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Kurzfassung

Flexibilität in heutigen Fertigungssystemen ist wichtiger denn je. Wirtschaftliche Ent-
wicklungen fordern kleinere Losgrößen bis hin zur Stückgutfertigung. Dies erfordert eine
schnelle Rekonfiguration der Produktionslinien. Industrie 3.0 kann diese Flexibilitätsanfor-
derungen aufgrund der hierarchischen Architektur nicht erfüllen. Mit der Transformation
zu Industrie 4.0 werden höhere Anforderungen in Bezug auf Interoperabilität und Flexibi-
lität gestellt. Dies erfordert die Verwendung von Reconfigurable Manufacturing Systemen,
welche die Anforderungen für die Stückgutfertigung erfüllen. Heutige Sicherheitssysteme
von solchen Produktionslinien sind in ihrer Flexibilität jedoch beschränkt, da sicher-
heitskritische Komponenten statisch verdrahtet sind oder eine statisch konfigurierte
Sicherheitsverbindung über Industrial Ethernet verwenden. Um diese Beschränkung zu
beseitigen, ist ein Reconfigurable Safety System (RSS) erforderlich, welches die Rekonfi-
guration von Sicherheitssystemen mit minimaler Standzeit erlaubt.

Der Aufbau eines RSS erfordert neue Technologien, um sichere Kommunikation, Flexibili-
tät und Interoperabilität zu vereinen. Der Ansatz, welcher in dieser Arbeit verwendet wird,
teilt die Kommunikation zwischen sicherheitskritischen Komponenten in drei Ebenen.
Diese sind die Sicherheits-, die Transport- und die Netzwerkebene. Für die Sicherheits-
ebene wird Open Platform Communications Unified Architecture (OPC UA) Safety
verwendet. Dieses Protokoll verwendet ein Black Chanel Prinzip, um Daten zwischen
zwei Sicherheitskomponenten zu übertragen. Die Transportebene, für welche OPC UA
PubSub verwendet wird, ist für die Übertragung der Daten von der Sicherheitsebene
verantwortlich. Diese Daten werden über die Netzwerkebene, für welche Time-Sensitive
Networking (TSN) verwendet wird, übertragen. Da eine schnelle Rekonfiguration dieser
drei Ebenen erforderlich ist, ist das Deployment eine Schlüsselkomponente von einem RSS.
Diese Arbeit zeigt, wie mit aktuell verfügbaren Technologien, wie Network Configuration
Protocol (NETCONF) und OPC UA Methoden verwendet werden können, um den
Rekonfigurationsanforderungen eines RSS zu genügen. Zusätzlich werden Limitierungen
aufgezeigt, welche im speziellen OPC UA Safety betreffen. Die Evaluierung am Ende der
Arbeit zeigt, dass 80 OPC UA Publisher in 3.11 ms aktiviert werden können, wodurch
dieser Ansatz für weitere Arbeiten vielversprechend ist.
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Abstract

Flexibility in today’s manufacturing systems is more important than ever. Economy
development demands the production of smaller batch sizes or even lot-size one, which
requires a fast reconfiguration of production lines. Industry 3.0 does not provide this
flexibility because of its strictly hierarchical architecture. With the transition to Industry
4.0, machines need to satisfy higher requirements for interoperability and flexibility. This
demands building Reconfigurable Manufacturing System (RMS), which can fulfill the
requirements for production of lot-size one. Today, safety systems of such production
lines are limiting the flexibility since safety-critical devices still use hard-wired com-
munication lines or static configured safety connections based on Industrial Ethernet
solutions. Therefore, there is a need for Reconfigurable Safety System (RSS), which
allows to reconfigure safety functions with minimum downtime.

Building an RSS requires new technologies to combine safe communication, flexibil-
ity, and interoperability. The approach used in this work splits the communication of
safety-critical devices into three layers, namely the safety, transport, and the network
layer. Open Platform Communications Unified Architecture (OPC UA) Safety builds the
first layer, using a black channel principle to transmit safety-related data. The transport
layer transmits data from the safety layer with OPC UA PubSub while the network layer
uses Time-Sensitive Networking (TSN) to allow real-time communication without losing
flexibility. Because a fast reconfiguration of these three layers is required, the deployment
is a key factor of an RSS. This work shows how currently available technologies like
Network Configuration Protocol (NETCONF) and OPC UA Methods can be used to
perform a fast reconfiguration. Additionally, also the limitations, especially for OPC UA
Safety, are pointed out. The evaluation in the end of this work showed, that 80 OPC UA
Publishers can be enabled in 3.11 ms, which shows that this approach is promising for
further works.
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CHAPTER 1
Introduction

In the past few decades, smart manufacturing became an important topic for factories,
which is realizing the idea to connect all machines to the Information Technology (IT)
world. This makes it possible that production facilities adapt dynamically to changing
production, optimize the supply chain to current needs, or monitor devices for preventive
maintenance. Communication according to the widely known automation pyramid [42]
is strictly hierarchical, so each layer is just connected to the layer below and above.
Because of this structure, sensors, actuators and the logic units are connected in a static
way. The transition from Industry 3.0 to Industry 4.0 requires increased flexibility and
interoperability in order to enable communication among all connected devices. This
allows building an Reconfigurable Manufacturing System (RMS) [39], which fulfills the
requirements of smart manufacturing.

Reconfigurable Manufacturing Systems (RMSs) were introduced in the mid-1990s to
combine the advantages of dedicated serial lines and flexible manufacturing systems [39].
The principle goal of an RMS is to to enhance the responsiveness of manufacturing
systems to unforeseen changes in product demands. Nevertheless, these systems did not
consider that in some use cases it is also necessary to reconfigure the safety system to
react on new production requirements. A Reconfigurable Safety System (RSS) addresses
that problem and allows to reconfigure a safety system with minimum down time.

An RSS is required to provide at least the same level of safety than a conventional
safety system at all time, even during a reconfiguration. Additionally an RSS must
be also flexible and interoperable with hardware from different vendors. This brings
completely new challenges for the area of functional safety. Current Ethernet based safety
protocols (c.f. Table 3.1) are using already networks which are configurable. However,
these protocols are designed to configure the safety system during commissioning and do
not change it afterwards. Additionally, most vendors support only one safety protocol,
which makes it difficult to mix safety devices from different vendors.
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1. Introduction

Current systems often use Open Platform Communications Unified Architecture (OPC UA)
(c.f. Section 2.1) to overcome the problem of the interoperability. This protocol allows
to exchange data between machines and is widely supported by different vendors. For
safety-related communication, there is the new OPC UA Safety standard [8] available,
which is expected to find similar acceptance like OPC UA. This new standard defines a
protocol which operates on top of OPC UA and allows to exchange safety critical data
between machines from different vendors. Even if OPC UA allows to exchange data
independent from the vendor, the configuration it is mainly done with vendor specific
programs.

1.1 Problem Statement

An RSS can contain multiple safety devices from different vendors and it is required to
change the configuration of these devices with minimum downtime. An RSS uses safety
functions to reduce the risk in case of a hazard. Such a safety function is defined by
the ISO 12100 as a function of a machine whose failure can immediately increase the
risks [36]. In a conventional safety system, a safety function consists of three parts: the
safety sensor, the safety logic, and the safety actuator. To get the flexibility that an RMS
requires, a network is required as a fourth part. Figure 1.1 shows a safety function with
an emergency stop button as a sensor and an industrial robot as an actuator. In the
worst case, all four components are from a different manufacturer. This requires at least
four different tools to deploy a new safety function. The usage of different tools takes
quite some time, during which the manufacturing system can not operate. Additionally,
the engineers responsible for a configuration change need to be trained for those different
tools.

Bridge

Safety
Logic

Safety  
Connection

Physical  
Connection

Sensor Network Logic ActuatorNetwork

Bridge

Figure 1.1: Safety Function in an RMS
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1.2. Aim of the Work

The first problem is that the involvement of different tools makes the deployment too
slow to fulfill the requirement of an RSS. Since the reconfiguration must be performed
immediately on demand, it is also necessary to have a single point where the deployment
of the new configuration can be started. The second problem is, that it is not possible
with the currently available tools, because each tool needs to deploy its configuration
separately.

1.2 Aim of the Work
This work should overcome these problems by deploying the configuration of safety- and
network-devices of an RMS centralized and fast with the use of only one tool. This
includes configuration on three different levels: Safety-, Transport- and the Network-level.
An RMS which includes such a tool will be called RSS in this work. The use of only
one tool brings the advantage that the engineering effort can be reduced, and it is not
necessary to get familiar with multiple tools from different vendors. Besides that, it is
easy to use hardware from vendors which are not already used in the production system
since it will be configured with the same tool. These advantages, together with the fact
that a quick deployment increases machine availability, are also an economic benefit.

1.3 Methodology
The work will be done in the following steps:

1. Literature research: At first, the literature research will provide a detailed picture
of the current state of the art and better knowledge about the used technologies and
possible approaches. The literature study will focus on deployment models, error
handling during deployment, and ways to find the correct deployment sequence.

2. Analyze different approaches: After the literature research, different approaches
will be analyzed. At first, the requirements for deploying a configuration for safety-
critical devices need to be defined.

For TSN, there are different technologies and models available, to configure the
bridges and end stations. These different models and technologies will be compared
with each other and the one which fits requirements the best will be chosen.

To change OPC UA Safety together with the TSN network configuration, it is
necessary to evaluate if there are dependencies that affect the order or the way of
deploying the configuration.

3. Develop a configuration procedure: During this step, a procedure is developed
that defines which inputs are required to perform the deployment and how to
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1. Introduction

choose the correct order for the deployment. Furthermore, the necessary actions
for handling errors will be defined and a method will be developed to determine if
the deployment process was successful.

4. Build a prototype: To test the findings from the previous steps, a prototype is
needed. A network which connects Time-Sensitive Networking (TSN) and OPC UA
servers will be emulated. On this network, the flexible deployment will be shown,
and the performance can be evaluated.

5. Evaluation: In the end, the deployment tool will be evaluated in a simulated
environment with the following criteria:

a) Evaluate the detection of errors in different deployment phases.
b) Evaluate duration for the reconfiguration depending on the number of nodes

in the network.
c) Analyze the the duration of activating a configuration.

1.4 Structure of this Work
This work is structured according to the waterfall model [20] with the following steps:

1. Analyze: Chapter 2 presents the used technologies: TSN, OPC UA PubSub and
OPC UA Safety. Chapter 3 analyzes different approaches and different technologies
that can be used to reconfigure the safety system of an RSS.

2. Design: Chapter 4 presents several use cases that an RSS should support and how
to use the technologies from the Analyze step to handle those use cases. Additionally,
possible fault states will be analyzed and defined, how to handle them.

3. Implementation: Chapter 5 shows how the used technologies are implemented
and structured in the deployment tool. Additionally, it discusses the preconditions
that the components of the RSS need to fulfill, so that the deployment tool can
deploy the safety configuration.

4. Evaluation: The created deployment tool from the Implementation step will be
evaluated in Chapter 6. At first, the correct error handling according to the Design
step will be tested. In the second part of the evaluation, the performance of the
deployment tool will be evaluated in a simulated RSS.

4



CHAPTER 2
Technical Background

In order to build an Reconfigurable Safety System (RSS), a vendor-independent tech-
nology is required to exchange safety-critical data. Additionally, the used technologies
must also be configurable with an open standard in order to have a basis for a central
deployment tool. OPC UA in combination with TSN fulfills these requirements [26] and
will therefore be described in more detail.

First, the main concepts of OPC UA, namely its information modeling capabilities
and its transport mechanisms, are briefly discussed. As OPC UA covers only the upper
layers of the OSI model, TSN is presented as a suitable technology enabling real-time
communication for OPC UA. A major challenge is the configuration of both technologies
simultaneously on multiple devices. While the OPC UA standard already includes
methods to configure an OPC UA server, the TSN standards only suggest protocols for
the configuration. A common way to configure TSN devices is Network Configuration
Protocol (NETCONF) in combination with YANG models. Therefore, at the end of this
chapter, these two technologies are discussed.

2.1 Open Platform Communications Unified Architecture
Open Platform Communications Unified Architecture (OPC UA) is a specification that
allows platform-independent and service-oriented machine-to-machine communication.
It is used on different hardware like Programmable Logic Controllers (PLCs), personal
computers, microcontrollers, or cloud-based servers [49]. OPC UA is available for a
variety of operating systems like Windows, Linux, and mobile devices. Further there are
open-source implementations available like the open62541 OPC UA stack [4].

Figure 2.1 depicts the foundation, i.e., the basic structure of the OPC UA architec-
ture. It is built on two pillars, the transport and the modeling mechanisms. The
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2. Technical Background

transport mechanisms define how data are transferred between OPC UA servers and
clients and how data are mapped for different standards like Web Service Extensible
Markup Language (XML) and HyperText Transfer Protocol (HTTP). To not be limited
to specific protocols, it also allows adding new protocols in the future [45]. Besides the
transport mechanisms, OPC UA also defines the information modeling and services [27].
The information modeling defines rules and objects on how to expose data with OPC UA
and also defines additional concepts like describing the use of state machines. After
starting the OPC UA server, the data from the information model are copied in the
address space, where it can be accessed over the OPC UA protocol. Above the two
pillars, there are the services that are the interface between server and client and define
how the data from the information model can be accessed. This allows the client to
access just the required data without understanding the whole model [45]. On top of this
basic structure, there is the Base OPC UA Information Model, which can be extended
by developers and vendors.

OPC UA Service

OPC UA
Model

Rules how to 
model, base 

modeling 
constructs

Base OPC UA Information Model

Information Models 
using OPC UA

Transport

Web
Services

TCP UA
Binary

Figure 2.1: The foundation of OPC UA [45]

2.1.1 OPC UA PubSub
Since Part 14 (PubSub) was included in the OPC UA standard, a publish-subscribe
architecture is also possible. This allows having a one-to-many communication where
the message layout can be changed at runtime. The standard defines two different
publish-subscribe communication models. The first is a broker-based model, where
Subscribers and Publishers use a broker-based protocol like Message Queuing Telemetry
Transport (MQTT) or Advanced Message Queuing Protocol (AMQP) for communication.
The second option is a broker-less model using a UDP to transport Unified Architecture
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2.1. Open Platform Communications Unified Architecture

Datagram Protocol (UADP) network messages with unicast or multicast Internet Protocol
(IP) addresses. For multicast, the Subscriber registers itself to a multicast group to
subscribe to a topic. The network will then distribute the messages to all Subscribers
registered to the multicast group. Because of the multicast infrastructure, the broker-less
method is generally limited to local networks [52]. Part 14 also defines a way to send
messages directly on the data link layer of the OSI model, which sends messages without
UDP or IP header [7].

A Publisher and the Client/Server model can also run on a single OPC UA server,
as shown in Figure 2.2. Both get their data from the same address space, where all the
data at runtime are stored. For the Publisher, the PublishedDataSet selects the data
from the address space, and the DataSetWriter sends this data to a middleware like a
multicast network or a broker. The middleware distributes the data to the according
subscribers. For the Client/Server model, the Client establishes a connection to the
Server, which transmits to the Client the requested data.

OPC UA
Server Publisher

Address 
Space

Client A Session DataSetWriter

PublishedDataSetSubscribption

OPC UA 
Client A

Middleware

Subscriber 1 Subscriber 2

Figure 2.2: OPC UA address space modified from [6]

Structure of OPC UA PubSub Components

OPC UA PubSub defines multiple parameters for the single components, which are
represented in the OPC UA address space. The parameters of those components can
be modified in the address space, and new components can be added with OPC UA
methods. The component and their parameters define how published data are encoded to
a NetworkMessages. The component configuration needs to be known on the Subscriber
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2. Technical Background

side to be able to decode the received NetworkMessages. As shown in Figure 2.3, the
components of an OPC UA PubSub are organized as a tree. The top node is the
PublishSubscriber component, which is available in the OPC UA address space if the
server supports the PubSub functionality. All following described components are derived
from this node and can be added with methods available in the OPC UA Information
Model [7]:

• DataSetMessage: Can contain multiple dataset fields and additional header
information like DataSetWriterID, Sequence number, Timestamp, Version and
Status. A DataSet field contains the actual value of the DataSet.

• TransportProtocol: Includes the header from the used protocol like Ethernet,
IP and UDP. The TransportProtocol is used to transmit a NetworkMessage.

• NetworkMessage: Is used as a container for DataSetMessages and includes the
PublisherID, Security data and published fields.

• PubSubConnection: Contains the URL of the communication partner, the
transport profile URI and the PublisherID to identify the messages on the Subscriber.

• WriterGroup: Can contain multiple DataSetWriters, a WriterGroupID, and the
interval of publishing the NetworkMessages. Data in one WriterGroup are sent as
a single NetworkMessage.

• DataSetWriter: Links to one dataset in the PublishedDataSet to define which
data should be published.

• PublishedDataSet: Defines the content of a DataSetMessage, which can contain
multiple DataSetMessage fields.
It also defines the metadata of the DataSets, which is required for the interoperability
between Publisher and Subscriber [7]. The PublishedDataSet on the publisher side
also contains the information source for each field, which is implemented as a link
to a node in the address space.

• ReaderGroup: Can contain multiple readers and a few common settings. In
contrast to the DataSetWriter, it does not contain any IDs for filtering NetworkMes-
sages.

• DataSetReader: Contains the parameters of the PublisherID, DataSetWriterID
and the WriterGroupID for filtering the NetworkMessages.

• SubscribedDataSet: Contains the information required to decode a DataSetMes-
sage and to write it in the address space.

8



2.1. Open Platform Communications Unified Architecture

PublishedDataSetPublishSubscriber

DataSetWriter

DataSetReader SubscribedDataSet

WriterGroup

ReaderGroup

PubSubConnection

1

0..n

1

1..n

1

1..n

0..n

1

1..n

1 0..n

0..n1

0..n

TransportProtocol

NetworkMessage

DataSetMessage

1 

Figure 2.3: PubSub overview OPC UA [7]

PubSub States

OPC UA PubSub allows enabling and disabling components of a PubSubConnection
with methods in the OPC UA Information Model. While a disabled Publisher stops
publishing messages into the network, a disabled Subscriber will stop to overwrite values
in the address space. If a component is disabled, it stays in the Disabled state, and
an enabled and operational component stays in the Operational state. As shown in
Figure 2.4, OPC UA Part 14 [7] defines in addition to the Operational, Disabled, and
Error state, also a PreOperational and a Paused state. The last one is required because
also sub-components of a PubSubConnection, like a DataSetWriter, can be enabled and
disabled. If a sub-component is enabled, but the parent is disabled, the sub-component
moves in the Pause state.

The second state, which is OPC UA PubSub specific, is the PreOperational state. A
component stays in this state if enabled, but the necessary steps to enter the Operational
state are currently in process.
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2. Technical Background

Parent change to  
Disabled or Paused

Not Paused

Enabled

Disabled

Completed

Error 
Situation

PreOperational

Enable() 
and Parent is 

Disabled or Paused

Enable() 
and Parent is not 

Disabled and not Paused

Paused

Error 
Situation

Operational Error 
resolved

Error 
resolved

Error

Disable()

Figure 2.4: OPC UA PubSub state machine modified from [7]

2.1.2 OPC UA Safety

OPC UA Safety, which is defined in Part 15 of the specification, allows devices to use
OPC UA to exchange safety-related data. OPC UA Safety provides safe communication
mechanisms in an application-independent way. The safety application that utilizes these
mechanisms over the Safety Application Program Interface (SAPI) is responsible for
providing and evaluating data transmitted over OPC UA Safety. It also defines the
structure and length of the sent data. The added Safety Communication Layer (SCL) uses
unique MonitoringNumbers (MNRs) to identify SPDUs, timeouts, and cyclic redundancy
code to detect communication errors on the underlying transport mechanisms. This
standard offers a Probability of dangerous Failure per Hour (PFH) and a Probability
of dangerous Failure on Demand (PFD) low enough to build safety-critical applications
with a Safety Integrity Level (SIL) of up to SIL 4, while SIL is a measurement to classify
the functional safety of a system [35].

An OPC UA Safety connection consists of two parts, the SafetyProvider, and the
SafetyConsumer. The architecture of the communication stack that is used to exchange
data between SafetyProvider and SafetyConsumer is shown in Figure 2.5. The Safe-
tyProvider is the data source of a unidirectional safety link, and the SafetyConsumer is
the sink. The SafetyConsumer is also responsible for error detection on received messages,
and together with the SafetyProvider, they build the SCL. Even if the data flow is
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2.1. Open Platform Communications Unified Architecture

unidirectional, the communication on a lower level uses a request/response pattern. This
allows the SafetyConsumer to check the timeliness of the messages without a synchronized
clock.

Below the SCL, the OPC UA layer is located, which can either use Client/Server or
PubSub. For the Client/Server model, the SafetyProvider uses the server, and the Safety-
Consumer uses the Client, which calls the methods provided by the SafetyProvider. If the
SCL uses a PubSub model, the SafetyConsumer provides a RequestSafety Protocol Data
Unit (SPDU) to a Publisher which sends it to the middleware. On the SafetyConsumer
side, a Subscriber is subscribed to that messages and provides the received RequestSPDU
to the SafetyProvider. The SafetyProvider generates then a ResponseSPDU and provide
it to a Publisher which sends it to the middleware. A Subscriber on the SafetyConsumer
side receives the ResponseSPDU and provides it to the SafetyConsumer. In order to
handle packet loss to increase reliability, a mechanism is required to send packages
multiple times. In the case of the OPC UA Safety Protocol, the Standard OPC UA layer
is responsible for that by using a higher frequency to transfer the SPDUs. The SCL then
reacts only to the first SPDU with the same MNR.
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App

Safety 
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Standard 
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Safety

OPC UA - MapperOPC UA - Mapper

Request SPDU
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Safety 
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OPC UA
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OPC UA
PubSub

Or
Client /Server

OPC Communication

Figure 2.5: OPC UA Safety stack modified from [8]

Figure 2.6 shows the internal state machine of an OPC UA SafetyConsumer.

At first, the SafetyConsumer checks the parameters, such as SafetyProvider, and Safety-
Consumer IDs, if they are not 0. If the SafetyConsumer is enabled and all configuration
parameters are OK, it prepares a new RequestSPDU, which is transferred by the Standard
OPC UA layer. After the SafetyConsumer receives a ResponseSPDU, the state machine
leaves state S14. At state S15, the Cyclic Redundancy Check (CRC) is verified, followed
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Figure 2.6: OPC UA safetyConsumer state machine modified from [8]
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by a check of the SafetyConsumerID, the SPDU ID, and the MNR at state S16. If
the checks at states S15 and S16 fail for the first time in a configured time interval,
the request is repeated. Otherwise, the state machine goes into an error state. If all
checks are passed, the received Safety Data is transferred to the safety application via the
SAPI. Since the SafetyProvider only replays to requests from the SafetyConsumer, the
state machine consists only of two states, namely the WaitForRequest and PrepareSPDU.
Therefore, the state machine will not be shown in a separate figure [8].

As discussed in this section, OPC UA Safety uses the Standard OPC UA layer to transfer
SPDUs between SafetyConsumer and SafetyProvider. Because OPC UA only covers the
upper layers of the OSI model, a technology for the lower layers like TSN is required.

2.2 Time-Sensitive Networking
TSN is a set of standards, where each standard defines a specific functionality [25].
Table 2.1 gives an overview of some TSN standards, defined by the IEEE TSN task
group [9]. Since TSN extends the IEEE 802 Ethernet standard, it is possible to send
regular data like emails or browsing data via the same network as real-time data [38],
like communication with an emergency stop button. For that, TSN sends the regular
traffic as unscheduled traffic with best-effort and time-critical data as scheduled traffic.

To schedule the traffic, TSN uses Time Division Multiple Access (TDMA), which is
defined in IEEE 802.1Qbv [11]. TDMA splits a communication channel into multiple
time slots. These time slots can be used by different services or, in the case of TSN,
for different queues. As shown in Figure 2.7, TSN IEEE 802.1Qbv uses eight queues
per Ethernet port. The queue for each Ethernet frame will be chosen according to the
Priority Code Point (PCP) value and the mapping in the device configuration. The
PCP value is part of the IEEE 802.1Q header and allows to assign a certain priority to
Ethernet frames.

Queue for
gate

control list
01001101
11000000
10101100
01100101
01011011
00101001
10111110
01111110
01111110
10110101

Transmission Selection

traffic class #7 
Queue for

traffic class #6 
Queue for

traffic class #5 
Queue for

traffic class #0 

Figure 2.7: Transmission selection with gate control list modified from [11]

13



2. Technical Background

Each queue has a Transmission Gate where a Transmission Selection Algorithm selects
frames from queues with an open gate for transmission. The gate defines if the frame
from the queue can be selected for transmission. A gate control list, which is controlled by
configuration, selects which gates are open or closed at a certain point in time. Because
the gate control list is a finite list, which is processed in a loop, each queue has an open
gate at a fixed interval. By setting the gate control lists on multiple TSN devices in a
network accordingly, a stream between two end stations with guaranteed bandwidth can
be configured.

Use IEEE Std. Description
Time Sync. 802.1AS Time Synchronization

Bounded
Low
Latency

802.1Qav Credit Based Shaper
802.1Qbv Time Scheduled Traffic
802.1Qbu Frame Preemption (also 802.3br)
802.1Qch Cyclic Queuing and Forwarding
802.1Qcr Asynchronous Traffic Shaping

Ultra
Reliability

802.1CB Seamless Redundancy, Stream Identification
802.1Qci Filtering and Policing
802.1Qca Path Control and Reservation

Resource
Management

802.1Qcc Stream Reservation Protocol Enhancements
802.1Qcp YANG Model for Bridging
802.1Qcw YANG Model for Qbv, Qbu, Qci
802.1CBcv YANG Model for CB

Table 2.1: TSN standards overview [47]

Another central part of the TSN specification is the time synchronization, which is used
to synchronize the time between network devices and the end stations to reduce jitter and
latency, as defined in IEEE 802.1AS [10]. The IEEE 802.1Qcc [12] (Stream Reservation
Protocol) defines the management interface and administration of TSN networks. For
configuration, it is necessary to obtain information about the end stations (Talkers and
Listeners), like their resources, capabilities, and characteristics of associated streams.

To relate frames with the according stream, information like IP, MAC Address and
Virtual Local Area Network (VLAN) tags are used [55]. The standard describes three
different models for configuring TSN networks:

• Fully distributed model: The end stations (Talkers and Listeners) send their
information to the network, and the network configures itself entirely. This means
each bridge gets the requirements from the end stations, but they do not have
information about the entire network.

• Centralized network/distributed user model: In contrast to the fully dis-
tributed model, it uses a Centralized Network Configuration (CNC), which knows all
user requirements and capabilities of all bridges in the network. The CNC receives
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all information from the bridges in the network and does not communicate with
the end stations. The CNC computes the scheduling and configuration, which it
then sends to the TSN bridges.

• Fully centralized model: In the two previous models, the configuration of the
end stations was not addressed. Nevertheless, in some cases, it is also necessary to
configure the TSN interface of end stations to fulfill complex timing requirements [33].
As shown in Figure 2.8, the fully centralized model includes a Centralized User
Configuration (CUC) to communicate over an Operation Technology (OT) protocol
with the end stations, to retrieve end station capabilities and requirements, and
discover them. The CUC communicates over an Application Programming Interface
(API) with the CNC to exchange the collected information [2]. The CNC will
calculate the configuration and send it to the TSN bridges and the TSN end stations
over a protocol like NETCONF, which is discussed in the following section.

Centralized 
User

Configuration

Centralized 
Network

Configuration

end 
station

end 
station

TSN Network

NETCONF
Configuration Path

Data Path

TSN
bridge

TSN
bridge

OT Protocol

API

Figure 2.8: Fully centralized model from IEEE 802.1Qcc [12]

2.3 Network Configuration Protocol
For the configuration of TSN devices from different vendors, the NETCONF protocol [24]
is available, which allows installing, manipulating, and deleting configurations on the
network devices. NETCONF uses Remote Procedure Call (RPC)-based mechanisms to
communicate between client and server, where the server is typically a network device,
and the client a script or application [15].
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Figure 2.9 shows a four-layer model of the NETCONF protocol:

• Secure Transport: NETCONF can use different transport protocols, in this work,
only Secure Shell (SSH) is used.

• Messages: To send data, an RPC model is used, where the client sends a request
with <rpc> and the server answers with a <rpc-reply>. The message layer uses an
XML syntax. To have a relation between request and reply, an equal message-id
is used for both messages. The NETCONF server can inform the client about an
event via a <notification>.

• Operations: To modify data via NETCONF, a set of operations is defined, which
are described in Section 2.3.1.

• Content: The content of the operations is defined in the YANG model (see
Section 2.4), which is used on the NETCONF server.

Content

Operations

Messages

Secure
Transport

SSH, TLS, BEEP/TLS, 
SOAP/HTTP/TLS, ..

<rpc>
<rpc-reply>

<edit-config>

Configuration
data

<notification>

Notification
data

Layer Example

Figure 2.9: NETCONF layers [24]

2.3.1 NETCONF Datastores
Initially, NETCONF defined three datastores, which got extended by two read-only
datastores in RFC 8342 [16]. The two additional datastores, intended and operational
are not used and therefore not further discussed.

The candidate datastore, which is optional, can be modified without effecting the network
device. After the modification, the configuration in candidate can be committed to
running, which holds the current configuration. Running can also be directly modified,
but it must always contain a valid configuration. The startup datastore is non-volatile
storage and is optional. If a startup datastore is used, the NETCONF server copies the
configuration from the startup to the running datastore when the NETCONF server boots.
In case the startup datastore is not used, the configuration in the running datastore is
used when the NETCONF server boots [16].
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2.3.2 NETCONF Operations
As also showen in Figure 2.10, the client can invoke the following operations on the
NETCONF server [24]:

• get-config: Request the configuration of a datastore which needs to be defined as
a parameter. Additionally, a filter can be used to request only a sub-configuration.

• edit-config: Load all or part of the configuration to the specified datastore. Further
one of the following options for editing the configuration on the network device can
be chosen: merge(default), replace, create, delete or remove.

• copy-config: Copy a configuration from one datastore to another. The configura-
tion will be replaced or created if it does not exist.

• delete-config: Delete a configuration from a datastore. The running datastore
can be not deleted.

• lock: Lock a datastore so that other clients can not modify the configuration in a
datastore.

• unlock: Unlock a previous locked datastore.

• get: Request the running configuration and the device state information.

• close-session: Request a graceful termination of the NETCONF session.

• kill-session: Force the termination of the NETCONF session.

NETCONF Server

Running
copy-config() copy-config()

edit-config()
get-config()
...

get-config()
...NETCONF

Client

edit-config()
get-config()
...

commit() Startup
Candidate

configuration transfer
controlled by client

Figure 2.10: NETCONF datastore modified from [16]
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2.4 YANG
NETCONF defines the interface to modify a configuration on a device. It does not
define how the configuration is structured, therefore YANG is used to define a model
of a configuration. YANG is a data modeling language used to model network device
configuration and state data with a NETCONF interface. This data model defines the
schema of the stored data, similar to a class in an object-oriented programming language.
YANG models organize the data in a tree, where each node has either a value or a set of
child nodes [15]. An example of a simple YANG model can be found in Listing 2.1. A
network device can have multiple YANG models. After a client has connected to a NET-
CONF server, the server informs the client about its used YANG models in a hello message.

YANG is structured in modules, where each module has its own namespace. The
namespace needs to be defined with a unique string at the beginning of a module. To
simplify the structure of a module, it can include multiple submodules. In order to keep
track of the modification history, each module should have a revision statement for the
initial revision, and each modification should be described with the modification date
and a detailed description. To restrict the values that can be stored, a new datatype can
be defined with the typedef statement. An example of that would be a type IP address,
where four values between 0 and 255 separated with a point must be provided in order
for YANG accepts a change of an IP address. In case a set of nodes is used frequently, a
group can be defined with the grouping statement. An example would be a timestamp
consisting of a second and a nanosecond value. This timestamp can be included in the
model with the usage statement instead of having two leafs.

The actual data are stored in leaf nodes, which must contain a type statement to
define the data type of the stored value and cannot contain any child nodes. To structure
the data, there are containers, leaf-list and lists available. A container groups related
nodes, has only child nodes, no values [15], and it is similar to a folder in a file system.
With a leaf-list multiple values with the same data type can be stored. In contrast to
the leaf-list, the list statement provides the possibility to store a list of datasets with
different datatypes. A list has a key value, which is one element of the dataset and needs
to be unique in the list to distinguish the different datasets. A list is similar to a list of
structs in the C++ programming language.

YANG provides the possibility to define RPCs with input and output parameters,
which can be called via NETCONF. For devices with optional features, YANG gives the
possibility to define specific parts of the model as optional features. The device controls
if this feature is available or not.
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module s impleSwitch {
namespace " urn : tuwien : i n t e r f a c e " ;
p r e f i x tu ;

r e v i s i o n 2022−08−22 {
d e s c r i p t i o n

" i n i t i a l r e v i s i o n " ;
}

typede f i f −number {
d e s c r i p t i o n

" range o f i n t e r f a c e numbers that are accepted " ;
type u int8 {

range " 0 . . 4 8 " ;
}

}

grouping timestamp {
l e a f seconds−f i e l d {

type uint64 {
range "0 . . 2 81474976710655 " ;

}
}
l e a f nanoseconds−f i e l d {

type uint32 ;
}

}

conta ine r systemtime {
uses tu : timestamp ;

}

conta ine r i n t e r f a c e s {
l i s t i n t e r f a c e s {

key number ;
l e a f number {

type i f −number ;
}
l e a f enable {

type boolean ;
d e f a u l t f a l s e ;

}
}

}
}

Listing 2.1: Simple YANG model of a switch
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2.5 System Configuration in IT and OT
OPC UA and TSN are designed to be interoperable, so two devices from different vendors
can easily communicate with each other. To make changes in the safety system, a
configuration must be deployed to TSN bridges, TSN end stations, safety sensors, safety
actuators, and the safety logic. An engineering tool from the hardware vendor must be
used to modify configurations and deploy them. In the worst case, for each TSN and
each OPC UA device, a different tool is necessary, which are mostly working just under
Windows.
For example, to modify and deploy the configuration of an OPC UA server, it is necessary
to use the TIA Portal for Siemens devices, Automation Studio for B&R devices or the
PNOZmulti Configurator for Pilz devices. With NETCONF, manufacturers try to use
a common standard for the configuration of TSN devices. For that, the YANG models
are standardized, which allows sending a configuration XML via NETCONF to a TSN
device, independent of the vendor.

In the IT world, though, deployment of configurations is already more advanced than in
the OT world. An example is Ansible, which can be used for software deployment and
configuration management. The user creates a YAML file, which is called Playbook. With
the Playbook, a task can be defined which is then performed on the remote machines.
Ansible will then establish an SSH connection to the remote hosts and run a python script
simultaneously, to perform the actions according to the Playbook [34]. A second example
is the Simple Network Management Protocol (SNMP) introduced in 1988, which is the
predecessor of NETCONF. It was designed to simplify the management of bigger networks
and allow remote management of devices. However, the main focus of SNMP is to monitor
network components. Nevertheless, there are still massive problems with interoperability
in the IT world. Especially network devices often require customized Command-Line
Interfaces (CLIs) and tools, instead of using open protocols like NETCONF [46]. In this
work, a tool will be shown, that covers the configuration on all three layers of an RSS,
namely the TSN, OPC UA PubSub, and the OPC UA Safety layer.
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CHAPTER 3
Related Work

There are many works available in terms of the configuration of flexible systems, which
propose approaches on how to configure TSN, combine TSN with other technologies like
OPC UA and NETCONF, or use frameworks to get an RSS. So far, there is no work
publicly available where OPC UA Safety (Part 15) is used together with TSN since there
is no stack publicly available that implements OPC UA Safety. This chapter gives an
overview of different approaches, concepts, and protocols.

3.1 Existing Safety Protocols
For a real-time network infrastructure based on Ethernet, there are multiple protocols
available, which often come with their own safety protocol. PROFINET [59], which is an
Industrial Ethernet (IE) solution for industrial automation comes with PROFIsafe or
EtherCAT with Safety-over-EtherCAT [53]. OpenSAFETY is an open-source standard
for transferring safety-critical data over a deterministic network like TSN [9][3]. Gent et
al. [28] prove the concept that the combination of OpenSAFETY with TSN is suitable to
transport time-critical safety data and non-critical traffic over one Ethernet channel. In
this master thesis, the new OPC UA Safety standard together with OPC UA PubSub and
TSN is used. Table 3.1 gives an overview of a few IE protocols and their corresponding
safety protocols, which are specified in IEC 81784-3.

3.2 Frameworks and Concepts
The selection of a configuration for an RMS is one of the key issues to using RMS
efficiently. Ashraf and Hasan [14] introduce a framework based on a sorting algorithm
using reconfigurability, operational capability, reconfiguration cost, and reliability of the
involved machines and tools. With the use of this framework and a mathematical model
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IE Safety Protocol IEC NORM ORG
EtherNet/IP CIP Safety 61784-3-2 ODVA
PROFINET PROFIsafe 61784-3-3 PNO
EtherCAT Safety-over-EtherCAT 61784-3-12 ETG
Powerlink openSAFETY 61784-3-13 EPSG

RAPIEnet RAPIEnet Safety 61784-3-17 RAPIEnet
Association

SafetyNET p SafetyNET p 61784-3-18 SNI

Table 3.1: Ethernet and safety protocols modified from [25]

of the optimization problem, an optimal selection of reconfigurable machine tools for an
RMS can be found.

Another challenge arises from the need for flexibility for safety-critical systems. A
self-configuring safety network is presented by Etz et al. [25]. The authors presented
the requirements and a concept of self-configuring safety networks in that work. The
proposed idea includes three technologies, where each of them fulfills a set of the
introduced requirements. For the network infrastructure, they use TSN since it has the
ability to send real-time and non-realtime data over the network. As communication
layer, OPC UA is used, and as a safety layer openSafety. The reconfiguration of a safety
network consists of the three listed technologies can be split into four phases. At first,
new or removed Safety Nodes need to be discovered via OPC UA, followed by a validation
phase, where the safety configuration of a new device needs to be validated. After that,
the configuration is checked for plausibility issues, like device-matching. If these three
phases are successful, the processing phase can be entered, where the Safety Nodes start
to transmit safety-related process data, which concludes the reconfiguration process.

In an additional paper, Etz et al. [27] extended the framework to increase flexibility and
the support for the safety engineer as shown in Figure 3.1. This framework contains,
in contrast to [25], a Knowledge-Based System (KBS), which gives the possibility to
generate safety configurations automatically. The generated configuration can be checked
and validated with the help of the KBS. The framework also considers an automatic
deployment, which is the last step before the RMS runs with its new configuration. The
automatic deployment is not further discussed in that work. Nevertheless it is a critical
topic to reconfigure the three different systems, namely TSN, OPC UA, and OPC UA
Safety. Therefore, this thesis continues with this part of combining OPC UA with TSN
to reconfigure a safety system.

3.3 OPC UA over TSN
To transfer time-critical data over OPC UA, a network is needed that can transport
data with a guaranteed delay. Since TSN is an open standard that is designed for
that purpose, it is often used to combine these two technologies. Therefore, the OPC
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Figure 3.1: Self-organizing safety system model modified from [27]

Foundation is working on the new Open Platform Communications Field eXchange
(OPCFX) standard, where the combination of TSN and OPC UA is defined [5]. An
overview of combining OPC UA with TSN give Bruckner et al. [19] in their work. At first,
they give a detailed background for OPC UA and the different TSN standards. Then,
the authors show how these two technologies can be combined to fulfill the requirements
for industrial automation. At the end of their work, they discuss the known issues of the
two technologies and what still needs to be done so that the combination of these two
technologies can become a competitive successor to fieldbuses.

Yuting et al. [43] show the implementation of OPC UA on a TSN backbone and evaluate its
performance. As shown in Figure 3.2, the architecture consists of three layers: a Factory
Cloud Layer for the management, an edge Layer with an OPC UA server for aggregating
the data from the field, and a Field Layer containing the manufacturing facilities with
one OPC UA server each. The communication inside manufacturing facilities can happen
with different protocols, like EtherCAT or Powerlink. The communication between the
three layers, though, is realized with an OPC UA Client/Server model over a TSN
network. With this layer structure, the management system accesses the factory level
over a single point, namely the OPC UA aggregating server, which reduces the complexity
of connections. For their performance evaluation, they used only their Field Layer with
TSN, where a Talker and a Listener communicate over two TSN switches. To get some
reference values, they compared the end-to-end latency of a TSN communication with the
latency of “normal“ Ethernet communication. The evaluation shows that the “normal“
Ethernet connection is faster than the TSN connection, if there is no load on the network.
This is because the TSN traffic has always fixed intervals independently from the network
load. As soon the network gets floated with User Datagram Protocol (UDP) traffic, the
latency of the “normal“ Ethernet connection increases rapidly. The traffic which uses
TSN streams, though, is not affected at all by the load of the network.

3.4 Autoconfiguration of OPC UA and TSN
Gutierrez-Guerrero and Holgado-Terriza [32] proposes a mechanism for auto-configuration
of OPC UA systems. The goal of this mechanism is to get a Plug-and-Produce (PnP)
system to avoid the need for a manual configuration of a newly added PLC. In their
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Figure 3.2: OPC UA TSN communication architecture [43]

approach, only one OPC UA server is used, which contains the data from all PLCs in
the network. To identify new devices in the network, a central service regularly sends
multicast messages to the network. A newly added device replies with its Unicast IP. This
IP is used to query the meta-information of the PLC, which includes information about
its process variables provided via Modbus. With the gained meta-information, a new
Information Model is created on the OPC UA server. The OPC UA server synchronizes
its variables via Modbus with the PLCs, and clients can then interact only with the
nodes provided by the OPC UA server.

In contrast to the central solution of the previous paragraph, Liu and Bellot [44] show a
similar approach to the approach in this work, but without a configuration of the network.
All the devices are equipped with an OPC UA Publisher or Subscriber, which can
communicate via an MQTT broker with each other. The introduced configuration tool
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provides a Graphical User Interface (GUI) to modify or add new OPC UA connections
between Publisher and Subscriber and change the address space on both sides accordingly.

Pahlevan et al. [51] use a framework [50] to simulate a TSN in combination with the Rapid
Spanning Tree Protocol (RSTP). Switches are simulated with queuing and scheduling
mechanisms and end stations with configured time-triggered messages. The streams were
defined by different parameters like source port, transmission/reception window, and
VLAN ID. The authors use a fully centralized configuration model and NETCONF for
the remote network management. The proposed central unit, which acts as CNC and
CUC, detects topology changes in the network and configures TSN nodes if needed. If
the RSTP changes the tree in the network, the central unit detects the update, calculates
new streams, and deploys the new configuration via NETCONF. For evaluation, they use
a fault model which simulates different faults on Ethernet links between two switches.

3.5 TSN configuration via OPC UA
Since OPC UA is already widely used in the automation area, there are some works
showing the usage of it also for TSN configuration changes. Zhou and Shou [61] show a
scheme where the TSN Talker and the Listener send service requests to the CUC over
the OPC UA protocol. The CUC forwards the request to the CNC, which calculates the
routing and scheduling for the TSN network. The CNC then sends the configuration
to the TSN bridges via NETCONF, and additionally, it sends the configuration to the
CUC, which sends it to the Talker and Listener. The end stations can then configure
themselves with the received information. Tian and Shou [57] also use OPC UA for the
communication between CUC and the end stations, but with a focus on giving a general
overview of the used technologies.

Kobzan et al. [37] also use OPC UA for the communication with the end stations, similar
to [61] and [57]. The focus there, though, is on the dynamic detection of new TSN
devices, followed by the configuration of the devices and the end stations. For that, a
central controller constantly tries to ping the IP addresses of the components to detect
new devices. If the central controller detects a new device, it gathers information about
it from the OPC UA server, which is running on all devices. This information is used to
create a configuration for the TSN nodes, which are deployed by the Software Defined
Networking (SDN)-controller via NETCONF.

3.6 TSN combined with SDN
SDN is a network management paradigm for managing complex IT networks. Figure 3.3
shows a simplified SDN structure. The bridges in the data plane communicate with SDN
over the SouthBound Interface (SBI). The SDN controller in the control plane defines
the traffic controls rules and performs administration control of the network devices. The
user application, which runs on the application plane, requests network services over the
NorthBound from the SDN controller [55].
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Siva et al. [55] use SDN to deploy the configuration to the TSN network and also give
a comprehensive overview of both technologies. The target of that work is to evaluate
SDN and TSN in the context of Industry 4.0, focusing on different requirements like
real-time performance, overhead, and feasibility. In contrast to [37], Siva et al. use
OpenFlow instead of NETCONF as SBI, which is currently the de facto standard SBI
protocol [55]. A comparison between NETCONF and OpenFlow as SBI can be found
at [40]. However, OpenFlow and SDN are out of this work’s scope and will be therefore
not further discussed.

SDN Controller

bridge bridge bridge 

SDN Application SDN Application

SouthBound Interface 
(NETCONF or OpenFlow)

NorthBound Interface

Application Plane

Control Plane
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Figure 3.3: SDN overview
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CHAPTER 4
Configuration Approach

In order to change the configuration of an RSS, as it is defined in [25] and shown in
Figure 3.1, a tool is needed that can make configuration changes on three layers of a
safety system, the TSN, the OPC UA PubSub, and the OPC UA Safety Layer. This
chapter specifies the use cases that this tool should cover and shows how the three layers
communicate in an RSS. At the end of this chapter, the required parameter are discussed
and the architecture of an RSS with a central deployment tool is shown.

4.1 Motivating Use Cases
As discussed in Section 2.5, reconfiguring a safety system with current tools requires
considerable engineering effort. Additionally, it is impossible to modify the safety system
during runtime. This deployment tool should reduce the effort to reconfigure a safety
system and increase flexibility. Figure 4.1 shows an overview of use cases and requirements
to deploy a configuration on an RSS. We defined three use cases that cover the key
features of a deployment tool in an RSS, the initial commissioning, add new safety device,
and remove safety device. Even if the configuration needs to be changed entirely during
runtime, it can be split in those three cases. Therefore, they are briefly discussed in the
following sections.

4.1.1 Initial commissioning
The initial commissioning is the first use case, which is covered by current configuration
tools. All safety-critical components need to be configured during the commissioning of
a new system. This includes the network, which transports the safety data, the safety
sensors, the safety logic, and the safety actuators. This process should happen only with
one click without knowing the manufacturer of the used devices or knowledge of the
used technologies. As shown in Figure 4.1, Initial commissioning is used by a Safety
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Figure 4.1: Use case diagram

Engineer and uses the function of the Update configuration use case. However, this
is a simple special case because no old device configurations must be considered. For
that, the configuration is loaded with Load set of configs from the KBS (cf. Figure 3.1).
The Update configuration uses functions of Change TSN, OPC UA Safety, and OPC
UA PubSub use cases. The Change TSN configuration use case covers the management
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of the configuration activation and deploys new configurations with the Deploy TSN
configuration use case.

Change OPC UA Safety configuration and Change OPC UAPubSub configuration remove
old configurations, enable and disable OPC UA PubSub functionalities, and deploy new
configurations with the function of Deploy OPC UA Safety configuration and Deploy
OPC UA PubSub configuration. The Deploy OPC UA Safety configuration distinguishes
between a deployment on a SafetyProvider and a SafetyConsumer. Similar to that,
Deploy OPC UA PubSub configuration distinguishes between deploying a configuration
on a Publisher and a Subscriber. Nevertheless, errors that occur at Update configuration
are handled with Handle configuration Error.

4.1.2 Add new Safety Device
In an RSS, it can be necessary that a new safety device must be added during runtime. An
example would be multiple machines sharing one mobile user interface with an emergency
button. When the operator connects the user interface to the machine, the emergency
stop button must be integrated into the safety system. With current technologies, a safety
engineer must stop the whole manufacturing system to integrate the emergency stop
button. As shown in Figure 4.1, this use case is used if the operator uses the Manually
move safety device functionality. The operator must be able to do that in a simple way
without stopping the manufacturing system. Additionally, Automatically move safety
device, which is used by an Orchestrator, uses the function of Add new safety device.
That again, uses the functionality of Update configuration, like Remove safety device.

4.1.3 Remove Safety Device
Similar to Section 4.1.2, removing a safety device from an RSS is sometimes required.
An example would be a robot with an overlapping area with humans. Depending on the
product, the robot operates in areas where humans usually work. If the robot is in a
mode that cannot reach the common area, the safety device, which stops the robot if a
human enters the common area, must be removed from the safety system. This logical
removal has to be done automatically on the configuration change, without stopping the
manufacturing system.

4.2 Safety Communication Stack
As discussed in Chapter 3.1, most of the IE protocols come with their own safety protocol.
These protocols are mainly proprietary, and different manufacturers use different protocols.
OPC UA is already widely used by many manufacturers in the industry for interoperable
communication. Therefore, we expect that the new OPC UA Safety standard will
also find similar acceptance like the OPC UA standard. For that reason, we decided
to use OPC UA in combination with OPC UA Safety. On the OPC UA layer, there
is the possibility of a Client/Server and a Publish/Subscribe model, as discussed in
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Section 2.1.2. In this work, we use the Publish/Subscribe model because it works with
UDP packages. The UDP traffic brings the possibility of calculating the amount of critical
traffic beforehand because there are no handshakes and retry mechanisms involved. Since
TSN has the advantage of mixing non-critical and critical traffic and it is independent of
any hardware manufacturer, TSN will be used in this work.

Figure 4.2 shows the stack consisting of the three layers. The safety sensor on the
left side transmits its data to a safety logic, and the safety logic performs some logical
operation and transmits its result to the safety actuator. Those three safety components
use the black channel principle to transport their data. This means that the components
on the safety layer can use a nondeterministic channel to transport the data by using
mechanisms to detect a missing or delayed message. OPC UA Safety does not transport
any data by itself, this is done by the OPC UA PubSub layer, which is located below the
OPC UA Safety Stack. OPC UA PubSub uses the SPDUs and sends them at a fixed
interval to the communication partner over the TSN network. The TSN network has for
each Publish Subscriber a stream reserved. This guarantees that the safety data arrives
on time at its destination, and the RSS can work reliably.
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Figure 4.2: Three layer safety stack

4.3 Safety Data Exchange
To get detailed knowledge about the function of the presented safety stack in Section 4.2,
the messages that are exchanged at runtime are discussed in this section. As shown in
Figure 4.3, the communication consists of three layers. At first, a SafetyConsumer creates
a RequestSPDU with a SafetyConsumerID and an MNR to identify the SPDU. The
OPC UA PubSub layer takes the SPDU from the OPC UA address space and sends it in
constant intervals as a UDP package. When the packet enters the TSN network, the first
TSN device adds a VLAN tag with the according PCP. The TSN network can identify the
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package with the VLAN tag and schedule it accordingly. On the SafetyProvider side, the
Subscriber receives the UDP packet and updates the RequestSPDU on the address space.
The SafetyProvider takes the information from the RequestSPDU and puts it together
with the corresponding safety data from the safety application in a ResponseSPDU. The
Publisher then sends the ResponseSPDU to the SafetyConsumer, as it was done with the
RequestSPDU. The SafetyConsumer forwards the safety data to the safety application
via the SAPI.
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Figure 4.3: Process data of safety devices

4.4 Required Parameters
The deployment tool needs to configure a safety connection on three different levels. The
TSN, OPC UA PubSub, and the OPC UA Safety layer. With the information from
Section 4.3, we can create a list of parameters, which will be required to configure such a
safety connection.

4.4.1 TSN
A TSN node must be configured on three levels. One for the time synchronization so
that the cycles for the traffic scheduling run synchronously. The next one sets some basic
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settings on the bridge, and the last one is the setup of the interfaces, which also includes
the configuration for the traffic scheduling. The parameters listed in this subsection
are only the ones required by the deployment tool, and not all parameters that are
defined in the YANG models. Besides the parameters described in this subsection, also
the IP address, username, and password are required to access the TSN device via the
NETCONF interface.

802.1AS

All TSN network devices need a time synchronization to schedule the data traffic. For this
work, the ietf-gptp@2018-03-28.yang YANG model is used. The deployment tool needs
the parameters shown in Table 4.1 to configure some basic Generalized Precision Time
Protocol (gPTP) parameters. Table 4.2 shows the required parameters to configure a
GPTP port. If the propagation to the link neighbor exceeds the neighborPropDelayThresh
from Table 4.2, it is assumed that a buffering repeater is in the link. Therefore, this port
is ignored for the time-synchronization. The format in which this value is represented
is defined in Table 4.3. The announce message is used to establish the synchronization
hierarchy. The initialLogAnnounceInterval defines the initial interval for publishing the
announced messages. The value is given in log2, which means 0 → 1s. The last parameter
defines the initial interval of sending synchronization messages.

Parameter Description Type
priority Priority for the grandmaster selection two uint32

PortDataSet A list of settings for the ports of the bridge List of structs according
to Table 4.2

Table 4.1: Parameters for TSN 802.1AS of one bride

Parameter Description Type

portNumber The number of the port, for which
this set of parameters should apply uint32

neighborPropDelayThresh
Propagation time threshold, above
which the port is not considered for
the time-synchronization

struct accord-
ing to Table 4.3

initialLogAnnounceInterval Initial value of the announce interval
to exchange clock information

int32 [log2(s)]
(−128...127)

initialLogSyncInterval Initial value of the time-
synchronization transmission interval

int32 [log2(s)]
(−128...127)

Table 4.2: Struct PortDataSet
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Parameter Description Type
Hs The most significant 32 bits of the time value uint32 (2−16ns ∗ 264 )
Ms The second most sign. 32 bits of the time value uint32 (2−16ns ∗ 232 )
Ls The least significant 32 bits of the time value uint32 (2−16ns )

Table 4.3: Struct TSN time

Bridge

The bridge has a configuration that needs to be set up at the initial commissioning.
Table 4.4 shows the required parameters. The name identifies the bridge, and it is used
by the interface to link the bridge and interface. The address defines a MAC address,
which is used for the Spanning Tree Protocol (STP), RSTP, and Multiple Spanning
Tree Protocol (MSTP), in case one of these protocols is used. According to Table 4.5,
the component parameter defines the components which the bridge comprises. Each
component has its name and a unique MAC address. To use VLANs on a bridge, they
must be defined in the component according to Table 4.6. Each interface links to one of
these components; therefore, only VLANs defined in this component can be used.

Parameter Description Type
name Name of the bridge string

address MAC address, which the bridge should use
for STP, RSTP and MSTP

string (mac ad-
dress)

component List of components List of structs ac-
cording to Table 4.5

Table 4.4: Parameters for one TSN bridge

Parameter Description Type
name Name of the component string
id Unique ID of the component uint32

type Type of the component (e.g. c-vlan-
component, edge-relay-component, etc.)

string (type-of-
component)

address Unique MAC address string (mac ad-
dress)

bridge-vlan A list of VLAN IDs, which are used at the
bridge

List of structs ac-
cording to Table 4.6

Table 4.5: Struct Component

Interface

Each interface has parameters to set some basic configurations and some parameters to
set up the TSN gate control list. To configure the standard functions of an interface, the
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Parameter Description Type
vid ID of the VLAN uint32
name name of the VLAN string

Table 4.6: Struct VLAN

parameters according to Table 4.7 are required. A unique name identifies the interface
and the description allows a textual description of the interface. With the enabled
parameter, the interface’s state can be set. As described in Section 4.4.1, each interface
links to a bridge component. This link must be set with the component-name. The pvid
parameter sets the VLAN ID of the tag, which is added if untagged frames arrive at the
port.

Parameter Description Type
name A name for the interface string
description A description of the interface string
enabled Enables the interface boolean
bridge-name Name that links to the name of a bridge string
component-name Name that links to a bridge component string

pvid VLAN ID with which one an incoming
untagged frame should be tagged

uint32 (vlan-index-
type)

Table 4.7: Standard parameters for a TSN bridge interface

Table 4.8 lists all the interface parameters to configure the TSN stream according to
IEEE 802.1Qbv [11]. The default-priority parameter sets the PCP in the IEEE 802.1Q
tag on incoming untagged Ethernet frames. This PCP value is used to select a queue,
as discussed in Section 2.2. The mapping between PCP and a queue is done according
to the traffic-class-v2 values. The admin-gate-states parameter sets the initial value
of the Transmission Gates. When the TSN bridge is running, the Transmission Gates
change the states according to the gate control list, which can be changed with the
admin-control-list parameter. The TSN device starts a new gate control list cycle in an
interval defined by the admin-cycle-time value. In order that all TSN bridges start their
gate control lists synchronized, the admin-base-time is used as basis to calculate the next
start of the gate control list. The admin-base-time is also used to define a point in time
to apply the admin-values to the running configuration. Additionally, a maximal Service
Data Unit (SDU) can be defined for each traffic class. By extending the values in the
queue-max-sdu-table, the frames are dropped.

4.4.2 OPC UA Publisher
A set of parameters is required to establish a connection between OPC UA Publisher
and Subscriber and transfer data between them. This subsection shows the parameters
required to configure a Publisher. The described parameters are only the ones required
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Parameter Description Type

default-priority PCP, with which one an incoming untagged
frame should be tagged uint8 (0...7)

traffic-class-v2 A list of traffic-classes to map it with PCPs List of structs acc.
to Table 4.9

queue-max-sdu-
table

A list with maximal 8 entries to define the
maximal SDU size, if a frame extends it, the
frame is dropped

List of structs acc.
to Table 4.10

gate-enabled Defines if the traffic scheduling is active boolean

admin-gate-states Initial value of the gates, the most significant
Bit controls the traffic class 7 uint8

admin-control-list A list to set the gate control list List of structs acc.
to Table 4.11

admin-cycle-time Time of one cycle that runs the gate control
list, rational number

denominator and
numerator [ns]

admin-base-time Time when the admin-values should be ap-
plied, rational number

PTP timestamp
(uint64[s] and
uint32[ns])

config-change Requests a configuration change. This pa-
rameter is set by the deployment tool boolean

Table 4.8: TSN parameters for a TSN bridge interface

Parameter Description Type

traffic-class Traffic class, for which the priorities should
apply uint8 (0...7)

priority A list of priorities, which should be mapped
to the according traffic class uint8 (0...7)

Table 4.9: Struct Traffic-class-v2

Parameter Description Type
traffic-class Traffic class where the limit applies uint8 (0...7)
queue-max-sdu Limit for the SDU uint32

Table 4.10: Struct SDU size

to set up a PubSub connection to transfer SPDUs for OPC UA Safety. The OPC UA
Safety standard defines many more parameters that are not required for the purpose
described here. In order to establish a connection between the deployment tool and the
OPC UA device, the Publisher’s IP address is required. A username and password are
also required if the authentication is enabled on the Publisher.
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Parameter Description Type
time-interval-value Time for how long this entry should apply uint32 [ns]

gate-states-value
Defines the value of the gates, when the entry is
executed,the most significate Bit controls the traffic
class 7, where 0 indicates a closed gate

uint8

Table 4.11: Struct admin-control-list

OPC UA PublishedDataSet

As discussed in Section 2.1.1, a Publisher contains a Connection and a PublishedDataSet.
The PublishedDataSet selects the data from the OPC UA address space, which are
published. Table 4.12 shows the required parameters to configure the PublishedDataSet.
The name of PublishedDataSet shown in the address space is configured with the pub-
DataSetName parameter. This parameter is also used by the OPC UA Connection object
to link to the PublishedDataSet. The fieldNameAliases is part of the DataSetMetaData
and provides information to decode the DataSetMessage if the Subscriber is configured
manually. The nodeIDs select the data from the address space that should be published.

Parameter Description Type

pubDataSetName Name of the PublishedDataSet object in the
address space string

fieldNameAliases Array of Names for the published variables array of strings

nodeIDs
The NodeIDs from the address space of the
published variables. Length must be equal to
the length of the FieldNameAliases

List of
NodeIDs
acc. to Ta-
ble 4.13

Table 4.12: Parameters for OPC UA PublishedDataSet

Parameter Description Type
namespaceIndex Namespace of the Node in the address space uint16
identifier ID of the Node in the address space uint32

Table 4.13: Struct of a NodeID

OPC UA Connection

The second object that has to be configured on a Publisher is the Connection. It has
a name, which is used in the address space. The address parameter defines where the
Publisher should send the NetworkMessage. For the use case described in this work, this
is always the IP address of the Subscriber and not a multicast address. As discussed in
Section 2.1.1 and shown in Figure 2.3, a connection of a Publisher contains WriterGroups
which contains Writers. The name of the Writer and WriterGroup is defined by the
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writerGroupName and writerName parameters. For this work, a Publisher uses only one
WriterGroup and one Writer because we want to transfer data only to one Subscriber
with the same interval. The publisherID, writerGroupID and dataSetWriterId are used
by the Subscriber to identify and filter received messages, which are sent in an interval
defined by the publishingInterval parameter.

Parameter Description Type

connectionName A name to identify the connection in the
address space string

address URL of the Subscriber string

publisherID
ID, to identify the Publisher. Depending on
the NetworkMessageContentMask, it is in-
cluded in the NetworkMessages for filtering.

uint64

writerGroupName Each WriterGroup has a name, which is
visible in the address space string

writerGroupID ID of the WriterGroup uint16
(0...32,767)

publishingInterval Interval for sending a NetworkMessage float64 [ms]

writerName Each Writer has a name, which is visible in
the address space string

dataSetWriterId ID of the Writer uint16
(0...32,767)

Table 4.14: Parameters for one OPC UA Publisher

4.4.3 OPC UA Subscriber

The OPC UA Subscriber needs parameters to filter out the information from the Publisher
and parse them correctly. Like the OPC UA Publisher, the Subscriber contains a
Connection responsible for communicating with the Publisher. The deployment tool also
needs the IP address and, if required, username and password of the Subscriber under
configuration.

OPC UA Connection

Table 4.15 shows the required Parameters. The connectionName, readerGroupName
and readerName defines the name of the associated objects. The address defines on
which interface the OPC UA server should listen for messages from the Publisher. The
received messages are filtered and identified by the publisherID, writerGroupID, and
dataSetWriterId, which must be equal to the parameters on the Publisher partner.
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Parameter Description Type

connectionName A name to identify the connection in the ad-
dress space string

address IP of the Subscriber string

readerGroupName Name of the Object ReaderGroup in the ad-
dress space string

readerName Name of the Object Reader in the address
space string

publisherID ID to identify the Publisher. Needs to be the
same as the PublisherID on the Publisher side uint32

writerGroupID ID of the selected WriterGroup from the Pub-
lisher uint16

dataSetWriterId ID of the DataSet selected from the Publisher uint16

Table 4.15: Parameters for one OPC UA Subscriber

Metadata and TargetVariables

The variables received from the Publisher need to be put in the address space. Table 4.16
list all the parameters required to configure the Metadata and the TargetVariables.

The Name of the data set, in which the received data are represented in the address
space, is defined with the dataSetName parameter. The array of subDataName defines
the variable names of the received values. In order to decode the received data correctly,
the datatype of all received variables needs to be defined with subDataName. The
targetNodeID defines, which NodeID will be assigned the the variable in the address space.
All parameters, except the dataSetName must have the same array length. The order of
the parameters must be equivalent to the order with the array in the PublishedDataSet
from Section 4.4.2.

Parameter Description Type

dataSetName
Name of the DataSet, in which
the subscribed values are pre-
sented

string

subDataName Names of the subscribed Data array of strings
builtInType IDs of the subscribed Datatype int

targetNodeID The NodeID, in which the sub-
scribed data are represented

array of NodeIDs accord-
ing to Table 4.13

Table 4.16: Parameters for one Metadata- and Target-variables of the OPC UA Subscriber
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4.4.4 OPC UA Safety

To establish a safety connection between OPC UA SafetyProvider and SafetyConsumer,
some parameters need to be set for each safety connection. Since there is no OPC UA
Safety stack available, the deployment of an OPC UA Safety configuration could not be
tested. The parameters at Table 4.17 are defined in the OPC UA Part 15 standard [8] as
part of the Safety Parameter Interface (SPI).

Parameter Description Type

safetyProviderIDConfigured Set the Provider-ID which is normally
used uint32

safetyBaseIDConfigured
A Globally Unique Identifier (GUID),
which is a 128-bit value to identify the
Provider

GUID

safetyStructureSignature
A signature to check the number, data
types, and order of the transmitted
safety data

uint32

safetyStructureSignatureVersion Used version to calculate the SafetyS-
tructureSignature uint16

safetyStructureIdentifier A string to describe the data type of
the safety data string

safetyProviderDelay

Time in µs, which indicates the maxi-
mum time that the Provider has from
receiving the RequestSPDU until it
starts to transmit the ResponseSPDU

uint32 [µs]

safetyConsumerIDConfigured Set the SafetyConsumer-ID which is
normally used uint32

safetyProviderLevel The SIL, that the SafetyConsumer
expects from the SafetyProvider byte (1 -4)

safetyConsumerTimeOut

Time for how long the SafetyCon-
sumer waits to receive an error-free
ResponseSPDU, before a timeout-
error is triggered

uint32 [µs]

safetyOperatorAckNecessary Sets if an acknowledgment from a user
is required after an error occurred boolean

safetyErrorIntervalLimit Time Interval in which only one com-
munication error is allowed to occurr

uint16
(6,60,600)
[min]

Table 4.17: Parameters for OPC UA Safety
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4.5 Centralized Safety Configuration Setup
The central aim of this work is to deploy a configuration on the three technologies,
namely TSN, OPC UA PubSub, and OPC UA Safety. As discussed in Section 3, there
are different approaches to configuring a TSN network. It can be done directly via
NETCONF or with an additional SDN Layer, which mainly uses NETCONF for the SBI.
Since the configuration is generated by an external service, which is out of scope for this
work, there is no need for an SDN layer. Therefore, the configuration will be directly
deployed via NETCONF.

OPC UA, on the other hand, already comes with an interface, which gives an OPC UA
client the ability to change the OPC UA configuration via an RPC. Because of the
requirement that the configuration must be deployed on three different layers, a central
deployment tool will be used. This architecture has the advantage that the whole
deployment can be controlled from one single point without the need for synchronization
between different services. Figure 4.4 shows the architecture of a simple safety system
with all data paths. As illustrated with the blue arrows, the deployment tool must
deploy the configuration of those three layers on all safety devices and the TSN bridges.
These three layers depend on each other, which must be considered for the configuration
sequence. All three layers can be configured already in advance. The critical point in
time is the activation of the configuration, respectively the deactivation in case of the
Remove safety device use case. For an initial configuration, the TSN configuration must
be activated at first because the two layers above depend on it. The used NETCONF
brings the advantage of different datastores (cf. Figure 2.10), which gives the deployment
tool the possibility to deploy the configuration upfront without any changes in the TSN
network. In case of a wrong configuration, the deployment tool gets an error notification
that does not require rollback actions. If all NETCONF servers on the TSN devices
accept the configuration, it can be applied. As soon as the TSN configuration is used,
Publisher and Subscriber can be activated (cf. Figure 2.4). The last layer, the OPC UA
Safety depends on the two layers below. In case they are not working correctly, the black
channel principle of the OPC UA Safety layer detects it, and the safety layer stops the
manufacturing system. In case of a configuration error on the two OPC UA layers, all
previously performed configurations need to be reversed.
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Figure 4.4: Central deployment architecture
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CHAPTER 5
Deployment Tool

A big challenge of deploying a configuration on multiple devices with different technologies
is the timing. For changing a configuration on TSN devices, the TSN standard provides
the possibility to define a point of time where all devices change the configuration
simultaneously. OPC UA, on the other hand, does not provide such a feature. Additionally,
OPC UA Safety uses the black channel principle, which allows a connection interruption
for a certain amount of time, but the time of a communication interruption during a
configuration change is very limited. As shown in Figure 4.1, there are different use cases.
In this chapter, the Initial commissioning use case is discussed.

5.1 Structure and Interfaces of the Deployment Tool
As discussed in Section 4.5, the deployment tool uses a central architecture that allows
to control and schedule of the deployment process by one central tool. As shown in
Figure 5.1, the deployment tool needs to modify the TSN, OPC UA PubSub, and the
OPC UA safety layer. The NETCONF interface implements a set of YANG models,
which is responsible for configuring the TSN bridges. The YANG models defined in IEEE
802.1Qcw exist in multiple versions, which differ significantly. This makes it necessary to
set up the NETCONF interface according to the YANG models used in the TSN bridge.
Additionally, it needs to communicate with a knowledge base to get the configuration
data, and it should be platform-independent. A programming language that fulfills these
criteria is Go [30], also known as Golang. Go code can be compiled for multiple hardware
architectures and offers libraries for NETCONF, OPC UA method calls, and SPARQL
for the knowledge base communication and is therefore used for the deployment tool.

5.1.1 NETCONF Interface
The deployment tool uses NETCONF to deploy the configuration on all TSN devices.
The TSN deployment happens in two steps. At first, the configuration is deployed to the
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Figure 5.1: Structure of the deployment tool interfaces

candidate datastore (see Figure 2.10). In case of a wrong configuration, the deployment
tool gets notified by the response code and can react to that error. The second step
is the commit, which transfers the configuration to the running datastore and applies
the configuration to the device. The configuration of a TSN interface has an additional
feature to apply the configuration on all TSN devices simultaneously. For that, the
deployment tool adds a time on which the TSN device should apply the configuration
from the running datastore.

5.1.2 OPC UA Interface
OPC UA allows adding and removing nodes in the address space with methods that
are also available in the address space. OPC UA PubSub already provides all necessary
methods. OPC UA Safety, on the other hand, does not define such methods yet.

OPC UA PubSub

OPC UA PubSub provides methods in its address space, which can be used to add
new Subscribers and Publishers. For the Publisher, it is first necessary to create a
PublishedDataSet, where the information about the published data is stored. After that,
the deployment tool can create a new connection, which links to the PublishedDataSet and
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also contains the Subscriber IP address. On the Subscriber side, creating the connection
and all necessary components with one method call is possible. Those method calls would
return an error code if the configuration process was not successful.

OPC UA Safety

The current OPC UA Part 15, Release 1.05.00, [8] does not define any configuration
methods yet, but it defines a SPI to modify the SafetyConsumers and SafetyProviders.
The mechanisms to change the parameters are vendor-specific, though [8]. Additionally,
this interface does not provide an enable flag. For this work, we assume that the SPI
and a enable flag from the safety application can be modified via OPC UA.

With this assumption, the deployment tool can configure the SafetyConsumer and
SafetyProvider and enable it as soon as it finishes the configuration of the layers below.
In this way, the safety application can be configured in advance by the vendor tool
without getting into a timeout when the TSN and the OPC UA PubSub devices are not
configured. As soon as a connection is not needed anymore, it can be disabled without a
vendor application.

5.1.3 Knowledge Base Interface
The deployment tool does not store any configuration by itself. This task is performed
by the knowledge base. To recognize when a new configuration needs to be deployed, it
must communicate with the knowledge base. For the sake of simplicity, the deployment
tool polls the knowledge base in a fixed interval. In case of a new configuration, the
deployment tool requests all necessary parameters and performs the deployment.

5.2 Use Case: Initial commissioning
To perform the initial commissioning, the involved devices must fulfill some preconditions
to allow a connection with the deployment tool. If these preconditions are fulfilled, the
TSN devices can be equipped with the basic setup and the safety connections between
SafetyPublisher and SafetyConsumer can be established. In order to get a clear overview
of the communication between the components, the Transmission Control Protocol (TCP),
handshakes, and similar details are omitted in the sequence diagrams used in this chapter.

5.2.1 Preconditions
The basic network settings, like IP address and credentials, are required so that the
deployment tool can establish a connection to those devices. Those settings are not the
responsibility of the deployment tool and need to be set in advance.
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Additionally, the three layers have some individual requirements:

• TSN: All TSN devices must run a NETCONF server to deploy the network
configuration.

• OPC UA PubSub: The OPC UA server on the devices must provide methods to
add and remove Connections and PublishedDataItems. These methods are optional
according to the OPC UA Part 14 standard [8] but essential for the deployment
process.

• OPC UA Safety: The OPC UA SafetyConsumer and SafetyProvider communicate
via an SAPI to their safety application, which receives or sends all safety data.
Since the safety application is vendor-specific, it must be configured in advance. In
addition to the OPC UA Safety standard [8], we require an OPC UA interface to
the safety application, to set an enable flag as, discussed in Section 5.1.2.

5.2.2 Basic Setup
Before it is possible to add a safety connection between SafetyConsumer and Safe-
tyProvider, the deployment tool needs to deploy some basic configurations on the TSN
devices. For the OPC UA PubSub, it is not necessary to make any configuration before-
hand since a new connection between Publisher and Subscriber contains all necessary
parameters. The OPC UA Safety layer also does not need any configuration in advance
and can be configured completely when the safety connection is added. The configuration
for the safety application, which uses OPC UA Safety, has no standardized interface for
configuration and is therefore not configured by the deployment tool.

Only the TSN Layer needs a basic configuration before an TSN stream can be added.
This needs to be only performed if new TSN devices are added, so the time between
the TSN devices can be synchronized. Figure 5.2a shows the sequence of such a basic
configuration. At first, the gPTP settings are deployed in order that the TSN network
can select a grandmaster for the time synchronization. Additionally, all TSN bridges get
their basic configuration, which is required to add a stream to the network. These basic
settings are not time-critical since they are always performed at the commission of a new
TSN bridge. Therefore, the settings are applied directly with a commit-config().

5.2.3 Add Connections
Adding new safety connections to a safety system is a central task for the deployment
tool since a safety system contains multiple safety connections. Figure 5.3 shows the
communication between the deployment tool and the three layers for two communication
partners for adding a new safety connection. The corresponding sub-sequence diagrams
can be found in Figures 5.2, 5.4, 5.5 and 5.6. The sequence diagram shows the con-
figuration of n Safety Connections and m TSN connections, but for a better overview,
only two instances are graphically represented in each case. All devices are configured
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:Deployment 
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edit-config(Interface.xml)

commit-config()

(b) Change TSN streams

Figure 5.2: TSN deployment

in multiple steps where each step is performed on all devices simultaneously, as the par
blocks indicate. The first step, which sets up the basic TSN configuration, must be
performed only if new TSN devices are added, as discussed in Section 5.2.2.

This clear separation of each step is only one option to perform the configuration, but
this way makes it easy to evaluate the performance of the deployment and simplifies the
rollback in case of an error. Nevertheless, there are four dependencies that need to be
respected:

1. The basic setup must be configured as described in Section 5.2.2 before deploying
the TSN config. This allows the configuration of the TSN interfaces to link to the
basic configuration, as defined in the YANG models.

2. Publisher and Subscriber need the information which SPDU needs to be published
and where to write them after the Subscriber receives them. Therefore, they need
to be added after the SafetyProvider and SafetyConsumer. An overview of the
relation between configuration components and the effected part of the messages
can be found in Figure 2.3.

3. The Publishers and SafetyConsumers can only be enabled after they have been
created.

4. To guarantee the latency of SPDUs sent over the PubSub connection, the TSN
deployment has to be completed before the Publisher starts to publish.
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After the basic TSN deployment, the deployment tool adds the OPC UA SafetyConsumer
and SafetyProvider, followed by the Publishers and Subscribers on both sides. Since the
OPC UA Safety standard is quite new, it does not define the possibility of a configuration
via OPC UA yet. Therefore, no detailed sequence diagrams for OPC UA Safety are
provided. Before any communication can be enabled a new stream in the TSN network
must be added. After all TSN devices have successfully applied the new configuration,
the Publishers can start to publish the data from the OPC UA Safety layer. Since
the communication is established at this point, the OPC UA SafetyConsumer can be
enabled, which completes the integration of the new safety connection. The OPC UA
SafetyProvider and the OPC UA Subscriber are enabled with an enable parameter (cf.
Section 4.4) when they are added to the OPC UA server. This is possible because they
are causing only network traffic when they get contacted by their communication partner.
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Figure 5.3: Sequence diagram add safety connections
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5.3 Safety and Reliability Analysis

An RSS combines multiple technologies, which opens many possibilities for different
errors. In order to identify all of them, a systematic method is needed as safety and
reliability tools. Safety and reliability tools were first used in the air and space industry,
but now, it is broadly used in many industrial fields [60]. Nowadays, many different
analyses are available to identify fault states and their causes to improve the safety and
reliability of a system.

5.3.1 Fault Tree Analysis

One of that analyses is the Fault Tree Analysis (FTA), which Bell Telephone Laboratories
first developed to study the Minuteman Missile launch control system [58]. It was then
used as a safety and reliability tool for complex dynamic systems such as nuclear reactors.
The fundamental concept is the graphical representation of structured logic (fault tree).
In order to construct a fault tree, mainly AND and OR elements are used to combine
specified causes that lead to a top event [41].

5.3.2 Failure Mode and Effects Analysis

A further method is the Failure Mode and Effects Analysis (FMEA), which is used to
analyze the potential failure model, the damage level, and the occurrence possibility of
each kind of failure. For that, FMEA decomposes the system into components and their
relationships. The functions of those components and relationships get analyzed, and
then the failure table is formed with this information [60]. According to Bluvband and
Grabov [17], FMEA is done in 6 steps:

1. Failure Models Identification

2. Ranking Procedure

3. Total Risk Estimate

4. Critical Items Identification

5. Corrective Action & Prevention Action

6. FMEA Effectiveness Evaluation

FTA and FMEA are both methods to improve the quality and reliability of the system.
For complex systems, FMEA leads to a very long failure table, which is not well organized.
FTA, on the other hand, splits the top events into sub-events and can be easily represented
as a graph. A comparison between the Fault Tree Analysis and the FMEA can be found
at [60].
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5.3.3 Hazard and Operability Study
The last method presented here is the Hazard and Operability Study (HAZOP). It was
developed by the Imperial Chemical Industries in the United Kingdom in the 1960s [31].
HAZOP uses guide words to identify the source of risks that may represent risks to
personnel or equipment or prevent efficient operation [18]. Those guide words (e.g. More,
Less, or Reverse) represent deviations of parameters to identify their consequences. The
following steps represent a simplified procedure of a HAZOP [54]:

1. select a team leader and a multidisciplinary team with four to six members [18]
2. collect information on the plant and represent them in an appropriate way, such as

Piping and Instrumentation Diagram (P&ID) or Engineering Line Diagram (ELD)
3. performs for each node in the plant following steps:

a) explain the intention of the node
b) assign to each parameter (e.g. pressure or flow) a guide word and identify the

consequences of this deviation
c) assess the consequences and define actions against these consequences if

necessary

In contrast to the HAZOP, FMEA focuses less on guide words than on the cause factor [56].
For the deployment tool, we only need to identify the possible faults since any fault
results in a rollback of the RSS and a notification to the operator. The FTA is the most
straightforward analysis of the three introduced methods, which fulfills the requirement
of identifying the fault states. In addition, it provides an ideal graphical representation.
For that reason, the FTA is used in this work.

5.3.4 Fault Tree Analysis for the Deployment Tool
Figure 5.7 shows a Fault Tree Analysis for the RSS focusing on the deployment process.
The top node indicates an error in the RSS. This can be split into two subgroups. An
operational error and a configuration error. The operational error can happen at any
time independently of the deployment. Therefore those errors are not monitored or
handled by the deployment tool. The configuration errors, though, need to be detected
and handled by the deployment tool.

Three different faults can cause a configuration error: an error response from an OPC UA
or a NETCONF server, or if a device is not reachable. A not expected configuration
causes an error reply from one of the two servers. If a device is not reachable, it can be
caused by a device or network problem. A network error can be caused by a network
overloaded with data traffic, a physical network problem, or a loss of messages in the
network. A device error can be caused by either a NETCONF or an OPC UA server.
The error handling of those errors is described in Section 5.2.3.
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5.4 Deployment Procedure with Error Handling
In Section 5.2, the communication between the deployment tool and the three layers
is discussed. This section shows the procedures inside the deployment tool. Figure 5.8
shows an activity diagram for the initial commissioning of a safety system, including
error handling. In order to keep the diagram clear and simple, the TCP connection
handling is not represented in Figure 5.8. The deployment tool, though, establishes a
TCP connection to all clients and closes it right before the deployment terminates. After
the basic TSN configuration, as described in Section 5.2.2, a new connection is added.
At first, all SafetyProviders are added, then all SafetyConsumers, and so on. After each
step, the deployment tool checks if an error occurs on any node during the configuration.
If an error occurs during the configuration deployment, all previously performed actions
on the OPC UA server are reversed. It is unnecessary for the TSN bridges to reverse
the configuration since the RSS can not be used after a failed deployment, and the old
configuration is overwritten during the next deployment. In case of an error during such
a reverse, it cannot be handled by the deployment tool because removing a once added
entity can only be caused by external factors which are out of the scope of the deployment
tool. As the last step, all Publishers are activated, followed by the SafetyConsumers. An
error in those two steps also leads to a reversal of the previously performed actions.
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CHAPTER 6
Evaluation

The evaluation of the deployment tool is performed with an emulated ns-3 network [1]
and Linux Container (LXC) containers, where the TSN and the OPC UA servers are
running. In order to compare the emulated network with a hardware network, the LXC
containers run on distributed hosts, which are connected over a hardware network. The
results are compared and discussed at the end of this chapter.

6.1 Used Software

Since there is just a limited amount of hardware yet available with which the deployed tool
could be tested, we use software services to simulate the devices. For the TSN simulation,
Netopeer2 [22] is used as a NETCONF server and open62541 [4] as an OPC UA server.

6.1.1 OPC UA

To run an OPC UA server, we use the open62541 stack. Open62541 is an open-source
implementation of OPC UA, written in C. It includes an implementation of the OPC UA
PubSub standard but not the OPC UA Safety. For the evaluation, we create a Publisher
and a Subscriber, with enabled PubSub Information Model methods. These methods
are used by the deployment tool to create the connections between the Publisher and
Subscriber. The open62541 does not include an Enable and Disable method to activate
the Publishers, according to Figure 5.8. The activation, though, is essential to evaluate
because a quick activation is a key feature for a configuration change, which can be done
in future work. Therefore, we implemented these two methods in the open64541, which
can enable and disable a Publisher, but without the additional functionalities described
in Section 2.1.1.
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6.1.2 TSN
The configuration for TSN devices is handled by a NETCONF server. For the evaluation,
we use the Netopeer2 server, which handles the NETCONF communication and uses
Sysrepo [23] as a data store. Sysrepo also stores all the YANG models, which model the
configuration of the network devices. For the evaluation, the following YANG models are
used:

• ietf-interfaces@2018-02-20

• iana-if-type@2020-01-10

• ieee802-types@2020-10-23

• ieee802-dot1q-types2020-10-23

• ieee802-dot1q-bridge@2020-11-24

• ieee802-dot1q-sched@2020-07-07 with enabled scheduled-traffic feature

• ietf-gptp@2018-03-28 with slight modification that the dependencies are fulfilled

6.1.3 ns-3
ns-3 is an open-source discrete-event network simulation, mainly used for research and
education [1]. A simulation can be either written in C++ or Python. ns-3 uses the
following abstractions to create a simulated network [13]:

• Node: represents a network device like a computer or a mobile device

• NetDevice: is installed a node and represents Network Interface Card (NIC)

• Channel: represents a connection between nodes and is connected to the NetDevices
of the nodes

• Helpers: arrange a connection between nodes, NetDevices, and Channels

• Application: represents a user application that generates some events in the
simulated network

ns-3 can also include TAP devices where user applications can use ns-3 as an emulated
network. These user applications generate the events in real-time and replace the ns-3
Applications. The ns-3 network behaves then for the user applications like a real network
with the same timings [21].
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6.1.4 LXC
LXC allows the creation of multiple isolated Linux virtual environments on a host
machine. These virtual environments are called containers, which can be used to run
applications. The difference between virtual machines and virtual environments is that
virtual environments do not emulate hardware, only the operating system. This makes it
much faster to start a container than a virtual machine [48]. LXC uses a virtual network
interface to communicate with the host machine. This virtual network interface can
then be connected to other physical and/or virtual network interfaces with the help of a
Linux network bride. Docker is also software for creating virtual machines. A comparison
between Docker and LXC is performed by Moravcik et al. [48].

6.2 Evaluation Environment with ns-3
To test the deployment tool and evaluate the performance, an environment is needed
where the deployment can be tested with multiple OPC UA and NETCONF servers.
However, the problem is that there is no device with OPC UA Safety available, and
TSN switches with NETCONF are just in limited quantity available by the end of this
project. Therefore, we decided to simulate the RSS and perform the evaluation on that
simulation.

In order to make a meaningful evaluation, the deployment tool should be tested with
multiple OPC UA and NETCONF clients. Figure 6.1 shows a network structure of an
RSS, which is used for the first evaluation. The structure is split into multiple cells
containing a maximum of four SafetyProviders or SafetyConsumers. Each cell has one
bridge connected to a backbone switch, which is directly connected to the deployment tool.
In order to simulate the NETCONF server from a TSN bridge, each bridge is connected
to an LXC with a NETCONF server. In some use cases, it is necessary that the end
stations use TSN and, therefore, also NETCONF. This scenario would require slightly
modifying the evaluation environment, but this is out of the scope of this evaluation.

6.2.1 LXC setup
All the OPC UA and NETCONF servers are running in separate LXCs with Ubuntu
22.04. The snap package, which is by default activated in Ubuntu, generates traffic,
which can influence the performance evaluation. For that reason, we deactivated the snap
daemon. Because there is no OPC UA Safety stack available yet, all SafetyConsumer and
SafetyProvider containers only contain an OPC UA server with a PubSub stack. The
containers with a NETCONF server include all the models described in Section 6.1.2,
but it does not apply the configuration on any hardware, which could also increase the
deployment time. Those containers are connected over an ns-3 network that is running
on the host machine. In order to simulate different network states, an additional delay
and error model can be added to each Ethernet line, which is represented as orange lines
in Figure 6.1.
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Figure 6.1: Structure of ns-3 evaluation environment

6.2.2 Connecting Components with ns-3
The ns-3 network simulator can either simulate an application to generate traffic or get
real-time data from a running application. Because we want to test the whole combination
between the deployment tool, network, and the device under configuration, we chose
the approach with the real-time application data. As mentioned before, each instance
of an OPC UA or NETCONF server runs in separate LXCs. Those containers must be
connected via the emulated ns-3 network with the deployment tool. Figure 6.2 shows how
those connections are realized. Each LXC has a virtual Ethernet interface, which can be
accessed by the host of the LXCs. This veth interface is connected to a Linux bridge,
which also has a connection to a separately created TAP interface. These TAP interfaces
can then be connected to the ns-3 network simulator. The same can be done to connect
the host with the ns-3 network. After deleting the network routes on the host, the traffic
between the LXCs and the deployment tool is routed over the simulated network.
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Figure 6.2: Connection between LXC and ns-3

6.3 Results

The evaluation is split into two parts. At first, a qualitative evaluation is performed,
where the correct functionality of the deployment tool is tested. The second part evaluates
the performance of the deployment tool in different configurations.

6.3.1 Qualitative Evaluation

The qualitative evaluation checks the correct response on all the faults which were found
with the fault tree analysis shown in Figure 5.7. The deployment tool must behave on
those faults as defined in the activity diagram in Figure 5.8. Table 6.1 lists all tested
faults, how they are simulated, and how the deployment tool responds to them.
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error way of simulating the error expected behavior result
OPC UA
server
problem

disable the OPC UA server reply an error and stop the de-
ployment ✓

NETCONF
server
problem

disable the NETCONF
server

reply an error and stop the de-
ployment ✓

physical
network
error

remove connection to a single
LXCs

reply an error and try to rollback
all modified OPC UA devices to
the initial condition

✓

loss of mes-
sages

use an error model in ns-3,
that the TCP can not handle

reply an error and try to rollback
all modified OPC UA devices to
the initial condition

✓

overloaded
network

increase the latency of the
Ethernet links in the ns-3
network, which cause a time-
out in the deployment tool

reply an error and try to rollback
all modified OPC UA devices to
the initial condition

✓

OPC UA
replies an
error

deploy a wrong OPC UA con-
figuration

reply an error and try to rollback
all modified OPC UA devices to
the initial condition

✓

NETCONF
replies an
error

deploy a wrong NETCONF
configuration

reply an error and try to rollback
all modified OPC UA devices to
the initial condition

✓

Table 6.1: Qualitative tests for the deployment tool

6.3.2 Quantitative Evaluation with ns-3 Network

The second part of the evaluation is the quantitative evaluation. In this section, the
performance of the deployment tool is tested. Figure 6.1 gives an overview of the used
evaluation structure. Since the deployment tool deploys the configuration on OPC UA
Publishers, OPC UA Subscribers, and TSN bridges at the same time, we define the unit
communicationSet. This unit is used in the evaluation to define the number of devices
under configuration. One communicationSet contains one Subscriber, one Publisher, and
multiple TSN bridges. Because the relevant part for the configuration of the TSN bridges
is the NETCONF server, only the NETCONF server was used for the evaluation. All
involved devices, namely Subscriber, Publisher, and NETCONF servers are running on
separate LXCs. Figure 6.1 shows the evaluation environment with six communicationSets.
A precise relation between a communicationSets and the individual instances can be
found in Formulas 6.1 to 6.4.
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#ProviderNodes = #ConsumerNodes = #communicationSets (6.1)
#Publishers = #Subscribers = #communicationSets ∗ 2 (6.2)

#NETCONF_servers = #communicationSets

2 + 1 (6.3)

#LXC_Containers = 5
2 ∗ #communicationSets ∗ +1 (6.4)

Duration of Deployment

Figure 6.3 shows Box-Plots of the deployment duration with a different number of com-
municationSets. The duration measurement starts when the deployment process starts
until all configuration modifications get a positive reply from devices under configuration.
This includes the TCP and SSH handshake, but not the connection termination.

The Box-Plots in Figure 6.3 shows a mainly linear increase of the deployment du-
ration until 44 communicationSets. Starting with 48 communicationSets, the variation
increases, and the number of outliers also increases with the number of communication-
Sets. As it is clearly visible in the Box-Plot with 72 communicationSets, the deployment
duration increases significantly and is not linear anymore. The reason for that is the
architecture of the evaluation environment shown in Figure 6.2. All LXCs, the ns-3
network, and the deployment tool are running on one single host. On a deployment event,
all NETCONF and OPC UA servers need to process the new configuration simultaneously.
The ns3-network needs to transfer all the configurations at the same time as well. For
that reason, the number of communicationSets is limited by the performance of the host
machine. To limit the influence of the host machine on the evaluation results, we limit
for further evaluations the number of communicationSets to 40.

Figure 6.4 shows the same data as Figure 6.3, but the number of nodes is limited to
40. This allows seeing the statistical information of the deployment process with fewer
communicationSets in more detail. By looking at the median values, it is possible to see
that the increase in the deployment duration is mainly linear. If we compare the time
between 20 and 40 NodeSets, the time doubles from 612 ms to 1285 ms. The comparison
between 12 and 24 nodes (431 ms and 693 ms) shows that duration increases even less.
This is caused by the fact that the deployment tool needs to establish an SSH connection
to all NETCONF servers, which takes a certain amount of time, even with one node.
The SSH connection establishment takes, therefore, a bigger part of the whole duration.
This will be discussed in more detail in Section 6.3.2.

Enable OPC UA Publisher

Enabling an OPC UA Publisher can be a time-critical task for future works, where the
configuration needs to be changed without interrupting the RSS. Therefore, Figure 6.5
shows Box-Plots of the Publisher enable duration. For that measurement, a TCP
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Figure 6.3: Duration of deployment for ns-3 network
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Figure 6.4: Duration of deployment until 40 communicationSets for ns-3 network

connection is established in advance. The measurement starts when the OPC UA method
Enable() is called and stopped when the last positive reply arrived from the OPC UA
Server. As we can see in the Box-Plots, the duration increases rapidly, starting with
32 communicationSets. It can be assumed that this steep rise is based on the chosen
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evaluation environment. In order to prove this assumption, a comparison with the
distributed hardware environment will be performed in Section 6.3.3.
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Figure 6.5: Duration of enabling the OPC UA Publishers for ns-3 network

Composition of Deployment Duration

As discussed in Section 5.4, the initial commissioning deployment process consists of
multiple steps. Figure 6.6 shows the percentage of the total time required for the individual
steps. To keep the pie chart clear, the deploy basic TSN config and Deploy TSN Config
were combined into one slice. The left pie chart in Figure 6.6 shows the deployment
with 20 communicationSets and the right with 40 communicationSets. The orange part
is the duration for TSN, and the gray part for OPC UA. Most of the time is used to
establish the connection to the servers. Since NETCONF requires an SSH connection, it
takes longer than the TCP connection establishment to the OPC UA servers. It stands
out that the connection to NETCONF servers at the 20 communicationSets evaluation
uses with 34.1% a more prominent part than the 40 communicationSets evaluation. To
explain that, we look at Table 6.2, which compares the single median durations of the
deployment steps. The NETCONF connection duration increases from 206 ms to 277
ms, relatively little compared to the other values. This can be explained with the SSH
handshake, which requires an algorithm negotiation and a key exchange. Since this
requires some time where the deployment tool waits for a response, the parallelization
can improve performance better than the other steps.
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Figure 6.6: Distribution of duration

communicationSets 20 40
OPC UA connect 98.78 ms 261.04 ms

add Publishers 56.27 ms 139.99 ms
add Subscribers 116.33 ms 251.33 ms

enable Publishers 19.07 ms 63.12 ms
NETCONF connect 206.08 ms 276.80 ms

TSN deployment 109.16 ms 275.45 ms

Table 6.2: Qualitative tests for the deployment tool

Distribution of Measurements

Each deployment process variates on the deployment time, even if the same data are
transmitted. This is caused by the involved host machines and the network, which
run under different loads over time. In order to achieve a comprehensive result, 100
measurements were performed for each number of communicationSets. Figures 6.7 and
6.8 show the distribution of the deployment duration of 20 and 40 communicationSets.
The deployment duration starts with the TCP connection and ends with a positive
response from all devices under configuration. The dashed line represents the median
value from the measurements. If we compare the two histograms, we can see that the
duration increases with a higher number of communicationSets.
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Figure 6.7: Histogram of deployment duration with 20 communicationSets for ns-3
network
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Figure 6.8: Histogram of deployment duration with 40 communicationSets for ns-3
network
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6.3.3 Comparison between ns-3 and Hardware Network
As discussed in the previous section, the number of communicationSets is limited because
of the host’s performance limitation. In order to reduce this limitation, the LXCs were
distributed on four different hosts, and the ns-3 bridges were replaced with Linux bridges,
as shown in Figure 6.9. Each node runs multiple containers with OPC UA and NETCONF
servers. A Linux bridge connects a maximum of four containers with an OPC UA server
and exactly one container with a NETCONF server. Each host uses one Linux bridge as
a backbone to connect all bridges.

The LXCs were distributed in a way that the load is balanced equally, even if only four
communicationSets were used. The connection between the hosts is established with a
MikroTik CRS112-8P-4S-IN switch and an additional Ethernet interface on each host.
The network speed on the deployment tool is reduced to 10 Mbit/s to keep the evaluation
with the hardware switch comparable with the ns-3 network. To evaluate the influence
of the network speed on the deployment duration, a second test with 100 Mbit/s was
performed.
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Figure 6.9: Structure of hardware evaluation environment

Figure 6.10 compares the median deployment duration of the ns-3 and the hardware
evaluation environment. The blue line shows that above 60 communicationSets, the
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deployment duration increase exorbitantly on the ns-3 network. The comparison between
the orange and the green line shows that also the network speed has a significant impact
on the deployment duration. In order to see the deviation and the outlines of the duration
with a hardware network, Box-Plots are used in the following section, as before with the
ns-3 network.
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Figure 6.10: Compare ns-3 with hardware evaluation environment

Compare Duration of Deplyoment

Figures 6.11 and 6.12 show the Box-Plots for the duration of the whole deployment
process, as already defined in Section 6.3.2. A comparison with the ns-3 network in
Figure 6.3 shows that the outliers start later with more NodeSets. This proves the as-
sumption that the load on a single host machine influences the duration of the deployment.

An interesting observation can be made by comparing Figures 6.11 and 6.12. The
outliers start at the 100 Mbit/s network already with 80 NodeSets and at the 10 Mbit/s
network just at 110 communicationSets, even though the median duration is much shorter.
A closer evaluation of the raw data shows that these outliers are caused by the TCP and
SSH handshake at the connection establishment. The actual cause was not investigated,
but a possible reason is that the flood of connection requests is higher if they are sent
from a 100 Mbit/s interface. This causes a high CPU usage on the hosts, which can then
cause a packet loss or a delayed reply.
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Figure 6.11: Deployment duration for 10 Mbit/s network

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Number of communicationSets

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 [

m
s
]

Figure 6.12: Deployment duration for 100 Mbit/s network

Enable OPC UA Publisher

As described in the evaluation of the ns-3 network in Section 6.3.2, enabling a Publisher
can be a time-critical task for future work. In Section 6.3.2, we assume that the rapid
increase of the Enable Publisher duration with higher communicationSets is caused by
the structure of the evaluation environment. Therefore, that analysis is repeated with
a hardware network. In Figures 6.13 and 6.14, it is clearly visible that the network
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bandwidth has a significant influence on the Enable Publisher duration. On the 10 Mbit/s
network, outliers show that the duration of enabling Publishers for 140 communicationSets
can take above 240 ms. On the other hand, the 100 Mbit/s network shows outliers
already at 50 communicationSets. The duration, though, is always below 25 ms. The
impact of the network bandwidth of the Enable Publisher duration compared with the
other steps is shown in the following section.
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Figure 6.13: Duration of enabling the OPC UA Publishers for 10 Mbit/s network
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Figure 6.14: Duration of enabling the OPC UA Publishers for 100bit/s network
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Composition of Deployment Duration

Figures 6.15 and 6.16 show the percentage of each step of the deployment duration for a
10 and a 100 Mbit/s network, where the TSN part is orange and the OPC UA part gray.
The trend that a higher network bandwidth reduces the Enable Publisher duration can
also be seen here. For 40 communicationSets with the 10 Mbit/s network, the Enable
Publisher duration takes 1.8% of the whole deployment time, while on the 100 Mbit/s it
reduces to 0.7%. This shows that the network bandwidth has a relatively high impact on
the Enable Publisher duration.

The TSN connection establishment and adding an OPC UA Subscriber and a Pub-
lisher takes relatively longer with higher bandwidth. This is because these steps takes
more time on the hosts than on the network. For example, enabling a Publisher only
changes the Publisher’s state, while adding a Subscriber requires multiple steps on the
OPC UA server, such as adding a Connection, ReaderGroup, and DataSetReader and
adding the subscribed variables afterward in the address space. The absolute time is
always decreasing with higher bandwidth, as seen in Table 6.3.

NodeSets 20 40

Network ns-3 10
Mbit/s

100
Mbit/s ns-3 10

Mbit/s
100
Mbit/s

OPC UA connect 98.78 57.32 8.82 261.04 112.12 15.24
add Publishers 56.27 67.10 39.45 139.99 131.39 75.71
add Subscribers 116.33 131.17 99.30 251.33 257.91 194.68
enable Publishers 19.07 8.39 2.36 63.12 15.68 3.11
NETCONF connect 206.08 108.40 28.66 276.80 194.86 38.91
TSN deployment 109.16 130.35 86.30 275.45 166.09 130.12

Table 6.3: Duration in ms of single steps for 20 communicationSets

NodeSets 80 160
Network 10 Mbit/s 100 Mbit/s 10 Mbit/s 100 Mbit/s

OPC UA connect 321.31 26.60 1068.36 56.01
add Publishers 442.84 148.18 698.07 300.84
add Subscribers 513.33 387.23 1036.15 783.78

enable Publishers 31.30 4.63 61.81 8.54
NETCONF connect 612.16 61.10 1106.32 106.54

TSN deployment 284.86 190.96 554.24 456.60

Table 6.4: Duration in ms of single steps for 80 and 160 communicationSets
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Figure 6.15: Distribution of duration for 10 Mbit/s network
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Figure 6.16: Distribution of duration for 100 Mbit/s network

Distribution of Measurements

For the distribution evaluation of the deployment duration process, histograms were
used. The first two histograms in Figures 6.17 and 6.18 show the distribution, as it is
defined in Section 6.3.2, at the ns-3 duration measurements. It is possible to see that
the distributions increase with a rising number of communicationSets, as it was already
the case with the ns-3 network. The histogram in Figures 6.19 and 6.20 show a rising
distribution for the 100 Mbit/s network with a rising number of communicationSets as
well.
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Figure 6.17: Histogram of deployment duration with 20 communicationSets for 10 Mbit/s
network
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Figure 6.18: Histogram of deployment duration with 40 communicationSets for 10 Mbit/s
network

74



6.3. Results

200 250 300 350 400 450 500 550 600
Time [ms]

0

5

10

15

20

25

F
re

q
u
e
n
c
y

Figure 6.19: Histogram of deployment duration with 20 communicationSets for 100
Mbit/s network
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Figure 6.20: Histogram of deployment duration with 40 communicationSets for 100
Mbit/s network
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CHAPTER 7
Conclusion & Outlook

Today’s manufacturing systems are required to perform the production of small batches
or even lot-size one. This makes it necessary to use flexible systems which can be
quickly adjusted for new products. RMSs can fulfill those requirements, but the safety
systems at RMSs are still static. Some use cases require additionally a safety system,
which can be reconfigured with minimal downtime. This makes it necessary to extend a
conventional safety system, which consists of a safety sensor, the safety logic, and the
safety actuator, by an interoperable network. RSSs use the network to flexibly connect
the three conventional parts of a safety system. This allows adjusting the safety system
according to the current requirements with minimal downtime.

In this work, we showed how a safety stack consisting of OPC UA Safety, OPC UA
PubSub, and a TSN network can be configured with one central tool. The central
deployment tool uses OPC UA RPCs to configure the OPC UA server and NETCONF
to configure the TSN network. Nevertheless, there are still some problems with the
standardization of these interfaces. The OPC UA Safety standard [8] defines an SPI
for configuration. Unfortunately, the mechanism for setting the parameters over that
interface is vendor-specific and not part of the standard. Therefore, it is impossible to
configure OPC UA Safety with a hardware-independent tool. Additionally, the SPI does
not define a parameter to enable or disable a SafetyConsumer or a SafetyProvider over
that interface, which is required for an RSS. It can be just hoped that the OPC UA
Safety standard gets extended by a proper configuration interface. The configuration
of the OPC UA PubSub and TSN bridges worked as defined in the standard. However,
the standardized YANG models [29] for TSN are available in different revisions. These
revisions often differ significantly, which requires an implementation of each revision
at the deployment tool to be compatible with all hardware vendors. Because of the
limitation of the OPC UA Safety and the fact that there is no OPC UA Safety stack
publicly available, it was left out of the evaluation.
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For the evaluation, we used an emulated ns-3 network and a hardware network with
10 Mbit/s and 100 Mbit/s. For the NETCONF and the OPC UA servers, we used
netopeer2 [22] and open62541 [4] and let them run in multiple LXCs. The first evaluation
was performed with an emulated ns-3 network on a single host. It turned out that the
number of communicationSets with an emulated ns-3 network is limited by the host’s
performance. Therefore, the second evaluation was performed with a hardware network.
The evaluation showed that the bandwidth has a different influence on the duration of
all deployment steps. While a change from a 10 Mbit/s network to a 100 Mbit/s network
speeds up the enablement of 80 Publishers by factor 5, it only speeds up the creation of
40 Subscribers only by factor 1.3.

Because the available TSN bridges are limited on the market, the evaluation with
hardware devices is left for future work. A network, which consists of TSN switches and
OPC UA servers from different vendors, could be built. This network can be compared
with the devices simulated in the LXC containers.

Another part that can be done in future work is implementing and evaluating use
cases defined in Chapter 4 since in this work, only the Initial commissioning use case
was closer discussed. In that future work, the main focus could be reconfiguring an
RSS during runtime. For that, it could be necessary to try different sequences of the
deployment process or a different parallelization of the deployment steps.

As mentioned in this work, the deployment tool was designed to be implemented in
a self-organizing safety system model, as shown in Figure 3.1. The integration of the
deployment tool, which includes integrating an interface to the KBS, is also left for future
work.
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