
Generating Automatic As-Built
BIM Models In Conventional

Tunnel Construction Lifecycle

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Bsc Dzan Operta
Registration Number 11935976

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Christian Huemer
Assistance: Univ.Ass. Dipl.-Ing. Marco Huymajer

Dipl.-Ing Robert Wenighofer

Vienna, 1st September, 2022
Dzan Operta Christian Huemer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Bsc Dzan Operta

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. September 2022
Dzan Operta

iii

Acknowledgements

I would like to thank my colleague Marco for helping me understand the topic idea
and for his support in the thesis evaluation, mister Robert Wenighofer for providing me
with the as-designed BIM model and explaining its elements, professor Christian for his
wise feedback and time, and all the interviewers who invested their time to evaluate my
thesis. Last but not the least, I would like to thank my family for their unconditional
understanding and support.

v

Kurzfassung

Building Information Modeling (BIM)-Modelle gelten als ideales Werkzeug für die Dar-
stellung und Verwaltung digitaler Informationen über eine Anlage in einem Bauprojekt.
Im Bereich des Tunnelbaus werden BIM-Modelle verwendet, um einen Tunnel digital
darzustellen. Ein Tunnelbauprojekt gliedert sich in drei große Lebenszyklusphasen, die
Planungs-, die Bau- und die Betriebsphase, und BIM-Modelle werden in diesen verschie-
denen Phasen als Planungs-, Bau- und Nutzungsmodelle charakterisiert. Derzeit werden
bei konventionellen Tunnelbauprojekten sowohl As-designed- als auch As-built-Modelle
manuell erstellt, da es keine automatische Möglichkeit gibt, As-designed-Modelle aus
den Daten aus der Bauphase zu erstellen und anzureichern. Durch die Anwendung der
Design Science Forschungsmethodik entwickeln wir einen Artefakt, der die automatische
Erfassung und Übertragung von BIM-Modellwissen von der As-Designed- zur As-Built-
Phase ermöglicht. Durch die Erkennung der Merkmale eines As-Designed-Modells und
dessen Anreicherung mit Echtzeitdaten aus der Bauphase ermöglicht unser Prototyp die
automatische Generierung eines As-Built-Modells.

vii

Abstract

Building Information Modeling (BIM) models are regarded as the ideal tool for rep-
resenting and managing digital information about an asset in a construction project.
Respectively, in the tunnel construction domain, BIM models are used to digitally repre-
sent an actual tunnel. A tunnel construction project has three major life cycle phases,
the design, construction, and operation phase, and BIM models are characterized at these
different stages, as as-designed, as-built, and as-used models. Currently, in conventional
tunnel construction projects, as-designed and as-built models are both created manually,
as there exists no automatic way to generate and enrich as-designed models with the data
from the construction phase. By employing the Design Science research methodology
we build an artifact that enables the automatic acquisition and transfer of BIM Model
knowledge from the as-designed to the as-built stage. By detecting the characteristics of
an as-designed model and enriching it with real-time data from the construction phase,
our prototype enables the automatic generation of an as-built model.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem definition . 1
1.2 Expected goals . 2

2 Approach 5
2.1 Methodology . 5
2.2 Structure of the Work . 7

3 Context of the Work 9
3.1 Tunnel Construction Lifecycle and Information 9
3.2 BIM Models in Tunnel Construction 10
3.3 BIM software . 11
3.4 State-of-the-Art . 12

4 The Tunnel Information Management System 15
4.1 Software architecture and Implementation 15

4.1.1 TIMS foreman interface . 17
4.2 TIMS API . 18
4.3 TIMS Data Model . 22

5 Prototype for generating as-built 3D BIM models 25
5.1 Software tools . 25
5.2 Analysis of provided as-designed 3D BIM model 26
5.3 Essential requirements for generating an as-built 3D BIM model in Revit 27
5.4 Software Architecture . 28
5.5 Implementation . 30

5.5.1 Load Data from TIMS . 30
5.5.2 Generate Model . 34

xi

Loading construction data . 34
Creating and loading the as-built construction family 34
Identifying and creating the tunnel axis 38
Adding construction data to the tunnel curve 40

5.6 Final solution . 44

6 Evaluation 49
6.1 Prototype Efficacy and Effectiveness 49
6.2 Prototype Utility . 51

7 Conclusion 55
7.1 Future Work . 56

List of Figures 57

List of Tables 59

Appendix A - Load Data from TIMS Script 61

Appendix B - Generate Model Script 65

Appendix C - Utility Helper Class 77

Bibliography 79

CHAPTER 1
Introduction

1.1 Problem definition
Building Information Modeling (BIM) is a broad term that encompasses creating and
managing digital information about an asset in a construction project. BIM enhances
the information management process by the collaborative use of semantically rich three
dimensional (3D) digital models during the complete life cycle of a construction project
[23]. One of the main aspects that BIM enables is the digital representation of assets
through 3D digital models. Specifically, in the tunnel construction domain, an actual
tunnel is represented digitally through a 3D model. This 3D model can be enriched
with additional information from the construction project. One perspective is that each
additional layer of information adds a dimension to the 3D model. For example, if we also
store time information on top of the 3D model, or we enrich the model with additional
information about the material used for the tunnel construction, we can refer to these
models as 4D (time), or respectively 5D (material cost) models. Theoretically BIM
models can be n-dimensional (n-D) [1].

A tunnel construction project has three major life cycle phases, the design, construction,
and operation phase, and BIM models are characterized at these different stages, as
as-designed, as-built, and as-used models [2]. Users may use BIM in each phase of a
tunnel construction project, for a certain task, such as collision detection and settlement
risk predictions in the design phase, productivity and decision-making improvements in
the construction phase, and safety monitory and visualization in the operation phase
[23, 26, 18].

However, at the moment, there is a BIM model development and usage interruption
between as-designed and as-built models in tunnel construction projects. While a lot
of time is invested in the creation of as-designed models in the design phase, these
as-designed models are not used in the construction phase and as-built models are created

1

1. Introduction

only after the construction phase finishes. Figure 1.1 shows the current standpoint of the
BIM life cycle in conventional tunnel construction. The as-designed, as-built, and as-used
models need to be manually created at each phase of the tunnel construction life cycle.
This leads to many undesirable consequences [23, 2]. Currently, the as-built models are
created manually with all additional information from the construction phase, which is a
time-consuming activity [2]. Hence, due to a lack of timely feedback, project stakeholders
are unable to make adequate, timed reactions to unexpected on-site events. The problem
is that there exists no automatic way to enrich as-designed models with data from the
construction phase. This approach would eliminate the need to create as-built models
manually, which would save time, as well as reduce possible human errors in capturing
important model-based information. Moreover, due to the interruption in the BIM model
life cycle, a great deal of information is not preserved. Sequential transformations (e.g.,
translations, reductions, simplifications) from source to target models can lead to loss of
information and possible integration issues in the source-target model exchange [2]. The
loss of information reduces the possibility of making predictions and reusing the acquired
information for future tunnel construction projects.

Figure 1.1: The current status of the BIM life cycle in conventional tunnel construction

1.2 Expected goals
This work aims to support the transfer of BIM Model information between the design and
construction phase of the conventional tunnel construction life cycle and the automatic
acquisition of construction data for the as-built BIM model. Figure 1.2 presents our
solution to overcome the problem of the interrupted BIM life cycle. We develop a tool that
automatically detects the 3D properties of provided as-designed 3D models, constructs
as-built 3D models based on the detected properties, and finally enriches the newly
created as-built models with real-time data from the construction phase of a tunnel
construction project. As a result, by automating the as-built BIM model generation, we
enable continuity and eliminate interruptions in the BIM life cycle.

Consequently, without interruptions and by enriching the BIM models with real-time
data from the construction phase, project stakeholders are capable of overseeing and

2

1.2. Expected goals

coordinating the construction process at any point in time. This enables them to
make timely reactions to unexpected on-site events. Next, this approach should persist
model-based information between different phases of the construction project by making
automatic model transformations. Fostering rich model-based information enables better
prediction of future events, such as detecting possible unforeseen events in forthcoming
tunnel construction projects.

In addition, we build a Tunneling Information Management System (TIMS), a tool
for documenting the tunneling process in NATM1 projects. TIMS enables continuous
digitalization of tunnel construction information. We integrate real-time construction
data from TIMS into our tool for the automatic generation of as-built BIM models. As a
result, we enrich the created as-built 3D models, with additional information dimensions
from TIMS and enable the availability and update of the evolving BIM model at any
point in time.

We consider our goals successful, first, if we can demonstrate that our prototype can
automatically create and enrich as-built BIM models, as currently as-built BIM models
are created manually in conventional tunnel construction. Secondly, we evaluate the
utility of the prototype with concerning the stakeholder’s feedback acquired in a series of
interview rounds.

Figure 1.2: The proposed solution to overcome the interrupted BIM life cycle in conven-
tional tunnel construction

1New Austrian Tunnelling Method

3

CHAPTER 2
Approach

2.1 Methodology
The methodological approach of this master thesis is based on Design Science [7] through
the application of the relevance, rigor, and design cycle [6].

The relevance cycle - The contextual environment of this master thesis is digitalization
in the tunnel construction domain and BIM, as the central aspect of this ongoing
digitalization process. As part of the relevance cycle, we present the problem, the BIM
model development, and the usage barrier between as-designed and as-built BIM models
in conventional tunnel construction. More precisely, the problem is that the models
are created manually, which is an error-prone and time-consuming activity and leads
to many undesirable consequences. We hypothesize that, if the models were created
automatically, this would not only speed up the model creation process, and improve
the model information quality, but also expand the utility of as-built BIM models in the
overall construction lifecycle.

Thus, our contribution to the tunnel construction domain is a prototype that enables
automatic as-built model generation, relative to the current absence of an artefact of this
type. To evaluate the utility of our artefact, we conduct interviews with experts from
the tunnel construction domain.

The rigor cycle - To explore the application domain and define the relevant state-of-
the-art expertise and existing artefacts we conduct a Systematic Literature Review [10]
by answering the following research questions:

1. What is the current state of using BIM in the conventional tunnel construction life
cycle?

2. What are the differences between as-designed, as-built, and as-used BIM Models?

5

2. Approach

3. How are BIM models constructed today and to what extent can this process be
automatized?

The design cycle - Based on the requirements from the relevance cycle and the existing
knowledge base collected from the rigor cycle, we develop a digital prototype. To develop
this digital tool we employ an agile software development methodology [13], which
proposes a rapid, iterative process, where we can reevaluate our prototype and readjust
the product requirements in increments. Applying the agile development methodology
not only enables rapid prototype production but also the constant revision process.
The revision process is especially important in settings where there is an initial lack of
knowledge in the field and many unknown parameters. We choose to maintain short
development cycles where we define tasks for the prototype construction, and stepwise
revise them, as we acquire more experience and knowledge of the presented problem.

We develop a product artefact that people can use to generate automatic BIM models.
More specifically, our artefact is a digital prototype tool that enriches as-designed BIM
models with data from the construction phase, and as a result, generates as-built BIM
models. The artefact is socio-technical, as it still requires human interaction, where
the user needs to specify the as-designed BIM model as input to generate the as-built
model. This interaction is reduced to the minimum as the artefact automatically detects
all characteristics of the as-designed model and automatically enriches the model with
real-time data from the construction site. We chose to construct a prototype instantiation
as it provides strong evidence when used to show that a design works as intended and is
useful for its intended purpose [16].

To demonstrate our prototype efficacy and effectiveness we qualitatively answer several
evaluation points, as defined by Prat et al. We compare our prototype instantiation
against manual instantiation (absence of artefact) for the creation of as-built BIM models
on the following KPIs (Key Performance Indicators), where activity presents the task of
creating as-built BIM models, and model refers to the created as-built BIM model:

• Activity prerequisites - What are the required inputs for the model creation?

• Activity performance - How much time does model creation take?

• Activity simplicity - How much user interaction does the activity need?

• Model completeness - How complete is the model information?

• Model level of detail - How much information does the model contain?

• Model accuracy - How accurate is the model information?

• Robustness - To what extent can the instantiation respond to fluctuations of the
environment?

6

2.2. Structure of the Work

Since automatic as-built BIM models do not exist in the domain, we want to evaluate
the usability potential of these models. To evaluate the overall utility of our prototype in
the tunnel construction domain, we conduct a series of expert interviews. We select a
minimum of 5 examiners with experience in BIM modeling, as well as stakeholders with
experience in the complete tunnel construction life cycle. The interviews will be led by
the following set of qualitative questions:

• Would you use the prototype?

• Why/Why not would you use the prototype?

• What would you use the prototype for?

• How would you improve/extend the prototype?

• Additional feedback

To summarize, the prototype efficacy and effectiveness, as well as the prototype utility
and usability potential represent the two key factors for the ultimate evaluation of our
prototype.

2.2 Structure of the Work
We divided the structure of the work in the following chapters:

• The Context of the Work chapter covers the background knowledge necessary
for the implementation of the prototype. Here we describe aspects of the tunnel
construction domain, specifically, the tunnel construction lifecycle, BIM models, and
BIM tools used for tunnel construction. We also present the current state-of-the-art
in regards to our problem formation.

• The Tunnel Information Management System (TIMS) chapter describes our
work on the tunnel information management system which is the basis for acquiring,
managing, and distributing real-time construction data to the BIM models.

• The Prototype for Generating As-built BIM Models chapter covers the
implementation process of our solution to the stated problem. We present the
software tools used, the initial requirement analysis, and the detailed description of
each step in the process that lead to the complete solution.

• The Evaluation Results chapter presents our evaluation process with the results
and feedback acquired.

• The Conclusion chapter summarises our work results and indicates future devel-
opment possibilities.

7

CHAPTER 3
Context of the Work

3.1 Tunnel Construction Lifecycle and Information
A tunnel construction project can be divided into three major phases, the design phase,
the construction phase, and the operation phase. According to Succar[21] each of the
phases can be subdivided into sub-phases based on this phase’s activities and tasks.

The design phase is the starting phase, where the project is carefully planned and
specified. It includes conceptualisation and cost planning activities, followed by, architec-
tural, structural, and systems design and 3D modeling activity where the BIM models are
designed. The design phase also includes analysis, detailing, and coordination activities.
One of the outputs of the tunnel construction design phase is the as-designed BIM model.
This model represents how the tunnel should look when tunnel is constructed. The
information gathered in the design phase includes more categories [23]:

• Public information about the project - national and local policies, laws and regu-
lations, specifications and procedures, environmental policy, government services,
and limitations.

• Location information - geology, hydrology, and topology, surrounding building
information, access points for water, electricity, and gas.

• Design information - hydrological investigation data, design specification and
schedule, design drawings, preliminary and technical design.

• Other information includes economic information, such as the construction budget,
contract information, and information related to similar projects

The construction phase starts with construction planning and construction detailing.
It is followed by the actual tunnel construction activity, which also includes manufacturing

9

3. Context of the Work

and procurement tasks. Lastly, the tunnel construction is commissioned, an as-built BIM
model is constructed and the project handover is conducted. Besides the information from
the design phase, the following project-specific information is included in the construction
phase [23]:

• General situational information - engineering situation, bidding documents, and
contracts.

• Construction management information - construction plan and site layout, meeting
summaries, construction schedule, actual costs.

• Resource information - allocation schedule for employment, supply schedule for
material and equipment, material usage.

• Other information in regards to the environment, construction standards, and
technology

The operational phase starts at the end of the construction phase. This phase includes
operational activities such as asset management and facility maintenance, as well as
other long-term activities, such as decommissioning and major re-programming [21].
Additional information provided in the operational phase mainly stems from the facility
management, including user, maintenance, and operational equipment information.

Figure 3.1 presents the amount of information acquired and the incremental data usage
in different tunnel construction phases on the y-axis and the x-axis, respectively.

Figure 3.1: Data usage in the tunnel construction process[21]

3.2 BIM Models in Tunnel Construction
Building Information Modelling (BIM) is an established technique for the digital rep-
resentation of actual information, through tools such as 3D geographic figures and
non-geographic information which include elements such as materials, weight, price,
procedures, scale, and size [21]. As we previously mentioned, different BIM models are
constructed at different stages of tunnel construction projects. The usage potential of

10

3.3. BIM software

BIM models is manifold. Figure 3.2 abstractly presents the BIM definition and BIM
usage possibilities [21].

Figure 3.2: Illustrated BIM definition and usage scenarios

For instance, as-designed BIM models can be used for collision detection, by combining
spatial and geometrical data into a single subsystem. Appropriate detection indicators
and actual data entered can form a collision detection system. Thus, conflicts between
system components can be intuitively presented [23]. Another use case is building
performance analysis at the design stage, an effective technique to reduce unforeseeable
costs in the construction and usage phases of the process. As-built BIM models enable
the overview of the day-to-day progress of a given project. Then, the project stakeholders
are able to oversee the planned construction process, monitor the real-time situation on
the site and construction safety [23]. And lastly, the usage potential of as-used BIM
models is mainly connected to the presentation of information relevant to facility and
emergency management.

BIM does not only visually present construction projects, it is also an information
management tool [21]. The integrated information of the project can also provide
construction experience for further use, which includes the ability to do forecasting
activities for future tunnel construction projects. According to Succar[21] "An nD
model is an extension of the building information model by incorporating all the design
information required at each stage of the lifecycle of a building facility". Thus, on top
of the basic 3D model, we can also add other information dimensions by enriching the
model with additional data. For instance, one significant dimension is time, by adding
time-related information to the model we can track the model changes through the tunnel
construction lifespan.

3.3 BIM software

BIM software is a 3D design and modeling software that is used in different domains,
such as architecture, construction, and engineering. It is an essential component in the

11

3. Context of the Work

BIM lifecycle. The United Kingdom’s National BIM Report1 gathers data from nearly
1,000 construction stakeholders and lists the most used BIM software products on the
market. We list the most popular BIM software products below:

• Revit is a well-known 4D BIM construction software developed by Autodesk2. It
aims to solve different architectural and design problems, by offering an intelligent
approach to different stages of a construction process via BIM models. According
to the aforementioned report, it is the most widely used BIM software, used by
46% of respondents. It runs on Microsoft Windows and is a paid software solution.
However, a free licence is available for students.

• AutoCAD is another Autodesk solution with broad drawing capabilities but it
also has support for BIM models. While Revit is based on 3D parametric modeling,
AutoCAD creates 2D geometries with 3D modeling capabilities. According to the
report it is used by 24% of respondents. It runs on Microsoft Windows and Mac
OS X environments. It is a paid software solution, with a free licence available for
students.

• ArchiCAD3 is in the third place of the National BIM Report, used by 15% of
respondents. According to the authors, it offers a powerful set of built-in tools and
an easy-to-use interface that makes it the most efficient and intuitive BIM software
on the market. While Revit has more features for building engineering ArchiCAD
offers more possibilities for architectural design. It runs on Microsoft Windows and
Mac OS X environments. It is a paid software solution, with a free licence available
for students.

The full list of BIM software solutions on the market is vast; it includes software tools
such as Navisworks4, Tekla BIMsight5, Kreo6, Revizto7, ArCADia BIM8, and midas
Gen9. In conclusion, it can be seen that there exist a lot of software products on the
market that offer the ability to work with BIM models.

3.4 State-of-the-Art
Based on our Design Science methodology, as part of the rigor cycle, we conducted a
systematic literature review to answer the research questions stated in the Methodology

1https://www.thenbs.com/knowledge/national-bim-report-2020
2https://www.autodesk.com/
3https://graphisoft.com/solutions/archicad
4https://www.autodesk.com/products/navisworks/overview
5https://www.tekla.com/products/tekla-bimsight
6https://www.kreo.net/
7https://revizto.com/en/
8https://arcadiabimsystem.com/
9https://www.midasstructure.com/en/

12

3.4. State-of-the-Art

section of the master thesis. We defined different sets of keywords "BIM AND (model
OR modeling OR modelling) AND (tunnel OR tunel)", "conventional construction AND
(tunnel OR tunel)", "BIM AND (as-built OR built OR as-designed OR designed OR
as-used OR used OR automatic)| and used Google Scholar10 and Scopus11 databases to
search for relevant literature. Additionally, we used the snowballing technique[20], to
further explore the initial systematic literature results. The results of the state-of-the-art
analysis are presented below.

Recent literature shows widespread adoption of BIM methods in tunnel construction, as
well as benefits of using BIM in tunnel construction projects [26]. Moreover, the usage
of BIM methods is supported across all lifecycle phases in construction projects [23],
and also more specifically in tunnel construction projects [26]. BIM is mostly used in
the design and construction phases of the tunnel construction lifecycle, by constructing
as-designed and as-built BIM models [26].

In addition, most of the literature differentiates the general tunnel excavation method of
tunnel projects which are constructed with tunnel boring machines (TBM), and tunnels
constructed through drill-and-blast cyclic advances, such as with NATM12[3]. Accordingly,
we address these two different excavation methods as TBM tunnel construction and
conventional tunnel construction. Sharafat et al.[19] present an overview of existing
tunnel BIM literature. It can be seen that there has been a lot of research on employing
BIM technology with the TBM tunnel construction method. Koch et al. present a BIM
framework for tunnels which consists of BIM models for TBM, tunnel lining, build
environment, and ground. Later, based on the aforementioned framework, Ninić et al.[14]
propose the semi-automatic generation of as-designed BIM models and as-built BIM
models [15] for the TBM tunnel construction method. On the other hand, Lee et al.[12]
and recently Sharafat et al.[19] propose theoretical BIM frameworks for the conventional
tunneling approach which do not cover automatic BIM model generation.

To conclude, there exist several articles directed toward systematizing and improving
the as-designed BIM models in both TBM and conventional tunneling methods. We
especially see advances in the literature related to TBM tunneling methods, where Ninić
et al.[15] recently proposed automatic as-built BIM model generation. Nevertheless, there
is also scientific work that proposes a prototype for the automatic creation of as-used
BIM models [24]. Yet, none of the literature covers the topic of automatic creation of
as-built BIM models for tunnel projects constructed with the conventional tunneling
method.

10https://scholar.google.com/
11https://www.scopus.com/home.uri
12The New Austrian Tunneling Method

13

CHAPTER 4
The Tunnel Information

Management System

The Tunnel Information Management System (TIMS) is a prototypical software tool
that we developed for replacing the still common paper-based documentation process of
tunneling projects employing the New Austrian Tunneling Method (NATM)[9]. While
Building Information Modeling (BIM) has been proposed as a means to improve the
current situation [19]. Most proposals, however, are at a conceptual level or are inappro-
priate for directly capturing data at the tunnel face and subsequently utilizing it for the
invoicing process [22]. We used and extended the data model from the master thesis of
Zach [25], defining the data structures to capture the most essential data directly at the
tunnel face and to realize a seamless digital data flow to the company’s ERP (Enterprise
Resource Planning) system. Based on this, we present the software architecture and the
implementation of TIMS.

4.1 Software architecture and Implementation
We implemented TIMS by utilizing a two-tier, multi-layer architecture which is depicted in
Figure 4.1. The software architecture has a physical separation between two components
of the system [5] - in this case, the front-end and the back-end. In our architecture, the
terms front-end and back-end can be used interchangeably with the terms client and
server, respectively. Client and server communicate with each other over an application
programming interface (API). Via an API the back-end exposes a well-defined set of
functionality to the front-end. The API provides two different mechanisms of client-server
communication: REST1, and JSON-RPC2. The term ”multilayer architecture” refers

1Representational State Transfer
2JavaScript Object Notation Remote Procedure Call

15

4. The Tunnel Information Management System

to the fact that there are separate components for different responsibilities, which are
typical components for the presentation of data, the business logic, and the data storage
[5]. Our implementation is based on Tryton3, which is an open-source enterprise resource
planning (ERP) system and framework with an emphasis on modularity. Tryton provides
the core functionality found in modern business software like access control, a workflow
engine, a view engine, a report engine, and functionality for internationalization (i18n).
Object-relational mapping (ORM) is the process of converting class instances to instances
in a relational database, and vice versa. The core of our implementation is the business
logic which consists of the tunneling models based on the underlying data model, data
constraints, access rules, and definitions of workflows [8].

Figure 4.1: TIMS software architecture

We developed two different front-ends that enable digital documentation of the tunneling
process. The interface for desktop computers presents a variety of functionalities. First,
it enables the user to have complete control over the data model based on CRUD
functionality (Create, Read, Update and Delete operations) through master views. The
desktop interface enables the initial setup for any tunneling project, where the user can
predefine and populate data of Sections, Cross-Sections, Activity Types, etc., as well
as create, modify and delete Personnel, Shifts, Rounds, etc. Besides the data control
functionality, the desktop interface provides an overview of the whole tunneling process
and tunneling diagrams with the ability to add, modify, and delete activities and material
usage in tunnel rounds seen in Figure 4.2. Lastly, based on the acquired tunneling process
data, the desktop interface enables the automatic creation of digital documents, such as

3https://docs.tryton.org

16

4.1. Software architecture and Implementation

excavation and support sheets, daily construction reports, etc., as well as computation of
tunneling and support statistics [8].

Figure 4.2: TIMS desktop interface

4.1.1 TIMS foreman interface

While the desktop interface acts as a basis for setting up and administering a tunneling
project, the second interface for the foreman provides a fast and intuitive approach for
data acquisition. It is a web application that can capture the data directly at the tunnel
face with the focus on activities and material usage in a tunnel round, intended to be
used by the foreman on a mobile device. The web application was created with the
Angular framework4. The application exchanges data with the Backend server through
REST API calls. The design was optimized for tablet devices and simple usage by the
foreman at the construction site. Intuitively, the foreman selects the current tunnel
section, and the shift and adds the shift personnel. In the same view (s)he is presented
with a list of tunnel rounds, where (s)he can select the current tunnel round or create a
new one, as shown in Figure 4.3. After selection, (s)he is offered a timetable diagram
where (s)he can add, modify or delete activities, as depicted in Figure 4.4. By clicking on
the ”Add an activity” button, a new view opens. The foreman selects the activity type
from a predefined list, while the start time and duration of the activity are automatically
prefilled based on past activities, but can be modified. Moreover, the foreman can add

4https://angular.io/

17

4. The Tunnel Information Management System

the materials used in this activity, where (s)he selects the material type from a predefined
list and enters the quantity, and the unit of measure, prefilled based on the material type
depicted in Figure 4.5.

Figure 4.3: TIMS foreman interface - Shift report

Figure 4.4: TIMS foreman interface - Tunnel round report

4.2 TIMS API
The Tunnel Information Management system helps to realize a central vision of digi-
talization: to capture each information only once and provide information flows to use
the information in all phases of a project. Accordingly, TIMS allows for capturing all
relevant information of the tunneling process in a structured data format [8]. The future
work on TIMS concentrates on seamless data flows to and from other software tools used
in a tunneling project [8]. Hence, the data exchange between TIMS and the prototype
for generating the as-built 3D BIM models is one extension of this kind. One of the ways

18

4.2. TIMS API

Figure 4.5: TIMS foreman interface - Add activity view

to expose the construction data from TIMS is through the TIMS REST API. Thus, in
this master thesis, we use TIMS REST API as the source of real-time construction data.
In this section, we present the API interface implementation details.

The API follows the REST architectural style [4]. It is written in Flask5, a microframework
for writing lightweight web applications. Because our underlying back-end structure is
based on the Tryton framework we use flask-tryton package6 to add Tryton support to
the REST API.

We create a BaseView class that extends the Tryton Views with GET, POST, PUT and
DELETE methods according to the REST architectural style. The property model refers
to the underlying Tryton model definition name and the property fields refers to the
list of exposed Trtyon model properties.

class BaseView(MethodView , metaclass=ViewMeta):

model = None

fields = []

...

def get(self, id=None): # @ReservedAssignment
5https://flask.palletsprojects.com/en/2.0.x/
6https://pypi.org/project/flask-tryton/

19

4. The Tunnel Information Management System

Model = tryton.pool.get(self.model)

if id:
return a s ing le object
data = Model.read([id], fields_names=self.fields)[0]

else:
return a l i s t of objects
query = request.args.get(’q’)

if query:
query = json.loads(query)

else:
query = []

ids = [r.id for r in Model.search(query)]
data = Model.read(ids, fields_names=self.fields)

return self._make_response(data)

def post(self):
Model = tryton.pool.get(self.model)
data = json.loads(request.data, object_hook=JSONDecoder())

ret = Model.create([data])[0]

return self._make_response(ret.id)

def put(self, id): # @ReservedAssignment
Model = tryton.pool.get(self.model)
obj = Model(id)
data = json.loads(request.data, object_hook=JSONDecoder())

if not all(name in self.fields for name in data.keys()):
raise ApiException(’Field does not exist.’, 400)

Model.write([obj], data)

return self._make_response()

def delete(self, id): # @ReservedAssignment
Model = tryton.pool.get(self.model)
Model.delete([id])
return self._make_response()

...

Next, we expose a selected number of previously defined Tryton construction models by
creating their corresponding Views which extend the BaseView. Thereby we enable the
GET, PUT, POST, DELETE methods on the following construction models in a generic
manner.

class ActivityView(BaseView):

20

4.2. TIMS API

model = ’construction.activity’

fields = [’id’, ’type’, ’type.name’, ’start_time’, ’end_time’, ’comment’,

’round’, ’shift’, ’measures’]

class RoundView(BaseView):
model = ’construction.tunnel.round’

fields = [’id’, ’section’, ’start_chainage’, ’end_chainage’, ’comment’,

’state’, ’support_definition’, ’shifts’]

class SectionView(BaseView):
model = ’construction.section’

fields = [’name’, ’state’, ’project’]

class ShiftView(BaseView):
model = ’construction.shift’

fields = [’id’, ’section’, ’start_time’, ’end_time’, ’participation’,

’comment’, ’activities.start_time’, ’activities.end_time’]

class ShiftParticipationView(BaseView):
model = ’construction.shift.participation’

fields = [’employee.party.name’, ’employee’, ’role’, ’shift’]

class MeasureView(BaseView):
model = ’construction.tunnel.measure’

fields = [’measure_definition’, ’measure_definition.name’,

’measure_definition.type’, ’measure_definition.type.class_uom’,

’measure_definition.type.class_uom.name’, ’quantity’, ’activity’,

’activity.type.name’, ’uom’, ’uom.name’, ’percentage’]

class SupportDefinitionView(BaseView):
model = ’construction.tunnel.support.definition’

fields = [’name’, ’section’, ’partial_drift.name’, ’cross_section.name’]

21

4. The Tunnel Information Management System

4.3 TIMS Data Model
The TIMS API endpoints and the TIMS Architecture are based on an underlying data
model presented in Figure 4.6. The data model is presented as a Unified Modeling
Language (UML) class diagram. The UML class diagram covers all the classes necessary
to store the data from a NATM construction process.

First, we describe the underlying classes necessary to set up a tunneling project. The
Project class represents a tunneling project. Each Project consists of one or more
Sections and each Section is part of exactly one Project. Each Section has one or more
SupportDefinitions. Additionally, each SupportDefinition represents one CrossSection
type. For each CrossSection there are multiple PartialDrifts, each referring to one
CrossSection.

Rounds are an essential concept when the tunneling process starts. Each Round is related
to one SupportDefinition, and each SupportDefinition is used by one or many Rounds. A
Round consists of one or more tunneling Activities and each Activity is part of one Round.
Additionally, each Activity can have Equipment and SupportMeasures. With classes
MaterialUsage and EquipmentUsage we track the SupportMeasure and Equipment usages
in an Activity.Multiple SupportMeasures can be used in a SupportDefinition. With class
MaterialUsageDefault we define the quantity of a SUpportMeasure in a SupportDefinition.
Each SupportMeasure is of a certain SupportMeasureType and can be related to more
Products.

Each Round is done in one or many Shifts, and each Shift is related to one or many
Rounds. The regular Activities are part of a Round, but there might be some special
Activities that are assigned only to a particular Shift. Each Shift refers to exactly one
Section and, in addition, it relates to multiple Personnel. A Shift also has a group leader,
which is presented by an additional relationship to Personnel class. We differentiate
between a ForemanShift and regular Shift as they can have different working hours.

22

4.3. TIMS Data Model

Figure 4.6: Class diagram of TIMS

23

CHAPTER 5
Prototype for generating as-built

3D BIM models

5.1 Software tools
To construct the prototype we made several software tool choices. We chose Revit as the
BIM software for multiple reasons. First, Revit is the most popular choice on the market,
which means that many engineers are familiar with it. Nevertheless, being the most
popular choice, many supporting software tools were developed that can be integrated
with Revit.

To create automatic 3D BIM models, we need to be able to programmatically manage
the BIM software. For this means, Revit exposes a powerful .NET API1 that can be
used to automate repetitive tasks but may also be used to extend the core functionalities
of Revit. There are multiple versions of the API 2017.1, 2018, 2018.1, 2018.2, 2019, 2020,
2020.1, 2021.1, and 2022 which follow the current development of Revit. Revit changes
over times and there are some breaking changes, that do not make all functions and
features backward compatible.

The Revit API enables the user to write plug-ins for Revit, mainly in C#. However, to
reload and debug the plug-in, Revit needs to be restarted and the entire BIM model
needs to be reloaded each time a change is made to the source code, which we want to
avoid, especially when developing a prototype. To overcome this bottleneck for rapid
development, there exist a couple of options. As C# is a compiled programming language,
code still needs to be rebuilt on every code change, which slows down the development
process. In our case, this is especially evident, as we are developing a prototype artifact,
where the focus is on development speed and MVP showcase, rather than on performance
optimization of the final product.

1https://www.revitapidocs.com/

25

5. Prototype for generating as-built 3D BIM models

Based on the aim to develop a prototype we chose to use pyRevit, a Rapid Application
Development (RAD) environment for Autodesk Revit. As stated by its authors ”pyRevit
helps you quickly sketch out your automation and add-on ideas, in whichever language
that you are most comfortable with, inside the Revit environment and using its APIs.”2.
As our final choice, we decided to use Python, an interpreted programming language
with the pyRevit (RAD) environment, as Python code is not required to be rebuilt and
enables faster development and prototyping.

Additional tools used are PyCharm as an integrated development environment (IDE)3

for Python (free student licence) and Git for version control.

5.2 Analysis of provided as-designed 3D BIM model

For the scope of the master thesis, we were provided with an as-designed model from
Zentrum am Berg4. The as-designed 3D BIM model is constructed generically by using
a predefined Revit Family. A Revit Family contains the blueprints for Revit elements
which describe the basic geometry of the elements, the behaviour of the geometry, and
define the element’s parameters5. Hence, as part of the as-designed 3D BIM model, a
Revit Family is provided that essentially describes three different base elements listed
below, that correspond to the different excavation types of the tunnel cross-section, as
depicted in Figure 5.1.

• EBO_K - the base model for Top Heading (Kalotte) excavation class

• EBO_ST - the base model for Bench (Strosse) excavation class

• EBO_So - the base model for Invert (Sohle) excavation class

All base elements are based on the Adaptive Component Type6. Adaptive Components
can flexibly adapt to contextual conditions. In the case of the provided base elements,
this means that the tunnel round element’s length can be adjusted. The length depends
on a start point and an endpoint in the geometrical space. Based on the selected start
and end points, the base elements get adjusted to fit the contextual conditions.

2https://www.notion.so/pyrevitlabs/pyRevit-bd907d6292ed4ce997c46e84b6ef67a0
3https://www.jetbrains.com/pycharm/
4https://www.zab.at/
5https://blogs.autodesk.com/revit/2018/08/27/understanding-revit-families/
6https://knowledge.autodesk.com/support/revit/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/Revit-

Model/files/GUID-6E0ECA27-AF40-4B1D-9E0B-1DE5FBBD45F2-htm.html

26

5.3. Essential requirements for generating an as-built 3D BIM model in Revit

Figure 5.1: Excavation types based on the tunnel cross section

The base elements also contain the following parametric properties, important for element
positional and rotational control:

• rotXY_A, rotXY_B (Rotation) set the rotation of the base element.

• Querneigung (Cross slope) sets to the cross slope of the base element.

• Gradienthöhe_A, Gradienthöhe_B (Gradients) set the base element gradi-
ents.

Additionally, the provided 3D BIM model contains coded material properties for holding
the material values, where the codes are later on used inside another software tool to
calculate the costs of the tunnel construction.

5.3 Essential requirements for generating an as-built 3D
BIM model in Revit

Having the goal to automatically generate an as-built 3D BIM model, we analyzed the
elements of the provided as-designed BIM model, explored the capabilities of the Revit
software, and read the Revit API documentation in parallel, using the aforementioned
agile methodology. After many revisions, we provide the final list of steps required to
generate an as-built 3D BIM model from an as-designed 3D BIM model in Revit:

• To generate the as-built BIM model we need to identify the tunnel axis by accessing
the provided tunnel reference curve which represents the tunnel axis.

• To generate the as-built BIM model we need to have access to the provided Revit
Family blueprints for base elements (EBO_K, EBO_ST, EBO_So), as these

27

5. Prototype for generating as-built 3D BIM models

elements can represent different types of tunnel round excavations of desirable
length.

• To correctly enrich the models with the material used and other tunnel round
properties in the construction phase, we need to create our own ”Construction”
Family with the necessary properties.

• To approximate the exact positional and rotational parameters of each base element,
we need to extract and interpolate the rotational and positional parameters of
as-designed base elements located on the tunnel meters corresponding to the as-built
base elements.

• To get real-time construction data we need to establish a connection to the TIMS
REST API and get the relevant construction data.

5.4 Software Architecture
To conceptually understand our solution for generating automatic as-built 3D BIM
models, we create a software architecture overview, depicted in Figure 5.2. Colored in
green we define our artifact, As-built 3D BIM Model Generator, and the TIMS
API, the interface from which we get the real-time construction data.
The enabler of the model generation process is the AB-BIM Plugin, a plugin that
needs to be installed in the Revit environment. The plugin enables the configuration of
buttons inside the Revit environment. Every defined button holds logic that performs a
certain action in the Revit environment by accessing the Revit API.
In the AB-BIM Plugin we define two buttons, that act as interfaces for user-interaction
and trigger the underlying services; the Load Data from TIMS and Generate Model
buttons as depicted in Figure 5.2.
The Load Data from TIMS button triggers the service for loading construction data
from TIMS. First, the service function gets the construction data from TIMS REST API
interface. Next, the JSON structure is formatted, so it can be easily used for model
generation. Lastly, we timestamp the formatted construction data and store it on the file
system. As the output of this service, we obtain a JSON file containing the construction
data from the TIMS API at a certain point in time.
The Generate model button triggers the process to generate the as-built 3D BIM
model. The output of the process is the final as-built 3D BIM model. This process
consists of several steps:

• In the step Load construction data the user is prompted to choose a file that
contains the construction data used to create the as-built BIM model. The data
file can be either the one loaded from TIMS or a custom data file created by the
user. In this way, we decouple the solution from the TIMS system and enable the
user to also use other arbitrary sources, if necessary.

28

5.4. Software Architecture

Figure 5.2: Software Architecture of the Prototype for Automatic Generation of As-Built
3D BIM Models

• In the step Create construction family we locate the provided as-designed Revit
Family with user assistance, by prompting the user to enter the Revit Family’s
name. After locating the provided Family, we make a copy of the blueprints and add
additional properties related to the construction phase of the tunnel construction
lifecycle. Lastly, we store the new ”Construction” Revit Family blueprints.

• In the step Load construction family we load the previously created ”Construc-
tion” Family in the Revit interface to use its blueprints for the creation of the
as-built 3D BIM model elements.

• The function Create tunnel curve locates the as-designed 3D model tunnel curve

29

5. Prototype for generating as-built 3D BIM models

and replicates it as the basis for the as-built 3D model axis. The tunnel curve is a
prerequisite for adding the tunnel and construction elements.

• The final step is to Add the construction data to the tunnel curve. Based
on the loaded construction data, we iterate over each tunnel round and execute the
following functions:

– We Create a tunnel section element with the corresponding starting and
ending meter, and the corresponding cross-section type (e.g Top Heading,
Bench, Invert). This enables the visual creation of the as-built element in the
Revit interface.

– In the step Adjust tunnel section element position we refine the element
position and rotation by detecting the positional and rotational properties of
the corresponding as-designed BIM model elements.

– Lastly, in step Set tunnel section element parameters we enrich the
tunnel section element with parameters from the construction data, such as the
construction material used in this tunnel round, or the duration and additional
comments in this tunnel round.

5.5 Implementation
After we defined the overview of our software architecture, in this section we provide
detailed documentation of every underlying function of the AB-BIM Plugin, which we
annotate based on the elements presented in the software architecture section.

5.5.1 Load Data from TIMS
We write a pyRevit script that connects to the exposed TIMS API to extract the
current state at the tunnel construction site. We send the data to our Revit Plugin to
automatically create 3D as-built models enriched with construction data. This seamless
data exchange enables time-saving due to avoidance of multiple entries, reduction of
transmission errors, and higher data quality, consistency, and traceability.

The script execution consists of three high-level functions; first, we authenticate to the
TIMS Rest API to obtain a JWT token7 that authorizes our requests to the necessary
TIMS API endpoints. With the authenticate() function based on our provided credentials
we obtain a JWT access token.

def authenticate():
response = requests.post("https://tunnel.big.tuwien.ac.at:8000/api/login/",

json={"user": credentials.username ,

"password": credentials.password})

access_token = "Bearer " + response.text

7https://jwt.io/

30

5.5. Implementation

headers = {"Authorization": access_token}

return headers

Next, we get the necessary construction data and format it. The JSON format of
the construction data can be seen in Figure 5.3. The structure follows a simple form,
on the top level we have an array of sections with the property name. Each tunnel
section contains several tunneling rounds. For each round we provide information about
the start_meter, end_meter, start_datetime, end_datetime, and the duration of the
tunneling round process. Further, we provide information about the cross_section_type,
optional foreman comments and lastly an array of material used in the tunnel round.
Each material instance contains the material name, the material unit in the property
value_type, and the number of material units in the property value.

The flat structure was chosen as it enables a simple decomposition of the construction
data iteratively, effectively usable in the process of creating as-built 3D BIM models.
As we are building a new, non-existing prototype, we decided to include all available
construction information that could be useful for the stakeholders. Nevertheless, this
format can be extended based on future stakeholder utility use cases.

The function get_formatted_data() loads all the necessary data and formats it to our
JSON serialized format.

def get_formatted_data():
sections = get_sections()

for section in sections:
rounds = get_rounds(section.id)
rounds = sorted(rounds, key=lambda x: x.start_meter)
for round in rounds:

round_material = get_material(round.id)
round.material = serialize_data(round_material)

section.rounds = (serialize_data(rounds))

return {"sections": serialize_data(sections)}

Lastly, we store the JSON formatted data on the file system by calling the store_data(data)
function. Additionally, we also create the file path and add the current timestamp to
annotate the file with the current tunnel construction state.

def store_data(data):
file_path = create_file_path()

with open(file_path , ’w’) as f:
json.dump(data, f, ensure_ascii=True)

print("Data was successfully stored!")

def create_file_path():

31

5. Prototype for generating as-built 3D BIM models

absolute_path_of_script = os.path.dirname(__file__)

absolute_file_path = get_parent_dir(get_parent_dir(

get_parent_dir(absolute_path_of_script)))

return absolute_file_path + ’\\data\\tims’ + get_current_timestamp() + ’.json’

32

5.5. Implementation

Figure 5.3: Construction data JSON formatting
33

5. Prototype for generating as-built 3D BIM models

5.5.2 Generate Model
We write a pyRevit script that handles the whole model generation process. Figure 5.4
shows the overview of the as-built model generation process. The diagram shows external
artifacts (red color), artifacts created during the generation process (grey color), the
resulting artifact, the generated as-built Revit model (green color), and the generation
process steps (yellow color). The first prerequisite is to load the existing construction
data from a file (generated from TIMS API or manually). The next prerequisite is
to create an as-built Revit family by locating and extending the provided as-designed
Revit family with additional construction parameters. Next, we create the tunnel axis
as the basis for the tunnel element’s placement. Then we iterate over each item of the
provided construction data. Based on the provided as-designed model, item type, and
location information, we choose the appropriate Revit element to represent the new
tunnel section. Subsequently, we place the element on the tunnel axis based on the
item location information and the provided as-designed model. Finally, we enrich the
as-build model with data presented in 3.1 which is contained within the currently iterated
construction data item. In the next part, we give a detailed description of all functions
necessary to complete this process.

Loading construction data

The function load_construction_data() prompts the user to choose a file that contains
the construction data. As previously mentioned, this data can be from TIMS API or
other sources but needs to conform to the JSON format presented in Figure 5.3.

def load_construction_data():
print(’Loading construction data’)
Alert("Click button \’Load data from TIMS\’ to generate current data "

"snapshot from TIMS. You are also able to add your own construction "

"data",

header="Adding Construction Data",

title="Information")

file_path = forms.pick_file(

title=’Please select a file containing construction information’,

file_ext=’json’)

data = open(file_path , ’r’).read()
return json.loads(data)

Creating and loading the as-built construction family

Previously, we defined the base elements of the as-designed BIM model family, EBO_K,
EBO_ST, and EBO_S. We create the as-built construction family based on the pro-
vided as-designed family. Hence, the first step is to locate the as-designed family
and use it as a basis for constructing our as-built construction family. We implement

34

5.5. Implementation

Figure 5.4: Overview of the As-built Model Generation Process

this feature in the function locate_as_designed_family(). To make the function more
generic, we prompt the user to enter the name of an as-designed family element. The
get_element(revit_document, name) function selects any FamilySymbol8 element by a
given name. By locating the as-designed element by the entered name, we are also able

8https://www.revitapidocs.com/2022/a1acaed0-6a62-4c1d-94f5-4e27ce0923d3.htm

35

5. Prototype for generating as-built 3D BIM models

to get access to the element’s Family9 with our utility helper functions10.

def locate_as_designed_family():
as_designed_element_name = TextInput(

’Loading As−designed Family’,
default=’EBO_K’,

description=’Please enter the name of a used as−designed model.’)
child_family_element = Utils.get_element(doc, as_designed_element_name)

return Utils.get_element_family(child_family_element)

Next, by having access to the Family element of the child base element we can construct
our own as-built construction family, with our base elements for different excavation types;
Top Heading (German: "Kalotte"), Bench (German: "Strosse"), and Invert (German:
"Sohle"). The function to create our construction family is presented below. We make
changes in Revit inside transactions, where we also provide appropriate exception handling
logic.

def create_construction_family(new_family_name):
print(’Creating construction family’)
existing_family = locate_as_designed_family()

family_doc = doc.EditFamily(existing_family)

add_construction_parameters(family_doc)

options = DB.SaveAsOptions()

options.OverwriteExistingFile = True

try:
family_doc.SaveAs(new_family_name , options)

except Exception as e:
print(’Overriding Revit file permissions’)
loadFamilyCommandId = UI.RevitCommandId.LookupCommandId(’ID_FAMILY_LOAD’)

UI.UIApplication(uiapp).PostCommand(loadFamilyCommandId)

raise Exception("Couldn’t create family due to Revit file permissions ,"
" please close the dialog and try again.")

Additionally, based on our analysis of the provided as-designed BIM model, we need to
add additional construction parameters, to our newly created construction base elements
in function add_construction_parameters(family_doc). Each Revit element has a set of
parameters. These parameters are separated into different parameter groups. We choose
to save our construction parameters, inside the default built-in parameter group of identity
parameters11 in the function add_identity_parameter. The construction parameters refer
to the construction material and additional tunnel round information acquired from
the Foreman interface application. In the function load_construction_parameters() we

9https://www.revitapidocs.com/2022/f51d019d-6ff3-692b-d1d2-b497cab564de.htm
10The whole utility class is available in Appendix C
11https://www.revitapidocs.com/2022/9942b791-2892-0658-303e-abf99675c5a6.htm

36

5.5. Implementation

provide all possible construction material definitions from TIMS, as well as the place to
store the Foreman comment, and time dimension attributes. The construction parameters
in the snippet are in German language.

def add_construction_parameters(family_doc):
parameters_tuples = load_construction_parameters()

for p in parameters_tuples:
parameter_name = p[0]

parameter_type = p[1]

add_identity_parameter(family_doc , parameter_name , parameter_type)

def load_construction_parameters():
return [

(’Selbstbohranker’, DB.ParameterType.Text),

(’SN Mörtelanker’, DB.ParameterType.Text),

(’Ortsbrustanker’, DB.ParameterType.Text),

(’Baustahlgitter 1. Lage, ohne Bogen’, DB.ParameterType.Text),

(’Baustahlgitter 1. Lage, mit Bogen’, DB.ParameterType.Text),

(’Baustahlgitter 2. Lage, mit Bogen’, DB.ParameterType.Text),

(’Rammspieß’, DB.ParameterType.Text),

(’Selbstbohrspieß’, DB.ParameterType.Text),

(’Spritzbeton Kalotte und Strosse’, DB.ParameterType.Text),

(’Spritzbeton Ortsbrust’, DB.ParameterType.Text),

(’Spritzbeton Teilflächen’, DB.ParameterType.Text),

(’Bogen’, DB.ParameterType.Text),

(’Verpressung’, DB.ParameterType.Text),

(’Teilflächen’, DB.ParameterType.Text),

(’Sprengstoff’, DB.ParameterType.Text),

(’Kommentar’, DB.ParameterType.Text),

(’Zeit Anfang’, DB.ParameterType.Text),

(’Zeit Ende’, DB.ParameterType.Text),

(’Dauer’, DB.ParameterType.Text),

]

def add_identity_parameter(family_doc , parameter_name , parameter_type):
family_manager = family_doc.FamilyManager

family_doc_transaction = DB.Transaction(family_doc)

try:
family_doc_transaction.Start("ADD PARAMETER")

family_manager.AddParameter(parameter_name ,

DB.BuiltInParameterGroup.PG_IDENTITY_DATA ,

parameter_type , True)

family_doc_transaction.Commit()

37

5. Prototype for generating as-built 3D BIM models

except Exception as e:
print(e)
family_doc_transaction.RollBack()

Next, we load the created construction family with function load_construction_family().

def load_construction_family(family_name):
print(’Loading construction family’)
try:

transaction.Start(’LOAD CONSTRUCTION FAMILY’)

result = doc.LoadFamily(family_name)

if not result:
print(’Family already loaded, using loaded family’)

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception("Could not load family", e)

Identifying and creating the tunnel axis

To identify the tunneling axis, we need to get the existing as-designed tunnel axis. In the
function get_exiting_tunnel_curve() we search the open document for a tunnel curve
with the function search_for_tunnel_curve(document). If the tunnel curve is not found,
we implemented the function search_families_having_tunnel_curve() which searches
all available Revit project families for a tunnel axis and gives the user appropriate
feedback with all families containing a tunnel axis. The tunnel axis element type in Revit
corresponds to ’Autodesk.Revit.DB.CurveByPoints’12.

def get_existing_tunnel_curve():
result = search_for_tunnel_curve(doc)

if result:
return result

else:
search_families_having_tunnel_curve()

def search_for_tunnel_curve(document):
elements_collector = DB.FilteredElementCollector(document)\

.WhereElementIsNotElementType()\

.ToElements()

for element in elements_collector:
if element.GetType() and \

12https://www.revitapidocs.com/2022/2df7ab39-1ac0-5803-79fa-b23a959bf8f2.htm

38

5.5. Implementation

str(element.GetType()) in TUNNEL_AXIS_ELEMENT_TYPES:
return element

return None

def search_families_having_tunnel_curve():
available_families = []

for family in Utils.get_families():
family = doc.GetElement(family.Id)

if family.IsEditable:
fam_doc = doc.EditFamily(family)

result = search_for_tunnel_curve(fam_doc)

if result:
available_families.append(family.Name)

content = Utils.format_list_to_string(available_families)

Alert(title=’Error’,

header=’Could not locate tunnel curve, ’

’please open one of the family documents’

’ with the tunnel curve’,

content=content)

Finally, if the tunnel axis is found, we can create a new tunnel axis as the basis for
our as-built model by copying the found as-designed tunnel axis, for clarity and easy
comparison we create the tunnel axis in the same reference plane. All creation logic in
Revit needs to be included in transactions, which are context-like objects that guard
any changes made to a Revit model. Additionally, we implement transaction exception
handling logic which we finally handle in a user-friendly manner in one place, in the
top-level code environment13.

def create_tunnel_curve():
print(’Creating tunnel curve’)
as_designed_tunnel_curve = get_existing_tunnel_curve()

new_xyz = DB.XYZ(200, −200, 0)
try:

transaction.Start(’CREATE TUNNEL CURVE’)

new_tunnel_curve_ids = DB.ElementTransformUtils.CopyElement(

doc,

as_designed_tunnel_curve.Id,

new_xyz

)

new_tunnel_curve = doc.GetElement(new_tunnel_curve_ids[0])

transaction.Commit()

13https://docs.python.org/3/library/__main__.html

39

5. Prototype for generating as-built 3D BIM models

except Exception as e:
transaction.RollBack()

raise Exception(e)
return new_tunnel_curve

doc = __revit__.ActiveUIDocument.Document

transaction = DB.Transaction(doc)

try:
as_built_tunnel_curve = create_tunnel_curve()

except Exception as error:
Alert(str(error), header="User error occurred", title="Message")

Adding construction data to the tunnel curve

Based on the previously loaded construction data, we iterate over the tunnel round
objects in function add_construction_data(construction_data). A tunnel round object
is based on the specification in Figure 5.3.

def add_construction_data(construction_data):
print(’Adding construction data’)
cross_section_type = SelectFromList(

’Select cross section type of tunnel rounds you want to generate’,

["Kalotte", "Strosse", "Sohle"])

for item in construction_data[’sections’]:
for round in item[’rounds’]:

add_tunnel_element(

round[’start_meter’],
round[’end_meter’],
round[’material’],
round[’comment’],
round[’start_datetime’],
round[’end_datetime’],
round[’duration’]

)

For each tunnel round element we call the function add_tunnel_element. We first de-
tect the corresponding as-designed elements based on the start and end meter of the
tunnel round in function find_as_designed_element_name(start_meter,end_meter). The
fallback is that the user manually enters the corresponding as-designed element.

def add_tunnel_element(start_meter , end_meter , material , comment,
start_time , end_time, duration):

print(’Adding tunnel element’)

40

5.5. Implementation

as_designed_element_name = find_as_designed_element_name(start_meter ,

end_meter)

if as_designed_element_name is None:
as_designed_element_name = TextInput(

’Could not find element at position (’

+ str(start_meter) +’ − ’ + str(end_meter) + ’)’,
description=’Please enter the model type name for this tunnel round’,

default=’EBO_K’)

section_element = create_section_block(

as_designed_element_name , as_built_tunnel_curve , start_meter , end_meter)

set_element_parameter(section_element , ’Kommentar’, comment)

set_element_parameter(

section_element , ’Station Anfang’, str(start_meter) + ’m’)
set_element_parameter(section_element , ’Station Ende’, str(end_meter) + ’m’)
set_element_parameter(section_element , ’Zeit Anfang’, start_time)

set_element_parameter(section_element , ’Zeit Ende’, end_time)

set_element_parameter(section_element , ’Dauer’, duration)

add_section_material(material, section_element)

set_section_position(start_meter , end_meter , section_element)

def find_as_designed_element_name(start_meter , end_meter):
collector = db.Collector(of_class=’FamilyInstance’)

elements = collector.get_elements()

for e in elements:
try:

if e.Symbol.Family.Name != ’as−built’ and has_blocknummer(e):
element_start_meter , element_end_meter = \

find_as_designed_model_position(e)

if element_overlap(start_meter , end_meter , element_start_meter ,
element_end_meter):

return e.name
except Exception as e:

continue
return None

Next, in the function create_section_block we create the tunnel element by setting the ele-
ment placement points on the tunnel curve, with the functions get_element_placement_points()
and create_new_point_on_edge(edge, position_meter). To set our placement points
with the provided start and end meter, we create new points on the tunnel curve and
replace the initial placement points with the newly created ones. Additionally, we also
need to convert the meter distances into feet distances, because Revit calculates system

41

5. Prototype for generating as-built 3D BIM models

units in Imperial units14.

def create_section_block(
section_element_type_name ,

tunnel_curve ,

beginning_meter ,

ending_meter

):

section_family_element_type = Utils.get_as_built_element(

doc, section_element_type_name)

try:
transaction.Start("CREATE SECTION BLOCK")

section_family_element_type.Activate()

new_section_block = DB.AdaptiveComponentInstanceUtils.\

CreateAdaptiveComponentInstance(

doc,

section_family_element_type

)

placement_point_a , placement_point_b = get_element_placement_points(

new_section_block

)

placement_point_a.SetPointElementReference(

create_new_point_on_edge(tunnel_curve , beginning_meter)

)

placement_point_b.SetPointElementReference(

create_new_point_on_edge(tunnel_curve , ending_meter)

)

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception("Couldn’t create section block", e)

return new_section_block

def get_element_placement_points(element):
try:

placement_points = DB.AdaptiveComponentInstanceUtils.\

GetInstancePlacementPointElementRefIds(element)

return doc.GetElement(placement_points[0]), \
doc.GetElement(placement_points[1])

14https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-
010D97F3-A50E-42D2-BD55-6EB0F239EBFE-htm.html

42

5.5. Implementation

except Exception as e:
raise Exception("Couldn’t get placement points", e)

def create_new_point_on_edge(edge, position_meter):
return doc.Application.Create.NewPointOnEdge(

edge.GeometryCurve.Reference ,

DB.PointLocationOnCurve(

DB.PointOnCurveMeasurementType.SegmentLength ,

Utils.meter_to_feet(position_meter),

DB.PointOnCurveMeasureFrom.Beginning

)

)

Next, we set the previously defined construction parameters with the function set_element_parameter
and we add the construction material with the function add_section_material(material, section_element).

def set_element_parameter(element, parameter_name , parameter_value):
try:

transaction.Start(’SET PARAMETER’)

parameter = get_element_parameter(element, parameter_name)

parameter.Set(parameter_value)

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception("Couldn’t set section parameter", e)

def add_section_material(material, section_element):
print(’Adding section material’)
for item in material:

set_element_parameter(

section_element ,

item[’name’],

str(item[’value’]) + ’ ’ + item[’value_type’]
)

Last but not the least, we adjust the tunnel element position, by interpolating the
positional and rotational parameters of corresponding as-designed elements detected
based on the start and end meter.

def set_section_position(start_meter , end_meter , section_element):
print(’Setting section position’)
position_parameters = approximate_section_position_parameters(

start_meter , end_meter , section_element.Name)

43

5. Prototype for generating as-built 3D BIM models

for parameter in position_parameters:
parameter_name = parameter[0]

parameter_value = parameter[1]

set_element_parameter(section_element , parameter_name , parameter_value)

def approximate_section_position_parameters(
start_meter , end_meter , element_type):

overlap_elements = find_as_designed_elements_that_overlap_element(

start_meter , end_meter , element_type)

return [
(’Gradientenhöhe_A’, Utils.millimeter_to_feet(

approximate_parameter(overlap_elements , ’Gradientenhöhe_A’))),

(’Gradientenhöhe_B’, Utils.millimeter_to_feet(

approximate_parameter(overlap_elements , ’Gradientenhöhe_B’))),

(’Querneigung’, DB.UnitUtils.ConvertToInternalUnits(

approximate_parameter(overlap_elements , ’Querneigung’),

get_degree_forge_type())),

(’rotXY_A’, DB.UnitUtils.ConvertToInternalUnits(

approximate_parameter(overlap_elements , ’rotXY_A’),

get_degree_forge_type())),

(’rotXY_B’, DB.UnitUtils.ConvertToInternalUnits(

approximate_parameter(overlap_elements , ’rotXY_B’),

get_degree_forge_type())),

]

5.6 Final solution
In this section, we present the final solution for the automatic generation of as-built 3D
BIM models. First, we open an as-designed 3D BIM tunnel model in Revit, as presented
in Figure 5.5. In the upper left corner, we can see two buttons, which are part of our
pyRevit Plugin for Revit, presented in more detail in Figure 5.6.
By clicking the ”Load Data from TIMS” button we successfully generate a JSON file
with the current snapshot of the construction data. The construction data is acquired
through the TIMS foreman interface, as previously depicted in Figure 4.4. Thus, by
clicking the ”Load Data from TIMS” button we load the latest version of construction
data, with changes made in the TIMS foreman interface.
Next, by clicking the ”Generate Model” button we trigger the generation process. If we
are in the wrong view, where a tunnel curve cannot be located, we will get the alert
window as shown in Figure 5.7, with a list of documents that contain a tunnel axis.
Otherwise, when we open the correct view, as depicted in Figure 5.8 the generation
process starts.

44

5.6. Final solution

Figure 5.5: As-designed 3D BIM model in the Revit environment

Figure 5.6: PyRevit Plugin Buttons

Figure 5.8: As-designed 3D BIM model in the Revit environment with accessible tunnel
curve

Next, we provide a name of a used as-designed element to create the construction family.

45

5. Prototype for generating as-built 3D BIM models

Figure 5.7: Locating the tunnel curve alert

The input window is shown in Figure 5.9. The process continues, the plugin finds the
as-designed BIM family and prepares an as-built BIM family for the as-built 3D BIM
model.

Figure 5.9: Locating the as-designed BIM family

Then, the user is prompted to choose a file with the construction data that (s)he wants
to use for the as-built 3D BIM model as shown in Figure 5.10. Notice that we see data
files loaded from TIMS API with appropriate timestamps, representing the time at which
the data was loaded.

After we located the as-designed BIM model and loaded the construction data, the plugin
starts adding tunnel elements to the new tunnel curve. Depending on the number of
tunnel elements this process can take from a couple of seconds to a couple of minutes.
After the process finishes, the final solution is generated, as depicted in Figure 5.11. You
can see the difference between the as-built tunnel round elements, with their different
start and end meters, digitally presenting the actual state of the real tunnel. Additionally,
by clicking on a tunnel element, a property window opens, containing all information
about the selected tunnel element (tunnel round), such as the used construction material,
comments, start and end meter, and the duration of the tunnel round excavation. The
properties window is shown in Figure 5.12.

46

5.6. Final solution

Figure 5.10: Selecting the construction data file

Figure 5.11: The generated as-built 3D BIM model

47

5. Prototype for generating as-built 3D BIM models

Figure 5.12: Properties of a tunnel element

48

CHAPTER 6
Evaluation

We conducted a two-fold evaluation of the prototype for the automatic generation of
as-built 3D BIM models. First, to demonstrate our prototype efficacy and effectiveness
we compared our prototype against the manual method for the creation of as-built BIM
models on several defined KPIs in the Methodology section. Second, we conducted a
series of expert interviews from the construction domain to evaluate the ultimate utility
of the prototype.

6.1 Prototype Efficacy and Effectiveness

We evaluated our prototype solution against the absence of the prototype (manual
creation of as-built 3D BIM models) on predefined KPIs. The table 6.1 presents the
results of the prototype efficacy and effectiveness evaluation. The Model refers to the
as-built 3D BIM model and the Activity refers to the activity of creating as-built 3D
BIM models.

49

6. Evaluation

KPI Automatic prototype Manual creation

Activity prerequisites - parametric as-designed 3D BIM model
- formatted construction data - construction data

Activity performance - approximately 1-5 minutes,
depending on the size of the construction data - hours, days, weeks...

Activity simplicity - simple (3-4 steps)
- prompt to provide the input data

- complex
- manual modeling of elements
- extensive knowledge about
BIM modeling.

Activity robustness
- bound to the Revit environment
- not generic, but can be adapted to use
different as-designed 3D BIM models

- robust

Model completeness - contains all information
- real-time data from TIMS - contains all information

Model level of detail - can be extended to use additional families,
but requires these families as input

- higher level of detail
increases modeling time

Model accuracy - accurate
- positioning of elements approximated - error-prone

Table 6.1: Prototype efficacy and effectiveness evaluation

Next, we compare the results of the prototype for the automatic as-built 3D BIM model
generation prototype against the manual creation process.

• Activity prerequisites - The manual creation process does not require the as-
designed 3D BIM model as input, however, routinely, the first stage of the BIM
lifecycle is based on constructing an as-designed BIM model. Thus, the model is
usually available, and there is no clear advantage for any method.

• Activity performance - the automatic prototype is more performant. It overcomes
the creation-time bottleneck of the manual process. This does not only greatly
speed up the process, but also opens new BIM model utilisation, which we will
discuss in the next section.

• Activity simplicity - The automatic prototype process is simpler, requiring
the user only to provide the input data, such as the as-designed BIM model
and the construction data. On the contrary, the manual creation process can be
complex, requiring the user to have extensive knowledge of BIM modeling as well as
manual modeling of elements based on available construction data. As a result, the
automatic process simplicity enables even the users with limited BIM knowledge to
rapidly generate as-built 3D BIM models

• Activity robustness - The manual creation process is more robust. In this process,
the BIM model creation depends only on the user’s BIM expertise. On the other

50

6.2. Prototype Utility

hand, the automatic prototype currently only executes in the Revit environment,
and it is adapted to the provided as-designed 3D BIM model. However, it is possible
to make the prototype more generic towards the final product phase.

• Model completeness - Both methods of the BIM model generation create complete
models, with all necessary information. Additionally, the automatic prototype also
has a direct connection to real-time construction data, and, after the automatic
prototype creates the model, it is still possible to modify and enrich it manually.

• Model level of detail - Both methods have the possibilities to provide more levels
of detail. For the manual creation process, the higher level of detail proportionally
increases the modeling time. The automatic prototype can be extended to provide
a higher level of detail by using additionally modeled element families.

• Model accuracy - The automatic prototype creates a model with accurate con-
struction data information and approximated positioning on elements. In contrast,
manual creation can be error-prone, as all data is created by the user.

6.2 Prototype Utility
To examine the prototype utility we conducted a series of expert interviews. The
interviews consisted of two phases, first we presented the problem and demonstrated the
prototype, after which we asked our interviewees to provide us with feedback guided by
the following set of qualitative questions:

• Would you use the prototype?

• Why/Why not would you use the prototype?

• What would you use the prototype for?

• How would you improve/extend the prototype?

• Additional feedback

Interview round - University of Leoben / Vienna University of Technology /
Zentrum am Berg

Participants:

• Uni.Prof. Robert Galler - Tunnel construction / Professor

• Johannes Waldhart Msc. - Tunnel construction / BIM / Research Assistant

• Dipl.-Ing. Galina Paskaleva - Tunnel construction / BIM / Project Assistant

51

6. Evaluation

Interview Summary:

• The prototype would be useful in the tunneling process, if BIM is used, and an
as-designed BIM model exists.

• The prototype is useful for a day-by-day overview of the tunneling process. It offers
the possibility to immediately find out which support element was built at which
tunnel meter, whereas this is currently mostly tracked manually, by hand, and
leads to big problems.

• The prototype extends the utility of a classical as-built BIM model, which is
constructed only once, as the prototype can generate a 3D BIM model at any
instance of the construction process.

• The prototype could be extended to be used for element lifespan supervision, to
track the lifespan of each constructed tunnel element.

• The TIMS foreman interface is absolutely useful, and the connection between the
TIMS system and the BIM prototype improves the utility of both instances. The
prototype could be extended to add volume points to specific elements in the TIMS
database.

• The BIM knowledge is a challenge for the prototype utility, as current civil engineer
students are not thought how to work with BIM.

• To improve the utility, the prototype could be extended to have a dynamic data
update from TIMS, without clicking any buttons.

Interview round - STRABAG Innovation and Digitalisation (SID)

Participants:

• Dipl. -Ing. Stephan Frodl - Tunnel construction / Group Manager

• Dipl. -Ing. Robert Pechhacker - Tunnel construction / Division Manager

• Dr. -Ing. Frank Schley - BIM Function Coordinator

• Dipl. -Ing. Christoph Kellner - BIM Integration

• Dipl. -Ing. Christian Reiter - BIM Specialist

Interview Summary:

• The prototype is useful in the tunneling process, primarily for the tunneling process
overview and visualization.

52

6.2. Prototype Utility

• The prototype could be extended to contain additional graphical elements to
improve the visualization potential.

• The prototype could be useful for the tunnel construction billing process (prototype
extension would be necessary).

• Due to prototype novelty, prototype utilities are yet to be explored.

• The interviewees expressed an interest in applying the prototype inside STRABAG
internal systems. This argument strongly supports the prototype utility.

53

CHAPTER 7
Conclusion

This master thesis was directed toward digitalization in the tunnel construction domain, as
part of the Business Informatics curriculum. By following the design science methodology,
we explored the application domain and defined relevant state-of-the-art expertise and
existing artefacts. Next, we defined the problem in the BIM model development lifecycle,
specifically, the problem that there exists no automatic way to enrich as-designed 3D
BIM models with data from the construction phase. By following the agile methodology
approach in the design cycle, we successfully constructed a prototype that automatically
creates as-built 3D BIM models by enriching the provided as-designed 3D BIM model with
real-time construction data. First, we compared our prototype solution’s effectiveness
against the nonexistence of the prototype, the manual method to create as-built 3D BIM
models. Finally, to evaluate the prototype utility, we conducted a series of interview
rounds with experts from the construction domain.

After successfully evaluating the prototype we can conclude the following points:

• The automatic prototype is more effective and efficient in creating 3D BIM as-built
models than the manual creation method.

• The prototype can generate a 3D BIM model at any instance of the construction
process, which extends the utility of classical as-built BIM models.

• The prototype is useful primarily for a digital overview and visualization of the
tunneling process. Construction companies already expressed an interest in using
the prototype and all possible utilities are yet to be explored.

• The prototype for automatic generation of as-built 3D BIM models with proved effec-
tiveness and usefulness is a contribution to digitalization in the tunnel construction
domain.

55

7. Conclusion

• The prototype is only useful if BIM is used in the tunneling process, and an
as-designed 3D BIM model is provided.

• The current version of the prototype is limited to the Revit environment, and
extensive knowledge of the Revit API is necessary for its extension and performance
optimization toward a final product.

7.1 Future Work
Some of the future work propositions for the prototype optimization and extension include;
implementation in a lower-level programming language to optimize the performance and
generation speed, generalization of the prototype to make it more adaptable to different as-
designed BIM models, including additional graphical elements to enrich the visualization
of the model, extending the model metadata with additional properties, such as geological
and geographical data.

56

List of Figures

1.1 The current status of the BIM life cycle in conventional tunnel construction 2
1.2 The proposed solution to overcome the interrupted BIM life cycle in conven-

tional tunnel construction . 3

3.1 Data usage in the tunnel construction process[21] 10
3.2 Illustrated BIM definition and usage scenarios 11

4.1 TIMS software architecture . 16
4.2 TIMS desktop interface . 17
4.3 TIMS foreman interface - Shift report . 18
4.4 TIMS foreman interface - Tunnel round report 18
4.5 TIMS foreman interface - Add activity view 19
4.6 Class diagram of TIMS . 23

5.1 Excavation types based on the tunnel cross section 27
5.2 Software Architecture of the Prototype for Automatic Generation of As-Built

3D BIM Models . 29
5.3 Construction data JSON formatting . 33
5.4 Overview of the As-built Model Generation Process 35
5.5 As-designed 3D BIM model in the Revit environment 45
5.6 PyRevit Plugin Buttons . 45
5.8 As-designed 3D BIM model in the Revit environment with accessible tunnel

curve . 45
5.7 Locating the tunnel curve alert . 46
5.9 Locating the as-designed BIM family . 46
5.10 Selecting the construction data file . 47
5.11 The generated as-built 3D BIM model . 47
5.12 Properties of a tunnel element . 48

57

List of Tables

6.1 Prototype efficacy and effectiveness evaluation 50

59

Appendix A - Load Data from
TIMS Script

#! python3

import requests
import credentials
from round import Round
from section import Section
from material import Material
import json
import datetime
import os

def authenticate():
response = requests.post("https://tunnel.big.tuwien.ac.at:8000/api/login/",

json={"user": credentials.username ,

"password": credentials.password})

access_token = "Bearer " + response.text

headers = {"Authorization": access_token}

return headers

def get_sections():
response = requests.get("https://tunnel.big.tuwien.ac.at:8000/api/"

"construction.section/", headers=headers)

sections = []

for item in response.json():
section = Section(item[’id’], item[’name’])

sections.append(section)

return sections

61

def get_rounds(section_id):
response = requests.get(

"https://tunnel.big.tuwien.ac.at:8000/api/construction.tunnel.round/"

"?q=[[\"section\", \"=\", {}]]".format(
section_id), headers=headers)

rounds = []

for item in response.json():
if item[’comment’] is None:

item[’comment’] = ’’

start_datetime = convert_tims_datetime_object_to_string(

item[’start_time’])

end_datetime = convert_tims_datetime_object_to_string(item[’end_time’])

round = Round(item[’id’], item[’start_chainage’], item[’end_chainage’],
’Kalotte’, item[’comment’],

start_datetime , end_datetime , str(item[’duration’]) + ’h’)
rounds.append(round)

return rounds

def convert_tims_datetime_object_to_string(object):
return "{}.{}.{} {}:{}".format(object[’day’], object[’month’],

object[’year’], object[’hour’],
object[’minute’])

def get_material(round_id):
round_activity_ids = get_round_activity_ids(round_id)

response = requests.get(

"https://tunnel.big.tuwien.ac.at:8000/api/construction.tunnel.measure/"

"?q=[[\"activity\", \"in\", {}]]".format(
round_activity_ids), headers=headers)

materials = []

for item in response.json():
material = Material(item[’measure_definition.’][’name’],

item[’uom.’][’name’], item[’quantity’])

materials.append(material)

return materials

def get_round_activity_ids(round_id):
response = requests.get(

"https://tunnel.big.tuwien.ac.at:8000/api/construction.activity/"

"?q=[[\"round\",\"=\",{}]]".format(round_id),

62

headers=headers)

activity_ids = []

for item in response.json():
activity_ids.append(item[’id’])

return activity_ids

def get_formatted_data():
sections = get_sections()

for section in sections:
rounds = get_rounds(section.id)
rounds = sorted(rounds, key=lambda x: x.start_meter)
for round in rounds:

round_material = get_material(round.id)
round.material = serialize_data(round_material)

section.rounds = (serialize_data(rounds))

return {"sections": serialize_data(sections)}

def serialize_data(data_list):
result = []

for item in data_list:
result.append(vars(item))

return result

def store_data(data):
file_path = create_file_path()

with open(file_path , ’w’) as f:
json.dump(data, f, ensure_ascii=True)

print("Data was successfully stored!")

def create_file_path():
absolute_path_of_script = os.path.dirname(__file__)

absolute_file_path = get_parent_dir(get_parent_dir(

get_parent_dir(absolute_path_of_script)))

return absolute_file_path + ’\\data\\tims’ + get_current_timestamp() + ’.json’

def get_current_timestamp():
current_datetime = datetime.datetime.now()

timestamp_string = current_datetime.strftime("%d%m%Y_%H%M%S")

63

return timestamp_string

def get_parent_dir(directory):
return os.path.dirname(directory)

headers = authenticate()

data = get_formatted_data()

store_data(data)

64

Appendix B - Generate Model
Script

−∗− coding : utf−8 −∗−
from Autodesk.Revit import DB
from Autodesk.Revit import UI
from rpw import db
from rpw.ui.forms import TextInput , Alert, SelectFromList
from not_found_exception import NotFoundException
from pyrevit import forms
from pyrevit import script
import json
import utils as Utils

uidoc = __revit__.ActiveUIDocument

doc = __revit__.ActiveUIDocument.Document

uiapp = __revit__.Application

TUNNEL_AXIS_ELEMENT_TYPES = [’Autodesk.Revit.DB.CurveByPoints’]

def create_construction_family(new_family_name):
print(’Creating construction family’)
existing_family = locate_as_designed_family()

family_doc = doc.EditFamily(existing_family)

add_construction_parameters(family_doc)

options = DB.SaveAsOptions()

options.OverwriteExistingFile = True

try:
family_doc.SaveAs(new_family_name , options)

except Exception as e:
print(’Overriding Revit file permissions’)
loadFamilyCommandId = UI.RevitCommandId.LookupCommandId(’ID_FAMILY_LOAD’)

65

UI.UIApplication(uiapp).PostCommand(loadFamilyCommandId)

raise Exception("Couldn’t create family due to Revit file permissions ,"
" please close the dialog and try again.")

def locate_as_designed_family():
as_designed_element_name = TextInput(’Loading As−designed Family’,

default=’EBO_K’,

description=’Please enter the name of’

’ an used as−designed ’
’model.’)

child_family_element = Utils.get_element(doc, as_designed_element_name)

return Utils.get_element_family(child_family_element)

def add_construction_parameters(family_doc):
parameters_tuples = load_construction_parameters()

for p in parameters_tuples:
parameter_name = p[0]

parameter_type = p[1]

add_identity_parameter(family_doc , parameter_name , parameter_type)

def load_construction_parameters():
return [

(’Selbstbohranker’, DB.ParameterType.Text),

(’SN Mörtelanker’, DB.ParameterType.Text),

(’Ortsbrustanker’, DB.ParameterType.Text),

(’Baustahlgitter 1. Lage, ohne Bogen’, DB.ParameterType.Text),

(’Baustahlgitter 1. Lage, mit Bogen’, DB.ParameterType.Text),

(’Baustahlgitter 2. Lage, mit Bogen’, DB.ParameterType.Text),

(’Rammspieß’, DB.ParameterType.Text),

(’Selbstbohrspieß’, DB.ParameterType.Text),

(’Spritzbeton Kalotte und Strosse’, DB.ParameterType.Text),

(’Spritzbeton Ortsbrust’, DB.ParameterType.Text),

(’Spritzbeton Teilflächen’, DB.ParameterType.Text),

(’Bogen’, DB.ParameterType.Text),

(’Verpressung’, DB.ParameterType.Text),

(’Teilflächen’, DB.ParameterType.Text),

(’Sprengstoff’, DB.ParameterType.Text),

(’Kommentar’, DB.ParameterType.Text),

(’Zeit Anfang’, DB.ParameterType.Text),

(’Zeit Ende’, DB.ParameterType.Text),

66

(’Dauer’, DB.ParameterType.Text),

]

def add_identity_parameter(family_doc , parameter_name , parameter_type):
family_manager = family_doc.FamilyManager

family_doc_transaction = DB.Transaction(family_doc)

try:
family_doc_transaction.Start("ADD PARAMETER")

family_manager.AddParameter(parameter_name ,

DB.BuiltInParameterGroup.PG_IDENTITY_DATA ,

parameter_type , True)

family_doc_transaction.Commit()

except Exception as e:
print(e)
family_doc_transaction.RollBack()

def load_construction_family(family_name):
print(’Loading construction family’)
try:

transaction.Start(’LOAD CONSTRUCTION FAMILY’)

result = doc.LoadFamily(family_name)

if not result:
print(’Family already loaded, using loaded family’)

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception("Could not load family", e)

def create_tunnel_curve():
print(’Creating tunnel curve’)
as_designed_tunnel_curve = get_existing_tunnel_curve()

new_xyz = DB.XYZ(200, −200, 0)
try:

transaction.Start(’CREATE TUNNEL CURVE’)

new_tunnel_curve_ids = DB.ElementTransformUtils.CopyElement(

doc,

as_designed_tunnel_curve.Id,

new_xyz

)

new_tunnel_curve = doc.GetElement(new_tunnel_curve_ids[0])

67

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception(e)
return new_tunnel_curve

def get_existing_tunnel_curve():
result = search_for_tunnel_curve(doc)

if result:
return result

else:
search_families_having_tunnel_curve()

def search_for_tunnel_curve(document):
elements_collector = DB.FilteredElementCollector(document)\

.WhereElementIsNotElementType()\

.ToElements()

for element in elements_collector:
if element.GetType() and \

str(element.GetType()) in TUNNEL_AXIS_ELEMENT_TYPES:
return element

return None

def search_families_having_tunnel_curve():
available_families = []

for family in Utils.get_families():
family = doc.GetElement(family.Id)

if family.IsEditable:
fam_doc = doc.EditFamily(family)

result = search_for_tunnel_curve(fam_doc)

if result:
available_families.append(family.Name)

content = Utils.format_list_to_string(available_families)

Alert(title=’Error’,

header=’Could not locate tunnel curve, ’

’please open one of the family documents’

’ with the tunnel curve’,

content=content)

68

def create_section_block(
section_element_type_name ,

tunnel_curve ,

beginning_meter ,

ending_meter

):

section_family_element_type = Utils.get_as_built_element(

doc, section_element_type_name)

try:
transaction.Start("CREATE SECTION BLOCK")

section_family_element_type.Activate()

new_section_block = DB.AdaptiveComponentInstanceUtils.\

CreateAdaptiveComponentInstance(

doc,

section_family_element_type

)

placement_point_a , placement_point_b = get_element_placement_points(

new_section_block

)

placement_point_a.SetPointElementReference(

create_new_point_on_edge(tunnel_curve , beginning_meter)

)

placement_point_b.SetPointElementReference(

create_new_point_on_edge(tunnel_curve , ending_meter)

)

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception("Couldn’t create section block", e)

return new_section_block

def get_element_placement_points(element):
try:

placement_points = DB.AdaptiveComponentInstanceUtils.\

GetInstancePlacementPointElementRefIds(element)

return doc.GetElement(placement_points[0]), \
doc.GetElement(placement_points[1])

except Exception as e:
raise Exception("Couldn’t get placement points", e)

69

def create_new_point_on_edge(edge, position_meter):
return doc.Application.Create.NewPointOnEdge(

edge.GeometryCurve.Reference ,

DB.PointLocationOnCurve(

DB.PointOnCurveMeasurementType.SegmentLength ,

Utils.meter_to_feet(position_meter),

DB.PointOnCurveMeasureFrom.Beginning

)

)

def set_element_parameter(element, parameter_name , parameter_value):
try:

transaction.Start(’SET PARAMETER’)

parameter = get_element_parameter(element, parameter_name)

parameter.Set(parameter_value)

transaction.Commit()

except Exception as e:
transaction.RollBack()

raise Exception("Couldn’t set section parameter", e)

def get_element_parameter(element, parameter_name):
for p in element.Parameters:

if p.Definition.Name == parameter_name:
return p

raise NotFoundException("Parameter not found!", parameter_name)

def add_tunnel_element(start_meter , end_meter , material , comment,
start_time , end_time, duration):

print(’Adding tunnel element’)
as_designed_element_name = find_as_designed_element_name(start_meter ,

end_meter)

if as_designed_element_name is None:
as_designed_element_name = TextInput(

’Could not find element at position (’

+ str(start_meter) +’ − ’ + str(end_meter) + ’)’,
description=’Please enter the model type name for this tunnel round’,

default=’EBO_K’)

section_element = create_section_block(

as_designed_element_name , as_built_tunnel_curve , start_meter , end_meter)

70

set_element_parameter(section_element , ’Kommentar’, comment)

set_element_parameter(

section_element , ’Station Anfang’, str(start_meter) + ’m’)
set_element_parameter(section_element , ’Station Ende’, str(end_meter) + ’m’)
set_element_parameter(section_element , ’Zeit Anfang’, start_time)

set_element_parameter(section_element , ’Zeit Ende’, end_time)

set_element_parameter(section_element , ’Dauer’, duration)

add_section_material(material, section_element)

set_section_position(start_meter , end_meter , section_element)

def add_section_material(material, section_element):
print(’Adding section material’)
for item in material:

set_element_parameter(

section_element ,

item[’name’],

str(item[’value’]) + ’ ’ + item[’value_type’]
)

def set_section_position(start_meter , end_meter , section_element):
print(’Setting section position’)
position_parameters = approximate_section_position_parameters(

start_meter , end_meter , section_element.Name)

for parameter in position_parameters:
parameter_name = parameter[0]

parameter_value = parameter[1]

set_element_parameter(section_element , parameter_name , parameter_value)

def approximate_section_position_parameters(
start_meter , end_meter , element_type):

overlap_elements = find_as_designed_elements_that_overlap_element(

start_meter , end_meter , element_type)

return [
(’Gradientenhöhe_A’, Utils.millimeter_to_feet(

approximate_parameter(overlap_elements , ’Gradientenhöhe_A’))),

(’Gradientenhöhe_B’, Utils.millimeter_to_feet(

approximate_parameter(overlap_elements , ’Gradientenhöhe_B’))),

(’Querneigung’, DB.UnitUtils.ConvertToInternalUnits(

approximate_parameter(overlap_elements , ’Querneigung’),

get_degree_forge_type())),

71

(’rotXY_A’, DB.UnitUtils.ConvertToInternalUnits(

approximate_parameter(overlap_elements , ’rotXY_A’),

get_degree_forge_type())),

(’rotXY_B’, DB.UnitUtils.ConvertToInternalUnits(

approximate_parameter(overlap_elements , ’rotXY_B’),

get_degree_forge_type())),

]

def find_as_designed_element_name(start_meter , end_meter):
collector = db.Collector(of_class=’FamilyInstance’)

elements = collector.get_elements()

for e in elements:
try:

if e.Symbol.Family.Name != ’as−built’ and has_blocknummer(e):
element_start_meter , element_end_meter = \

find_as_designed_model_position(e)

if element_overlap(start_meter , end_meter , element_start_meter ,
element_end_meter):

return e.name
except Exception as e:

continue
return None

def has_blocknummer(element):
try:

p = get_element_parameter(element, ’Blocknummer’)

return True
except Exception as e:

return False

def find_as_designed_elements_that_overlap_element(
start_meter , end_meter , type):

as_designed_elements = []

collector = db.Collector(of_class=’FamilyInstance’)

elements = collector.get_elements()

for e in elements:
if e.name == type and e.Symbol.Family.Name != ’as−built’:

element_start_meter , element_end_meter = \

find_as_designed_model_position(e)

if element_overlap(start_meter , end_meter , element_start_meter ,

72

element_end_meter):

as_designed_elements.append(doc.GetElement(e.Id))

return as_designed_elements

def find_as_designed_model_position(element):
p = get_element_parameter(element, ’Blocknummer’)

blocknummer = int(p.AsValueString())
element_start_meter = blocknummer − 1

element_end_meter = blocknummer

return element_start_meter , element_end_meter

def element_overlap(
element_A_start , element_A_end , element_B_start , element_B_end):

if is_position_between(element_A_start , element_B_start , element_B_end)\
or is_position_between(

element_A_end , element_B_start , element_B_end):

return True
return False

def is_position_between(current_position , start_position , end_position):
if start_position <= current_position <= end_position:

return True
return False

def approximate_parameter(elements, parameter_name):
parameter_values = []

avg_value = 0

for element in elements:
parameter = get_element_parameter(element, parameter_name)

parameter_value = extract_double_from_string(

clean_string(parameter.AsValueString()))

parameter_values.append(parameter_value)

if len(parameter_values) > 0:
avg_value = sum(parameter_values) / len(parameter_values)

return avg_value

def clean_string(value):
value = value.replace("Âř", "")

73

return value

def extract_double_from_string(string_number):
for t in string_number.split():

try:
return float(t)

except ValueError:
return 0

def get_degree_forge_type():
for u in DB.UnitUtils.GetAllUnits():

if DB.UnitUtils.GetTypeCatalogStringForUnit(u) == ’DEGREES’:
return u

def load_construction_data():
print(’Loading construction data’)
Alert("Click button \’Load data from TIMS\’ to generate current data "

"snapshot from TIMS. You are also able to add your own construction "

"data",

header="Adding Construction Data",

title="Information")

file_path = forms.pick_file(

title=’Please select a file containing construction information’,

file_ext=’json’)

data = open(file_path , ’r’).read()
return json.loads(data)

def add_construction_data(construction_data):
print(’Adding construction data’)
cross_section_type = SelectFromList(

’Select cross section type of tunnel rounds you want to generate’,

["Kalotte", "Strosse", "Sohle"])

for item in construction_data[’sections’]:
for round in item[’rounds’]:

add_tunnel_element(

round[’start_meter’],
round[’end_meter’],
round[’material’],
round[’comment’],

74

round[’start_datetime’],
round[’end_datetime’],
round[’duration’]

)

Transactions are context−l i k e objects that guard any changes made to a
model
transaction = DB.Transaction(doc)

try:
create_construction_family(’as−built.rfa’)
load_construction_family(’as−built.rfa’)
as_built_tunnel_curve = create_tunnel_curve()

data = load_construction_data()

add_construction_data(data)

Alert("As−built model generated successfully!",
header="Automatic Generation Finished")

except Exception as error:
Alert(str(error), header="Automatic Generation Finished",

title="User error occured")

75

Appendix C - Utility Helper Class

from rpw import db
from not_found_exception import NotFoundException

def get_element(revit_document , name):
collector = db.Collector(of_class=’FamilySymbol’)

elements = collector.get_elements()

for e in elements:
if e.name == name:

return revit_document.GetElement(e.Id)
raise NotFoundException("Element not found", name)

def get_as_built_element(revit_document , name):
collector = db.Collector(of_class=’FamilySymbol’)

elements = collector.get_elements()

for e in elements:
if e.name == name and e.Family.Name == ’as−built’:

return revit_document.GetElement(e.Id)
raise NotFoundException("Element not found", name)

def get_element_family(element):
if element.Family:

return element.Family
raise NotFoundException("Element family not found", element)

def get_families():
collector = db.Collector(of_class=’Family’)

return collector.get_elements()

77

def format_list_to_string(list):
content = ’’

for element in list:
content += element + ’\n’

return content

def meter_to_millimeter(meter_value):
return meter_value ∗ 1000

def millimeter_to_feet(millimeter_value):
return millimeter_value / 304.8

def meter_to_feet(meter_value):
return millimeter_to_feet(meter_to_millimeter(meter_value))

78

Bibliography

[1] Salman Azhar, Abid Nadeem, Johnny YN Mok, and Brian HY Leung. Building
information modeling (bim): A new paradigm for visual interactive modeling and
simulation for construction projects. In Proc., First International Conference on
Construction in Developing Countries, volume 1, pages 435–46, 2008.

[2] Tomo Cerovsek. A review and outlook for a ’building information model’(bim): A
multi-standpoint framework for technological development. Advanced engineering
informatics, 25(2):224–244, 2011.

[3] David Chapman, Nicole Metje, and Alfred Stärk. Introduction to tunnel construction.
Crc Press, 2017.

[4] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. University of California, Irvine, 2000.

[5] Martin Fowler. Patterns of Enterprise Application Architecture: Pattern Enterpr
Applica Arch. Addison-Wesley, 2012.

[6] Alan R Hevner. A three cycle view of design science research. Scandinavian journal
of information systems, 19(2):4, 2007.

[7] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, pages 75–105, 2004.

[8] Marco Huymajer, Dzan Operta, Alexandra Mazak-Huemer, and Christian Hue-
mer. The tunneling information management system: A tools for documenting the
tunneling proicess in natm projects. Geomechanics and Tunnelling, 2022.

[9] M Karakuş and RJ Fowell. An insight into the new austrian tunnelling method
(natm). In 7th Regional Rock Mechanics Symposium, Sivas, Turkey, 2004.

[10] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John Bailey,
and Stephen Linkman. Systematic literature reviews in software engineering–a
systematic literature review. Information and software technology, 51(1):7–15, 2009.

79

[11] Christian Koch, Andre Vonthron, and Markus König. A tunnel information modelling
framework to support management, simulations and visualisations in mechanised
tunnelling projects. Automation in Construction, 83:78–90, 2017.

[12] Sang-Ho Lee, Sang I Park, and Junwon Park. Development of an ifc-based data
schema for the design information representation of the natm tunnel. KSCE Journal
of Civil Engineering, 20(6):2112–2123, 2016.

[13] Jeffrey A Livermore. Factors that impact implementing an agile software development
methodology. In Proceedings 2007 IEEE SoutheastCon, pages 82–86. IEEE, 2007.

[14] Jelena Ninić, Christian Koch, and Janosch Stascheit. An integrated platform for
design and numerical analysis of shield tunnelling processes on different levels of
detail. Advances in Engineering Software, 112:165–179, 2017.

[15] Jelena Ninić, Hoang-Giang Bui, Christian Koch, and Günther Meschke. Computa-
tionally efficient simulation in urban mechanized tunneling based on multilevel bim
models. Journal of Computing in Civil Engineering, 33(3):04019007, 2019.

[16] Ken Peffers, Marcus Rothenberger, Tuure Tuunanen, and Reza Vaezi. Design science
research evaluation. In International Conference on Design Science Research in
Information Systems, pages 398–410. Springer, 2012.

[17] Nicolas Prat, Isabelle Comyn-Wattiau, and Jacky Akoka. Artifact evaluation in
information systems design-science research-a holistic view. PACIS, 23:1–16, 2014.

[18] Stylianos Providakis, Chris DF Rogers, and David N Chapman. Predictions of
settlement risk induced by tunnelling using bim and 3d visualization tools. Tunnelling
and underground space technology, 92:103049, 2019.

[19] Abubakar Sharafat, Muhammad Shoaib Khan, Kamran Latif, and Jongwon Seo.
Bim-based tunnel information modeling framework for visualization, management,
and simulation of drill-and-blast tunneling projects. Journal of Computing in Civil
Engineering, 35(2):04020068, 2021.

[20] Rosemarie Streeton, Mary Cooke, and Jackie Campbell. Researching the researchers:
using a snowballing technique. Nurse researcher, 12(1):35–47, 2004.

[21] Bilal Succar. Building information modelling framework: A research and delivery
foundation for industry stakeholders. Automation in construction, 18(3):357–375,
2009.

[22] Robert Wenighofer, Johannes Waldhart, Nina Eder, and Katharina Zach. Bim use
case–payment of tunnel excavation classes–example zentrum am berg. Geomechanics
and Tunnelling, 13(2):237–248, 2020.

80

[23] Xun Xu, Ling Ma, and Lieyun Ding. A framework for bim-enabled life-cycle
information management of construction project. International Journal of Advanced
Robotic Systems, 11(8):126, 2014.

[24] Xianfei Yin, Hexu Liu, Yuan Chen, Yaowu Wang, and Mohamed Al-Hussein. A
bim-based framework for operation and maintenance of utility tunnels. Tunnelling
and Underground Space Technology, 97:103252, 2020.

[25] Katharina Christina Zach. Ein datenmodell zur digitalen dokumentation des
bauprozess im tunnelbau. Master’s thesis, Montan Univrsity Leoben, 2021.

[26] Ying Zhou, Lieyun Ding, Yang Rao, Hanbin Luo, Benachir Medjdoub, and Hua Zhong.
Formulating project-level building information modeling evaluation framework from
the perspectives of organizations: A review. Automation in construction, 81:44–55,
2017.

81

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem definition
	Expected goals

	Approach
	Methodology
	Structure of the Work

	Context of the Work
	Tunnel Construction Lifecycle and Information
	BIM Models in Tunnel Construction
	BIM software
	State-of-the-Art

	The Tunnel Information Management System
	Software architecture and Implementation
	TIMS foreman interface

	TIMS API
	TIMS Data Model

	Prototype for generating as-built 3D BIM models
	Software tools
	Analysis of provided as-designed 3D BIM model
	Essential requirements for generating an as-built 3D BIM model in Revit
	Software Architecture
	Implementation
	Load Data from TIMS
	Generate Model
	Loading construction data
	Creating and loading the as-built construction family
	Identifying and creating the tunnel axis
	Adding construction data to the tunnel curve

	Final solution

	Evaluation
	Prototype Efficacy and Effectiveness
	Prototype Utility

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Appendix A - Load Data from TIMS Script
	Appendix B - Generate Model Script
	Appendix C - Utility Helper Class
	Bibliography

