the particle size is di�erent and in�uences the ratio "categorised pixels to total amount

of pixels" per particle. Based on this ratio it is decided if a particle is in one, multiple or

non-categories.

The decreasing size can be seen in Fig. 3.21h (page 47). Two particles, on the right

bottom side, close to each other, are not connected any more. The categorisation (see

Fig. 3.22c (page 48)) is still the same. With a lower limit the same particle is sorted into

multiple categories (same size and same coordinates). In contrast, with higher levels, the

particles are treated as two single ones, with di�erent coordinates and areas.
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(a) grey - 0 (b) contours - 0 (c) applied mask - 0

(d) grey - 20 (e) contours - 20 (f) applied mask - 20

(g) grey - 40 (h) contours - 40 (i) applied mask - 40

(j) grey - 150 (k) contours - 150 (l) applied mask - 150

Figure 3.21: In�uence of lower greyscale border limit (0 to 150) on particle detection.

Applied mask is printed on white background for presentation purpose.
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(a) limit 0 (b) limit 20

(c) limit 40 (d) limit 150

Figure 3.22: In�uence of lower greyscale border limit (0 to 150) on particle categorisation

All results in this work are produced with a limit of 20. Larger values result in smaller

particles, because dark pixels on the edges are removed. In case particles lying close to

each other a higher level helps to split them. This increases the quality of the detected

centroid coordinate. However, if the level is set too high, dark particles (for example

covered with a thin layer of bed material) are removed.

A small value does not split connected particles and therefore two di�erent particles

are extracted with the same coordinate and area. By not using the parameter (=0) image

noise is detected as particle. In the worst case the edge detection algorithm does not work.

If it does, the amount of detected particles is higher. Therefore more time is needed to

classify them. During the classi�cation process they are dropped anyway, so this is just
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wasted computation time.

A good balance between the previous mentioned e�ects was found with a value of 20

which is 7.84 %2. By looking at Fig. 3.5a (page 26) it can be seen that most of the image

noise is below 20.

3.4.2 Pixel-Length Ratio

The video recorded by the camera is in pixel. Nevertheless, the wanted dispersion co-

e�cient is a length based unit. Therefore the pixels must be converted into a certain

length. If the distance to the object, the focal distance and some camera parameters

(e.g. physical size of sensor pixel is 5.5 µm) are known then it is possible to calculate the

detected horizontal distance. This calculations are di�cult and, as already mentioned,

many parameters are needed, which are hard to get. Especially the distance to the object

is unknown.

Thus it is done by detecting the cold �ow model edges (in the video) at a certain bed

height (not �uidized). This amount of pixels is proportional to the dimensions of the

model (30 cm× 30 cm). With this ratio the pixels are converted into metres. In case the

edge detection is not correct the results are in�uenced.

The resolution of the used videos is 424 pixel× 640 pixel. For a perfect camera setup

30 cm are 424 pixels. A setup is perfect when the distance from one wall to its opposite

is fully covered by the camera but walls are not visible

0.3m
424 pixel

= 7.0755× 10−4m/pixel (3.4.1)

In case the setup is not perfect (e.g. more recorded than needed), a di�erent ratio

is used (e.g. 400 px instead of 424), because the outer part has to be excluded. This is

necessary, because otherwise there might be some re�ections on the walls.

With a di�erent ratio the sensitivity changes. For instance a movement of one pixel

and a ratio based on 400 pixels will be 0.75× 10−3m. In contrast it is 0.71× 10−3m for

a perfect setup (424 pixel).

This means that lower resolutions increase the sensitivity of coordinates. For lower

resolutions the error of common centroid coordinates of multiple particle ascent. The

2Used data type, uint8, is de�ned from 0 to 255
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dispersion coe�cient is based on square distance, therefore the error increases by square.

Larger dispersion coe�cients induce a higher particle removal rate during the wall check.

Subsequently the amount of left over movements decline.

In conclusion the e�ect can be decreased by increasing the video resolution, but higher

resolution results in more data (longer analysis time).

3.4.3 Mixing Cell Width

The mixing cell width is a chosen parameter. Based on it the dispersion coe�cient is

computed. The results sensitivity to this parameter can be studied in Fig. 3.23 (page 50).

It can be seen that it has a great in�uence on the results. On the left side it is

continually increasing. On the right side the dispersion coe�cient �uctuates. This could

have several reasons. One could be a physical one, that the wall e�ects are already

dominating, because long distance movements in a small model have to be detected close

to a wall. The more reasonable is, that this has some statistical reasons. The amount

of movements, the dispersion coe�cient is based on, is very limited. By increasing the

mixing cell width the amount of movements goes exponentially down, as it can be seen in

Fig. 3.24 (page 51). The displayed amount is the sum of all movements for all categories

and �ve videos divided by the amount of video clips (�ve).

0 0.05 0.1 0.15
0

1

2

3

4
x 10

−3

mixing cell width [m]

di
sp

er
si

on
 c

oe
ffi

ci
en

t [
m

2 /s
]

 

 

X
Y
15 values smoothed, X
15 values smoothed, Y

Figure 3.23: Dispersion coe�cient for di�erent mixing cell widths (7 cm bed height, large

pellets, super�cial velocity of 0.185ms−1). Values are movement weighted mean values of

�ve 20min videos and �ve di�erent coloured particles
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Figure 3.24: Finally used movements (7 cm, 0.185ms−1, large pellets)

The importance of the mixing cell length leaded to the perception that a method to

determine it, in an more accurate way than it was done before, is needed. In previous

work the distance between the bubbles was measured with a ruler.

In theory the particles should accumulate between the bubble paths, if they �oat.

Therefore it should be possible, by analysing very long videos with many particles, to see

these spots.

These spots should be extractable if the detections are categorised in a grid and the

amount of elements per cell is displayed.

The results of two di�erent super�cial velocities can be seen in Fig. 3.25 (page 52) and

Fig. 3.26 (page 53).

With these images it was not possible to �nd any pattern to draw some conclusions

about the mixing cell distance. Presumable the amount of used data is too limited. With

the technical equipment it was not possible to record long run videos (e.g. of several hours

or days).
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(a) detections (b) grouped detections

(c) grouped detections (cell width: 3) (d) grouped detections (cell width: 10)

Figure 3.25: Detections and their amount (bed height: 3 cm, super�cial velocity:

0.185ms−1)
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(a) detections (b) grouped detections

(c) grouped detections (cell width: 3) (d) grouped detections (cell width: 10)

Figure 3.26: Detections of 13 videos and their amount (bed height: 7 cm, super�cial

velocity: 0.375ms−1)
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Theoretically the dispersion coe�cient discovered with both methods should be the

same. Therefore it must be possible to extract it from the multiple particle spreading

method when the stop area is reached. With this value the mixing cell length can be

extracted from the single particle tracking plots.

This was tried for two cases. In case of low mixing (3 cm, 0.185ms−1) and high mixing

(7 cm, 0.375ms−1). In the �rst case the found values are much smaller than the nozzle

distance3 (18 mm). Details to the used cold �ow model can be found in Sect. 4.1 (page 60).

For the second instance nothing was found, because the extracted dispersion was smaller

than all values from the single particle tracking method. The comparison was done with

and without movement weighted mean values.

If the chosen mixing cell width is too low, a microscopic view has been applied, but

the model is only valid for a macroscopic one. In case of larger assumed mixing cells

the established dispersion coe�cient should be the same (without statistical e�ects). Fig-

ure 3.27 (page 54) visualises this idea. The red area marks the section where the de�ned

mixing cell is too small.

D

mixing cell width

Figure 3.27: Change between microscopic to macroscopic view

3distance between the holes in the distribution plate
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3.5 Scaling-up the Results

To compare cold �ow model results with those from large industrial applications they

have to be scaled-up according to the scaling laws (see Sect. 2.2.2 (page 9)). The model

is just arti�cial (for operation conditions and the used materials see Table 4.1 (page 62)),

therefore not based on an existing reactor. Nevertheless the results can be scaled-up.

In this work scaling factors are provided for combustion (see Table 3.2 (page 55) and

Table 3.3 (page 56)) and gasi�cation (see Table 3.4 (page 57)) processes by choosing a

�uid at a certain temperature.

�uid properties

�uid dry air

temperature [◦C] 700 800 900 1000

density [kgm−3] 0.363 0.329 0.301 0.277

kinematic viscosity [m2 s−1] 1.154× 10−4 1.348× 10−4 1.551× 10−4 1.780× 10−4

reactor dimensions

scalingfactor [−] 3.887 4.311 4.734 5.189

width x [m] 1.166 1.293 1.420 1.557

width y [m] 1.166 1.293 1.420 1.557

fuel properties

density [kgm−3] 813.361 737.178 674.440 620.664

bed material properties

density [kgm−3] 2681.079 2429.959 2223.154 2045.892

mean particle size [m] 2.915× 10−4 3.233× 10−4 3.550× 10−4 3.892× 10−4

Table 3.2: Chosen and computed large scale conditions and their physical properties

(dry air properties from (Kothandaraman and Subramanyan; 2004, page 24)) used for

combustion
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�uid properties

�uid oxygen

temperature [◦C] 700 800 900 1000

density [kgm−3] 0.402 0.363 0.333 0.306

kinematic viscosity [m2 s−1] 1.170× 10−4 1.380× 10−4 1.610× 10−4 1.840× 10−4

reactor dimensions

scalingfactor [−] 3.923 4.379 4.853 5.305

width x [m] 1.177 1.314 1.456 1.591

width y [m] 1.177 1.314 1.456 1.591

fuel properties

density [kgm−3] 900.747 813.361 746.141 685.643

bed material properties

density [kgm−3] 2969.129 2681.079 2459.502 2260.083

mean particle size [m] 2.942× 10−4 3.284× 10−4 3.640× 10−4 3.979× 10−4

Table 3.3: Chosen and computed large scale conditions and their physical properties

(oxygen properties from (Kothandaraman and Subramanyan; 2004, page 25)) used for

combustion
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�uid properties

�uid steam

temperature [◦C] 700 800 900 1000

density [kgm−3] 0.226 0.204 0.187 0.172

kinematic viscosity [m2 s−1] 1.220× 10−4 1.470× 10−4 1.740× 10−4 2.040× 10−4

reactor dimensions

scalingfactor [−] 4.034 4.567 5.111 5.682

width x [m] 1.210 1.370 1.533 1.705

width y [m] 1.210 1.370 1.533 1.705

fuel properties

density [kgm−3] 506.390 457.095 419.004 385.394

bed material properties

density [kgm−3] 1669.212 1506.722 1381.162 1270.373

mean particle size [m] 3.025× 10−4 3.425× 10−4 3.833× 10−4 4.262× 10−4

Table 3.4: Chosen and computed large scale conditions and their physical properties

(steam properties from (Kothandaraman and Subramanyan; 2004, page 29)) used for

gasi�cation
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By choosing a �uid, bed material density, fuel density and reactor dimensions are �xed

and have to be calculated. This is done by using the rearranged version of Eq. (2.2.2)

(page 9) and Eq. (2.2.4) (page 9) in combination with Eq. (2.2.1) (page 9). The index M

stands for model and L for large. The used material for the down scaled fuel particles is

aluminium. More on this can be found in Sect. 4.1.2 (page 63).

ρsL = ρfL ·
(
ρs
ρf

)
M

(3.5.1)

LL = LM ·
(
u0L
u0M

)2/3

(3.5.2)

Based on these values the super�cial velocity (with a rearranged version of Eq. (2.2.1)

(page 9)) and the scaling factor for the dispersion coe�cient are calculated.

u0L =

√
u02M · LL

LM

(3.5.3)

Results for the scaled-up super�cial velocities, for low (left) and high (right) �uidization4,

are shown in Table 3.5 (page 59).

The dispersion coe�cients unit is m2s−1, which is the same as if a velocity is multiplied

with a length.

DL

DM

=
u0L · LL

u0M · LM

(3.5.4)

This equation rearranged and in combination with Eq. (2.2.1) (page 9) provides Eq. (3.5.5)

(page 58) needed to scale up the results from the experiments.

DL = DM ·
√
g · LL · LL√
g · LM · LM

= DM ·
(
LL

LM

)1.5

︸ ︷︷ ︸
DSF

(3.5.5)

Table 3.6 (page 59) shows factors from Eq. (3.5.5) (page 58) for the di�erent cases.

A short-cut factor (for Eq. (3.5.5) (page 58)) to scale-up the dispersion coe�cient is

provided in Table 3.6 (page 59).

4more on this see Sect. 4.3 (page 68)
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�uid temperature [◦C] super�cial velocity [ms−1]

air 20 0.185 0.370

dry air 700 0.365 0.730

dry air 800 0.385 0.769

dry air 900 0.403 0.806

dry air 1000 0.422 0.844

oxygen 700 0.367 0.734

oxygen 800 0.388 0.775

oxygen 900 0.408 0.816

oxygen 1000 0.427 0.853

steam 700 0.372 0.744

steam 800 0.396 0.792

steam 900 0.419 0.837

steam 1000 0.441 0.883

Table 3.5: Super�cial velocities at cold conditions and their scaled-up values for di�erent

cases

dry air oxygen steam

temperature [◦C] DSF [−]

700 7.66 7.77 8.10

800 8.95 9.16 9.76

900 10.30 10.69 11.55

1000 11.82 12.22 13.55

Table 3.6: Computed scaling factor DSF for Eq. (3.5.5) (page 58) to multiply cold �ow

model dispersion coe�cient results with
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Experiments

4.1 Experimental Setup

A setup considering the perspective view (see Sect. 2.6 (page 17)) as illustrated in Fig. 4.1

(page 60) has been chosen for the experiments. The distance between camera and distri-

bution plate was always the same during di�erent experiments, thus the distance between

camera and bad surface varied.
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Figure 4.1: Experimental setup
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4.1.1 Cold Flow Model

The cold �ow model used in this work has an area of 0.3m× 0.3m. To ensure the same

�uidization over the whole area a distribution plate with an appropriate pressure drop

was chosen. This model supports several di�erent kinds of plates. Nevertheless in this

study only the plate displayed in Fig. 4.2 (page 61) was used. The distance between the

holes is 18 mm.

Figure 4.2: Distribution plate

To prevent bed material falling through the holes of the distribution plate a tight-knit

mesh is added on top of the plate. The measured pressure drop of distribution plate and

net without bed material is displayed in Fig. 4.3 (page 61).

The used bed material is bronze powder with an average particle diameter of 75 µm.

This size represents the average diameter of bed material particles under hot conditions

and is in the same Geldart group (B).
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Figure 4.3: Distribution plate pressure drop
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As already mentioned in Sect. 3.5 (page 55) the used �uid is air at 20 ◦C. To avoid

electrostatic e�ects the walls are painted with Larostat® 519.

Table 4.1 (page 62) gives a summary of the used materials, their physical properties

and the particle sizes.

bed material

material bronze

density 8900 kgm−3

particle size 75 µm

�uid (air)

temperature 20 ◦C

density 1.205 kgm−3 1

kinematic viscosity 15.06× 10−6m2 s−1 1

fuel particles

material aluminium

density 2700 kgm−3 2

diameter 3mm

length, large pellet 15mm

length, small pellet 5mm

length, chip 12mm

width, chip 9mm

height, chip 2.5mm

Table 4.1: Operation conditions and chosen materials. 1 data from (Kothandaraman and

Subramanyan; 2004, page 24), 2 data from (Hatch et al.; 1984, page 202)
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4.1.2 Particle Preparation

To increase the contrast between bed material and particles, only ultraviolet light is used.

This means that only UV active substances are visible and anything else is black or at

least very dark.

The used particle material is aluminium. This material was chosen to mimic wood

primary chips. According to (Kaltschmitt et al.; 2009, page 373) the raw density of dry

wood is between 400 and 750 kgm−3. As it can be seen in Table 3.2 (page 55), Table 3.3

(page 56) and Table 3.4 (page 57) this in good agreement with the scaled up particle

density.

The same material is used with a cylindrical shape to analyse the geometry in�uence

on the results. Moreover this shape models pellets.

In case of pellets the density is increased during the manufacturing process. According

to the Ö-Norm M7135 standard it has to be at least 1120 kgm−3 with a maximum water

content of 10%.

This higher density requires a di�erent particle material to model pellets properly.

Reasons why the material is used for both particle types describes Sect. 5.3 (page 89).

The chosen dimensions of the fuel particles represents wood chips (size is depending

on scaling factor and goes for the provided factors from 47× 35× 10 mm to 68× 51× 14

mm) and pellets. The size of the scaled up pellets is also depending on the scaling factor

that has to be used. For the provided factors the diameter range goes from 12mm to

17mm. The length for small pellets goes from 19mm to 28mm and the one for large

pellets from 58mm to 85mm.

According to the standard CEN/TS 14 961 (CEN/TS 14961:2005: Feste Biobrennsto�e

- Brennsto�spezi�kationen und -klassen.; 2005) and relating to (Kaltschmitt et al.; 2009,

page 364) the small modelled pellets are in category D12 and D25 (larger particle slightly

to long to �t the same categories). The modelled pellets are on the upper side of the

limits. The reason is that the resolution of the used camera is quite low and therefore the

amount of pixels is limited. The small quantity of categorised pixels makes it statistically

insu�cient to categorise them. This, combined with low surface times, makes it very hard

to detect and extract small particles. Therefore the amount of data per 20 minutes video
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clip is quite limited.

To detect a particle under UV light conditions it has to interact with UV radiation.

Thus the particles are painted with UV active paint. The paint is lowering the density

of the particles slightly. The amount is unknown, but is increasing for smaller particles

(keyword volume/surface ratio).

To follow more than one particle at the same time the colour "footprint" has to be

unique. To ensure this, numerous analyses with di�erent colours and their combinations

were executed.

Based on the given colours a plethora of mixing has been done to create colours with

a good detection rate. More on the detection rate and its quality is described in Sect. 3.2

(page 29). On the end �ve di�erent colours were found and used in single particle tracking

experiments. For the multiple particle spreading method only red particles were used, but

multiple colours would be possible.

4.1.3 Design of Internals

In previous work (Larsson and Olsson; 2013) the e�ect of internals was investigated,

primarily through modelling and measuring in a smaller cold �ow model.

To measure the e�ect of internals on the results in a larger model a �exible system

was designed. With these new created parts it is possible to add di�erent kind of wall

and pipe combinations. The new system contains rods (which should model pipes), walls

and beams. These parts can be combined as displayed in Fig. 4.4 (page 65). It is possible

to vary the amount of levels and rods, change the distance between them and add walls

at di�erent positions. Furthermore they can be used under stationary and circulation

conditions.

The red marked part visualises a wall, going from the top to the bottom of the package.

As it can be seen, the position can be varied. Additionally a whole layer could be rotated

by 90 degree. With this combination a kind of grid is possible.

The chosen combination in this study is displayed in Fig. 4.5 (page 65). It shows

three layers with a distance between the holes per row of 34.8mm horizontally and 15mm

vertically.
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Figure 4.4: Overview about possible internals

Figure 4.5: Selected tubes setup for the experiments
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One important problem with these tubes are re�ections. The internals are made of

PMMA which is re�ecting shiny particles. In case the particles are close to the tubes

the re�ection and the particle might be connected and everything will be detected as a

single large particle (with wrong centroid coordinate). In case they are not connected,

two particles will be detected. The question is, which the correct one is.

This e�ect is already well known for the reactor walls. There the re�ections are cut

out by de�ning the detection area.

The same method is very hard to apply for the tubes. Due to the perspective view

(see Sect. 2.6 (page 17)) rods which are on top of each other might be visible in the video.

In case all positions are well known, it has to be ensured, that they do not change for a

video clip. As long as no one touches the camera frame this is ensured for the camera.

On the contrary for the cold �ow model, it was observed that it starts vibrating at higher

bed heights and �uidizations.

Another problem with cutting out pipe areas is, that the remaining detection area is

quite low, because the tubes of two levels have di�erent o�sets.

A di�erent approach is to avoid the re�ections. This can be done by covering the

pipes with not re�ecting paint. To get the same wall e�ects the roughness from the paint

and pipes should be the same. Additionally the paint has to be abrasion-resistant. In an

optimum case it would be something that lowers the electrostatic e�ect as well.
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4.2 Parameters to Vary

In the previous sections many parameters that could be varied in experiments are ex-

plained. A summary and additional ideas are given in the following list:

� particle density/material

� particle size

� particle shape (e.g. pellets, chips)

� �uidization

� bed height

� bed material/density

� circulating/stationary �uidized bed

� internals (yes, no, di�erent combinations)

� distribution plate

The number of possible combinations is quite high. Therefore just some of them were

varied and the others were kept constant.
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4.3 Chosen Combinations

In this work, particle size and type as well as di�erent bed heights and �uidizations were

investigated. Additionally some experiments with tubes were carried out.

Experiments were carried out with two super�cial velocities (u0) which are, according

to Fig. 2.2 (page 6) (for Ar1/3 and U∗ see Table 4.2 (page 68)), both in the bubbling

�uidization regime. All the combinations are shown in Table 4.3 (page 68).

umf m s−1 0.0237

Ar1/3 − 6.574

u0 m s−1 0.185 0.375

U∗ − 0.2037 0.4074

u0/umf − 7.8 15.6

Table 4.2: Fluidized bed key �gures umf = µf/(ρf · dsv) · (
√

33.72 + 0.0408 · Ar − 33.7)

and U∗ = Re/Ar1/3

bed height tubes pellet, large pellet, small chips

3 cm - X X -

7 cm - X X X

7 cm yes X - X

Table 4.3: Experiments test matrix. Everything marked with X is analysed with super�-

cial velocities of 0.185ms−1 and 0.375ms−1

The experiments with small pellets and tubes were left out, because these small par-

ticles might stuck in the holes of the beams. For further experiments the holes must be

closed. The tubes package was only used with a bed height that ensures that the tubes

are fully covered. Otherwise there might be some re�ections. Problems with them are

mentioned in Sect. 4.1.3 (page 64).
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Results and Discussion

The following section shows the results and gives an interpretation. All the presented

values are down-scaled.

5.1 Single Particle Tracking

Figure 5.1 (page 70) (for data see Table B.1 (page 96)) shows the time percentage of

particles detected at the bed surface at di�erent conditions. Figure 5.2 (page 70) shows

the same data but grouped by the ratio particle volume per particle surface. Figure B.1

(page 97) and Fig. B.2 (page 98) shows the underlying data of a low and high mixing

case.

Table B.1 (page 96) shows an increase in surface time for lower super�cial velocities

and bed heights. Furthermore it can be seen that larger particles are more often detected

at the surface. On the one hand this could have �uid dynamical reasons, because they

�oat better. On the other hand it could be because they are bigger and easier to detect.

The chips percentage compared to the one from large pellets is increased for high

super�cial velocities and tubes. A possible reason could be that they are slightly shorter

and therefore their interference through the pipes is lower.
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Figure 5.1: Percentage of surface time for di�erent conditions

Figure 5.2: Ratio particle volume per surface area over particle surface time (in %). Vol-

ume/Surface for small pellets is 0.577mm, large pellets 0.682mm and for chips 0.841mm
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Figure 5.3 (page 73) as well as Fig. 5.4 (page 74) show mixing cell width variation

results at di�erent conditions (particles, tubes, �uidization). In Fig. 5.5 (page 75) and

Fig. 5.7 (page 77) the results are movement weighted. Figure 5.6 (page 76) and Fig. 5.8

(page 78) display the amount of used movements for the computation of these dispersion

coe�cients. The values displayed are the mean values of all used movements from all video

�les (sum of all movements in all categories per video divided by the amount of videos).

The mixing cell width is increased from 0.001m in 0.002m steps until the average amount

of used movements is below 10. This is done to remove statistically useless points.

In general it can be seen, especially for higher bed heights, that the dispersion coe�-

cient varies quite much. Furthermore it is higher with increased bed heights and greater

�uidization. In most cases the dispersion coe�cient is similar for both directions. More-

over it can be seen that the amount of used movements is higher for lower bed heights

and super�cial velocities.

The amount of movements is decreasing exponentially with linear increasing mixing

cell width. It is higher for a lower �uidization. Therefore the result statics are more

reliable and furthermore larger mixing cell widths can be investigated (because if the

amount of movements is below 10 the data is removed).

For the same �uidization conditions the amount of movements for lower bed heights is

higher. Additional it is higher for larger particles at lower bed heights, probably because

the detection rate is better. The amount of movements for chips is slightly greater than

those of small pellets, but smaller than the one of large pellets.

The dispersion coe�cient found for lower bed heights and both super�cial velocities

over the whole mixing cell width variation is lower for large pellets than for small ones.

For low �uidization and 7 cm bed height the dispersion coe�cient from large pellets is

below the one from small pellets. The mean dispersion coe�cient (see Fig. 5.3 (page 73))

of large pellets is lower than the small pellets and greater than the chips one. In case of

higher �uidization the one for large pellets in y direction is more below the one of small

pellets than in x direction.

It is found that the dispersion coe�cient with tube setup is almost direction indepen-

dent for low �uidization. In contrast in case of higher �uidization it is much greater in

parallel (x) than cross-sectional (y, to the tubes) direction. Furthermore it has to be noted

71



CHAPTER 5. RESULTS AND DISCUSSION

that in case of higher �uidization the dispersion coe�cient is greater in x direction than

in y (with and without tubes) at the same bed height (7 cm). The di�erence is greater

with tubes. The amount of used movements is lower for the tubes combination at 7 cm

and 0.375ms−1. The dispersion coe�cient is greater for chips at 7 cm bed height and

0.375ms−1 with tubes than without. The di�erence in x and y is bigger without tubes.

Figure 5.3 (page 73) shows a step for small pellets, 3 cm bed height, and low �u-

idization. It is assumed that this could be the mixing cell length where microscopic view

changes to macroscopic. The length is about 0.05 m, which is almost three times larger

than the nozzles distance (18 mm). A similar, but smaller step, can be seen in the same

graph for large pellets and 3 cm bed height at about 0.09 m. These steps are not visible

in the movement weighted plot (Fig. 5.5 (page 75)) where the curves are not combined

for both directions. It should be kept in mind that the values are smoothed values. Cur-

rently it is unknown where this e�ect comes from, making it very interesting for further

investigation. In Fig. 5.4 (page 74) the curves from 7 cm, small pellets, large pellets and

chips have a common point at 0.055, before they disperse.
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Figure 5.3: Mean dispersion coe�cient from single particle tracking method for di�erent

con�gurations and a super�cial velocity of 0.185ms−1.
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Figure 5.4: Mean dispersion coe�cient from single particle tracking method for di�erent

con�gurations and a super�cial velocity of 0.375ms−1.
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Figure 5.5: Dispersion coe�cient for two directions from single particle tracking method

for di�erent con�gurations and a super�cial velocity of 0.185ms−1. Dispersion coe�cients

are 15 values smoothed movement weighted mean values from �ve (three for chips and/or

tubes setup) videos with �ve di�erent coloured particles each. Results with average move-

ments below ten are removed.
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Figure 5.6: Average amount of used movements for single particle tracking method for

di�erent con�gurations and a super�cial velocity of 0.185ms−1. Results with average

movements below ten are removed.

76



CHAPTER 5. RESULTS AND DISCUSSION

0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

8
x 10

−3

mixing cell width [m]

d
is

p
e

rs
io

n
 c

o
e

"
ci

e
n

t 
[m

2
/s

]

super#cial velocity: 0.375 m/s

 

 
3cm, small pellet, X

3cm, small pellet, Y

3cm, large pellet, X

3cm, large pellet, Y

7cm, small pellet, X

7cm, small pellet, Y

7cm, large pellet, X

7cm, large pellet, Y

7cm, chips, X

7cm, chips, Y

7cm, large pellet, tubes, X

7cm, large pellet, tubes, Y

7cm, chips, tubes, X

7cm, chips, tubes, Y

Figure 5.7: Dispersion coe�cient for two directions from single particle tracking method

for di�erent con�gurations and a super�cial velocity of 0.375ms−1. Dispersion coe�cients

are 15 values smoothed movement weighted mean values from �ve (three for chips and/or

tubes setup) videos with �ve di�erent coloured particles each. Results with average move-

ments below ten are removed.

77



CHAPTER 5. RESULTS AND DISCUSSION

0 0.05 0.1 0.15
10

1

10
2

10
3

mixing cell width [m]

a
m

o
u

n
t 

o
f 

u
se

d
 m

o
v

e
m

e
n

ts

super!cial velocity: 0.375 m/s

 

 
3cm, small pellet, X

3cm, small pellet, Y

3cm, large pellet, X

3cm, large pellet, Y

7cm, small pellet, X

7cm, small pellet, Y

7cm, large pellet, X

7cm, large pellet, Y

7cm, chips, X

7cm, chips, Y

7cm, large pellet, tubes, X

7cm, large pellet, tubes, Y

7cm, chips, tubes, X

7cm, chips, tubes, Y

Figure 5.8: Average amount of used movements for single particle tracking method for

di�erent con�gurations and a super�cial velocity of 0.375ms−1. Results with average

movements below ten are removed.
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Table 5.1 (page 80) shows the maximum median dispersion coe�cient values from

the mixing cell width variation. Except the 7 cm, small pellets results the dispersion

coe�cients are large for higher �uidization. The dispersion coe�cients obtained from the

high bed height experiments are larger than those of the lower bed height. The values

from 3 cm bed height are four to �ve times lower than those of the of the 7 cm bed height

(bed height di�erence is 2.3 times). At 3 cm bed height small pellets have large dispersion

coe�cients than large pellets.

For 7 cm bed height and a low �uidization chips have the lowest and small pellets the

highest dispersion coe�cients. A double in �uidization changes this order to the highest

values for chips and the lowest for large pellets.

In case of a tubes setup it can be seen that chips have lower dispersion coe�cients at

a super�cial velocity of 0.185m2 s−1 and higher ones at 0.375m2 s−1.
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bed height super�cial velocity particle option Dmedian,max

[cm] [m s−1] [m2 s−1]

3 0.185 large pellet 0.89× 10−3

3 0.375 large pellet 1.15× 10−3

3 0.185 small pellet 1.26× 10−3

3 0.375 small pellet 1.51× 10−3

7 0.185 chips 2.91× 10−3

7 0.375 chips 6.70× 10−3

7 0.185 large pellet 4.22× 10−3

7 0.375 large pellet 5.62× 10−3

7 0.185 small pellet 6.39× 10−3

7 0.375 small pellet 6.09× 10−3

7 0.185 chips tubes 1.93× 10−3

7 0.375 chips tubes 8.56× 10−3

7 0.185 large pellet tubes 2.88× 10−3

7 0.375 large pellet tubes 5.95× 10−3

Table 5.1: Dispersion coe�cient results of single particle tracking analysis. Values are the

maximum median values of the mixing cell variation from x and y
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5.2 Multiple Particle Spreading

Figure 5.9 (page 81) shows the results from experiments at 7 cm bed height, super�cial

velocity of 0.375ms−1 and 70 red large pellets.
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Figure 5.9: Dispersion coe�cient measured with multiple particle spreading method, 7

cm bed height, 0.375ms−1 and 70 large pellets from �ve videos

It can be seen that the trend of all video �les and directions is almost the same. It

is high in the beginning and decreases quite fast, before it converges to almost 0 at the

end. This is in good agreement with theory. In some experiments it has been seen that

the dispersion coe�cient increases in the beginning, before it reaches the maximum. It

is unknown where this comes from. Probably this happens because particles are close to

each other so that they are detected as bigger ones.

The results displayed in Fig. 5.10 (page 82) to Fig. 5.15 (page 84) shows the mean

values from the multiple particle spreading method. As already mentioned in Sect. 3.3.2

(page 44) some interpolation was needed to create mean values of several experiments.

The recorded video lengths were between 10 and 20 minutes.
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Figure 5.10: Dispersion coe�cient measured with multiple particle spreading method, 3

cm bed height, super�cial velocity of 0.185ms−1 and 70 large pellets
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Figure 5.11: Dispersion coe�cient measured with multiple particle spreading method, 3

cm bed height, super�cial velocity of 0.375ms−1 and 70 large pellets
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Figure 5.12: Dispersion coe�cient measured with multiple particle spreading method, 7

cm bed height, super�cial velocity of 0.185ms−1 and 70 large pellets
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Figure 5.13: Dispersion coe�cient measured with multiple particle spreading method, 7

cm bed height, super�cial velocity of 0.375ms−1 and 70 large pellets
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Figure 5.14: Dispersion coe�cient measured with multiple particle spreading method, 7

cm bed height, super�cial velocity of 0.185ms−1 and 40 slightly shorter pellets (11 mm

long, same diameter)
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Figure 5.15: Dispersion coe�cient measured with multiple particle spreading method, 7

cm bed height, super�cial velocity of 0.375ms−1 and 40 slightly shorter pellets (11 mm

long, same diameter)
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The results show that all cases reach a dispersion coe�cient of 0.2× 10−3m2 s−1 after

one minute. For a better comparison mean values from these plots from both directions

are calculated. This can be done, because the mixing should be the same (symmetric

bed, no tubes, no internals, dropped in one corner). The expressiveness of these plots

is increased by reducing the maximum displayed time to half a minute (see Fig. 5.16

(page 85)).
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Figure 5.16: Dispersion coe�cient measured with multiple particle spreading method for

di�erent cases. Displayed data is a �ve values smoothed mean value from all experiments

and both directions for each case (di�erent bed heights, super�cial velocities and particle

types).

The �rst detections in the stop areas are expressed by box plots. Figure 5.17 (page 88)

displays the values for the combined graph. Those for each direction are listed in Ap-

pendix D (page 114). Mean values are displayed in Table 5.2 (page 86).

Figure 5.16 (page 85) shows that an increase in bed height and super�cial velocity

indicate higher dispersion coe�cients. All the di�erent combinations convert to the same

value after a long time, therefore the interesting time is in the beginning, before something

hits the opposite wall.

Table 5.2 (page 86) shows that the �rst detections in the stop area are generally, except
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one outlier, already after round six seconds (depending on the case).

bed height super�cial velocity particle time

[cm] [ms−1] [min]

x y combination

3 0.185 70 large pellets 0.36070 0.19238 0.27654

3 0.375 70 large pellets 0.18638 0.31470 0.25054

7 0.185 70 large pellets 0.12584 0.10541 0.11563

7 0.375 70 large pellets 0.12057 0.21460 0.16758

7 0.185 40 pellets 0.16098 0.13709 0.14903

7 0.375 40 pellets 0.23344 1.86906 1.05125

Table 5.2: Mean detection times of �rst detections in stop area for di�erent conditions

Figure D.1 (page 114) and Fig. D.2 (page 115) shows that the results di�erent are for

both directions. This could happen, because the surface time for particles is quite low

and therefore they are not on the surface if they reach the stop areas. Extending the stop

are from the chosen 10 % (of the reactor length) should decrease this e�ect. A side e�ect

of increasing this parameter is, that the time before reaching this stop area is decreased

(due to shorter distances). All in all it is a fast process. To increase the results quality

many particles and runs are needed to ensure good statistics.

Times are larger for lower �uidization and bed heights. In case of higher bed heights

and higher �uidization they are slower, most likely because they are not detected.

40 slightly smaller pellets have the same trend as the longer ones. The detection

times are increased for less particles, probably because the probability that something is

detected at the surface is lower since the amount of particles is 42 % less.

The huge time di�erence of 94.2 seconds between x and y for 40 pellets at 7 cm

bed height and 0.375ms−1 leads to the question if mixing is really symmetrical and

combinations from x and y are allowed. Further work needs to investigate if it is possible

to combine data from both directions and extract the dispersion coe�cient or, extract it

for both directions and create mean values afterwards.

The dispersion coe�cient computed from the 40 pellets experimental data needs fur-
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ther investigation to explain why it is partially greater for a lower �uidization than for

higher one (compare 40 pellets curves).

The trend of the highest mixing environments (7cm, 0.375ms−1) suggests that larger

pellets mix better than smaller under these conditions. In contrast, for lower super�cial

velocity it is the other way round (see 7cm, 0.185ms−1).

It has been observed, that paint was missing on many particles after a couple of ex-

periments. Therefore the particles had to be repainted. This e�ect has not been observed

by long single particle tracking runs. Therefore it is assumed that the particles interact

with each other and scratch o� the paint. Additionally it is likely that the sharper edges

(compared to the particles used for single particle tracking) are the reason for this, or at

least increasing this e�ect. The sharper edges come from the particle preparation. The

particles created for single particle tracking have smoothed edges, the other still have the

pliers cut face. As already mentioned in Sect. 3.2.1 (page 29), the unpainted parts are not

a problem. Nevertheless the colour pieces are. They are much lighter than the particles

and therefore better �oating on the bed material. In case they are big enough they are

detected as particles, categorised and used in subsequently calculations. This e�ect needs

further investigation.

Figure 5.17 (page 88) shows the distribution of the �rst detections. It can be seen,

that lower bed heights data is wider spread. Further on, smaller particles produce larger

median values.

In conclusion the whole analysis is very various. Therefore many runs are needed to

achieve good statistics. The time until the �rst detections in the stop area is quite short,

but is extendable with a larger cold �ow model.
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Figure 5.17: Zoomed in box plot o� �rst detections in stop area (x and y direction) of

all experiments for di�erent conditions. P1 stands for 70 large pellets and P2 for 40

slightly smaller pellets. Low stands for a super�cial velocity of 0.185ms−1 and high for

0.375ms−1.
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5.3 Scaling Inaccuracies

The results quality by not �tting all scaling laws is unknown. The errors occur from

deviations during the scaling process. For instance, if no bed material with needed density

exists or is too di�cult to handle, a di�erent has to be chosen. Thereby divergences of

several tenths of percentages are committed. In former work (e.g. see (Johnsson et al.;

1999)), with the same derivation, it has been shown that the cold �ow model data agrees

relatively well with them of the original large-scale application.

If the bed material under hot conditions is sand with an average density of 2600 kgm−3

the densities (see Sect. 3.5 (page 55)) di�er up to 51%. The e�ect of this on the results

is unknown. If the used bed material is lighter, it can be assumed, that the material

is ejected more far away (during the eruption). Further on this might overestimate the

dispersion coe�cient.

Table 3.4 (page 57) shows the highest deviation for the bed material densities.

The chosen fuel particle material covers (depending on the scale up case) the density

range of wood chips.

In case of pellets (and the scale-up case) it is 19.6 % to 65.6 % too low. By com-

paring the deviation of bed material density and particle density it can be seen that the

lowest di�erence can be found at the case with the highest bed material deviation. Sub-

sequently the cases (mostly gasi�cation conditions) with high density deviation are those

representing pellets (based on the closest density ratio).

Pellets used in the down-scaled unit are lighter and therefore �oat better. Subsequently

this should overestimate the mixing. To verify this assumption experiments with di�erent

fuel particle materials are needed. It should be kept in mind, that the developed detection

algorithm only detects something on the bed surface. Therefore heavy particles require

very long recording times to ensure a certain amount of data. The percentages of surface

time are depending on the conditions. As it can be seen in Table B.1 (page 96) the range

goes from 1.3 to 13.16 %.
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5.4 In�uence of Perspective View on Results

Particle positions are in�uenced by the perspective view. The e�ect does not exist in the

centre, but is increasing to the sides. Raising bed height and super�cial velocity results in

rougher conditions. This means that the bubble eruptions are growing and therefore the

in�uence increases. Higher bed heights decrease the distance between camera and bed,

which leads to a di�erent focal distance and therefore to a wider angle of view. Further

on the particle position could have an increased distance from the focus level due to the

higher bed height. This results in unsharpness and subsequently in a di�erent particle

size.

In case of single particle tracking, movements using coordinates close to the wall are

often removed anyway. Therefore the e�ect should be lower for these results.

For large mixing cell lengths the e�ect might be higher, since longer distances are

needed, which results in coordinates closer to walls. In general, shorter movements are

more likely e�ected by wrong coordinates.

The e�ect is decreasing by increasing the distance to the camera (as described in

Sect. 2.6 (page 17)). In case no wide angle lens is used it can be assumed that the error

is less, compared to those from scaling inaccuracies.
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Conclusion

The new detection algorithm detects and classi�es particles correctly. The colour sensi-

tivity of the detection algorithm is reduced. Additionally the categorisation is optimised.

As result �ve instead of three particles can be used, increasing the amount of extracted

information. Furthermore the algorithm is suitable for parallel computing.

During this work, two di�erent theoretical models (single particle tracking, multiple

particle spreading) were implemented. Parameter investigations lead to the knowledge of

the importance of the mixing cell length (single particle tracking) and its major in�uence.

Some ideas to �gure it out were tried, but none was successful. Subsequently this param-

eter needs further investigation to achieve dispersion coe�cients that could be compared

with industrial applications.

Both ways show that dispersion coe�cients are higher by increasing bed heights and

�uidizations. However the results order of magnitude is di�erent.

For low mixing cell lengths the results of di�erent conditions are in the same range. In

case of higher values the results �uctuate considerably. Beside wall e�ects it is assumed

that this has some statistical reasons. Therefore more data is needed (more videos and/or

a much larger cold �ow model).

For repeatable results from the multiple particle spreading method much more data is

needed.

Without knowledge of the mixing cell length the dispersion coe�cients (0.8× 10−3m2 s−1

to 8.56× 10−3m2 s−1) had to be estimated from the maximum median values.
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Further Work

This thesis gives several ideas where further work is needed. The most important one is

the investigation of the mixing cell width. Further on the models have to be compared.

Therefore much more data is needed to make it statistically reliable. For the use of

di�erent internal combinations a way must be found to remove the re�ections. Moreover

the algorithm must be extended by adding the possibility to add internal walls and include

them in the "wall-check"1.

1see Sect. 3.3.1 (page 39)
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Appendix A

Colour Classi�cation - RGB Plots

Figure A.1: Colours detected in videos with red, white or green particles - 3d view
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Figure A.2: Colours detected in videos with red, white, green or pink particles - 3d view

Figure A.3: Colours detected in videos with red, white, green or pink particles - 2d view
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Figure A.4: Colours detected in videos with red, white, green, pink or yellow particles -

3d view

Figure A.5: Colours detected in videos with red, white, green, pink or yellow particles -

2d view
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Appendix B

Surface Time

bed height super�cial velocity particle option surface time

[cm] [ms−1] [%]

3 0.185 small pellet 10.07

3 0.375 small pellet 3.72

3 0.185 large pellet 13.16

3 0.375 large pellet 3.58

7 0.185 small pellet 3.73

7 0.375 small pellet 1.37

7 0.185 large pellet 6.18

7 0.375 large pellet 2.31

7 0.185 chips 5.03

7 0.375 chips 1.53

7 0.185 large pellet tubes 4.62

7 0.375 large pellet tubes 1.51

7 0.185 chips tubes 6.42

7 0.375 chips tubes 1.30

Table B.1: Percentage of surface time for di�erent conditions
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Figure B.1: Percentage of time, particles are on the surface (3 cm, 0.185ms−1, large

pellets)
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Figure B.2: Percentage of time, particles are on the surface (7 cm, 0.375ms−1, large

pellets)
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Appendix C

Mixing Cell Variation Statistical Plots

Figure C.1 (page 100) to Fig. C.14 (page 113) show statistics from dispersion coe�cients

extracted for x, y and both directions. The bright red area marks all values (from minimum

to maximum). The darker red goes from 25 to 75 percent quantiles. The used data is

from all videos and categories with movements and dispersion coe�cients greater 0.
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(a) x direction (b) y direction

(c) x and y direction

Figure C.1: Dispersion coe�cients for di�erent mixing cell lengths at 3 cm bed height,

super�cial velocity of 0.185ms−1 and small pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.2: Dispersion coe�cients for di�erent mixing cell lengths at 3 cm bed height,

super�cial velocity of 0.375ms−1 and small pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.3: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.185ms−1 and small pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.4: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.375ms−1 and small pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.5: Dispersion coe�cients for di�erent mixing cell lengths at 3 cm bed height,

super�cial velocity of 0.185ms−1 and large pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.6: Dispersion coe�cients for di�erent mixing cell lengths at 3 cm bed height,

super�cial velocity of 0.375ms−1 and large pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.7: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.185ms−1 and large pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.8: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.185ms−1 and large pellets
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.9: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.185ms−1 and chips
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.10: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.375ms−1 and chips
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.11: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.185ms−1, large pellets and tubes
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.12: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.375ms−1, large pellets and tubes
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.13: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.185ms−1, chips and tubes
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APPENDIX C. MIXING CELL VARIATION STATISTICAL PLOTS

(a) x direction (b) y direction

(c) x and y direction

Figure C.14: Dispersion coe�cients for di�erent mixing cell lengths at 7 cm bed height,

super�cial velocity of 0.375ms−1, chips and tubes
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Appendix D

Fist Detections in Stop Zone
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Figure D.1: Box plot o� �rst detections in stop area (x direction) of all experiments for

di�erent conditions. P1 stands for 70 large pellets and P2 for 40 slightly smaller pellets
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APPENDIX D. FIST DETECTIONS IN STOP ZONE
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Figure D.2: Box plot o� �rst detections in stop area (y direction) of all experiments for

di�erent conditions. P1 stands for 70 large pellets and P2 for 40 slightly smaller pellets
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Figure D.3: Zoomed in box plot o� �rst detections in stop area (y direction) of all ex-

periments for di�erent conditions. P1 stands for 70 large pellets and P2 for 40 slightly

smaller pellets
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Acronyms

C

CFD Computational Fluid Dynamics 10

H

HSV Hue, Saturation and Value 16

R

RGB Red, Green and Blue 14, 17

S

SNG Synthetic Natural Gas 2

U

UV ultraviolet 25, 29, 63, 64
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