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Kurzfassung

Acoustic Scene Classification (ASC) verfolgt das Ziel, die Umgebung anhand von Audio-
aufnahmen zu identifizieren, in denen sie aufgenommen wurden. Die Entwicklung von
Computerverfahren zur Erkennung der Umgebung ist Teil der Forschung in Bereichen
wie maschinelles Lernen, Robotik und künstliche Intelligenz. Diese Arbeit untersucht
die Verwendung von ASC im privaten Bereich, indem ein Prototyp entwickelt und eine
Fallstudie durchgeführt wird, um zu evaluieren, ob mit dieser Technologie eine bestimmte
psychologische Wirkung erzielt werden kann. Insbesondere untersuchen wir, ob eine
akustische Illusion, sich in einer anderen Stadt zu befinden, erzeugt werden kann, wenn
die Geräuschkulisse des Benutzers basierend auf dem Klassifikationsergebnis mit einer
anderen Geräuschkulisse überlagert wird.

In dieser Arbeit erforschen wir den aktuellen Stand der Technik für ASC, indem wir die an
die DCASE 2020 Challenge eingereichten Systeme untersuchen. Anhand der Auswertung
wählen wir ein Basismodell, das ein ResNet ist und Log-Mel Spektrogramme ergänzt
durch Log-Mel Deltas und Delta-Deltas als Eingabe akzeptiert. Wir modifizieren das
Netzwerk, um 9 akustische Szenen zu klassifizieren. Der TAU Urban Acoustic Scenes 2020
Mobile Datensatz wird zum Trainieren des Modells verwendet. Um das Netz zu kalibrieren,
experimentieren wir mit verschiedenen Hyperparametern, Verlustfunktionen und Data
Augmentation Strategien und vergleichen die Ergebnisse anhand der Testgenauigkeit. Wir
erreichen die beste Leistung mit einer Testgenauigkeit von 77, 99%, indem wir Categorical
Focal Loss und Mixup als Data Augmentation Methode verwenden.

Für den Prototypen wählen wir 4 Städte aus, die unterstützt werden sollen, und erstellen
einen Geräuschkulissen-Datensatz mit Audioaufnahmen für jede Szene und Stadt, indem
wir die Audiodaten aus Videos extrahieren, die den gewünschten Inhalt enthalten. Dann
entwickeln wir eine Serveranwendung mit Flask, die eine API bereitstellt, um Vorhersagen
aus dem Modell zu erhalten und Daten über die durchgeführten Klassifizierungsprozesse
zu protokollieren. Schließlich entwerfen und implementieren wir eine mobile Anwendung
mit dem Flutter SDK. Die Anwendung fordert vom Server in regelmäßigen Abständen
Vorhersagen für Audiodaten an, die sie mit dem Mikrofon des Geräts aufgezeichnet
hat. Basierend auf dem Klassifizierungsergebnis überlagert die mobile Anwendung die
akustische Umgebung des Benutzers, indem sie eine Audioaufnahme für die erkannte
Szene und die ausgewählte Stadt aus dem Geräuschkulissen-Datensatz abspielt.
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Schließlich verwenden wir den Prototypen in einer Fallstudie, in der eine Gruppe von
Teilnehmern die mobile Anwendung in einem vordefinierten Rahmen testet. In der
Auswertung schätzen wir die Genauigkeit des Klassifizierers in einem realen Szenario
mit 65%. Wir entdecken, dass die akustische Illusion, sich in einer anderen Stadt zu
befinden, durch den Prototypen erzeugt wird. Außerdem zeigen wir, dass diese Illusion
umso häufiger erlebt wird, je genauer die Klassifizierung wahrgenommen wird und je
persönlicher die Beziehung zwischen dem Nutzer und der ausgewählten Stadt ist.



Abstract

Acoustic Scene Classification (ASC) aims to identify the environmental surroundings
from audio recordings in which they were collected. Developing computational methods
to recognize the environments is part of the research in fields such as machine learning,
robotics and artificial intelligence. This work explores the usage of ASC in the private
sector by developing a prototype and performing a case study in order to evaluate if
a certain psychological effect can be achieved with this technology. In particular, we
examine if an acoustic illusion of being in a different city can be created when the user’s
soundscape is overlaid with a different soundscape based on the classification result.

In this thesis, we explore the current state-of-the-art solutions for ASC by investigating
the submissions of the DCASE 2020 challenge. Based on the evaluation we choose a
baseline model, which is a ResNet that accepts log-mel spectrograms complemented by
log-mel deltas and delta-deltas as input. We modify the network in order to classify 9
acoustic scenes. The TAU Urban Acoustic Scenes 2020 Mobile dataset is used to train
the model. To calibrate the network, we experiment with different hyperparameters, loss
functions and data augmentation strategies and compare the results based on the test
accuracy. We achieve the best performance with a test accuracy of 77.99% by using
categorical focal loss and Mixup as data augmentation technique.

For the prototype we select 4 cities to support and create a soundscape dataset including
audio samples for each scene and city by extracting the audio data from videos that contain
the desired content. Then, we develop a server application with Flask to provide an API
to get predictions from the model and to log data about the performed classification
processes. Eventually, we design and implement a mobile application using the Flutter
SDK. The application requests at intervals predictions from the server for audio data,
that it recorded using the device’s microphone. Based on the classification result, the
mobile application overlays the acoustic environment of the user by playing an audio
sample for the recognized scene and the selected city from the soundscape dataset.

Finally, we use the prototype in a case study where a group of participants tests the mobile
application within a predefined scope. In the evaluation, we estimate the classifier’s
accuracy in a real life scenario with 65%. We discover that the acoustic illusion of being
in a different city is created by the prototype. Additionally, we show that this illusion is
experienced more often the more accurate the classification is perceived and the closer
the personal relationship between the user and the selected city is.
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CHAPTER 1
Introduction

The first chapter gives an overview over this work. In Section 1.1 the subject of the thesis
is introduced and reasoning behind why this was chosen is explained. Additionally, the
associated challenges are laid out. The contribution of this work is stated in Section 1.2.
Lastly, Section 1.3 gives an overview over the structure of the thesis.

1.1 Motivation and Problem Statement
Ever since the start of the Digital Revolution, computers have become the main tool for
data processing. Over the past decades, the computing power and the storage capaci-
ties have increased tremendously, turning computers into more intelligent information
processing tools that are able to recognize patterns and learn new information. Due to
this development, and the increasing amount of available digital data, machine learning
has become a growing research field and has gained importance in recent years. The
field of machine learning is the study of algorithms that allow computer programs to
automatically improve through experience [Mit97]. This is achieved by using algorithms
that can analyze data, learn from them and then make a determination about new data.
The ability to recognize unseen data is one of the reasons why current approaches to
object recognition make essential use of machine learning methods. Machine learning
systems are used to identify objects in images, to transcribe speech into text or to
select relevant results of searches. Increasingly, these applications make use of a class of
techniques inspired by the structure and function of the brain’s neural networks called
deep learning. Deep learning is a new field of machine learning that has been growing
rapidly due to its huge success in a variety of application domains by outperforming the
traditional machine learning approaches, such as for speech recognition [HDY+12] and
image classification [KSH12]. Furthermore, with the increasing demand for applications
that can benefit from context awareness, like smart devices and robotics, environmental
sound processing has attained popularity [SAW95]. New fields such as computational
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1. Introduction

auditory scene analysis [WB06], soundscape cognition [RV13], sound event detection
[YKM17] and acoustic scene classification [BGSP15] have emerged under the broad
spectrum of machine hearing [Lyo10]. This work attempts to contribute to the research
of acoustic scene classification.

Acoustic scene classification (ASC) allows the recognition of environments based on their
general acoustic characteristics by selecting a semantic label (e.g. airport, metro station,
urban park) to an audio recording. The first method appearing in the literature to
specifically address the ASC problem was published about two decades ago [SM97]. Since
then, significant research efforts have been put into this classification task due to its
diverse applications: automatic audio surveillance [AMK06], robotics sensing [MAGH14],
multimedia content analysis [WLH00] and machine listening [BGSP15]. This is not
surprising, as audio information, in addition to images, often can be a good supplement
for solving many real world problems. For example, during hours of darkness, ASC can
keep the surveillance system running.

ASC systems can be described as a composition of two main parts: feature extraction
and decision making based on pattern recognition. In order to recognise patterns in audio
samples, the information describing the most meaningful characteristics of the signal
has to be retrieved first. This is in order to obtain a compact and expressive description
that is machine-processable. Audio feature extraction uses signal processing techniques
and addresses the analysis and extraction of meaningful information from audio signals
[CB05]. Features may capture audio properties, such as the fundamental frequency
and the loudness of a signal [MZB10]. As of today a large number of audio features
exists in audio retrieval for different purposes. Mel-Frequency Cepstral Coefficients
(MFCCs) is a common approach for acoustic feature representation and was originally
used in speech recognition [MZB10, PLV+19]. Due to the big success of deep learning
in image classification, log-mel spectrograms became the dominant feature of deep
learning based solutions for ASC [KSH12, PLV+19]. Once the features are extracted,
a classification technique is used to catalogue the features [CS03]. It is common to
combine several features into a feature vector. The goal of the classification is to predict
the class membership of a pattern represented by a feature vector. The output of a
classifier is the predicted class label of the feature vector. The recent research shows that
classification systems based on Deep Neural Networks (DNNs) outperform the traditional
classification approaches based on Gaussian mixture models and support vector machines
[SGG20, MHB+18].

This thesis explores the usage of ASC in the private sector. Having lived abroad in several
countries for most of my life, I know from personal experience how it is to be homesick.
Hence, I quickly warmed up to the idea of creating a mobile application that could create
an acoustic illusion of being back home. The aim of this work is to provide a cross
platform mobile application that can classify the environment based on the surrounding
sounds and play matching sound samples of the same scene of a different city according
to the classification result. The focus of the thesis is to answer the following research
questions:
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1.2. Contribution

• Which accuracy does the classifier have when applied to real life recordings?

• How does the user experience the overlay of a different soundscape? (How does
it feel to walk on a public square in Vienna and experience the soundscape of a
public square in Moscow?)

• Does the overlay have any effect on the user’s perception of their surroundings?

• Will the app manage to provide an acoustic illusion of being in the selected city?

In order to answer these questions, several problems have to be solved. First, the state-
of-the-art methods for ASC have to be researched and compared. Then, based on the
outcome of the research, the most promising ASC classifier has to be chosen and trained.
As for the training, a large enough dataset including recordings of several scenes in
different cities has to be found or created. Afterwards, a mobile application has to be
implemented which will record the surrounding sounds at regular intervals, classify those
recordings and then play a sound sample of a chosen city based on the classification
results. Once the prototype is implemented, a case study has to be designed and taken
by a group of people to evaluate the classifier’s performance in real world scenarios and
the overall experience of the users. Eventually, the results of the case study have to be
analysed and final conclusions have to be made.

1.2 Contribution
The main goal of this thesis is to provide a prototype that uses ASC and to use it for a
case study to research the effect it has on human’s perception. The author’s contribution
consisted of several parts that are explained below.

First, we did the literature research to gather background information which served
as the theoretical basis of the classifier. Subsequently, we investigated a few chosen
state-of-the-art methods for ASC and compared in details. For this purpose, we examined
the submissions of the challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE) in 2020. Based on the outcome of that analysis, we selected an ASC
framework as the baseline for the planned classifier. We adapted, calibrated and trained
the chosen framework using machine learning techniques which required appropriate
training and test datasets being explored and modified according to the requirements.
Once the model was ready to be used, we implemented a web application to provide a
RESTful API to get predictions from the model. Then, we developed a cross platform
mobile application with the following features:

• A simple UI with the possibility to choose a city and to start the classification
process

• Classification of the environment at regular intervals by recording the surrounding
sounds and sending them to the web-based classification service

3



1. Introduction

• Audio player to play an audio sample of the chosen city accordingly to the prediction
of the model

Of note is that we created the collection of audio samples to play in response to the
classification results independently. For this purpose suitable video recordings were
searched online, evaluated and processed. Eventually, in the last phase of this work we
designed a case study focusing on the questions this thesis aimed to answer. Many aspects
had to be taken into account, such as the composition of the test group, the testing
conditions and the structure of the survey. Finally, we analysed and presented the results
of the case study. Even though the presented results could not be counted as statistically
representative due to the small number of participants, interesting correlations could be
observed and corresponding conclusions drawn.

1.3 Thesis Structure
The overall ambition of this thesis is to develop a software prototype that uses ASC to
create an acoustic illusion and to evaluate its effect on human’s perception when used
in real world scenarios. The steps to achieve this goal are mirrored by the structure
of the thesis, which is organized as follows: In Chapter 2 the theoretical background
of this work, including theory of audio signal processing, audio feature extraction and
machine learning methods, is described. Chapter 3 gives an in-depth description of the
state-of-the-art ASC frameworks and their comparison as well as the design and the
implementation of the prototype. The evaluation of the prototype, consisting of the case
study and the analysis of the case study results, is explained in Chapter 4. Finally, in
Chapter 5 a summary of conclusions and future work is presented.

4



CHAPTER 2
Theoretical Basis

In this chapter, the background information about the methods used throughout this
thesis is presented. First, Section 2.1 explains how an audio signal is processed and
represented. Then, Section 2.2 gives an overview of feature extraction techniques that
address the analysis and retrieval of meaningful information from audio signals. After-
wards, Section 2.3 describes the deep learning techniques used for classification tasks
including corresponding artificial neural networks, their learning process and calibration.
In Section 2.4 the data augmentation approaches used in Chapter 3 are explained. Lastly,
Section 2.5 takes a look at related work.

2.1 Digital Signal Processing
Digital Signal Processing (DSP) is concerned both with obtaining discrete representations
of signals, and with the theory, design, and implementation of numerical procedures for
processing the discrete representation [RS78]. DSP is a core subject in many fields like
electronics, communication and computer engineering. In the context of this work, this
section focuses on audio signals. First, it explains what an audio signal is and with which
techniques it is digitized. Then, it presents the mathematics and the algorithms used to
represent an audio signal in different domains.

2.1.1 Audio Signal
One of our most important ways of sensing the world around us is sound. Imagine you
are standing on a public square in a city with your eyes closed. What do you hear?
Perhaps people talking, some cars and buses driving on the road, a bicycle passing by, and
clunks from shopping bags and boxes. Your sense of hearing tells you what is happening
around you. As humans we are able to distinguish individual sound sources from a
complex mixture of sounds. We use this skill of listening everyday effortlessly. What we
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2. Theoretical Basis

usually take for granted, is a very challenging task for computers. Machine hearing is an
emerging academic field with the focus on algorithms that can teach machines to analyze
sounds in the same way that people do [Lyo10]. Before we can investigate how human
hearing can nowadays be modeled artificially, we first have to understand what sound is
and how it is represented to be machine readable.

Sound is a physical phenomenon [Chr19]. When an object vibrates, it creates a pressure
wave that causes particles in the surrounding medium (air, water, or solid) to vibrate
and by that to transmit the vibrational motion further through the medium. The human
ear detects this wave when it enters the human eardrum causing the small parts within
the ear to oscillate. Technically speaking what we perceive with our ears are changes
in pressure over time. There are five main characteristics of sound waves: wavelength,
amplitude, frequency, time period, and velocity [Dit17]. The wavelength is the distance
between adjacent identical parts of a wave, parallel to the direction of propagation. The
amplitude defines the maximum displacement of the particles disturbed by the sound wave
as it passes through a medium, and determines the sound’s relative loudness measured
in decibels (dB). The frequency is the number of waves passing by a specific point per
second measured in Hertz (Hz). The time period is the amount of time it takes for one
wave cycle to complete. Each complete wave cycle begins with a trough and ends at the
start of the next trough. Lastly, the velocity is the propagation velocity of a wave. Sound
waves can be converted back into physical motion by the diaphragm of a microphone,
and are generally represented as a waveform, where the y-axis represents the amplitude
of the pressure and the x-axis represents time as shown in Figure 2.1.

Figure 2.1: The five main characteristics of a sound wave.

In the context of this work, taking into account that a signal, represented as a function
of one or more variables, may be defined as an observable change in a quantifiable entity
[Cha18a], Audio signals are defined as electronic representations of sound waves in either
digital or analog format [LH09]. Audio signals are audible sound signals, while audible
sound consists of frequencies that are in the human hearing range of roughly 20 - 20
000 Hz [KS16]. Sound can be recorded with an electroacoustic transducer such as a
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2.1. Digital Signal Processing

microphone, which translates the pressure wave into a voltage signal [Chr19]. This analog
signal is a continuous signal, i.e., it can take on a value at any time, as is the pressure at a
point in space. Since computers can only work with discrete and digital data, the analog
signal has to be digitized first. This is done with the analog-to-digital conversion (AD
conversion) that converts signals from analog to digital by sampling and quantization.
The AD conversion includes the following steps [VPE18]:

• Filtering: An analog signal can include frequencies outside of the frequency range
that is digitized. An effect called aliasing occurs when a frequency is sampled with
a lower frequency rate than needed to reconstruct it resulting in an incorrectly
lower frequency [Chr19]. In order to avoid this unwanted distortion of the original
sound, a filter has to be applied to the signal to limit its frequency bandwidth by
removing or attenuating all frequencies above the stopband frequency. This filter
is called low-pass filter or anti-aliasing filter and is a mandatory step before the
signal can be sampled [Chr19, VPE18].

• Sampling: Sampling refers to measuring the signal’s amplitude (taking samples)
at uniform time intervals in order to represent a continuous signal as a sequence of
numbers. The sampling rate or sampling frequency defines the number of samples
taken per second and is specified in Hz [Dit17, HR17]. Choosing the sampling rate
too small can lead to loss of information and is called undersampling [OSB99]. On
the contrary, choosing a too high sampling rate can result in a higher amount of
data than needed for the reconstruction of the signal and is called oversampling.
According to the Nyquist–Shannon sampling theorem [Sha49] to avoid aliasing, a
signal with the frequency bandwidth [0, fmax], where fmax is the highest frequency,
needs to be sampled with the sampling rate fs that is twice the highest frequency
fs = 2fmax. Figure 2.2 illustrates the sampling process with and without aliasing.

(a) (b)

Figure 2.2: Sampling of an audio signal where aliasing occurs (2.2a) and when the
sampling theorem holds (2.2b). The blue curve illustrates the original signal and the
orange curve illustrates the reconstructed signal [Chr19].

7



2. Theoretical Basis

• Quantization: Before the samples can be stored on a digital storage medium
their values have to be quantized into a digital code. Quantization is the process
of mapping the samples (amplitude values from a continuous set) to predefined
values [VPE18]. The bit depth defines the number of bits to encode each sample
and corresponds to the resolution of the AD conversion [HR17]. The quantization
process is depicted in Figure 2.3.

Figure 2.3: Quantization of an audio signal. The analog signal is represented by the
red curve. Measurements are taken at fixed points in time (x-axis) and encoded using a
range of 4 bits (y-axis) [KS16].

As mentioned earlier the human ear can perceive frequencies up to 20 kHz. Following the
sampling theorem it is therefore standard that music and other sound waves are sampled
with 40 kHz or greater. Typical values for compact disc quality (CD) are a sampling
rate of fs = 44.1 kHz and a 16 bits resolution leading to a bit rate of 705 600 kbit/s for
a single channel audio signal. Sampling rates of 48, 96 or 192 kHz and quantization on
24 bits are used for higher quality standards [VPE18].

2.1.2 Audio Signal Representation

A sound signal can be represented in different domains. In the previous section the
waveform was introduced which is a time-domain representation meaning voltage is
expressed as a function of time. In most cases it is very difficult or nearly impossible
to discriminate between sound scenes from a waveform. Therefore, sound signals are
usually converted to the frequency-domain as this representation is more inline with the
human perception [VPE18]. Nonetheless, this representation is usually too generic in
order to identify the content of an audio signal that consists of different sound events at
certain times. The time-frequency-domain reveals more information about a sound scene
and it will be used in Section 2.2 to derive features from, which are more suitable for
characterizing the semantic content of an audio sequence.

8



2.1. Digital Signal Processing

By using a pair of mathematical operators called a transform, a signal can be converted
between the time- and frequency-domains. While the time-domain representation shows
how a signal changes over time, the frequency-domain representation shows the distribu-
tion of a signal’s energy over a range of frequencies [KS16]. A well-known and widely used
linear operator for extracting the frequency behavior of signals is the Fourier Transform.
The Fourier transform was named after the French mathematician and physicist Jean
Baptiste Joseph Fourier and it states that any continuous and periodic function can be
represented as the sum of sine and cosine waves oscillating at different frequencies [KS16].
The representation of the Fourier transform is called the spectrum of the signal [VPE18].
The Fourier transform of a signal is sometimes called the Forward Fourier transform and
is given by Equation 2.1 [Boa16]:

X(f) =
� ∞

−∞
x(t)e−j2πft (2.1)

While the classical Fourier transform is suitable for continuous and stationary signals,
for digital audio its discrete version the Discrete Fourier Transformation (DFT) is used
[VPE18]. DFT decomposes a sampled signal into a set of DFT coefficients, which tell
which frequency components are present in the signal as well as their relative intensity.
Assuming that the signal has already been windowed, as explained later in this section,
DFT is defined in Equation 2.2, where m is an integer ranging from 0 to K − 1, K is the
number of samples in the frame, and xk represents the kth input amplitude, i.e., the kth

sample in the frame [KS16]:

Xm =
K−1
k=0

xk · e
−2πi

K
·k·m (2.2)

It can be seen that a direct evaluation of each value of Xm requires K2 complex multi-
plications and K(K − 1) complex additions that have to be solved for the computation
of an K-point DFT. Consequently, for large K, the computational complexity gets very
high and can only be solved with appropriate computational power. In 1965, Cooley and
Tukey proposed a more efficient algorithm called the Fast Fourier Transform (FFT) that
reduces the computational complexity of an K-point DFT from O(K2) to O(K · logK)
by decomposing the DFT into a sum of smaller DFTs [CT65]. As of today FFT stands
for a number of efficient algorithms that have been developed for the computation of the
DFT. The result of FFT is a sequence of complex numbers, in which the real-valued part
Re(Xm) and the imaginary part Im(Xm) illustrate the importance of the cosine and the
sine waves, respectively [KS16].

|Xm| =
�

Re(Xm)2 + Im(Xm)2 (2.3a)

φ(Xm) = tan−1 Im(Xm)
Re(Xm) (2.3b)

9



2. Theoretical Basis

The Equation 2.3a shows how the magnitude (power) can be obtained, which represents
the amplitude of the combined sine and cosine waves. Hence, Equation 2.3b defines the
phase, which indicates the relative proportion of sine and cosine.

To exemplify the result of the DFT, Figure 2.4 illustrates the representations of a violin
sound and of a drum pattern sound in the time- and frequency-domains. Both audio
segments1 are 5 seconds long and were sampled with 44.1 kHz and a 16 bits resolution.
The figures were generated using the Python libraries SciPy2 and Librosa3.

(a) Amplitude of violin (b) Frequency components of violin

(c) Amplitude of drums (d) Frequency components of drums

Figure 2.4: Representations of a violin sound and of a drum pattern sound in the time-
and frequency-domains.

The figures on the left show the representation of the respective audio signal in the
time-domain, plotting amplitude values over time. The figures on the right depict the
Fourier-transformed signals, plotting magnitude information over frequencies. Looking
at the time-domain representations, it can be observed that the drum sound shows

1Both examples taken from Freesound (https://freesound.org) a collaborative database of
freely available audio snippets: violin sound sample (https://freesound.org/s/92002 visited
on 02.11.2021) licensed under Creative Commons Sampling Plus 1.0; drum pattern sample (https:
//freesound.org/s/58866 visited on 02.11.2021) licensed under Creative Commons 0 1.0 Universal.

2https://scipy.org (visited on 02.11.2021)
3https://librosa.org (visited on 02.11.2021)
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2.1. Digital Signal Processing

repetitive patterns, indicating a less melodic sound, in contrast to the violin. This
observation gets reaffirmed by comparing the frequency-domain representations of the
two sounds, which shows that the violin covers a larger frequency range than the drums.
In particular, Figure 2.4b demonstrates that most of the energy in the violin sound is
concentrated between 400 and 2500 Hz, while according to Figure 2.4d the main frequency
component in the drum sound appears up to approximately 500 Hz. The comparison
of the representations demonstrates the benefits of converting an audio signal to the
frequency-domain since the distribution of power over frequencies present in a sound
signal can be seen as its fingerprint. For some applications the analysis of the frequencies
is sufficient. When it comes to the classification of acoustic scenes, it is important not
only to analyse the present frequencies, but also the time frame when these occurred
in the signal [VPE18]. To analyze the frequency content of signals, when it varies with
time, a different transform, the Short Time Fourier Transform (STFT), is used [DRS18].
The STFT is a well-known technique in signal processing to represent a signal in the
time-frequency domain and includes the following steps [VPE18]:

• Framing: To overcome the lack of time information the signal is not analysed as
a whole, but is divided into chunks, i.e. short-time frames [KS16]. A frame is an
aggregation of consecutive samples. The number of samples to include in a frame
is chosen to be long enough to be perceivable by the human ear. Therefore, when
deciding on a proper frame size, the sampling frequency and the time resolution
of the human ear, which is around 10 ms, should be taken into account. Taking
the sampling frequency of 44.1 kHz, where each amplitude value is valid for only
0.0227 ms, the frame size should be 442 samples or greater [KS16].

• Windowing: Abrupt changes at the frame boundaries can cause distortions in
the spectrum, which is referred to as spectral leakage [KS16]. Windowing refers to
applying a windowing function to each frame to avoid or to reduce spectral leakage.
One of the most common windowing functions is the Hann function, named after
the Austrian meteorologist Julius von Hann. The Hann function can be seen as
a taper formed by using a weighted cosine where the end points touch zero. It is
defined in Equation 2.4, where K is the frame size and k = 1...K [KS16].

w(k) = 0.5
�

1 − cos
� 2πk

K − 1

		
(2.4)

The windowing process using a Hann window is illustrated in Figure 2.5. As can
be seen in the figure, the samples towards both ends of the frame are suppressed
resulting in loss of information. To avoid this the window is shifted with an overlap
ratio called the hop size which defines the amount of information that is shared by
the consecutive window locations [KS16]. The hop size is typically selected so that
the consecutive frames are overlapping at least 50% [AR77]. Since the windowing
function is applied to a frame, in some literature the frame size is referred to as the
window size.
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2. Theoretical Basis

Figure 2.5: Windowing of a 256-sample frame using a Hann function [KS16].

• FFT: The window is incrementally shifted over the signal until it reaches the end
of the signal. The FFT is computed for each windowed segment in temporal order
and the resulting frequency domain representations of the individual FFTs are
concatenated [KS16].

The STFT can be described as the approximation of the spectrum X(f) by applying the
DFT on a windowed frame of length N of the signal x(n). The Equation 2.5 shows how
the fth component of the DFT of the tth frame of x(n) is computed where w(k) is the
window function and the hop size equals to the length of the frames (N) meaning there
is no overlap between consecutive frames [VPE18].

X(t, f) =
N−1
k=0

w(k)x(tN + k)e
−i2πkf

N (2.5)

The important parameters of the STFT are the frame size, the hop size and the windowing
function. When a smaller frame size is chosen, high time resolution and low frequency
resolution properties are achieved. In contrast, a larger frame size provides higher
frequency resolutions and low time resolutions [EISA18]. Depending on the hop size
some information gets lost or is analysed in several windows. The windowing function is
chosen depending on the needs of the particular application and the frequency content of
the signal as it impacts the frequency resolution and spectral leakage.

The result of STFT is a matrix which carries both the time and frequency information.
The time information corresponds to the number of frames. Hence, the matrix includes
for each frame the distribution of power over frequencies divided into frequency bins as a
sequence of complex numbers. Calculating the magnitude of each frequency bin for each
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frame results in a matrix of the same size as the STFT matrix consisting of real numbers.
This matrix can be depicted along the time axis as a spectrogram [KS16]. Spectrogram
is a popular 2D representation of the audio content in audio signal processing, where
the x-axis represents time and the y-axis represents frequency [VPE18]. Each pixel of
the spectrogram image represents the amplitude of the signal in that frequency (vertical
axis), at that time (horizontal axis).

(a) Park (b) Airport

Figure 2.6: STFT spectrograms of sound signals recorded in Vienna.

Figure 2.6 illustrates STFT spectrograms of sound samples4 that were recorded in Vienna
in different scenes. The audio segments are 10 seconds long and were sampled with 44.1
kHz and a 24 bits resolution. The spectrograms were generated using the Librosa library
which provides STFT as its core application. The sound recorded in the park consists
mainly of birds’ twittering and some background noise. Approximately at the seconds
2, 4 and 6 there is a sound of a hammer, probably from a construction nearby, that
hits 3 times. It can be seen that the Subfigure 2.6a illustrates the content of the park
sound pretty well, as it shows the presence of higher frequencies, those of the birds, and
a change in those at the mentioned times. The audio recorded at the airport consists of
different types of sounds like foot steps, people talking and various movement noises in
the background. You can hear someone coughing loudly around second 2. Respectively
to the content of the airport sound sample, the Subfigure 2.6b shows a larger frequency
range with a peak around second 2. It can be observed that the spectrograms deliver a
good description of the content of a sound and can be seen as the fingerprint of sound
scenes. Which spectrograms were used in the context of this work will be explained in
the next section.

4Both examples taken from TAU Urban Acoustic Scenes 2020 Mobile Development dataset [HMV20b]:
park sound sample park-vienna-104-2970-a.wav; airport sound sample airport-vienna-13-524-a.wav.
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2.2 Acoustic Feature Extraction
Digital audio signals are rarely used as input for classification systems, but rather their
general acoustic characteristics (often called features). The acoustic features provide a
numerical representation of the signal content relevant for machine learning, characterizing
the signal with values which have connection to its physical properties, its distribution in
frequency, and change over time. Acoustic feature extraction is the process of obtaining
information that is sufficient for the classification of the target sounds, making the
subsequent modeling stage computationally cheaper. This section gives an overview of
the acoustic features commonly used for ASC and presents the theory of the acoustic
features used in this thesis [VPE18].

2.2.1 What is a feature?

In machine learning, a classification task is about developing an algorithm that is able to
specify to which category (class) some input belongs to [GBC16]. ASC refers to assigning
an audio sample to one of the predefined scenes. A machine learning algorithm is designed
to learn from examples, which are collections of features [GBC16]. A feature is a compact
and expressive description of raw data that is machine-processable [MZB10]. A feature
refers to a numerical (scalar, vector, or matrix) description and is the result of the feature
extraction process [KS16]. The purpose of the feature extraction is to extract meaningful
information that is significant for the particular task, and by that to reduce the amount of
input data for the classification system. Furthermore, the feature design and parameters
used in the extraction commonly rely on prior knowledge and assumptions about the
content of the signal. Hence, audio features are usually designed in the context of a
specific task and domain, and do not generalise well [VPE18]. Since some tasks are
related, it is not unusual that features are employed for different tasks than they were
originally developed for. A good example are cepstral coefficients, such as mel-frequency
cepstral coefficients (MFCCs) [DM80]. MFCCs have originally been developed for speech
recognition and were later used in other domains such as music information retrieval
and ASC [TC02, MHB+18]. The necessary property of features is low variability for
features for examples that are associated with the same class, and at the same time
high variability allowing the distinction between features from examples that belong to
different classes [VPE18]. When it comes to audio samples, it is important to note that
their data type is a time series as they refer to a set of repeated measurements over time
[DL18]. Time series are represented by an ordered vector x = (x1, x2, ..., xN ), where N
measurements have been taken at times t = (0, Δt, 2Δt, ..., (N − 1)Δt) with a constant
sampling period Δt [DL18]. This allows the representation of real-valued sequential data
in the same way, such as spectra (where measurements are ordered by frequency), and
the recognition of patterns.

The level of abstraction of acoustic features can be described on a scale of three levels:
low-level, intermediate-level and high-level [LWC98]. Low-level features are typically
computed directly from the raw audio waveform and constitute of acoustic characteristics

14



2.2. Acoustic Feature Extraction

such as loudness or bandwidth of an audio signal. Intermediate-level features capture
aspects that are more meaningful providing audio signatures (e.g. MFCCs). On the
highest level, the features represent semantic models of audio in different scene classes
[LWC98].

2.2.2 Mel Scale
The characteristics of sound that were introduced in Section 2.1.1 such as frequency
are objective, in a sense that they can be measured with an electronic device. Human
perception studies have shown that sound has properties that are subjective as they
are auditory perceptions in our heads. Pitch is a perceptual property which allows the
ordering of sounds on a frequency-related scale extending from low to high [Kla06]. It
defines the frequency of a sine wave that is matched to the target sound by human
listeners [Har96]. The corresponding physical term is fundamental frequency which is
defined for periodic or nearly periodic sounds only [Kla06]. Perceptual studies have
shown that our perception of sound differs in each region of the spectrum and that the
resolution of the human ear also varies along the frequency axis. In order to mimic
human hearing and to provide a way to extract information from sound signals that is
more inline with the human perception, non-linear-frequency scales have been developed.
Stevens, Volkmann and Newman introduced the mel scale in 1936, which relates pitch
to frequency. The unit name Mel was taken from the root of the word melody [SVN37].
The mel scale is defined by a logarithmic function that was determined by perceptual
experiments designed to find a linear relation among perceived pitches. Several listening
experiments were executed by different authors and led to different versions of formulas
which are only approximations [SV40, O’S99]. The Equation 2.6 shows a common relation
between the mel scale mel(f) and the Hertz scale f that was given by Fant [Fan68].

mel(f) = 1000
log 2 log(1 + f

1000) (2.6)

The formula is used to visualize the relationship between Hertz and Mel as shown in
Figure 2.7.

Figure 2.7: Relationship between Hertz and Mel.
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The core idea is that sounds of equal distance on the mel scale are perceived to be of
equal distance to humans. It can be seen in Figure 2.7 that the perception of pitch
intervals is approximately linear for frequencies below 500 Hz, and above that threshold
frequency ranges that are judged to yield equal pitch intervals become larger and larger.
The scale’s reference point is 1000, which means that 1000 Hz equals 1000 Mel. To give
an example, the range [1000; 1150] Mel corresponds to [1000; 1220] Hz, whereas the
interval [3310; 3460] Mel equals [8400; 10000] Hz. Even though the first range only covers
a frequency interval of 220 Hz, the perceived pitch difference between 1000 and 1220 Hz
equals the perceived pitch difference between 8400 and 10000 Hz, which covers 1600 Hz.
In other words, the higher a frequency the larger the difference has to be in order to be
perceived differently.

2.2.3 Mel Filter Bank
In signal processing, a filter bank is an array of bandpass filters that splits the input signal
into multiple frequency ranges, which are referred to as frequency bands [PNJ19a, Smi11].
The mel filter bank consists of overlapping triangular filters where each filter is spaced
according to a mel frequency scale. The cutoff frequencies of each filter are determined
by the centre frequencies of the two adjacent filters [CB96]. An example of a mel filter
bank with 18 filters is illustrated in Figure 2.8.

Figure 2.8: A mel filter bank containing 18 filters [CB96].

Given a windowed signal with a frame size N , the sampling rate fs and k = 0...N − 1
then k corresponds to the frequency lf (k) = kfs/N . The mel frequency φf and the linear
frequency lf are related by the definition of the mel scale as shown in Equation 2.6. A
mel filter bank is defined by the number of mel filters F , the minimum frequency lfmin

and the maximum frequency lfmax [KL10]. If φfmax and φfmin
are the frequencies on

the mel scale corresponding to the linear frequencies lfmax and lfmin
respectively, a fixed

frequency resolution in the mel scale is computed using δφf = (φfmax − φfmin
)/(F + 1).

The mel filter bank M(m, k) is given by the Equation 2.7 where m = 1...F and lfc(m)
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is the center frequency of mth filter [KL10, SPL06]. The mel filter bank M(m, k) is an
F × N matrix.

M(m, k) =

����������

0 for lf (k) < lfc(m − 1)
lf (k)−lfc (m−1)

lfc (m)−lfc (m−1) for lfc(m − 1) ≤ lf (k) < lfc(m)
lf (k)−lfc (m+1)

lfc (m)−lfc (m+1) for lfc(m) ≤ lf (k) < lfc(m + 1)
0 for lf (k) ≥ lfc(m + 1)

(2.7)

Mel-band energies and mel-frequency Cepstral Coefficients (MFCCs) are the most common
acoustic features used to represent spectral content of audio signals and both include the
mel filter bank in their design [VPE18]. Mel-band energies refer to the measurement of
the collective energy output of the respective frequency bands by taking the logarithm of
the magnitude of each resulting band. MFCCs are obtained by computing the discrete
cosine transform (DCT) of the log energy in mel frequency bands. The mel filter bank
can also be used to generate a mel-spectrogram which is explained in the next section.

2.2.4 Mel-Spectrogram
Spectrogram was explained in Section 2.1.2 and is a graphical representation of the
spectrum of an audio signal. It is an image-based feature derived from the time-frequency
content that is on a linear-frequency scale. Mel-spectrogram is a spectrogram that
takes the human perception into account by applying the mel filter bank to convert the
frequencies to the mel scale [VPE18]. Figure 2.9 illustrates mel-spectrograms of the same
sound samples as shown in Figure 2.6 and were generated using the Librosa library and
128 Mel filters.

(a) Park (b) Airport

Figure 2.9: Mel-spectrograms of sound signals recorded in Vienna.

It can be seen that in comparison to the linear-frequency spectrograms the mel-spectrograms
have a high resolution for low frequencies which decreases for the higher frequencies.
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The changes in the frequencies are depicted more clearly making it easier to recognise
patterns. Mel-spectrograms became popular features for ASC in recent years due to the
success of deep learning in image classification [KSH12], such that best practice image
classification methods can be applied [HMV20a, MHV19, MHV18a].

2.2.5 Derived Features
When it comes to the classification of sound scenes, where longer segments of sound are
used, the temporal integration of features can be important as it provides information
about the dynamics. While features like mel-band energies and MFCCs represent the
local spectrum, they neglect temporal changes in the spectrum over time [VPE18]. New
features can be generated from the previously extracted features [Ler12], therefore one
of the most common ways to model the temporal information is to extend the feature
set with their first and second order derivatives. The first derivatives (referred to as
delta coefficients or delta features), can help detect changes of feature values as they may
mark the boundaries of important segments. The second order derivatives (referred to as
acceleration coefficients or delta-delta features), can be used to estimate the acceleration of
these changes [VPE18, YEG+15]. The Equation 2.8 shows how the first order derivatives
can be calculated, where dt is the delta coefficient at time t, computed in terms of the
corresponding static coefficients ct−θ to ct+θ with Θ defining the size of the delta window
[YEG+15].

dt =
�Θ

θ=1 θ(ct+θ − ct−θ)
2 �Θ

θ=1 θ2 (2.8)

The second order derivatives are calculated in the same way, but they are calculated from
the deltas, not the static coefficients. Using delta features showed improvement of the
classifier’s performance in acoustic speech analysis [Pic15, MLM09, ZPB+16, AMJ+14].
This inspired authors to complement the static features with their derivatives for their ASC
systems [HL16, MG20]. In particular, recent approaches for ASC used a combination of
log-mel deltas and delta-deltas with a mel-spectrogram as input for deep neural networks
[SPJL20, HYX+20, GM20]. Deltas of a spectrogram can be computed either on time or
frequency [TLX+19]. Deltas along time axis represent the dynamic time features, while
deltas along frequency axis reveal the dynamic change of the frequencies.

2.3 Deep Neural Networks
Machine learning algorithms that learn patterns from data are mathematical functions
called models [LRM21]. For a classification task like ASC a model is asked to assign an
input to a predefined category. In order to be able to do that, the model was previously
asked to approximate a function through learning that is later used for the assignments
[GBC16]. This section provides the background of the deep learning techniques used in
this work. First, the terminology of machine learning basics is described. Afterwards,

18



2.3. Deep Neural Networks

the architectures of the neural networks relevant for this work as well as their calibration
are explained.

2.3.1 Machine Learning Basics
Machine learning models are algorithms that learn from data. But what is the definition
of this type of learning? Tom Mitchell provides a succinct definition: "A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E." [Mit97, p. 2]. According to Mitchell, for the definition of a learning
problem, three features must be identified: the class of tasks, the measure of performance
to be improved, and the source of experience. Many learning problems can be specified
in this fashion. To give an example, the ASC problem can be defined as following:

• Task T : recognizing and classifying acoustic scenes within audio recordings

• Performance measure P : percentage of scenes correctly classified

• Training experience E: a database of acoustic scenes with given classifications

The way how the machine learning system should process an example describes the task.
An example consists of a ground truth is a collection of features and is usually represented
by a vector x ∈ Rn where each entry xi of the vector is another feature [GBC16]. Besides
classification, one of the most typical machine learning tasks is regression. Depending on
the task, a quantitative performance measure must be designed to evaluate the abilities
of the model. For a classification task it is common to measure the accuracy of the
model [GBC16]. Accuracy is the percentage of examples for which the model produces
the correct output. On the contrary, the proportion of examples for which the model
makes an incorrect output is called the error rate. It is usually the goal to design a model
that performs well in a real world scenario. Therefore, the performance measures are
evaluated based on the model’s outputs for data that it has not seen before. Such data
is referred to as the test set and it does not include examples used for training. The
training experience depends on the design of the learning algorithm.

Deep learning approaches can be broadly categorized as supervised and unsupervised
[ATY+19, GBC16]. Supervised learning is the most common form of machine learning,
deep or not, and is a common choice for problems like classification and regression
[LBH15, LRM21]. This learning algorithm use a dataset where each example is associated
with a ground truth label (also referred to as target) [GBC16]. Since for each input
vector x the value of the desired output vector y is specified, the model learns through
observation to predict y from x usually by estimating the probability distribution p(y|x).
The goal of unsupervised learning algorithms is to build a model that learns the structure
of the data from only the data itself, meaning the model is trained with a dataset without
labels. This type of learning is usually used for clustering or dimensionality reduction.
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Hence, the model observes several examples of a random vector x and attempts to
implicitly or explicitly learn the probability distribution p(x). In the context of this
work, we will focus on supervised learning. For training a model two datasets are needed:
training set and validation set [Cha18b]. The training set is a collection of examples that
are fed to the model during training to adjust its parameters. The validation set is used
during training to test the model in order to improve it.

2.3.2 Neural Networks
Artificial neural networks (ANNs) are a type of machine learning algorithm that was
inspired by the human brain. A single artificial neuron has many inputs, a body,
and a single output [Cha18b]. Artificial neurons (also referred to as units) are simple
computational models of neurons, each producing a sequence of real-valued activations.
They are organized in groups (layers) and work in parallel. Each neuron in a layer is
connected with every single neuron in the next layer. A neuron is a computational unit
that calculates an output based on the given inputs (including the biases) and the weights
of its incoming connections. Each layer sends its outputs to the next layer. The last
layer produces a prediction as output. Neural networks with only an input and output
layer are known as linear models, which use a linear function to represent the patterns
they have learned from data [LRM21]. Layers other than the input and an output layer
are called hidden, because their output is available only within the network. The amount
of layers in a network gives the depth of the model. Therefore, neural networks with
more than one hidden layer are classified as deep [LRM21]. The width of the model
is determined by the dimensionality of the network’s hidden layers which are typically
vector valued [GBC16]. An example of a simple feedforward neural network (FNN) with
one hidden layer is depicted in Figure 2.10. The network is called feedforward because
the information flows in one direction and there are no feedback loops in the network.
The weight on the link from units in the input layer i to units in the hidden layer j is
denoted with wij . The subscript k indexes units in the output layer.

One of the properties of FNNs is that their outputs can be expressed as deterministic
functions of the inputs [Bis96]. Hence, the whole network represents a multivariate
non-linear functional mapping. The function of the illustrated network is presented in
Equation 2.9 [Rip96]. Each unit calculates the output yk by applying a function fj to xj

which is a sum of the unit’s inputs with a constant (the bias) added. The weights are
the coefficients that are multiplied with the inputs before summing them up. The input
units have f ≡ 1 as they only distribute the inputs to the next layer.

yk = fk

αk +

j→k

wjkfj

�
αj +


i→j

wijxi

	 (2.9)

Considering that a neural network can have K layers and the input is a feature vector,
the previous notation can be extended as shown in Equation 2.10.
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Figure 2.10: A generic feed-forward network with a single hidden layer [Rip96].

hk = fk(bk + W khk−1) (2.10)

Given a vector of offsets bk and a matrix of weights W k, layer k computes an output vector
hk using the output hk−1 of the previous layer, starting with the input x = h0 [Ben09].
In deep learning the functions f put between layers are called activation functions. Those
functions are typically nonlinear and they define the output of a neuron given a set of
inputs. The recommended activation function for modern neural networks is the rectified
linear unit or ReLu, defined as shown in Equation 2.11 [GBC16, Cha18b].

p(x) = max(x, 0) (2.11)

The ReLu function returns the value provided as input x directly for x > 0 and the value
0 for x ≤ 0. It is a piecewise linear function with two linear pieces. This makes rectified
linear units nearly linear and therefore many of the properties that make linear models
easy to optimize with gradient-based methods are preserved [GBC16]. Equation 2.12
shows another commonly encountered function, the logistic sigmoid function.

S(x) = e−x

1 + e−x
(2.12)

The sigmoid function maps the interval (−∞, ∞) to (0, 1). It is therefore often referred
to as the squashing function [Mit97]. This function is useful where a real number needs
to be converted to a probability. It is typical to place a sigmoid function as the last layer
to convert the model’s output into a probability score. Once the outputs are calculated,
they have to be evaluated in order to understand how to adapt the model. A loss function
(e.g. cross-entropy) is applied to the output to measure how accurate it is compared to
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the label [Cha18b]. To minimize the loss, the parameters of the network’s function have
to be adjusted accordingly resulting in an optimization task. One of the most popular
algorithms to perform optimization is gradient descent [Rud17]. The idea is to lower
the loss (descend) by looking at the slope of the loss function (its gradient). Training
a neural network means that its parameters (weights and biases) are learned through
an iterative process by being updated after each epoch in the opposite direction of the
gradient of the loss function. An epoch refers to one iteration through the entire training
dataset. This learning method is referred to as backpropagation since the gradient is
computed by going backward through the network. We denote the network’s parameters
with Φ. With φi ∈ Φ being the ith parameter, every φi is updated by adding Δφi as
defined by Equation 2.13 where L is standing for the loss function [Cha18b].

Δφi = −l
∂L

∂φi
(2.13)

The learning rate l is a small constant that moderates the size of the update. Hence, it
is multiplied with the partial derivative of the loss L with respect to the parameter that
is adjusted. In order to move the weight vector in the direction that decreases L, the
negative sign is present [Mit97]. Since the gradients for the whole dataset have to be
calculated to perform one update, depending on the size of the training data this process
can be very slow or exceed the memory. One common variation on gradient descent is
called stochastic gradient descent (SGD). SGD updates the parameters incrementally
every m examples where m is referred to as the batch size [Mit97]. The parameters of a
model are distinguished between those that are learned during training and those that
control the algorithm’s behavior. The latter are called the hyperparameters and they
include settings like the learning rate, the optimization algorithm, the loss function and
the batch size [Cha18b].

Convolutional Neural Networks

In the previous section fully connected NNs were explained, which have the property
that all linear units in a layer are connected to all the linear units in the next layer. As
there is no requirement that NNs have this particular form, other network architectures
were developed in order to train better models for specific domains. Convolutional
neural networks (CNN) are partially connected NNs and were designed for visual pattern
recognition [LBD+89]. The idea was to increase the probability of correct generalization
by reducing the number of free parameters in the network. When it comes to pattern
recognition in images, what matters is differences between nearby pixel values, not their
absolute values. Local light differences describe what is going on in a scene. In computer
vision many of the modern approaches focus on this key property of images by extracting
local features that depend only on small subregions of the image [Bis06]. Since distinctive
features of an object can appear at various locations on the input image, a model is
considered to generalize well when it is invariant to certain transformation of the inputs.
CNNs are neural networks that use a mathematical operation called convolution in place
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of general matrix multiplication in at least one of their layers [GBC16]. Those layers
are called convolutional layers. The learning in a typical CNN is hierarchical [LRM21].
The first layers learn to recognize local features like edges and shapes. The next layers
merge semantically similar features into one in order to detect higher-order features like
groups of edges. A CNN’s final layers can then piece all the features together and yield
information about the image as whole. A common CNN architecture is comprised of a
series of convolutional layers interleaved with pooling layers, followed by one or more
fully connected layers [PLV+19]. Figure 2.11 illustrates the architecture of the VGG-19
model, one of the first introduced deep CNNs that achieved state-of-the-art performance
for large-scale image classification [SZ15]. The model consists of 19 layers of which 16 are
convolutional layers grouped into 5 blocks followed by 3 fully connected layers in the end.

Figure 2.11: VGG-19 model as an example of a deep CNN for image classification.

Convolution is an operation on two functions of a real-valued argument. The units in a
convolutional layer convolve their input function with a kernel function and output a
function referred to as the feature map [GBC16]. A (filter) kernel is usually a multidi-
mensional array of weights called filter bank, whereby the weights are learned during
training. The size of the kernel is chosen smaller than the input. The kernel is convolved
with a patch of an image by calculating the dot product of the kernel and a piece of
the image of an equal size [Cha18b]. The result is passed to the corresponding unit in
the feature map for that kernel. The kernel is then applied to the next neighbouring
piece of the image and that process repeats until all values of the image are convolved. A
parameter called stride defines how many pixels the kernel moves in every step along one
direction. The kernel size and the stride are hyperparameters of the network. During this
convolution process the weights of the kernel do not change. Hence, all units in a feature
map share the same filter bank [LBH15]. Weight sharing reduces the number of weights
that must be learned and leads to detection of features independently of their location in
the image. In order to detect multiple features the convolutional layer performs several
convolutions in parallel producing multiple feature maps, each from its corresponding
kernel. Each feature map has its own set of weight and bias parameters [Bis06].

In the subsequent pooling layer for each feature map there is a plane of units. Each
unit takes inputs from a small receptive field in the corresponding feature map of the
convolutional layer. It applies a pooling function on its inputs, multiplies the result
by a trainable weight, adds a trainable bias parameter and passes the result through a
non-linear transfer function like ReLU [HKK+10]. The (typically rectangular) receptive
fields are chosen to be contiguous and non-overlapping. Due to the use of local receptive
fields, a CNN has a smaller number of weights than a fully connected network. Using
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pooling is sometimes referred to as subsampling or downsampling as it reduces the
size of the inputs for the next layer[Bis06, GBC16]. Therefore, the usage of pooling
leads to fewer parameters in the network. It is a form of regularization to improve the
robustness of the network. Max pooling is a commonly chosen pooling operation that
takes the maximum value within a group of inputs [ZC88]. It can be interpreted as a
softened version of a logical-OR, indicating whether a feature is present. Summarising the
neighboring outputs makes this approach approximately invariant to small translations
of the input [GBC16]. CNNs have much fewer connections and parameters compared to
a fully connected network due to the presented mechanisms: local receptive fields, weight
sharing, and pooling. Thus, compared to standard FNNs of a similar size, CNNs are
more computationally efficient and easier to train while they achieve a performance that
is only slightly worse [KSH12]. CNNs can be trained by error minimization using a slight
modification of the usual backpropagation algorithm in order to take the shared-weight
constraints into account [Bis06].

In 2012 deep CNNs have shown that they can outperform the previous state-of-the-art
frameworks in image classification and later research gave evidence that they generalize
well to other visual recognition tasks [KSH12, DJV+13]. This led to the trend, that
lasts until today, to use deep CNNs in ASC frameworks by using spectrograms as input
[MHB+18, MHV18a, MHV19, HMV20a].

Residual Neural Networks

Many works on the image recognition task revealed that the depth of a CNN is of crucial
importance [SZ15, SWY+15]. By going deeper and using a higher number of stacked
layers features of higher levels can be detected and therefore the accuracy of the model
increases. This might lead to the assumption that learning better models might be as
easy as stacking more layers. In 2016 the work of [HZRS16a] has empirically shown that
making a suitably deep model deeper leads to a higher error rate. The problem that
the network’s training accuracy significantly degrades as its depth increases is called the
degradation problem, which was also identified in other works [HS14, SGS15]. Considering
the methods used to train the network, the authors argue that it is unlikely that the
problem is caused by vanishing gradients [HZRS16a]. Furthermore, they conjecture that
deep networks may have exponentially low convergence rates, which affect the reducing
of the training error. To address the degradation problem by construction, a new network
architecture was introduced, the Residual Neural Network (ResNet).

The key feature of a ResNet is the usage of residual blocks. A residual block consists of a
couple of stacked layers and a shortcut connection. A shortcut connection is a layer that
connects the network’s input with its output in a deeper layer by skipping one or more
layers [Bis06]. In a residual block the shortcut connection performs identity mapping
and its output is added to the outputs of the stacked layers as shown in Figure 2.12.

The idea is that it should be easier to approximate the residual function than the
underlying function. Given H(x) as an underlying function of a few stacked layers with
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Figure 2.12: Residual learning; a building block [HZRS16a].

x denoting the inputs to the first of these layers, the residual function is then defined as
F (x) := H(x) − x [HZRS16a]. Thus, the original function becomes F (x) + x. The F (x)
acts like a residual, hence the naming. A residual block is defined by Equation 2.14.

y = F (x, {Wi}) + x (2.14)

The output vector y of the stacked layers is the sum of the residual function F (x, {Wi})
and the input vector x with Wi denoting a set of weight matrices. Given a residual block
with two layers as shown in Figure 2.12, the residual function is defined as F = W2σ(W1x)
with σ standing for a nonlinear activation function like ReLu (for simplifying notations
the biases are omitted) [HZRS16a]. A shortcut connection calculates F +x by performing
element-wise addition. When the considered layers are convolutional, the element-wise
addition is performed on two feature maps. The Equation 2.14 shows that the residual
function neither introduce extra parameter nor computation complexity. The element-
wise addition implies that the dimensions of x and F must be of equal size. As this might
not always be the case, to match the dimensions the shortcut connections can perform a
linear projection Ws (e.g. zero-padding) as shown in Equation 2.15.

y = F (x, {Wi}) + Wsx (2.15)

Like deep CNNs, ResNets can be trained by SGD with backpropagation. Skipping layers
allows to propagate larger gradients to initial layers, which leads to faster convergence
at the early stage [SIVA16]. This gives the ResNets the ability to improve the accuracy
through increased depth [HZRS16a]. The introduction of ResNets was a breakthrough
in deep learning as it allowed to build deeper networks that achieved state-of-the-art
performance for several challenging visual recognition tasks [HZRS16b]. In addition,
ResNets showed to generalize well, meaning the features can be utilized in transfer
learning with good efficiency. It is therefore not surprising that in the last years it became
one of the most popular networks in ASC frameworks [MG20, LWL19, HMV20a].
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2.3.3 Calibrating Deep Neural Networks

Deep neural networks are very expressive models due to their high depth and large
number of parameters that can learn highly non-linear relationships between the input
and the output. However, their high expressional capability may lead to a problem
known as overfitting [Haw04]. Overfitting is the term used when the trained model make
predictions with high accuracy for training examples, but does not generalize well such
that it performs poorly for unseen data in the test set. On the one hand, this problem can
occur when the training dataset is not large enough to learn the intra-class variations. On
the other hand, it may be the result of bad calibration which means that the model has
learned the peculiarities of the training examples instead of their general characteristics
[VPE18]. The process of modifying a model in order to reduce overfitting is generally
referred to as regularization [Cha18b]. The scenario where a network generates a high
error rate on the training set and the test set is called underfitting [vRV+10]. Underfitting
can be the result when the model is not complex enough or was regularized too much. High
capacity models (such as DNNs) tend to overfit the training set [GPSW17]. Therefore,
many regularization methods have been developed for reducing the risk of overfitting
in the recent years. In the following the regularization techniques used in this work are
presented.

Focal loss

The loss function was explained in Section 2.3.2 as a function that measures how bad the
network’s outcome is during training. This function is also known as the cost function
and the goal of training a model is to minimize the loss (or the cost) [Cha18b]. To find the
right weights to minimize the loss is an optimization problem. A popular loss function for
optimization tasks like multi-class classification is cross-entropy (CE). The CE method
was introduced by Rubinstein as an adaptive algorithm for estimating probabilities of rare
events in complex stochastic networks, which involves variance minimization [Rub97]. For
multi-class classification tasks CE is defined as shown in Equation 2.16 with c denoting
the number of classes and pj being the estimated probability of the model for class j of a
sample. The ground-truth class label (one-hot vector) yj is the probability distribution
that class j is the correct classification for the sample [NPK20a].

CE(p, y) = −
c

j=1
yjlog(pj) (2.16)

In other words, CE is the negative log-likelihood between the empirical distribution
defined by the training dataset and the probability distribution defined by the network
[GBC16]. Many works presented that this loss function can be successfully applied to a
wide range of combinatorial and continuous optimisation problems [HBKK05]. It was
also found that using CE for a classification problem with CNNs leads to faster training
as well as improved generalization [SSP03]. Focal loss (FL) is a loss function that extends
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CE by adding a modulating factor (1 − pj)γ with tunable focusing parameter γ ≥ 0
[LGG+17]. The definition of FL is given in the Equation 2.17 [NPK20a].

FL(p, y) = −
c

j=1
(1 − pj)γyjlog(pj) (2.17)

In the case of a misclassified example, the pj is small which leads to the modulating factor
(1 − pj) to go near 1 and as the result the loss is unaffected [LGG+17]. On the contrary,
for a well-classified example the scaling factor decays to zero which has the affect that
the weights are down-weighted. The rate at which easy examples are down-weighted
is controlled by the hyper-parameter γ. With γ = 0 FL is equivalent to CE. To put it
simply, during training FL slows down the increase of weights for examples that are easily
classified and increases the model’s focus on hard, misclassified examples. This approach
is simple and addresses highly effective the class imbalance. In practice the categorical
focal loss is used, which has a balancing parameter α that scales the loss function linearly
as presented in Equation 2.18 [LGG+17, SPJL20].

FL(p, y) = −
c

j=1
α(1 − pj)γyjlog(pj) (2.18)

The authors of FL have shown with experiments in object recognition how the loss of
their model was affected by values of γ ∈ [0, 5], which is visualised by Figure 2.13.

Figure 2.13: An illustration of the loss of a RetinaNet when using FL as the loss function
with γ ∈ [0, 5] [LGG+17].

The blue (top) curve in Figure 2.13 is CE, since γ = 0, and it shows that even well-
classified examples with (pj > 0.5) have a loss with non-trivial magnitude. It can be
observed that by dynamically scaling the CE loss, the range in which an example receives
low loss is extended. Due to the implicit regularization of the weights, FL can be seen as
a form of regularization that reduces overfitting and improves the calibration of DNNs
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[MKS+20]. In the ASC domain, several recent works that presented new state-of-the-art
systems trained their models with FL [YCT18, GM20, NPK20a, SPJL20].

Dropout

Dropout was introduced in 2014 and the term refers to randomly dropping out units
(hidden and visible) from the neural network during training [SHK+14]. In particular,
the dropped units are temporarily removed from the network including all their incoming
and outgoing connections, as shown in Figure 2.14.

(a) Standard Neural Net (b) After applying dropout

Figure 2.14: An illustration of a neural network with 2 hidden layers (left) and an example
of this network after applying dropout (right). The dropped units are shown as crossed
[SHK+14].

For any layer, there is a vector of independent Bernoulli random variables each of which
has probability p of being 1. The outputs of a layer are multiplied element-wise with that
vector. The reduced number of outputs is then passed as input to the next layer. This
process is executed at each layer of the network. Dropout can be seen as a technique
that adds noise to the states of the hidden units which significantly reduces the gradients.
Therefore, a lot of gradients tend to cancel each other. Due to this, when using dropout
the previously used learning rate should be increased by 10-100 times [SHK+14]. The
probability of retaining a unit is controlled by the dropout hyperparameter p where p = 1
means no dropout. Hence, the lower the p the more units will be dropped. A p in the
range of 0.5 - 0.8 is a typical value for hidden units, whereas the choice for the input
layers depends on the type of input. A p = 0.8 is usually chosen for real-valued inputs like
image patches or speech frames [SHK+14]. Dropout neural networks can be trained using
stochastic gradient descent and backpropagation. Noteworthy is, that during training
forward and backpropagation are done only for the units that were not dropped for the
training of one batch. The resulting neural network is used without dropout. Dropout
is a popular regularization method that reduces overfitting. The recent research shows
that this technique could improve the performance of the models in a wide variety of
application domains including object classification, digit recognition, speech recognition,
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document classification and analysis of computational biology data [SHK+14]. Dropout
is also used to train ASC networks [HYX+20, FXM+18].

Batch normalization

One key aspect that makes training of neural networks complicated is that an update of
the parameters of a layer affects all the following layer inputs. This effect gets amplified
with each layer and is therefore especially problematic for deep networks. Additionally, it
makes it particularly hard to train models with saturating nonlinearities. Due to this,
the model’s parameters have to be initialized very carefully and lower learning rates have
to be used, which slows down the training. This problem is known as internal covariate
shift and the Batch Normalization (BN) technique was introduced to address it [IS15].

BN is a regularization approach that is integrated into the network’s architecture. The
main idea is to reduce the internal covariate shift through the stabilization of the input
distributions. This is achieved by introducing additional network layers that normalize
the output of the previous layer. The normalization is performed for each mini-batch
and the gradients are backpropagated through the normalization parameters [IS15]. The
BN transform adds two extra parameters per activation, that are learned during training,
to preserve the representation ability of the network. The algorithm of the BN transform
is presented in Figure 2.15.

Figure 2.15: The algorithm of the BN transform applied to activation x over a mini-batch.
[IS15].

Given a mini-batch B of size m and an activation function x, each activation value xi

is normalized by subtracting the batch mean µB and dividing it by the batch standard
deviation σ2

B with � being a constant that is added for numerical stability. The normalized
activations x̂ are scaled and shifted before they are passed to next layer. By fixing the
means and variances of layer inputs, the amplifying effect of small changes in layer
parameters is prevented. Additionally, the gradients become less dependent on the scale
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of the parameters. BN allows to be less careful about initialization and to use much higher
learning rates, which significantly speed up the training process [STIM19]. Furthermore,
it prevents the network from getting stuck in the saturated modes making it possible to
train networks with saturating nonlinearities. This approach reduces overfitting and in
some cases eliminates the need for Dropout [IS15].

Domain adaptation

Classical machine learning assumes that models are trained and tested using data from
the same domain. In practise this assumption does not always hold. The training set
can be biased or out-dated and therefore not cover the distribution of the real-world
data. In some cases there is a large amount of data from one source domain available,
but little or no data from the target domain the trained model should be applied on.
Domain adaptation is a sub-field within machine learning that focuses on the research
of how to train a model using data from one domain that performs well for data from
a different domain [FVRA20]. The main goal is to minimize the discrepancy between
the training distribution and the target distribution [VPE18]. Domain adaptation
methods are distinguished between supervised and unsupervised learning depending
on whether labeled data for the target domain exists [Abe20]. Furthermore, existing
domain adaptation approaches can be generally divided into methods with shallow and
deep architectures [FVRA20]. Shallow domain adaptation approaches are based on
instance-based and feature-based techniques in order to align the domain distributions.
Deep domain adaptation approaches utilize neural networks by using convolutional or
adversarial based networks to diminish the domain gap.

ASC systems usually face data that were recorded by different devices and under different
environmental conditions than the training data. In order to increase the robustness of
the classifiers, several recent works proposed different domain adaptation approaches
for ASC [VPE18, Abe20]. To name a few, the first introduced method of unsupervised
adversarial domain adaptation for ASC used an adversarial training approach to align the
distributions of the intermediate feature mappings for both the source and target domain
data [GDÇ+18]. In this approach a model was trained on the source domain data, which
included the recordings of the major device, and in a later step adapted to the target
domain data, which included the recordings of the other devices. The authors found that
their method could increase the accuracy of their models for unseen data by approx. 10%.
Another work added an auxiliary binary classifier to their network to learn whether the
examples were recorded by the major device (as source domain) or by other devices (as
target domain) [GM20]. During training the binary loss was backpropagated and used to
weight the CE loss resulting in Total Loss = CE Loss − 0.1 ∗ Adaptation Loss. However,
the resulting network could not show any improvement in its performance. A similar
experience was made by other researchers, who explored the use of two different domain
adaptation objectives for a ResNet and did not achieve better results [KHEW20]. When
analyzing the submissions of the DCASE 2020 challenge it can be concluded, that domain
adaptation is not a popular approach as only a few systems used it [HMV20a]. Noteworthy
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is, that a very large proportion of the submitted systems used data augmentation as their
regularization method to improve the generalization ability of their models [HMV20a].
Data augmentation will be explained in the next section.

2.4 Data Augmentation
The performance of a machine learning model, in particular the ability to generalize,
depends on the availability of large quantities of training data. In practice, the amount of
available data is limited and varies enormously between the research domains. One of the
most known datasets used for visual recognition tasks is the ImageNet dataset with over
14 million images and over 21 thousand object classes [RDS+15]. In the case of audio,
the only comparable dataset is the AudioSet with over 2.1 million audio excerpts and 527
sound event classes [GEF+17]. When it comes to ASC, the dataset used in the DCASE
2020 challenge with 23 thousand audio segments and 10 scene classes can be seen as
rather sparse [HMV20a]. One way to address the lack of data is to generate additional
data by applying one or more deformations to the training samples. This approach is
called data augmentation and it is particularly easy and effective for classification tasks
[GBC16].

A key concept of data augmentation is that the applied transformations do not change the
semantic meaning of the data. In object recognition, a rotated, translated, mirrored or
scaled image would contain the same object and to train the network on these augmented
data can make it invariant to these transformations. While data augmentation consistently
leads to improved generalization [MOM12], it is important to note, that the type of
transformations should be chosen with respect to the problem. In a task like optical
character recognition, it is required to recognize the difference between "b" and "d",
so mirroring the image would not be an appropriate way to augment data. Besides
from object recognition, data augmentation showed to be an effective technique for
speech recognition and many classification tasks including music, environmental sound
and acoustic scene [KSGG19, SB17, Abe20]. In the following, an overview of the data
augmentation techniques, that were investigated in this work, is given.

2.4.1 Mixup

Not all data augmentation strategies generate physical training data. Mixup is a simple
domain-agnostic data augmentation technique that constructs virtual training examples
[ZCDL18]. A key concept of mixup is that by following the Vicinal Risk Minimization
(VRM) principle instead of the Empirical Risk Minimization (ERM) principle the model
is encouraged to behave linearly in-between training examples which reduces undesirable
behaviors such as memorization and increases the robustness to adversarial examples.
Given (xi, xj) are two raw input vectors drawn at random from the training data with
(yi, yj) being their corresponding one-hot label encodings and λ ∈ [0, 1], the virtual
feature-target pair (x̃, ỹ) is defined by Equation 2.19 [ZCDL18].
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x̃ = λxi + (1 − λ)xj (2.19a)
ỹ = λyi + (1 − λ)yj (2.19b)

In accordance with its name this technique is mixing up the features and their correspond-
ing labels, whereas the strength of interpolation between feature-label pairs is controlled
by the mixup hyperparameter λ. When applied to different datasets the same λ can
lead to different changes of the training error [ZCDL18]. Hence, currently there is no
rule available for how to find the perfect λ except through experiments. The developers
of mixup showed that their approach improves the model’s generalization on speech
and tabular data. Since mixup introduces minimal computation overhead and can be
implemented in a few lines of code, it became a common data augmentation method
in ASC frameworks. In the DCASE 2020 challenge 71 of 92 submissions used mixup
[HMV20a].

2.4.2 Acoustic Scene Transformations
Additional training data can be generated by modifying the existing data with transfor-
mations that do not change the class. In ASC many techniques were explored to create
extra recordings that would increase the robustness of the classifier. It is important that
for each augmentation the deformation parameters are chosen such that the semantic
validity of the label is maintained. In the following, an overview of the transformations
used by state-of-the-art submissions of DCASE 2020 challenge is given:

• Mixing audios: Two recordings from the same acoustic scene class are randomly
mixed [HYX+20].

• Temporal cropping: Each of the two samples combined using mixup are randomly
cropped into a fixed-length along the time axis [SPJL20, MG20, HYX+20].

• Pitch shiftig: The pitch of the audio sample is raised or lowered while the duration
is kept unchanged. This method is commonly chosen, but there is no rule available
for how the pitch should be shifted. Therefore, the authors use different solutions.
Some shift the pitch randomly based on a uniform distribution [HYX+20], in other
cases predefined values (in semitones) are used for the shift [AMGL17], while others
decided to only lower the shift [XLY+18].

• Time stretching: Similar to shifting the pitch, changing the audio speed of a
recording to augment new data is a popular method that does not have one solution.
New audio samples are generated by slowing down or speeding up an existing audio
sample based on predefined values or a uniform distribution while keeping the same
pitch. Usually the authors augment data by changing the audio speed in both
directions [AMGL17, HYX+20], while in some cases the authors decided to speed
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up only [XLY+18]. If the transformed waveform is longer than the original one, it
is cut from the end. In case it is shorter, padding is applied till the original length
is attained.

• Adding noise: To simulate recordings made under suboptimal conditions with
low quality microphones, in many works additional data are created by adding
noise to the existing audio samples. In come cases random Gaussian noise is used
[HYX+20, XLY+18]. Other cases focus on adding some kind of background noise.
One group mixed the audio files with environmental background noise using a
random signal to noise ratio of a defined range [AMGL17].

• Spectrum augmentation: Spectrum augmentation (SpecAugment) was intro-
duced in ASR as an augmentation technique that applies three kinds of deformations
on the log mel spectrogram of the input audio [PCZ+19]. The three deformations
are time warping, a deformation of the time-series in the time direction, as well
as time and frequency masking, where a block of consecutive time steps or mel
frequency channels is masked. SpecAugment could improve the performance of
ASR networks, what motivated a team to use it for ASC networks [HYX+20].

• Spectrum correction: In ASC one of the challenges is that the model has to
generalize well to samples recorded using devices with different frequency responses
than those it was trained on. To address this problem, spectrum correction was
introduced as a method to adjust the varying frequency response of the recording
devices [Kos19]. Spectrum correction requires a dataset of aligned recordings from
the same moment in time and the choice of a reference device. The method consists
of two steps: the calculation of the correction coefficients from the spectrum of n
aligned pairs of recordings using the reference device and the transformation of the
recordings using the computed coefficients. In the later step, the transformation is
performed by multiplying STFT of the signal with the correction coefficients on the
frequency axis for each point in time. After the correction the spectra for all devices
should look alike. To put it simply, spectrum correction aims at transforming
a given input spectrum to that of a reference device, so that it appears as if it
was recorded using the reference device. This method can be applied both in the
frequency domain and in the time domain [Koś20].
While some works [Kos19, NPK20b] used spectrum correction for device adaptation
during training by applying the correction to the input before generating the
spectrograms, one team employed spectrum correction as a data augmentation
technique to obtain extra data [HYX+20]. The procedure was modified as follows:
First, a reference device spectrum is calculated by averaging the spectrum from
all training devices except that from the reference device. Then, the spectrum
of all recordings collected with the reference device is corrected to generate extra
recordings.

• Reverberation + Dynamic Range Compression (DRC): The authors of the
DCASE 2020 challenge provided datasets which included the recordings of simulated
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devices [HMV20c, HMV20b]. To simulate a device, they first created a dataset of
impulse responses (IR) measured for multiple angles using mobile devices other
than the reference device [HMV20a]. Then, for every simulated device, recordings
from the reference device were processed through convolution with the randomly
selected device-specific IR, followed by a DRC with device-specific parameters.
Some participants used the same procedure to generate more data [HYX+20].

Enlarging the dataset with transformed samples was found to be an effective method to
improve the classification accuracy of the model [XLY+18, HYX+20, AMGL17, Abe20].

Task 1a of the DCASE 2020 challenge focused on ASC of audio signals recorded with
multiple devices [HMV20a]. Therefore, reducing the device dependency of the models
was especially important. Analyzing the results of the challenge it can be observed, that
all systems in the top 10 were trained with mixup and at least one of the presented
transformations as data augmentation methods5.

2.5 Related Work
State-of-the-art ASC algorithms almost exclusively use deep CNNs [Abe20]. Especially
the approach with choosing Mel energies as feature representation and using deep learning
architectures based on e.g. ResNet and dilated convolution was very common between
the submissions of the DCASE 2020 challenge (Task 1a) [HMV20a]. Nonetheless, other
ASC frameworks were researched and can be summarized in those that use either deep
feed forward networks or recurrent neural networks [Abe20]. In this section some of these
works are presented.

Recurrent Neural Networks

Neural networks that have recurrent connections between hidden units are called recurrent
neural networks (RNNs) [GBC16]. Connections from a neuron to either itself or a neuron
in the previous layer are called recurrent. Therefore, in graph terminology an RNN is a
directed acyclic graph. While DNNs and CNNs are not capable of modeling sequences,
RNNs are powerful sequence learners [Gra12]. As with other neural networks, many
varieties of RNN exist. An example of an RNN with recurrent connections between
hidden units that produces an output at each time step is shown in Figure 2.16.

The illustrated network parameterizes its connections as following: from input to hidden
layer with weight matrix U , recurrent hidden-to-hidden connections with weight matrix
W and from hidden to output layer with weight matrix V . The network maps an input
sequence of x values to a corresponding sequence of output values o. The hidden units
calculate the outputs based on the input and the previous output. Hence, the network

5Table General characteristics of DCASE 2020 challenge results for Task 1A https://dcase.
community/challenge2020/task-acoustic-scene-classification-results-a (visited on
08.05.2022)
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Figure 2.16: An example of an RNN with hidden-to-hidden recurrent connections. (Left)
The network as a computational graph. (Right) The same network as a time-unfolded
graph showing the time instance for each node [GBC16].

is recurrent because the state at time t depends on the state at time t − 1. Providing
feedback with delay, introduces memory to the network [MC01]. This allows an RNN in
principle to map from the entire history of previous inputs to each output. The feedback
within an RNN can be distinguished between local and global. The local feedback
is produced within the hidden layer, whereas the global feedback is produced by the
connection from the output layer to the input layer [MC01]. Since observations can be
encoded and accumulated over temporal or spatial dimensions, RNNs can learn features
and long term dependencies from sequential and time-series data [SSB+18]. Therefore,
they are widely used for sequential problems like text analysis, speech recognition and
video analysis [SSB+18]. Since the audio signal can be represented as a sequence of
either frames of raw audio or human engineered feature vectors (e.g. log-mel), matrices
(e.g. spectrograms), or tensors (e.g. stacked spectrograms), it can be analyzed by a
recurrent network. Several ASC frameworks based on different types of RNNs have been
proposed in the last years. Some ASC algorithms are based on convolutional recurrent
neural networks (CRNN) [LHX+19]. In this case, local information is extracted by the
convolutional layers and then combined by the recurrent layers over a longer temporal
context [PLV+19]. Others use RNN variations that address the vanishing/exploding
gradient problem like Gated Recurrent Unit (GRU) or Long Short Term Memory (LSTM)
[PKK+17, DLC+20]. To mitigate the information flow and alleviate gradient problems
LSTM utilizes a gating mechanism and memory cells [HS97]. Furthermore, LSTMs have
been extended to model audio signals across both time and frequency domains [PLV+19].
GRU is a variant of the LSTM unit, but is simpler to compute and implement as it
only has two gating units instead of four [CvG+14]. Even though GRU networks were
proposed more recently, several works have shown that they can outperform LSTM
networks in many sequence modeling tasks [CGCB14, JZS15].

In the 2017 paper Audio Scene Classification with Deep Recurrent Neural Networks by
Phan et al. [PKK+17] the authors treat the ASC task as a sequential modeling problem
and propose an approach where deep RNNs are trained on audio data presented as
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sequences of label tree embedding (LTE) features. The motivation of their work to
introduce an RNN framework for ASC was that RNNs have been shown to be inferior
to CNN competitors in the past [MTX+16, VW16]. The goal was to find an efficient
way of transforming audio scenes into sequences. Audio scenes typically consist of
background noise mixed with rich foreground sounds. Since foreground sounds occur
in an arbitrary order, it is hard to uncover the hidden sequential patterns. In the
proposed approach, an audio scene instance is transformed into a sequence of different
LTE feature vectors which is then divided into smaller subsequences to enhance the
repeatability of patterns. A deep GRU-based RNN is trained and evaluated on the
extracted subsequences. The predicted label for an entire sequence is obtained by
aggregating classification outputs of its constituent subsequences. The low-level features
used in this work were Gammatone cepstral coefficients, MFCCs and log-frequency filter
bank coefficients. The authors investigated the influence of different related factors that
affects the network’s performance and used the LITIS Rouen dataset [RG15] for training.
The best performance was achieved by RNN-Fusion, a network that concatenated the
feature vectors of three deep RNNs, each trained on one of the three LTE channels (i.e.
RNN-Gam, RNN-MFCC, and RNN-Log) at every time step and used a multiplicative
probabilistic voting scheme as aggregation method. The final classification step was
calibrated with a linear support vector machine (SVM) which showed a significant
performance improvement in comparison to the softmax layer. Cross-entropy was used
as loss function and dropout was applied on the output of the last layer for further
regularization. With RNN-Fusion the authors achieved the state-of-the-art performance
on the LITIS Rouen dataset and outperformed the best previously reported result (i.e.
CNN-Fusion6 [PHM+17]) by 1.4%, 1.2%, and 1.2% absolute on precision, F1-score, and
accuracy. Noteworthy is that the performance of the RNN-Gam alone achieved a better
performance than that obtained with the best CNN with multiple LTE types reported in
[PKH+17]. Therefore the authors conclude that with an appropriate sequential modeling
a standalone RNN can outperform state-of-the-art CNNs in the same ASC benchmark.

In 2020 Dong et al. published the paper At the Speed of Sound: Efficient Audio Scene
Classification in which the authors formulate ASC as a retrieval problem [DLC+20]. The
goal of this work was to propose a retrieval-based scene classification architecture that
can predict an audio scene with high accuracy after listening in for at most 300ms. Their
approach combines bidirectional LSTM [SVL14] and attention mechanism [VSP+17]
to learn high-level features (or embeddings) for short audio segments. In particular,
the audio scenes are split into segments shorter than a second and the similarity and
importance embeddings are learned for each segment. MFCCs, their first derivatives and
12 harmonic and percussive features were extracted as low-level features. While LSTM
captures long-term temporal dependencies, attention is used to emphasize the important
time steps in a segment. A test segment is classified in the same class as its nearest
neighbor in embedding space. To reflect the class membership of embeddings, a similarity
or distance function, such as the Euclidean distance, is used. The presented network
was trained by optimizing a custom audio loss function that captures the importance of
each segment in a scene and of each time step in a segment. The authors evaluated their
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architecture with experiments using three datasets extracted from the DCASE 2016-2018
challenges [MHV16]. Each dataset was randomly split into training and validation set
by 80% to 20%. The experiments showed that the model can predict the category (out
of 15 possibilities) with high accuracy (around 70%) by listening to the first 300 ms of
a 10 s audio scene. Additionally, the authors pointed out that processing the first few
segments rather than the entire scene led to a decrease of the detection accuracy by only
7%. Furthermore, they demonstrated that a higher classification accuracy (over 95%)
can be achieved for datasets with a smaller number of possible categories. The authors
came to the conclusion that the category of a scene can be reliably detected after less
than one second.

Feedforward Neural Networks

In ASC combining deep FNNs with generative learning methods or feature learning
techniques is another common approach besides those using CNNs or RNNs that have
proven to be viable alternatives [VPE18, Abe20]. Some works successfully proposed the
use of unsupervised feature learning techniques such as non-negative matrix factorization
(NMF) and it’s variants [BLD12, BSER16a]. Others adapt approaches originally designed
for speech recognition by combining a DNN and a Gaussian mixture model (GMM)
[TYMO16]. Apart from this, there have been proposals to focus on DNNs only and to
combine several DNNs into one system by using hierarchical learning [XHWP16] or late
DNN score fusion [PG18]. In the following two approaches that extend DNNs with other
learning techniques are presented.

In the 2017 paper Nonnegative Feature Learning Methods for Acoustic Scene Classification
by Bisot et al. [BSER17] the authors propose an ASC framework that is a simple fusion
of two systems trained on both channels of the scene stereo recordings. The systems used
for the fusion are a DNN and a task-driven non-negative matrix factorization (TNMF)
model. The DNN network (referred to as DNN-M) is composed of two branches that are
merged by concatenation before the final layer of the network. This architecture allows
the network to be jointly trained on NMF features and Constant-Q transforms (CQT) as
time-frequency representations. All layers are simple fully-connected layers with ReLu
activations and dropout is applied between each layer. Non-negative matrix factorization
(NMF) [LS99] is an unsupervised data decomposition technique that has been found to be
an effective feature learning approach in ASC [BSER16a, BSER16b]. NMF decomposes
non-negative data into non-negative dictionary elements. Noteworthy is that most of the
time-frequency representations for audio signals contain only non-negative coefficients.
The TNMF system (referred to as TNMF-AS) used in the system fusion is a supervised
variant of NMF which applies an adaptive scaling strategy to balance the contribution of
each dictionary component when jointly learning the dictionary and classifier. For the
dictionary Constant-Q transforms are extracted from the audio samples and averaged by
slices of a fixed length. Then, for each example all the averaged slices are concatenated to
build the data matrix. A square root compression is applied to the data and each feature
dimension is scaled to unit variance. In deep learning terminology the TNMF model
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can be seen as a one hidden layer network taking the data matrix as input, followed by
the classification layer which is a fully connected layer with softmax activations acting
as multinomial regression. The parameters of the network are trained to minimize a
categorical cross-entropy loss. The authors use the DCASE 2017 challenge dataset for
ASC [MHD+17] to evaluate their proposed framework and to investigate it’s performance
and that of it’s subsystems. Their experiments showed that a DNN trained on the
NMF largely outperforms those trained on CQTs or unsupervised NMF. By merging the
branches of a DNN-NMF and a DNN-CQT to one DNN-M architecture the performance
could be slightly increased. Nonetheless, it was shown that the proposed TNMF-AS
provided better results than a DNN-M. Furthermore, the authors could show that TNMF-
AS outperforms TNMF that does not use the adaptive scaling strategy. They therefore
conclude that adding a scaling strategy can improve the model generalization capacity.
Compared to the baseline system provided in the 2017 DCASE challenge with an accuracy
of 77.2%, the proposed final system (TNMF-AS+DNN-M) could reach a significantly
higher accuracy with 91.1%.

Takahashi et al. described their contribution to the ASC task of the DCASE 2016
challenge in the paper Acoustic scene classification using deep neural network and frame-
concatenated acoustic feature where they propose to combine a DNN with multiple
Gaussian mixture model (GMM) classifiers to model the individual acoustic scenes
[TYMO16]. The introduced DNN-GMM is trained on high-dimensional acoustic features.
To form these features, MFCCs and their first and second derivatives are computed for
each frame for each of the left and right channels. Then, in each frame and channel the
extracted features are concatenated with the features of a fixed number of other frames
selected by a defined interval. Finally, the acoustic features of the left and right channels
in each frame are concatenated to capture the spatial information. The training of the
DNN-GMM consists of several steps. First, a model for each scene class is learned in
a supervised manner using a conventional GMM. Next, training data for the DNN is
composed of the features in each frame of each training data and the state number of
the GMM. Then, the initial parameters of the DNN are determined by unsupervised
pre-training [Hin12]. Finally, the DNN is trained based on generated training data
with backpropagation and SGD. The authors evaluated several variants of the proposed
framework using the development dataset and evaluation dataset provided by the DCASE
2016 challenge. The highest classification accuracy with 77.5% was achieved by the
DNN-GMM with three hidden layers which concatenated 5 frames at 100 ms interval.
The DNN-GMM could achieve a better performance by 8.4% on the evaluation dataset
compared with that of a GMM alone, which was used as the baseline classifier in the
DCASE 2016 challenge. The experimental results showed on the one hand that frame
concatenation can boost the performance and might be further increased by using a
higher number of concatenated frames. On the other hand, the frame concatenation
interval is an important parameter worth researching. In 2017 the authors published
a follow-up work where they compared the performance when using different numbers
of concatenated frames and frame concatenation intervals [TYOM17]. Based on their
experimental results they found that best results could be achieved when concatenating 5
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frames or less using a concatenation interval for 500 ms or less. The highest classification
accuracy was obtained by the system that concatenated 3 frames at an interval of 500
ms outperforming the previous method by 1.3%.

In this section we gave a broad overview of the current approaches for ASC that are
not based on CNNs. Even though the presented works could achieve good performances
while trying to solve a similar ASC problem as discussed in this thesis, the results
of the DCASE 2020 challenge show that the top ranked positions are dominated by
convolutional frameworks as they achieve significantly higher classification accuracies
and better generalization [HMV20a]. In this work, we analyzed the top ranked systems
of the DCASE 2020 challenge and tried to adopt the good aspects in the design and
training of our classifier. The results of our analysis as well as the details of our approach
of developing an ASC framework, will be discussed in the next chapter.
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CHAPTER 3
Development of the Prototype

In this chapter we discuss the planning, the design and the implementation of the software
prototype that was used in the case study that is discussed in Chapter 4. As mentioned
in the first chapter, the aim for this work is to provide a cross platform mobile application
that can classify the environment based on the surrounding sounds and play according to
the classification result matching sound samples of the same scene of a different city. The
development of the required application consisted of several steps, which are explained
in separate sections. First, Section 3.1 introduces the idea and the requirements of the
software. Then, Section 3.2 gives an overview of the researched state-of-the-art ASC
systems and explains the choice of the baseline model used in the design of the prototype’s
classifier. In Section 3.3 the modification of the baseline model as well as its training and
calibration are presented. The selection of the sound samples to play in response to the
classification result is discussed in Section 3.4. Due to current technological limitations,
the trained model can not be included in a mobile application. Hence, it was integrated
in a server application that is described in Section 3.5. Finally, the details of the mobile
application, which communicated with the server to classify recordings and was used by
the case study participants, are laid out in Section 3.6.

3.1 Design
The main goal of this thesis is to provide a prototype that uses ASC to find a matching
sound sample that was recorded in the same scene, but in a different city. The found
sound sample is then played to the user to evaluate the psychological effect the overlay
of a different soundscape might have on them. The development of the required mobile
application consists of several parts, the requirements of which are defined as follows:

• Classifier: An ASC model that identifies 9 acoustic scenes from a 10 seconds
recording has to be designed and implemented. Since during the case study it
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will be used in real life scenarios, the overall goal is to develop a classifier that
achieves sufficient performance when applied to unseen data. Therefore, the current
state-of-the-art ASC solutions has to be researched to adopt well performing aspects
in the architecture and training of the model.

• Soundscape overlay: The scope for the prototype is defined such that the user
can choose a soundscape from one of four cities. This means that a set of sound
samples for 9 scenes for each city has to be created to use for the soundscape overlay.
The sound samples have to include city specific sounds and to be long enough for
the user to be able to adapt to the new soundscape.

• Server architecture: The classification is executed on a server. Hence, an API
has to be provided to get predictions from the model. The server application has to
support the upload of a 10 seconds audio file, which is then passed to the classifier.
The predicted scene or "unknown" (for predictions with low accuracy) has to be
send as response to the client.

• Mobile application: A cross platform mobile application has to be designed and
implemented with the goal to be used by the participants of the case study discussed
in Chapter 4. The mobile application has to include the following features:

– A simple UI with the possibility to choose a city, and to start and stop the
classification process.

– The recording of the surrounding sounds using the device’s microphone at an
interval of 5 minutes.

– The classification of the recorded audio files through communication with the
server.

– An audio player that plays an audio sample of the chosen city accordingly to
the classification result.

– The process of the application can only be stopped by the user manually and
continues to run when it is put in the background.

The listed requirements were mandatory, but no further limitations with regard to allowed
technologies were defined. The rest of the chapter describes each part in more details,
starting with the analysis of the current state-of-the-art ASC systems.

3.2 Overview of ASC Frameworks
One of the contributions of this thesis is the research of the effect the overlay of a different
soundscape has on the user’s perception. In particular, we are interested in the effect
the user might experience, when they hear the soundscape of the scene in which they
are in, but from a distant city. How does it feel to walk on a public square in Vienna
and experience the soundscape of a public square in Moscow? Therefore, hearing the
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soundscape of a different scene might cause a different effect and lead to false conclusions
in the case study. Accordingly, the performance of the prototype’s classifier plays an
important role in the success of this work. This section gives an overview of the researched
state-of-the-art ASC systems and explains the choice of the ASC framework that is used
as the baseline model in Section 3.3.

A rapid increase of scientific publications in the research field of ASC has been observed
in the last decade. This progress was mainly stimulated by recent advances in the field
of deep learning as well as the release of various public datasets. Since 2013, the DCASE
community plays a major role in this development by organizing annual competitions
on several machine listening tasks beyond the domains of speech and music [SGB+15].
This challenge focuses mainly on tasks for ASC and sound event detection, and aims to
benchmark the state of the art. In order to find the baseline model for our classifier,
we decided to investigate the submissions of one of the recent DCASE challenges that
included a task for a similar problem as discussed in this work. During our search we
found that Task 1a of the DCASE 2020 challenge addressed a comparable problem. The
main focus of the task was the device mismatch problem of ASC that is common for the
real-world scenarios where data has to be classified recorded by various devices, many
of which are not available at training stage. The objective of this task was to develop
systems with very good generalisation properties across a large number of different devices
[HMV20a]. For the training of the models and the evaluation of the submissions a new
dataset (TAU Urban Acoustic Scenes 2020 Mobile) consisting of recordings from multiple
devices was provided [HMV20b, HMV20c]. For this dataset audio data was recorded in
multiple European cities at 10 different acoustic scenes. More details about this dataset
will be presented in Section 3.3.2. As it can be assumed that the participants of the case
study will use the prototype on different devices in an European city, we concluded that
using one of the submissions for Task 1a as the baseline model for our ASC framework
will deliver the classification accuracies needed for our task. Our approach to find the
baseline model consisted of the following steps:

1. Investigate the top 10 ranked systems submitted for Task 1a

2. Compare the used technologies and the achieved performances

3. Choose one of the systems as the baseline model based on the insights gained from
the previous steps

Following the first step, Table 3.1 gives an overview of the top 10 ranked systems of
the 92 total submissions. The listed systems were developed by the teams Suh et al.
[SPJL20], Hu et al. [HYX+20], Gao et al. [GM20] and Jie et al. [Jie20]. The submissions
were ranked by accuracy calculated as macro-average accuracy (average of the class-wise
accuracies) on the evaluation dataset. The values in the scopes show the accuracies of
the model at the 95% confidence level. Multi-class cross-entropy (log-loss) was used to
evaluate the uncertainty of the classifier. The complexity of each model is described by
its number of learnable parameters (in millions).
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# Submission Accuracy (95%) Log-loss Complexity Classifier

1 Suh_ETRI_3 76.5% (75.8 - 77.3) 1.21 39M ResNet
ensemble

1 Suh_ETRI_4 76.5% (75.7 - 77.2) 1.21 39M ResNet
ensemble

2 Hu_GT_3 76.2% (75.4 - 77.0) 0.89 130M
CNN

ResNet
ensemble

3 Hu_GT_2 75.9% (75.1 - 76.7) 0.89 67M
CNN

ResNet
ensemble

4 Hu_GT_4 75.8% (75.0 - 76.5) 0.90 91M
CNN

ResNet
ensemble

5 Hu_GT_1 75.7% (74.9 - 76.4) 0.92 62M
CNN

ResNet
ensemble

6 Suh_ETRI_2 75.5% (74.7 - 76.2) 1.22 13M ResNet

7 Gao_UNISA_4 75.2% (74.4 - 76.0) 1.23 12M ResNet
ensemble

8 Gao_UNISA_1 75.0% (74.3 - 75.8) 1.22 4M ResNet
8 Jie_Maxvision_1 75.0% (74.3 - 75.8) 1.20 3M ResNet

Table 3.1: Official systems ranking of the DCASE 2020 challenge showing the top 10
systems submitted for Task 1a1.

The last column states the neural network used as the classifier and it can be observed
that all systems used a ResNet, either as a single network or as an ensemble. Table 3.1
gives the first insights of the main characteristics of the systems, which can be summarized
as follows:

• According to the log-loss results, the system with the highest accuracy by Suh et
al. is more uncertain of its decisions than the systems by Hu et al. with slightly
lower accuracies.

1Table Systems ranking of DCASE 2020 challenge results for Task 1A http://dcase.community/
challenge2020/task-acoustic-scene-classification-results-a#systems-ranking
(visited on 03.07.2022). The data for Classifier were updated by us according to the reports.
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• With an accuracy range of 76.5% − 75.0% all systems outperformed the baseline
system provided by the challenge which had an accuracy of 51.4% [HMV20a].

• A classification accuracy of ≥ 75.7% could only be achieved by ensembles.

• Training an ensemble of classifiers involves the training of several networks which
is reflected in the number of learnable parameters meaning there is a trade-off
between model’s accuracy and its complexity.

• A more complex model does not necessarily perform better. The submission with
the highest accuracy by Hu et al. has a slightly worse performance than the top
system by Suh et al. while having 4 times more parameters. Noteworthy is, that
the smallest model by Jie et al. has 10% of the parameters compared to the top
ranked system while achieving an accuracy that is only 1.5% less.

The comparison of the measured characteristics shows that all systems achieved similar
performances, whereby ensembles performed slightly better in terms of accuracy for
the price of a large number of learnable parameters. To get a better insight of the
used technologies, Table 3.2 gives an overview of the features and data augmentation
techniques used by the systems grouped by teams2

All solutions used log-mel energies as audio features with deltas and delta-deltas of the
spectrum following the same approach. The audio waveforms were analyzed with a window
size of 2048 samples and a hop-length of 1024 samples [SPJL20, HYX+20, GM20, Jie20].
A spectrum of 431 frames was yielded from the 10 seconds audio files, and each spectrum
was compressed into 128 or 256 Mel frequency bins. Deltas and delta-deltas without
padding were calculated from the spectrograms, which reduced the number of time
samples to 423, and stacked into the channel axis. Hu et al. have scaled each feature
value into [0, 1] before feeding the input to the network. In order to improve the model’s
generalization and therefore to compensate for the device mismatch, all submissions
used mixup and cropping for data augmentation. Hu et al. was the only group that
investigated the usage of additional data augmentation strategies. Their experiments
showed that the combination of several data augmentation techniques can increase the
classification accuracy and minimize the loss [HYX+20]. As shown in Table 3.1, the
submissions by Hu et al. achieved loss results of 0.89 − 0.92, which are much smaller
compared to the other submissions with a loss of 1.20−1.23. It can be therefore concluded
that the usage of multiple data augmentation techniques can increase the classifier’s
certainty of its decisions while accomplishing similar accuracies.

Without investigating the network architectures used in the presented submissions any
further, we can conclude that all solutions followed the same or very similar approach

2Table General characteristics of DCASE 2020 challenge results for Task 1A https:
//dcase.community/challenge2020/task-acoustic-scene-classification-results-a/
#system-characteristics (visited on 03.07.2022). The data for Features and Data augmentation
were updated by us according to the reports.
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# Submission Features Input tensor Data augmentation

1, 6 Suh_ETRI
log-mel energies

deltas
delta-deltas

[256 × 423 × 3] temporal cropping
mixup

2-5 Hu_GT
log-mel energies

deltas
delta-deltas

[128 x 423 × 3]

mixup
random cropping

SpecAugment
spectrum correction

reverberation-drc
pitch shift

speed change
random noise
mix audios

7-8 Gao_UNISA
log-mel energies

deltas
delta-deltas

[128 x 423 × 3] temporal cropping
mixup

8 Jie_Maxvision
log-mel energies

deltas
delta-deltas

[128 x 423 × 3] temporal cropping
mixup

Table 3.2: Overview of the features and data augmentation techniques used by the
systems listed in Table 3.1 grouped by teams2.

in regards of feature extraction, with data augmentation being the main tool used for
the generalization problem. The highest accuracies could only be achieved by ensembles
of classifiers, whereby the gain in performance with 1.5% compared to the best single
network solution was rather small. Each of the submitted classifiers was trained with
backpropagation and SGD for 126 [Jie20], 254 [SPJL20, HYX+20] or 310 [GM20] epochs.
Considering the large amount of data used for training, increasing the model’s complexity
leads to longer training periods and requires more computational resources. Accordingly,
it can be assumed that the training of multiple networks will exceed the resources of
this work without a significant pay-off. We therefore decided to focus on the single
network solutions, in particular on Gao_UNISA_1 and Jie_Maxvision_1 due to their
low complexity.

In their previous submission for the DCASE 2019 challenge, Gao et al. introduced a
residual network with two pathways: one for high frequencies and one for low frequencies,
that were fused two convolutional layers prior to the network output [MG20]. The
results of the challenge showed that this network could achieve excellent generalisation
to unknown devices in the evaluation set [MHV19]. Their code for training models and
running trained models was made available online and got awarded the “Reproducible
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System Award” for DCASE 2019 Task 1 [MG20]. Noteworthy is, that the submission
Gao_UNISA_1 is the model from the previous challenge without modifications and that
Jie_Maxvision_1 used that model as their baseline. Jie et al. investigated different
attention mechanisms in order to enhance the model’s generalization. However, as it
can be observed from the challenge results in Table 3.1, adding attention mechanism
had no effect on the classification accuracy. Since Gao et al. have published3 their
code for training the models as part of the DCASE 2020 challenge, we decided to use
Gao_UNISA_1 as the baseline model for our ASC framework. The technical details of
the model as well as our modifications and training will be explained in the next section.

3.3 Implemented ASC Framework
In this section, we give a detailed overview over the architecture of the implemented
classifier as well as its training and evaluation. First, we present the design of the network
we used as the baseline model and how we adjusted it to our task. Afterwards, the
training setup including the datasets used for training and evaluation are discussed. Since
the network’s generalization ability will play an important role during the case study, we
investigated several approaches based on our observations in Section 3.2 by conducting
experiments. Our experimental results and insights are laid out at the end of this section.

3.3.1 Baseline Model
The baseline model we used is the ResNet that was introduced by Gao et al. in
2019 [MG20]. In their paper the authors argument that spectrograms have different
characteristics than images. While an object in an image can carry the same meaning
regardless of its location, patterns of features may represent different physical origins at
different frequencies. Consequently the two spatial axes in an image are not of the same
nature as the two axes of a spectrogram. In order to take into account that the temporal
and frequency axes in spectrograms represent fundamentally different information, the
ResNet was designed with two pathways: one for high frequencies and one for low
frequencies. The main motivation behind the approach of using two branches is the
idea that by not applying the convolutional kernels at all frequencies in a spectrogram
different frequency features can be learned and the overall learning improved.

Figure 3.1 illustrates the architecture of the model, whereby only the convolutional layers
are depicted for simplification. The network is designed as a pre-activation ResNet, where
the input to each convolutional layer is processed by a batch normalization layer and then
a ReLU activation [HZRS16b, McD18]. The overall network input has 128 frequency
dimensions, which are split in the network before being fed to the branches. This means
that dimensions 0 to 63 are processed by one path and dimensions 64 to 127 by another.
Each path is a residual network that consists of a convolutional layer followed by 4 stacks,
where each stack is built of two residual blocks containing two convolutional layers. Each

3 https://github.com/emilywg/DCASE2020-Task1 (visited on 03.07.2022)
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Figure 3.1: ResNet with two pathways used as baseline model.

branch has therefore 17 convolutional layers and all kernels are 3 × 3. The pathways are
combined using late fusion by concatenation of frequency axes to form 128 frequency
dimensions. The concatenated output is then processed by the final two 1 × 1 layers,
which act as a two layer non-convolutional neural network that weights the contributions
of each channel in each branch for classification of the scene at each frequency. The
result is then passed to a batch normalization layer, a global average pooling layer, and a
soft-max layer. The network’s input is processed by 19 convolutional layers in total.

Since an important cue could happen with equal likelihood at any point in time, in order
to learn global temporal information across all time samples, the authors followed a
standard image classification practise by regularly downsampling in time using stride-2
convolutional layers. Downsampling is only done for the temporal axis, therefore the
number of frequency dimensions in the feature maps for each path remains constant
at 64 throughout the network. When the two branches are concatenated, each path
has processed a frequency-axis receptive field of size 1 + 2 × 17 = 35 bins (from 17
convolutional layers each with kernel size of 3 bins). Consequently, the global average
pooling layer averages over different feature maps in the frequency axis, while weighting
them equally in the temporal axis.

In order to avoid the need for pre-normalization of input features and to reduce overfitting,
the authors followed the idea of [McD18] and used a batch normalization layer with
learned offset and scale parameters as the first layer of the network. Another regularization
technique was using weight decay 5×10−4 on all convolutional layers. Additionally, mixup
and temporal crop augmentation were applied. Based on our observation in Section 3.2
that multiple data augmentation strategies can improve the classifier’s performance, we
decided to try out some of the data augmentation techniques that were used by Hu et al.
[HYX+20]. The techniques we used are explained in Section 3.3.2.

For the DCASE 2020 challenge Gao et al. investigated the use of focal loss and mild
domain adaptation in order to improve the generalization of the model [GM20]. Their
experimental results showed that the use of focal loss led to a minor increase of 0.1% in
accuracy, whereby domain adaptation led to a decrease by 0.3%. Interestingly, in the
DCASE 2020 challenge the system using domain adaptation performed slightly better
than the one using the focal loss. We therefore decided to investigate the effect of these
two approaches during the calibration phase, which will be discussed in Section 3.3.3. The
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code for creating the network and running its training using Keras [Cho15] was published
by the authors under the MIT License3. We used the code in our implementation without
making any changes in the network’s architecture besides from adopting the number of
targets to 9. Our contribution was to train the model with a different dataset and to
examine the effect the usage of focal loss, domain adaptation and data augmentation
techniques has on the model’s accuracy and generalization. Same as Gao et al. we used
Tensorflow [AAB+15] with the Keras API to implement and train our neural network.

3.3.2 Model Training
Our classifier is a deep residual network that is trained with log-mel spectrograms
complemented by log-mel deltas and delta-deltas. Following the requirements stated
in Section 3.1, in order to train our model, we need a large number of audio files that
were recorded in 9 different scenes and are at least 10 seconds long. Since Task 1a
of the DCASE 2020 challenge is similar to our problem, we decided to work with the
TAU Urban Acoustic Scenes 2020 Mobile dataset that was provided for that task. The
dataset contains recordings from 12 European cities in 10 different acoustic scenes. Audio
data consists of 10-seconds audio segments provided in single channel 44.1 kHz 24-bit
format. Four devices were used to record simultaneously (A, B, C, and D), and additional
synthetic devices S1-S11 were simulated by using audio recorded with device A. Simulated
recordings were created using a dataset of impulse responses (IR) [HMV20a]. The dataset
was split into development and evaluation sets. We used only the development set for
training as the reference labels were not provided for the evaluation set.

The development dataset was provided with a training/test split in which 70% of the data
for each device is included for training and 30% for testing whereby some devices appear
only in one of the sets. In order to allow a comparison of systems on the development
set the participants were required to report the performance of their system using the
provided train/test setup. The distribution of devices among training and test subsets is
shown in Table 3.3.

Device Dataset Cross-validation setup

Name Type Total
length

Total
seg

Train
seg

Test
seg

Unused
seg

A Real 40h 14400 10215 330 3855
B,C Real 3h*2 1080*2 750*2 330*2
S1,S2,S3 Sim. 3h*3 1080*3 750*3 330*3
S4,S5,S6 Sim. 3h*3 1080*3 330*3 750*3
Total 64h 23040 13965 2970 6105

Table 3.3: Distribution of devices among training and test subsets in the TAU Urban
Acoustic Scenes 2020 Mobile dataset [HMV20a]

.
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As it can be seen in Table 3.3 the training set consists mostly of recordings made
with device A, while the majority of the data in the test set was recorded with other
devices. Noteworthy is, that devices S4-S6 appear only in the test set. To get a better
understanding of how much data was provided for each scene, Table 3.4 shows the
distribution of audio segments per device and scene class.

Train / Device Test / Device
Scene class A B,C,S1-S3 A B,C,S1-S3 S4-S6
Airport 1019 75 33 33 33
Bus 1025 75 33 33 33
Metro 1007 75 33 33 33
Metro station 1005 75 33 33 33
Park 1054 75 33 33 33
Public square 1053 75 33 33 33
Shopping mall 999 75 33 33 33
Street, pedestrian 1011 75 33 33 33
Street, traffic 1038 75 33 33 33
Tram 1004 75 33 33 33
Total 10215 750 330 1650 990

Table 3.4: Distribution of audio segments per device and scene in the train / test setup
provided by the TAU Urban Acoustic Scenes 2020 Mobile dataset [HMV20b]

.

We decided to use the same train/test setup to be able to compare the performance of
our classifier with the reported performance of the baseline model. In order to fulfill our
requirement of supporting 9 different scenes, we decided to remove one of the scenes from
the TAU development dataset. We therefore investigated the class-wise performances of
the baseline model and the top ranked DCASE 2020 submissions. First, we analyzed the
performance of the baseline model as stated in the submission report [GM20]. Table 3.5
shows the class-wise performance of the models submitted by Gao et al. that were ranked
in the top 10. The performance was measured using the test set. It can be observed that
the scenes airport, public square and street pedestrian have the lowest accuracies. It is
not surprising considering that these scenes share many sound events. This makes it
difficult to distinguish them even for a human.

Submission Airport Bus Metro Metro
station Park Public

square
Shop.
mall

Street
pedestr.

Street
traffic Tram

Gao_UNISA_4 56,5% 82,4% 75% 73,7% 91,5% 51,8% 70,3% 56,5% 90,2% 77,4%
Gao_UNISA_1 56,5% 82,8% 77,7% 76% 90,9% 49,8% 63,9% 55,5% 88,8% 75%

Average 56,5% 82,6% 76,35% 74,85% 91,2% 50,8% 67,1% 56% 89,5% 76,2%

Table 3.5: The class-wise performance of the models submitted by Gao et al. that were
ranked in the top 10 [GM20]

.
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Submission Airport Bus Metro Metro
station Park Public

square
Shop.
mall

Street
pedestr.

Street
traffic Tram

Suh_ETRI_3 60.8% 88.8% 82.9% 76.6% 93.7% 52.9% 81.4% 50.9% 92.3% 84.8%
Suh_ETRI_4 60.7% 88.6% 83.2% 76.5% 93.7% 52.4% 81.2% 51.2% 92.3% 84.9%
Hu_GT_3 61.7% 92.1% 84.0% 74.5% 93.9% 53.8% 81.5% 39.4% 92.6% 88.6%
Hu_GT_2 60.7% 91.8% 83.2% 75.5% 93.8% 52.4% 81.1% 39.4% 92.3% 88.6%
Hu_GT_4 59.5% 91.6% 83.4% 75.0% 93.9% 52.4% 81.4% 39.1% 92.6% 88.7%
Hu_GT_1 62.3% 89.8% 82.1% 72.4% 92.8% 56.2% 83.4% 40.4% 91.5% 85.7%
Suh_ETRI_2 59.2% 88.0% 83.4% 76.0% 93.4% 49.8% 78.5% 51.3% 92.1% 82.7%
Gao_UNISA_4 58.5% 88.0% 79.4% 74.7% 92.8% 56.4% 74.2% 53.4% 90.5% 84.3%
Gao_UNISA_1 58.2% 87.8% 76.2% 75.6% 92.7% 57.5% 75.3% 52.3% 90.7% 84.3%
Jie_Maxvision_1 62.4% 88.6% 75.2% 70.4% 93.8% 58.4% 76.8% 48.3% 90.4% 86.1%

Average 60.40% 89.51% 81.30% 74.72% 93.45% 54.22% 79.48% 46.57% 91.73% 85.87%

Table 3.6: Official systems ranking of the DCASE 2020 challenge showing the class-wise
performance of the top 10 systems submitted for Task 1a4.

Table 3.6 summarizes the class-wise performance of the top 10 systems submitted for
Task 1a. Noteworthy is, that the performance was measured using the evaluation set,
which included devices that were not part of the training and test subsets. This means,
that the results show the classifier’s performance when applied to unseen data like in a
real world scenario. After analyzing and comparing the two tables, we summarized our
findings as follows:

• The systems submitted by Gao et al. classified airport and public square more
accurately when applied on the evaluation set. On the contrary, in regards of the
street pedestrian scene they showed a worse generalization than for the test subset.

• Similar to the experimental results by Gao et al., the scenes airport, public square
and street pedestrian are recognized the least by all top ranked submissions.

• Street pedestrian has the lowest accuracy in 9 of the top 10 submissions.

Our investigation showed that the street pedestrian scene is the most difficult to classify
when using the TAU Urban Acoustic Scenes 2020 Mobile dataset. In order to fulfill our
requirement of supporting 9 scenes and to increase the overall classification performance,
we decided to remove the street pedestrian scene from our development dataset. We made
this decision also considering the idea, that when it comes to the planned case study,
scenes like airport and public square of a known city are more likely to be recognized by
the participants. We assume that pedestrian streets have a lower recognition value and
supporting this scene might not conduce to the success of the case study.

We used Python and the Librosa library to generate the acoustic features from the
audio files in our implementation. The spectrograms were generated for 128 log-mel
energies using 2048 FFT points, the original sampling rate of 44.1 KHz, frequencies from

4Table Class-wise performance of DCASE 2020 challenge results for Task 1A https:
//dcase.community/challenge2020/task-acoustic-scene-classification-results-a#
class-wise-performance (visited on 03.07.2022)
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0 to half of the sampling rate, and a hop-length of 1024 samples. The log-mel deltas
and delta-deltas were calculated without padding, which reduced the number of time
samples from 431 to 423. The final input feature data consisted of spectrograms with 128
frequency bins, 423 time samples and 3 channels each representing log-mel spectrograms,
its delta features and its delta-delta features respectively.

In some of our experiments we used the modified TAU development dataset combined
with augmented data to train our model. To generate the data, we applied some of
the data augmentation strategies investigated by Hu et al., who have published5 their
work as part of the DCASE 2020 challenge [HYX+20]. We used the published code to
implement the following augmentation methods:

• Speed change: The audio speed is randomly changed based on the uniform dis-
tribution. The original input length is maintained by dropping extra samples
from the end when the resulting waveform is longer, and by applying padding to
attain the same input length when the resulting waveform is shorter. We used the
librosa.effects.time_stretch6 function from the Librosa library to time-stretch the
audio. The stretch factor was in the range [0.5; 2].

• Pitch shift: The pitch is shifted randomly based on the uniform distribution. We
used the librosa.effects.pitch_shift7 function to shift the pitch in many (fractional)
steps, where a step is equal to a semitone. The number of steps was chosen randomly
in the range [−4; 4].

• Random noise: We used the numpy.random.normal8 function from the Numpy
library to draw random samples from a normal (Gaussian) distribution, which were
then added to the sound samples to create noise.

• Mix audios: Two audio files from the same acoustic scene class are randomly mixed.
In particular, the samples of each waveform are scaled by a random factor and
then added together. The scaling factors were random floating numbers between
0.5 and 1.

The presented audio transformations were performed for each audio file in the training
dataset to generate new data. In order to investigate the effect of the augmentation
methods on the classifier’s performance, we trained and evaluated our model with different
combinations of training data in our experiments. Additionally, we used mixup with crop
augmentation in the temporal axis: each of the two samples combined using mixup were
first cropped independently and randomly from 423 dimensions down to 400.

5 https://github.com/MihawkHu/DCASE2020_task1 (visited on 03.07.2022)
6https://librosa.org/doc/main/generated/librosa.effects.time_stretch.html

(visited on 07.07.2022)
7https://librosa.org/doc/main/generated/librosa.effects.pitch_shift.html

(visited on 07.07.2022)
8https://numpy.org/doc/stable/reference/random/generated/numpy.random.

normal.html (visited on 07.07.2022)
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As mentioned earlier, we used TensorFlow with Keras to build and train our model. To
cope with the high computational effort required to train a neural network on a large
number of training samples, we performed the training on a GPU cluster with GeForce
RTX 2080 Ti GPUs. Even though it is possible with TensorFlow to distribute the training
workload on multiple GPUs, each of our experiments was conducted on a single GPU.
Our network was trained for 310 or 630 epochs with backpropagation and stochastic
gradient descent and a batch size of 32. We used a learning rate schedule with warm
restart that resets the learning rate to its maximum value of 0.1 after 10, 30, 70, 150, 310
and 630 epochs, and then decays according to a cosine pattern to 1 × 10−5. Depending
on the configuration of the experiment, the loss was calculated using cross-entropy, focal
loss or domain adaptation.

3.3.3 Evaluation

In this section we discuss the conducted experiments and their results. We tested different
hyperparameters, loss functions and augmentation strategies in order to find the best
calibration for our network. It is important to point out, that due to a limited access
to a GPU cluster and long training times, each experiment was performed only once.
Therefore, the presented results refer to one possible outcome when measured with the
same hardware. In total we performed 57 training runs, of which 42 finished successfully.
The training time ranged from 9 hours to 7 days. In order to track, compare and visualize
our models we used a performance visualization tool for machine learning called Weights
& Biases9. Weights & Biases is a free Python library which is integrated with many
popular libraries such as TensorFlow. It is easy to integrate and allows the tracking of
custom metrics, images and terminal outputs.

Setup

In all our experiments we used the same model that was introduced in Section 3.3.1.
The model was trained on the dataset we described in Section 3.3.2 with the official
train/validation split of the DCASE 2020 challenge Task 1a. In some experiments
we added extra data to the training dataset, which were generated using the chosen
augmentation strategies (speed change, pitch shift, random noise, mix audios). In
particular, we created 4 datasets for each augmentation strategy such that we could
perform the experiments using the same augmented data. In the following we explain
which parameters were configured differently for each experiment and the values we used:

• Epochs: In most of our experiments we trained our model for 310 epochs as
suggested by Gao et al. [GM20]. In order to investigate the network’s behaviour
when it is trained for a high number of epochs, we decided to run some experiments
for 630 epochs, which is the last epoch after which the learning rate is reset.

9https://wandb.ai/site (visited on 03.07.2022)
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• Loss function: We explored 3 approaches: cross-entropy loss (CE), categorical focal
loss (FL) and mild domain adaptation (DA). We recall that for their DCASE 2020
submission Gao et al. used FL = {α = 0.3; γ = 1.0} and DA = {β = 0.1} [GM20].
We used the categorical focal loss with varying α and γ in most cases since this
approach showed to slightly boost the performance of the baseline model [GM20].

• Augmented datasets: We took into account that Gao et al. might have found
the best configuration for FL and decided to focus more on experiments that
use additional training data. In most of our experiments we added at least one
augmented dataset to the training data. Furthermore, we investigated a few
combinations and used up to 3 additional datasets in one training. Unfortunately,
the training with all 4 augmented datasets exceeded the available amount of memory
and could not be carried out.

Besides from evaluating the model, our main goal for running the experiments was to
investigate different configurations for FL and the usage of augmented data, because
we assumed that extra data may help with the problem of device mismatching. Since
performing experiments for all possible configurations would exceed the scope of this
work, we decided to follow a simple approach. First, we started with experiments using
the configurations as reported by Gao et al. [GM20]. Then, we focused on different
configurations for FL. Lastly, we performed experiments with augmented datasets, where
we also investigated different FL settings. Based on the results of the finished trainings,
we decided how to configure the next ones.

Experimental Results

In the following we present our results starting with the first step of our approach. Table
3.7 shows the achieved performances when we used the same configurations as Gao et
al. in their submissions [GM20]. Further we will refer to these configurations as the
default. In the table we report the test accuracy as stated by Gao et al., the model’s
accuracies on the test and training datasets, the difference Δ between them and the loss
after the training. Additionally, we note if FL or DA was used and for how many epochs
the model was trained. As it can be seen, the model that was trained with FL slightly

# Gao
et al.

Test
Acc.

Train.
Acc.

Δ
Acc.

Train.
Loss Loss f # Epochs

1 71.8% 77.99% 91.83% 13.85% 0.0277 FL (α=0.3, γ=1) 310
2 71.7% 77.46% 91.40% 13.94% 1.1054 CE 310
3 71.4% 77.05% 91.97% 14.92% 1.0580 DA (β=0.1) 310

Table 3.7: Experimental results using different loss functions with the default configura-
tions ranked by test accuracy.

.
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outperformed the other models. It achieved the highest test accuracy and is the least
overfitted. In this context we examine the difference between the achieved accuracies in
order to evaluate the overfitting of the model. According to our results, the application
of domain adaptation increased the overfitting, since in comparison to the model that
was trained with CE the test accuracy has decreased while the training accuracy went
up. Overall, it can be said that all models performed similarly well as the difference
in the metrics is rather small. We achieved similar results as Gao et al. which is not
surprising considering that we trained our model on the same data with the exception of
using one scene less. We recall that we removed the scene, that was the most difficult
to classify, from the dataset we used in our experiments. When we compare our test
accuracies with those reported by Gao et al., we find that by removing the difficult scene,
the overall accuracy could be increased meaning that our network is more confident about
its predictions. Furthermore, compared to the results of Gao et al. it can be seen that
the usage of FL in our experiment led to a higher increase in test accuracy compared to
the CE model. We therefore concluded that FL can improve the classification accuracy
and the generalization capabilities, and decided to perform further experiments with
different FL settings.

# Test
Acc.

Train.
Acc.

Δ
Acc.

Train.
Loss FL α FL γ # Epochs

1 77.99% 91.83% 13.85% 0.0277 0.3 1 310
2 77.87% 91.62% 13.75% 0.0529 0.5 0.5 310
3 77.05% 91.89% 14.84% 0.0902 1 1 310
4 76.79% 90.63% 13.85% 0.0904 0.75 0.1 310
5 76.71% 91.93% 15.22% 0.0179 0.25 2 310

Table 3.8: Experimental results using different focal loss parameters. Top 5 models
ranked by test accuracy.

In order to save resources for the experiments with augmented data, we decided to test
only a couple of different FL settings to get a general idea of how a change of the FL
parameters affects the model’s performance. We chose the parameters α and γ randomly
following the idea of covering a brighter spectrum. In Table 3.8 we summarize our results
for the FL configurations we have investigated. By comparing the presented metrics we
make the following observations:

• The model, that was trained with the default settings, outperformed the other
models in terms of test accuracy.

• Test #2 shows that by increasing α and decreasing γ to 0.5 the metrics change
only slightly. Noteworthy is, that even though the test accuracy decreased from
77.99% to 77.87%, the overfitting was reduced from 13.85% to 13.75%.
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• According to the tests #1 and #3, a larger α in combination with the same γ
decreases the model’s test accuracy and generalization.

• The tests #4 and #5 show that by using a significantly lower/higher γ the test
accuracy does not change as much as we assumed it might.

• According to the tests #1 and #5, where a similar α was chosen, using γ > 1 leads
to a less accurate and more overfitted model.

Based on our findings, we concluded that we can achieve the best results with α ∈ {0.1..1}
and γ ≤ 1. We decided to perform the experiments with augmented data using the default
settings first, and then to repeat them with a slightly increased α = 0.4. Depending on
the previous results, we kept repeating the experiments while linearly de-/increasing α
by 0.1. We set γ = 1 and did not change it until we have not found the best α.

# Test
Acc.

Train.
Acc.

Δ
Acc.

Train.
Loss FL α FL γ Augmentation # Epochs

1 77.57% 77.06% -0.51% 0.0373 0.3 1 mix audios 630
2 76.75% 80.52% 3.77% 0.0323 0.3 1 mix audios 310
3 76.68% 78.46% 1.79% 0.0338 0.3 1 pitch shift 630
4 76.41% 82.05% 5.64% 0.0325 0.3 1 random noise 630
5 76.00% 77.54% 1.54% 0.0348 0.3 1 speed change 310

Table 3.9: Experimental results using different data augmentation methods. Top 5 models
ranked by test accuracy.

Once we finished the evaluation of the FL configurations, we started using additional data
in our experiments. First, we performed one experiment for each augmentation strategy
by adding the according augmented data to the training dataset. We then evaluated
the results and depending on the outcome we repeated the experiments with modified
FL parameters or for a different amount of epochs. Since the usage of additional data
slowed down the training, we could achieve better performance by training the model for
630 epochs. Table 3.9 shows the top 5 of our models that used augmentation strategies
ranked by their test accuracy. The findings of our evaluation of the presented results are
summarized as follows:

• The best performance was achieved by the model that was trained with additional
data generated by mixing files.

• Due to the long training times and a limited access to a GPU cluster, we trained
the models for 630 epochs only once using the default configuration. Unfortunately,
we miss the data of the experiment that used the speed change dataset as it crashed
before it finished. Based on our results we conclude that we could achieve better
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performances by using 630 epochs than by modifying the FL settings for most of
our augmentation strategies.

• It can be observed that the difference between the accuracies for each model is
significantly smaller in comparison to our previous results as shown in Table 3.8.
We therefore conclude that the chosen augmentation strategies can improve the
generalisation capabilities of a model.

Besides from evaluating models that use one augmentation strategy, we additionally
carried out several experiments where we combined the strategies speed change, random
noise and mix audios. Since the experiment that used the pitch shift dataset performed
the worst for the default settings, we decided against using it in the combinations.
Nonetheless, our experiments showed that using more training data slows down the
learning process and leads overall to a decrease in the test accuracy. In this context
the highest test accuracy that we achieved was 75.14%. We therefore conclude that
data augmentation can improve the generalization ability of an ASC network, but
since enlarging the training dataset slows down the learning process and might require
additional calibration augmentation techniques should be used with caution.

Lastly, in order to complete the evaluation process of our model and to make final
conclusions, we put our best experimental results in relation to each other and present the
final ranking as shown in Table 3.10. As it can be seen, we achieved the best performance
with a test accuracy of 77.99% by using FL and the training setup as proposed by Gao
et al. This outcome is not very surprising since we used the same baseline model and
training data. Nonetheless, we assumed that by reducing the number of scene classes
by 1 and modifying the development dataset accordingly, the model would require a
slightly different configuration compared to the baseline model in order to achieve the best

# Test
Acc.

Train.
Acc.

Δ
Acc.

Train.
Loss FL α FL γ Augmentation # Epochs

1 77.99% 91.83% 13.85% 0.0277 0.3 1 - 310
2 77.87% 91.62% 13.75% 0.0529 0.5 0.5 - 310
3 77.57% 77.06% -0.51% 0.0373 0.3 1 mix audios 630
4 77.46% 91.40% 13.94% 1.1054 (CE) - 310
5 77.05% 91.89% 14.84% 0.0902 1 1 - 310
6 76.79% 90.63% 13.85% 0.0904 0.75 0.1 - 310
7 76.75% 80.52% 3.77% 0.0323 0.3 1 mix audios 310
8 76.71% 91.93% 15.22% 0.0179 0.25 2 - 310
9 76.68% 78.46% 1.79% 0.0338 0.3 1 pitch shift 630
10 76.41% 82.05% 5.64% 0.0325 0.3 1 random noise 630

Table 3.10: Summary of experimental results showing the top 10 ranked by test accuracy.
.
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possible result. We therefore conclude that a different FL configuration might further
improve the model’s performance. Even though we did not manage to increase our
model’s accuracy with the chosen data augmentation techniques, our experimental results
could show a significant reduction in overfitting when augmented data were additionally
used for training. However, we learned that enlarging the training dataset leads to slowed
down learning, longer training times, higher memory requirements and the need for
additional calibration. We therefore conclude that data augmentation can be used to
improve a model’s ability to generalize when the necessary resources are given.

As the classifier for our mobile application we decided to choose the model that achieved
the highest test accuracy in our experiments. According to our results presented in
Table 3.10, in the ideal case the classifier will make predictions with ≈ 78% accuracy.
Considering that the data we used in our experiments for training and testing were of
the same origin and similar in terms of recording conditions and quality, we assume that
in a real life scenario the error rate will be higher. Nonetheless, we concluded that the
classifier is robust enough to be used in real life and continued with the implementation
of the prototype which will be explained next.

3.4 Soundscape Overlay
In the previous sections we discussed the design and the implementation of the classifier
used in the prototype. Once the acoustic environment of the user was classified, the
application plays a sound sample of the recognised scene from a city the user has chosen.
Since one of the main goals of this work is to evaluate the psychological effect the overlay
of a different soundscape might have on the user, the choice of the sound samples to be
played is important.

To understand the significance of the soundscape dataset, we recall some of the research
questions mentioned in Section 1.1:

• How does the user experience the overlay of a different soundscape? (How does
it feel to walk on a public square in Vienna and experience the soundscape of a
public square in Moscow?)

• Will the app manage to provide an acoustic illusion of being in the selected city?

In order to ensure that we achieve the best possible result and can answer the questions
above, we defined criteria the soundscape samples have to fulfill as follows:

• The samples are recorded in well-known cities in order to increase the possibility
that participants of the case study have visited the chosen city in the past. We
recall the requirements stated in Section 3.1, which defined that 4 cities should
be offered. To cover different parts of the world, we decided to offer the following
cities: New York, Moscow, Delhi and Rio de Janeiro.
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• The samples include sounds that contribute to the recognition of the city (e.g.
announcements, speech).

• The samples are recorded in well known places (e.g. central areas, sightseeing).

• The samples are of satisfying quality to provide a pleasant acoustic experience.

• The samples are long enough in order to be able to create an acoustic illusion of
being in the selected city. We therefore defined the desired length with 5 minutes.

Once we defined the criteria above, we started to search for matching sounds on the inter-
net. As we could not find a publicly available dataset that would meet our requirements,
we decided to create our own by crawling the video YouTube10 platform. During our
research, we faced the following challenges:

• While it was easy to find the needed material for New York and Moscow, the
available data for Delhi and Rio de Janeiro was comparably sparse.

• It was difficult to find audio of good quality, especially for scenes with loud
background noise (metro, metro station, tram).

• Not every city has a tram system as we know it from Europe.

• The available videos for some scenes were shorter than 5 minutes.

In order to overcome those challenges, we decided to use shorter recordings where needed
and to loop them to achieve the required length. Furthermore, for cities that did not

Scene New York Moscow

Airport JFK SVO

Bus Bus:
42nd Street → Chatham Square

M27 bus:
Park Pobedy → Taganskaya

Metro
14 St,

34 St - Penn Station,
Times Square - 42 St

Novoslobodskaya,
Prospekt Mira

Metro station Times Square – 42 St Belorusskaya

Park Central Park Vorontsovskiy Park

Public square Union Square Red Square

Shopping mall Hudson Yards Mall GUM

Street traffic Canal St,
Lafayette St The Garden Ring

Tram R68A (B) train:
Brighton Beach → Harlem - 145th Str.

Tram 3:
Paveletskaya → Danilovsky Market

Table 3.11: The places the sound samples were recorded at in New York and Moscow.

10https://www.youtube.com (visited on 26.05.2021)
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Scene Delhi Rio de Janeiro

Airport IGI GIG

Bus DTC bus:
Kapashera Border → Kapashera Thana

Bus:
Ipanema → Copacabana

Metro
Vishwavdyalaya,
Vidhan Sabha,

Civil Lines,
Kashmere Gate

Yellow line #4

Metro station Shastri Park Botafogo, Copacabana

Park Hauz Khas Park Park of Madureira

Public square Palika Bazar Cinelândia - Santa Teresa

Shopping mall Select Citywalk Leblon Mall

Street traffic Paharganj New Delhi Copacabana Str. → Copacabana Beach

Tram Blue line:
Botanical Garden → Noida Sector 52 VLT Linha 1

Table 3.12: The places the samples were recorded at in Delhi and Rio de Janeiro.

have a tram system, we chose recordings of similar public transportation like subways
and regional trains operating above the ground. To give an idea which scenes the user
could listen to, we summarized the places the sound samples were recorded at in Tables
3.11 and 3.12.

The audio data were extracted from the selected videos in 44.1 kHz 32-bit format. We
used the Audacity 11 software to equalize the volume of the soundscape samples and
to fade in/out the first/last 10 seconds. The overall soundscape dataset consisted of 36
audio tracks and was of size 267 MB.

3.5 Server Architecture
In Section 3.3.3 we presented the model that we have chosen as the classifier for our
prototype. In particular, the classifier was used in the server application. In this section
we describe our implementation of the server application and the API it provided.

According to the previously stated requirements, the server application had to provide
an API that supports the upload of a 10 seconds audio file and returns the predicted
scene or "unknown" as response after getting the predictions from the model for the
received audio data. It is important to recall that the used model accepts log-mel
spectrograms complemented by log-mel deltas and delta-deltas as input. Therefore,
before the received audio file can be classified, its acoustic features have to be calculated
using the same procedure as applied for the training dataset. In order to ensure that
during the classification process we generate the same input data on the server as during
the training of the model, we decided to choose a web application framework that is
written in Python called Flask12, which allowed us to continue to work with libraries

11https://www.audacity.de (visited on 1.06.2021)
12https://flask.palletsprojects.com/en/2.2.x/ (visited on 27.04.2021)
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we used before, namely Librosa and Tensorflow. Flask is a popular web framework for
building RESTful web services due to its simplicity and extensibility [Gri14]. It is referred
to as a micro-framework since it provides a solid core with the basic services without
native support for high-level tasks like database access or web form validation. In the
Flask framework an URL is mapped to a Python function through routing. In our Flask
application we defined a route that triggers the classification for the received data and
returns the result in the JavaScript Object Notation13 (JSON) format. In order to reduce
the error rate, we defined an accuracy threshold to identify a prediction as valid when it
is at least 20% accurate. Therefore, in the success case the returned response included
either the label of the best prediction or "unknown" in case of an invalid classification.
We deployed our Flask application using Heroku [MS13], which is a cloud-based hosting
service.

During the design of the web application we took into account that the prototype will
be used in a case study. As it will be explained in Chapter 4, the main goal of the
case study is to evaluate the classifier’s performance in real world scenarios and the
overall experience of the users. While the experience of the participants will be evaluated
based on a questionnaire, in order to be able to estimate the classifier’s performance the
performed classification processes have to be documented. We therefore extended the
web application with the following functions:

• Saving received recordings: Every audio file for which the classification was executed
successfully was saved using Amazon Simple Storage Service14 (Amazon S3).

• Logging classification results: The result of every successful classification was stored
in a PostgreSQL database 15.

To get a better understanding of how the different components interact with each other
Figure 3.2 depicts the process of a classification request. In the following the presented
process is described in more details. The mobile application sends a request containing
the audio file and the user id to the server application. The user id is required in order to
be able to group the logged data to one experience. In the success case, once the received
audio file has passed the validation, the web application transforms the audio data and
passes it to the classifier. Then, the model’s predictions are evaluated. The classification
result is either the scene label of the prediction with the highest accuracy or a predefined
value in case all predicted accuracies are identified as invalid (too low). Subsequently,
the used audio file is uploaded to the cloud storage and the classification data is send to
the database. It is important to point out that the user id and the file name are part of
both requests to create the required relation between the data. Eventually, the mobile
application receives a response containing the classification result. In the process two

13https://www.json.org/json-en.html (visited on 1.04.2021)
14https://aws.amazon.com/s3/ (visited on 27.04.2021)
15https://www.postgresql.org (visited on 27.04.2021)
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Figure 3.2: A sequence diagram of a classification request.

types of errors are handled by the web application. A request is identified as bad when
no audio file of a supported type was attached. Hence, in the case that an error occurs
during the classification (e.g. the file is not long enough) the server responses with an
internal server error.

An important aspect of the presented architecture is that the client has to provide a unique
user id. On Amazon S3 for every user a folder is created and used to save the audio files
in. Storing the used audio data allows the analysis of its quality and content, but having
the possibility to group the files by user gives an overview over a participant’s journey.
This type of overview combined with the data about the executed classifications that
were stored in the database enables a comparison between the participant’s experience
based on their answers in the questionnaire and the classifier’s performance during the
case study. In the evaluation of the case study the technical part analysis this data.

In our prototype the server application has two roles. On the one hand, it provides an
ASC API, which enables the mobile application to react to its environment. On the other

62



3.6. Mobile Application

hand, it documents the classification processes and allows the technical evaluation of the
case study. In the next section we will describe the design and the implementation of our
web application as well as its communication with the server.

3.6 Mobile Application

In this section we present the technical details of the mobile application that was tested
by the participants of the case study which will be explained in Chapter 4. First, we
discuss the framework we used to implement the application. Then, we give a brief
overview of its architecture and features. Finally, we describe the design of the user
interface and the user experience.

In order to support the most used mobile operating systems, namely Android and iOS,
our mobile application was implemented with the Flutter SDK16. Flutter is an open
source framework which allows the development of mobile, web and desktop applications
from a single code base. Flutter applications are written in Dart, which is a class-based
and object-oriented programming language17. The Flutter framework uses a platform-
specific embedder to compile the applications directly to machine code. Hence, Flutter
applications are packaged in the same way as native applications and therefore provide
an equivalent user experience.

Figure 3.3: An abstracted class diagram of the Flutter application.

16https://flutter.dev (visited on 27.04.2021)
17https://dart.dev/guides/language/specifications/DartLangSpec-v2.10.pdf (vis-

ited on 27.04.2021)
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Following the principle of object-oriented architecture, the business logic of the program
was divided into several modules. Figure 3.3 illustrates an abstracted class diagram of the
Flutter application. The diagram shows the different components and the used packages.
In the following the function of each class is explained:

• Home represents the main page the user interacts with. In Flutter the UI is build
with widgets [Win20]. Since the main page can have different states, Home is
declared as a widget that has a state represented by HomeState. A state change
triggers an update of the UI.

• HomeManager encapsulates the logic for managing the state of the main page.
It exposes the data to the UI and reacts to user interactions by notifying the
corresponding components. In mobile development the access to restricted data or
restricted actions requires user’s permission. Therefore, this manager requests the
required permissions before starting the classification process.

• PermissionService requests the permission to access the microphone of the device
using the PermissionHandler18.

• RecorderAudioHandler communicates the application’s state to the AudioPlayer-
Handler by sending events using the AudioHandler19.

• AudioPlayerHandler reacts to the received events and handles the flow of the
classification process including the state of the audio player20.

• SoundRecorderService uses an instance of the FlutterSoundRecorder21 to record the
microphone’s input. Once the recording is finished, the audio data is saved as a file
on the device.

• ClassificationService requests the predictions from the server application for the
previously saved file and changes the state depending on the response.

• ApiRepository sends HTTP requests to the server using Dio22.

• ConfigStorage manages the configuration data of the application, which consists of
the server URL, and the supported acoustic scenes and cities.

• UserStorage manages the data regarding the user, which includes the user id and
the selection of the city. SharedPreferences23 is used to store the data permanently
such that it can be restored after an application restart.

18https://pub.dev/packages/permission_handler (visited on 27.04.2021)
19 https://pub.dev/packages/audio_service (visited on 27.04.2021)
20https://pub.dev/packages/just_audio (visited on 27.04.2021)
21https://pub.dev/packages/flutter_audio_recorder (visited on 27.04.2021)
22https://pub.dev/packages/dio (visited on 27.04.2021)
23https://pub.dev/packages/shared_preferences (visited on 27.04.2021)
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• MediaLibrary provides the access to the playlist including all audio tracks. Each
audio sample for a scene in a city is represented by a MediaItem19.

An important aspect of the presented architecture is the encapsulation of the classification
process including the play of the audio tracks in the AudioPlayerHandler. As it can be seen
in the diagram the AudioPlayerHandler does not have a reference to an UI component.
The RecorderAudioHandler broadcasts the UI events to the AudioPlayerHandler using a
stream provided by the AudioService19 package. This was required to avoid that the
application is stopped when the user puts it in the background by going to the home
screen or opening another app. In order to save resources mobile operating systems like
Android and iOS stop applications that run in the background (their UI is not visible)
at some point. The AudioService package was used because it provides the logic to run
an application in a background service that is not stopped by the operating system.
The mentioned event stream broadcasts the events between the UI and the background
service. This library was designed for audio applications. Hence, it also provides APIs to
control the audio player with headset buttons, the Android lock screen and notifications.

To get an overview of the process that is started by the user, Figure 3.4 illustrates the
interaction between the user and the application’s components for one classification
process given that the microphone permission is granted and a city is selected.

Figure 3.4: A communication diagram showing the interaction between the user and the
mobile application’s components for one classification process given that the microphone
permission is granted and a city is selected.

Once the user has started the classification the depicted process is repeated in a 5 minutes
interval. If a new classification result equals the previous one, the audio player continues
to play the current track. In case that the classification of the environment has changed,
the audio player plays a short audio sample that contains a DJ scratch sound24 and
then starts the new track. This approach was chosen to signalize the user that their
scene has changed and to create a smoother transition to the new soundscape. In case
an error occurred and the scene could not be classified and the audio player is playing,

24https://www.epidemicsound.com/track/bI1zxiYBxp/ (visited on 27.04.2021)
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(a) 1 (b) 2a (c) 2b

Figure 3.5: The screens of the mobile application.

the playback does not change. Otherwise the audio player is started once the next
classification succeeds. After the player was started, the application can be put in the
background since it is coupled with the background service.

The application’s UI has a simple design and consists of two screens, which are shown in
Figure 3.5. The first screen the user sees loads a configuration file that specifies which
scenes and cities are supported. Furthermore, it includes the URL to the server application.
The usage of a configuration file allows to change the settings of the application without
the need of a new release. Once the configuration file was loaded, the user is navigated
to the main screen. A widget to change the city selection is placed at the top. The
button to start and to stop the classification process is placed below, which changes its
design depending on the playback state of the audio player as shown in Figures 3.5b and
3.5c. Before the classification process is started, a system dialog is shown to provide the
option to grant the permission to access the microphone if needed. The details of the
application’s state are shown in the middle of the screen for information. For debugging
purposes a switch to display additional data about the process was placed at the bottom
of the screen. Noteworthy is, that the city can be changed during a running classification
process. In this case the audio player switches to the audio track of the same scene for
the newly chosen city and plays the DJ scratch sound before switching. The classification
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process continues until the user manually stops it. When the application is put in the
background, a system notification is shown to inform the user about the application’s
state and to remind them that the application is still running.

The presented Flutter application was developed to be used by the participants of the
case study, which design and results will be described in the next chapter. As it will be
shown in the results, all participants used the Android application. Even though it was
possible to compile the program for iOS as well, we faced a bug on iOS devices which
did not occur during the development on the emulator. We therefore could not use the
iOS application in the case study.
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CHAPTER 4
Evaluation of the Prototype

In this chapter, the steps and the results of the evaluation of the prototype are presented.
The aim of the implementation described in Chapter 3 was to use it in a case study to
evaluate the classifier’s performance in real world scenarios and the overall experience
of the users. Section 4.1 explains by which group of people and under which conditions
the prototype was tested. A feedback procedure in the form of a survey was used by the
participants to share their experience. The results of the survey are summarised and
analyzed in Section 4.2. Lastly, in Section 4.3 the insights of the evaluation are discussed
and the following questions are finally answered: Which accuracy does the classifier have
when applied to real life recordings? How does the user experience the overlay of a
different soundscape? Does the overlay have any effect on the user’s perception of their
surroundings?

4.1 Case Study
The case study was designed respectively to give insights into several aspects of the
prototype’s performance. On one hand there are technical questions regarding the
classifier’s performance when applied to recordings of different devices in different cities.
On the other hand, there is the goal to find out if overlaying human’s acoustic perception
with a similar soundscape has a psychological effect. A detection of a psychological effect
raises the question if participants observed the same psychological effect, and for those
who did, if they have something in common. Assuming that participants will experience
the application differently, the feedback procedure was created that takes into account
different outcomes.

4.1.1 Test Group and Scope
The definition of the test group took different aspects into account. The main requirement
all participants had to fulfill was to be living abroad or in a different city than they were
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originally from. This decision was made based on the premise that people, who have
experience with living in different places, might have developed a more sensitive acoustic
perception and are thus more likely to experience the effect of an illusion when hearing
a different soundscape. Additionally, part of the participants had to meet the criteria
for having a “home town feeling” towards one of the provided cities in the app. In this
context, “home town feeling”, stands for a personal relationship with a city, like what a
person would develop after living there for an extended period of time. The purpose of
choosing a mixed group of people, those who might recognise the sounds played by the
app and those who might not, was to cover a wider range of possible experiences as well
as to observe the likely differences in people’s perceptions. For the same reasons, the test
group was not restricted by a specific gender or age.

In order to evaluate the generalizability of the classifier, the participants were supposed
to use their own phones and to choose the scenes they want to visit themselves. To
ensure that the feedback could be compared, testing conditions were defined and had to
be followed by every participant. For this purpose every participant received instructions
(see Appendix A1for more details). The briefing included a description of the project
and the app as well as the testing conditions and a guide about how to install the app.
The test scope was defined as following:

• The prototype is tested with a phone with internet connection and with Android
version 6.0 or greater

• The participant goes for a one hour walk in a city and visits a few of the classifiable
scenes while using the app

• The phone is placed where it can record the audio the best

• The headphones are worn throughout the entire length of the walk

• The participant fills out a survey to give timely feedback after the walk

In addition to the briefing the participants could contact the author any time in case
they had questions or needed advice with the installation.

4.1.2 Feedback Procedure
The aim of the feedback procedure was to collect data for the analysis of the participant’s
experience. For this purpose a survey was designed including quantitative and qualitative
questions. The questions referred to some personal background of the participants as
well as to their experience with the app and its functionality. The survey was created
with the online tool called SurveyPlanet2and its composition is presented in Table 4.1.

1Appendix A https://ln5.sync.com/dl/f59e6aca0/9q8h9tzi-g9pv9di4-qqnxa9az-zaj3fw5y
(visited on 03.10.2022)

2https://surveyplanet.com (visited on 04.09.2021)
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The questionnaire did not collect any personal data and included 18 questions with the
following answer types:

• Single Choice: Only one of the provided options can be selected

• Multiple Choice: More than one of the provided options can be selected

• Free Text: An answer box to write an essay

• Likert scale: One option can be selected on a rating scale to measure either positive
or negative response to a statement

As described in Section 4.1, the case study is about several technical and psychological
aspects, which determined the selection of the questions. In the following the structure of
the questionnaire is described. Questions 1-3 and 6 refer to the participant’s background
while questions 4, 5 and 7 refer to the setup the app was tested with. In order to verify
that the participant’s experience was not falsified by technical problems or by the usability
of the app, questions 8 and 9 were asked next. Questions 10 and 11 address the visited
scenes and how the classifier’s performance was perceived. The following questions, 12-15
use Likert scales to describe the effect the app had on the user. The questions 16-17
were included to get an understanding for the participant’s view on using the app again
and recommending it to close ones. The survey ends with the option to give additional
feedback in form of an essay.

4.1.3 Recordings and Logs
One goal of the case study was to evaluate the classifier’s performance in real world
scenarios. The participants were not asked to document every scene they visited or the
classification results, since that could have distracted them from experiencing the sound
effect fully. Section 3.5 explained, that the server saves the received recordings in an
Amazon S3 bucket and their classification result and timestamp in a PostgreSQL database.
This feature was implemented to have the possibility to match the questionnaire results
to their according recordings and predictions. The survey included a question about
the visited scenes. The answers to this question and the logged predictions can be
compared to estimate the classifier’s performance. Additionally, the saved recordings can
be analysed and classified by the author to evaluate the quality of the recordings as well
as of how difficult they are to be classified by a human. This approach was chosen on
the one hand to be able to estimate the classification accuracy and on the other to see
behind the scenes of what happened on the technical side. These insights contributed to
the technical analysis of the case study.
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Question Type Answers

1. Please select your age group Single Choice 16 - 24 years old
25 - 34 years old
35 - 44 years old
45 - 54 years old
55 - 64 years old
65 - 74 years old
75 years old and above

2. Please select your gender identity Single Choice Male
Female
Non-binary
I prefer not to answer

3. From which city are you originally from? Free Text

4. In which city have you tested the app? Free Text

5. Which cities have you tried out? Multiple Choice Delhi
Moscow
New York
Rio de Janeiro

6. Do you have a “home town” feeling towards one of the
cities?

Multiple Choice
Free Text

Yes, a lot
Yes, a little
No, not at all
If Yes, which cities do
feel "homish" for you?

7. Have you worn your headphones continuously? Single Choice Yes
Almost (short breaks)
Had longer breaks

8. Did you have any problems with the app? Single Choice
Free Text

No
Yes, my problems were:

9. How satisfied are you with the usability of the app? Likert scale Very Satisfied
Satisfied
Neutral
Unsatisfied
Very Unsatisfied

10. Which environments did you visit while testing the
app?

Free Text

11. How accurate did the classification feel? Were your
environments recognised correctly?

Likert scale Very accurate
Mostly accurate
Sometimes accurate
A little accurate
Not accurate at all

12. Did you perceive the overlay of a different soundscape
as disturbing?

Likert scale Extremely disturbing
Very disturbing
Somewhat disturbing
A little disturbing
Not disturbing at all

13. Did you experience the illusion of being in the city
you chose in the app?

Likert scale All the time
Most of the time
Many times
A few times
Once
Not at all

14. How did the app affect your perception of your sur-
rounding?

Likert scale Very positive
Positive
Neutral
Negative
Very negative

15. Has your perception of your surrounding changed over
time?

Likert scale Very much
A little
Stayed the same

16. How likely is it that you would recommend this app
to a friend or family member?

Scale 0 = not at all likely
10 = extremely likely

17. Will you use the app again? Single Choice Yes
No

18. Feedback: Feel free to share more about your experi-
ence

Free Text

Table 4.1: Case study survey: The questions, their answer types and answer options.
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4.2 Results
This section presents the results of the case study and its evaluation. An overview over
all answers of the survey and the logged data is available on the web1. It is important to
point out that the presented results are not statistically representative since the number
of participants was far too small. The subsequent described observations and conclusions
can be seen as hypotheses rather than a contribution to scientific development.

4.2.1 Test Group
The test group consisted of 7 people from different places of origin. As shown in Table
4.2 the age ranged from 25 to 64 years in which the 25 - 34 group was most highly
represented with 71%. The gender was distributed quite equally with 57% identifying
themselves as female and 43% as male. Half of the participants had a “home town feeling”
towards one of the cities included in the app, whereas one of the participants could relate
to one of the countries. All participants used different devices and mostly had the newest
Android version. The app was tested in Vienna, Stockholm, Jena and Hamburg.

ID Age Gender Origin Tested “Home town feeling” Device Android

1 25 - 34 Female Luxembourg City, LU Vienna, AT Rockville (MD), US Huawei Mate 20 lite 10.0
2 25 - 34 Female Graz, AT Vienna, AT New York, US Google Pixel 3 11.0
3 35 - 44 Male Ystad, SE Stockholm, SE - OnePlus Nord 11.0
4 25 - 34 Female Amsterdam, NL Vienna, AT Delhi, IN Samsung Galaxy A51 11.0
5 25 - 34 Male Litomysl, CZ Jena, DE - Huawei P30 Pro 10.0
6 25 - 34 Female Schaffhausen, CH Vienna, AT - Samsung Galaxy S6 9.0
7 55 - 64 Male Moscow, RU Hamburg, DE Moscow, RU OnePlus 7 11.0

Table 4.2: Overview of the case study participants including answers to the questions 1-4
and 6 as well as the logged data about their testing device.

4.2.2 App Usability and Problems
In the survey the participants were asked if they had problems using the app in order to
understand if technical issues might have led to an unwanted experience. Even though
the majority reported having issues as shown in Figure 4.1a, it seems that the problems
could be solved by the participants or did not affect the app’s functionality.

The analysis of the answers showed that only one participant reported not having heard
the shift sound, which the player plays before switching to a different scene track. This
could be an indication that there was a problem with the prototype. This may not be
necessarily true however since other aspects like poor internet connection or bad recording
quality could have minimised the classification’s accuracy instead. Nevertheless it seems
the reported issues were not significant enough to ruin the user experience. As shown in
Figure 4.1b all participants rated the app’s usability as satisfying or better. These are
important observations as they let know that the app worked correctly during the walk
for most participants and everyone was pleased with its usability. That in turn means it
can be assumed that the participants experienced the app as intended and the evaluation
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(a) Survey results of question 8. (b) Survey results of question 9.

Figure 4.1: Overview of the case study results regarding having problems with the app
and its usability.

of the remaining data could give the wanted insights on the classifier’s performance and
the psychological effect.

4.2.3 Classification
Section 4.1.3 discussed that no procedure was implemented to verify the classifier’s per-
formance. Still, by evaluating the survey responses and the logged data the classification
accuracy can be roughly estimated. This knowledge is required to better understand the
experiences the participants had when using the app.

Figure 4.2: Rating of the experienced classification accuracy by the participants.

As illustrated in Figure 4.2 all participants rated the classification as at least sometimes
accurate based on their perceptions. More than half of the test group reviewed it as
more accurate. Based on these responses it can be concluded that every participant
experienced the overlay of their surroundings with an according soundscape at least a
few times and therefore might have experienced the effect the case study was designed to
investigate. In order to verify the results of the rating, the logged data can be compared
with the answers of the participants regarding the locations they visited. An overview
over the logged predictions for each participant can be found in Appendix A1. The
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ID Visited
scenes

Predicted
scenes Recognized Logged

predictions
Wrong

predictions Valid

1 5 4 80% 13 0 100%
2 5 2 40% 4 2 50%
3 4 3 75% 9 1 89%
4 4 3 75% 17 0 100%
5 4 2 50% 14 4 71%
6 5 2 40% 5 2 60%
7 2 2 100% 11 5 55%

µ = 65.7% µ = 75%

Table 4.3: Case study results: Analysis of the logged data.

Visited scenes: Number of the scenes the participant listed in the survey for question #10.
Predicted scenes: Number of the scenes found in logs which were listed as visited.
Recognized: The ratio of how many of the visited scenes were predicted in the logs.
Logged predictions: Number of the logged prediction results.
Wrong predictions: Logged predictions that can not be true as the scene was not listed as visited.
Valid: The ratio of how many of the predictions might be true and therefore valid.

different number of the logged entries per participant could have several reasons. Due to
temporary loss of the internet connection some of the classification requests might have
failed causing the player to loop the same track for a longer period of time. Another
reason could be that there was an issue between the server and the database so that
the data could not be saved but the classification request succeeded. Lastly, the app
might have failed to execute the classification for some of the intervals. The logged
predictions are sufficient for a simple comparison of the recognised scenes with the places
the participants stated to have visited. This comparison is shown in Table 4.3. The left
side shows the number of scenes the participants listed and how many of them were part
of the logged prediction results. The recognized column shows this overlap in percent.
These values can be used to estimate how many of the visited scenes were predicted
correctly if all logged predictions were accurate. The result of 65.7% can be seen as proof
that some scenes could not be recognized. The right side of the table shows the number
of prediction logs per participant and how many of those were definitely wrong, since
the participant has not listed them as visited. The valid column shows this relation in
percentages and indicates an estimation of the classifier’s accuracy if all logged predictions
were correct. The result of 75% is close to the achieved accuracy for the test dataset as
we can see from Table 3.10, but since not all visited scenes were recognized correctly, the
actual accuracy must have been significantly lower. Due to the lack of data about the
time frame of the walks, it can not be assumed that the correctly classified scenes were
always recognised at the time of the participant’s visit. To get a better understanding for
the classifier’s performance the author has listened to the logged recordings and made
the following observations:
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• The sound quality varies between devices.

• Some recordings include additional noises like the foot steps of the user.

• Some recordings were made in a moment when no loud sound events took place
such that even for a human ear they are difficult to be classified.

Based on participants’ feedback, the estimations and the author’s observations it can be
assumed that the actual classification accuracy was around 65%. Considering that the
test group rated the classification as at least sometimes accurate, it can be concluded that
every participant did experience a correct classification of their real world environment,
at least at times, whereas the majority of the test group experienced it more often.

4.2.4 Psychological Effect
One of the main goals of the case study was to evaluate the psychological effect the
overlay of a different soundscape might have on a human. How does it feel to walk on
a public square in Vienna and to hear the soundscape of a public square in Moscow?
Will the user’s perception of their surroundings be affected by this experience? Finally,
will the app manage to provide an acoustic illusion of being in the selected city? As
mentioned in Section 4.1.2, the survey was designed taking these questions into account.
First, it is important to verify that the participants did not get distracted while using
the app, so that their feedback regarding their acoustic perceptions can be considered
valid. For this purpose, the participants were asked if they were wearing their headphones
continuously during their walk.

Figure 4.3: Overview of participant’s behavior during their walk.

As shown in Figure 4.3 a rather small percentage of the test group experienced short
breaks when listening to the app, while the rest was wearing their headphones the
whole time. It can be therefore concluded that the received feedback is based on the
participant’s perception of an overlaid soundscape for one hour with almost no breaks.
This means that an important precondition is met and the feedback can be further
evaluated. The other survey questions referring to the effect the app had on the user
were numbers 12-15.
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(a) Survey results of question 12. (b) Survey results of question 13.

Figure 4.4: Overview of the case study results showing the rating of the perceived
disturbing effect and the experienced illusion.

Next, the results of these questions are presented and later a deeper look is taken into
the correlations between them.

Figure 4.4a shows that none of the participants perceived the overlay of a different
soundscape as extremely or very disturbing. Nonetheless, it can be observed that more
than half of the test group experienced listening to a different soundscape as little or
somewhat disturbing. Despite the disturbance the app had on some of the participants,
Figure 4.4b illustrates that more than half of the participants did experience the illusion
of being in the city they selected in the app. It is notable that the participants had
similar experiences. Some of them stated to have experienced the feeling of an illusion at
least many times, while a few did not experience it at all.

(a) Survey results of question 14. (b) Survey results of question 15.

Figure 4.5: Overview of the case study results showing the app’s effect on the participant’s
perception of their surroundings.

Taking into account that a disturbing effect was experienced and that the effect of an
illusion did take place, it is noteworthy that the participants ranked the effect the app
had on their perception of their surroundings as neutral or positive as shown in Figure
4.5a. However, as seen in Figure 4.5b, the participants reported that over time there was
no significant change in their perception, which rather stayed the same or changed only a
little. The presented results give some interesting insights, but there might be correlations
between the received feedback worth a further investigation. In the following, the results

77



4. Evaluation of the Prototype

of specific questions will be put in perspective in order to achieve a better understanding
of the psychological effect the app had on the perception of the participants. To be
precise, it will be evaluated if the perceived classification accuracy and participants’
relationship with the cities had an impact on participants’ perception in regards of the
disturbing effect, the app’s effect on the perception and the illusion effect. For this
analysis, the answers of the corresponding questions will be plotted in grouped bar charts
with the answers to one of the questions referring to the perception being on the vertical
axis. Even though from the research perspective the number of participants is very small,
the expectations are that some similarity aspects can be derived.

First, the impact on the experienced disturbing effect is examined by comparing Figures
4.6a and 4.6b. It can be observed that the answers are mixed and that there is no clear
correlation notable. Figure 4.6a shows that even when the participants have experienced
the classification as at least mostly accurate, they perceived the soundscape overlay as at
least a little disturbing. At the same time Figure 4.6b shows that having a relationship
with one of the cities does not necessarily decrease the disturbance. Therefore it can be
concluded, that hearing a sound overlay might be experienced as disturbing regardless of
the classification’s accuracy and the participants’ personal background.

(a) Grouped answers to questions 11 & 12. (b) Grouped answers to questions 6 & 12.

Figure 4.6: Comparison of survey results grouped by questions to illustrate correlations
between the perceived classification accuracy, the participants’ relation to the cities and
the experienced disturbing effect.

Next, we evaluated whether experiencing an illusion of being in a different city was
influenced by the classification accuracy and/or the personal relation of the participants
to the cities. Following the same approach for this purpose Figures 4.7a and 4.7b are
compared. Unlike the disturbance, it seems that the effect of the illusion does depend
on the classification accuracy as well as on the personal background. It can be seen
that both figures illustrate a similar pattern. Figure 4.7a shows that a mostly accurate
classification can lead to experiencing the illusion effect many times. On the other hand,
Figure 4.7a shows that the stronger the personal relationship to the cities is, the more
often the participant will experience the illusion of being in that city. Additionally it can
be concluded that the lower the classification accuracy, the more foreign the selected city
is perceived and the less likely an illusion will be experienced.

Lastly, the impact of the app’s effect on the participants’ perception is analysed. The
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(a) Grouped answers to questions 11 & 13. (b) Grouped answers to questions 6 & 13.

Figure 4.7: Comparison of survey results grouped by questions to illustrate correlations
between the perceived classification accuracy, the participants’ relation to the cities and
the experienced illusion effect.

comparison of Figures 4.8a and 4.8b shows that the accuracy of the classifier as well as
personal background can lead to a more positive effect on participants’ perception of
their surroundings. Figure 4.8a shows that higher classification accuracy is more likely to
implicate a positive effect, while Figure 4.8b shows that the same effect can be achieved
by having a stronger personal relationship with the selected city.

(a) Grouped answers to questions 11 & 14. (b) Grouped answers to questions 6 & 14.

Figure 4.8: Comparison of survey results grouped by questions to illustrate correlations
between the perceived classification accuracy, the participants’ relation to the cities and
the app’s effect on the perception.

As the final evaluation step of the app’s psychological effect, the presented observations
are summarised. Based on the presented survey results and the demonstrated correlations,
we conclude that:

• The overlay of a different soundscape has a psychological effect on the user, whereby
those, who perceive a similar level of classification accuracy and share having a
personal relation to the cities, experience that effect similarly.

• Listening to a different soundscape can be experienced as disturbing.
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• The more accurate the classification is, the stronger the personal relationship with
the selected city, the more often the user will experience the illusion of being in
that city.

• How positive the app’s effect is experienced depends on the classification accuracy
and the personal relationship the user has with the selected city.

• The user’s perception of their surroundings does not change over time or changes
only a little while using the app.

Finally, the questions mentioned in the beginning of this section can be answered. To
walk around a public square in Vienna and to hear the soundscape of a public square in
Moscow might be experienced a bit as disturbing, but will very likely create a positive
feeling. The user’s perception of their surroundings might be affected by the app. An
acoustic illusion of being in the selected city will more likely take place if the user has a
personal relationship to that city.

4.2.5 General Feedback
The survey included a few questions about how the participants value the app. This
was done by asking how likely it is that the participants will recommend the app to
people close to them and if they would use the app again. The results are shown in
Figure 4.9. The previously presented results have shown, that the test group had different
experiences depending on several aspects, like the perceived classification accuracy, their
personal perception and personal background. It is therefore not surprising that with the
exception of one user, the test group valued the app differently even though the majority
would rather recommend the app to others, as illustrated in Figure 4.9a. In the previous
section it was reported that more than half of the participants experienced the hearing
of a different soundscape as disturbing, but it seems that to experience the illusion of
being in the selected city was of a greater value such that more than half of the users
stated that they would use the app again (as shown in Figure 4.9b).

(a) Survey results of question 16. (b) Survey results of question 17.

Figure 4.9: Overview of the case study results showing the participant’s rating of the
app.
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The last part of the survey was an option where the participants could give additional
feedback in form of an essay. Two aspects were reported by several participants. A few
shared they wished the classifier’s performance would have been better. They had the
impression the classifier got stuck and recognised the same scene for too long. Some
others suggested the idea of using noise-cancelling headphones in order to get rid of the
real sounds around them when the overlay is not loud enough to cover the real noises
from the surroundings. For more details, the full answers can be found in Appendix A1.

4.3 Discussion
In the previous sections the design of the case study and its results were presented. In
Section 4.1 the main goal and the scope of the case study were explained. The main
focus of the case study referred on the one hand to the classifier’s performance in real
world scenarios, on the other to the psychological effect the app might have on the user’s
perception of their surroundings. In the following, the findings will be discussed and some
conclusions made focusing first on the classifier’s accuracy and later on the psychological
effect.

The implementation and the training of the classifier were extensively discussed in Section
3.3. It is important to recall that the development dataset included recordings from
only 3 real mobile devices. Even though the development dataset was enriched with
simulated data, considering the number of mobile devices that are currently on the
market, it can be said that the model has seen only a small fraction of what is possible in
reality. The achieved classification accuracy for the test dataset was by 78% as shown in
Table 3.10. This is considered as a good performance for the current state of technology
when compared to the state-of-the-art systems submitted for the DCASE 2020 challenge.
However, it is worth pointing out that this high accuracy could only be achieved by
applying the model to data that are of similar quality and origin as the training data. In
the case study different devices were used, none of which were the devices used for the
creation of the development dataset. The devices were worn differently by the participants
when recording the sounds of their surroundings. And lastly, the app was tested in cities
(Jena, Hamburg) which were not part of the development dataset. The classifier was
challenged to predict the scenes for data that were very different from what it has seen
before. Nonetheless, according to the results of the case study and the analysis of the
logged data, it seems that the classifier did perform well enough in order to provide
the wanted experience. As demonstrated in the previous section, the accuracy in real
world scenarios was estimated with 65% which corresponds with the impression of the
participants who valued the accuracy on average as mostly accurate. It can be concluded
that the classifier is robust enough to be used in real life, but for the mentioned reasons
some inaccuracy should be taken into account.

In Section 4.2.1 the composition of the test group was set forth and it was mentioned
that a mix of people was chosen based on their personal background in order to cover a
wider range of possible experiences. The results presented in Section 4.2 showed that
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this expectation was fulfilled. Even though the number of participants was very low,
different experiences were reported via the survey whereby some similarities could be
found and their probable reasons derived. It was shown that hearing a soundscape of
a different city can be perceived as positive and create the acoustic illusion of being in
that city. Another observation was that the closer the personal relationship with the
selected city is, the more often that illusion will be experienced. However, the quality
of the app’s experience depends largely on the classifier’s performance. As mentioned
before, the classifier’s accuracy was not very high, therefore it can be assumed that with
a better classifier a greater effect on user’s perception can be achieved. Based on the
general feedback small adjustments like using noise-cancelling headphones might improve
the quality of the sound and therefore increase the app’s effect. Lastly, the participants
reported not having noticed a significant change of their perception over time while using
the app. Since the illusion effect did not take place continuously, the change of the user’s
perception could be researched further using a more accurate classifier.
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CHAPTER 5
Conclusion and Future Work

In this chapter we provide a summary of the conclusions and give an outlook on future
work. In Section 5.1 we reflect on the steps that have been taken to answer the research
questions of this thesis and the achieved results. Eventually, in Section 5.2 we give a brief
overview over improvements and further research that could be carried out in the future.

5.1 Conclusion
In this work, we developed a prototype that uses ASC to create an acoustic illusion
and to evaluate it’s effect on human’s perception when used in real world scenarios. In
particular, we were interested in the effect the user might experience, when they hear the
soundscape of the scene in which they are in, but from a different city.

To achieve this goal, we investigated the current state-of-the-art techniques for ASC by
examining the top 10 ranked submissions for Task 1a of the DCASE 2020 challenge, which
addressed a very similar problem as this thesis. The research showed that the systems that
used a ResNet, either as a single network or as an ensemble, achieved the best performance.
Furthermore, we found that all evaluated solutions used log-mel energies with their deltas
and delta-deltas as audio features. When comparing the submissions we learned that
data augmentation was the main tool to address the generalization problem. Another
important observation was that in regards of achieved accuracy ensembles outperformed
single network solutions by a very small margin for the price of a significantly higher
model complexity. Based on the outcome of the evaluation we chose a baseline model for
our classifier and modified it according to our requirements. To train the network we
used the TAU Urban Acoustic Scenes 2020 Mobile dataset, whereby in order to fulfill our
requirement of supporting 9 scenes and to increase the overall classification performance,
we removed the scene that showed the lowest accuracies. Hence, the model was trained
to classify the following scenes: airport, bus, metro, metro station, park, public square,
shopping mall, street traffic and tram.
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During the calibration phase of the network, we conducted several experiments where we
trained the model using different hyperparameters, loss functions and data augmenta-
tion strategies. The experimental results showed that the applied data augmentation
techniques could significantly improve the model’s generalization ability. However, we
learned that enlarging the training dataset leads to slowed down learning and the need
for additional calibration. We achieved the best performance with a test accuracy of
77.99% by using categorical focal loss and the training setup as proposed for the baseline
model by Gao et al.[GM20] with Mixup being the only used data augmentation method.
The model that had the best performance according to the experiments was chosen to be
used as the classifier in our prototype.

The development of the prototype consisted of three parts. First, in order to create a
dataset of sound samples to use for the soundscape overlay we searched the internet for
sounds that would fulfill our requirements. To cover different parts of the world, we chose
the following cities for the prototype: New York, Moscow, Delhi and Rio de Janeiro. As
we could not find publicly available audio tracks, we extracted the audio data from videos
that included the desired scenes. Then, we designed and implemented a server application
with Flask that provided an API to get predictions from the model for a given audio file.
Moreover, we added the required features to the server program in order to store the
needed data for the evaluation of the case study. Lastly, we developed a cross mobile
application using the Flutter SDK to support the mobile operating systems Android
and iOS. Once started, the mobile application repeats the classification process in a 5
minutes interval until manually stopped by the user, which consisted of the following
steps: record the input of the device’s microphone for 10 seconds; request predictions
for the recorded audio data from the server; play a soundscape sample according to
the classification result for the city the user has previously selected. Contrary to our
expectations, we found that the application behaved differently on iOS and therefore
continued with the case study using the Android application only.

We designed and performed a case study to answer the research questions of this work.
In particular, 7 participants tested the mobile application for one hour and reported
their experience by filling out a questionnaire. We analyzed the questionnaire results
and the logged data on the server and evaluated the classifier’s performance in real world
scenarios and the psychological effect the acoustic illusion had on the users. Based on
the results we estimated the classifier’s accuracy with 65%. Moreover, we found that
the participants valued the accuracy on average as “mostly accurate”. Even though
the number of participants was low, we found similarities in the reported experiences.
The comparison of the questionnaire answers showed that hearing a soundscape of a
different city can be perceived as positive and create the acoustic illusion of being in
that city. Another observation was that the closer the personal relationship with the
selected city was, the more often that illusion was experienced. Lastly, the overlay of
a different soundscape did not appear to affect the user’s perception. Since the quality
of the experience depends largely on the classifier’s performance, we concluded that a
greater illusion effect including a change of the user’s perception can be achieved with a
more accurate classifier.
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5.2 Future Work
We propose two main directions in which future work can be carried out: (1) Increase of
the classifier’s accuracy, and (2) Improvement of the mobile application’s user experience.

In order to improve the classifier’s performance, a direct follow up of this work could
include the usage of additional training data to cover more mobile devices and the
execution of more experiments to further calibrate the model. The additional data could
be created by using videos as it was done for the soundscape dataset. For the next
calibration phase more computation resources could be provided to focus on experiments
with data augmentation. In this thesis we evaluated ASC solutions that used ResNets
and log-mel spectrograms complemented by log-mel deltas and delta-deltas as audio
features. Further scientific research on other approaches can be done as described in
Section 2.5.

There are several ways to improve the user experience of the mobile application. First,
since a few of the case study participants reported having experienced a potential bug
where the classifier gets stuck, the source code should be improved. Second, the quality
of the soundscape dataset could be increased by supporting only those cities, for which
audio samples in good quality can be found. Third, the users could be advised to use
noise-cancelling headphones in order to increase the acoustic illusion by reducing the
perception of the real sounds around them. The presented steps would lead to a more
pleasant experience which might improve the acoustic illusion and therefore lead to a
different effect on the user’s perception.

Finally, in order to achieve statistically representative results, the presented case study
and its evaluation should be repeated with a larger number of participants.
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