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Kurzfassung

In den letzten Jahrzehnten war es charakteristisch, dass industrielle Fertigungssysteme
für die Herstellung eines einzelnes Produktes entwickelt wurden. Das Durchführen von
Änderungen am System, um ein anderes Produkt herzustellen, war meist langsam und
umständlich. In der heutigen Zeit unterziehen sich diese Systeme einem Wandel. Mit
Industrie 4.0 sind dezentralisierte Systeme üblicher geworden, womit stark vernetzte
Umgebungen entstehen. Intelligente Fertigungssysteme gewinnen an Popularität und ein
Trend weg von Massenfertigung ist erkennbar. Kunden möchten individuelle Produkte,
womit eine Anpassung der Fertigungssysteme erforderlich wird. Bei solchen veränderbaren
Systemen stellt sich die Frage, wie die funktionale Sicherheit innerhalb dieser gewährleistet
werden kann. Für ein System, das eine schnelllebige Produktionsumgebung ermöglicht,
muss sich auch das Sicherheitssystem entsprechend ändern können. Mit dem aktuellen
statischen Ansatz zur funktionalen Sicherheit ist dies aber nicht möglich. Es muss ein
dynamisches Sicherheitssystem geschaffen werden.

Diese Arbeit befasst sich mit einigen der Probleme, die bei diesem dynamischen Ansatz
auftreten. Es wird eine Wissensbasis entwickelt, welche sicherheitsrelevante Informationen
über das Fertigungssystem speichert. Die relevanten Domänen werden beschrieben und
bestehende Ontologien, die diese Domänen abdecken, werden recherchiert und bewertet.
Für Domänen, die von bestehenden Ontologien nicht ausreichend abgedeckt werden,
werden neue Ontologien erstellt. Die Wissensbasis wird dann anhand zuvor definierter
Kompetenzfragen evaluiert und in einem Anwendungsszenario eingesetzt. In diesem
Anwendungsszenario stellt die Wissensbasis die Konfiguration für das Sicherheitssystem
bereit, welches Time Sensitive Networking (TSN) und Open Platform Communications
Unified Architecture (OPC UA) verwendet, um die Kommunikation zwischen Kompo-
nenten zu ermöglichen.
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Abstract

In the last few decades, it was typical for industrial manufacturing systems to be
developed for the creation of a single product. Performing changes to the system to create
a different product was usually slow and cumbersome. In today’s time, those systems are
changing. With Industry 4.0, decentralized systems have become more common, which
creates a highly interconnected environment. Smart manufacturing systems are gaining
popularity, and the trend of dedicated manufacturing systems for only one product is
decreasing. Customers wish to individualize products, which means an adaptation of
the manufacturing system is required. With these changing systems, the question of
how safety can be ensured within them arises. For a system to allow for a fast-paced
production environment, the safety system must also be able to change accordingly. With
the current static approach for functional safety, this is not possible. A dynamic safety
system needs to be developed.

This thesis addresses some of the problems that arise with this dynamic approach.
A knowledge base is developed, which stores safety-relevant information about the
manufacturing system. The relevant domains are described, and existing ontologies
covering these domains are researched and rated. For domains that are not suitably
covered by existing ontologies, new ontologies are created. The knowledge base is then
evaluated based on before-defined competency questions and used in an application
scenario. In this application scenario, the knowledge base provides the configuration for
the safety system, which uses Time Sensitive Networking (TSN) and Open Platform
Communications Unified Architecture (OPC UA) to enable communication between
components.
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CHAPTER 1
Introduction

The fourth industrial revolution changes the approach to organizing automation systems.
Their structure changes from a pyramid to a pillar, shown in Figure 1.1, resulting in a
decentralized system connected via real-time communication [33]. This new structure
creates a high demand for interoperability and connectivity of the different components
within a system. It is also the basis for smart manufacturing systems, which utilize this
connectivity to collect and analyze data provided by the components. The information
gathered can then be used for different purposes, e.g., to check the state of a component or
even to increase the overall system’s productivity. Time Sensitive Networking (TSN) is a
technology that provides the required properties for communication in such a decentralized
system. It allows for high-speed, low-latency communication within the field level and
connectivity level while carrying low-priority background traffic without slowing down
the time-critical traffic. In order to allow for high interoperability and connectivity of the
different components, the Open Platform Communications Unified Architecture (OPC
UA) standard can be used. It defines transport mechanisms for how data between two
components can be exchanged [51]. Further, it defines an information model specifying
rules and objects on how data is exposed. OPC UA services are the link between the
transport mechanisms and the information model. They define how data from the
information model can be read.

Another change that comes with the transition to Industry 4.0 is the convergence of the
Information Technology (IT) and Operational Technology (OT) domain. In Industry 3.0,
a distinction between IT and OT can be made. IT systems cover data-centric computing,
including creating, processing, storing, and exchanging of data. OT systems are used
in an industrial environment. They monitor processes, events, and devices and adjust
industrial operations. Over the last few years, the distinction between those domains has
become increasingly unclear. With Industry 4.0, no clear difference between them can be
made. Concepts from OT are brought into IT. For example, physical components, such
as sensors, can upload data to a central server for monitoring and analysis. Results can
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Figure 1.1: Transition of automation systems organization (adapted from [7])

then be passed down, allowing for the autonomous operation of independent components.
Using knowledge representation concepts, it is also possible to store information regarding
the OT domain and use it within the IT domain. A knowledge base can store relevant
information about a system, which can then be provided to operators or other system
components when needed.

An essential property of Industry 4.0 is the on-demand individualization as described
by Lasi et al. in their paper [48]. This trend causes an increasing individualization of
products, resulting in a dynamic change in the production needs of a manufacturing
system. Such flexible manufacturing systems are one of the main advantages of Industry
4.0, as they allow for adaptive production, which is enabled by the connectivity and
interchangeability of the components. With the interchangeability comes the need for
reconfigurable systems to adjust the parameters to fit the new configuration. One thing
to keep in mind with these systems is the safety aspect. A dynamic safety system that
could be reconfigured at runtime would greatly benefit the flexibility of manufacturing
systems.

1.1 Motivation
Figure 1.2 shows an example of this reconfigurability within a manufacturing system
described by Etz et al. in [22]. Mobile devices such as Automated Guided Vehicles
(AGVs) can aid the flexibility of a manufacturing system. To allow the AGV to enter a
production cell, muting can be used. It defines a safe, automatic, and temporary bypass
of non-contact safety devices, such as a light barrier. AGVs can be equipped with safety
components, such as laser scanners or an emergency stop button. Consequently, when
an AGV enters or leaves a production cell, the safety configuration needs to be adapted.

2
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This adaptation should be made without going into a safe state to keep the production
running. This automatic reconfiguration would need a mechanism that affiliates the AGV
to a specific safety area. The process of this reconfiguration has to be as follows. The
AGV has to notify the system before it leaves the current cell to remove the device from
the safety configuration. Once this is done, the AGV can move to its new destination.
On arrival, the system needs to be notified to add the device to the safety configuration.
By doing so, the overall safety concept of the system then includes the safety components
of the AGV.

Production Cell

AGV

Figure 1.2: Example of a reconfiguration of an manufacturing system (adapted from [22])

This example shows why dynamic and reconfigurable safety systems are required for
Reconfigurable Manufacturing Systems (RMSs). It greatly benefits the flexibility and
productivity of manufacturing systems. Including and excluding new components without
disrupting the production would allow engineers to perform maintenance tasks on parts of
the systems while the others still operate. Not only could an AGV enter and leave safety
areas, but safety sensors and actuators could be added on the fly, aiding the system’s
safety and keeping the throughput high.

1.2 Problem Statement & Goal
Current functional safety systems cannot provide the desired properties needed for
Industry 4.0 [23]. The usual approach to functional safety was to assess and analyze
possible system risks and provide measures to prevent or reduce them adequately. This
approach was a static one, performed at design time, and the configuration would not
change once the system was in operation, the configuration would not change. With
flexible and reconfigurable systems, the configuration is no longer static and needs to
change while the system operates.

Etz et al. present in [23] a model for a self-organizing safety system, the goal of which is
to assist the safety engineer with generating the configuration. As shown in Figure 1.3,
it consists of two main components, the so-called Flexible Safety System (FSS) and the
Cyber-Physical Production System (CPPS). The authors define four tools to assist the
safety engineer within the FSS. The automatic Discovery identifies all safety-related
devices within the system. Based on the discovered devices, the Safety Configuration

3
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Generator creates a suitable safety configuration. The generated configuration then
undergoes a Plausibility Check before it gets passed to the Deployment, which transfers
the configuration to the correct devices. In order to ensure the highest standards of
the functional safety system, an Adaptation Validation building block is added. Over a
Human Control Interface and a Human Machine Interface (HMI), the generated safety
configuration must be verified by a human for completeness and correctness before it can
be deployed. A key component connected to all these building blocks is the Knowledge-
Based System (KBS). It contains information needed for each of the tools, such as a
Machine Model or Legal Regulations, which are represented by the Knowledge Base block.
With the Inference Engine, it is possible to derive new information from the knowledge
base.

Discovery
Safety

Configuration
Generator

Adaptation 
Validation

Plausibility 
Check Deployment

Inference
Engine

Knowledge 
Base

KBS

Flexible Safety System CPPS 

Safety
Control 

Loop

Processing

M2M 
Control Interface

Human Control
Interface

ERP 
MES HMI

Figure 1.3: Self-organizing safety system model (adapted from [23])

For the safety system to be complicit with an RMS, it needs to be adapted and extended,
as stated by Etz et al. [22]. They propose the definition of an Reconfigurable Safety
System (RSS) and identify six core characteristics that an RSS has to possess. The core
characteristics Modularity and Integrability overlap with those of an RMS as defined by
Koren et al. in [44]. Modularity describes the system’s decomposability into smaller
parts that can be designed and produced independently but can be combined to work
together. Integrability specifies the ability of a system to integrate new modules without
problems. Flexibility describes the capability of modifying a system’s hardware or software
configuration. This modification can be done by adding, removing, or changing safety
components. This characteristic also aligns with a core characteristic customization for
an RMS defined in [44]. With Interoperability, the capability of exchanging information
between different devices is defined. Referenceability specifies that changes made to
a system must be documented for future reference. Lastly, Comprehensibility defines
the ability to enhance an individual’s understanding of a system. The authors then
convert these six abstract characteristics of an RSS, in combination with those of an
RMS, and the building blocks provided by the FSS model into five service groups. These
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five service groups are Knowledge Representation, Discovery, Configuration, Visualization
& Modification and Deployment.

Based on the structure shown in Figure 1.3 and corresponding to the knowledge repre-
sentation service, this thesis will develop a knowledge base for a system where relevant
information can be stored and accessed by the different components via interfaces. The
main focus of this knowledge base will be on the system’s safety aspect.

1.3 Methodological Approach
The methodological approach for this diploma thesis consists of the following steps:

1. Literature review: An extensive review and analysis of relevant literature will be
done to get a deeper knowledge of this topic and establish state of the art. A short
dive into the methodology of developing ontologies will be performed. The results
of this review will provide comprehensive information on currently used approaches.
This will define the starting point and needed building blocks for developing the
knowledge base.

2. Requirements analysis: Following the literature review, a requirements analysis
will be performed. It should show which function the ontology needs to provide
and what the interfaces should look like to enable other components to access the
knowledge base. Here, the so-called competency questions will be defined, which
specify questions the developed ontology should be able to provide answers to.

3. Development of a Knowledge Base: Based on the results from the literature
review and the analysis, a knowledge base will be developed. The knowledge base
must fulfil the requirements stated in the analysis. In the development process,
already existing ontologies should be used as the base building blocks and are then
extended to fit the desired needs.

4. Evaluation: The evaluation of the developed knowledge base will be done in two
parts. First, the ontology will be evaluated using the previously defined competency
questions. Here, it will be assessed if the ontology can be used to answer the given
questions. The second part will be the evaluation using a real-world example. Here,
the developed knowledge base will be used within a simple example system, such
that the primary function of the ontology itself and the interfaces to the different
components of the system can be evaluated.

1.4 Structure of This Work
In Chapter 1, an introduction to the topic was given, followed by the motivation for this
work. Then, the problem statement was specified, and the goal this thesis should achieve
was set. Chapter 2 provides information about the technical background relevant to this
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work. First, some context about RMSs is given. Then, information about functional
safety and knowledge engineering is provided. Finally, some related work is presented.
Chapter 3 specifies the methodology used for the knowledge base creation. In Chapter 4,
a requirements analysis is performed to define the requirements for the knowledge base.
Chapter 5 is focused on the creation of the needed ontologies. Existing ontologies are
rated, and new ones are created before they are combined into the final ontology. This
ontology is then evaluated in Chapter 6 using predefined competency questions and
integrating it into an RSS. Finally, in Chapter 7, the conclusion is stated, and an outlook
for future work is presented.
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CHAPTER 2
Technical Background

The following sections present some relevant technical background and related work.
First, some historical information on manufacturing systems is shown. Details about the
evolution of such a system over the last decades are given, and the different concepts
are explained. Then, a definition for RMSs is given, and the differences to other designs
are presented. After this introduction on RMSs, information about functional safety is
given. This thesis starts with a general definition of the topic, then shows how functional
safety applies to manufacturing systems. After this, it presents the relevant standards
and explains how they relate. The information these standards provide is needed as a
starting point for creating a knowledge base. Following the standards is a section about
knowledge engineering. Here, information about the representation and modelling of
knowledge is provided, which is a key aspect of creating a knowledge base. Finally, more
details about ontologies and important terms in this context are given.

2.1 Reconfigurable Manufacturing Systems
The term manufacturing system was used as early as 1815 when it meant a factory
system [59]. Since then, the term’s meaning has changed as it had no scientific basis [76].
Nowadays, the term defines the conversion of raw material into the finished product,
which is planned and controlled by a management system [31]. The definition shows two
aspects of such systems: the conversion and management systems. Concerning the former,
four different manufacturing systems can be distinguished: Dedicated Manufacturing
Systems (DMSs), Adjustable Manufacturing Systems (AMSs), Flexible Manufacturing
Systems (FMSs) and Reconfigurable Manufacturing Systems (RMSs).

DMSs, which are built since the early 20th century, are sometimes also called a transfer
line [76, 45]. The main architecture of these systems consists of several special-purpose
machines connected by a conveying system, and a dedicated control system controlled all
the parts. This design is aimed to produce a single part fast at a high volume. DMSs are

7
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a main contributor to mass production and have the advantage that they make products
cheaper and more efficient to produce, and they provide a fixed quality. The disadvantage
is that products can not be customized and individualized based on the customer. Once
decided on a design, the system can produce only this product. The system has to be
changed to allow for a new product to be produced. This rigidity makes it unfit for many
of today’s production needs where often a small volume is desired.

AMSs are built since the 1940s and consist of several adjustable machines [76]. This
structure allows for slight adjustments in the production of parts. Machines used in such
systems are spindle-head-changing machines, program-controlled machines, and unit-
built machines. As the name states, with spindle-head-changing machines, it is possible
to change the head of the spindle to produce different workpieces. Program-controlled
machines have a preset program control for their operation sequences. Unit-built machines
consist of standard units and a few special-design units. This modularization brings
advantages to the production system. It allows for easier changes in the system, cuts
down on the design period, and simplifies the production, among others. These properties
also make them suitable for mass production.

FMSs started to be used in the 1960s and reached their height in the 70s and 80s [76].
These systems consist mainly of general-purpose Computer Numerical Control (CNC)
machines and programmable automation machines like automated guided vehicles or
industrial robots [45]. The high flexibility of FMSs allows them to manufacture multiple
products but in smaller batch sizes. Because of these small batch sizes and the high cost
of CNC machines, FMSs are unsuitable for mass production. By using multi-group CNC,
it is possible to adapt FMSs for mass production, but it still results in high production
costs. So the main disadvantages of this system are cost, low production rate, and
complexity. They are therefore not fit for some of today’s desired production concepts.

The aforementioned systems are at a disadvantage regarding the new production demands.
This is why Koren et al. describe a new class of systems: RMSs [45]. This new type aims
to combine the high throughput of DMSs with the flexibility of FMSs. They achieve
this by designing the system according to the following two principles. First, design the
system to be adaptable to new products and scalable in response to market demand.
Second, to design it around the part family, so it is possible to produce all parts of the
part family. This leads us to the following definition of RMSs:

”A Reconfigurable Manufacturing System (RMS) is designed at the outset
for rapid change in structure, as well as in hardware and software com-
ponents, in order to quickly adjust production capacity and functionality
within a part family in response to sudden changes in market or in regulatory
requirements.”[45]

8



2.2. Functional Safety

Compared to DMSs and FMSs, RMSs bring improvement in production ability and
cost [76]. DMSs have a fixed production ability. If the demand is higher than it can
produce, the system needs to be redesigned, resulting in high costs. On the contrary,
RMSs can be adjusted to the market need because of its reconfigurability. Since the
system is dynamic and can be developed continuously, it can supply a high ratio of
functions over a long period. It is important to define the term reconfigurability in
this context as it is not unlimited. Here, it refers to the change of a system to produce
different parts within a part family.

Figure 2.1 shows the evolvement of manufacturing systems over time. It shows how the
product variety is connected to the product volume per model over time. Starting in
the 1850s, craft production with great variety and smaller volume was the main focus.
For this, general-purpose machine tools were used. The graph then gradually shifts to
lower product variety with higher volume. DMSs came into play, and mass production
became more common. From there, a decline in volume and increase in variety can be
observed. With mass customization in the 1960s, where FMSs were prominent, it then
led to individual products and RMSs, which were proposed since the 1980s.

Product  
Volume 

 per  
Model 

Product Variety

General Purpose
Machine Tools

Reconfigurable
Manufacturing

Systems

Flexible
Manufacturing

Systems

Dedicated
Manufacturing

Systems

1850

1940s

1960s

1980sCraft Production

Mass
Production

Mass
Customization Individual

Product

Figure 2.1: Overview of different manufacturing systems (adapted from [49])

2.2 Functional Safety
With the rise of Industry 4.0 and the growing complexity of industrial safety systems,
functional safety is more relevant than ever. The goal of functional safety is defined by
the IEC 61508 as ”freedom from unacceptable risk of physical injury or of damage to the
health of people, either directly, or indirectly as a result of damage to property or to the
environment” [34]. Industrial automation systems achieve this goal by implementing a
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2. Technical Background

safety system consisting of one or more safety functions. A safety function is defined by
the ISO 12100 as a function of a machine whose failure can immediately increase the
risks [37]. For example, if a machine has safety doors to provide access to the machining
area, a safety function can be to stop the machine if a door is opened.

An essential document regarding the safety of machinery in the European Economic Area
(EEA) is the Directive 2006/42/EC of the European Parliament and of the Council, also
called Machinery Directive [20]. Its central intent is to regulate a common safety level for
machinery placed on the market within the EEA. It further provides minimum standards
regarding health and safety requirements, which are refined through harmonized standards
such as the IEC 62061 [36] or the ISO 13849–1 [39].

In order to ensure the safety of machinery, the risk needs to be identified, and possible
countermeasures need to be taken. The ISO 12100 [37] provides an iterative process to
do so, which consists of the following five steps:

1. Establishing the limits of a system, including the intended use and reasonably
foreseeable misuse

2. Identifying hazards and related hazardous situations

3. Estimating the risk for each of the identified hazards and situations

4. Evaluating the risk and deciding the need for risk reduction

5. Eliminating the hazard or reducing the risk associated with the hazard with
protective measures

Safety requirements are defined based on the detected risks which need to be realized.
So for each identified hazard, a safety function needs to be implemented.

The hazards are classified to give a guideline for implementing these safety functions.
There are two main metrics when it comes to classifying hazards. First, the Safety
Integrity Level (SIL), which is defined in the IEC 61508 [34]. Second, the Performance
Level (PL) as defined by the ISO 13849–1 [39]. With the SIL, the category can be defined
using four criteria: severity of the damage, frequency and duration of the suspension,
probability of occurrence, and the possibility of avoidance. The corresponding SIL is
assigned based on these values. Starting with SIL1, which is used to protect from small
risks, up to SIL4 for high-risk application. The PL classification uses the same four
criteria but utilizes a different granularity for each. This results in five PLs, starting with
a, which represents small risk, up to e for the highest risk. It is possible to convert from
one to the other using the Probability of dangerous Failure per Hour (PFHd), which
is defined for each level of both classifications. The connection between SIL and PL is
shown in Table 2.1.

10



2.2. Functional Safety

SIL PFHd[1/h] PL
— 10−5 ≤ PFHd < 10−4 a

SIL1 3 · 10−5 ≤ PFHd < 10−5 b
SIL1 10−6 ≤ PFHd < 3 · 10−5 c
SIL2 10−7 ≤ PFHd < 10−6 d
SIL3 10−8 ≤ PFHd < 10−7 e

Table 2.1: Connection SIL/PL [3]

Once the safety functions are implemented, it is essential to determine their integrity. As
a final step, the safety system is validated against the defined safety plan. This validation
then results in documented evidence of compliance with the safety requirements. [27]

The differences in the industrial sectors make it hard to define a universal standard
covering the topic of safety. These differences are reflected by the number of standards
that exist in this context. The IEC 61508 functions as a base standard for safety and
applies to all industries. For the safety of machinery, there is the IEC 62061, which
covers Electrical, Electronical, and Programmable Electrical (E/E/PE) control systems.
Further relevant to this topic is the ISO 13849, which includes hydraulic and pneumatic
machinery. Then there are standards that cover specific branches of industry, e.g., the
IEC 61513 for nuclear power plants, the IEC 50128 for the rail industry, or the IEC
61800 for electrical power drive systems. Figure 2.2 shows how the different standards
are connected.

PL based 
classification

SIL based 
classification

ISO 12100 
Safety of machinery - General

principles for design - Risk
assessment and risk reduction

IEC 62061 
Safety of machinery - Functional
safety of safety-related control

systems

ISO 13849-1 
Safety of machinery - Safety-related

parts of control systems 

E/E/PE machinery E/E/PE, hydraulic, pneumatic 
machinery

IEC 61508 
Functional Safety

IEC 61800 
Adjustable speed electrical power

drive systems

IEC 61513 
Nuclear power plants

Figure 2.2: Relation of safety standards (adapted from [1])

The following sections give a deeper insight into relevant standards for this thesis, as
they provide a more general view of functional safety.
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2.2.1 IEC 61508
The IEC 61508 [34] can be considered the base standard for functional safety. This
central standard provides information concerning functional safety for automation systems
regardless of the application. It covers the complete lifecycle of such systems, from
development up until retirement. The standard is split into seven parts.

Part 1 provides an introduction to the concept of functional safety. Starting with some
information on when to apply this standard, how it is related to other standards, and
some meta information, it then shows the documentation process necessary to achieve
functional safety in all lifecycle phases. After this, it provides a way to define the
responsibilities of the people who manage the functional safety system. Then, the central
part of the standard follows, which provides the requirements for the safety life cycle.
Here, the necessary steps to achieve functional safety of a system are provided in detail,
starting from the concept, over the risk analysis, to the implementation, the validation,
the usage, until the system’s retirement. The last part of this standard is concerned with
assessing the achieved functional safety based on the relevant chapters of the standard
itself.

Part 2 of the IEC 61508 covers the process of achieving functional safety with the focus
on E/E/PE systems. It is structured in the same way as Part 1, with the difference that
the central part, which provides the requirements for the safety life cycle, focuses on
E/E/PE-systems.

Part 3 provides the information needed to create functionally safe software. Again,
following the structure of Part 1, it then focuses on the requirements for software used in
automation systems to achieve functional safety over the whole life cycle.

Part 4 provides terms and abbreviations. In Part 5, some examples of evaluating the SILs
are given. To further specify the application of Part 2 and 3, Part 6 shows policies on
when and how to apply them. Lastly, Part 7 contains usage instructions on procedures
and measures of Parts 2 and 3.

2.2.2 IEC 62061
The IEC 62061 [36] is an important standard for the safety of machinery. It is a sector-
specific standard below the IEC 61508 and covers the functional safety of Safety-related
Control Systems (SCSs) for E/E/PE systems. The design process of an SCS and the
management of functional safety are defined in it. The design process is an iterative
one. The safety functions are designed starting with information gathered from the risk
assessment. First, the requirements are defined, and then the safety integrity is determined
before an SCS is designed to implement the safety function, which a combination of
subsystems can achieve. After this design step, the subsystems are combined and then
validated to check whether all requirements are met and achieve the desired safety
integrity. This process is repeated for all safety functions. Once finished, the information
is passed back to the risk assessment. The management of functional safety is done by
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utilizing a functional safety plan. This plan contains information about the specification,
implementation, or modification of an SCS and is intended to provide measures against
an incorrect execution.

It is important to note that the currently harmonized version of the IEC 62061 was
published in 2015. In February 2021, a new revision was released, which not only provides
an update of the standard but no longer restricts its application to E/E/PE systems.
It can now be applied to all kinds of technology, like pneumatic and hydraulic systems.
This update is now similar to the ISO 13849, but it is not harmonized, yet.

2.2.3 ISO 13849
Similar to the IEC 62061, the ISO 13849 is concerned with the safety of machinery. As
mentioned above, it is not focused on E/E/PE systems, but its application field also
includes hydraulic and pneumatic systems. It is divided into two parts.

Part 1 [39] provides a methodology and requirements for the design and integration of
Safety-Related Parts of Control Systems (SRP/CSs), which also includes the design of
the software. The design process is again an iterative one and follows a similar pattern
as it is shown in the IEC 62061. After performing a risk analysis, the safety functions
are specified, including the determination of the PL. Then, the SRP/CS is designed to
implement the safety function. Next, the PL is evaluated and verified if the required
one is achieved. As the last step, the safety function is validated. This process is then
repeated for all safety functions. Once finished, the information is passed back to the
risk assessment.

Part 2 [38] addresses the validation of SRP/CSs. The validation is performed according
to a validation plan and consists of two main steps: analysis and testing.

2.3 Knowledge Engineering
Knowledge Engineering focuses on the development of intelligent systems [55]. In the
beginning, it was seen as a transfer process, the goal of which was to transfer human
knowledge into a knowledge base. The primary assumption behind this was that the
required knowledge already existed and only needed to be acquired and stored. One way
to do so was by interviewing domain experts.

Maintenance of such implemented knowledge bases was complex and was thus only
feasible for small systems as it did not scale well for large ones [72]. Another problem
with the assumption that the knowledge only had to be collected was the missing tacit
knowledge which is applied to problem-solving. This resulted in a paradigm shift from
the transfer to the modelling approach.

The goal of this new approach was to build a computer model that could provide the
same problem-solving capabilities as a domain expert. Knowledge needs to be built up
and structured during the acquisition process to provide these capabilities. This means
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it was no longer a transfer process but a model construction process. The following three
consequences result from this modelling view [15, 54]:

• The model is only an approximation of the real world since, in principle, the
modelling process is infinite.

• The modelling process is a cyclic one. New observations can lead to a refinement
of the model, whereas the model can help acquire new knowledge.

• The modelling process is subjective to the modeller and, therefore, typically faulty.
An evaluation of the model in comparison to the real world is essential.

While performing an analysis of systems based on the transfer approach, Clancey dis-
covered that they describe a common problem-solving behaviour [14]. He was able to
abstract this behaviour to a generic inference pattern. With this heuristic classification,
as it was called, it was possible to describe the problem-solving behaviour on an abstract
level. The knowledge level, as Newell called it in [56], made it possible to describe
reasoning by defining goals, the actions to reach them, and the knowledge required for
those actions. This leads to the definition of a Problem-Solving Method (PSM), which
describes the reasoning process of a KBS in a domain- and implementation-independent
way [8, 72]. Birmingham and Klinker describe three ways to characterize a PSM [9]:

• The PSM specifies which inference actions need to be performed to solve some task.

• The PSM specifies in which sequence these actions have to be performed.

• Knowledge roles define what role the domain knowledge has in each inference action.
These roles specify a domain-independent generic terminology.

PSMs can be used for knowledge engineering differently. One way would be to use
the contained inference actions which need specific knowledge. They can be used as a
guideline to gather static domain knowledge. Another way is to use them for validation
of a KBS since PSMs can describe the reasoning process of a KBS. Furthermore, since
PSMs can be reused, it is possible to create libraries of them, which can help with the
construction of KBSs [72].

2.3.1 Knowledge Representation
Knowledge representation is another crucial element of knowledge engineering. It aims
to represent information so that a computer system can use it to reason and complete
tasks. The information over a specified domain is modelled so that symbols represent this
domain’s elements. Elements of a domain can be physical objects, dependencies between
objects, and so on [70]. At the core of knowledge representation is the knowledge base,
which stores the symbols of the domain of interest in statements. A system can then
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reason over this domain by manipulating these statements and posing questions to the
knowledge base.

There are several ways to represent knowledge, such as frame logics, description logics,
and conceptual graphs. Frame logic [41] combines the data modelling capabilities of
object-oriented data models with the declarative semantics expressiveness of deductive
database languages [47]. Conceptual graphs and description logics are subtypes of
semantic networks based on first-order logic. Semantic networks are used to depict
semantic information using a graphical representation.

Ontologies

Ontologies build on the aforementioned notions of knowledge representation. They
are conceptual models, meaning they use intentional descriptions of concepts and their
interrelations to represent the knowledge. The term Ontology is used to refer to the shared
understanding of some domain [74]. Ontologies can be visualized as a semantic network.
Figure 2.3 shows an example of a simple ontology. The rectangles represent classes
of this ontology, sometimes also called concepts. The arrows define the relationships
between them, called properties. Instances of classes are called individuals. Relationships
between classes (and individuals) to one another are called object properties. Classes (and
individuals) can also be related to data values. These relations are called data properties.
Nodes connected by a relation create a triple in the form of Subject Predicate Object. To
represent ontologies, different Semantic Web languages can be used, such as Resource
Description Framework (RDF) or Web Ontology Language (OWL) [4]. RDF uses triples
as the base building blocks and serves as a foundation for other Sematic Web languages.
OWL builds on top of RDF and adds language constructs, which results in a greater
expressiveness. Databases that hold triples are called Triple Stores or RDF Stores. To
query information from these databases, SPARQL Protocol and RDF Query Language
(SPARQL) can be used. More information on ontologies, the semantic web, and SPARQL
can be found in [13, 32, 60].

Emergency
Stop Button

subClassOf

Safety Device

Light Curtain

Figure 2.3: Simple ontology
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2.3.2 Approaches
The following section describes different approaches used in knowledge engineering. First,
two historical ones are explained, which influenced newer modelling approaches. Then,
some more well-known ones are presented in more detail. Finally, this thesis briefly
mentions other approaches, which are not further explained.

Role-Limiting Methods

The first historical relevant approach was Role-Limiting Methods [52]. These methods
utilize the reusability of PSMs. This approach can be seen as a shell approach, where
a shell holds an implementation of a PSM. This had the downside of only using it for
appropriate tasks where the PSM can be applied. The PSM further defined the roles
knowledge plays during the problem-solving process and gives a fixed representation for
it. The knowledge engineer only had to instantiate these roles’ concepts and relations
and provide the required knowledge. One problem with this approach is that it is unclear
whether a specific task can be solved by a given role-limiting method. Another problem
with the fixed structure of these methods is that they do not provide a good basis to
solve a task if it can only be solved by combining multiple PSMs. To overcome this
problem, Configurable Role-Limiting Methods have been proposed in [63].

Generic Tasks

The second historical relevant approach was Generic Tasks [11]. Such tasks can be seen
as building blocks that can be reused to create KBSs. Each task specifies a generic
description of its in- and output and a fixed scheme of the structure of the needed domain
knowledge. It also includes a fixed problem-solving strategy, which specifies the inference
steps. This approach has no clear distinction between the notion of a task and the
PSM used to solve the task. It was also unclear what the granularity of these building
blocks should be. The Task Structure approach was proposed [12] to overcome this
problem. This approach made a clear distinction between a task and a method. The
concept of task-method-decomposition is nowadays reused in other knowledge-engineering
methodologies [72].

CommonKADS

Schreiber et al. present another knowledge modelling approach with KADS [66] and its
successor CommonKADS [67]. The main idea behind the KADS approach is to create
multiple models, where each of them captures specific details about the KBS and its
environment. CommonKADS consists of the following models:

• The Organization Model contains information about the organizational structure
and a specification of which functions each organizational unit performs. It also
holds information about current deficiencies of the business process and how it can
be improved by the KBS.
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• For each organizational unit, the Task Model provides a hierarchical description of
its performed tasks. It also specifies which agent performs a task.

• The Agent Model provides the capabilities of each agent for a currently executed
task. Agents can be humans or software systems.

• The Communication Model defines the interaction between the different agents,
e.g., what information is exchanged.

• In the Expertise Model three different types of knowledge are stored, which can be
structured into layers:

– The Domain layer holds domain-specific knowledge.
– The Inference layer specifies the reasoning process of the KBS by using PSMs.

It also describes inference actions and the roles the domain knowledge has. A
connection between those is achieved with an inference structure.

– The Task Layer defines tasks broken down into subtasks. It includes inference
actions, a goal specification, and how these goals are achieved.

• The Design Model defines the system architecture and the computational mecha-
nisms for implementing the inference actions. The structure of the Expertise Model
should be reflected in the Design Model as much as possible

The first four models cover the organizational environment of the KBS and the tasks per-
formed in the organization. The last two cover functional and non-functional components
of the KBS.

VITAL

The VITAL approach [69] is based on KADS multiple model approach to describe the
KBS. It differs from the KADS approach by putting its main focus on the notion of a
process product. A project using a KBS can provide four of these process products:

• The Requirements specification describes an application’s expected functions and
constraints.

• The Conceptual model holds domain-relevant entities, task structures, and expert
problem-solving behaviour.

• The Design models consist of a functional-design model and a technical-design
mapping. The functional design gives an implementation-independent description
of the KBS. The technical design provides an implementation-dependent mapping
from the functional design to executable code.

• The Executable code is the final process product, which are the different software
components of an application.
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In addition to the process products, the methodology includes the following three
components:

• Knowledge-engineering methodology: defines the production of the process products
for a specific application

• Life-cycle model: controls and monitors the entire project

• Life-cycle configuration: links the former two, it defines how each process product
is developed in the context of the project

PROTÉGÉ-II

PROTÉGÉ-II aims to provide a knowledge-engineering environment for developers. With
the PROTÉGÉ-II approach [65, 21], the main focus is placed on reusing PSMs and
ontologies for the development of KBSs. As with Generic Tasks, this approach utilizes
the task-method-decomposition. Tasks are decomposed into subtasks by applying a PSM.
This decomposition is done until a level is reached where primitive methods can solve
the subtasks. The input and output of a method are defined in the method ontology. It
specifies concepts and relations used by the PSM. Another ontology used is the domain
ontology. It defines the domain in a shared conceptualization. PROTÉGÉ-II now proposes
a third ontology, the application ontology, which extends the domain ontology with PSMs
specific concepts and relations. The application ontology is connected to the method
ontology through different types of mapping relations [28]:

• Renaming mappings: translate domain-specific into method-specific terms

• Filtering mappings: select a subset of domain instances used for the corresponding
method concept

• Class mappings: provides a function to compute instances of method concepts from
application concept definitions rather than instances

Figure 2.4 shows the connection between the ontologies and PSMs.

Other Approaches

Another approach would be MIKE [6], which provides a method covering all steps of
developing a KBS. It proposes an engineering framework that integrates formal and
semiformal specification techniques and prototyping. Another would be EXPECT [29],
which aims to provide a tool for developing KBS independent of the inference structure
and PSM of the task. Commet [71] also aims to provide a framework for knowledge
modelling. It assumes that a description can be created from three perspectives: tasks,
methods, and models.
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method input method outputproblem-sovling
method

described by described by

method
ontology

mapping

application
ontology

extended todomain 
ontology

Figure 2.4: Structure of ontologies in PROTÉGÉ-II (adapted from [72])

2.3.3 Ontology Creation Methodologies

This work aims to use ontologies as the core element of the knowledge base. There exist
many different approaches how to develop an ontology. Cristani and Cuel provide a
survey on these ontology creation methodologies in [16]. They state that the creation of
an ontology deals with three problems. First, providing the general terms of the domain
to be used to describe classes and relations. Second, ordering these terms into a taxonomy
of classes by the ISA relation. Last, explicitly describing the constraints that make the
ISA pairs meaningful. This thesis will briefly summarize some of the methodologies for
solving these problems.

Noy and McGuinness present the Ontology Development 101 methodology in [57]. It
consists of a simple iterative seven-step guide. The first step is to determine the domain
and scope of the ontology. Here, questions such as what domain the ontology will cover or
what types of questions the ontology should provide answers to, also called competency
questions, will be defined. The second step is to consider reusing existing ontologies. In
this step, literature and the Web are searched for ontologies that might already cover
the described domain or parts of it. The next step enumerates important terms in the
ontology. The goal is to create a list of terms used within the ontology and to describe
their meanings and properties. As the fourth step, the classes and class hierarchy is
defined. Different approaches can be taken when describing the hierarchy. A top-down
approach starts with the most general concepts and then specializes. With the bottom-up
approach, the opposite is performed. However, a combination of both is also possible.
The fifth step is to define the properties of classes-slots. Here, all the properties are added
that are needed to answer the competency questions. In the next step, the facets of the
slots are defined. There exist different facets which can describe value type, allowed values,
and other features that the value of a slot can take. The final step of this methodology
is to create instances. In this step, individuals of the classes are created, and the slot
values are assigned. The final result is the ontology and the modelled domain.
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Another important methodology is Methontology presented by Ferández-López et al.
in [24]. They define activities that need to be performed when creating an ontology.
They developed a flow of the creation process for three different processes: management,
technical, and support. This methodology consists of the following phases, as shown in [16].
In the first phase, the planning is done. It specifies which tasks need to be performed,
when they are performed, and what resources they need. The next phase handles the
specification. This step aims to identify the ontology’s goals and define its purpose and
scope. Phase three deals with the conceptualization. Here, a conceptual model is formed
that describes the problem and its solution. The outcome of this phase includes a glossary
of terms containing important concepts, verbs, and properties. Following this phase
is the formalization, where the conceptual model is transformed into a formal model
using specific logic representation systems. In the integration phase, existing ontologies
are included, and a refinement process is performed. The implementation phase then
creates a computable ontology from the formal model. Here, the desired target language
is selected. After this phase follows the maintenance phase. There, modification and
inclusion processes are performed on the ontology. In the acquisition phase, knowledge
sources are searched for and listed. This acquisition can be made through interviewing
domain experts or text analysis. The evaluation phase deals with the technical judgment
of the created ontology to a frame of reference. Lastly, in the documentation phase, the
necessary information is recorded.

The third methodology presented in this work is the Toronto Virtual Enterprise (TOVE)
methodology, as shown in [16]. It consists of six steps. The starting point is a motivating
scenario. It describes a set of problems encountered in an enterprise. In the next step,
informal competency questions are defined. These questions guide what the ontology
should be able to answer. The third step is the terminology specification. This step
specifies the ontology’s objects, attributes, and relations. Next follows the definition of
formal competency questions, based on the previously specified terminology. The fifth
step handles the axiom specification. Here, the axioms are specified that define terms
and pose constraints on their interpretations. Lastly, completeness theorems are added.
This evaluation step defines the conditions under which the competency questions are
complete.

The three presented methodologies have in common that they all take a specific task as a
starting point, which helps choose the domains and categories for a correct representation.
In Ontology 101, the ontology’s domains and scope are specified. Methontology identifies
the ontology’s goals and defines its purpose and scope. The TOVE methodology starts
with defining a motivating scenario, which describes a specific problem. Cristani and
Cuel state that there are two different types of methodologies. Stage-based models are
used when the purpose and requirements of the ontology are clear. TOVE is an example
of this kind of methodology. Evolving prototype models are used when the environment
is dynamic and difficult to understand. Methontology is an example of this type.

The three presented methodologies also differ in the kind of approach they take. TOVE
implements a bottom-up approach. Methontology, on the other hand, uses a more
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top-down approach. With Ontology 101, both approaches are possible. All three are
sophisticated approaches, meaning they assist the knowledge engineer in creating the
ontology.

2.4 Related Work
The following section presents some related work to this topic, starting with works
focusing on ontology design for RMSs, going over to safety in RMSs, ontology design for
safety, and lastly, the use of ontologies in other domains.

2.4.1 Ontology Design for RMSs
Lepuschitz et al. show how a manufacturing system can be reconfigured automatically [50].
They describe an automation agent architecture that manufacturing systems can use
for self-reconfiguration. The focus is placed on the low-level layer. The Low-Level
Control (LLC) is responsible for controlling the physical components, supervising sensors
and actuators, and transferring information to the High-Level Control (HLC). In their
reconfiguration infrastructure, they use a reconfiguration application that controls the
reconfiguration process of the control application. It ensures that no wrong input is given
to the process and that all state changes are done correctly. Between the two applications,
services are implemented to handle the communication tasks, such as monitoring events
or changing data values. They then tested this infrastructure via two experiments and
showed that they could achieve reconfiguration without disturbing the operation (i.e.,
keeping a pendulum straight up). Further, they then combined this infrastructure with
an automation agent. Every component in a manufacturing system is controlled by an
automation agent, that has to coordinate its activities to ensure correct functioning. The
agent’s architecture is split into an HLC and LLC. Using an ontological representation
of the low-level functionality in the HLC makes it possible to reason and initiate a
reconfiguration of the LLC. Finally, they perform a case study based on this architecture
to show that their framework is suitable for self-reconfiguration.

In [68], Seyedamir et al. show an approach to using ontologies in manufacturing systems.
For this, they develop an ontology with the help of the ISA-95. This standard was
developed by the International Society of Automation (ISA) in the 1990s and is used
for integrating enterprise and control systems. The main focus was to reduce the effort
required to implement interfaces between them. The authors use this standard to help
define the required functions and data flows to integrate enterprise and control systems.
The resulting Enterprise Control Ontology (ECO), as it is called in the paper, consists of
three sub ontologies. First up is the hierarchy ontology, which is based on parts one and
two of the ISA-95. It is split into the role-based hierarchy and physical asset equipment
models. This distinction separates the assets used in the manufacturing process based on
activity, composition, physical location, and finance-related aspects. The second part
is the operation type ontology. It is used to define a set of management operations.
The standard’s four main management operation activities are production, maintenance,
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quality, and inventory. The paper focuses on the production management operation. The
final sub-ontology is the resource ontology. It is used to define resources that can provide
capabilities for some actions. Such resources are personnel, material, equipment, and
process segment, as defined in the standard. Seyedamir et al. then add semantic rules to
this solution to enhance the explicit knowledge of the proposed model. Finally, they test
their solution by modelling a simple factory line.

2.4.2 Safety in RMSs

In his paper [42], Koch shows an approach to how a safety configuration for a robot
application can be created automatically. He states that with the paradigms of In-
dustry 4.0, which call for a dynamic and reconfigurable system, the system can easily
run into uncertainties not covered by the safety configuration. Thus, making safety a
bottleneck in an RMS. To overcome this problem, he proposes an approach to create a
computer-automated safety configuration. The approach consists of three main parts:
the PPR-H model, a safety behaviour model, and the safety state machine. The Product-
Process-Resource (PPR) model covers information about the existing robot application
and, as the name suggests, gives insights on the product, performed processes, and used
resources. This model is then extended to the PPR-H model to also provide information
about hazards since this is needed to create the safety configuration. Within the safety
behaviour model, the safety functions are stored. These safety functions are created
during risk reduction using the information about hazards stored in the PPR-H model.
The approach’s last and central component is the safety program as a safety state machine.
The state-of-the-art programming provides a global safety input to output allocation
focusing on safety measures. Koch now proposes safety states which are process-oriented.
Here, in a specific process step, a safety state is triggered. Each safety state can contain
multiple safety functions that implement the safety measures. In his proposal, he makes
two assumptions. First, if the safety state is in itself safe, then the process control can
trigger it. This means that even though the trigger signal may be unsafe, no unsafe state
can be adopted. The second assumption is that an intrinsic safe state can be found for
each robot application task.

What kind of challenges are posed concerning safety in RMSs is shown by Koo et al.
in [43]. Their paper discusses problems and requirements regarding safety in RMSs.
They found four main points of concern. First, a new assessment must be made to
identify possible new hazards whenever a system is reconfigured. Second, the reconfigured
system’s safety measures must be fulfilled. On this notion, their third point of concern
is that new measures need to be implemented where needed. Lastly, the availability of
safety experts to perform the risk assessment must be considered. They then go on to
give possible reasons as to why current standards for assessing and certifying RMSs do
not take flexibility and reconfigurability into consideration. One of them would be the
highly dynamic changes in RMSs and the possible unknown safety concerns resulting from
them. After they describe the current assessment process, they explain which parts of
this process can possibly be automated to reduce effort: data collection, data allocation,
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risk assessment, documentation, and certification. Using these five process steps, they
recognize six challenges for automating the risk assessment. The first challenge is the
need for standards describing the safety features of modular machines. Such standards
would enable manufacturers to provide the correct information, such as machine features,
the direction of movement, or working range, needed to automate the risk assessment
process. As a second challenge, they state that a standardized way to interpret existing
standards is needed to automate risk assessment. Here, relevant standards for the
assessment have to be converted into a set of rules such that the systems can be assessed
quantitatively. The third challenge is hazard recognition and classification. For current
systems, there exist several analysis methods like Fault Tree Analysis (FTA) or Failure
Mode and Effects Analysis (FMEA), which safety engineers perform to identify hazards.
New techniques need to be developed for RMSs to automate this process. Challenge
four is the interdependency of different modular machines and human involvement. This
interdependency means that for a feasible automated risk assessment, the connection
between different machines and humans involved in the work process must be considered.
The fifth challenge is the accuracy of such a risk assessment and whether the automated
certification process will be generally accepted. The last challenge is transitioning from
the current state of engineering to RMSs. For this transition to be successful, the new
concepts must be mature, cost-efficient, produce quality products, and be safe. They
then propose concepts for an automated assessment system. The first concept is partially
automated, which requires an operator to assist the process. Then a fully automated
concept is presented, where the operator will only start the assessment and confirm the
outcome.

2.4.3 Ontology Design for Safety

On the notion of adaptable safety functions, in [10] Brecher et al. show an ontology-
based approach for data-management in a CPPS which is then used for adaptable safety
functions. CPPSs utilize various data sources since the requirements change for different
parts of a system regarding the type, amount, and usage of the available data. To
handle these data sources, they propose the application of an ontology. Its main parts
are information about the production site, data sources, and facts. For the production
site, they use the model given by the IEC 62264–1 [35], which contains a hierarchical
representation of an enterprise. The data sources part represents databases, data streams,
data servers, and datasets. With this, they cover elements like relational databases,
Message Queuing Telemetry Transport (MQTT) messages or OPC UA servers. The last
main part of this ontology is the concept of a fact, which is used to describe the data
that is provided by the different sources. A so-called Ontology-Based Data Management
(OBDM) service was implemented to enable the user to interact with the ontology and
the data sources. With it, a user can request data and query the ontology. This service is
then used to query data needed for a safety function. The safety logic and a client were
written to repeatedly check if the data needed for the safety function had changed. Based
on this data, it is then decided if an action concerning the system’s safety is needed.
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2.4.4 Ontologies in Other Domains
The use of ontologies for automated safety planning in the construction domain is
shown by Zhang et al. in [77]. They propose an ontology containing construction safety
knowledge, which is then connected to the Building Information Model (BIM) to allow for
more significant interaction between safety management and BIM. The ontology consists
of three main domain ontology models: construction process model, construction product
model, and construction safety model. The construction process model stores information
regarding the project’s construction plan with its needed resources. Building element
information, such as wall or column information, is stored in the construction product
model. This model also provides the main interface to the BIM. The construction safety
model holds knowledge concerning construction safety, including potential hazards or
specifications from regulations. The developed ontology is then evaluated for semantics
by interviewing subject experts and an application scenario.

In their paper [53], Melik-Merkumians et al. show how to integrate an ontology-based
knowledge base in runtime failure detection for industrial automation systems. Based
on the three major lifecycle phases of such systems, namely design, deployment, and
runtime phase, they present a domain-specific Engineering Knowledge Base (EKB). One
of the main problems with runtime failure detection is the absence of relevant design-time
information, such as the system’s layout or the manufactured product. The EKB provides
a place to hold and access this information during runtime, aiding the detection of failures
or unplanned situations. The different components can query the ontology with SPARQL
or Semantic Web Rule Language (SWRL), which allows components to derive new facts
by reasoning. With the aid of the design-time information, assertions can be defined
which are checked during runtime, and a notification is given if any of these assertions
are violated. It is further possible to store deployment information to enhance further
deployments. To test their EKB, they describe two real-world scenarios where failures
occur. The evaluation shows that their approach is feasible to detect failures for which a
combination of sensor and design-time information is necessary.
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CHAPTER 3
Methodology

The applied methodology for this thesis can be seen in Figure 3.1. It consists of three
main phases:

1. Requirements Analysis: This phase defines the concepts and functions the knowledge
base should provide. First, an application scenario is described to define where
and how the knowledge base is used. Based on this application scenario, the
different domains covered by the knowledge base are derived. Also starting from
the application scenario, requirements in form of competency questions [30] are
defined. These two parts then merge together and the questions are matched into
the domains to refine missing parts.

2. Ontology Creation: In the second phase, the ontologies for the knowledge base
are developed. Here, it is differentiated between reusing existing ontologies for
specific domains and modelling the missing domains and concepts. Multiple existing
ontologies are considered for each of the different domains. These ontologies are
rated based on different criteria before the best fitting one is chosen. The existing
ontologies are then combined with the newly created ones and relations between
them are modelled.

3. Evaluation: The last phase is the evaluation, which aims to check if the created
knowledge base fulfills the defined requirements of phase one. One element of the
evaluation is based on answering the predefined competency questions. The second
element is integrating the knowledge base into a reconfigurable safety system and
testing if it can provide the required functionality.

Each of the steps of the methodology shown in Figure 3.1 will now be defined in greater
detail. The required input, the performed tasks within, and the produced output will be
explained for each step.
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Figure 3.1: Methodology for the knowledge base creation

Describe the application scenario and the top-level ontology is the first step of the
requirements analysis. The motivation example presented in Section 1.1 and the described
problem in Section 1.2 can be seen as the input for this step. This basic information
is needed to know for which specific field the application scenario should be described.
The example presented in Section 1.1 already specifies a first use case for the knowledge
base. The self-organizing safety system model shown in Figure 1.3 provides information
in which context the knowledge base will be used. Thus further specifying restrictions
for the application scenario. By using the given information, first, a wider view of where
and how the knowledge base can be used is shown. Then more specific use cases are
described in more detail, which provides examples of the usage of the knowledge base.
These use cases give a base idea for the top-level ontology.

The defined use cases from the previous step are now used as input for the step Define
requirements in form of competency questions. Here, the competency questions for the
knowledge base are defined. With the application scenario in mind, a set of questions is
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defined that the knowledge base should provide answers to. In addition to extracting
competency questions from relevant literature, an interview with domain experts is
performed. A result of these activities is a set of competency questions specifying
requirements for the knowledge base.

Parallel to the definition of competency questions, the step Split the ontology into smaller
parts (e.g., domains) is executed. Again, using the previously described use cases, specific
domains that the knowledge base should cover are defined. Here, the main focus is on
the safety system and finding useful domains in this context. Risk analysis processes
provided by standards are taken into consideration when defining the domains. A result
of this step is a set of domains that the knowledge base should cover.

The output of the previous two steps is now combined in the step Group competency
questions into domains. Here, each of the competency questions will be matched into
the domains. Because of the form of the competency questions, one question might
correspond to multiple domains. The goal of this grouping process is to identify possible
missing domains or questions. Missing concepts will later be added to corresponding sets
until no more are found. This step results in a complete list of competency questions
and domains matched to each other.

The ontology creation starts with two parallel steps. Research + rate existing ontologies
for the domains takes the before-defined domains and reviews literature containing
ontologies that might cover those domains. An initial selection of ontologies is made
by simple Internet research and checking citations of different papers. Furthermore,
ontologies provided by domain experts are taken into consideration. For each of the
found domains, some ontologies are explained in detail. The core concepts and relations
covered by the ontology are presented. These presented ontologies are then rated based
on different criteria, such as domain coverage and overhead before making a final selection
[26]. The result of this step is a set of ontologies covering specific domains.

Domains not covered by already existing ontologies are created in Model missing ontology
domains + concepts. The missing concepts are modeled and added for domains that
are only partially covered by an ontology. For domains that no ontology sufficiently
covers, a new one is created. While performing this creation process, the previously
defined competency questions are used as requirements. Resulting from this step are new
ontologies covering the missing domains.

The existing and newly created ontologies are then combined in Combine ontologies. Here,
relations between the different ontologies are created to further enrich the information
content of the knowledge base. The goal is to add concepts and relations between
ontologies to be able to answer the competency questions. The result of this step is the
finalized knowledge base.

This knowledge base is now evaluated in the next two steps. The first evaluation is
performed in Evaluation based on competency questions. Before the evaluation starts,
an application scenario in which the knowledge base should be evaluated is described.
Within this scenario, the previously defined competency questions are used to evaluate
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the information content of the knowledge base. If any of the questions can not be
answered, then another round of modelling missing concepts is performed. This process
is done iteratively until all questions can be answered. The evaluation itself is performed
expressing competency questions as SPARQL queries.

The Integration into Reconfigurable Safety System is the second part of the evaluation.
Here, the knowledge base is integrated into the safety system of a production cell to test
if it can provide the required functionality. There, the use case of initial commissioning
is performed, and the knowledge base should provide the needed configuration for the
TSN and OPC UA components. This information is acquired using SPARQL queries.

If both of the previous evaluation steps are completed with positive results, then the
knowledge base has proven to fulfill its desired usage as defined by the requirements
analysis. Therefore, the created knowledge base is suitable to be used within an RSS.
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CHAPTER 4
Requirements Analysis

Before the ontology for the knowledge base can be developed, it is crucial to define where
and how it will be used later. The functions it should provide and the information it has
to hold need to be defined. For this, a requirements analysis needs to be performed. This
analysis is done via two different approaches. The first specifies an application scenario
from which the needed domains will be extracted. The second utilizes competency
questions, which the knowledge base should be able to answer. As a final step, the found
questions are matched with the specified domains to find possible missing elements.

4.1 Application Scenario
The starting point for this requirements analysis is set by describing an application
scenario in which the knowledge base can be used. Again, it is possible to make two
significant distinctions regarding how and where the knowledge is used based on the
development lifecycle. The first would be by integrating the knowledge base into the
digital twin of a manufacturing system. By doing so, the provided information can be used
within the simulation and help with its analysis before the real system is implemented
and deployed. The second would be a manufacturing system, such as a production line.
Here, the knowledge can be used during operation to provide current information about
the system.

In addition to the use case described in Section 1.1, Etz et al. describe two other use cases
for an RSS in [22]. They first describe a plug and produce use case, where an individual
component can be added or removed rapidly. The authors provide the example of a
handling robot used for machine loading, which is added to an existing manufacturing
cell. A scenario in which this might occur would be when the manufacturing cell does not
have a robot, or it is deactivated, and the machine operator manually produces individual
parts. The robot might also be activated during the night shift, whereas during the
day, the work is handled by an operator. These scenarios pose a problem for the safety
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system since the robot is equipped with an emergency stop button that must be added
to it when it is in use. This addition requires a reconfiguration on two levels. First, the
safety function must be extended to include all available safety equipment. Second, the
communication system must be reconfigured to ensure timely communication between
safety components.

Another use case described in [22] is concerned with moving container-based applications.
Virtual machines or containers are used to achieve higher flexibility and scalability in
edge or cloud computing. In the context of RMS, this means that fog nodes host various
applications used for control processes or communication between cells. An example of
this could be the safety logic of a cell handling the safety functions. This safety logic
might be moved to a different fog node because the current one is overloaded or crashed.
When moving the safety logic, new connections need to be formed, e.g., to the emergency
stop button. Since the container holding the safety logic has new addresses, they need to
be passed to the safety logic, corresponding to the mapping of relevant ports. The move
of such a container also requires changes in the surrounding network, for example, TSN.

4.2 Domains
The goal is now to find what kind of information the knowledge base needs to hold to
provide a benefit in the described scenarios. The focus of this thesis is primarily placed
on functional safety requirements and the safety system. To be able to describe a safety
system, the System Architecture is needed. Knowledge about the system’s architecture
is always required for the simulation or the application in a real system. In both cases,
information about the used components is necessary. The Asset Properties are closely
connected to the architecture and components. They include limits, size, or location of a
component. These properties are essential considering the safety system. As mentioned in
Section 2.2, establishing a system’s limits is the first step for risk analysis and reduction,
as specified by the ISO 12100. Therefore, by storing this information, the knowledge
base can aid the safety analysis process.

This process also mentions the intended use of components. Information about the usage
can be given with the notion of Capabilities. It makes it possible to define for each system
element what capabilities it possesses, meaning what kind of jobs it is meant to do. This
idea of capabilities can also be used to provide information for a person working on or
with the system about the purpose of a machine.

On this thought, it is essential to know which person is allowed to perform which task
regarding the system. This restriction is where Management comes into play. It is
important to know which worker has which specific role. If changes are made within
the system, it is necessary to know who is allowed to make these changes. Again, in
the context of safety, this is essential because only a safety engineer can declare if by
changing a system in a certain way, it will still be safe.
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4.3. Competency Questions

A Network is needed to enable the different components to communicate with each other or
allow workers to retrieve internal information. The network consists of hardware elements,
such as switches and links, and software elements, such as configurations and routing
information. Assigning these elements to the system architecture and asset properties
domain is possible. Nevertheless, in this case, it is feasible to distinguish between elements
actively contributing to the manufacturing process and the communication components
since it facilitates the reusability of the ontologies covering each of these domains.

In the context of network communication, TSN and OPC UA are two important standards,
which are gaining acceptance in the industry [23]. TSN enables deterministic real-time
and highly reliable communication provided by a fault-tolerance mechanism. The concepts
of TSN are represented within the Network domain. OPC UA allows for cross-platform
communication and easy data exchange between components. These are the reasons why
OPC UA is used in this work. The manufacturing system will be extended with OPC
UA concepts to enable the data exchange and communication between system parts. An
Information Model is needed to represent these concepts.

As mentioned in Section 2.2, different standards apply when it comes to the safety
of machinery. The knowledge they provided can be used to check whether a given
configuration of the safety system is valid or even generate a new configuration. This
additional information would shorten the deployment time of new safety configurations
as they no longer need to be created or checked manually by a safety engineer. However,
modelling these standards into concepts and relations to form an ontology is a difficult
and time-consuming task and would go beyond the scope of this thesis. Nevertheless, it
will be kept in mind while modelling the other domains to allow for a future knowledge
base extension.

Figure 4.1 gives a summarized view of the described domains. It shows the sub-ontologies
needed for a knowledge base for an RSS. The green domains will be covered in this work,
the grey one will be covered in future work.

4.3 Competency Questions
Based on the before defined application scenario and to further determine the scope of the
knowledge base, a list of competency questions [30] is defined. These are questions that
the knowledge base should be able to answer. A benefit of using competency questions is
that they can be used in the evaluation to check if the knowledge base contains enough
information. Since the competency questions are used as a sketch to define a frame of
the needed information, they do not need to be exhaustive. [57]

As mentioned in Chapter 3, these questions were obtained in two ways. One part was
extracted from relevant literature. While reading related papers, it became apparent what
questions the knowledge base should be able to answer in regards to reconfigurability and
functional safety. The others were gathered while attending a workshop and speaking to
domain experts, which gave requirements to the knowledge base and stated the expected
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Figure 4.1: Domains of an RSS

information it should provide. Because of the modular structure of the knowledge base,
it can easily extended in case additional application scenarios yield further competency
questions.

For the domain of reconfigurable safety systems, the found competency questions are:

1. What is the current safety configuration for this system?

2. When should the new safety configuration be deployed?

3. Is the configuration validated by a safety engineer?

4. Is the configuration currently active?

5. Has there been an error while deploying the configuration?

6. Is a new configuration available?

7. How big is the distance between two components?

8. What are the speed limits of a component?

9. What are the components of the manufacturing system?

10. What are the components of the safety system?

11. What are the components of the network?

12. Does a component have a specific capability?

13. Does a machine require human interaction?
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14. Where is a component located?

15. What are the properties (MAC, IP, . . . ) of a component?

16. What SIL does a component have?

4.4 Grouping of Competency Questions Into Domains
As stated in the methodology, the competency questions are now grouped into the
identified domains. The goal of this grouping process is to further define the scope of the
ontology. If a competency question does not match into any of the identified domains,
then either a domain is missing or the competency question might not fit in this context.
Conversely, if a domain is not matched with any competency question, then either a
key domain was overlooked at the competency question definition, or the domain is not
needed. Because of the way that the questions are formulated and the domains are
structured, one question may require information from different domains to be answered.
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Table 4.1: Matching of competency questions into domains
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CHAPTER 5
Ontology Creation

The following chapter explains the structure of the created ontologies and the top-level
ontology. Different existing ontologies covering the specified domains will be discussed,
and it will be decided which are used for this application. After this, the missing ontologies
and concepts will be modelled. Finally, all the ontologies will be combined within the
top-level ontology, and properties that connect multiple domains will be defined.

5.1 Existing Ontologies
The next step in the knowledge base creation is to check for already existing ontologies.
The main reference point for finding these ontologies is based on the before defined
domains. Since there exist multiple ontologies for each domain, an initial selection was
made based on relevance and establishment of ontologies. Overall, around 70 papers
were taken into consideration. A lot of these papers were only very little relevant for this
work. They mostly touched topics, such as relevant domains or the usage of ontologies
in these domains, very briefly. Another elimination criterion for some papers was, that
they focused very precisely on a specific application of an ontology. Therefore, they were
not studied in greater detail. To further narrow down the selection, it was checked how
often and in which context an ontology was referenced in other papers. In addition to
this selection, ontologies recommended by domain experts were taken into consideration.
These criteria allowed to narrow down the set of suitable ontologies. Table 5.1 reflects
this data for some appropriate ontologies. In the following sections, these ontologies are
explained in more detail.

ECO
As already mentioned in Section 2.4.1, Seyedamir et al. present the Enterprise Control
Ontology (ECO) in [68]. The ontology is developed with the help of the ISA-95 standard.
It consists of three sub-ontologies, which are combined to the ECO.
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5. Ontology Creation

Ontology Citations Recommendation

ECO 11 x
CORA 201
AMLO 9 x
Ontology for IT Services 23
Network Ontology for Com-
puter Network Management 3

Organization Ontology — x
Upper ontology for manufac-
turing service description 102

MaRCO 100
OPC UA NodeSet Ontology 19

Table 5.1: Criteria for selection of existing ontologies

The first sub-ontology, shown in Figure 5.1, describes different hierarchy models, their
object models, and attributes following Parts 1 and 2 of the ISA-95 standard. Role
Hierarchy and a Asset Hierarchy are modelled to distinguish the assets of an enterprise.
The assets can be distinguished based on activity, composition, physical location, or
finance-related aspects. Elements of both hierarchies may correspond to each other.
This correspondence allows for an asset to be modelled from both viewpoints. The role
hierarchy is further refined and contains the concepts Enterprise, Site, Area, WorkCenter,
and WorkUnit. The object property contains specifies that Role Hierarchy or subclasses
of it may be contained in themselves.

Hierarchy

Role Hierarchy Asset Hierarchy

Area Enterprise Site WorkUnitWorkCenter

contains

Figure 5.1: Structure of the hierarchy ontology
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Figure 5.2 shows the second sub-ontology, which is based on the MES layer. In this
ontology, different generic management operations can be defined. They follow a basic
request and response cycle that starts with the request, which is then transformed into
a work schedule before the necessary resources are dispatched in the correct order for
the operation, followed by the execution and finally, the recording and providing of
the data as part of the response. The standard defines four main operation activities:
Production, Maintenance, Quality, and Inventory. However, there are others, such as
security and information. Figure 5.2 does not show all subclasses of Production. The
ones depicted show the object properties of this ontology. It connects WorkPerformance
to WorkSchedule via the CorrespondsToWorkSchedule relation. Further, JobOrder is
connected to WorkMaster using the referencesWorkMaster property.

Operation Type

Production Maintance Quality Inventory

Tracking

CorrespondsToWorkSchedule

WorkPerformance

Definition
Management

WorkMaster

Detailed
Scheduling

WorkSchedule

Dispatching

referencesWorkMaster

JobOrder

Operation Type

Production Maintance Quality Inventory

Operation Type

Production Maintance Quality Inventory

Definition
Management

Operation Type

Production Maintenance Quality Inventory

Definition
Management DispatchingDetailed

SchedulingTracking

WorkPerformance WorkMaster

Figure 5.2: Structure of the operation type ontology

The third sub-ontology contains the resources, defined by the standard as entities
providing capabilities for activities or processes. Figure 5.3 shows the main classes of
this ontology. They are split into Personnel, Material, Equipment, and ProcessSegment.
This ontology is an intermediary between the hierarchy and operation type ontology.
Therefore, a mapping for the communication between them must be added when necessary.
The object properties connect the ProcessSegment to the other classes. The relations
RequiresMaterialDefinition, RequiresPersonnel and RequiresPhysicalAsset connect to
their respective classes.
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Figure 5.3: Structure of the resource ontology

CORA
The Core Ontology for Robotics and Automation (CORA) [64] was created by the
Ontologies for Robotics and Automation (ORA) working group. Its main goal is to
provide an ontology that contains commonly used terms in robotic and automation.
Figure 5.4 gives an overview of the CORA.
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RobotRobot Group <<Role>> 

Robot Part

equipped with

Simple Robotic
System
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SUMO:ObjectSUMO:Collection
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Semi-
Autonomous

Robot

<<Role>> 
Robot Part

Non-Autonomous
Robot

Automated
Environment

Robotic
Environment

Robotic System

Collective Robotic
System

Figure 5.4: Structure of the CORA (adapted from [64])

The central concept in this ontology is the Robot. To further help define the domain,
other entities are defined which surround the robot, and concepts from the Suggested
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Upper Merged Ontology (SUMO) are used. They are classified by their complexity. The
main four entities of the ontology are Device, Robot, Robot Group, and Robotic System. A
Device is used as an instrument within a specific process subclass, such as manufactured
tools or machinery. Examples of a Device are a hammer, sensor, actuator, or transistor.
A Robot is a Device because it is a manufactured instrument to perform some task.
However, a robot can also have multiple devices, which are then classified as Robot Parts.
Prestes et al. specify in their paper that the concept of a Robot Part is a domain of its
own and will be developed in a sub-ontology.

Nevertheless, they abstract the notion of Robot Part as a role to provide a way to
classify a Device as a Robot Part. A role is a concept that some instances might assume
dynamically based on the context. For example, a power supply can be a Device on its
own but can become a Robot Part when it is connected to a robot.

A robot is also an Agent as defined by the SUMO. An agent can act on its own and
produce a change in the world [64]. Since a robot can perform tasks by acting on the
environment or itself, it can be considered as an agent. Three significant distinctions can
be made depending on how autonomous a robot is, meaning how many inputs it requires
from an operator to perform its task. The paper defines autonomous, semi-autonomous,
and non-autonomous robots. There are some difficulties in defining where to draw the
line between non-autonomous robots and controlled machinery. The details concerning
this distinction can be found in the paper [64].

A robot can also be part of a Robot Group. An example of such a robot group would be
a group of soldering robots in a factory. A Robotic System consists of robots and devices
intended to help the robots with their tasks. In the example of soldering robots working
on a part, the helping devices could be movement sensors or conveyor belts. Such a
robotic system is deployed within a Robotic Environment.

AMLO
In [46], Kovalenko et al. present an AutomationML Ontology (AMLO). It covers the
Computer Aided Engineering Exchange (CAEX) part of the AutomationML standard.
With this standard, it is possible to model complete systems, starting from single automa-
tion components to entire complex production systems. It enables the representation of
different aspects of these systems, such as geometry, kinematics, and topology. Figure 5.5
gives an overview of the AMLO.

The core element of the ontology is the CAEXFile. It corresponds to the AutomationML
document. The metadata related to this document, such as version, name, and release,
can be stored using the AdditionalInformation class.

The next important concept are so-called container classes, which consist of Interface-
ClassLib, RoleClassLib, SystemUnitClassLib, and InstanceHierarchy. The purpose of these
concepts is to group the following classes: InterfaceClass, RoleClass, SystemUnitClass,
and InternalElement.
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Figure 5.5: Structure of the AMLO (adapted from [46])

The InterfaceClass represents relations between topology elements or references to
external information sources. A RoleClass defines vendor-independent functionalities,
which equipment elements can provide. With these classes, it is possible to assign
semantic functionality to SystemUnitClass and InternalElement instances. They describe
the functional capabilities of elements. The SystemUnitClass defines the realization of
a physical or logical object specific to a vendor. These classes can contain instances of
themselves, which is shown with the isPartOf relation. The InternalElement describes a
piece of specific equipment used within a project. They can again contain instances of
themselves. Further, it can be specified what SystemUnitClass is instantiated by a specific
internal element. To define properties of a CPPS, the ontology contains the Attribute
class. Such attributes can be an element’s length, speed, or force. Some concepts from
the Ontology of Units of Measurements are imported to define the unit for an attribute.
Finally, the InternalLink class represents a connection between two constructs.
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Ontology for IT Services

In [25], Freitas et al. present an ontology for IT Services. The ontology covers aspects
from service at different abstraction levels to infrastructure management services. It
consists of five main packages: Services, Delivery, Support, Enterprise Architecture, and
Participants. Figure 5.6 gives an overview of this ontology.

access

Services
access

access

Delivery

access

Enterprise 
Architecture

access

access

Support

Participants

Figure 5.6: Structure of the ontology for IT services (adapted from [25])

The structure of the service package is shown in Figure 5.7. Services can be associated
with product deployments. Therefore, the authors generalized the concept Deliverable.
This concept includes both Product and Service. Deliverables can be hierarchically
composed and are further refined by assigning them a type of the TypeOfDelivery class
with the hasType relation. The ontology also contains a DeliverableCatalog, which specifies
services from which the deliverables can be chosen. The deliverables can have a set of
characteristics, defined by CharacteristicOfService, such as performance or availability.
An Indicator can quantitatively evaluate these characteristics. A Service Level Agreement
(SLA) defines admissible values for these indicators, which are then compared with
elements of the Observation class.

hasType

hasCharacteristic

Deliverable

Service Product

contains Deliverable
Catalog

TypeOf 
Deliverable

CharacteristicOf
Service evaluates Indicator providesValues SLA

hasComponent

providesValues

Observation

Figure 5.7: Services package (adapted from [25])
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These SLAs are contained in the Delivery package, the structure of which is shown in
Figure 5.8. It contains the class TemplateSLA, which can then be used to generate
specific ones. Such a specific SLA is called a ContractualizedSLA. With this class, a
Contract between a Customer and Provider is established. Each SLA contains services
for which the client or the provider must take responsibility. This is represented by the
Responsibility class and the hasResponsibility object property.

hasResponsibility

contractsCustomer

SLA

hasResponsibility

contractualizedAs

Contractualized 
SLA usedBy TemplateSLA

Responsibility

supplies

hasResponsibility

ProviderContract

Figure 5.8: Delivery package (adapted from [25])

The Participants package contains the two main concepts: Person and Organization, as
shown in Figure 5.9. Both concepts can be hierarchically structured to depict management
and organizational structures. A person can be an EndUser or a Worker and be associated
with an organization. An organization can be a Provider or a Customer. A worker can
further be assignedTo a ServiceAccessPoint.

The organizational goals are defined within the EnterpriseArchitecture package. One or
more instances of the class Process need to be implemented to achieve a Goal. Processes
can be hierarchically structured and can have interdependencies. A process consumes
some deliverables and produces others as output. The paper states that this package is
still incomplete and will be reworked in the future.

The central concept of the Support package is the ServiceAccessPoint (e.g., help-desk,
ticket system). The service access point has relations to the Deliverable and Action
class. An action, such as incident reporting or assistance queries, can be generated by an
end-user and might be prioritized by a worker.
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Figure 5.9: Participants package (adapted from [25])
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Figure 5.10: EnterpriseArchitecture package (adapted from [25])
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Figure 5.11: Support package (adapted from [25])

Network Ontology for Computer Network Management

In [19], De Paola et al. present an ontology for computer network management. This
ontology aims to cover the aspects of the network domain necessary for monitoring and
controlling purposes. With the knowledge stored in the ontology, it should be possible to
perform tasks such as fault diagnosis and recovery and plan actions to improve the quality
of service. Because this ontology is quite extensive, this thesis will only summarize the
concepts and relations. For a full explanation of the ontology, see [19].
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The NetEntity class represents the communication infrastructure of a network. The
subclasses and relations are shown in Figure 5.12. A distinction between hardware and
software entities is made. The concept of a Node, interface (IFace class), and Link
belong to the hardware entities. Examples for software entities are a RoutingTable or a
Queue. The paper defines relations between the classes to represent the infrastructure
properly. With the hasIFace and belongsToNode relation it is defined which interface
belongs to which node. The hasNeighbor relation is implemented to show that two
nodes are neighbors. Lastly, a connection between software and hardware entities is
made with hasRoutingTable, which defines the routing information for a node, and
hasInQueue/hasOutQueue, which defines the queues for an interface.

NetEntity

HWNetEntity SWNetEntity

Link

hasIFace

hasRoutingTable

Node

belongsToNode

connectedToLink hasInQueue/ 
hasOutQueue

IFace Queue

hasEntry

RoutingTable

destNode/neighborNode

RTEntryhasNeighbor

Figure 5.12: Communication infrastructure (adapted from [19])

The TrafficEntity class describes the traffic within a network. Figure 5.13 shows the
main concepts to define traffic and shows some relations to other classes. TrafficEntity
contains two subclasses: Flow and Datagram. The Flow class uses a higher abstraction
to define the traffic. A flow can contain multiple datagrams. The Routing concept is
used to define how the routing in the network functions. Depending on this routing, a
flow is connected to a Routing via the dependsOnRouting object property. With the
Demand concept, the hypothetical traffic load in the network is represented if no resource
restrictions exist.

Further important for the network is the state it is currently in. For this purpose, the
Event class is used. It can be used to define different events that can happen in the
network. The authors define three subclasses of events, shown in Figure 5.14. First is the
lost packet event, for when the router discards a packet. The second is the state change
event, which indicates a status change in a network entity, such as a router powering
down. Last, the traffic event describes the traffic data flowing through the network.
These events are connected to a NetEntity, like a link or node, to associate them.
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Figure 5.13: Traffic information (adapted from [19])
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Figure 5.14: Events (adapted from [19])

The Abnomality class is used to describe a misfunctioning state of the network. It is
refined to describe concepts such as NetDisconnection, Congestion, RTCorruption, and
Loops. The structure is shown in Figure 5.15. Compared to events, which describe
an instantaneous manifestation of the change, an abnormality provides more global
information.

Abnormality

RTCorruption NetDisconnection LoopCongestion

Figure 5.15: Abnormalities (adapted from [19])

The last part of this ontology is concerned with actions and tools for the execution of
management tasks. Management Tools perform management tasks within the network.
Sensor is a subclass of them and can be used to capture events, represented by the
catchesEvent relation. Another subclass would be Capsule, which represents active
packets containing code to be executed within the network nodes. The ontology further
contains the class Actor, which represents managing agents that play an active role. Such
actors are reasoners and programmable local agents. The Database class is used to store
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information. It contains two subclasses, LocalDatabase and GlobalDatabase. As stated by
the name, the former is used more locally, e.g., by sensors to store their information, while
the latter is used globally by different agents. Action is used by actors and represents
their performed effects on the network. Actions are used within management tasks.
Lastly, the TrafficStatistic class represents the traffic load and distribution throughout
the network.
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Event

inferredAbnormality

GlobalDatabase

caughtEvent
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Abnormality

computedFromEvents
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Figure 5.16: Management tools and actions (adapted from [19])

Organization Ontology
In [18], Reynolds describes a core ontology for organizational structures. It represents the
main concepts needed to describe organizations and relations within them. Figure 5.17
gives an overview of the main components of this ontology.
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Figure 5.17: Structure of the Organization Ontology (adapted from [18])

The core class of this ontology is Organization. It is intended to represent a collection of
people organized together in some structure. The ontology further contains subclasses of
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organization to help classify them better. The subclass OrganizationalUnit represents
departments within an organization, such as the IT department. A FormalOrganization
indicates an organization recognized in legal jurisdiction and has rights and responsibili-
ties. The last subclass, OrganizationalCollaboration, represents a collaboration between
organizations.

With the Role class, a specific organizational role can be assigned to a Person or an
Agent. To show an agent’s affiliation to an organization, the Membership class is used. It
uses a time interval to establish the duration of the membership. A Post is a position
within the organization that exists independently of a person filling it. Multiple persons
can fill a post at the same time. The Site class represents an office or any other location
where the organization is located. Person is related to Site with the basedAt relation.
An organization can have multiple sites.

MaRCO
In [40], Järvenpää et al. developed an ontology for describing the capabilities of manufac-
turing resources. The overall goal of this ontology was to support automatic matchmaking
between resource capabilities and product requirements. The analysis showed that four
distributed ontologies were needed to allow for matchmaking, as shown in Figure 5.18.
The Process Taxonomy Model defines the hierarchical categorization of different manufac-
turing processes, e.g., “milling” is classified as “machining” and can be further classified
as “material removing”. The Product Model holds product characteristics and manufac-
turing requirements. Within the Capability Model, the capability names, parameters, and
relations between them are specified. Lastly, the Resource Model defines the resources
and the system composed of them. The paper focuses on the latter two models and is
thus referred to as Manufacturing Resource Capability Ontology (MaRCO).

Process
Taxonomy Model

imports

Product Model

imports

Capability Model

imports

Resource Model

Figure 5.18: Distributed ontologies of MaRCO (adapted from [40])

Figure 5.19 shows the main classes and relations of the Capability Model. The main concept
is Capability, with its two subclasses SimpleCapability and CombinedCapability. They are
used to define the functionality of a resource. Capabilities can relate to each other via the
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hasInputCapability relation. Most of the parameters defining a capability are stored using
datatype properties. The class CapabilityParameterAdditional is introduced for the ones
that cannot adequately be represented this way. They are then referenced with object
properties. An advantage of this representation is the reusability of parameters. The
classes ItemSize, MovementRange, ShapeAndSizeDefinition and BasicResourceInformation
are used to refine the additional capability parameters. ItemSize stores the size and mass of
elements. It has a relation with capabilities via the hasItemSize_min/max object property.
MovementRange defines a capability’s movement range, such as linear or rotational. This
relation is shown by the hasRotationalMovementRange and hasLinearMovementRange.
With the ShapeAndSizeDefinition class, the shape and size on a coarse level can be defined.
Subclasses of this would be BoxShape or CylinderShape. BasicResourceInformation stores
a collection of basic information about a resource. The Workspace class is used to define
the parameters of the workspace and store details about it.
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Figure 5.19: Capability model (adapted from [40])

Figure 5.20 shows the main classes and relations of the Resource Model. The core concept
is Resource and is used as the parent for all resource-related classes. These subclasses
include FactoryUnit and Device as shown in Figure 5.20, but also the classes Human,
RawMaterial and Software not shown in the figure. The FactoryUnit class is used to
represent the physical place where the operation takes place. To further specify the
physical location, the subclasses Site, Area, Line, Cell and Station are defined. These
subclasses are related via object properties to define the physical location, as shown in
Figure 5.20. The FactoryUnit is related to a Resource via the hasResource object property.
The Device class is the parent to all device-related classes. Devices include machines,
equipment, and tools. The main distinction for devices is made with the three subclasses
DeviceBlueprint, IndividualDevice, and DeviceCombination. A DeviceBlueprint contains
catalogue information about devices and has multiple subclasses to specify the devices
further. It is related to the Capability class by the hasCapability object property. An
IndividualDevice represents the actual device present on the factory floor. It stores life
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cycle information and updates the device’s capability properties. This update is modelled
with the hasCapabilityUpdated relation. The hasDeviceBlueprint relation connects an
individual device to its blueprint. Lastly, the DeviceCombination class represents a
combination of multiple devices.
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Capability Model
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Area

Figure 5.20: Resource model (adapted from [40])

Upper Ontology for Manufacturing Service Description
Ameri and Dutta introduce a Manufacturing Service Description Language (MSDL) as
an ontology for the representation of manufacturing services in [5]. The ontology covers
the core building blocks to describe a broad spectrum of services. Figure 5.21 shows the
main concepts of this upper ontology for manufacturing service description.
Supplier is the central class of this ontology. This class is required since a service can
not exist independently and needs a supplier to be delivered through. Based on the
field of expertise of a supplier, different object properties, such as hasCustomerFocus,
hasProductFocus, and hasIndustryFocus, can be set. These properties connect the Supplier
class with Customer, Product, and Industry, respectively. Supplier and Customer are
subclasses of Actor, which is imported from the OWL-S ontology [17].
For the following classes, the authors use Mfg as an abbreviation for Manufacturing.
The MfgService class represents manufacturing services. It is connected to exactly one
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Figure 5.21: Structure of the upper ontology for manufacturing service description
(adapted from [5])

Process by the hasProcess relation. The service is characterized by multiple capabilities,
represented by the MfgCapability class. A service needs resources such as workstations
or machines to be enabled. These resources, defined by MfgResource, are connected
to the Process by the isEnabledByMfgResource object property. A service can also
have supporting systems, like a material handling system. This relation between a
SupportingSystem and MfgService is shown by the isSupportedBy object property. The
relation hasSupportingService connects a service to some SupportingService. These
services may include CAD modelling or shipping.

MSDL does not contain detailed descriptions of capabilities. A reason for this is that
different vendors might describe the same capability differently. The authors, therefore,
used an extensible and modular approach when creating this ontology. This approach
allows to extend the ontology as needed and makes it possible to provide different levels
of abstraction based on the imports.

OPC UA NodeSet Ontology

Perzylo et al. present an OPC UA NodeSet ontology in [61]. Their goal was to use the
information models used by OPC UA in combination with a geometry and kinematic
model of a resource to create a digital twin. For the geometry model, they rely on their
OntoBREP ontology [62], which allows them to define the faces, edges, and vertices of
objects based on an infinite geometry with corresponding bounds to make it finite. This
twin could then be used for virtual prototyping and automatic deployment of manufac-
turing tasks. Apart from the ontology itself, the authors also provide a software tool to
automatically convert Extensible Markup Language (XML)-based NodeSet specifications
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into OWL-based OPC UA NodeSet descriptions. Figure 5.22 shows the main classes
needed to represent the OPC UA information model.

UAEntity

UADataType
Field

UADataType
Definition UAValue UANode UARole 

Permission
UAMethod 
Argument UAExtension

UAReference
Type UADataType UAObjectType UAObject UAVariableType UAVariable UAMethod UAView

UANodeSet

Figure 5.22: Structure of the OPC UA NodeSet ontology (adapted from [61])

The base model of OPC UA as specified by the standard is represented by eight classes.
These eight classes define the different possible nodes and consist of UAReferenceType,
UADataType, UAObjectType, UAObject, UAVariableType, UAVariable, UAMethod, and
UAView. Each node has a set of mandatory and optional attributes that provide further
information about the node’s properties. The most important attribute is the nodeId,
which is unique for each node and used to identify it within the address space. Such
properties are represented in the ontology via data properties. An information model also
contains binary relations between nodes. One example would be the hasTypeDefinition
relation shown in Figure 5.23a, which can be used to link UAVariable to UAVariableType.

The authors introduce additional classes and properties to properly represent NodeSets in
an OWL compatible way. These classes consist of UADataTypeDefinition, UADataType-
Field, UAValue, UANode, UANodeSet, UARolePermission, UAMethodArgument, and
UAExtension. One change from NodeSets to the OWL representation is made with value
arrays, which are converted to single linked lists of UAValue. The connection between
them is made with the nextValue object property, shown in Figure 5.23b. The same princi-
ple is applied for UAMethods were the arguments, represented by the UAMethodArgument
class, are linked to the method using the firstMethodArgument and nextMethodArgument
object property. This connection is shown in Figure 5.23c.
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(a) Type definition
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UAEntity
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UAMethod 
Argument
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UAMethod
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Figure 5.23: Object properties of OPC UA NodeSet ontology
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5.2 Rating of Existing Ontologies
The existing ontologies are now rated based on the following properties:

Domain coverage describes to which extent an ontology covers one or multiple domains.
Depending on how well the coverage of the ontology is, less work has to be put into
adding missing concepts or additional ontologies.

Overhead describes, whether an ontology contains a lot of overhead. An ontology with
little overhead makes the modelling process easier, because less concepts have to
be considered.

Competency question coverage describes to which extent an ontology covers one or
multiple competency questions. As with the domain coverage, depending on how
well the coverage of the ontology is, less work has to be put into adding missing
concepts or additional ontologies.

Combinability describes to which extent an ontology can be combined with others.
Because of the modular design of the knowledge base and to keep it easily extendable,
ontologies, which can be simply combined with others, are preferred.

Starting with the ECO ontology, it is possible to cover the System Architecture fully. The
hierarchy sub-ontology can be used to create a model of the components of the system.
Further, it is possible to model the shop floor and its layout. A disadvantage of the ECO
ontology is that the Asset Properties can not be modelled in a simple way. This domain
would need to be added to the ECO ontology. An advantage of this ontology is the
availability of operation types and resources. With them, parts of the Capability domain
would be covered, as it would allow modelling what kind of manufacturing processes
the system can perform. By looking at the competency questions, it becomes apparent
that, even though the ECO ontology can cover some domains, additional concepts and
relations would need to be added to answer them. A combination with other ontologies
covering the missing concepts would be possible. However, as it will be shown, other
ontologies provide better coverage of the domains without the overhead of requiring
additional concepts.

As stated by the name, the CORA ontology is specified for robotic systems. It provides
well-defined concepts and relations to describe the hierarchy and components of such a
system. Regarding this work, it could be used to cover the System Architecture domain.
However, since this ontology is specified for robots, it provides a disadvantage when
trying to model more general systems. It is also capable of answering some competency
questions. Overall, because of its specification for robot systems, this ontology is not
suited for this work. However, if a specialization in robots is desired, the usage of this
ontology would be beneficial.

Since AMLO is based on AutomationML, which is used to describe and model automation
systems, it fits perfectly to represent just this. With this ontology, it is possible to describe

52



5.2. Rating of Existing Ontologies

the System Architecture and Asset Properties. It allows modelling the architecture freely
while giving almost no restrictions on the design. The modeller decides how detailed the
system should be represented. Additionally, it is possible to define the properties, such
as speed or length of an element, in a simple way. Again no restrictions are posed on
the modeller, which properties shall be represented, and in what detail they are defined.
So overall, this gives many possibilities to the modeller in designing a manufacturing
system. Because it covers two domains fully, this ontology can provide answers to more
competency questions compared to the ECO or CORA ontology. These are the reasons
why in this work the AMLO will be used to represent manufacturing systems.

Regarding the network domain, two ontologies were presented. The ontology for IT
services with its five packages provides an excellent structure representing enterprises
and their IT services. It is possible to describe the participants within a network and
their hierarchical dependencies. In general, this ontology is focused on the services of a
network. It defines concepts of contracts and SLAs, which help describe the services but
are not needed in the domain of an RSS. Defining the network topology and connection
properties is more beneficial in this context. This ontology’s missing concepts are another
disadvantage since it provides no way to define network infrastructure such as switches,
nodes, or hosts. Also, it has no way of defining the properties of a network, such
as connections or configurations. This problem could be overcome by modelling the
infrastructure using the AMLO. However, this brings the problem of mixing different
domains. In the end, the decision of whether to mix the domains lies with the system
modeller. Nevertheless, to support modularization, it is good practice to keep them
separate.

The network ontology for computer network management provides an easy way to define
the network infrastructure as it has concepts for hardware and software entities. With its
object properties, it allows to model the network topology. It further provides ways to
represent connections between nodes using flows. With these concepts and relations, this
ontology already covers the network domain almost wholly. It also provides answers to
some of the competency questions. Nevertheless, the ontology contains much overhead
not needed in an RSS. Because of this overhead, this work will introduce a new network
ontology in Section 5.3, which is based on this network ontology. The new ontology will
be extended to better fit into the context of an RSS.

Only one ontology was presented covering the management domain. One of the reasons for
this is that the organization ontology is recommended by the World Wide Web Consortium
(W3C). The W3C is an international community that develops open standards. This
community’s goal is to ensure the web’s long-term growth. Another reason is the coverage
of the management domain that this ontology provides. It holds concepts and relations
that allow displaying memberships and roles of persons. This kind of information is
needed in an RSS when it comes to different roles with different functions, e.g., if a safety
engineer validated a safety configuration. The ontology contains some overhead, such as
concepts representing organizational structures, but it is relatively small.
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For the domain of capabilities, two ontologies were presented. The upper ontology for
manufacturing service description holds the core concepts to describe a broad spectrum
of manufacturing services. In the ontology, a service is connected to a process. Such
a process holds multiple resources. With these connections, it is possible to describe
the manufacturing process and the resources involved accurately. With the additional
capabilities definition for each service, a clear picture of the system, its processes, and
possibilities can be modelled. However, the ontology’s structure makes it inconvenient to
answer the competency questions since a capability can only be assigned to a service and
not a device.

The second presented ontology for the capability domain was the MaRCO. This ontology
aimed to provide automatic matchmaking between capabilities and product requirements.
Because of this goal, the MaRCO consists of four models. Relevant to this work and
covering the capability domain are the capability model and, to some extent, the resource
model. The capability model provides concepts to define a variety of manufacturing
capabilities. It contains simple and combined capabilities and allows for the definition of
additional parameters. In the resource model, it is shown how devices relate to capabilities.
Concepts such as site, area, or device are already included in other ontologies. Therefore,
it is impractical to import the resource model as it would result in redundant concepts
within the RSS ontology. Thus, only the capability model will be used, and the relations
between the resource and capability model will be added based on the definition in the
MaRCO.

Regarding the information model domain, the OPC UA NodeSet ontology was presented.
It covers the domain fully since the goal of this ontology was to represent the information
model, which could then be used within a digital twin. Because the work also introduces
a tool to convert from NodeSet to OWL, it is a good candidate for use in the context of
this thesis. A tradeoff that has to be made when using this ontology, and more specifically
the conversion tool, is the created overhead. On one hand, when automatically converting
a NodeSet file to OWL, many instances might be created that are not necessary. On
the other hand, the engineer does not have to perform the conversion process by hand.
Because OPC UA is also a part of the network structure, a connection between the
information model and the network domain must be created. These relations are shown
in Section 5.4.

Table 5.2 gives a summary of the rated ontologies. For every property, each ontology
is assigned a grade from one to five, one being the best and five the worst. The table
shows that the chosen ontologies have excellent domain coverage, while they might lack
in other sections.
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Table 5.2: Rating of ontologies (1 .. best, 5 .. worst)

5.3 New Ontologies

As mentioned above, a new ontology will be created to represent the network better. The
ontology will be created using Protégé, a free, open source ontology editor provided by
Stanford University [2]. This ontology is based on the network ontology for computer
network management from [19] and takes some of the concepts from there. One main
reason for the new design was to reduce the overhead contained in the original ontology.
This overhead would have meant that the modeller needed to understand all the existing
concepts and relations. This additional needed understanding would have made the usage
of the knowledge base cumbersome. Another reason to newly create an ontology for the
network domain was to represent its desired concepts better. The competency questions
ask about safety configurations and properties. These concepts could not conveniently
be represented using the network ontology for computer network management.
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Figure 5.24 shows the main communication infrastructure concepts of the ontology.
Some concepts were taken from [19] as shown in Section 5.1. The main change is
the removal of the software entities like queues and routing tables. Instead of these
classes, the Configuration class was added. It has two subclasses: OPC UAConfiguration
and TSNConfiguration. These concepts aim to represent the network configurations.
While modelling the Configuration concept, the problem occurred regarding how to
represent a configuration’s details. Two different approaches were considered. The first
one was to model the properties needed by each configuration explicitly. This approach
would provide more implicit knowledge but restricts the modeller to the predefined
concepts. The second approach was to use a general class for defining the properties.
This resulted in the Attribute class. The class uses the data properties hasAttributeName
and hasAttributeValue to define the details of a configuration. Using such a general
concept makes it possible for the modeller to decide which properties get defined for a
configuration. In the case of the OPC UA configuration, a link to the relevant elements
in the information model will also be established. ListElement defines the element of
a list and is related to the configuration via the hasListElement object property. This
concept is needed because some configurations can contain a list of values.
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hasConfiguration
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connectedToLink

IFacehasNeighbor

sourceNode/destNode

hasAttribute hasListElement

Configuration

SWNetEntity

NetEntity
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Configuration

Attribute
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Figure 5.24: Communication infrastructure

Figure 5.25 shows the subclasses of ListElement, which are QueueMaxSduTable, Port-
DataSet, Component, BridgeVLan, TrafficClassV2, and AdminControlList. The connec-
tion between list elements is made with the next object property.

Figure 5.26 show the main concepts used to represent the traffic information. The main
difference to the concepts presented in [19] is that the Flow class is replaced with the
Connection class. In the RSS domain, a static view of the network connections is preferred
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Figure 5.25: List elements

over the abstract flow definition. Connection contains two subclasses: OPCUA and
TSN. As with the Configuration, the Connection details can be set using the Attribute
class. The containsConnection relation associates a connection with a configuration.
A connection also contains a node to show which nodes are used by the connection.
The Datagram class was adopted from the original ontology and is used to represent a
datagram running over a connection.
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Configuration
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Figure 5.26: Traffic information

5.4 Combination of Ontologies and Final Knowledge Base

Figure 5.27 shows which ontologies cover the different domains. The grey shaded blocks
indicate that the full ontology is used. The violet one means only a part of the ontology
was taken. In this case, only the capability model was used from the MaRCO ontology.
Lastly, the orange shaded block indicates the newly created ontology. Here, only some
concepts from other works were used.
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Figure 5.27: Domains of an RSS matched with ontologies

The last step of creating the knowledge base is combining the existing and newly created
ontologies. The final ontology which imports the others is called Reconfigurable Safety
System Ontology (RSSO)1. In this ontology, relations between the different ontologies are
defined. This addition is done to further enrich the information content of the knowledge
base. Figure 5.28 shows the import structure of the RSSO. It further shows the prefixes
for each of the ontologies. These prefixes are used in the following figures to clarify to
which ontology the classes belong.

<<includes>>

rsso:RSSO

aml:AMLO cap:Capability 
Model

org:Organization 
Ontology

net:Network 
Ontology

<<includes>>

opc:OPC UA
Core Ontology

opc2:OPC UA
NodeSet2
Ontology

Figure 5.28: Import structure of RSSO

Starting with AMLO and the MaRCO ontology, relations are added that assign the
capabilities to the system architecture. Figure 5.29 shows these relations. The added

1https://git.auto.tuwien.ac.at/safety/knowledgebase
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object properties assign a capability to the three classes in AMLO used to represent
elements of a system via the hasCapability relation. It also features the inverse object
property providedBy allowing a search for elements that provide a specific capability.

providedBy providedBy

hasCapability

aml:RoleClass aml:Internal 
Element

aml:SystemUnit
Class

cap:Capability

providedBy

Figure 5.29: Relations between AMLO and MaRCO

The next step is adding relations between the network and OPC UA NodeSet ontology.
With this addition, it is possible to connect the network configuration with the corre-
sponding concepts in the OPC UA information model. Figure 5.30 shows these relations.
The connection between Configuration and UANode is made to show which elements
are contained in a configuration. As shown in Section 5.1, the UANode class contains
subclasses such as UAObject and UAVariable, which might be relevant to a configuration.
Further, the relation to UAValue is established. The instances of this class hold the
values used for the OPC UA configuration, such as IDs or method arguments.

contains

net:Configuration

opc:UANode opc:UAValue

Figure 5.30: Relations between network and OPC UA NodeSet ontology

This work uses concepts of OPC UA, such as servers and clients. Therefore, to properly
represent the OPC UA communication between elements, it is necessary to assign them
to the corresponding components of the system. Figure 5.31 shows these relations.
The runsOn object property specifies which Node runs on which InternalElement or
SystemUnitClass. This specification enables to assign an OPC UA server to an element
of the manufacturing system. Subsequently, because of the relations of the Node class
within the network ontology, it becomes clear which components are connected and what
their configuration is.
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runsOn

aml:Internal 
Element

aml:SystemUnit
Class

net:Node

Figure 5.31: Relations between AMLO and network ontology

Next, a connection between the OPC UA NodeSet ontology and AMLO ontology is
added. The OPC UA information model is used to define physical entities, systems, and
applications so that this information can be used within the CPPS. These details mean
that the information model holds a representation of the physical system architecture and
properties of them. To be able to connect them to the corresponding elements of AMLO,
the relations shown in Figure 5.32 are added. An UAObject can represent components of
the system architecture. UAVariable represents the attributes of those components.

aml:Internal 
Element

aml:SystemUnit
Class

represents

opc:UAObject

aml:RoleClass aml:Attribute

represents

opc:UAVariable

Figure 5.32: Relations between OPC UA NodeSet ontology and AMLO

Another connection can be made between the organization ontology and AMLO, as
shown in Figure 5.33. To be able to know which machine components belong to which
site, a connection between Site and the classes InternalElement and SystemUnitClass
is made via the contains relation. The ontology should also be able to model whether
a machine needs human interaction. In order to do so, the operates object property is
defined. It connects foaf:Person to InternalElement and SystemUnitClass.
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containsComponent

org:Site
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Class

Figure 5.33: Relations between organization ontology and AMLO

The same connection can also be made between the organization and network ontology.
Figure 5.34 shows these connections. As with the machine components, contains specifies
whether a Node, Link or IFace are located at a Site. With the operates object property
it is possible to assign a foaf:Person to a Node, for example if a host is assigned to
specific worker. To ensure that a safety Configuration is correct, it needs to be approved
by a safety engineer. This approval is reflected in the ontology by the canApprove
relation, which specifies which Role a person must hold to approve a Configuration. The
isValidatedBy relation defines which foaf:Person validated a Configuration.

containsComponent

org:Site

net:Linknet:IFace net:Node

operates

foaf:Person

canApprove

org:Role

net:Configuration

isValidatedBy

Figure 5.34: Relations between organization and network ontology
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CHAPTER 6
Evaluation

Before the evaluation is performed, a simple manufacturing system where the knowledge
base will be used is defined. Then, the evaluation setup is explained and some base
information is given. The evaluation process of the created knowledge base is then
split into two parts. First, the knowledge base is used to answer the previously defined
competency questions. Second, the knowledge base is used within the RSS to provide the
safety configuration. After this evaluation, the results are summarized, and a discussion
is performed.

6.1 Evaluation Setup
To perform the evaluation, the developed knowledge base will be integrated into a
manufacturing system. A sketch of this system is shown in Figure 6.1. The manufacturing
part of this system consists of two machine tools, a robot and an AGV which transports
workpieces between them. Concerning the safety of this system, multiple components
are integrated. Each machine, robot, and the AGV is equipped with an emergency stop
button. Walls surround the machines on three sides. On the fourth, a light curtain is
used to make sure no person can enter the manufacturing cell. For the network, one
TSN switch connects all components of the production cell. Each component is also
equipped with an OPC UA Publisher and Subscriber, and an OPC UA SafetyProvider
and SafetyConsumer. For more information about OPC UA Safety see [58].

SPARQL queries are used to perform the evaluation process. These queries are executed
on a Fuseki server. Apache Jena Fuseki [73] provides a standalone SPARQL server. The
application takes the ontology as an OWL file and creates a SPARQL endpoint. It
provides a Web interface for the queries to be entered and executed. In addition to this
interface, it also provides a REST API which allows to execute the queries using HTTP
requests.
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Production Cell

MachineA

MachineBRobotA

AGV

Figure 6.1: Sketch of a manufacturing system

Listing 6.1 gives an example of a simple SPARQL query. This query returns a list of
all triples contained in the ontology. Before the query is given, it is possible to define
prefixes for a used Internationalized Resource Identifier (IRI). The query is similar to a
Structured Query Language (SQL) query and consists of two parts – first, the SELECT
clause, which defines the variables that should appear in the query result. The second is
the WHERE clause, which provides the pattern for which to search for in the ontology.

1 PREFIX rdf : <http : / /www. w3 . org/1999/02/22 − rdf−syntax−ns#>
2 PREFIX rdfs : <http : / /www. w3 . org /2000/01/ rdf−schema#>
3
4 SELECT ∗ WHERE {
5 ? sub ? pred ? obj .
6 }

Listing 6.1: Simple SPARQL query

Listing 6.2 shows the used prefixes in this work. rdf contains general concepts and
relations such as type or subClassOf. opc contains the base elements of OPC UA, whereas
opc2 contains the concepts and relations needed to fully represent a NodeSet file. The
other prefixes correspond to the ontologies as shown in Figure 5.28 and contain the
corresponding concepts. The prefix definitions are omitted in the following queries to
keep them shorter.

1 PREFIX aml : <https : / / w3id . org/ i 4 0 /aml#>
2 PREFIX cap : <http : / / r e s o u r c e d e s c r i p t i o n . tut . f i / onto logy / c a p a b i l i t y M o d e l#>
3 PREFIX net : <http : / /www. semanticweb . org/ david / o n t o l o g i e s /2022/4/ Network#>
4 PREFIX org : <http : / /www. w3 . org/ ns /org#>
5 PREFIX opc : <http : / /www. f o r t i s s . org/kb/ opcua /OpcUaCore . owl#>
6 PREFIX opc2 : <http : / /www. f o r t i s s . org/kb/ opcua /OpcUaNodeSet2 . owl#>
7 PREFIX rdf : <http : / /www. w3 . org/1999/02/22 − rdf−syntax−ns#>
8 PREFIX rsso : <http : / /www. semanticweb . org/ david / o n t o l o g i e s /2022/4/RSSO#>

Listing 6.2: Prefix definitions
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6.2 Competency Questions

The first part of the evaluation is to answer the competency question in the context of the
provided manufacturing system shown in Figure 6.1. To get a better understanding of the
following queries, Figure 6.2 shows an excerpt of the classes and corresponding individuals.
It contains concepts from the AMLO ontology and capability model. Multiple boxes
behind each other represent multiple different individuals of the same class.
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Length

data property

3 SIL

Class

Individual

Figure 6.2: Excerpt of individuals describing the system architecture and asset properties

In the following, some of the SPARQL queries used for answering the competency
question are presented. The set of evaluated competency questions was chosen such that
in combination with the evaluation performed in Section 6.3, every ontology is queried at
least once.

Starting with the question: What are the components of the safety system? Listing 6.3
shows the corresponding query. It consists of a simple where clause, which searches for
components part of the system unit class “SafetySystem”. Table 6.1 shows the result of
this query. As expected, it returns the emergency stop buttons and the light curtain.

1 SELECT ? component WHERE {
2 ? component aml : isPartOfSUC rsso : SafetySystem .
3 }

Listing 6.3: Query to get the components of the safety system
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Component
EmergencyStopButtonAGV_A

EmergencyStopButtonMachineA
EmergencyStopButtonMachineB
EmergencyStopButtonRobotA

LightCurtainA

Table 6.1: Result of query shown in Listing 6.3

For the next query, the SILs of the safety components are asked. Listing 6.4 shows
the SPARQL query, which corresponds to the competency question: What SIL does a
component have? The query first asks for each component to have an attribute, as shown
in line 2. Then it is narrowed down further with lines 3 and 4, where the ?sil variable
from before is used. It is searched for the attribute name “SIL” and the result is stored
in the ?value variable. To make the output of this query clearer, the ?value variable is
renamed to SIL with the AS keyword. The result of this query is shown in Table 6.2,
which contains the SILs of the safety components.

1 SELECT ? component (? value AS ? SIL ) WHERE {
2 ? component aml : h a s A t t r i b u t e ? s i l .
3 ? s i l aml : hasAttributeName " SIL " .
4 ? s i l aml : hasAttr ibuteValue ? value
5 }

Listing 6.4: Query to get the SILs of the safety components

Component SIL
EmergencyStopButtonAGV_A 3

EmergencyStopButtonMachineA 3
EmergencyStopButtonMachineB 3
EmergencyStopButtonRobotA 3

LightCurtainA 3

Table 6.2: Result of query shown in Listing 6.4

In the next query, the capability of a machine is asked. Listing 6.5 shows the query, which
corresponds to the competency question: Does a component have a specific capability?
First, all the components for which a capability is defined are queried. Then, the BIND
command is used to return true if a component has the Drilling capability, otherwise it
returns false. Table 6.3 shows the result of this query. As expected, it returns true for
MachineA and false for the other components.
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1 SELECT DISTINCT ? component ? h a s C a p a b i l i t y WHERE {
2 ? component rsso : h a s C a p a b i l i t y ? obj .
3 BIND ( e x i s t s {? cap rdf : type cap : D r i l l i n g .
4 ? component rsso : h a s C a p a b i l i t y ? cap} AS ? e x i s t s )
5 BIND ( IF (? e x i s t s , " t r u e " , " f a l s e " ) AS ? h a s C a p a b i l i t y )
6 } ORDER BY ASC(? component )

Listing 6.5: Query to check if a component has a specific capability

Component hasCapability
MachineA true
MachineB false
RobotA false

Table 6.3: Result of query shown in Listing 6.5

To get a better understanding of the next query, Figure 6.3 shows another excerpt of the
classes and corresponding individuals. The contained concepts are from the network and
organization ontology.

rsso:802.1AS 
Configuration1

net:802.1AS
Configuration

rdf:type

rdfs:subClassOf

object property

data property

Class Individual
org:Post

rolersso:Engineer

org:Person

isValidatedBy

holdsrsso:Max 
Mustermann

org:Role

rsso:Safety 
Engineer

Figure 6.3: Excerpt of individuals describing the network and organization

The last query in this section evaluates the competency question: Is the configuration
validated by a safety engineer? This query is shown in Listing 6.5. In this example, the
query first asks for all configurations of type 802.1ASConfiguration. To check the other
types of configuration, simply the object in line 2 has to be changed. It is then further
refined to only return configurations which are validated by a person holding any post
that has the role of a SafetyEngineer. Table 6.4 presents the results of this query, which
show that this configuration was validated by Max Mustermann.

1 SELECT ? c o n f i g u r a t i o n (? person AS ? i sVal idatedBy ) WHERE {
2 ? c o n f i g u r a t i o n rdf : type net : 8 0 2 . 1 ASConfiguration .
3 ? c o n f i g u r a t i o n rsso : i sVal idatedBy ? person .
4 ? person org : ho lds ? post .
5 ? post org : r o l e rsso : Sa fe tyEngineer .
6 }

Listing 6.6: Query to check if a configuration is validated by a safety engineer
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Configuration isValidatedBy
802.1ASConfiguration MaxMustermann

Table 6.4: Result of query shown in Listing 6.6

6.3 Integration in Reconfigurable Safety System

The application scenario in which the knowledge base shall now be used is with the initial
commissioning of the components. Here, the safety system configuration is deployed,
and the different safety components are added to the system. This deployment is
done piecewise, meaning one after the other safety component gets initialized, and the
configuration gets deployed. The goal of the knowledge base in this scenario is to provide
the correct configuration for each component.

The evaluation of the knowledge base shows only an excerpt of the initial commissioning.
Zainzinger [75] provides in depth information about this application scenario. As stated
in his work, a safety connection needs to be configured on three levels. First, the TSN
network must be configured. Then the OPC UA Publisher/Subscriber connection must
be created. Finally, the OPC UA safety layer needs to be configured. Each of these levels
has a specific set of parameters needed for configuration. In addition to those parameters,
usually an IP address, username, and password are also needed. The full list of those
parameters with a detailed explanation can be found in Zainzinger’s thesis.

6.3.1 TSN Configuration

The TSN network has to be configured on three levels. The first sets properties for time
synchronization, the second sets basic properties on the bridge, and the third is used to
set up the interfaces. Thirty-two parameters are needed for the configuration combined
over those three levels. Similar to before, Figure 6.4 shows an excerpt of the classes and
individuals needed for the TSN configuration. It contains concepts from the AMLO and
network ontology. To keep the structure of the figure clearer, attributes are only shown
for the 802.1AS configuration and omitted for the others. Also the attribute name and
value are not shown.

Since it is possible for multiple configurations to be stored in the knowledge base, it is
important to use the newest one. To do so, the timestamp of all available configurations
is read. The following queries are then performed on the configuration with the newest
timestamp. The query to find this time stamp is shown in Listing 6.7 for the 802.1AS-
Configuration. For all the following configurations, this step is omitted, as it is identical
for all of them. Table 6.5 shows the result of this query. Because the query is ordered by
the timestamp, the newest one is in the first row.
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Figure 6.4: Excerpt of individuals describing the TSN configuration

1 SELECT ? c o n f i g u r a t i o n ? timestamp WHERE {
2 ? c o n f i g u r a t i o n rdf : type net : 8 0 2 . 1 ASConfiguration .
3 ? c o n f i g u r a t i o n net : hasTimestamp ? timestamp .
4 } ORDER BY DESC(? timestamp )

Listing 6.7: Query to get the timestamp

Configuration Timestamp
802.1ASConfiguration1 2022-08-26T13:20:54Z
802.1ASConfiguration 2022-07-26T09:48:31Z

Table 6.5: Result of query shown in Listing 6.7

First, the parameters for the time synchronization are queried from the knowledge base.
The priority parameter is read first via Listing 6.8. The right configuration, called
802.1ASConfiguration1, was determined based on the timestamp, as shown in Listing 6.7.
From this configuration, the attributes are read, and the name and value are returned
as a result as shown in Table 6.6. It is possible to define two priorities for the time
synchronization, however, in this case both have the same value. Therefore, only one
value is stored in the knowledge base.

1 SELECT ?name ? value WHERE {
2 rsso : 8 0 2 . 1 ASConfiguration1 aml : h a s A t t r i b u t e ? a t t .
3 ? a t t aml : hasAttributeName ?name .
4 ? a t t aml : hasAttr ibuteValue ? value
5 }

Listing 6.8: Query to get the priority
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Name Value
Priority 1

Table 6.6: Result of query shown in Listing 6.8

Next, the PortDataSets are queried via Listing 6.9. Again, all the elements of the
802.1ASConfiguration1 are gathered. Then the contained PortDataSets are read, and
the corresponding attributes with their name and value are returned as a result. The
returned data, shown in Table 6.7, is then ordered by the PortDataSet. To keep the table
a reasonable size, only one of four PortDataSets is shown.

1 SELECT ? d a t a s e t ?name ? value WHERE {
2 rsso : 8 0 2 . 1 ASConfiguration1 net : hasPortDataSet ? d a t a s e t .
3 ? d a t a s e t aml : h a s A t t r i b u t e ? a t t .
4 ? a t t aml : hasAttributeName ?name .
5 ? a t t aml : hasAttr ibuteValue ? value
6 } ORDER BY ASC(? d a t a s e t )

Listing 6.9: Query to get the PortDataSet

Dataset Name Value
PortDataSetA Hs 0
PortDataSetA InitialLogAnnounceInterval 0
PortDataSetA InitialLogSyncInterval -3
PortDataSetA Ls 655360
PortDataSetA Ms 0
PortDataSetA PortNumber 1

Table 6.7: Result of query shown in Listing 6.9

The next step is to read the configuration of the TSN bridge. Listing 6.10 shows the
query to get the name and address of the bridge. This query is similar to Listing 6.8.
The correct configuration is again found using the timestamp, as shown in Listing 6.7,
but this time it is asked for elements of the type BridgeConfiguration. From the resulting
configuration, called BridgeConfiguration1, the attributes with their corresponding names
and values are queried. The result is shown in Table 6.8.

1 SELECT ?name ? value WHERE {
2 rsso : B r i d g e C o n f i g u r a t i o n 1 aml : h a s A t t r i b u t e ? a t t .
3 ? a t t aml : hasAttributeName ?name .
4 ? a t t aml : hasAttr ibuteValue ? value
5 }

Listing 6.10: Query to get the name and address
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Name Value
Address 61-67-55-23-25-55
Name DefaultBridgeName

Table 6.8: Result of query shown in Listing 6.10

Next, the list of components with their parameters is read. Listing 6.11 shows the
corresponding query. Again, using the BridgeConfiguration1, first all components of this
configuration are read. The query then returns the attribute name and value for each of
the components. In this case, only one component is needed. Table 6.9 shows the result
of this query.

1 SELECT ? component ?name ? value WHERE {
2 rsso : B r i d g e C o n f i g u r a t i o n 1 net : hasNetComponent ? component .
3 ? component aml : h a s A t t r i b u t e ? a t t .
4 ? a t t aml : hasAttributeName ?name .
5 ? a t t aml : hasAttr ibuteValue ? value
6 } ORDER BY ASC(? component )

Listing 6.11: Query to get components

Component Name Value
ComponentA Name DefaultComponentNameA
ComponentA Address 30-02-23-36-40-57
ComponentA Id 0
ComponentA Type c-vlan-component

Table 6.9: Result of query shown in Listing 6.11

Each component also contains a list of Virtual Local Area Networks (VLANs). The read
those values, the following query in Listing 6.12 can be used. It is similar to the query
shown in Listing 6.11, with the addition that the VLANs get read for each component.
For the defined manufacturing system, only one VLAN is needed. The result of the query
is shown in Table 6.10.

1 SELECT ? vlan ?name ? value WHERE {
2 rsso : B r i d g e C o n f i g u r a t i o n 1 net : hasNetComponent ? component .
3 ? component net : hasBridgeVLan ? vlan .
4 ? vlan aml : h a s A t t r i b u t e ? a t t .
5 ? a t t aml : hasAttributeName ?name .
6 ? a t t aml : hasAttr ibuteValue ? value
7 } ORDER BY ASC(? component )

Listing 6.12: Query to get VLANs
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VLAN Name Value
BridgeVLanA1 VId 1
BridgeVLanA1 Name TestVlan1

Table 6.10: Result of query shown in Listing 6.12

The configuration of the interface needs two sets of parameters. First, some basic
configuration to enable the standard functions of the interface is needed. Second,
parameters defining the TSN gate control list are required to configure the TSN stream
according to IEEE 802.1Qbv. Listing 6.13 shows the query to read those parameters
from the knowledge base. Again, first the correct configuration is found by modifying the
query shown in Listing 6.7 to search for configurations of the type InterfaceConfiguration.
For this configuration, called InterfaceConfiguration1, the attributes are read and the
name and value for each are returned. To keep the table to a reasonable size, the results
shown in Table 6.11 contain only one of three parameter sets.

1 SELECT ?name ? value WHERE {
2 rsso : I n t e r f a c e C o n f i g u r a t i o n 1 aml : h a s A t t r i b u t e ? a t t .
3 ? a t t aml : hasAttributeName ?name .
4 ? a t t aml : hasAttr ibuteValue ? value
5 }

Listing 6.13: Query to get interface parameters

Name Value
Enabled true
Name InterfaceA

Gate-enabled true
Default-priority 0

Description Generic Description
Bridge-Name DefaultBridgeName

Component-Name DefaultComponentName
Pvid 1

Admin-cycle-time 1/1
Admin-gate-states 255

Config-change false
Admin-base-time 100/0

Table 6.11: Result of query shown in Listing 6.13

The configuration also contains lists of structs to define traffic classes, maximal Service
Data Unit (SDU) size, and the gate control list. Listing 6.14 shows how to read
the traffic classes defined for an interface. Starting from the correct configuration,
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InterfaceConfiguration1, all the contained traffic classes are read. Then the attributes for
each traffic class are read and the name and value are returned. The results are shown in
Table 6.12. In case of the other two lists, the query is similar. Only the object property
in line 2 needs to be changed to hasQueueMaxSduTable and hasAdminControlList,
respectively.

1 SELECT ? t r a f f i c c l a s s ?name ? value WHERE {
2 rsso : I n t e r f a c e C o n f i g u r a t i o n 1 net : h a s T r a f f i c C l a s s V 2 ? t r a f f i c c l a s s .
3 ? t r a f f i c c l a s s aml : h a s A t t r i b u t e ? a t t .
4 ? a t t aml : hasAttributeName ?name .
5 ? a t t aml : hasAttr ibuteValue ? value
6 } ORDER BY ASC(? t r a f f i c c l a s s )

Listing 6.14: Query to get traffic classes

TrafficClass Name Value
TrafficClassV2A Traffic-class 1
TrafficClassV2A Priority 2
TrafficClassV2B Traffic-class 2
TrafficClassV2B Priority 3

Table 6.12: Result of query shown in Listing 6.14

6.3.2 OPC UA Configuration

The OPC UA configuration consists of four parts. A configuration for the OPC UA
Publisher, Subscriber, SafetyConsumer, and SafetyProvider is needed. This section
presents the SPARQL queries required for the OPC UA Publisher configuration. Similar
queries can be defined for the remaining parts but are not discussed in detail. As before,
Figure 6.5 shows some of the individuals needed for the OPC UA configuration. It
contains concepts from the OPC UA NodeSet and network ontology. To keep the figure
reasonably sized, only parts of the configuration are shown. Properties and values are
shown representative for some of the individuals and omitted for others.

The configuration of an OPC UA Publisher consists of two parts, the published data
and the connection. To see which components of the information model correspond
to these concepts, the query in Listing 6.15 can be used. The first step is to get the
correct configuration of the type PublisherConfiguration by modifying the query shown in
Listing 6.7. For this configuration, called PublisherConfiguration1, the contained objects
are read and the browseName is returned. The ?name variable is renamed to ?object, to
make it clear that the returned elements are objects. Executing this query returns the
results shown in Table 6.13. As expected, it returns two objects, a connection and data
set folder, which contain the relevant parameters for the OPC UA Publisher.
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Figure 6.5: Excerpt of individuals describing the OPC UA configuration

1 SELECT (? name AS ? o b j e c t ) WHERE {
2 rsso : P u b l i s h e r C o n f i g u r a t i o n 1 aml : c o n t a i n s ? obj .
3 ? obj opc : browseName ?name
4 }

Listing 6.15: Query to get contents of the OPC UA Publisher configuration

Object
UADP Connection 1
PublishedDataSets

Table 6.13: Result of query shown in Listing 6.15

The information contained in the data set folder is used to configure which values from
the address space get published. For this, the nodeIds and aliases of the fields are
needed. To get the configuration parameters from the data set folder, the query shown
in Listing 6.16 can be used. Utilizing the previously found name of the data set folder,
the contained dataset is read using the hasComponent property. The dataset contains
the needed parameters, which are stored in two properties. These properties are read
using the hasProperty relation. From each of these properties, the relevant information is
extracted.

74



6.3. Integration in Reconfigurable Safety System

Table 6.14 shows the result of this query. The first two values are the namespaceIndex
and nodeId of the published variable. The third value represents an alias for this variable.
It is important to note that, because the ontology stores arrays as linked lists, this query
only return the values of the first variable. If more than one variable is published, the
object property nextValue is used to create a connection between them. This object
property can then be used to iteratively get from the first to the last value.

1 SELECT ? datasetname ? propertyname ? d e s c r i p t i o n ? value WHERE {
2 rsso : P u b l i s h e r C o n f i g u r a t i o n 1 aml : c o n t a i n s ? obj .
3 ? obj opc : browseName " Publ ishedDataSets " .
4 ? pds opc : browseName ? datasetname .
5 ? pds opc2 : hasProperty ? prop .
6 ? prop opc : browseName ? propertyname .
7 ? prop opc : hasValue ? opcval .
8 ? opcval opc : d e s c r i p t i o n ? d e s c r i p t i o n .
9 ? opcval opc : va lue ? value

10 }

Listing 6.16: Query to get parameters for the dataset

Dataset Name Property Name Description Value
Demo PDS PublishedData namespaceIndex 0
Demo PDS PublishedData nodeId 2258
Demo PDS DataSetMetaData fieldAliases Server localtime

Table 6.14: Result of query shown in Listing 6.16

Next, the information for the connection is read from the knowledge base. First, the
Publisher identifier is read via the query shown in Listing 6.17. The first step is to get
the connection object from the Publisher configuration using the previously found name.
Then, the property with the browse name “PublisherId” is read. Table 6.15 shows the
result.

1 SELECT ?name ? value WHERE {
2 rsso : P u b l i s h e r C o n f i g u r a t i o n 1 aml : c o n t a i n s ? obj .
3 ? obj opc : browseName "UADP Connection 1" .
4 ? obj opc2 : hasProperty ? prop .
5 ? prop opc : browseName " P u b l i s h e r I d " .
6 ? prop opc : browseName ?name .
7 ? prop opc : va lue ? value .
8 }

Listing 6.17: Query to get the PublisherId

Name Value
PublisherId 2234

Table 6.15: Result of query shown in Listing 6.17
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Listing 6.18 shows the query to read the URL of the Subscriber. Again, the connection
object is read from the Publisher configuration. Then, the address component is read.
From the address component, the sub-component with the browse name “URL” is read,
and its value is returned. Table 6.16 shows the result.

1 SELECT ?name ? value WHERE {
2 rsso : P u b l i s h e r C o n f i g u r a t i o n 1 aml : c o n t a i n s ? obj .
3 ? obj opc : browseName "UADP Connection 1" .
4 ? obj opc : hasComponent ? address .
5 ? address opc : browseName " Address " .
6 ? address opc : hasComponent ? subcomponent .
7 ? subcomponent opc : browseName "URL" .
8 ? subcomponent opc : browseName ?name .
9 ? subcomponent opc : va lue ? value .

10 }

Listing 6.18: Query to get the URL

Name Value
URL opc.udp://10.2.1:4840/

Table 6.16: Result of query shown in Listing 6.18

The configuration for the OPC UA Subscriber needs almost the same parameters as the
Publisher, thus resulting in nearly identical queries. The same is valid for the parameters
of the SafetyConsumer and SafetyProvider. Therefore, these queries are omitted, but
can easily be created by viewing the required parameters presented in [75] and alter the
above shown queries accordingly.
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CHAPTER 7
Conclusion & Outlook

The following chapter provides a summary of this thesis. After the initial problem is
stated, a summarized view of all the performed tasks to create and evaluate the knowledge
base is given. This section is followed by the conclusion, where the main findings and
takeaways are described. Finally, a brief outlook is given as to what future work might
cover.

7.1 Summary
The fourth industrial revolution brings changes to automation systems. New systems
become more decentralized and have a high demand for interoperability and connectivity
between different components. These changes also result in a convergence of the IT and
OT domain. OT concepts are brought into the IT world and vice versa. OT components,
such as sensor, can upload data directly to a central server for monitoring and a knowledge
base can be used to represent the OT system and use it in the IT domain. Another
essential property of Industry 4.0 is on-demand individualization. To satisfy this property,
RMSs are needed, as they allow for adaptive production. This dynamic approach poses a
requirement for the safety system, as it also needs to be reconfigurable.

Presented with the problems that arise with Industry 4.0 and its dynamic production
environment, this thesis provided some solutions to the problems that safety systems
face in this context. This work resulted in a knowledge base providing safety-relevant
information for manufacturing systems. First, some historical context regarding manufac-
turing systems was given. Then, base knowledge was provided by describing the technical
background. Next was the main part of this thesis with the knowledge base creation.
A requirements analysis was performed to set the delimitations for the knowledge base.
This analysis was done by describing an application scenario in which the knowledge base
gets used and then deriving the domains from it. In addition to the scenario, competency
questions were defined, which specify questions that the developed knowledge base should
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be able to answer. Matching these questions to the domains helped finding missing ques-
tions or domains before the next step was performed. There, existing ontologies covering
the found domains were researched. The more fitting ones were then described in more
detail and the main relevant concepts were shown. After rating the presented ontologies,
new ones were created covering the remaining domains. All of these ontologies were then
combined to create the final result. Connections between the different ontologies were
made to further enrich the information contained in the knowledge base.

The finished knowledge base was then evaluated in two ways. First, the predefined
competency questions were answered. This evaluation was done by populating the
knowledge base with example data and then querying it using SPARQL. The OWL file
was deployed to a Fuseki server, and the queries were executed on the corresponding
web interface. A few of the queries used to answer the competency questions were
presented and explained in more detail. The result of these queries showed that the
created knowledge base could provide answers to the questions.

The second evaluation was performed using the developed knowledge base within an
application scenario. The scenario was the initial commissioning of a manufacturing
system where the safety system configuration was deployed. The role of the knowledge
base was to provide the configuration for the different devices used in the safety system.
One part of this system was made up by the TSN network. The knowledge base was
queried to provide the TSN configuration. Part of these queries were provided and
explained in greater detail. These queries showed that the knowledge base could provide
the configuration. It is important to note that multiple queries are necessary to get the
configuration, and some knowledge of the domains and ontologies is advantageous.

After the parameters for the TSN network of the system were read, the configuration for
the OPC UA Publisher was queried from the knowledge base. As before, some queries
were presented and explained in more detail. The result of these queries contained the
required parameters to initialize a Publisher correctly. Also needed for OPC UA are
the Subscriber, SafetyConsumer, and SafetyProducer parameters. These parameters can
be retrieved with similar queries to the ones used for the Publisher and were therefore
omitted in this work.

7.2 Conclusion
Overall, the developed knowledge base was able to provide answers to questions coming
from the covered domains. It is beneficial to know the domains and the relations between
them to use the knowledge base with all its information to its full extent.

The creation of the knowledge base followed the methodology shown in Figure 3.1. This
methodology has proven to work well for the given task. However, while the methodology
was presented in a strictly linear manner, applying it for the given use case required
multiple iterations. This was the case in the requirements analysis, where while merging
the competency questions into the defined domains, it became apparent that for some

78



7.3. Future Work

domains questions were missing. The same problem was observed between ontology
creation and evaluation. The evaluation of the knowledge base within an RSS showed that
some concepts needed for the network configuration were missing. To accommodate for
such scenarios the methodology could be extended to represent these needed iterations.

Following the methodology, a good set of requirements was provided such that the creation
of the ontology could be easily performed. One problem that arose while researching
existing ontologies to use in this context, was the initial selection of appropriate ones.
There exists a lot of literature utilizing ontologies for specific tasks within a domain,
however, only a subset of these papers proved to be useful for this work. Another
problem while researching existing ontologies, was acquiring the ontology file for them.
In some papers, a link to download the file was included. However, with some of them,
no resources were provided. In this case, an additional search through the Web was
necessary to try and find the file, which was not always successful.

While modelling the concepts for the newly created ontologies, some additional research
was necessary to correctly represent the required classes. This was the case, for example,
with the modelling of the TSN and OPC UA configurations. It was necessary to know
how the different parameters were structured to be able to correctly represent them in
the ontology. Configurations often use lists of structs or arrays to store parameters. In
both cases, this was modelled in the ontology using linked lists.

The provided methodology can also be used outside of the RSS domain. By keeping the
steps abstract, the methodology can easily be applied for the creation of a knowledge
base in a different domain. Adaptations only have to be made in the evaluation step, as
an integration into an RSS does not fit in another domain. This step can be replaced by
evaluating the created knowledge base in another fitting real-world example.

Because of the modularization of the knowledge base, ontologies can easily be replaced
and new ones added. This allows for an adaption of the knowledge base to cover additional
use cases.

7.3 Future Work
In future work, the knowledge base could be extended to feature a more precise geometry
model, such as OntoBREP shown by Perzylo et al. in [62]. Such a geometry model
could be needed in the safety evaluation of a manufacturing system. It can help with
hazard analysis and enables the safety engineer to precisely define the system’s border.
Precise borders might be needed if an automatic safety configuration creation process is
developed.

A more significant addition that can be made to this knowledge base would be the
addition of ontologies covering different relevant safety standards. By including them in
the knowledge base, information regarding risk identification and hazard prevention is
available to the safety engineer. Standards such as the IEC 61508, IEC 62061, and ISO
13849-1 are crucial for functional safety. In the case of an automatic safety configuration,
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the tool could easily get the required information from the knowledge base. However, the
modelling of standards is elaborate work and in-depth knowledge of them is required.

Future work could perform research on requirements for ontologies and triple stores such
that they are safe. A question that arises in this context is, whether data has to be stored
immutable and redundant for it to be considered safe. A similar problem occurs at the
interface between the knowledge base and components accessing data from it. When
querying data, it is important to make sure that it is not changed along the way. Here,
an analysis could be performed, on whether it is sufficient to define specific requirements
for the interfaces to solve this problem or if a validation and plausibility check should be
implemented in a later step.

The main use of the knowledge base in this work is to store relevant information regarding
reconfigurable manufacturing and safety systems. The use of features such as reasoning
or rule checking could prove useful in this context. Shapes Constraint Language (SHACL)
could be used to create constraints on the content and structure of the knowledge base to
provide the safety engineer with a frame of how the data needs to be structured. SHACL
rules can also add inferencing capabilities. They define which statements can be derived
from existing ones.
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