

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

An Adaptable OCL Engine
for Validating Models in Different

Tool Environments

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-IngenieurIn

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Christoph Zehetner

Matrikelnummer 0626098

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Mitwirkung: Mag. Dr. Manuel Wimmer, Dr. Horst Kargl

Wien, 01.07.2013

 (Unterschrift VerfasserIn) (Unterschrift BetreuerIn)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

An Adaptable OCL Engine
for Validating Models in Different

Tool Environments

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-IngenieurIn

in

Business Informatics

by

Christoph Zehetner

Registration Number 0626098

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: O.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Assistance: Mag. Dr. Manuel Wimmer, Dr. Horst Kargl

Wien, 01.07.2013

 (Signature of Author) (Signature of Advisor)

An Adaptable OCL Engine for Validating Models in Different Tool Environments I

Erklärung zur Verfassung der Arbeit

Christoph Zehetner, Kirchenstraße 9, 2225 Loidesthal

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten

Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –

einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet

im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle

als Entlehnung kenntlich gemacht habe.

An Adaptable OCL Engine for Validating Models in Different Tool Environments II

Abstract

The software engineering process has significantly changed over the last decade. The para-

digm Model-Driven Development (MDD) gained more and more popularity. In the past,

models were typically used for brainstorming and communication purposes. This viewpoint

has shifted dramatically. The software engineering process becomes more model-centric and

less code-centric. Thus, models are the key artefacts in the development process and all

steps rely on these models and their correctness. Sophisticated modelling techniques have

been invented to ensure a consistent and comprehensive technology base. The standard for

modelling structural and behavioural aspects of systems, the Unified Modelling Language

(UML) was introduced by the Object Management Group (OMG). The problem is that an

UML model is not necessary expressive enough to provide all complex aspects of a system.

Some aspects of the domain are more expressed in natural language. Practise has shown

that such situations will lead to ambiguities and to errors. Therefore the Object Constraint

Language (OCL) can be used to specify conditions on models that must hold for the system.

Apart from the development of standards for modelling systems, several vendors developed

Computer-Aided Software Engineering (CASE) tools to provide a wide range of instruments

to support the MDD approach. The support of the sophisticated techniques depends on the

vendor’s realization of the standards, which is different from tool to tool. In general there is

a lack of validating models in CASE tools, which is essential in the early design phase. Addi-

tionally, there is only little support for writing OCL expressions for models. Furthermore,

models defined by the users of the tool are not validated against the well-formedness rules

(WFR) - described with OCL - of the UML specification. An automatic validation of the OCL

expressions of the UML specification before code generation allows the detection of errors

in the early design phase and reduces problems for the further progress of projects. Thus, it

is a huge value that CASE tools support the definition and validation of OCL expressions.

The contribution of this master’s thesis is to provide an adaptive solution for managing OCL

transformation in different environments or CASE tools, called ADOCLE. Therefore mapping

patterns are defined to manage the schema matching between selectable environments

(source and target schema). The OCL expressions are applied to a selectable source schema,

which is mapped to a target schema. The goal of this work is to analyse OCL expressions and

generate semantically equivalent expressions in the target schema depending on pre-

defined transformation patterns.

An Adaptable OCL Engine for Validating Models in Different Tool Environments III

Kurzfassung

Die Computerwissenschaft beschäftigt sich schon seit vielen Jahren mit Modellierungstech-

niken zur Beschreibung von Strukturen, Architekturen und Prozessen in Softwareprojekten.

Anfänglich wurden Modelle für reine Kommunikations- und Entwurfszwecke eingesetzt. Im

Laufe der letzten Jahre gewann die modellgetriebene Softwareentwicklung, auch bekannt als

Model-Driven Development (MDD), immer mehr an Bedeutung, womit die Modelle zum

Kernstück des Entwicklungsprozesses wurden. Basierend auf den Modellen können Teile des

Systems (Source Code) generiert und weiter verarbeitet werden. Dabei spielt vor allem die

Gültigkeit der Modelle eine tragende Rolle. Verschiedenste Modellierungstechniken wurden

entwickelt, um eine fundierte Basis für MDE zu schaffen. Die Object Management Group

(OMG) führte daraufhin, einen de facto Standard für die Modellierung von Systemen, die

Unified Modelling Language (UML) ein. Das Hauptproblem ist, dass ein UML Modell nicht

notwendigerweise ausreichend ausdruckstark ist, um alle komplexen Aspekte eines Systems

abzubilden. Einige Aspekte werden dadurch in natürlicher Sprache formuliert. Die Praxis hat

gezeigt, dass solche Situationen zu Unklarheiten und Fehlern führen. Eine Möglichkeit stellt

die Object Constraint Language (OCL) bereit, indem Bedingungen für Modelle definiert wer-

den können, welche ebenfalls in den Entwicklungsprozess integriert werden können.

 Neben der Entwicklung von Standards für die Modellierung von Systemen, entwickel-

ten mehrere Anbieter, Computer-Aided Software Engineering (CASE) Tools, um eine breite

Palette von Instrumenten des MDD Ansatzes zu unterstützen. Der Support hängt von der

Implementierung der Standards des Anbieters ab und ist somit von CASE-Tool zu CASE-Tool

unterschiedlich. In Allgemeinen, ist nur eine mangelhafte Validierung der erstellten Modelle

in CASE-Tools möglich, die eine essentielle Rolle in der frühen Entwurfsphase spielen. Darü-

ber hinaus gibt es nur wenig Unterstützung für das Definieren von OCL Ausdrücken für Mo-

delle. Außerdem können Modelle von den Benutzern definiert werden, die nicht den wohl-

geformten Regeln in der UML-Spezifikation entsprechen. Eine automatische Validierung der

OCL Ausdrücke der UML-Spezifikation vor der Codegenerierung ermöglicht das Entdecken

von Fehlern in der frühen Entwurfsphase. Daher stellt es einen großen Mehrwert dar, CASE-

Tools, um die Definition und Validierung von OCL Ausdrücken zu erweitern.

 Die Arbeit beschäftigt sich mit einem adaptiven Ansatz zur Transformation von OCL

Ausdrücken in verschiedene Umgebungen oder CASE-Tools. Dazu werden Mappingmuster

definiert, um ein Schema Matching zwischen wählbaren Umgebungen (Quell-und Ziel-

Schema) zu bewerkstelligen. Die OCL Ausdrücke sind einem wählbaren Quell-Schema zuge-

ordnet, welches auf das Ziel-Schema gemappt ist. Das Ziel dieser Arbeit ist es, den OCL-

Ausdruck zu analysieren und einen semantisch äquivalenten Ausdruck für das Ziel-Schema je

zu generieren basierend auf vordefinierten Transformationsmustern.

An Adaptable OCL Engine for Validating Models in Different Tool Environments IV

Table of Contents

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Problem statement .. 2

1.3 Result ... 4

1.4 Methodical approach ... 5

1.5 Structure of the work ... 6

2 Introduction of validating UML models using OCL expressions 7

2.1 Unified Modelling Language in a nutshell .. 7

2.1.1 Metamodel Layering .. 9

2.1.2 Notation ... 11

2.1.3 Advantages and disadvantages .. 14

2.1.4 Motivation example ... 15

2.2 Object Constraint Language in a nutshell .. 17

2.2.1 Scope of application of OCL .. 17

2.2.2 Definition of constraint .. 18

2.2.3 OCL core concepts .. 19

2.2.4 Types ... 22

2.2.5 Expression .. 25

2.2.6 History and related languages ... 28

2.3 Summary ... 29

3 On the Analogy of OCL and SQL .. 30

3.1 Overview of SQL and RDMS ... 30

3.1.1 Querying relational database using SQL ... 31

3.2 Analogy between OCL invariants and SQL queries .. 33

3.2.1 Exemplary mapping of UML model to relational database 34

3.2.2 Exemplary data for the UML model and the relational database 35

3.2.3 Exemplary mapping from OCL to SQL... 37

3.3 OCL2SQL transformation approaches ... 39

4 Realizing ADOCLE .. 43

4.1 Overview of the ADOCLE... 43

4.2 Architecture of the ADOCLE .. 45

4.2.1 Metamodel loader .. 45

4.2.2 OCL Interpreter .. 53

4.2.3 OCL Transformator ... 55

4.2.4 OCL Validator ... 70

4.3 User interface ... 71

An Adaptable OCL Engine for Validating Models in Different Tool Environments V

4.4 Development issues .. 72

5 Evaluation ... 73

5.1 Goal ... 73

5.2 Problem and hypothesis ... 73

5.3 Test environment ... 74

5.4 Consistency analysis... 75

5.4.1 Test data ... 76

5.4.2 Test cases... 82

5.4.3 Test results ... 97

5.5 Performance analysis ... 97

5.5.1 Test results ... 97

6 Related Work .. 99

6.1 Overview of metamodel-based OCL compiler .. 99

6.1.1 Implementing OCL for multiple Metamodels ... 99

6.1.2 OCL Module in VTMS ... 100

6.1.3 Redesign of the Dresden OCL Compiler ... 101

6.1.4 Summary ... 102

6.2 Tool-support ... 103

6.2.1 Dresden OCL ... 103

6.2.2 Eclipse OCL .. 104

6.3 Validation/Verification ... 106

6.3.1 UML-based Specification Environment (USE) .. 106

6.3.2 HOL-OCL .. 108

7 Conclusion and Future Work ... 109

7.1 Conclusion .. 109

7.2 Future Work .. 111

8 List of figures .. 112

9 List of tables ... 113

10 List of Mapping Examples .. 114

11 References ... 115

 Introduction

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 1

1 Introduction

1.1 Motivation

In times of Model Driven Engineering (MDE), the Unified Modelling Language (UML) has

been widely accepted as a standard for modelling object-oriented systems. UML is a visual

language for specifying, constructing and documenting mainly artifacts of software systems,

but it can be also used to describe other systems. UML is developed by the Object Manage-

ment Group (OMG) [1], [2]. UML models are used to define structural or behavioural aspects

of software systems, starting from requirements analysis to the implementation and main-

tenance phase. In the early days of UML, models extend more or less the development proc-

ess for a more understandable documentation. In many cases, the models were defined as

an instrument for all included stakeholders in the analysis stage of the project or just created

when the implementation was already finished as post-documentation.

As the development paradigm Model-Driven Development (MDD) arises, the soft-

ware development process becomes more model-centric and less code-centric. Models are

no longer exclusively for the documentation of design decisions but rather included as first

class components in the development process. The OMG’s Model Driven Architecture1

(MDA) is a conceptual MDD approach (see Figure 1) for vendor-neutral specifications of

business and application logic to improve interoperability and portability of the specified

model. The challenge is to define a platform-independent model (PIM) of the system that

describes the business model without technological boundaries. The transformation from a

platform-independent model to a platform-specific model (PSM) adds the technologic as-

pects of the platform, so with one transformation step it is possible to generate source code

automatically out of the platform independent business model.

Figure 1 - MDA approach

1
 MDA Definition - http://www.omg.org/mda/

 Introduction

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 2

The OMG suggests the usage of UML to specify platform-independent models. A UML model

is not necessary expressive enough to provide all relevant aspects of a specification of a

software system. Some aspects of the domain are more expressed in natural language. Prac-

tise has shown that such situations will lead to ambiguities and to errors. Therefore the Ob-

ject Constraint Language (OCL) [3] can be used to define more formal, but programming lan-

guage independent expressions. OCL is a formal language to specify invariant conditions on

models that must hold for the system. OCL expressions can be integrated in the source code

generation during the transformation process to the platform-specific model and validates

the entities against the specified model.

With the emergence of agile software development models become more and more

important. In every iterative steps of agile methods the requirements and of course the

models has to be updated to avoid errors for the next step. As the first law, as Barry Boehm

says [4], “Errors are most frequent during the requirements and design activities and are the

more expensive the later they are removed.” it is a significant point of software develop-

ment to detect errors in the early stage of the development process. OCL expressions are a

valuable instrument for managing a validation after each iterative step.

Due to the acceptance of the UML as a standard for modelling software systems, a

huge demand for tools supporting an MDD approach arise, especially for case studies, where

models need detailed refinements by platform independent expressions. But cover these

tools all needs of the developers?

1.2 Problem statement

A lot of Computer-aided software engineering (CASE) tools provide a wide range of instru-

ments to support an MDD approach: drawing and documentation of UML diagrams, auto-

matic code generation and reverse engineering for supporting the developers in the design

phase. This support of the UML techniques depends on the implementation of the UML

metamodel, which is different from CASE tool to CASE tool.

Some CASE tools prefer a very strictly solution for defining and drawing UML dia-

gram. That means only UML models can be created, which are valid against the imple-

mented UML metamodel (see Poseidon for UML2 or ArgoUML3). The disadvantage of such

tools is a long learning curve. Other applications like the Enterprise Architect (EA) [5] rely on

a more open modelling approach that encourages developers in the creative stage of the

design phase. It allows the developers to define models that are based on the UML meta-

model, but the models are not 100% UML compliant. Normally, these models are valid

against the UML metamodel, but there is no guarantee for it. From structural to behavioural

2
 http://www.gentleware.com/new-poseidon-for-uml-8-0.html

3
 http://argouml.tigris.org/

 Introduction

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 3

aspects of software systems most CASE tools provide UML support throughout the devel-

opment process. But only few applications like “Eclipse OCL” [6] facilitate defining OCL ex-

pressions and validating object-oriented models. In the case of Eclipse4, the CASE tools are

part of the EMF5 project, which are part of the integrated development environment (IDE).

However, in general there is a lack of validating models in CASE tools. Particularly, in

the design phase a validation of models is essential. Additionally, there is only little support

for writing OCL expressions for models. There are still tools that do not support OCL at all.

For an adequate support each vendor has to implement the full functionality of OCL by itself,

also those parts that manage the same functionality in every CASE tool, for instance the OCL

parser. Due to these issues, our decision is a generic approach for resolving identical OCL

functions, and adaptors that organize the transformations for different CASE tools.

Furthermore, there are many UML metamodel implementations – ArgoUML or En-

terprise Architect, where the UML models defined by the developers are not validated

against the well-formedness rules (WFR) (described with OCL) in the UML specification. An

automatic validation of the OCL expressions in the UML specification before code generation

allows a detection of errors in the early design phase and reduces problems for the further

progress of projects. Therefore, it is of a huge value that UML tools support the definition

and validation of OCL expressions.

An adaptable approach, called Adaptable OCL Engine (ADOCLE) for transforming OCL

expressions could be reused in other environments or CASE tools (see Figure 2). Therefore

the OCL expressions are applied to a selectable source metamodel, which is mapped to an

arbitrary target metamodel. ADOCLE generates an equivalent expression of an OCL expres-

sion in the target metamodel depending on transformation patterns. The equivalent target

metamodel expression is derived from the mapping between the source and target meta-

model.

Figure 2 – Adaptable OCL Engine (ADOCLE)

4
 http://www.eclipse.org/

5
 http://www.eclipse.org/modeling/emf/

 Introduction

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 4

1.3 Result

The aim of this master's thesis is a prototypical implementation of ADOCLE (see Figure 3).

We use the UML metamodel as source metamodel and the well-formedness OCL expres-

sions in the UML specification. Enterprise Architect is chosen as a CASE tool, which uses a

generic metamodel to provide the support of drawing models of different kinds. It is ex-

pressed as database schema and defines attributes, connectors, elements and operations of

specific types depending on the supported kinds of models. Thus, the models are stored in

the database. The target metamodel used for this master’s thesis is the physical database

schema of EA, that is described with Structured Query Language (SQL) and based on the SQL-

92 standard [7]. The mapping between the UML metamodel and the EA database schema is

based on patterns, which identifies the equivalent UML metamodel elements - the stored

models in the database of the EA. The main task is to analyse the OCL expression and gen-

erate an equivalent SQL expression for the target metamodel – the database schema of EA.

That means, deriving an SQL query semantically equivalent to the OCL expression to validate

the model stored in the EA according to the UML metamodel.

Figure 3 – Approach of ADOCLE prototype mapping between UML and EA

In this thesis, just a subset of the UML metamodel was selected. The chosen package is state

machine, because this package contains a wide range of existing modelling paradigms and

represents the complexity and power of the Unified Modelling Language. This also pertains

to the OCL expressions in the UML Specification (see Chapter 4.2.3.5).

 Enterprise Architect provides an API, which allows running programmatically through

the model. This approach is manly used to provide validation rules within Enterprise Archi-

tect. It enables the definition of grained validation rules, which also considers tool specifics

and additional information not contained in UML, but used in EA. However, writing such

 Introduction

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 5

rules requires the knowledge, how UML models are persisted in the EA database. Further-

more, using the EA API is not as fast as using SQL queries to access the database.

Therefore, a performance analysis has been conducted that compares the prototype of

ADOCLE and the EA’s approach for validating the model with the API. The evaluation shows

the performance differences using SQL commands that are executed on the database –

ADOCLE - and a specific realization of the OCL rules based on a source code driven solution –

the EA API. A consistency analysis based on statistical hypothesis evaluate the

1.4 Methodical approach

The methodological approach for this master thesis consists of three parts:

1) Tool and literature research: One goal of the work is a prototypical implementation

of ADOCLE, a research for CASE tools is done to define a general interface for map-

ping the metamodels of several CASE tools. Additionally an abstract approach for the

metamodel mapping between the source and the target metamodel has been de-

fined based on the metamodels of CASE tools.

2) Implementation: The prototype is implemented in a four layered architecture: OCL

Metamodel Loader, OCL Parser, OCL Transformator and OCL Validator (see Chapter

4.2). The UML metamodel, the database schema of the Enterprise Architect and the

mapping between is loaded to generate an equivalent expression in a target meta-

model for an OCL expression resolved from an OCL parser. For the realization of the

OCL2SQL transformation a literature research was done (see Chapter 3.3) to achieve

a suitable solution. The OCL Validator is responsible for the automatic validation and

lists model elements, which do not fulfil the OCL expressions.

3) Evaluation: As final step, the performance of ADOCLE prototype is evaluated and

compared with a solution based on the EA API. The evaluation is a statistical hy-

pothesis test that identifies false positives and true negatives for defined measure-

ment parameters (see Chapter 5.2) to categorize failing executions for further im-

plementation steps.

 Introduction

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 6

1.5 Structure of the work

This work consists of six further chapters.

Chapter 2 gives a general introduction in the Unified Modelling Language (UML) and Object

Constraint Language (OCL). The definition, structure, main concepts and the area of applica-

tion of the languages are discussed. Moreover, the advantages and disadvantages are com-

pared and the usage is pictured by means of examples.

Chapter 3 focuses on the analogy of OCL and SQL. First, a short overview of the Structured

Query Language (SQL) is given. After the contrast between OCL invariants and SQL queries is

illustrated by means of the UML motivating example, the advantages and limitations are

discussed. Furthermore, related approaches using mapping patterns are figured out in com-

parison to this work.

Chapter 4 explains a realization of the concept ADOCLE. First of all, an overview explains the

module-based architecture and the communication between the components. Each module

is depicted in detail to demonstrate the steps to generate an equivalent expression in a tar-

get metamodel for a given OCL expression. Diagrams picture the interaction between the

components and examples show the intermediate results produced from the relevant mod-

ule. The occurred problems and restrictions during the development process of the proto-

type are discussed in the corresponding subchapter.

In Chapter 5 we deal with the evaluation of the prototypical implementation of ADOCLE. A

performance analysis of the executed OCL expression shows the time differences between

the prototype and the solution using the EA-API. Finally, a statistical hypothesis test identi-

fies false positives and true negatives for defined measurement parameters to categorize

failing executions for further implementation steps.

Related work about other available published solutions as well as similar approaches are

discussed in Chapter 6. The topics are divided in three categories: similar metamodel-based

approaches for OCL compiler, the support of the most well-known OCL tools and applica-

tions and works concerned with verification and validation based on OCL.

The final Chapter 7 of this master’s thesis gives a conclusion that summarizes the main

points and gives an outlook on future work for ADOCLE.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 7

2 Introduction of validating UML models using OCL ex-

pressions

This hapter deals with the standards: Unified Modelling Language and Object Constraint

Language developed by the Object Management Group. We concentrate on aspects con-

cerning the language definition and do not discuss building UML models of software sys-

tems. There are several books (see [8], [9]) that give an introduction to the UML techniques

in more detail.

Chapter 2.1 explain the approach of UML, the definition and its notation. Further-

more, the abstract and the concrete syntax of the UML modelling concepts are commented.

A motivation example illustrates the use of class diagrams and the application of OCL ex-

pressions. The example is frequently used throughout the remaining text for discussing vari-

ous concepts and their formalization.

Chapter 2.2 gives an introduction of OCL. The structure and main concepts of OCL are

figured out. Short examples illustrate the usage of UML models and OCL expressions, which

shows the need for a more precise definition of UML models. Furthermore, the scope of ap-

plications of OCL and related languages is discussed.

2.1 Unified Modelling Language in a nutshell

At the beginning of the 1990, a number of modelling techniques for software systems came

up. These object-oriented models are often defined by informal definitions expressed by

proprietary notations. Software developers could exchange their ideas and decisions during

the design phase of a software system using modelling techniques. But comparisons be-

tween informal languages are difficult due to different notation for the same concept. Some-

times a notation has different interpretations in different languages. UML originated from

three leading object-oriented methods (Booch [10], Object Modelling Technique (OMT) [11]

and Object-oriented software engineering (OOSE) [12]) and the incorporation of experience

and best practices in software development. UML was a unification of these different ap-

proaches. Furthermore, it is based on a formal metamodel to define its structure and se-

mantics.

The Object Management Group (OMG) defined UML as a graphical language for specifying,

constructing, and documenting the artefacts of systems [1]. The Unified Modelling Language

has been widely accepted as standard for modelling object-oriented software systems. It can

be applied to a wide range of application domains and implementation platforms. The objec-

tive of UML is to provide users a common formal language to express their ideas, modelling

techniques as well as best practises for every step of the development lifecycle of software

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 8

systems, from requirements analysis to maintenance. For instance, high level business prob-

lems may be expressed with UML as well as very low level real-time systems. The UML con-

cepts are defined in a technology-independent manner within a MOF-based metamodel (see

Chapter 2.1.1). Meta Object Facility (MOF) serves as meta-metamodel and defines the meta

language. An explanation of the semantics of the UML concepts and a specification of hu-

man-readable notation for defining models corresponding to user’s needs, can be found in

the UML Specification [1], [2].

The current version of UML consists of four complementary Requests For Proposals (RFP):

1) UML Infrastructure

The UML Infrastructure forms the base, which defines a reusable meta-language core, including UML,

MOF and CWM. This core describes class-based language units, for instance, the concepts of classes,

associations and properties encountered in most popular object-oriented programming languages.

The architectural approach supports a fully interchange of models and contains a profile mechanism

to adapt and customize modelling languages.

2) UML Superstructure

The UML superstructure is based on the UML Infrastructure and can be seen as an actual definition of

the UML that is well-known. It is structured modularly due to the wide range of application domains.

UML user can select required parts and ignore other modelling concepts. For the ease of model inter-

change the UML concepts are partitioned into four horizontal levels, so called compliance levels. Each

level adds new language units to extend the previous level:

 Level 0 is specified in the UML Infrastructure and defines a class-based structure that pro-

vides a basis for interoperability between different modelling tools.

 Level 1 is extended with language elements to support actions, activities, interactions, struc-

tures and use cases.

 Level 2 adds units for deployment, profiles and state machine modelling.

 Level 3 completes the UML with the concepts of information flows, templates and model

packaging.

3) UML Object Constraint Language (OCL)

OCL is a formal language developed by the Object Management Group (OMG) in parallel with the Uni-

fied Modelling Language (UML). It is often seen as a textual extension of UML, which specify condi-

tions on UML models that must hold for the system or queries over objects defined in the model.

Chapter 2.2 gives an introduction of OCL.

4) UML Diagram Interchange
The UML Diagram Interchange is concerned with the exchange of UML diagram information. A specifi-

cation based on XML Metadata Interchange (XMI) schema enables the interchange between UML

tools.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 9

2.1.1 Metamodel Layering

Like many natural languages (such as German or English), UML has its own grammar and

their application rules. Whether it is a text- or model-based language, a precise definition of

the language is necessary. Therefore, formal languages or metalanguages are used.

In computer science, formal languages have a long tradition. John Backus and Peter Naur

invented a syntactic metalanguage for the definition of programming languages and for

many other formal definitions. The syntactic metalanguage Extended Backus-Naur Form

(EBNF) described in this standard [13] is based on Backus-Naur Form (BNF) and includes the

most widely adopted notation for defining the syntax of a textual language by use of a num-

ber of rules.

However, model-driven engineering (MDE) aims to raise the level of abstraction in

specification and increase automation in development. The idea promoted by MDE is to use

models at different levels of abstraction for developing and interchange systems, thereby

raising the level of abstraction. The abstract syntax of UML follows a metamodelling ap-

proach, which means that the same technique that is used for modelling application do-

mains is used to define the UML itself. The abstract syntax of UML defines compact language

units on a higher level, for instance, the concepts of classes, associations and properties for

the reusability of these concepts in the different kinds of diagram models. The well-known

techniques to models different perspectives of a system under development (see Chapter

2.1.2) in form of graphical notations represent the concrete syntax. In contrast to EBNF, the

abstract and the concrete syntax are not part of the same metamodel layer, but both are

defined using the terms of the same metamodel.

The OMG developed an approach for metamodel layering (depicted in Figure 4) to il-

lustrate the different layers that always have to be taken in account when dealing with

metamodelling. Each layer can be viewed independently of other layers. The concept of the

four-layer hierarchy is based on following principles.

 The upper layer defines the base for the underlying layer.

 The underlying layer is an instance of the upper layer.

http://www.theenterprisearchitect.eu/archive/2009/01/15/mde---model-driven-engineering----reference-guide#model

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 10

Figure 4 - Four-layer metamodel hierarchy

Meta-Metamodel

The meta-metamodelling layer, so called M3 forms the basis of the four-layer metamodel

hierarchy. A meta-metamodel is a compact set of definitions that can be used to specify sev-

eral metamodels. All model elements on the M2 layer are specified by means of meta-

metamodel elements. In other words, every metamodel conforms to some meta-

metamodel. In the case of the UML metamodel the Meta Object Facility (MOF) serves as

meta-metamodel and defines the meta language. The four-layer hierarchy ends with the

layer M3, because the MOF is reflective. That means that this language can be defined by

itself and needs no higher layer.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 11

Metamodel

The metamodel layer, often referred as M2 layer is responsible for the definition of a lan-

guage for specifying models. The concepts and constructs of a metamodel conform to the

meta-metamodel. In the case of the UML metamodel, it is an instance of MOF, the concepts

are specified by class diagrams that define properties and relationships between model ele-

ments. In earlier version of UML conditions of the model elements were often defined in

natural language. Additional constraints are required to restrict the set of legal UML models.

Gradually, the UML Specification is extended by well-formedness rules (WFR) expressed as

OCL invariants on model and metamodel elements.

Model

The term model is very widespread and has different meanings depending on the application

field. In general, a model captures a view of a system. It is an abstraction of the reality, with

a certain purpose. This purpose determines what is to be included in the model and what is

irrelevant. Thus the model completely describes those aspects of the system that are rele-

vant to the purpose of the model, at the appropriate level of detail. In the paper [14] a dis-

cussion about the definition, the meaning and the interpretation of the term model is found.

The author defined the term model as “a set of statements about some system under

study.” However, there are a large number of definitions that have in common, that a

model, in context of software development, is used to represent a software system. In the

four-layer metamodel hierarchy a model is situated on the layer M1, as an instance of the

metamodel. UML models are used to describe structural or behavioural aspects of software

systems of a wide range of application domains, such as requirements, the architecture or

the user interface behaviour of software systems.

Runtime instances or snapshots

At the bottom of the four-layer hierarchy, the runtime instances or snapshots of the system

can be found.

2.1.2 Notation

As mentioned above, UML provides the ability to model different perspectives of a system.

Therefore thirteen different diagram types can be chosen to illustrate the complexity of the

system. The diagram types can be categorized into diagrams focusing on structural or behav-

ioural aspects of a software system. The following sections give a brief summary of the most

important diagram types of UML.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 12

2.1.2.1 Structure diagrams

Structure diagrams allow capturing the structure starting from a single class up to a specifi-

cation of a complete architecture of systems. Each diagram type focuses on another per-

spective of the structure of a system.

Class diagram

The class diagram is used to depict the structure of data and its behaviour in an object-

oriented manner. It describes the essential parts like classes, attributes and relations to each

other. The class diagram is also used to define the fundamental modelling constructs of UML

that represent the core of the modelling language.

Package diagram

The package diagram enables grouping the structure of arbitrary systems and describing the

dependencies between them.

Object diagram

The object diagram describes a snapshot of the defined system during the runtime, repre-

sented by instances of classes, components, associations and attributes.

Component diagram

The component diagram allows modelling the components involved in a system and their

dependencies. Components are modular parts of a system that provide access through

clearly defined interfaces to the behaviour of the component.

Composite structure diagram

A composite structure diagram shows the internal structure and interactions of a classifier. A

classifier is an abstract element of the UML metamodel. Thus, for example, the model ele-

ments class, interface, component, behaviour, activity, interaction or state machine are spe-

cializations of the classifier.

2.1.2.2 Behaviour diagrams

Apart from modelling the given structure of a system, it is also essential to capture its behav-

iour. Behaviour diagrams represent behavioural specifications from different perspectives

emphasizing or ignoring certain aspects and complement each other to the sum up of a

more or less complete description of the overall behaviour.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 13

Use Case diagram

A use case diagram shows the system from the perspective of the end-user. The functional-

ity of a system is described in terms of use cases. Interactions of the users, also called actors,

and the relationships between actors and use cases are captured in a use case diagram.

Activity diagram

An activity diagrams is a notation instrument for modelling any kind of process. Using this

type of diagram, a complex progress, including any concurrencies, alternative decisions or

similar behaviour can be modelled and reconstructed concretely. It describes the control as

well as the data flow between the actions of a system.

State machine

A state machine is used to model the behaviour of a classifier of any kind. The internal be-

haviour of the classifier, for instance a class, is described in terms of states that the classifier

can assume, the transitions between the states and internal or external events.

Sequence diagram

Sequence diagrams illustrate interactions within structural elements. An interaction is an

exchange of information between two or more communication partners. The main focus of a

sequence diagram is to specify a chronological order of the interactions.

Communication diagram

The communication diagram is very similar to the Sequence diagram. The communication

between objects in terms of interactions is modelled, but this diagram type illustrates the

interaction of the communication partner on a leverage level of abstraction.

Timing diagram

Timing diagrams are an additional tool for describing interactions between objects. It is

originated by the electrical engineering community and looks like a graph of an oscilloscope.

It enables more precise temporal specifications than the other UML diagrams, and is there-

fore most appropriate for the design of real-time systems.

Interaction overview diagram

This kind of diagram visualizes the order of interactions and the conditions that has to be

solved to start an interaction. It is a hybrid of activity diagram and interaction diagrams.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 14

2.1.3 Advantages and disadvantages

The advantages of a graphical modelling notation are obvious. After a short explanation

about the notation diagrams are easy to understand, even by non-experts. The visual illus-

tration of the structural as well as behavioural aspects of a system highlights the relations

between the objects in an intuitive manner that is not available in purely textual notations.

Nevertheless, there are several problems related to graphical languages. One of the major

problems is the wide interpretation room of the UML semantics. The semantics of UML

which describes the meaning of the language elements is only informally defined in natural

languages. An imprecise specification can lead to several problems [15]. Due to the wide

interpretation room of the UML semantics, inconsistencies and ambiguities are the conse-

quences. Misinterpretation of UML models in software development teams can lead to in-

consistencies of components and communication problems and pose an additional burden

for the team. In such cases the modelling phase of the development process needs more

time and effort to communicate the interpretations.

The imprecise specification of the semantics of UML also plays a significant role for the im-

plementation of tools that supports the techniques of UML. The different tool vendors de-

velop the syntax and the semantics of the UML in their own manner, which results in inter-

operability problems. So called semantic variation points provide additional inconsistencies

for the interoperability of models between different vendor solutions. Semantic variation

points are those parts of the UML Specification that are in aware not completely refined to

allow the domain-specific extensions more flexibility to define additional components.

Without precise semantics definition it is also hard to validate or verify UML models for-

mally. UML is specified by means of the UML class diagram notation. Thus, UML builds a

formal language that can be validated. But a UML class diagram has its limitations and is not

expressive enough to provide all relevant aspects that can be formulated in natural lan-

guage. The following example may illustrate the expressive limits and why the current ver-

sion of UML is extend by the Object Constraint Language (OCL). Therefore, a class diagram in

Figure 5 shows the static aspects of a simple system of vehicles and their components on

layer M1. A vehicle has an engine and wheels. An engine also contains wheels. Due to the

simplicity of the model, it is possible that an instance of a wheel is part of a vehicle as well as

of an engine. Of course, the model can be extended with specific types of wheels (gear

wheel and driving wheel) and set the relation in a correct manner. When we consider the

complexity of a car, the model will grow enormous according to the high number of specific

types. A constraint that does not allow the mentioned behaviour could solve the problem

without any extensions and the model could be kept simple.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 15

Figure 5 - Static aspects of UML

UML diagrams provide the ability to attach constraints as notes to any graphical UML ele-

ment. In particular, UML class diagrams use such constraints to annotate pre and post condi-

tions as well as class invariants. Therefore, OCL can be a solution. OCL expression can specify

conditions on UML models that must hold for the system. The example describes a possible

solution using OCL expressions.

-- A wheel of an engine cannot be a wheel of a vehicle

context Vehicle inv :

self.engine.wheel->select(w : Wheel | self.wheel != w)

In the case of UML metamodel defined by UML class notations, OCL expressions improved

earlier versions of UML by reformulating the well-formedness rules in the UML Specification

and add a higher level of preciseness. In Chapter 2.2 we discuss the usage of OCL in detail.

2.1.4 Motivation example

For a better understanding, we use the following motivation example throughout this mas-

ter thesis to demonstrate the concepts of UML and the need of OCL. Examples for OCL ex-

pressions are described in the following Chapter 2.2 regarding to the class diagram in Figure

6. In the rest of the thesis OCL is used on the metamodel layer (M2) However, to get an idea

how OCL can be applied, a simple UML class diagram model on layer M1 is used.

Figure 6 depicts a similar example like within the OCL specification [3], to describe

the main constructs of OCL. Additional parts are used for the demonstration of not involved

UML concepts like the generalization and for easier explanations of the concepts and con-

structs. The class diagram uses the following UML concepts: Classes (Person, Company, Ac-

count, Vehicle, etc.) with attributes and operations, associations, generalization (Vehicle is a

generalization of Car and Motorcycle), two reflexive associations (Person), and multiple as-

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 16

sociations between classes (Person and Company). Association ends are adorned with role

names and multiplicity specifications.

Figure 6 - Motivation example - UML class diagram

A simple example for the need of OCL expressions is the attribute age in class Person. With-

out further constraints, a person may have a negative value for its age. The following expres-

sion shows a condition for persons that only positive values for the attribute age are al-

lowed.

-- The age attribute of persons has to be greater than zero.

context Person inv expressionForAttributeAge:

self.age > 0

As mentioned above, the expressiveness of UML class diagrams allows restricting possible

combinations of instances, but lack of the possibilities to define more complex constraints.

For instance, a class Person may have two reflexive relations to itself (biological child). On

one end of the association the father is called, else on the other the mother is determined.

Both have the multiplicity of one. The other direction of both associations has the role name

children with the multiplicity of *. The class Person has the attribute gender. With this class

diagram different family trees may be expressed, but it is impossible that one person has a

father and a mother with the same gender. Biological such constructs are impossible. Such

instantiations has to be restricted. Further rules have to be defined on the model. OCL ex-

pressions can be used to specify such conditions.

These are just two examples that demonstrate the benefits of using OCL. More com-

plex OCL expressions are discussed in the next chapter.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 17

2.2 Object Constraint Language in a nutshell

The Object Constraint Language (OCL) is a formal language developed by the Object Man-

agement Group (OMG) in parallel with the Unified Modelling Language (UML). It is often

seen as a textual extension of UML, which facilitates to specify conditions on UML models

that must hold for the system or queries over objects defined in the model.

A UML model has its limitations and is in general not expressive enough to provide all

relevant aspects of a specification of a software system. One simple approach is to provide

the restrictions in natural language. However, this may lead to ambiguities, no automatic

validation and no automatic code generation is possible. Typically OCL expressions are used

to specify constraints on models that cannot be expressed, or are very difficult to express,

with the UML notation. Queries defined by OCL expression are completely programming

language independent and can be integrated in the code generation process or may be used

in model transformations. There are no side-effects when the objects are evaluated.

OCL is based on a first-order predicate logic. In contrast to other formal specification

languages like Vienna Development Method (VDM) [16], Z-Notation [17] or B-Method [18]

(see Chapter 2.2.6) the syntax of OCL resembles a programming language than a first-order

predicate logic. But it is not a programming language, just a pure specification language.

Previous designed formal specification languages are very hard to learn and could not prevail

in the industry. So they are mostly used in academic world. The intuitive syntax of OCL is

closely related to the syntax of UML that is widely accepted as standard for modelling ob-

ject-oriented systems and provides a more adequate every-day modelling than a pure first-

order predicate logic for developers. The language provides variables and operations which

can be combined in various ways to build expressions. Frequently used language features

are accessing object’s attributes, navigations to objects that are connected via association

links, and operation calls. OCL is an expression language that guarantees no side effects; it

cannot change anything in the model. Whenever an expression is evaluated, it simply re-

turns a value of type that conforms to the OCL type hierarchy. OCL defines a number of data

types including basic type such as Boolean and Integer, as well as types for dealing with col-

lections. OCL is also a typed language. That means each object, attribute, result of an opera-

tion or navigation has a specific type. An OCL expression must conform to the conformance

rules of OCL to be well formed, independent if it is a basic type, OCL-specific type or user-

specific type.

2.2.1 Scope of application of OCL

OCL can be used for different purposes: Whether as a constraint language for the specifica-

tion of model definitions or as a query language for models. Aspects that cannot be ex-

pressed or are very hard to define by means of UML notations use constraints, to specify the

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 18

requirements of object-oriented systems. These kinds are distinguished in 6 categories of

constraints:

1) Invariants

2) Pre and post conditions

3) Initial and derived values

4) Guards

5) Definition of attributes

6) Body definition of operations

The primary task of OCL is the formulation of invariants in terms of restrictions on the valid-

ity of object models and pre and post conditions of operations. An invariant is a constraint

that should be true for an object during its entire lifetime. Additionally, pre and post condi-

tions enable behavioural specifications of operations in terms of conditions on a previous

state and a post-state after executing the operation. The other categories extend the OCL

with comfortable auxiliary tools and are explained in the OCL specification [3].

OCL is a language on its own and can be used for different models on different layers (M1,

M2, and M3) in the metamodel hierarchy. The previous example in Figure 6 illustrated the

use of OCL for models on layer M1. But, OCL enables also the specification of well-

formedness rules (WFR) for UML models on the metamodel level (M2). For example, the

UML metamodel contains OCL expressions that explain the complex behaviour between

subcomponents within or across the packages of the UML metamodel. This copes with the

limitation of the UML class diagrams and helps to define more restrictions how models on

the layer M1 can be created and validated.

Because of the descriptive nature of OCL, expressions can also be used for specifying

queries. Queries allow the developers to navigate and inspect objects and data interactively.

Especially, in the case of database applications queries are a useful feature when dealing

with large result sets of objects. Considering OCL as query language, the scope of application

concentrates on model or metamodel transformations and code generation. The OCL ex-

pression helps to specify the transformation patterns. The result sets of the source and the

target model or metamodel elements that should be transformed are defined with OCL que-

ries.

As briefly mentioned, there exists an analogy to other query languages, for example,

SQL for relational database management systems or XPath/XQueries for XML documents

that we explain in Chapter 3 in detail.

2.2.2 Definition of constraint

Before we can go further with the core concepts of OCL, the term constraint has to be de-

fined. According to Warmer and Kleppe [19], “A constraint is a restriction on one or more

values of (part of) an object-oriented model or system“. Constraints may be denoted within

the graphical illustration or in a separate document.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 19

2.2.3 OCL core concepts

This chapter gives a briefly summary of the concepts of OCL.

Context

The context could be interpreted as entry point to a model element where an expression is

attached. The keyword context, followed by a name of a model element, typically a name of

a class or interface, represents this entry point. Keywords inv, pre or post denotes the

stereotype of the OCL expression: invariants, pre or post conditions, followed by an optional

name for the OCL expression. In the case of invariants, a classifier is associated and the re-

sult type is a Boolean. For pre or post conditions additionally an operation signature is given

and variables may be defined (see examples below). The actual expression comes after the

colon. Therefore the reserved word self can be used to refer to the contextual classifier in an

OCL expression.

Objects and properties

As illustrated in the motivation example in Figure 6 the class diagram contains other classi-

fier than classes or interfaces, e.g. attributes, operations and associations. An OCL expres-

sion can refer to all these classifiers without side effects. The OCL specification [3] speaks

from accessing different kind of properties. A property is one of: an attribute, an association

end or an operation (method) which may be referred using a dot notation followed by the

property name.

Properties: Attribute

In the following example, the keyword self refers to an object of class Person. An attribute of

an object, such as the unemployed attribute may look like as follows.

-- The access to the attribute unemployed of the class person

context Person inv:

self.unemployed

The OCL expression describes, if a person is unemployed or not. Therefore the attribute un-

employed is defined with a basic type Boolean for specifying an either-or-decision. Attrib-

utes on basic value types (see Chapter 2.2.4) can express calculation over the class model.

An instance is shown in the section invariants. Attributes may have other types than basic

types which are explained in Chapter 2.2.4.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 20

Properties: Operations

Operations can be accessed as attributes. In contrast to attributes, operations may have pa-

rameters and a return type. The result of an operation is a value of the return type, if a re-

turn type is set. Otherwise the return type has to be defined with void. In Figure 6 the class

Person has an income expressed as a function of the date. In the example, the income of

each instance of Person on the key date: 12-12-2012 is evaluated. The definition of the op-

eration income is shown in the section pre and post conditions below.

-- The access to the operation income at the key date: 12-12-2012

context Person

self.income(12-12-2012)

Properties: Association-ends and navigation

A navigation is a reference from one object to another object (or to itself) using the name of

the opposite association-end (role name of an association). If the role name is missing, the

name of the type of the opposite association-end – direct reference to the other object - can

be used instead. The value of the expression is dependent on the multiplicity of the associa-

tion end. When the maximum of the association-end is one, the value of this expression is an

instance of an object. Otherwise, a collection of the type of the object of the referred asso-

ciation-end is returned. The example in Figure 7 illustrates some kind of navigations be-

tween the classes Person and Company.

Figure 7 - Association-end and Navigation

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 21

-- Navigation from Person to Company

context Person inv: oneEmployer

self.employer

-- Navigation from Company to Person

context Company inv: listOfEmployees

self.employees

The first OCL expression shows the navigation from the object Person to the object Company

using the role name employer. In the example, the result is the object c1 with the type Com-

pany, as pictured in Figure 7. The second OCL expression illustrate the navigation in the

other direction, starting from the object Company, navigating to the object Person. Due to

the multiplicity at the association-end named employees, a collection of objects of Persons is

returned. In the example, the result is the Set {p1, p2, p3} with the type Set {Person}. By de-

fault, navigations will return a Set.

Other predefined collection types in OCL like Bags, OrderedSet or Sequences are described

in Chapter 2.2.4. Each collection type provides a number of OCL operations, as well as every

type in the type hierarchy. The OCL operations are not comparable with the operations de-

scribed above. The operations within the example class diagram are part of the problem

specification and represents methods for managing them. The OCL operations are functions

to enable a flexible and powerful way of projecting modified collections from existing ones.

Generally, within OCL expressions, properties and operations are separated by a dot charac-

ter depending on the type hierarchy. In the case of collection type an arrow ‘->’ followed by

the name of the operation is used.

-- number of employees

context Company inv: listOfEmployees

self.employees->size()

The OCL expression calculates the number of employees. For the example, pictured in Figure

7, the result is 3. The type of the operation size is the basic type Integer.

Invariants

An invariant is an OCL expression that express rules with the type Boolean applied to a speci-

fied classifier. That means that an invariant must be true for all instances of a specific type

(class, association class or interface) in the model, which is the context of that constraint.

-- The age attribute of persons has to be greater than zero.

context Person inv expressionForAttributeAge:

self.age > 0

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 22

The given example expresses that only positive values for the attribute age are allowed. As a

consequence only persons with an age greater than zero are valid. The invariant is true, if

every binding of self to an object of a class Person and its attribute age are greater than zero.

In most cases, the keyword self is enough to refer to a classifier. As alternative, a different

name can be used to play the role of self.

-- The age attribute of persons has to be greater than zero.

context p:Person inv alternativeExpressionForAttributeAge:

p.age > 0

Pre and post conditions

OCL also supports the definition of pre and post conditions that form contracts for opera-

tions. Pre and post conditions are assertions that must be true either before or after the

body of the context operation executes. The following example illustrates both kinds of con-

ditions on an operation called income.

-- The pre and post condition for the operation income.

context Person::income(d : Date) : Real

pre: self.job.startDate < d and self.job.endDate->isEmpty()

post: result = self.job.salary->sum()

The operation calculates the current income of a person. The pre condition checks, if the

given date is after the startDate and the endDate of the job is not already set. The post con-

dition totalizes the salary of each job where the pre condition is true. Other categories like

the initial or derived values work in a similar way. Detailed explanations can be found in the

standard of OCL [3].

2.2.4 Types

OCL is a strongly typed language that means to each object, attribute, result of an operation

of navigation a specific type is assigned. There are predefined value types that are part of

the definition of OCL and each of the value types supports a set of applicable operations.

Basic value types

The basic value types of OCL are Boolean, Integer, Real and String. Examples for values and

operations are listed in the Table 1.

Type Values Operations

Boolean true, false and, or, xor, not, implies

Integer 1, -5, 2, 34, 26524, ... *, +, -, /

Real 1.5, 3.14, ... *, +, -, /

String 'To be or not to be...' concat(), size(), substring()

Table 1 - OCL basic types

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 23

Collection types

OCL provides a small set of collection types distinguished by whether or not the elements

are ordered and whether or not they allow duplicates. The collection types listed in Table 2

have a common super-type Collection(T) – instance of CollectionType - and conforms to it.

Collections are parameterized with a type parameter T that denotes the type of the ele-

ments within the collection. The type represented by the parameter T must hold the con-

formance rules based on a type hierarchy defined in OCL.

Collection Type Description Values Type

Set Mathematical set that does not contain

duplicates and have no defined order.

Set{ Set{1},

Set{3,2} }

Set(Set(Integer))

Bag Multi set that allow duplicates and have no

defined order.

Bag{1, 2.0, 2, 3.0,

3.0, 3}

Bag(Real)

Sequence The sequence is a bag with ordered ele-

ments.

Sequence{ 1, 2, 2,

2, 45, 60, 81}

Sequence(Integer)

OrderedSet This collection type represents a set with

order elements.

OrderedSet{‘a’, ‘b’,

‘c’, ‘x’, ‘y’, ‘z’}

OrderedSet(String)

Table 2 – OCL Collection types

Tuple types

It is also possible to define tuples that compose several values. Tuples are a fundamental

concept in most object-oriented data models (e.g., extended Entity-Relationship (EER) [20])

models) and logical data models (e.g., the relational data models). A tuple is an ordered list

of elements, where each part of the list has its own type. It is required for expressing struc-

tured and complex queries. The following example shows a simple constellation of tuple

presenting a pair of Integer and Boolean values. Complex examples can be found in the OCL

Specification [3].

Tuple{ x = 5, y = false } : Tuple{ x : Integer, y : Boolean}

User-specific types

In addition to predefined types, user-specific types can be integrated in the OCL expressions

through a model. Each instance of a class of MOF is automatically an allowed type. As men-

tioned above, an OCL expression is written in a context of a model. In the case of UML the

context represents a classifier of the UML metamodel, which is an indirect instance of class

of MOF. So each model element in an UML model is a user-specific type that can be used in

OCL expressions. Also defined enumeration types are allowed. In the motivation example

shown in Figure 6, an enumeration is specified in UML notation to define the gender of a

person. The literals ‘male’ and ‘female’ could be integrated in OCL as follows:

context Person inv: gender = Gender::male

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 24

Type Hierarchy

Finally, OCL provides conventional oriented types or special types for organizing a type hier-

archy (see Figure 8) and applicable operations on the predefined types. Object-oriented con-

cepts such as inheritance, polymorphism, and strong-typing in object-oriented languages

form the fundament of the type hierarchy. A subtype relationship induces a partial order on

OCL types, while ad-hoc polymorphism guarantees an overloading of operations and param-

eterizing the element type of collection types. The work in [21] gives an easy introduction for

more details in the concepts of object-oriented languages.

Figure 8 - Type Hierarchy for OCL

Special types
The type OCLAny is an instance of AnyType and represents the super-type of any type in OCL

except for the collection and tuple types. In other words all OCL types conform to the type

OCLAny. Each type within the type hierarchy supports a set of applicable operations. Due to

the type hierarchy a subtype inherit the applicable operations of the super-type and their

behaviour.

We briefly explain the type hierarchy concept of OCL by means of the CollectionType.

The CollectionType is an abstract super-type of collection types in the OCL and defines the

properties and operations on collections that have identical semantics for all collection sub-

types, for instance, the operations sum and size. Some operations may be specialized in the

subtype, for example the operation count. The parameterization of collections with a type

parameter T is defined with an association to the interface Type. Note that there is no re-

striction for the elements of the parameter T. This means that a collection type may be pa-

rameterized with tuple types or other collection types.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 25

 The type OclType is a singleton instance of TypeType and provides access to the

meta-level of a model. OclUndefined represents the type of a model element whose value

has not been initialized. This type is often needed in model transformation where it cannot

be assumed that all model elements have been initialized. For the identification of opera-

tions that does not have a return type, OclVoid can be used.

Conformance Rules

The type hierarchy determines conformance of the different types and specifies if the OCL

expression is valid or not. For example, a comparison between a Boolean and a String is inva-

lid. The type conformance is defined by the following conformance rules [3]:

 Type1 conforms to Type2 when they are identical.

 Type1 conforms to Type2 when it is a subtype of Type2. In other words, Type1 conforms to Type2 if an

instance of Type1 can be substituted at each place where an instance of Type2 is expected.

 Type conformance is transitive. The type conformance is a relation that mirrors the subtype relation

introduced by the type hierarchy. As a consequence, each type conforms to each of its supertypes.

 A parameterized type T(X) conforms to T(Y) if X conforms to Y. For example, Collection(Integer) con-

forms to Collection(Real), because Integer is a subtype of Real.

The generalization hierarchy of UML models are incorporated in the type hierarchy of OCL

and follows the above conformance rules.

2.2.5 Expression

A typical OCL expression may look like the following:

context Person inv: self.married and self.unemployed

This expression defines that the and statement is true if both sub expressions self.married

and self.unemployed are true. This example illustrates two fundamental characteristic of

expressions:

1) Expressions can contain expressions as sub elements. The and expression is a non-terminal expression

that contains a left operand (self.married) and a right operand (self.unemployed). Each operand of the

and expression in the example represents an expression that contains two operands separated by the

dot. The example shows that expressions must be generalized from some common abstract expres-

sions to support polymorphism.

2) As mentioned in Chapter 2.2.4, every construct in OCL has a type, also expression own one. The left

and the right operands are of the standard OCL type Boolean. As a consequence, the and expression

returns true or false.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 26

Figure 9 shows the basic structure of the abstract syntax of the kernel for expressions which

is just an excerpt of the OCL expression package. The complete specification can be found in

Chapter 8.3 in [3]. The abstract syntax is responsible for the inheritance relationships and

the relations between the components.

Figure 9 - Excerpt of the OCL expression package

The concrete syntax realizes the abstract approach in the form of a full attribute grammar.

Every production rule is denoted using the EBNF formalism and annotated with synthesized

and inherited attributes. The result of synthesized attributes, representing the left hand side

of the production rules is derived from the attributes of the right part of the production rule.

In addition, each production may have inherited attributes attached to it. Inherited attrib-

utes describe the environment of the production rule. The mapping between the abstract

and concrete syntax is also part of the grammar. Therefore a synthesized attribute called ast

is added to each production which has the corresponding metaclass from the abstract syntax

as its type. The following production rule OclExpressionCS illustrates an example of the at-

tributes. It defines the mapping to the abstract syntax component OclExpression and speci-

fies the inheritance relationships shown in Figure 9.

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 27

Abstract syntax mapping

OclExpressionCS.ast : OclExpression

Synthesized attributes

[A] OclExpressionCS.ast = PropertyCallExpCS.ast

[B] OclExpressionCS.ast = VariableExpCS.ast

[C] OclExpressionCS.ast = LiteralExpCS.ast

[D] OclExpressionCS.ast = LetExpCS.ast

[E] OclExpressionCS.ast = OclMessageExpCS.ast

[F] OclExpressionCS.ast = IfExpCS.ast

Inherited attributes

[A] PropertyCallExpCS.env= OclExpressionCS.env

[B] VariableExpCS.env= OclExpressionCS.env

[C] LiteralExpCS.env= OclExpressionCS.env

[D] LetExpCS.env= OclExpressionCS.env

[E] OclMessageExpCS.env= OclExpressionCS.env

[F] IfExpCS.env= OclExpressionCS.env

Such production rules are the initial point for the OCL Parser described in Chapter 4.2.2. We

used the EBNF of OCL to generate a parser generator for interpreting given OCL expressions.

For the sake of completeness, an example (see Figure 10) pictures some kind of expressions

to introduce the usage of expressions.

Figure 10 - Example of expression types

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 28

2.2.6 History and related languages

Originally, the Object Constraint Language (OCL) was developed by IBM6 in 1995 with the

purpose to define business models. During 1997 OCL was adopted as a formal specification

language within UML 1.1. It is used to help formalize the semantics of the language itself and

to provide a facility to precise models using constraints and well-formendness rules.

Jos Warmer, the developer of the originally language was inspired by the Syntropy

method of Steve Cook and John Daniels. Syntropy is an object-oriented analysis and design

method with the goal to provide modelling techniques that allow precise specification and

separation of different areas of concern. It is based on at this time favoured graphical nota-

tions of OMT, combined with additional formal specification elements derived from the Z

notation. The Syntropy, as described in the book [22], is not a complete method; the devel-

opment on the approach stopped, maybe due to the complexity of Z notation. But many of

the ideas are incorporated in the UML specification and other development processes. So

Syntropy can be seen as a direct ancestor of OCL.

The formal specification language Z is grounded in mathematics – set theory and

first-order predicate logic [17]. The set theory contains concepts for standard set operators,

set comprehensions, Cartesian products, power sets and many more. Predicate logic consti-

tutes a family of logical systems, making it possible to formalize arguments and to check

their validity. The combination of the concepts forms the mathematical language of Z. It can

be used to extend the previous object-oriented modelling concepts by a clear declaration of

objects, values and types. Concepts like navigation expressions, various kinds of constraints

pre and post conditions are provided to more precise semantic underpinning.

Fundamental parts of many formal methods were found in the late 60’s at the IBM

laboratory developed in Vienna. The result is known as the VDM (Vienna Development

Method) [16]. The methodological approach has found a wide spread, especially the Univer-

sity of Manchester and the Technical University of Denmark continue the development. Al-

ready, VDM uses types and collections as well as classes and inheritance to specify refine-

ments on models. It is still widely used in industry.

As alternative, Alloy can be chosen. It is a specification heavily influenced by Z. Alloy

is first-order based which makes it automatically analyzable. The improvement in Z is rather

more limited. In [23], the authors compare Alloy with OCL and show translations for a subset

of the UML metamodel with well-formedness rules into Alloy. Alloy is not used as much in

industry as VDM.

A big disadvantage of formal specification languages is that the mathematical de-

scription of constraints is difficult to learn and could not prevail in the industry. It's more of a

language for mathematicians.

6
 http://www.ibm.com

 Introduction of validating UML models using OCL expressions

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 29

Another similar language is the Extended Entity-Relationship (EER) modelling language. It is

based on the Entity-Relationship (ER) model which is an abstract way of describing database

designs. The EER model is an extension of the ER model including concepts of inheritance

and polymorphism. Furthermore, it introduces the concept of a union type. The intention of

EER was to determine more precisely properties and constraints for database concepts. The

semantics and the fundamental paradigms of Extended Entity-Relationship model are pre-

sented in [20], [24]. In contrast to OCL, both languages provide a specification of declarative

constraints and allow the definition of queries. The EER calculus is based on the set theory

which guarantees a complete formal semantic. It is proved to be safe in the sense that all

expressions yield a finite result. A proof of the first versions of OCL would lead to invalid

states. For example, the OCL expression Integer.allInstances does not return a finite set of all

Integer values. On the other hand OCL allows expressing navigations through class models

using the association-end names. The readability of the expressions is enhances in most

cases in comparison to the EER calculus that use SQL statements. A complete comparison of

OCL and the EER calculus are illustrated by example in [25]. The relation of OCL and SQL for

query expression is also included in this work. A more detail demonstration is shown in

Chapter 3.

2.3 Summary

This chapter introduced in the UML definition, its purpose and the concepts are shown

briefly. The formal metamodelling approach of UML provides a more precise definition than

previous modelling languages and easy understandable graphical notations, also for non-

experts. Nevertheless, it is a compromise between formality and informality. The missing

formal specification for the UML semantics plays a significant role for the implementation

and lets a wide interpretation room for the vendors. OCL can be a solution. OCL expressions

improved the earlier versions of UML by reformulating the well-formedness rules in the UML

specification and add a higher level of preciseness. The basic application scopes of OCL were

introduced by short examples and an overview of the concepts was given. A briefly summary

of the history and similar languages rounds the introduction of OCL.

 The next chapter focus the analogy between OCL and SQL. It contains a short expla-

nation of SQL, an overview of model transformation patterns and an illustration of the rela-

tion between OCL and SQL.

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 30

3 On the Analogy of OCL and SQL

This chapter deals with the analogy of OCL and SQL and is divided in three parts. First, a

short overview in the Structured Query Language (SQL) [7] and Relational Database Man-

agement Systems (RDMS) is given. This overview does not include a comprehensive descrip-

tion of SQL and RDMS. Therefore other works [26], [27] exist that illustrate an extensive in-

troduction in the development of SQL, the foundational concepts and the distinction of the

evolved SQL standards. As well as the platform specific implementations of several leading

RDBMSs are discussed. However, the Section 3.1 summarizes the main ideas and historical

relations in a generalized point of view and concentrates on the usage of SQL as query lan-

guage. Second, the analogy between OCL invariants and SQL queries is illustrated by means

of the UML motivating example in Figure 6 and the advantages and limitations are discussed.

And third, related approaches using patterns for mapping OCL constraints to relational data-

base integrity constraints are discussed in comparison to this work.

3.1 Overview of SQL and RDMS

In computer science there is a long-standing approach for modelling data information, based

on Entity Relationship diagrams [20] as specification language, relational database for persis-

tence issues and the SQL for querying the data.

In 1969 Edgar F. Codd proposed a research work about the development of a rela-

tional model for database systems. The approach follows a first-order predicate logic with

the purpose of specifying and querying data in a declarative manner. Unlike network and

hierarchical databases, the relational model consists of intuitive concepts for storing any

type of data in a database and provides the base for relational database management sys-

tems. “An RDBMS is defined as a system whose users view data as a collection of tables re-

lated to each other through common data values” [27]. The related data is stored in tables

that are composed of rows and columns. Tables cannot be considered in isolation, as there

are usually relationships or associations between them. Such associations are expressed by

unique, identifying columns of data, so called keys within a table. Nowadays, RDBMS is the

predominant type of database systems, managing operations such as selections, projections

and joins. The process for consistency in designing relational databases is known as normali-

zation.

One of the major features of RDBMS is the support for the manipulation of data expressed

by the Structured Query Language (SQL) [7]. SQL is an international standardized query lan-

guage for accessing relational databases. The initial version, called SEQUEL (Structured Eng-

lish Query Language) was invented by IBM7 in the 1974/1975 and was designed to manipu-

7
 http://www.ibm.com

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 31

late and retrieve data in relational database management systems of IBM. The first commer-

cial implementation of SQL for database systems was introduced by Oracle8 in 1979. Since its

first incarnation, a number of different software companies recognized the potential of SQL

and developed their own versions in response to specific professional needs. The demand of

a standard was wanted throughout the leading RDBMS vendors. The syntactical base was

within the implementations almost the same, but they were defined in specific SQL dialect.

In addition, platform specific dependencies and operations have to be adapted. In 1992 the

standardization organizations ANSI and ISO developed the so called SQL/2 or SQL-92 stan-

dard [7]. The Standard SQL is defined as a declarative query language, based on set opera-

tions of the relational algebra to retrieve data in relational database. Further evolvements

and continuous improvements are described in [27], which are nowadays subject of the Joint

Technical Committee ISO/IEC JTC. However, there are many extensions to the standard,

which add procedural programming language, provided by the leading vendors. These in-

compatible extensions and different SQL implementations provided by the leading vendors

are major points of criticism on the standard. Another criticism is the deviation of from its

theoretical foundation, the relation model and its tuple calculus. While SQL provide a list of

rows as result, the relational model delivers a set of tuples represented as table.

However, as a result, SQL became the most widely used database language in busi-

ness and industry and the favourite query language for relational database management

systems running on central or distributed systems. In the meantime, SQL is more than a pure

query language, although the most common operation is the query. In the following section

the concept of queries using SQL statements is described in details, because it follows the

principle of OCL to produce no side-effects. The analogy between SQL queries and QCL in-

variants is shown by examples in further sections.

3.1.1 Querying relational database using SQL

A query is a method to retrieve data from any source, which allows the users to specify the

data they want to enquire. Typically, it is used to access relational database management

system by SQL statements. Data retrieval needs to be as easy as possible because the peo-

ple, who write the queries, are not always those, who designed the database. Considerably,

the language constructs for querying databases has to powerful enough to deal with all the

user requirements in an intuitive manner.

 A query expressed by the SELECT statement, represents a set of elements. The SE-

LECT keyword allows the user to describe the desired data, in what order the data is ar-

ranged or what calculations are performed on the fetched data. Therefore the standard of

SQL [7] provide up to six clauses, where the first two are mandatory. A simple SELECT state-

8
 http://www.oracle.com

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 32

ment only requires a table and a list of the desired columns within the table. The following

example shows a query that returns a list of persons.

SELECT * FROM Person

The asterisk is used to refer all columns of the queried table. If only the firstname and the

lastname of the persons in the table are needed, the asterisk is replaced as followed.

SELECT firstname, lastname FROM Person

In contrast to other SQL constructs, it is the most complex command due to the user re-

quirements. Queries are responsible for planning, optimizing and performing the physical

operations to generate the desired result as efficient as possible. Therefore the optional

keywords and sub queries provide a powerful concept (see syntax for queries in [7]).

 The first mandatory part of a SELECT statement is an expression, which defines the desired columns in

the result set. Therefore aggregate functions, renaming expressions or just a column name of a speci-

fied table in the FROM clause can be used.

 The FROM clause (mandatory) refers the necessary table(s) from which the data is retrieved. It can in-

clude different kind of joins or sub queries to specify the desired data and to optimize the query proc-

ess.

 The WHERE clause is used to limit the number of affected rows of a query. It enables a restriction of

the result set by defining criteria, which eliminates all rows that does not fulfil a given these criteria

expressed by predicates.

 The GROUP BY statement is used in conjunction with the aggregate functions to group the result-set

by one or more columns or to eliminate duplicate rows.

 The HAVING clause was added to SQL because the WHERE keyword could not be used in conjunction

with aggregate functions. It contains a predicate to filter the rows resulting from the GROUP BY clause.

 With the ORDER BY clause, the result set can be sorted by setting criteria. The sort criteria can be - but

not limited to - column names, expressions, arithmetic operations or user-defined functions (option-

ally ascending or descending). The results of expressions are evaluated and are used to sort the result

set.

The following example demonstrates the powerful constructs of SQL including all mentioned

keywords based on the exemplary mapping of the motivation example to relational data-

bases in Chapter 3.2.1. The SELECT statements return those managers and their salary that

earn more money than the average income of all managers sorted by the highest income.

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 33

SELECT p1.pid, SUM(j1.salary)

FROM Person p1, Job j1, Company c1

WHERE p1.pid = j1.pid AND j1.cid = c1.cid AND p1.pid = c1.manager

GROUP BY p1.pid

HAVING SUM(j1.salary) > (SELECT AVG(salary) as average FROM Person p2,

 Job j2, Company c2 WHERE p2.pid = j2.pid

 AND j2.cid = c2.cid AND p2.pid = c2.manager)

ORDER BY SUM(j.salary) ASCENDING

The select expression includes the personal ID of the table Person, followed by the aggregate

function SUM, which summarize the salary of each person. The FROM clause contains the

necessary tables (Person, Job, Company) and use abbreviations (p1, j1, c1) for an easier ref-

erencing within the query. These references explain the relations between the tables to

identify the managers and their salary, which is shown in the WHERE clause. The conditions

in the WHERE clause could also be expressed using JOINS in the FROM clause. For the sake of

demonstration, the conditions are defined in the WHERE statement as criteria to limit the

number of elements in the result set. The GROUP BY clause group the result set to calculate

the sum of each manager. The calculated sum is then compared with the average income of

all managers, which is computed in a sub query. The HAVING clause filters the rows to iden-

tify only those manager that earn above the average income of all managers. Last, but not

least the ORDER BY statement defines the sort criteria for the final result set.

 A step-by-step introduction can be found in [27], which explains the details of the

foundational concepts in a structured manner.

3.2 Analogy between OCL invariants and SQL queries

Before the similarity between OCL expressions and SQL SELECT statements can be shown,

the object-relational impedance mismatch, which occurred in the 1990s, is discussed briefly.

It reveals that the two paradigms are fundamentally different.

Object-oriented systems encapsulate data and behaviour in objects, whereas rela-

tional database systems store the data in tables. Objects are defined behind an interface and

have a unique identity. On the other hand, relational databases are based on the mathe-

matical concept of the relational algebra. A relational database is a self-descriptive reposi-

tory of data that follows a defined structure or schema. These schemas stay relative static,

while the data usually change very often.

To resolve the contradiction techniques for a direct object-relational mapping (ORM)

that provide the ability to convert object-oriented data models in relational database sche-

mas, was developed. Frameworks like Hibernate9 provide comprehensive support for the

design of database and programming code. An application can thus be developed in one and

the same conceptual framework. Nowadays, the integration of relational databases into ob-

9
 http://www.hibernate.org/

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 34

ject-oriented applications is state of the art in software development. The disadvantage of

the approach is that the strength and skills of RDBMS are not used, which leads to inefficient

performance.

One of the easiest realizations is the commonly used class-to-table mapping [28],

which is based on the UML class diagram technique to design the structure of components.

It may be obtained by the means of the following steps:

 Entities or classes are translated into tables. Attributes of entities represent columns of the translated

tables.

 While relations are mapped into a set of tables or foreign key constraints depending on their multiplic-

ity.

 User-specific types are described with domains in the Data Definition Language (DDL) within the SQL

standard.

The following sections leads through the mapping of the UML class diagram in Figure 6 to an

equivalent relational database schema, using equivalent data for the object-oriented and

relational models (see Chapter 3.2.2) and the mapping of OCL to SQL by means of examples.

3.2.1 Exemplary mapping of UML model to relational database

For the demonstration of the analogy of OCL invariants and SQL queries, the motivation ex-

ample in Chapter 2.1.4 has to be mapped to the relational database schema. Therefore the

class-to-table mapping in [28] was chosen. Each class in Figure 6 represent a table. Relation-

ships are translated into a set of tables or foreign key constraints depending on their multi-

plicity. According to the class-to-table approach, the following tables are determined:

create table PERSON (PID integer PRIMARY KEY,

FIRSTNAME varchar not null,
LASTNAME varchar not null,
AGE integer,
BIRTHDATE date not null,
GENDER Gender not null,
UNEMPLOYED Boolean not null,
MARRIED Boolean not null,
WIFE_HUSBAND integer references PERSON,
PARENT_CHILDREN integer references PERSON)

create table COMPANY (COID integer primary key,
NAME varchar not null,
ADDRESS varchar not null,
NUMBEROFEMPLOYEES integer,
MANAGER integer references PERSON)

create table VEHICLE (VID integer primary key,
REGISTRATION varchar not null,
VEHICLE_OWNER integer references PERSON)

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 35

create table CAR (VID integer primary key,
CATEGORY CarCategory not null,
foreign key (VID) references PERSON)

create table MOTORCYCLE (VID integer primary key,

foreign key (VID) references PERSON)

create table ACCOUNT (AID integer primary key,

ACCOUNTID varchar not null,
BALANCE float not null,
ACCOUNT_OWNER integer references PERSON)

create table JOB (PID integer references PERSON,

COID integer references COMPANY,
STARTDATE date not null,
ENDDATE date,
SALARY float,
primary key(PID, COID))

create domain SEXTYPE character check (value in ‘m’, ‘f’)
create domain CARCATEGORY character check (value in ‘l, ‘m’, ‘c’)

3.2.2 Exemplary data for the UML model and the relational database

In addition to explain the analogy between OCL and SQL, instances of the objects for the

UML class diagram and equivalent data stored in the relational database is needed. The cor-

responding data entries in the database are listed in the following tables. The instances of

the UML class diagram are illustrated as an object diagram (see Figure 11).

PID First-

name

Last-

name

Age Birthdate Gender Unem-

ployed

Married Wife_

Husband

Parent_

Children

P1 Markus Siedler 17 24.03.1996 m True True Null Null

P2 Karin Popp 54 22.12.1959 f False True Null Null

P3 Herbert Humer 25 15.10.1988 m False True Null Null

P4 Michael Eder 22 02.05.1991 m False False Null Null

Table 3 - Data entries in table Person

VID Registration Vehicle_Owner

M1 Missing P3

M2 Done P1

C1 Done P3

Table 4 - Data entries in table Vehicle

For the demonstration the special types for vehicles are not used, because they only include
the foreign key reference to its super type.

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 36

COID Name Address NumberOfEmployees Manager

CO1 SP Nestroyplatz 1, 1020 Vienna 25 P2

CO2 OS Steingasse 3, 1030 Vienna 87 Null

Table 5 - Data entries in table Company

PID COID StartDate EndDate Salary

P4 CO1 02.07.2009 Null 1100

P4 CO2 05.01.2011 Null 450

Table 6 - Data entries in table Job

The identifiers in the relational database tables and the instances within the object diagram

are extended by the first letters of the entity. For example, the data entries for Person are

using a P in front of the identifier. This modification is done to provide an easier comparison

between the models and a better understanding for following OCL2SQL examples.

Figure 11 - Object diagram for OCL2SQL demonstration

The data entries describe persons with individual properties and relations. The persons P1

and P3 own one or two vehicles. On the other hand, the persons P2 and P4 have relations to

companies. P2 is the manager of the company CO1, where P4 is just an employee of CO1,

described with the object J1. The job J1 represents the relation of an employee and extends

it with properties like the salary that the person earns. Person P4 is very diligent – P4 has a

second job at the company CO2. If the monthly income is calculated the salaries are summed

up as we show in one of the following OCL/SQL examples in the next section.

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 37

3.2.3 Exemplary mapping from OCL to SQL

This section deals with the query languages of OCL and SQL by means of examples. Each

demonstration is structured as followed: First, the OCL invariant is defined on the UML class

diagram in Figure 6, by setting the context of the OCL expression. Comments describe the

meaning of the expression in natural language. Second, an equivalent SQL query based on

the relational database schema in Chapter 3.2.1 is specified to depict the analogy between

the query languages and to highlight the result sets. The SQL statements use sub queries for

an easier understanding of the relational algebra. A sub query in the following examples al-

ways represents all data entries of a type (see Mapping Example 2). For the implementation

of the ADOCLE, we could figure out transformation patterns between OCL and SQL. Finally,

the output in form of a result set follows based on the exemplary data in Chapter 3.2.2.

Mapping Example 1 - Attribute

OCL: -- Transformation pattern for attributes

-- Full-aged married persons.

context Person inv fullAgedMarriedPersons:

self.age > 18 and self.married = true

SQL: SELECT * FROM Person as p WHERE p.age > 18 and p.married = true

Result set: p2, p3

Mapping Example 1 shows the transformation pattern for attributes. Attributes in UML ac-

cessing with OCL invariants can be referred by SQL in a similar way. Therefore the predicates

(self.age > 18, self.married = true) in OCL has to be mapped in predicates that are placed in

the WHERE clause. The next cases explain the different kinds of associations and its trans-

formation pattern. The OCL navigation self.manager in Mapping Example 2 represents all

managers. Therefore all instances of persons have to be checked, if they have the relation

manager to an instance of company. As output, the instances of persons are required, that is

done by the first line in the SQL query.

Mapping Example 2 - Many-to-One Relation Manager

OCL: -- Transformation pattern for associations

 -- Many-to-one relation

-- Manager of a company

context Company inv: getTheManagerOfACompany

self.manager

SQL: SELECT p.* FROM (

SELECT c.* FROM Company c, -- all instances of companies

SELECT p.* FROM Person p) -- all instances of persons

WHERE c.manager = p.pid -- relation manager

Result set: p2

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 38

Mapping Example 3 - Many-to-One Relation Vehicle Owner

OCL: -- Owner of a vehicle

-- Many-to-one relation

context Vehicle inv: getTheOwnerOfAVehicle

self.owner

SQL: SELECT p.* FROM (

SELECT v.* FROM Vehicle v,

SELECT p.* FROM Person p)

WHERE v.vehicle_owner = p.pid

Result set: p1, p2

The Mapping Example 3 shows the same behaviour as Mapping Example 2. It just describes

another many-to-one OCL navigation in the UML class diagram, whereas the Mapping Exam-

ple 4 depicts the other direction of the relation. The one-to-many relation self.vehicles

represents all vehicles of all persons. The SQL statements of Mapping Example 3 and Map-

ping Example 4 look very similar. The used join between the tables is the same, but the que-

ried result set is different. In the Mapping Example 3, the persons, who already have a vehi-

cle, are listed. On the other hand, the Mapping Example 4 shows a result set of vehicles that

are related to a person.

Mapping Example 4 - One-to-Many Relation

OCL: -- Navigation from Company to Person

 -- One-to-many relation

context Person inv: ownedVehicles

self.vehicles

SQL: SELECT v.* FROM (

SELECT p.* FROM Person p,

SELECT v.* FROM Vehicle v)

WHERE p.pid = v.vehicle_owner

Result set: m1, m2, c1

Mapping Example 5 - Combination of relations and attributes

OCL: -- Navigation from Company to Person

 -- One-to-many relation

-- restriction to persion with id 1

context Person inv: ownedVehicles

self.vehicles and self.pid = 1

SQL: SELECT v.* FROM (

SELECT p.* FROM Person p,

SELECT v.* FROM Vehicle v)

WHERE p.pid = v.vehicle_owner AND p.pid = 1

Result set: m2

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 39

If the query of Mapping Example 4 is extended by a restriction to a specific person (PID is 1)
– appending an attribute mapping, the result set is limited to the following entities (see
Mapping Example 5).

Mapping Example 6 - Operation

OCL: -- Transformation pattern for operation

-- Calculate the salary of a person

context Person inv: salary of a person

self.job.salary->sum()

SQL: SELECT SUM(j.salary) FROM (

SELECT p.* FROM Person p,

SELECT j.* FROM Job j)

WHERE p.pid = j.pid

GROUP BY p.pid

Result: 1550

OCL Operations can be described with aggregate functions of SQL. There are several trans-

formation patterns depending on the operation in OCL. For the Mapping Example 6, a group-

ing for each person in conjunction with the aggregate function SUM is necessary. The patterns

are founded on a comprehensive study of possible transformations of OCL expressions to SQL [29].

The author describes the patterns depending on the type hierarchy of OCL and categorizes

them.

3.3 OCL2SQL transformation approaches

There are several works about transformation approaches, especially for mapping object-

oriented models to relational database schemas. Most works concentrate on the transfor-

mation of UML class models to the Data Definition Language (DDL) of the SQL-92 standard. A

commonly used solution, the class-to-table mapping is explained in the previous sections.

The purpose of such approaches is the integration of relational database systems in object-

oriented software systems. In the context of the UML four-layer metamodel hierarchy, such

database application models are defined on layer M1 and the instances are placed in layer

M0 (see Chapter 2.1.1).

Based on this concept, the authors of the paper [30] reported on a systematic study of

the use of OCL expressions in the context of relational databases. They developed an ap-

proach for translating OCL expressions in SQL views. The purpose of [30] is to extend the

UML2SQL transformation engines with the powerful OCL expressions. Therefore, OCL map-

ping patterns are realised by equivalent SQL queries with the VIEW approach [31]. Database

enforced integrity constraints such as CHECK only refer on tuples of one table. Indeed typical

OCL expressions navigate through more entities, and so the OCL expression has to be

mapped to multiple tables respectively relations. According to [30], SQL views support the

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 40

requirements for translating OCL invariants to SQL queries using transformation patterns. An

integration of view-based integrity check on the persistence layer of the database can be

done with database-specific triggers. In addition, a template-based engine for code genera-

tion supports vendor-specific SQL dialects too. Such an approach could also be used for vali-

dating the instances against the model. In the context of this master thesis, the validation of

models against its metamodel and the WFRs can be managed.

The paper [32] presents an integrated approach for the development of enterprise

information systems (EIS). The idea concentrate on a conceptual metamodel that describe

several aspects of EIS software: application functions, business rules and the database

schema. In contrast to the approach in paper [29], the structural aspects of EIS, such as busi-

ness concepts, instances, relations and static constraints are defined by means of the Entity-

Relationship (ER). The database schema is generated by an ER-to-SQL mapping algorithm,

which acts similar to the class-to-table approach. For action or business rules, assertions and

derivation rules OCL expressions are used. The combination of the expressive power of the

ER conceptual metamodel and the dynamic OCL expressions allow the framework, the speci-

fication of structural and behavioural aspects. The framework written in Java, translate OCL

expressions in stored procedures expressed by SQL. Also basic CRUD (Create, Read, Update

and Delete) operations on entities are translated in stored procedures.

Other well-known approaches, like the Java Persistence API (JPA)10 in conjunction

with Hibernate11, provide an automatically generation of tables using annotations from a

conceptual model. Nevertheless, there is no support to manipulate the conceptual entities.

AndroMDA12 uses another way for translating UML/OCL to SQL. It is an open source

Model-Driven-Architecture framework that can take UML models and generate code for

other frameworks like Hibernate. In the case of Hibernate the OCL expressions are translated

in HQL, the logical query language of Hibernate. The created query is than translated in the

database-specific language using the SQL Dialects of Hibernate. Problems for supporting

database-specific issues are outsourced by using the Hibernate framework.

10

 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
11

 http://www.hibernate.org/
12

 http://www.andromda.org

http://www.andromda.org/

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 41

However, the main purpose of the mentioned works or frameworks is the generation of SQL

statements based on a source metamodel. Depending on a source metamodel, the target

metamodel is translated using transformation patterns, for example UML/OCL to SQL or

other programming languages. Figure 12 depicts two models, a class diagram and a physical

data model, which follows out of the class-to-table mapping approach mentioned in [28].

The metamodel is semantically equivalent. Thus, the instances of Person of the class model

are equivalent to the instances in the physical data model.

Figure 12 - Equal schemas due to the class-to-table mapping approach

The aim of such approaches is the integration of relational database systems in object-

oriented software systems. In the context of the problem statement of this master thesis,

we focus on an adaptable, reusable approach for transforming OCL expressions in other en-

vironments or CASE tools. The OCL expressions are applied to a selectable source meta-

model, which is mapped to a target metamodel of the user’s choice. Hence, the schemas are

already defined and are not certainly equivalent, but overlap semantically.

For example, the class model in Figure 13 contains two attributes to identify the firstname

and the lastname of a Person – instance of class model (Person {firstname=’Christoph’, last-

name=’Zehetner’}). In the physical database schema these information is distributed over

two instances (Person {name=’Christoph’}, Family {name=’Zehetner’}). Both schemas may

express semantically equivalent information, but the schemas are not equivalent at all.

However, not all concept of the class model are provided by the concepts of the physical

data model. For instance, the attributes gender, unemployed and married in the class model

in Figure 13 are not supported in the physical data model. Therefore, the concepts of the

class model have to be mapped to the concepts of the physical data model.

 On the Analogy of OCL and SQL

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 42

Figure 13 - Semantically overlapping schemas

In general a metamodel mapping between the source and target metamodel is necessary; to

identify the semantically equivalent corresponds of the target metamodel. The big differ-

ence between the previous mentioned works is that the target metamodel is generated out

of the source metamodel, whereas ADOCLE needs the metamodel mapping to support an

automatic validation. Nevertheless, the mentioned solutions provide a foundation to inte-

grate a metamodel mapping in an independent OCL2SQL transformation approach, which

follows in the next chapter.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 43

4 Realizing ADOCLE

The chapter deals with the prototypical implementation of an adaptable approach, ADOCLE

for transforming OCL expressions in other environments. First, we give an overview of the

transformation process of OCL expressions applied to a selectable source metamodel. Sec-

ond, the architectural approach and its main components as well as the design decisions are

explained. Furthermore, the user interface of the prototype is illustrated. Finally, the chosen

development method and environment, as well as the used platform and environment tools

are documented.

4.1 Overview of the ADOCLE

The aim of the prototype is the transformation of OCL expressions in other environments.

Therefore, we defined a process, which illustrates the information flow and the relations

between the main components during the transformation. Each component manages its

tasks in an independent module. This allows a reuse of these modules. Figure 14 shows an

abstract overview of the transformation process, containing the main components, their

dependencies as well as input and output objects.

Figure 14 - Abstract view of ADOCLE

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 44

For the prototype we use the UML metamodel as source metamodel and the well-

formedness OCL expressions in the UML specification as OCL input. Enterprise Architect is

chosen as a UML modelling tool. Because, EA uses a relational database to store the model

information, we decide to use the physical database schema of the EA as target metamodel.

EA’s database schema is described with Structured Query Language (SQL) and based on the

SQL-92 standard. The mapping between the UML metamodel and the EA database schema is

based on patterns, which identifies the semantically equivalent UML metamodel elements

that are stored in the database of EA. When other metamodels are chosen, the metamodel

mapping has to be defined by patterns depending on the chosen metamodels. The trans-

formation process is the same, but the transformation rules have to be adapted according to

the chosen metamodels. Consequently, the mentioned artefacts (UML metamodel, EA data-

base schema and the metamodel mapping between them) provide the base for the trans-

formation process, which are loaded at the beginning by the Metamodel Loader. For an eas-

ier understanding, Figure 15 depicts the transformation process from the perspective of an

ADOCLE user. The Interactive OCL Console describes components of the user interface,

which are explained in Chapter 4.3 in detail.

Figure 15 - ADOCLE

The OCL Query Builder provides the ability to read the loaded source metamodel (UML

metamodel) and returns the next possible text segments. Hence, the defined OCL expression

is always applied to the source metamodel. These text segments can be attributes, associa-

tion ends of the source metamodel or operations depending on the current position in the

metamodel (see Chapter 2.2.3). The main task of the ADOCLE prototype is to analyse the

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 45

OCL expression and generate an equivalent SQL expression for the target metamodel – the

database schema of EA. Therefore, the OCL interpreter analyse the given text segments (OCL

expression) and generate an abstract syntax tree (AST), which checks the conformance of

the OCL expression against the OCL grammar in [3]. As next step, the OCL expression in form

of the AST is translated to an SQL expression. The OCL transformator navigates through the

AST and identifies implemented pattern and resolve the metamodel mapping depending on

the parts within the given AST. Finally, the generated SQL expression is executed to provide

an automatic validation of the well-formedness rules within the EA database. The core com-

ponents and the architecture of the ADOCLE are explained in the following sections in detail.

A user interface supports the ADOCLE user by the generation of the OCL expression with

a flexible OCL Query Builder using IntelliSense. The results of the created SQL expression are

listed. Typically an OCL expression results in a positive state and delivers the valid elements.

But the more interesting elements are those, which do not fulfil an OCL expression. There-

fore, we inverse the OCL input to return those elements that are not conform to the given

OCL expression. Chapter 4.3 provides further details how to work with the user interface.

4.2 Architecture of the ADOCLE

This chapter deals with the architecture and the implementation of the ADOCLE in detail.

The architecture approach is module-based. It provides an easy integration of metamodels

using templates for parsing or loading source metamodels, target metamodels and the map-

pings between them. An adaptable transformation unit allows defining mapping rules be-

tween source and target metamodels, which is used to generate an equivalent expression

for the target metamodel from an OCL expression applied to the source metamodel. In the

case of the Enterprise Architect, the target metamodel is the database schema of the tool

that leads to an OCL2SQL transformation. Metamodel independent components can be bet-

ter reused for other metamodel transformations. The architecture is designed for openness

and modularity.

4.2.1 Metamodel loader

The first module is responsible for parsing and loading metamodels, which are described

with abstract syntax trees (AST, regardless of a source or target metamodel). The paper [33]

addresses theoretical and practical aspects of implementing multi-stage languages using

abstract syntax trees and illustrate why this strategy can be particularly useful for imple-

menting domain-specific languages in a typed, functional setting. Multi-stage languages us-

ing ASTs allow computations in every stage (every part of the AST) to provide the ability of

executing actions or to refer to values from previous stages. In the paper significant gains (in

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 46

the typed functional setting) are demonstrated, if the implemented strategy is used in con-

junction with runtime source-to-source transformations.

In the case of ADOCLE, a general interface is defined to provide a metamodel independent

parsing and loading, which are expressed by abstract syntax trees. The general interface de-

scribes the data structure of a metamodel environment (see Figure 16) to compare different

metamodel elements and to define mapping rules between them. The idea is to express any

kind of metamodel by an abstract syntax tree using a self-defined structure – metamodel

environment. For example, the UML metamodel uses classes, properties and associations to

describe the main components and relationships. The EA metamodel uses a relational data-

base schema expressed by SQL that is structured with tables, fields and joins instead. Hence,

the semantic information is prepared in a similar manner but differs structural in different

schemas. The mapping between the UML metamodel and the EA schema deals with struc-

tural differences to link the semantic equivalent information in both schemas. However, one

UML metamodel element is often expressed by a combination of different parts of the EA

schema. Each metamodel is parsed and mapped to the self-defined data structure (environ-

ment), which is represented by the abstract syntax trees. Afterwards these trees are serial-

ized for later reuse. This will reduce the initialization time of ADOCLE. The serialized ASTs

constitute a complete data source for other modules.

 The metamodel environment parser is responsible for searching elements in an envi-

ronment that represents a metamodel in the self-defined data structure. Therefore a depth-

first search (DFS) algorithm [34] is applied for traversing the tree structure. The algorithm

starts at the root and explores as far as possible along each branch before backtracking. This

algorithm was chosen, because it is easy to implement and adequate for the prototype de-

velopment. If the idea of ADOCLE will achieve product maturity, more efficient algorithms

should be taken into account.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 47

Figure 16 – Metamodel Loader

The benefit of the mapping to a self-defined structure is that transformation rules can be

easier defined between any mapped metamodel due to the consistent structure (see Chap-

ter 4.2.1.1). The mapping to a self-defined structure is a template-based approach. The pro-

totype realizes the parsing of XML-based metamodels. Other file formats are also possible,

but there are no templates already available.

But the main challenge of the first module is the determination of the schema mapping

between the source and the target metamodel/schema. Hence, in this chapter the terms

schema and metamodel as well as model and instances are used as synonyms, respectively.

Terms like schema mapping or schema matching are often used interchangeably. In general,

schema transformation is the translation of one (or more) schema in another (or more) or

the combination of more schemas to a new schema. A transformation of a schema to an-

other is called schema mapping, while the automatic detection of such mappings is named

schema matching. A schema mapping consists of correspondences or associations that relate

semantically equivalent elements of two or more schemas. In the case of ADOCLE, the

schema mapping defines all semantically equivalent correspondences between the UML

metamodel and the physical database schema of EA. These relations are used to derive

transformation patterns to translate data from one schema as completely as possible into

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 48

another (see Chapter 4.2.1.1). There are two options to detect semantically equivalent cor-

respondences between schemas: manually or automatically.

Manual schema transformation is the process of identifying semantic mappings, or cor-

respondences between two or more schemas using no matching solution. Just humans make

the decisions about the semantically relations between the schemas. On the other side, the

automatically schema transformation use some kind of matching algorithm for the identifi-

cation. The origins of schema matching lies in the area of database engineering in the 1980s

and 1990s, as autonomous database started to federate [35]. Thus, the originally purpose of

schema matching is either to merge two or more databases, or to enable queries on multi-

ple, heterogeneous database. But schema matching becomes a critical problem in many ap-

plication domains, such as data warehousing, e-commerce, semantic web, schema/ontology

integration, etc. In current implementations, schema transformation is typically performed

manually, which has significant limitations [36], or in best cases semi-automatically. Manual

schema transformation is a tedious and time-consuming task, but it is more exactly in most

cases. On the other side, automated schema matching provides a more comfortable way of

finding semantically equivalent correspondences, but without a guarantee of correctness.

Many diverse approaches to the schema matching problem have been proposed; while sur-

veys [36], [37], [38] presented and compared the major contributions of the last decades.

These works describe the problem of schema matching in detail and illustrate the different

kind of heterogeneities and resolutions of them. In addition, classifications for the research

work are developed and analysed to identify the directions in which research on schema

matching is headed. Finally, the surveys discuss the advantages and disadvantages as well as

the orientation for future research work. However, none of the schema matching methods

in [36] – latest aforementioned survey - have reached a stage of being completely automatic.

Some automatically algorithms described in [36] suggests potential matches, but humans

often make the final judgement. Some researches, mentioned in [36], do not foresee fully

automatic schema matching as a possibility, and orient their researches towards assisting

human-performed schema matching.

According to the idea of ADOCLE, the major issue is the changeability of the source and

the target metamodel. A metamodel contains the meta information of the stored data, for

example, the instances. It could be designed as a tree in XML like the UML metamodel (see

[1], [2]), as schema in a relational database (see [5]) or as an object structure in any pro-

gramming language provided by an API or web service. The schema transformation has to be

supported for all combinations due to the adaptive approach of ADOCLE.

Using an automated schema matching approach, most of the conflicts and heterogenei-

ties (syntactical, structural, representational or semantic heterogeneity), described in the

aforementioned surveys, have to be solved, which is quite difficult and time-intensive. Nev-

ertheless, there is no guarantee that all matches are found and refer the semantically

equivalent correspondences, which is essentially for ADOCLE.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 49

 We decided to use a manual schema transformation for the implementation of the

prototype. This master thesis is more focussed on the functionality of the ADOCLE approach

and not on solving the matching problem. For future work, a semi-automatically solution for

the schema matching could assist during the implementation of other adapter and reduce

the specification of the metamodel mapping.

4.2.1.1 Manual Metamodel Mapping

The focus of the implementation of the manual schema transformation is led to keep it as

simple as possible, because it provides the foundation for further environments. We use a

solution that combines all information (source metamodel, target metamodel, mapping be-

tween them) in a single dataset. Therefore, the source and target schema was imported us-

ing a UML modelling tool. Usually, the Enterprise Architect was consulted.

The advantage of this approach is that each element of the source and the target

metamodel get a global identifier within EA. Each metamodel has to be mapped to the self-

defined structure. Possible name matching problems while parsing the metamodel are

eliminated through the global identifier. In addition, searching in the self-defined structure

becomes more efficient. Furthermore, the full functionality of the Enterprise Architect can

be used like the visualization of the source and the target metamodel. The mapping rules

between elements could be easily defined by drawing different kind of relations between a

source metamodel element and a target metamodel element (see Chapter 4.2.1.2). Before

the mapping rules can be determined, we defined a metamodel mapping concept (see Fig-

ure 17). It specifies the structure of the mapping patterns which is necessary to recognize

the different kinds of defined mappings during the transformation process (see Chapter

4.2.3).

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 50

Figure 17 - Metamodel mapping concept

4.2.1.2 Metamodel Mapping Patterns

This chapter deals with the different kinds of metamodel mapping patterns that are used to

define the manual schema mapping based on the metamodel mapping concept illustrated in

Figure 17.

4.2.1.2.1 Element Mapping

The mapping of elements is defined by a direct relation between the elements that describe

semantically equivalent correspondences in both metamodels. The connectors contain the

details in form of constraints how the source metamodel element is mapped to the target

metamodel element. The relation between the metamodels may be many to many (m:n). In

most cases, the mappings are 1:n associations from UML to the EA schema. Figure 18 shows

the mapping of the UML concept State to the corresponding parts in the EA schema. In the

database schema of the Enterprise Architect a State is stored in the table t_object with the

Object_Type ‘State’ and the NType ‘0’ or ‘8’.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 51

Figure 18 - Element mapping

4.2.1.2.2 Property Mapping

The mapping pattern for properties is very similar to the element mapping pattern. The rela-

tion refers to the property of the source metamodel and how it is described in the target

schema. In Figure 19 the mapping of two properties of the UML concept State is depicted. It

shows that the property isComposite is described in another target metamodel element than

the property isOrthogonal.

Figure 19 - Property mapping

4.2.1.2.3 Enumeration Mapping

An enumeration is a special kind of property. Therefore, a separate mapping pattern is nec-

essary. Each enumeration literal of the source metamodel has to be defined to refer the se-

mantically equivalent element in the target metamodel. Figure 20 depicts the mapping of

UML concept Pseudostate.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 52

Figure 20 - Enumeration mapping

4.2.1.2.4 Association Mapping

The mapping of an association depends on the related elements in the source metamodel

and the meaning of the association. The mapping is defined by constraints that represent a

semantically equivalent association in the target metamodel. In Figure 21 the association

between the UML concepts State and Pseudostate is depicted. In the case of the Enterprise

Architect database schema, a join between two sets has to be defined, which is declared by

the INNER JOIN constraint shown in Figure 21. The INNER JOIN constraint specifies the rela-

tion in the target metamodel using the required fields. In the following example, the associa-

tion describes that a state can have connection points. A well-formedness rule of UML speci-

fies that only pseudostates (UML concept Pseudostate) with a kind of exitPoint and entry-

Point are connection points (UML concept ConnectionPoint). Additional constraints can be

defined by using the keyword CONSTRAINT to explain the semantically equivalent represen-

tation of an association.

Figure 21 - Association mapping

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 53

4.2.2 OCL Interpreter

The second module is responsible for the resolution of OCL commands. The module takes a

text segment as input and produces a valid homogenous object tree of the OCL grammar [3].

The OCL interpreter should be independent of other parts and easily maintainable, because

the OCL grammar can change through updates of the specifications developed by the OMG.

A parser generator is used to generate automatically an OCL parser based on the OCL

grammar. A parser generator is kind of compiler-compiler or compiler-generator. In 1963

Tony Booker has written the first compiler-compiler for the Ferranti Atlas computer at the

University of Manchester and defined it as “an early compiler generator for the Atlas, with

its own distinctive input language” [39]. According to Jørgensen’s work [40], compiler-

generators13 are often emphasized as being the most important application of partial evalua-

tion. The operational area is small formal languages. “Partial evaluation is described as a

source-to-source program transformation technique for specializing programs with respect

to parts of their input” [41]. Much partial evaluation work has concerned on automatic com-

piler generation from an interpretive definition of a programming language, but it also has

important applications to metaprogramming.

The core of the module is generated by the ANTLR Parser Generator [42]. ANTLR14

takes a modified version of the formal description of the OCL grammar (see Chapter 4.2.2.1),

e.g. in Backus-Naur Form (BNF) [13], [43] or Extended-Backus-Naur Form (EBNF) [13], [43]

and outputs a source code in a programming language of your choice. The source code of

the module is separated in three parts: a lexer, a parser and a treeparser.

The lexer takes a stream of characters and emits a stream of tokens that are specified

through the OCL Grammar [3]. The text segments of an OCL expression can be produced

using the OCL Query Builder, which navigates through the source metamodel and provide

possible text phrases. However, it is also possible to copy and paste an OCL expression, the

OCL parser will check the correctness of the provided OCL expression. Characters like

whitespaces can be flagged as unnecessary. The parser reads the token stream, typically the

emitted stream of the lexer and generates an abstract syntax tree (see the structure of the

AST in Figure 26 in Chapter 4.2.3.1). An AST is a purely abstract representation of the syntax,

where a direct association between the production rules in the specification and the nodes

in the tree is specified. The treeparser uses the AST as source to produce a homogenous ob-

ject tree that reflects the OCL command. The object tree forms a consistent base for trans-

formation rules, so that every element in the object tree can trigger actions during the trans-

formation process.

13 “A compiler generator is a program (or system) that given some machine readable formal description of a programming

language produces a compiler for that language.” [40]
14

 “ANTLR, ANother Tool for Language Recognition, is a language tool that provides a framework for constructing recogniz-

ers, interpreters, compilers, and translators from grammatical descriptions containing actions in a variety of target lan-

guages.” http://www.antlr.org/

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 54

Figure 22 – OCL interpreter

The parser generation was realized and tested with Eclipse Helios SR215 and the

ANTLR plug-in (Version 3.2) [44]. The tools can be downloaded and are explained by several

tutorials and showcases in a detailed manner.

4.2.2.1 Modified OCL grammar

It is a well-known fact, that the OCL grammar as defined in the language specification is am-

biguous and is not suitable for a parser generator [45]. The specification uses production

rules, which are not available during a purely syntax based analysis (such as parsing). As the

authors of the paper [45] mentioned, “The disambiguating rules depend on information

from the environment, i.e. semantic information from the user model and context of the

expression.” The generated AST is validated against the environment information during the

transformation process described in the next section 4.2.3 to minimize the ambiguities. The

defined grammar of the ADOCLE is an equivalent grammar to that defined in the OCL specifi-

cation.

15

 Eclipse Helios is the annual release of Eclipse projects that provide a development environment.

http://www.eclipse.org/helios/

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 55

4.2.3 OCL Transformator

The third module represents the core of ADOCLE. The task of the core is to generate a se-

mantically equivalent expression in a target metamodel for an OCL expression. The signifi-

cant point of the task is the variable target metamodel and the implementation of the target

metamodel. A metamodel could be designed as a tree in XML like the UML metamodel (see

[1], [2]), as schema in a relational database (see [5]) or as an object structure in any pro-

gramming language. ADOCLE has to provide an abstract strategy to support any kind of

metamodel. First, a Strategy Pattern [46] is applied to manage different transformation algo-

rithms depending on the target metamodel and the realization of the target metamodel. A

target metamodel could be implemented in different ways. In the case of the ADOCLE proto-

type, an OCL2SQL transformation has been determined according to the physical database

schema of the EA, which supports quite a lot of databases and several versions of these da-

tabases. But, the interpretation of SQL depends on the driver, which provides the access to

the database management system. Therefore the OCL2SQL transformation is based on the

SQL-92 standard [7] and database specific functions are replaced by a dialect concept, which

helps generating optimized queries to those specific versions of database. Figure 23 shows

the approach of the ADOCLE that implements a generic transformation between OCL and

SQL for the automatic execution of OCL rules directly in the EA database. Transformation

strategies for other CASE tools can be added as autonomous algorithm.

Figure 23 - Module three - Strategy Pattern

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 56

The approach seems simple. But how can every single part of the object tree generated by

the OCL treeparser (see Figure 22) generate an equivalent part of the target metamodel.

Figure 24 shows a combination of an interpreter pattern and a command pattern to act after

receiving a part of the AST to transform it in a target metamodel element [46].

Figure 24 - Design Patterns used for the OCL Transformator

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 57

The interpreter pattern takes the object tree generated by the OCL treeparser and produces

an independent result object, which represents the provided OCL expression. Depending on

every object in the OCL tree, the suitable interpreter is used to generate a result object. The

final result object contains the equivalent expression of the target metamodel and the result

of the executed expression. A detailed illustration of the behaviour of the OCL transforma-

tion strategy is described in section 4.2.3.1.

The command pattern is activated within the suitable interpreter in the following cases:

(1) The suitable interpreter has to execute an operation of the OCL specification [3]. The OCL

operations listed in the OCL Specification [3] cannot be identified as separate element by the

OCL parser and the OCL treeparser, because the operation depends the type (see Chapter

2.2.4). The module two only guarantees that the input is valid. If an operation is recognized,

a command is executed to manage the operation depending on the type. The identification

of an operation is based on the OCL tree. The previous element has to be a right arrow (“->”)

(only special cases allow a dot (“.”)) and the following element has to be round brackets with

or without parameters. The list of supported operation was limited to those operations that

are necessary for the test cases or very commonly used operations (see Table 9).

(2) The result of an expression of any kind has to be resolved. For instance a relational expres-

sion has a left and a right term and an operator. The result type of a relational expression is

Boolean. The execution of the relational expression to generate the Boolean value is man-

aged by a command. The command is executed after resolving the left and the right term of

the expression. The terms can also be large OCL sub trees corresponding to the OCL gram-

mar.

4.2.3.1 Transformation example of a simple OCL constraint

The transformation example explains the steps how the suitable interpreter is chosen and a

command is executed. Therefore the OCL rule in Figure 25 is taken, which is part of the UML

Specification [2] and is also part of the evaluation (see Table 15). The rule expresses that a

final state of a state machine diagram is not allowed to have any outgoing connectors. Oth-

erwise the state machine model is invalid.

Figure 25 - OCL constraint basic structure

As input for the transformation process the OCL parser delivers an OCL tree. In Figure 26 the

output for the above sample is depicted. Figure 26 is generated by the ANTLR plug-in of

Eclipse Helios SR2.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 58

Figure 26 - OCL Parser Output for the example

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environment Page 59 of 126

During the transformation process (see sequence diagram - Figure 27), the first step is to set

the context declaration. The global variable self is set to the classifierContext (see Figure 26)

– which is an object of the source metamodel. In the illustration self is set to FinalState. The

stereotype and the expression name has no deeper meaning for the instance, but the OCL

parser need the parts to validate the input as correct.

The OCL expression in Figure 25 represents a relational expression – OCL tree. Due to

the type of the expression – usage of the interpreter pattern - the corresponding interpreter

is identified to resolve the expression type. The interpreter separates the relational expres-

sion in two postfix expressions (left and right term) and the relational operator equal. These

types are also resolved by suitable interpreters. This behaviour is applied until the leaves of

the OCL tree are reached. Each interpreter generates a result object for its level. In the end

the result of the relational expression is provided. This behaviour works for the most objects

of the OCL tree. Expectations are managed by commands.

The relational interpreter starts the interpretation of the left and right term with two

instances of a PostfixExpressionInterpreter (object postfix1 and postfix2 - see Figure 27). The

left term is the more interesting one, because it navigates through the source metamodel

and then executes an operation. Therefore every step of the postfix expression is resolved

using different resolving approaches.

The first element builds the base for the equivalent expression in the target meta-

model. Typically it can be described as a set of elements. For instance, all final states of an

modelled state machine. All further steps excluding the last one provide interim set results.

Such steps can be navigations through the metamodels or operations that constraint or ex-

pand the previous set. For this example, there is only one navigation step. So in Figure 27 the

loop only contains the resolver for navigations. The object single element resolver and navi-

gation resolver (see Figure 27) are responsible for the SQL generation based on the mapping

rules. Details about the algorithm will be explained in Chapter 4.2.3.3 and 4.2.3.4.

The last step packs generally the result object for the postfix expression. In this OCL

expression example the operation size is identified within the last step, which activates the

command client to create a SizeCommand. The function of the OCL command size is gener-

ated and executed in the target metamodel. The result object is delivered up to the rela-

tional expression, which represents the resolution of the left term in the target metamodel.

The right term is quite simple. The literal is identified and transformed in an interim

result object.

If the left and the right term are resolved, the result of the relational expression has

to be created. Therefore a command is used to compare the result objects of the right and

the left term using the given operator. In the example the result is of type Boolean, which

describes if the state machine is valid or not.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 60

Figure 27 - Behaviour of a Transformation Process for the example

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 61

4.2.3.2 Transformation of complex OCL constraint

More complex OCL rules may contain constraints with sub expression (see Figure 28). A sub

expression is a sub tree of the whole OCL tree created by the OCL parser.

Figure 28 - Complex OCL example

Such a sub tree leads to a separate execution of the transformation process. The approach

generates an equivalent expression of the sub expression as an executable instance, which

represents a set of elements. A big advantage is that result set operations can be applied,

which makes the implementation a lot easier to understand. The Chapter 4.2.3.3 and 4.2.3.4

show different algorithms for the OCL/SQL transformation and contains a description why a

separate execution achieves more benefits.

Moreover, sub expressions within an operation can be transformed in a concurrent

way. The concurrent programming approach is not yet used in the prototype, because the

test cases of the state machines does not often use sub expressions (see Chapter 5.4.2).

4.2.3.3 Constraint Algorithm

The principle of the constraint algorithm is to take a basic set of elements, for instances all

states in a state machine diagram and constraint or expand the set of elements. The result

set is described with a select statement in SQL [7] (see Chapter 3.1.12.2.2). The basic set of

elements is created by the single element resolver. It takes a source metamodel element

(see Chapter 4.2.3.1), resolve the mapping rules and generate a select statement that in-

cludes required conditions to represent a result set of the chosen source metamodel ele-

ment.

When the OCL expression is processed, the source metamodel is navigated, starting

at the context element defined in the OCL expression. Based on the mapping model be-

tween the source metamodel (UML metamodel) and the target metamodel (database

schema of EA), the necessary DB tables are collected for the FROM clause. The conditions in

the WHERE clause are derived from the mapping patterns and added to the same select

statement. Joins between tables, derived from the corresponding association mapping pat-

tern (see Chapter 4.2.1.2.4), are also added as condition in the WHERE clause. Special kinds

of joins like UNION or INTERSECT are not possible with the constraint algorithm, because we

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 62

just constraint or expand the set of elements using the WHERE clause and does not compare

two different result sets.

The qualifiers (table identifier, variable name, etc.) are created from a central genera-

tor that controls the names of all instances and the related target metamodel elements, in

this case the tables of the database schema to guarantee the singularity of the qualifier.

The constraint algorithm led very quickly to valid results for simple cases. The advan-

tage is that a condition for the set can be easily added. But the complexity of OCL expres-

sions is much higher than anticipated. During the implementation of the constraint algo-

rithm following issues were noted:

 It is possible to add conditions that are mutually exclusive.

 The power of different kind of join cannot be used efficient.

 Set operations are not possible in every case.

 Set operations are hard to identify in the output select statement.

Some parts of the constraint algorithm could be reused for another solution approach, for

instance the Subselect algorithm described in the next section.

4.2.3.4 Subselect Algorithm

The name of the algorithm already describes the concept of the Subselect algorithm. The

single element resolver works as in the constraint algorithm; it generates a select statement

that represents a set of elements resolving the metamodel mapping. This select statement

could be used as sub select in surrounding select statements for set operations, complex SQL

constructs or any kind of join could be specified.

 Figure 29 and Figure 30 leads through the Subselect algorithm steps for navigations

through the source metamodel and give an introduction to the algorithm. The figures show

how the OCL expression starting at Pseudostate, navigating to Transition and end at Trigger,

is resolved.

For navigating through the source metamodel the algorithm generate a select state-

ment for each source metamodel element. It starts at the initial point and create the first

select statement (see Figure 29 – set A). The next select statement is produced for the end

of the first navigation step (see Figure 29 – set B). These two select statements are set as sub

select statements in a surrounding select statement (see Figure 30). The used association

between Pseudostate and Transition is called outgoing, which is described with some kind of

join that is added to the surrounding select statement (see Figure 29 – set C). The output of

the navigation resolution is again a select statement that can be used for further steps.

The next navigation from Transition to Trigger facilitates the association trigger. The

Subselect algorithm generate a select statement that represents the set of triggers (set D)

and join the previous select statement (set C) with the set of triggers (set D) in a surrounding

select statement (set E).

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 63

Figure 29 - Subselect algorithm example

The final output of navigations in the source metamodel is some kind of SQL tree. The leaves

represent basic sets, which is source metamodel subset, intermediate sets displays the join

between sets and the root outlines the final set.

The approach is a bottom-up construction that can reuse the generated sets within a

SQL tree. In contrast of the constraint algorithm set operations or more complex operations

can be defined due to the surrounding select statement. The set operations and other SQL

constructions are needed to express parts of the OCL grammar [3]. The Chapter 4.2.3.5 lists

the range of already implemented features and Chapter 4.2.3.6 explains transformations

where set operations or complex constructions are needed.

The resulting construction of any SQL tree is again a select statement that represents

the current set surrounding previous navigation steps, set operations or other complex con-

structions. A big advantage of the Subselect algorithm is that the small sets within the tree

illustrate the elements very well and can be executed faster than huge SQL statements with

more joins.

Figure 30 shows a generated output of the above mentioned OCL expression. Typi-

cally the select statement only includes necessary columns like identifiers or constraining

columns. The identifiers are needed to join the generated select statements in the surround-

ing select statement. The qualifier naming generator use a pattern for name creation; it

takes the name of the source and the target metamodel that are mapped, adding a token at

the beginning. The names of the sub select statement are sorted alphabetically.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 64

Figure 30 - Subselect algorithm SQL

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 65

4.2.3.5 Range of functionality

In the case of the development of a prototype not all parts of the OCL grammar [3] are sup-

ported already. The EBNF is fully provided from the OCL parser and tree parser, but not all

parts are triggered in the transformation process to generate SQL. The supported functions

(represented by the following tables) crystallize out of the required functionality managing

the test scenarios and the work of Alexander Schmidt [29] (see Chapter 4.2.3.6).

Expression Description Example
OCL constraints Describes a list of constraints

Constraint Defines the context declaration and the constraint bodies

Context declaration Describe the context declaration – only the class context
is supported, the operation context is not trigger for the
transformation process.

Classifier context Part of the Context declaration which sets the class con-
text explicit.

Context State

Constraint Body Defines the stereotype of the constraint and includes an
OCL expression.

Stereotype The stereotype describes when the OCL expression has to
be valid.

inv, pre, post

OCL expression The OCL expression can include a list of let expressions
(not supported) and one concrete expression.

Expression Super type of all kind of following expressions

Logical expression A logical expression consists of a left and a right argument
and a logical operator.

self.kind = #entryPoint
or self.kind = #exitPoint

Relational expression A relational expression consists of a left and a right argu-
ment and a relational operator.

self.size() = 1

Unary expression A unary expression consists of an unary operator followed
by an expression.

not (self.isEmpty())

Postfix expression
(Navigation)

Navigation through attributes, association ends, associa-
tion classes, and qualified associations.

self.connectionPoint

Postfix expression
(Operation)

Use of an operation
(see Table 9)

self->size()

Literal Literals characterize the different kind of possible basic
types.

Boolean, Integer, Real,
String

Enumeration Literal Each kind of the enumeration is identified as an enumera-
tion literal.

self.kind = #entryPoint

Return Type Some operations delivers a result sets. The return type
can be defined.

Declaration Within operations variables can be declared with a type to
express easier rules.

self->select(s1, s2 :
State | s1 <> s2)

Table 7 - List of supported OCL expressions

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 66

Only few parts are not supported:

 Operation context

 Let expressions

 Additive or multiplicative expressions

 If-Then-Else expressions

 Identification of Bag, Collection, Sequence or Set

Operator Description Type
and Boolean algebra:

True if the left and the right argument are true
Set operation:
Intersect of the left and the right set

Logical operation

or Boolean algebra:
True if the left or the right argument is true
Set operation:
Union of the left and the right set

Logical operation

xor Boolean algebra:
True if the left and the right argument are the same
Set operation:
Combination of operators: and, or and not

Logical operation

implies Boolean algebra:
True if the left and the right argument are
Set operation:
Combination of joins and aggregate functions (see XX)

Logical operation

not Boolean algebra:

True if the expression is false and otherwise

Set operation:

Negation of the set

Logical operation

= True if the left and the right argument are the same Relational operation

<> True if the left and the right argument are not the same Relational operation

< True if left argument is lower than the right argument Relational operation

<= True if left argument is lower than the right argument or the
arguments are the same

Relational operation

> True if left argument is greater than the right argument Relational operation

>= True if left argument is greater than the right argument or
the arguments are the same

Relational operation

Table 8 - List of supported OCL operators

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 67

Operation Description Type
oclAsType(type) The current element as of the given type AfterDot-Operation

oclIsTypeOf(type) True if the current element is an instance of the given type AfterDot-Operation

oclIsKindOf(type) True if the current element conforms to the given type AfterDot-Operation

size() Number of elements in the collection Standard-Operation

isEmpty() Does the collection contain no element? Standard-Operation

notEmpty() Does the collection contain one or more elements? Standard-Operation

exists(expression) Has at least one element for which expression is true? Iteration-Operation

forAll(expression) Is expression true for all elements? Iteration-Operation

reject(expression) Returns a collection containing all elements for which expres-
sion is false

Iteration-Operation

select(expression) Returns a collection containing all elements for which expres-
sion is true

Iteration-Operation

Table 9 - List of supported OCL operations

4.2.3.6 Transformation of OCL operators and OCL operations

In a more basically work [29], the author Alexander Schmidt described transformation pat-

terns between OCL and SQL formal and classified them in more or less critical translation

rules. The classification in [29] led to a restriction of the supported features of the prototype

for the first development cycle. As Alexander Schmidt mentioned there are mapping prob-

lems for OCL operations like the feature iterate. On the other hand some of the mapping

problems are not commonly used operations and a workaround using other OCL expressions

instead is possible. It is not necessary to implement all OCL operations to provide the whole

functionality.

In this work the author figured out that the transformation rules are dependent on

the database specification and their functionality. For example INTERSECT of SQL-92 stan-

dard is not implemented as keyword in all commercial databases like Microsoft Jet Database

Engine16. As mentioned above a dialect concept has to be included to exchange keywords or

workaround methods.

 The work [29] was essential for this master thesis, because the transformations pat-

terns constitute a scientific working base and the transformation rules are also referenced in

other scientific works or are used in projects. The framework described in [47] follows quite

similar approach to the idea of the ADOCLE. It is generating query language code for OCL

invariants. The concept is module-based and uses an abstract syntax tree for describing the

UML standard, but differs in the OCL/SQL translation method and the layer of metamodel-

ling [1] to ADOCLE. In the approach of [47] models on layer M1 are translated in database-

specific DDL (Data Definition Language). The OCL invariants are mapped to SQL Query views

16

 The Microsoft Jet (Joint Engine Technology) Database Engine is a database engine on which several prod-

ucts of Microsoft (Access, Visual Basic, etc.) have been built.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 68

and the validation is executed manually. This framework is a fundamental part of the

Eclipse-Plugin DresdenOCL (see Chapter 6.2.1).

For ADOCLE, the transformation rules in [29] has been implemented and tested using

the described combination of interpreter and command pattern in Chapter 4.2.3.1. In most

cases the patterns delivered the desired results like the logical and relational operators ex-

cepting implies (see Chapter 4.2.3.6.1). The supported operations (see Table 9) could be

transformed with some transformation patterns from [29] like forAll or exists, others are

implemented in own constructions like the isEmpty, size or select. The implementation of

isEmpty or size was much easier using a source code validation as a transformation in SQL

followed by an execution. Both returns equivalent results.

Nearly all transformation patterns were a huge help for the implementation of ADOCLE,

but the implies operator has to be implemented in its own way.

4.2.3.6.1 Transformation of the implies operator

When we talk about the concept of implication, it is necessary to distinguish between differ-

ent meanings. In the propositional logic an implies connective expresses a binary function,

representing the following truth table [48], [49]:

A B A

 B

T T T

T F F

F T T

F F T

Table 10 - Implication truth table

 is an abbreviation for in classical logic. It cannot be extended to more than

two arguments. It has the meaning “if A is true, then B is also true” [48], [49]. The transfor-

mation pattern in [29] match with this definition, but the resolution of does not

lead to the required results.

The implies operator can be considered as a symbol of the formal theory [48]. The

symbol used to denote implies is . It is also called

entailment, logical implication, semantic implication, logical consequence, etc. Because it

relates to the model theory saying that every model/interpretation of A is also a model of B,

this definition is stronger than the binary function in the propositional logic. A logical conse-

quence like states that whenever is true, then must

be true as well. The conclusion follows deductively from the premises. This does not mean

that the conclusion is true, as the premises can be false [50].

Based on an analysis of the definitions of implies the OCL operator implies has a

structure like . A typical OCL expression of the UML Specifi-

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 69

cation [1], [2] define rules like or . The interpreta-

tion of the logical consequence leads to the following approach. As first step the premises

 are formed to a basic set, which is used for the validation of each expression

 in the conclusion. The condition of an expression in the conclusion is trans-

formed to an aggregate function within a select statement. Therefore a combination of the

SQL elements: LEFT JOIN, GROUPBY and a HAVING clause helps to validate every data record

in the basic set. If the conclusion has more expressions every generated select statement is

validated according to correctness and is then combined dependent on the operator set be-

tween them. A small example out of the test cases (see Chapter 5.4.2.5) demonstrates the

construction and the record sets of the database that contains two expressions in the con-

clusion. The OCL expression describes that in a complete state machine, a join vertex must

have at least two incoming transitions and exactly one outgoing transition. In OCL it is ex-

pressed as Figure 31 shows.

Figure 31 - Implies example OCL expression

In the defined test data only one join element exists. Table 11 shows the basic set record

sets that influence the validation expressions B1 and B2. The record sets of the validation

expressions B1 and B2 are listed in the Table 12 and Table 13.

Object_ID ea_guid ParentID

303 {411F8899-8284-4380-B4FB-34D477ECC322} 0

Table 11 - Implies example set A elements

ea_guid amountOfOutgoingTransitions

{411F8899-8284-4380-B4FB-34D477ECC322} 1

Table 12 - Implies example set B1 validation

ea_guid amoutOfIncomingTransitions

{411F8899-8284-4380-B4FB-34D477ECC322} 3

Table 13 - Implies example set B2 validation

The amount of outgoing transitions is equal one and the amount of incoming transitions is

greater than two, so the tables contain the record set. If the amount of outgoing transitions

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 70

is not equal one, Table 12 will not contain the dataset. After the intermediate results are

calculated, the amounts are checked depending on the logical operator between. Due to the

and operator the record sets of the validation expressions have to be the amount of the

original set A, otherwise the validation is false. The validation expressions B1 and B2 are

interpreted as true and the select statements of B1 and B2 are joined dependent on the logi-

cal operator between them. The and operator leads to a join of the select statements of B1

and B2 using an intersect statement. For instance, the or operator would lead to join using a

union statement. The amount of the result does not change because both contain the same

element and the conclusion is interpreted as true. The OCL expression of Figure 31 is valid

because the validation expressions B1 and B2 are interpreted as true and the joined select

statement is interpreted as true.

 The solution approach uses an abstract syntax tree for the interpretation of the con-

clusion. Each expression is a node within this tree. Depending on the logical

operator between the nodes the interpretation of the tree leads to a Boolean result and the

suitable select statement. All test cases delivers the required results if an implies connective

is included in the OCL expression.

The third module provides the ability to transform and interpret a single OCL expression.

This feature can be used for an interactive OCL console like Eclipse MDT provides. The fourth

module complements the ability for more than one OCL expression.

4.2.4 OCL Validator

The fourth module is responsible for the automatic validation of models. Each drawn model

within a supported modelling tool should execute all supported OCL expression of the UML

Specification [1], [2]. The OCL validator takes the OCL expressions and lists all invalid ele-

ments with an error description for each invalid element that does not correspond to the

UML Specification [1], [2]. The validator seems to be just an extension for the third module,

but it is independent of the source or target metamodel. So it can take the list of OCL ex-

pressions and use any strategy that the third module provides. The result is always a list of

invalid elements or a message for a successful validation.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 71

4.3 User interface

This chapter illustrates the handling of the prototypical user interface. ADOCLE supports us-

ers by the creation of an OCL expression with a flexible OCL Query Builder using IntelliSense.

First, the models that should be validated have to be chosen. The user can define the

location of its drawn models using the dialog in the toolbar. In the case of the ADOCLE de-

velopment, the test data described in Chapter 5.4.1 are validated.

Next, the context has to be defined. The user navigates through the source meta-

model to specify the entry point to a model element where the user wants to attach an OCL

expression. As mentioned before in this chapter, the prototype is implemented for the UML

metamodel (source metamodel) and the target metamodel represent the physical database

schema of EA. The user goes step by step from the highest level package of the UML meta-

model down to the model element, where the OCL expression should be defined. Therefore,

the IntelliSense concept assists the user during the input. After pressing a dot, all sub ele-

ments are listed in a box, where the user can chose the desired one. In Figure 32 the context

is set to UML.StateMachines.BehaviorStateMachines.State to show one of the test cases

listed in Chapter 5.4.2. For the input of the OCL expression, the OCL Query Builder supports

the generation of valid text segments using IntelliSense. The OCL Query Builder provides the

navigation through the UML metamodel accessing attributes or association ends and possi-

ble operations according to the OCL type hierarchy. This feature is optional and can be dis-

abled. In Figure 32, the following OCL expression is defined:

-- A simple state is a state without any regions.

context State inv TUViennaOclCatalouge:

(self.isComposite = true) implies

(not (self.isSubmachineState = true)

After pressing the Execute Button, the results of the created SQL expression are listed, as

well as those elements that are not conform to a given OCL expression. The result sets are

separated in two lists: valid results and invalid results.

When the OCL Query Builder IntelliSense function is chosen, the result lists are pro-

vided on the fly according to the current input of the OCL expression and the generated SQL

expression out of the input. Thus, the user can additionally analyse the interim results of the

current OCL expression input.

For development purposes, the generated SQL statement is shown as in the right up-

per part. In addition the source metamodel, the target metamodel and the manual mapping

between are loaded and viewed in a tree structures. Finally, the mapping pattern based on

the current context divided in the source metamodel elements, the target metamodel ele-

ments and the used elements of the metamodel concept are shown.

 Realizing ADOCLE

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 72

Figure 32 - ADOCLE UI

4.4 Development issues

For the sake of completeness, the development issues are documented. Enterprise Architect

provides four wrapper APIs for its COM17 interface (Java18, Visual Basic (VB)19, Delphi20 and

C#21). For an integration of ADOCLE as EA Add-In, the programming languages VB, Delphi and

C# may be used. As development environment, Visual Studio 2010 extended with the add-

ins NUnit22 for testing and AnkhSVN23 for the revision control is selected. The version details

of the used tools follows:

 Visual Studio 2010 – Version 10.0.30319 RTMRel

 .NET Framework – Version 4.0.30319 RTMRel

 Enterprise Architect – Version 9.1.910, Database-Version 4.01

The source code is available on: https://subversion.assembla.com/svn/ocl-engine/

17

 http://www.microsoft.com/com/default.mspx
18

 http://www.java.com
19

 http://msdn.microsoft.com/en-us/vstudio/hh388573.aspx
20

 http://www.embarcadero.com/products/delphi
21

 http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx
22

 http://www.nunit.org/
23

 http://ankhsvn.open.collab.net/

http://www.microsoft.com/com/default.mspx
http://www.java.com/
http://msdn.microsoft.com/en-us/vstudio/hh388573.aspx
http://www.embarcadero.com/products/delphi
http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 73

5 Evaluation

The evaluation of the prototype shows which OCL expressions of the UML Specification [1, 2]

are executable and acceptable quick for end-users. Therefore the OCL commands of the

UML Specification are cut down to the state machine package of the UML metamodel, be-

cause the mapping between the UML metamodel and the Enterprise Architect database

schema is also cut down to this subset (see Chapter 4.2.1.1).

5.1 Goal

The target of the evaluation is a performance analysis that compares the prototype using

SQL commands and a solution approach of Sparx Systems.

As mentioned in Chapter 1.3, Enterprise Architect provides an API, which allows run-

ning programmatically through the model. This approach is manly used to provide validation

rules within Enterprise Architect. Writing such rules requires the knowledge, how UML mod-

els are persisted in the EA database.

In the case of failing executions, the results are summarized and categorized in a con-

sistency analysis for further implementation steps of ADOCLE.

5.2 Problem and hypothesis

For the experiment, the hypothesis is that the approaches present different amount of ex-

ecutable OCL expressions, amount of failing executions and different efficiency.

The advantage of the prototype is the performance, because the execution of SQL

commands on a database schema is more efficient than an execution using a COM24 hard-

ware interface like the EA works with. The advantage of the approach of EA is that it is more

powerful in describing OCL expressions and does not need complex mapping information. Of

course, this is the main disadvantage of ADOCLE. Every element, association or other infor-

mation of the source metamodel has to be mapped to the target metamodel. That means

that the prototype is dependent on the target metamodel. If the target metamodel does not

support the whole features of the source metamodel, it cannot be mapped and the OCL ex-

pression cannot be executed.

24

 http://www.microsoft.com/com/default.mspx

http://www.microsoft.com/com/default.mspx

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 74

The measurement parameters:

1) amount of executable OCL expressions,

2) amount of failing executions depending on mapable OCL expression,

3) amount of failing executions depending on the expressive power of the target meta-

model,

4) amount of failing executions depending on an OCL navigation to not focused subsets

5) and time in milliseconds

are computed by using unit tests. In failure cases, an exception is thrown to recognize the

suitable failure. The measurement parameters are the base for the statistical hypothesis

tests. The null hypothesis (H0) is that ADOCLE delivers the results for the underlying OCL ex-

pressions faster than the solution of Sparx Systems. The alternative hypothesis says the op-

posite. Typically the test results are categorized in the following categories:

 Null hypothesis (H0) is true Null hypothesis(H0) is false

Reject null hypothesis False positive

Type I error

True positive

Correct outcome

Fail to reject null hypothesis True negative

Correct outcome

False negative

Type II error

Table 14 - Statistical hypothesis categories

Based on this hypothesis, a consistency analysis (see Chapter 5.4) and a performance analy-

sis (see Chapter 5.5) are conducted.

5.3 Test environment

The test cases (see Chapter 5.4.2) are executed on the following test environment.

MacBook Pro:

 Intel(R) Core(TM) i7-2635QM CPU @ 2.00GHz

 4 GB main memory, Solid State Disk

 Windows 7 – Version 32 Bit Ultimate

 Visual Studio 2010 – Version 10.0.30319 RTMRel

 .NET Framework – Version 4.0.30319 RTMRel

 Enterprise Architect – Version 9.1.910, Database-Version 4.01

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 75

5.4 Consistency analysis

The consistency analysis concentrates on the evaluation of the correctness of the elements.

This means, that the expected results are identical the effective results. If, there is a mis-

match, it is documented, as well as all failing executions. Therefore, we used a traffic light

concept based on the status of the test cases (see Chapter 5.4.2).

The status of a test case is marked green for a correct outcome (see Table 14). In the case of

false positive or false negative results the status is marked red. The failing executions are

divided in three subsets. The status of the test cases is marked yellow followed by one of

these numerations.

1) The amount of failing executions depending on the expressive power of the target

metamodel describe the expressive power of the metamodel mapping (see Chapter

4.2.1.1) and the consequences of a not mapable element. The OCL expression cannot

be executed due to metamodel mapping problems.

2) The amount of failing executions depending on mapable OCL expression show the

possibility of mapping OCL expressions to a target metamodel based on the imple-

mented features of ADOCLE of the OCL Specification [3]. If a feature is used in the

OCL expression that is not supported or not mapable for the target metamodel, it will

be noticed by this category.

3) The amount of failing executions depending on OCL navigation to not focused sub-

sets; in this evaluation the state machine subset of the UML Specification summarize

the test cases that include other subsets. Probably the OCL expression leads to a suc-

cessful result if the metamodel mapping will be extended in future steps.

For the consistency analysis, suitable test data is needed, which is illustrated in the following

sections.

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 76

5.4.1 Test data

As first test data examples of the lecture “Model Engineering” are chosen (see Figure 33 and

Figure 34). These examples describe small state machine that use a wide range of state ma-

chine components of the UML metamodel and are used as motivation examples to describe

the components in detail.

Figure 33 - Cash machine example - Test data 1

Figure 33 shows especially the different kind of transition constraints: behaviour, effect or

guard. In Figure 34 the focus is set on states with regions and their transitions.

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 77

Figure 34 - Traffic light example - Test data 2

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 78

An example from the web enlarge the test data, to describe the connection point reference

in a better way and describe the difference between a simple entry/exit point and connec-

tion point reference that is a entry/exit point.

Figure 35 - Account process - Test data 3

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 79

The protocol state machines are already supported from the Enterprise Architect, but not all

components of the UML specification. So a small example (see Figure 36) shows what is al-

ready provided.

Figure 36 - Protocol state machine - Test data 4

The four examples above are drawn with the basic kind of state due to the basic configura-

tion of the Enterprise Architect. No properties that the UML metamodel provides are used. It

should demonstrate a model defined of a beginner and the validation errors against the

well-formedness rules in the UML specification.

In the following example the different kind of transitions that are defined in the UML specifi-
cation are explicitly set.

Figure 37 - Transition types - Test data 5

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 80

The next figure describes the different kind of states and completes the range of possible

components of the state machine package.

Figure 38 - State types - Test data 6

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 81

Finally a self-defined example displays all components of the state machine subset that are

not listed in the previous examples.

Figure 39 - Example for special state machine components – Test data 7

There is only one element that is already not part of the examples. The Time Event element

is generally part of the activities package, but is also listed as part of the state machine pack-

age in the UML specification. For the sake of completeness an example is added to the test

data.

Figure 40 - Activities - Time event - Test data 8

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 82 of 126

5.4.2 Test cases

5.4.2.1 General Conditions

The mapping between source (UML metamodel) and target (Enterprise Architect database schema) metamodel is defined for all elements of

the UML metamodel subset state machine. Elements, properties or associations that were not mapable (metamodel mapping problems) are

marked as special case that throws an exception. The execution time of the OCL expression is noticed on the bottom of the status column in

milliseconds (rounded up).

5.4.2.2 Connection Point Reference (CPR)

Table 15 - Connection Point Reference test cases

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 N The entry pseudostates must

be pseudostates with kind

entryPoint.

CPR Entry ID: 231

Pseudostate IDs:

110, 231, 247

Context ConnectionPointReference inv TUVien-

naOclCatalouge: self.entry->notEmpty() implies

self.entry->forAll(e:Pseudostate | e.kind = #en-

tryPoint)

True True OK

Time:

606ms

2 N The exit pseudostates must

be pseudostates with kind

exitPoint.

CPR Exit IDs:

232, 235

Pseudostate IDs:

111, 232, 235, 248

Context ConnectionPointReference inv TUVien-

naOclCatalouge: self.exit->notEmpty() implies

self.exit->forAll(e:Pseudostate | e.kind = #exit-

Point)

True True OK

Time:

605ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 83

5.4.2.3 Final state

Table 16 - Final state test cases

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 N A final state cannot have any

outgoing transitions.

Final state IDs:

182, 188, 195,

219, 241, 249

Context FinalState inv TUViennaOclCatalouge:

self.outgoing->size() = 0

True True OK

Time:

702ms

2 N A final state cannot have

regions.

Final state IDs:

182, 188, 195,

219, 241, 249

Context FinalState inv TUViennaOclCatalouge:

self.region->size() = 0

True True OK

Time:

85ms

3 N A final state cannot reference

a submachine.

Final state IDs:

182, 188, 195,

219, 241, 249

Context FinalState inv TUViennaOclCatalouge:

self.submachine->isEmpty()

True True OK

Time:

80ms

4 N A final state has no entry

behaviour.

Final state IDs:

182, 188, 195,

219, 241, 249

Context FinalState inv TUViennaOclCatalouge:

self.entry->isEmpty()

True True OK

Time:

76ms

5 N A final state has no exit be-

haviour.

Final state IDs:

182, 188, 195,

219, 241, 249

Context FinalState inv TUViennaOclCatalouge:

self.exit->isEmpty()

True True OK

Time:

74ms

6 N A final state has no state (do

activity) behaviour.

Final state IDs:

182, 188, 195,

219, 241, 249

Context FinalState inv TUViennaOclCatalouge:

self.doActivity->isEmpty()

True True OK

Time:

74ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 84

5.4.2.4 ProtocolStateMachine

Table 17 - ProtocolStateMachine test cases

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 S A region can have at most one

initial vertex.

1 protocol state

machine is

stored

Context ProtocolStateMachine inv TUVien-

naOclCatalouge: (not (self.context-

>isEmpty())) and self.specification->isEmpty()

Exception, be-

cause the associa-

tion self.context

navigates to an-

other subset of

the UML meta-

model

InvalidNavigationNameEx-

ception, the associations are

not part of the state-

machine mapping, which

are used to navigate to

other subsets of the UML

metamodel

OK

3)

Time:

74ms

2 S All transitions of a protocol

state machine must be proto-

col transitions. (transitions as

extended by the Protocol-

StateMachines package).

1 protocol state

machine is

stored

Context ProtocolStateMachine inv TUVien-

naOclCatalouge: self.region->forAll(r : Region

| r.transition->forAll(t : Transition |

t.oclIsTypeOf(ProtocolTransition)))

Exception, be-

cause the EA does

not support re-

gions as objects in

the database.

InvalidNavigationNameEx-

ception, because the naviga-

tion self.region is not ma-

pable.

OK

1)

Time:

72ms

3 S The states of a protocol state

machine cannot have entry,

exit, or do activity actions.

1 protocol state

machine is

stored

Context ProtocolStateMachine inv TUVien-

naOclCatalouge: self.region->forAll(r :Region

| r.subvertex->forAll(v : Vertex |

v.oclIsKindOf(State) implies (v.entry-

>isEmpty() and v.exit->isEmpty() and

v.doActivity->isEmpty())))

Exception, be-

cause the EA does

not support re-

gions as objects in

the database.

InvalidNavigationNameEx-

ception, because the naviga-

tion self.subvertex is not

mapable.

OK

1)

Time:

76ms

4 S Protocol state machines can-

not have deep or shallow

history pseudostates.

1 protocol state

machine is

stored

Context ProtocolStateMachine inv TUVien-

naOclCatalouge: self.region->forAll (r : Re-

gion | r.subvertex->forAll (v : Vertex |

v.oclIsKindOf(Psuedostate) implies((v.kind <>

#deepHistory) and (v.kind <> #shallowHis-

tory)))))

Exception, be-

cause the EA does

not support re-

gions as objects in

the database.

InvalidNavigationNameEx-

ception, because the naviga-

tion self.subvertex is not

mapable.

OK

1)

Time:

90ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 85

Only few elements of the subset protocol state machine of the UML metamodel state machine package, like the ProtocolStateMachine is
described in the EA metamodel. Other components like the ProtocolState or the ProtocolTransition are deduced from the EA API due to a
relation to a ProtocolStateMachine object. The metamodel mapping (see Chapter 4.2.1.1) concentrates on rules that connects on data stored
in the source and the target metamodel and not in data delivered from deduction routines.

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 86

5.4.2.5 Pseudostate

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 N An initial vertex can have at

most one outgoing transition.

19 initial pseudostates Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #initial) implies

(self.outgoing->size() <= 1)

True True OK

Time:

398ms

2 N History vertices can have at

most one outgoing transition.

Deep History ID: 304

Shallow History ID: 305

Context Pseudostate inv TUViennaOclCata-

louge: ((self.kind = #deepHistory) or (self.kind =

#shallowHistory)) implies (self.outgoing->size()

<= 1)

True True OK

Time:

611ms

3 N In a complete state machine,

a join vertex must have at

least two incoming transitions

and exactly one outgoing

transition.

Join ID: 303 Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #join) implies ((self.outgoing-

>size() = 1) and (self.incoming->size() >= 2))

True True OK

Time:

601ms

4 S All transitions incoming a join

vertex must originate in dif-

ferent regions of an orthogo-

nal state.

Join ID: 303 Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #join) implies self.incoming-

>forAll(t1, t2 : Transition | (t1 <> t2) implies

(self.stateMachine.LCA(t1.source,

t2.source).container.isOrthogonal = true))

NotSupportedEx-

ception

LCA feature not

supported

EA does not sup-

port the mapping

between Region

and Transition

OK

1)

Time:

341ms

5 N In a complete state machine,

a junction vertex must have at

least one incoming and one

outgoing transition.

Fork ID: 302 Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #fork) implies

((self.incoming->size() = 1) and (self.outgoing-

>size() >= 2))

True True OK

Time:

623ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 87

Table 18 - Pseudostate test cases

6 N All transitions outgoing a fork

vertex must target states in

different regions of an or-

thogonal state.

Fork ID: 302 Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #fork) implies self.outgoing-

>forAll(t1, t2 : Transition | (t1 <> t2) implies

(self.stateMachine.LCA(t1.target,

t2.target).container.isOrthogonal = true))

NotSupportedEx-

ception

LCA feature not

supported

EA does not sup-

port the mapping

between Region

and Transition

OK

1)

Time:

623ms

7 N In a complete state machine,

a junction vertex must have at

least one incoming and one

outgoing transition.

Junction ID: 301 Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #junction) implies

((self.incoming->size() >= 1) and (self.outgoing-

>size() >= 1))

True True OK

Time:

610ms

8 N In a complete state machine,

a choice vertex must have at

least one incoming and one

outgoing transition.

Choice ID: 242 Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #choice) implies

((self.incoming->size() >= 1) and (self.outgoing-

>size() >= 1))

True True OK

Time:

607ms

9 N The outgoing transition from

an initial vertex may have

behaviour, but not a trigger or

guard.

19 initial pseudostates Context Pseudostate inv TUViennaOclCata-

louge: (self.kind = #initial) implies

(self.outgoing.guard->isEmpty() and

self.outgoing.trigger->isEmpty())

False False OK

Time:

660ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 88

5.4.2.6 Region

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 S A region can have at most one

initial vertex.

11 regions are

stored

Context Region inv TUViennaOclCatalouge:

self.subvertex->select(v : Vertex |

v.oclIsKindOf(Pseudostate))->select(p : Pseu-

dostate | p.kind = #initial)->size() <= 1

Exception, because

the EA does not sup-

port regions as ob-

jects in the database.

InvalidNavigation-

NameException,

because the naviga-

tion self.subvertex

is not mapable.

OK

1)

Time:

229ms

2 S A region can have at most one

deep history vertex.

11 regions are

stored

Context Region inv TUViennaOclCatalouge:

self.subvertex->select (v :Vertex |

v.oclIsKindOf(Pseudostate))->select(p : Pseu-

dostate | p.kind = #deepHistory)->size() <= 1

Exception, because

the EA does not sup-

port regions as ob-

jects in the database.

InvalidNavigation-

NameException,

because the naviga-

tion self.subvertex

is not mapable.

OK

1)

Time:

72ms

3 S A region can have at most one

shallow history vertex.

11 regions are

stored

Context Region inv TUViennaOclCatalouge:

self.subvertex->select (v :Vertex |

v.oclIsKindOf(Pseudostate))->select(p : Pseu-

dostate | p.kind = #shallowHistory)->size() <= 1

Exception, because

the EA does not sup-

port regions as ob-

jects in the database.

InvalidNavigation-

NameException,

because the naviga-

tion self.subvertex

is not mapable.

OK

1)

Time:

68ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 89

Table 19 - Region test cases

Regions in the EA metamodel are set as strings in a single column. It is not possible to identify an explicit region in a column using automatic

generated SQL commands. The impossible metamodel mapping of UML regions in the EA metamodel leads to several exceptions in the test

cases.

4 N If a Region is owned by a state

machine, then it cannot also

be owned by a State and vice

versa.

State IDs with re-

gions:

129, 130, 131, 137,

148, 153, 154, 162,

163, 185, 289

No statemachine

with a region

Context Region inv TUViennaOclCatalouge:

(self.stateMachine->notEmpty() implies

self.state->isEmpty()) and (self.state-

>notEmpty() implies self.stateMachine-

>isEmpty())

True True OK

Time:

624ms

5 S The redefinition context of a

region is the nearest contain-

ing state machine.

- Context Region inv TUViennaOclCatalouge:

redefinitionContext = let sm = containing-

StateMachine() in

if sm.context->isEmpty() or sm.general-

>notEmpty() then

sm

else

sm.context

endif

Exception, because

let- and if - expres-

sions are not part of

the prototype im-

plementation

NotSupportedEx-

ception, because

the let- and if-

expressions are not

part of the proto-

type

OK

2)

Time:

396ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 90

5.4.2.7 State

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 F Only submachine states can

have connection point ref-

erences (CPR).

Submachine state ID:

181, 326

CPR IDs: 231, 232, 235

Context State inv TUViennaOclCatalouge:

(self.isSubmachineState = true) implies

(self.connection->notEmpty())

False False

No CPR is added to the

submachine state

manually

OK

Time:

522ms

2 F The connection point refer-

ences used as destina-

tions/sources of transitions

associated with a subma-

chine state must be defined

as entry/exit points in the

submachine state machine.

Submachine state ID:

181, 326

CPR IDs: 231, 232, 235

Context State inv TUViennaOclCatalouge:

self.isSubmachineState = true implies

self.connection->forAll (cp : Connection-

PointReference | cp.entry->forAll(p :

Pseudostate | p.stateMachine =

self.submachine) and cp.exit->forAll (p :

Pseudostate| p.stateMachine =

self.submachine)))

False False

No CPR is added to the

submachine state

manually

OK

Time:

1sec

349s

3 F A composite state is not

allowed to have both a

submachine and regions.

Composite IDs: 178,

181, 185, 226, 246, 289

Submachine state IDs:

181

Context State inv TUViennaOclCatalouge:

(self.isComposite = true) implies (not

(self.isSubmachineState = true)

False False

State with ID 181 is

declared as composite

and as submachine

state.

OK

Time:

383ms

4 N A simple state is a state

without any regions.

42 simple states Context State inv TUViennaOclCatalouge:

(self.isSimple = true) implies (self.region-

>isEmpty())

True True OK

Time:

388ms

5 N A composite state is a state

with at least one region.

Composite state IDs:

178, 181, 185, 226,

246, 289

Context State inv TUViennaOclCatalouge:

(self.isComposite = true) implies

(self.region->notEmpty())

True False

Because the EA meta-

model does not sup-

port regions, the ocl

expression leads to

false.

NOK

Time:

375ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 91

6 N An orthogonal state is a

composite state with at

least 2 regions.

Orthogonal state ID:

129, 130, 131, 137,

153, 154, 162, 163,

185, 289

Context State inv TUVien-

naOclCatalouge: (self.isOrthogonal

true) implies (self.region->size() >

1)

True False

Because the EA metamodel

does not support regions as

objects in the database, only

one data row is found. In a data

column all regions are defined.

The mapping rules of the proto-

type do not support the identi-

fication.

NOK

Time:

389ms

7 F Only submachine states can

have a reference state ma-

chine.

Submachine state ID:

181, 326

Context State inv TUVien-

naOclCatalouge:

(self.isSubmachineState = true)

implies self.submachine-

>notEmpty()

False False

Submachine state with ID 181 is

not a submachine (declared as

instance in EA).

OK

Time:

381ms

8 S The redefinition context of a

state is the nearest contain-

ing state machine.

- Context State inv TUVien-

naOclCatalouge: redefinitionCon-

text = let sm = containingState-

Machine() in

if sm.context->isEmpty() or

sm.general->notEmpty() then

sm

else

sm.context

endif

Exception, be-

cause let- and if -

expressions are

not part of the

prototype imple-

mentation

NotSupportedException, be-

cause the let- and if-expressions

are not part of the prototype

OK

2)

Time:

439ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 92

Table 20 - State test cases

The UML Specification [1], [2] declares the properties of a state are as deduced. In the case of the Enterprise Architect these properties are

set to false as default. The deduction routines are part of the EA API and do not chance the EA database entries. For comprehensive result

the properties are set manually, otherwise all state test cases in Table 20 that includes property references leads to invalid results.

9 F Only composite states can

have entry or exit pseu-

dostates defined.

Composite state IDs:

178, 181, 185, 226,

246, 289

Context State inv TUViennaOclCatalouge:

(self.connectionPoint->notEmpty()) implies

(self.isComposite = true)

False False

Composite state

with ID 181 has no

connectionPoint.

OK

Time:

378ms

10 N Only entry or exit pseu-

dostates can serve as con-

nection points.

Entry point IDs: 110,

231, 247

Exit point IDs: 111,

232, 235, 248

Context State inv TUViennaOclCatalouge:

self.connectionPoint->forAll(cp : Pseudostate

|cp.kind = #entryPoint or cp.kind = #exitPoint)

True True OK

Time:

1sec

54ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 93

5.4.2.8 State machine

Table 21 - State machine test cases

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 S The classifier context of

a state machine cannot

be an interface.

4 state ma-

chines are

stored

Context StateMachine inv TUVien-

naOclCatalouge: self.context-

>notEmpty() implies not

self.context.oclIsKindOf(Interface)

Exception, because the

association self.context

navigates to another

subset of the UML

metamodel

InvalidNavigationNameException

The associations are not part of the

state machine mapping, which are

used to navigate to other subsets

of the UML metamodel

OK

3)

Time:

391ms

2 S The context classifier of

the method state ma-

chine of a behavioural

feature must be the

classifier that owns the

behavioural feature.

4 state ma-

chines are

stored

Context StateMachine inv TUVien-

naOclCatalouge: self.specification-

>notEmpty() implies (self.context-

>notEmpty() and

self.specification.featuringClassifier

->exists(c | c = self.context))

Exception, because the

associations self.context

and self.specification

navigates to another

subset of the UML

metamodel

InvalidNavigationNameException

The associations are not part of the

state machine mapping, which are

used to navigate to other subsets

of the UML metamodel

OK

3)

Time:

119ms

3 N The connection points of

a state machine are

pseudostates of kind

entry point or exit point.

8 state ma-

chines are

stored

Context StateMachine inv TUVien-

naOclCatalouge:

self.connectionPoint->forAll(c :

Pseudostate | c.kind = #entryPoint

or c.kind = #exitPoint)

True True OK

Time:

662ms

4 S A state machine as the

method for a behav-

ioural feature cannot

have entry/exit connec-

tion points.

4 state ma-

chines are

stored

Context StateMachine inv TUVien-

naOclCatalouge: self.specification-

>notEmpty() implies

self.connectionPoint->isEmpty()

Exception, because the

associations self.context

and self.specification

navigates to another

subset of the UML

metamodel

InvalidNavigationNameException

The associations are not part of the

state machine mapping, which are

used to navigate to other subsets

of the UML metamodel

OK

3)

Time:

73ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 94

5.4.2.9 Transition

Nr. Type Description Pre-Condition Input – OCL Expression Expected Result Effective Result Status

1 N A fork segment must not have

guards or triggers.

Outgoing transi-

tions from a fork

segment: 159, 160

Context Transition inv TUViennaOclCatalouge:

(self.source.oclIsKindOf(Pseudostate) and

self.source.kind = #fork) implies (self.guard-

>isEmpty() and self.trigger->isEmpty())

True True OK

Time:

987ms

2 N A join segment must not have

guards or triggers.

Incoming transi-

tions from a join

segment: 161, 162,

163

Context Transition inv TUViennaOclCatalouge:

((self.target.oclIsKindOf(Pseudostate)) and

(self.target.kind = #join)) implies ((self.guard-

>isEmpty() and (self.trigger->isEmpty()))

True True OK

Time:

990ms

3 N A fork segment must always

target a state.

Outgoing transi-

tions from a fork

segment: 159, 160

Context Transition inv TUViennaOclCatalouge:

(self.source.oclIsKindOf(Pseudostate) and

self.source.kind = #fork) implies

(self.target.oclIsKindOf(State))

True True OK

Time:

596ms

4 N A join segment must always

originate from a state.

Incoming transi-

tions from a join

segment: 161, 162,

163

Context Transition inv TUViennaOclCatalouge:

(self.target.oclIsKindOf(Pseudostate) and

self.target.kind = #join) implies

(self.source.oclIsKindOf(State))

True True OK

Time:

616ms

5 F Transitions outgoing pseu-

dostates may not have a trig-

ger (except for those coming

out of the initial pseudostate).

11 transitions out-

going pseudostates

(not initial ones)

stored.

Context Transition inv TUViennaOclCatalouge:

(self.source.oclIsKindOf(Pseudostate) and

(self.source.kind <> #initial)) implies

self.trigger->isEmpty()

False False

Transitions with ID:

103, 104, 109, 110

have triggers.

See account proc-

ess example.

OK

Time:

703ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 95

6 S An initial transition at the

topmost level (region of a

state machine) either has no

trigger nor it has a trigger

with the stereotype “create.”

85 transitions, 18

initial pseudostate

and 35 trigger are

stored

Context Transition inv TUViennaOclCatalouge:

self.source.oclIsKindOf(Pseudostate) implies

(self.source.oclAsTypeOf(Pseudostate).kind =

#initial) implies (self.source.container =

self.stateMachine.top) implies ((self.trigger-

>isEmpty()) or (self.trigger.stereotype.name =

'create'))

Exception, because

the EA does not sup-

port regions as ob-

jects in the database.

Exception, because

the association trig-

ger.stereotype is not

part of the state

machine subset

InvalidNavigation-

NameException

The associations

are not part of the

state machine

mapping, which are

used to navigate to

other subsets of

the UML meta-

model

OK

1)

Time:

408ms

7 S The redefinition context of a

transition is the nearest con-

taining state machine.

85 transitions are

stored

Context Transition inv TUViennaOclCatalouge:

redefinitionContext =

let sm = containingStateMachine() in

if sm.context->isEmpty() or sm.general-

>notEmpty() then

sm

else

sm.context

endif

Exception, because

let- and if - expres-

sions are not part of

the prototype im-

plementation

NotSupportedEx-

ception, because

the let- and if-

expressions are not

part of the proto-

type

OK

2)

Time:

336ms

8 N A transition with kind local

must have a composite state

or an entry point as its source.

Transition IDs: 101,

143

Context Transition inv TUViennaOclCatalouge:

(self.kind = #local) implies

((self.source.oclIsKindOf(State) and

self.source.oclAsType(State).isComposite =

true) or (self.source.oclIsKindOf(Pseudostate)

and self.source.oclAsType(Pseudostate).kind =

#entryPoint))

False False

Only simple states

are used by transi-

tion with ID: 143.

Others are defined

right.

OK

Time:

1sec

536ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 96

Table 22 - Transition test cases

9 N A transition with kind external

can source any vertex except

entry points.

Transition IDs: 99,

145

Context Transition inv TUViennaOclCatalouge:

(self.kind = #external) implies

(not (self.source.oclIsKindOf(Pseudostate) and

self.source.oclAsType(Pseudostate).kind = #en-

tryPoint))

True True OK

Time:

890ms

10 N A transition with kind internal
must have a state as its
source, and its source and
target must be equal.

Transition IDs: 100,

144

Context Transition inv TUViennaOclCatalouge:

(self.kind = #internal) implies

(self.source.oclIsKindOf(State) and self.source =

self.target)

True True OK

Time:

714ms

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 97

5.4.3 Test results

The consistency analysis structures the status of the test cases within a traffic light concept

(see Table 23). It reveals that 32 of the 50 OCL expressions of the state machine package are

valid – green marked. Only in two cases, the output was wrong, which are marked red. The

result sets of the wrong cases contained no model elements, because the EA does not sup-

port the UML concept Region in the database schema. Regions in the EA are calculated via

the position in the visual representation, but it is not possible to refer an instance in the EA

database. The yellow state describes the category for failing executions due to deficient

support, which is divided in the three subparts mentioned in Chapter 5.4. In nine cases, it is

not possible to define a metamodel mapping, because the target metamodel does not sup-

port this feature: A region is not a clearly element in the EA database schema. Three out of

the sixteen are not supported OCL features (see Table 7, Table 8 and Table 9) and in the last

four cases, OCL expressions do not refer to supported subsets.

State Description Result

Red False positive or false negatives 2

Yellow Failing executions due to deficient support 16

Green Correct output 32

Table 23 - Consistency analysis - Test results

5.5 Performance analysis

The performance analysis gives an overview, how much time the OCL2SQL transformation in

the case of EA takes. Therefore the 50 OCL expressions of the state machine package are

executed in a row, based on different sizes of test suites, which are shown in Table 24. For

the performance analysis, the test data of the consistency analysis in Chapter 5.4.1 is ex-

tended with random test data, consisting of states and transitions.

5.5.1 Test results

Test Suite Number of

model elements

ADOCLE EA API

A 10-100 8113ms 170382ms

B 100-500 8183ms 445413ms

C 500-5000 9625ms >1h

D 5000-50000 14262ms >3h

Table 24 - Performance analysis - Test results

 Evaluation

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 98

The evaluation revealed that the validation is significantly faster using ADOCLE. The solution,

validating models in EA using the COM interface leads to enormous time effort caused by

the sequentially testing of the conditions for each element. ADOCLE yields for each test suite

a faster validation, as is depicted briefly in the following chart diagram (see Figure 1). The

greater the number of elements, the more time is required to perform the validation.

Figure 41 - Performance analysis - Chart diagram

The evaluation shows that the validation could be performed significantly faster using ADO-

CLE. On the other hand, the consistency analysis figured out a list of problems. It is impor-

tant that each concept of the source metamodel is represented in the target metamodel.

Otherwise, it is not possible to define a metamodel mapping, which leads to transformation

and/or execution errors. Additionally, the definition of a metamodel mapping is very time

intensive. But the performance of the validation speaks for itself.

0

2000000

4000000

6000000

8000000

10000000

12000000

10-100 100-500 500-5000 5000-50000

A B C D

Ti
m

e
 in

 m
s

Test suites

Performance analysis

ADOCLE

EA API

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 99

6 Related Work

The related work is divided into three parts. First, an overview of similar metamodel-based

approaches for OCL compiler and model transformations is given. Second, the main OCL

tools and applications are discussed. And third, works concerning verification and validation

tools for OCL are presented.

6.1 Overview of metamodel-based OCL compiler

The Object Constraint Language is used as constraint language in the UML Specification to

define semantics which cannot be expressed with simple UML class diagrams. But OCL is not

limited to UML models. In general, OCL is a constraint language, which can be applied to

many kinds of models. Hence, there is a need to use OCL in different ways and on different

kind of models at the OMG’s modelling layers.

6.1.1 Implementing OCL for multiple Metamodels

In the paper [45] the authors discuss an implementation of a compiler of the OCL 2.0 stan-

dard for multiple metamodels. The solution provides a bridge to a variety of object-oriented

metamodels, represented through a carefully specified set of interfaces to providing a clean

and well-defined division between the OCL model and the metamodel to which it is at-

tached. The classes of the bridge package must be supported by any model to interpret and

evaluate OCL expression over them. The authors have implemented three bridges for differ-

ent metamodels: OCL for Java, OCL for Kent Modelling Framework (KMF)25 and OCL for

Eclipse Modelling Framework (EMF). Therefore a mapping of the classes to each metamodel

is manually accomplished. The bridge facilitates the use of a shared library, which contains

the implementation structure parts shown in Figure 42, in context of a number of different

metamodels.

25

 http://www.cs.kent.ac.uk/projects/kmf

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 100

Figure 42 - Implementation structure of the work [45]

The implementation structure follows a typical structure of a translator, consisting of lexical

analysis, parsing an abstract syntax tree, semantic analysis and either code generation or

evaluation. For the translator, a BNF grammar for a LALR [51] parser generator was pro-

duced that is suitable for bottom up parser generators like (CUP26, YACC [52], BISON27). This

grammar was derived from the original OCL standard [3] to remove ambiguities in the speci-

fication (see Chapter 4.2.2.1). In addition the paper pictures errors and missing parts of the

OCL 2.0 specification and suggests options for fixing these problems.

6.1.2 OCL Module in VTMS

Another approach of an OCL compiler, which is based on the .NET platform is discussed in

[53]. It is an extension of an existing OCL module in the Visual Modelling and Transformation

System (VTMS) to support metamodelling and model transformation. VMTS is based on an

n-layer environment (composed of autonomous subsystems) to offer graphical metamodel-

ling editing tools. The most interesting component in the VTMS architecture is of course the

Constraint Validator Module, which contains the model validation subsystems (see Figure

43) including the OCL compiler, and the related functions.

Figure 43 - OCL Module in VTMS

26

 http://www.cs.princeton.edu/~appel/modern/java/CUP/
27

 http://www.gnu.org/software/bison/

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 101

The structure of the OCL compiler is similar to a fundamental approach of a compiler. The

constraint is defined by the user as OCL expression. The lexical analyser reads the text seg-

ment and creates a sequence of tokens, which is performed by a Flex28. The syntactical ana-

lyser generates a syntax tree, which is reconstructed in a semantic analysed syntax tree after

the semantic analysis phase. As next step, this tree is transformed in a CodeDOM tree. Cod-

eDOM is a technology of Microsoft that can describe programs using abstract trees, and it

can use this tree representation to generate code to any languages that is supported by the

.NET Community. The CodeDOM is used to transform the OCL representation in C# source

code to validate a given model. For the support of base types, a class library is also responsi-

ble for the type conformance rules (see Chapter 2.2.4) and manages the type checking

within the OCL type hierarchy including the OCL types.

In VTMS, models are handled as labelled, directed graphs, which are used in graph

transformation algorithms [54]. The basic idea of graph transformation is that the current

state of a system can be represented as a graph, as well as the state after a computation.

Such computations are described by rewriting rules, the atoms of a graph transformation

algorithm. A rewriting rule shows the process from one state to another state. Such rules

consists of a left part called pattern graph or left-hand-side (LHS) and a right side is called

replacement graph or right-hand-side (RHS). Applying a rewrite rule means finding an iso-

morphic occurrence of the LHS and replacing the graph with the RHS. In VTMS, the LHS and

RHS are built from the metamodel elements. This means, an instantiation of LHS in one

metamodel can be transformed in an instantiation according to another metamodel. In the

paper [53] a simple example is described using the same metamodel for the LHS and RHS.

But it is also possible to use different metamodels on each side. In [55] the graph transfor-

mation with VTMS is compared with other graph transformation tools.

6.1.3 Redesign of the Dresden OCL Compiler

The work [56] discuss a redesign of the “Dresden OCL” Toolkit to manage basic functionality

for processing OCL expression of version 2.0 and the evaluation of well-formedness rules

(WFR) on metamodels as well as constraints on models. The work based on previous works

of the “Dresden OCL” Team that developed a toolkit to manage OCL expression of version

1.3.

28

 Flex is a tool for generating scanners. See http://flex.sourceforge.net/

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 102

The release 1.3 of the “Dresden OCL” Toolkit provided the ability to process preconditions,

post conditions and invariants on UML models. Code generators for Java and SQL cover a

wide range of applications. Cooperations with partner in the industry leveraged the quality

and led to solid base of the “Dresden OCL”.

Due to the requirement to enable the evaluation of WFR on metamodels, a major part of

the work is concerned on the alignment of the OCL metamodel to the metamodel of MOF.

Typical uses of OCL expressions for UML models, which reside on layer M1, are defined by

the OCL metamodel with dependencies to the UML metamodel. Since metamodels on M2

layer like the UML metamodel are instances of the MOF model, but OCL is rather designed

to write expression on M1 layer, the evaluation of WFRs on the UML metamodel would not

be possible. This is a very important point, because the usage of OCL expressions range from

layer M1 to M2. Therefore an adapted OCL metamodel for MOF is necessary. The paper de-

scribes the MOF meta-data architecture and the solution of the problem in detail.

 In contrast to the already mentioned works [45], [53], the primary component of the

OCL compiler is a MOF repository. According to the paper [56], “The purpose of the reposi-

tory is to manage models and metamodels, to generate particular interfaces for accessing

these models, and to provide implementations for the interfaces according to given specifi-

cations.” In other words, the provided interfaces of the MOF repository accomplish standard

functions like parsing or code generation. The task of the OCL compiler is the same as for the

mentioned approaches before and is fulfilled in a similar way.

 The code generation of the “Dresden OCL” Toolkit is a transformation of instances of

the OCL metamodel to either Java or SQL. Depending on the instances, the output is gener-

ated for each OCL metamodel instances sequently. The paper shows an example for trans-

forming an if-expression in OCL to Java source code.

 For the evaluation the tool “UML-based Specification Environment”, called USE (see

Chapter 6.3.1) is chosen. It can be employed to validate a model, for instance over UML

models. It allows defining models on a textual base and associating OCL expression to them.

Systems states, so called snapshots can be created to check, if the OCL expressions are valid.

Basically, these models can be metamodels and therefore the WFRs can be evaluated. More

details about the USE tool can be found in the following section 6.3.1.

6.1.4 Summary

The mentioned works [45], [53], [56] provide an abstract approach of managing OCL expres-

sions for multiple metamodels. The compiler structure is very similar, only few sub compo-

nents differ in applied technologies, the modified grammar or in a platform specific manner.

The works [45], [53] focus on the usage of OCL expression on user-defined models that are

placed on the M1 layer (see Chapter 2.1.1) using the UML modelling diagrams in section

2.1.2. The illustrated example in Figure 6 pictures a class diagram on this layer.

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 103

The instances are objects of the defined classes. Examples for the instances and applied OCL

expressions are shown in Chapter 3.2.2. The focus of the work in the paper [56] is on the

different layer of the four-layer metamodel hierarchy shown in Figure 4. The redesign of the

“Dresden OCL” Toolkit aims the basic functionality for processing OCL expressions of version

2.0 and the evaluation of well-formedness rules (WFR) defined on metamodels and con-

straints on normal models (models on M1 layer). In addition the work of the redesign of the

“Dresden OCL” Toolkit concentrates on an automatic validation of OCL expression using the

UML-based Specification Environment tool. In the following section the tool of the “Dresden

OCL” Team is discussed in detail.

6.2 Tool-support

Although still limited, tool support for processing OCL expressions has increased in the last

years. This section only deals with the main OCL tools and applications and the features they

support, because other papers like [57], [58] already compared the functionality of OCL tools

explicitly. The big players and innovators, “Dresden OCL” and “Eclipse OCL” comprises a

summary of its development history, a description of architecture and single components

with focus on the OCL compiler, success stories and future work.

6.2.1 Dresden OCL

The “Dresden OCL” is a toolkit that supports the specification and evaluation of OCL expres-

sions for several metamodels and can be used on different metamodel layers. The aim of the

“Dresden OCL” is to provide the ability for modelers to integrate OCL tools into their envi-

ronments and to enable practical experiments with OCL.

 In 1999, the development was started with a standard library for processing OCL ex-

pressions and a parser for OCL. The work was mainly done by students under coordination of

the scientific staff of the Software Technology Group at the technical university of Dresden.

The toolkit is still enhanced and maintained mainly by students and scientific staff. The de-

velopment over the last decade was mainly influenced by the progress in OCL research and

the evolving OCL standard. Consequently, the architecture and the components of the tool-

kit were reengineered in an iterative process. During the decade, there were three major

releases implemented. The first release consists of the initially parts implemented in 1999.

The second version, called “Dresden OCL2” Toolkit was released in 2005, which contains APIs

for the parser and the workbench, code generators for SQL and Java and simple user inter-

faces, provided as Java libraries. The third version is “Dresden OCL”, which is based on the

Eclipse SDK and released as a set of Eclipse plug-ins. Nevertheless, a standalone Java library

distribution is additionally available. The important innovations of the latest release are a

Pivot Model [47] and the redesign of the OCL compiler, mentioned in Chapter 6.1.3. These

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 104

innovations decouple the OCL parser and interpreter from a specific metamodel and enable

connecting the tool to every meta-model based on object-oriented concepts.

“Dresden OCL” is widely used in teaching, research and practise, due to the initially

idea of an open-source third-party library for modelling tools. It is also integrated into sev-

eral CASE tools such as ArgoUML29 or MagicDraw30; provide support for other tools like HOL-

OCL31 and many research projects32. ArgoUML and MagicDraw are well-known tools that

provide drawing object-oriented models with the UML techniques. HOL-OCL is an interactive

proof system for the Object Constraint Language. It is a shallow embedding of OCL in the

higher-order logic (HOL) instance of the interactive theorem prover, called Isabelle (see

Chapter 6.3.2).

Currently, improvements between the highly extensible parsing and evaluation

backend and the frontend are planned. Due to [59], there exists a lack of appropriate fron-

tend tooling like advanced OCL editors that adapt to the different application scenarios.

In future, researches for debugging OCL expressions are focussed and scalability en-

hancement plays a significant role because case studies have shown that there are perform-

ance problems evaluating large OCL packages.

6.2.2 Eclipse OCL

The “Eclipse OCL” is an open source project that provides an implementation of the OCL

specification for EMF-based and MOF-based models on the Eclipse platform. The core com-

ponent facilitates APIs for parsing and evaluating OCL constraints and queries, supports

processing OCL expression on Ecore and UML models, offers an API for analysing the AST

model of OCL expressions and different kind of OCL editors to define OCL expressions.

The initial code contribution (OCL version 1.x) developed by IBM provided a set of

APIs for parsing and evaluating OCL expression for Ecore meta-models. The core of the OCL

parser is generated by the LALR Parser Generator which is based on an ANTLR grammar. The

evolution to OCL 2.x was under auspices of the Eclipse Foundation. A big advantage is that

the deployed personnel for the development of the “Eclipse OCL” are also part of the OMG

OCL Revision Task Force. Consequently, Eclipse benefits from pioneer solutions for problems

in the OCL specification and it can be expected that future changes in the OMG OCL specifi-

cation are implemented in the “Eclipse OCL”.

The evolution led to a transition to a new underlying infrastructure of the “Eclipse

OCL” project. The mature code supported Ecore meta-models and evolved in an iterative

process to provide UML. Additionally, an OCL console enables interactive experimentation

29

 http://argouml.tigris.org/
30

 http://www.nomagic.com/products/magicdraw.html
31

 http://www.brucker.ch/projects/hol-ocl/index.de.html
32

 http://www.dresden-ocl.org/index.php/DresdenOCL:SuccessStories

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 105

with OCL expressions. The dual support for Ecore and UML was a very important fact to re-

main competitive and was achieved by a shared generic meta-model. An essential part, the

evaluator is tightly coupled to Ecore, which makes an independent implementation of the

OCL specification hard to achieve. The Pivot metamodel is just a prototype for processing

OCL expression of the OCL 2.3.1 specification. It is generated on the fly to provide the OCL

functionality for the corresponding metamodel instance (Ecore or UML). The new “Eclipse

OCL” exploits Xtext33 and uses Ecore models via a Pivot models. This enables to use the ma-

ture APIs, which offers limited functionality for UML, and the prototypical resolution of OCL

expressions. The experimental APIs will be promoted in the Kepler release.

Another important component of the new “Eclipse OCL” is the ImpactAnalyzer which

concern with the efficient re-evaluation after a change. By growing models constrained by

many OCL invariants in their metamodels, a re-evaluation becomes a performance chal-

lenge. Changes to one model can easily affect invariants for model elements in other re-

sources through the freely navigation across resources using OCL expressions. A reliable

evaluation after a change mean that all invariants on all context objects have to be validated,

what determine in an inefficient scalability. The ImpactAnalyzer exploits the formality of OCL

to optimize the re-evaluation and allows a determination of much smaller sets of model

elements on which re-evaluation of expressions is necessary.

From the view of an end-user the “Eclipse OCL” provides an interactive support using

different kind of editors: An interactive OCL console (including the Essential OCL editor) en-

ables executing queries on models, where an Xtext editor captures embedded OCL state-

ments within an Ecore metamodel. The embedded OCL is executed when invariants are

checked, operation bodies executed or property derivations evaluated. The CompleteOCL

editor provides the ability to complement a meta-model of an independent documentation.

The editor for the OCL standard library is responsible for the definition and the customiza-

tion of the standard. The “Eclipse OCL” is used in many Eclipse projects such as Eclipse Mod-

elling Framework (EMF) or the Business Intelligence and Reporting Tools34 (BIRT). Within the

OMG context, OCL could be re-used as the foundation for the Model-to-Text (M2T) and the

Model-to-Model transformation language, Query/View/Transformation (QVT) [60].

In future, the “Eclipse OCL” should deliver solution candidates for the ambiguous and

under-specification of the OCL 2.3. Since OCL is used embedded several Eclipse projects,

debugging and testing is not easy to provide for OCL. An isolated OCL-oriented debugger is

under construction to accompany the Java code generator. Additionally, OCL code genera-

tion for embedded OCL expressions in Ecore metamodels for the Java are planned. The re-

lease named Kepler may demonstrate the new specifications (UML 2.5 and OCL 2.5), as well

as a consistent functionality of all aspects of OCL. The goal for the Kepler release is to sup-

port a full model-driven extensibility.

33

 http://www.eclipse.org/Xtext/
34

 http://www.eclipse.org/birt

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 106

6.3 Validation/Verification

OCL is a very valuable and expressive language to refine complex models to fulfil the system

requirements using invariants, derivation rules, pre and post conditions, etc. Intelligent edi-

tors support the model designer to reduce writing mistakes and supports type checking. The

mentioned tools in the previous section take care of the syntax of the executed OCL expres-

sions. Nevertheless, syntactic correctness is not enough in model-driven development. If the

base already includes errors, the generated components entail them too. The following sub-

sections give an introduction in validating and verifying OCL expressions. These instruments

check if the OCL expressions are valid for the model instances of the domain and proof that

there exist no inconsistencies or redundancies among them.

6.3.1 UML-based Specification Environment (USE)

The UML-based Specification Environment (USE) enables developers to validate and partly to

verify models in the early design phase. In 1998 the approach of USE was published as a Ph.

D. project and has been extended by several research publications35.

A USE specification of a model is a textual description that is similar to the features of

UML class diagrams – a notation, most potential users are already familiar with. OCL expres-

sions are used to specify refinements on the model and to evaluate OCL queries. Figure 44

below gives a general view of the USE approach. A very detailed example can be found in

[61].

Figure 44 - USE approach

The goal of the USE validation approach is to achieve a valid design before the implementa-

tion stage is started. Therefore prototypical instances as a snapshot of a model are gener-

ated and compared against the specified model. For each snapshot the specified OCL ex-

pressions are automatically checked and the results are visualised by a graphical or textual

35

 http://www.db.informatik.uni-bremen.de/publications/

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 107

interface. A result can identify if a model is over-constrained or under-constrained with re-

spect to the design. In the first case: over-constrained, there are snapshots that do not fulfil

the OCL expressions. The constraints may be too strong or the design is not adequate and

has to be revised. On the other hand, constraints can be too weak and allows undesirable

system states. A revise of the constraints has to be done. No matter, which situation occurs

the validation only says that the model is correct to the specified snapshots and not that the

model is correct at all. The big advantage of the validation is that it is intuitive and can easily

be applied by designers without training. It requires a little more effort in the design phase,

but it gives the designers immediately feedback and confidence about the analysed model

and the snapshots. A snapshot can be built and manipulated manually by using commands of

USE, semi-automatically with a graphical built-in snapshot generator or by a Simple OCL-

based Imperative Language (SOIL) [62]. Every change of a snapshot is recognized and the

validation is again automatically executed. These changes can be visualized by sequence dia-

gram.

 USE supports debugging OCL expressions with an evaluation browser, which enables

the user to analyse the evaluation step by step. The paper [63] gives an introduction in com-

bining the approaches of model-driven and test-driven development using the USE tool. The

approach proposes a formulation of test suites to improve the model quality by validating

constraints with model unit tests. It takes the idea of xUnit36 test framework and extends

assertions with OCL specifics for invariants, pre and post conditions, etc. The graphical user

interface to provide an easy access is under construction.

 The “UML-based Specification Environment” tool has been utilized in many case stud-

ies and modelling research projects in international studies for analysing the results of the

research studies. The USE tool also provides the ability of doing conformance tests for CASE

tools by analysing the well-formedness rules (WFR) of the UML metamodel. The flexible tex-

tual specification of the USE approach allows designing according to the UML standard and

validating the output of the CASE tool against the WFR. Integrating USE in CASE tools enables

automatic checks of the specified model and immediately feedback and confidence for the

designer. Additionally, the WFR do not have to be hard-coded in the CASE tools and allow a

faster adaption to evolving standards.

 According to the report [58], USE will facilitate more UML 2.x features. Further, a

redesign of the user interface is panned, as well as the deployment of a small API. In the

meantime, the focus is on the integration of SOIL. Apart from these conceptional extensions,

continuous integration of smaller changes, improvements and the elimination of bugs are on

the agenda.

36

 xUnit is the name for various frameworks for automated software testing.

 The best-known representative is JUnit for the programming language Java.

 Related Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 108

6.3.2 HOL-OCL

The UML techniques in combination with OCL expressions achieve an adequate precision to

assure the consistency of specification documents. For example, type-checking and well-

formedness rules can be used to identify inconsistencies in the early progress of the design

phase. As the previous sections particularized, a-posteriori technique called validation guar-

antee a correct transition from a specification to its implementation. In other words, the

instances are valid against to its model. These techniques are summarized under the term

formal methods, where the power of these techniques depends on the degree of precision.

Advanced correctness may require a more complete reasoning. But reasoning on OCL is un-

decidable in general. User interaction to restrict the OCL expression is required in finite

space to guarantee termination. Current verification tools provide support to manage the

requirements.

Higher-order logic and object constraint language (HOL-OCL) is an interactive theo-

rem-proving environment for UML models annotated with OCL expressions. It is based on

the UML and OCL specification and is incorporated in the MDE framework. The HOCL-OCL

represents a shallow embedding into the Isabelle theorem, based on the su4sml to ensure

the consistency of the formal semantics, in other words, that the constraints are satisfiable.

The purpose of HOL-OCL is to prove the satisfiability of OCL expressions on UML models.

Several proof-procedures provide a logical framework for object-oriented modelling and

reasoning which allows formal derivations establishing the consistency of models.

In the meantime, HOL-OCL only supports UML class diagrams with restrictions of

qualifiers of associations ends, enumeration and association classes. There is also a limita-

tion of the data types, only the basic data types of OCL are supported. OclVoid, OCLMod-

elElementType or OclType cannot be modelled explicitly in HOL-OCL.

 Conclusion and Future Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 109

7 Conclusion and Future Work

7.1 Conclusion

The need for validating models automatically, in the early design phase arose with the

emergence of the Model-Driven Development (MDD) paradigm. Models are not any longer

used just for brainstorming and communication purposes. Models play a significant role in

the development of systems. Thus, the correctness of these models is quite essentially. So-

phisticated modelling techniques have been invented to ensure a consistent and compre-

hensive technology base. The Object Management Group (OMG) suggests the usage of the

Unified Modelling Language (UML) to define platform-independent models. UML has been

widely accepted as the de facto standard for modelling object-oriented systems. This master

thesis pointed out that UML models are not necessary expressive enough to provide all

complex aspects of a system. Some aspects of the domain are more expressed in natural

language. Practise has shown that such situations will lead to ambiguities and to errors.

Therefore the Object Constraint Language (OCL) can be used to specify conditions on models

that must hold for the system.

Apart from the development of standards for modelling systems, several vendors developed

modelling tools or so called Computer-Aided Software Engineering (CASE) tools to provide a

wide range of instruments to support the MDD approach. The support of the sophisticated

techniques depends on the vendor’s realization of the standards. In general there is a lack of

validating models in CASE tools, which is essential in the early design phase. Additionally,

there is only little support for writing OCL expressions for models. Thus, models defined by

users of such tools are not necessarily valid against the wellformedness rules (WFR) - de-

scribed with OCL - in the UML specification. It is a huge value for CASE tools to support the

definition and validation of OCL expressions to provide valid models.

Based on the current standards and modelling an adaptable approach, called ADOCLE was

conducted. The aim of ADOCLE is to manage the transformation of OCL expressions in differ-

ent environments or CASE tools. Therefore the OCL expressions are applied to a selectable

source metamodel, which is mapped to an arbitrary target metamodel. ADOCLE generates a

semantically equivalent expression of an OCL expression in the target metamodel depending

on transformation patterns. The equivalent target metamodel expression is derived from the

mapping between the source and target metamodel.

For the prototypical implementation, the UML metamodel as source metamodel and the

well-formedness OCL expressions in the UML specification was used. Enterprise Architect is

chosen as a CASE tool, which uses a generic metamodel to provide the support of drawing

 Conclusion and Future Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 110

models of different kinds. It is expressed as database schema and defines attributes, connec-

tors, elements and operations of specific types depending on the supported kinds of models.

Thus, the models are stored in a database. The target metamodel used for this master’s the-

sis is the physical database schema of EA, that is described with Structured Query Language

(SQL) and based on the SQL-92 standard. As the ADOCLE approach defines, a metamodel

mapping between the UML metamodel and the EA database schema is necessary. Therefore,

a metamodel mapping was determined based on patterns, which identifies equivalent UML

metamodel elements - the stored models in the database of the EA. An OCL expression ap-

plied on the UML metamodel is analysed by an OCL interpreter, which is created by the

ANTLR parser generator using the EBNF of the OCL grammar. Thus, each OCL expression is

validated against the OCL grammar. The output of the OCL interpreter is an abstract syntax

tree (AST) that is used for the translation to an SQL expression. Finally, the generated SQL

expression is executed to provide an automatic validation of the given OCL expression. Thus,

the well-formedness rules - described with OCL - in the UML specification are used to vali-

date the models in the Enterprise Architect.

The prototype pointed out that it is possible to transform OCL expressions applied on a se-

lectable metamodel to a target metamodel using the concept of ADOCLE and to validate the

models of the target metamodel. The advantage of ADOCLE is a platform independent ap-

proach providing the functionality of OCL in several environments and CASE tools. The im-

plementation of OCL can be reused for each environment to provide an automatic validation

in the early design phase. ADOCLE also supports by generating valid OCL expression using

word completion instruments. But a big disadvantage is the huge effort of the metamodel

mapping definition between the source and the target metamodel. Additionally, if a meta-

model mapping for a necessary element is not possible, ADOCLE leads to transformation

and/or execution errors. Thus, ADOCLE is highly influenced by the metamodel mapping.

The consistency analysis reflects the dependency of the metamodel mapping. For the

evaluation, the state machine package with its 50 well-formedness rules was chosen, which

contains a wide range of modelling paradigms and represents the complexity of the UML

specification adequately. The consistency analysis shows that 32 of 50 OCL expressions pro-

vide the correct outcome. While in 9 cases, the semantically equivalent SQL expressions

cannot be created, because a single element, the UML concept Region could not be mapped

to the target metamodel. The database schema of the Enterprise Architect does not store

the UML concept Region in the database as a referable element. That shows the highly influ-

ence of the metamodel mapping on the OCL transformation. Other failing issues are caused

by the distinction to the state machine package. Extensions that are part of the future work

will resolve these issues.

 Conclusion and Future Work

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 111

The performance analysis revealed that the validation is significantly faster using ADOCLE.

The solution, validating models in EA using the COM interface leads to enormous time effort

caused by the sequentially testing of the conditions for each element. ADOCLE yields for

each size of test suites a faster validation. The greater the number of elements, the more

time is required to perform the validation. Although there is still potential to improve the

performance of ADOCLE. These issues are described in the following chapter.

7.2 Future Work

In order to provide comprehensive functionality for validating models in different environ-

ments, the prototypical implementation of ADOCLE was built in this master’s thesis has to be

extended. The following extensions are the most interesting ones:

 Modelling concepts: The prototypical implementation of ADOCLE is restricted in the

UML modelling concepts very much and only supports state machine. An expansion

of the supported modelling concepts constitutes a valuable extension. Therefore, the

metamodel mapping has to be extended as well as the included WFR of the model-

ling concepts has to be checked. An expansion of modelling concepts that are already

referred by the OCL expression in the consistency analysis would resolve the failing

executions. These issues should be taken into account for the selection of the model-

ling concepts.

 Parallel execution: The support of a parallel transformation of OCL expressions or

sub expressions (see Chapter 4.2.3.2) is also a reasonable extension to improve the

performance of ADOCLE. Currently the prototype executes sub expressions sequen-

tially and does not incorporate concurrent programming.

 Graphical editor: The ADOCLE prototype provides only a list of identifiers for valid

and invalid model elements. The existing user interface could be extended with more

details about the model elements. Another issue is the integration of ADOCLE in the

Enterprise Architect as an Add-In. Invalid models could be colour marked and notes

for the incorrectness could be attached

 List of figures

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 112

8 List of figures

Figure 1 - MDA approach ... 1

Figure 2 – Adaptable OCL Engine (ADOCLE) .. 3

Figure 3 – Approach of ADOCLE prototype mapping between UML and EA 4

Figure 4 - Four-layer metamodel hierarchy ... 10

Figure 5 - Static aspects of UML ... 15

Figure 6 - Motivation example - UML class diagram ... 16

Figure 7 - Association-end and Navigation ... 20

Figure 8 - Type Hierarchy for OCL ... 24

Figure 9 - Excerpt of the OCL expression package ... 26

Figure 10 - Example of expression types .. 27

Figure 11 - Object diagram for OCL2SQL demonstration .. 36

Figure 12 - Equal schemas due to the class-to-table mapping approach 41

Figure 13 - Semantically overlapping schemas .. 42

Figure 14 - Abstract view of ADOCLE .. 43

Figure 15 - ADOCLE ... 44

Figure 16 – Metamodel Loader ... 47

Figure 17 - Metamodel mapping concept .. 50

Figure 18 - Element mapping .. 51

Figure 19 - Property mapping .. 51

Figure 20 - Enumeration mapping .. 52

Figure 21 - Association mapping... 52

Figure 22 – OCL interpreter ... 54

Figure 23 - Module three - Strategy Pattern .. 55

Figure 24 - Design Patterns used for the OCL Transformator 56

Figure 25 - OCL constraint basic structure .. 57

Figure 26 - OCL Parser Output for the example .. 58

Figure 27 - Behaviour of a Transformation Process for the example 60

Figure 28 - Complex OCL example .. 61

Figure 29 - Subselect algorithm example .. 63

Figure 30 - Subselect algorithm SQL ... 64

Figure 31 - Implies example OCL expression ... 69

Figure 32 - ADOCLE UI .. 72

Figure 33 - Cash machine example - Test data 1 .. 76

Figure 34 - Traffic light example - Test data 2 .. 77

Figure 35 - Account process - Test data 3 .. 78

Figure 36 - Protocol state machine - Test data 4 ... 79

Figure 37 - Transition types - Test data 5 .. 79

 List of tables

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 113

Figure 38 - State types - Test data 6 .. 80

Figure 39 - Example for special state machine components – Test data 7 81

Figure 40 - Activities - Time event - Test data 8 ... 81

Figure 41 - Performance analysis - Chart diagram .. 98

Figure 42 - Implementation structure of the work [45] ... 100

Figure 43 - OCL Module in VTMS... 100

Figure 44 - USE approach ... 106

9 List of tables

Table 1 - OCL basic types .. 22

Table 2 – OCL Collection types... 23

Table 3 - Data entries in table Person .. 35

Table 4 - Data entries in table Vehicle ... 35

Table 5 - Data entries in table Company ... 36

Table 6 - Data entries in table Job .. 36

Table 7 - List of supported OCL expressions .. 65

Table 8 - List of supported OCL operators .. 66

Table 9 - List of supported OCL operations .. 67

Table 10 - Implication truth table ... 68

Table 11 - Implies example set A elements .. 69

Table 12 - Implies example set B1 validation ... 69

Table 13 - Implies example set B2 validation ... 69

Table 14 - Statistical hypothesis categories .. 74

Table 15 - Connection Point Reference test cases .. 82

Table 16 - Final state test cases ... 83

Table 17 - ProtocolStateMachine test cases .. 84

Table 18 - Pseudostate test cases ... 87

Table 19 - Region test cases ... 89

Table 20 - State test cases .. 92

Table 21 - State machine test cases .. 93

Table 22 - Transition test cases .. 96

Table 23 - Consistency analysis - Test results ... 97

Table 24 - Performance analysis - Test results .. 97

 List of Mapping Examples

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 114

10 List of Mapping Examples

Mapping Example 1 - Attribute .. 37

Mapping Example 2 - Many-to-One Relation Manager ... 37

Mapping Example 3 - Many-to-One Relation Vehicle Owner ... 38

Mapping Example 4 - One-to-Many Relation .. 38

Mapping Example 5 - Combination of relations and attributes 38

Mapping Example 6 - Operation ... 39

 <References

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 115

11 References

[1] Object Management Group. (2006, May) OMG Unified Modelling Language (OMG UML)

Infrastructure, Version 2.0. http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/

[2] Object Management Group. (2010, May) OMG Unified Modelling Language (OMG UML)

Superstructure, Version 2.3.

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

[3] Object Management Group. (2006, May) Object Constraint Language, Version 2.0.

http://www.omg.org/spec/OCL/2.0/PDF/

[4] B. W. Boehm, "Software Engineering Economics," IEEE Transactions on Software

Engineering, no. 12, pp. 4-21, January 1984.

[5] Sparx System. (2013, January) Enterprise Architect.

http://www.sparxsystems.eu/enterprisearchitect/

[6] Eclipse Model Development Tools. (2013, January) Eclipse OCL.

http://www.eclipse.org/projects/project.php?id=modeling.mdt.ocl

[7] International Organization for Standardization. (1992) Database Language SQL.

http://savage.net.au/SQL/sql-92.bnf.html

[8] M. Hitz and G. Kappel, UML@Work.: Dpunkt Verlag, 1999.

[9] B. Österreich, Analyse und Design mit der UML 2.5: Objektorientierte

Softwareentwicklung.: Oldenbourg Wissenschaftsverlag, 2012.

[10] G. Booch, "The Booch method: process and pragmatics," in Object development

methods. New York: SIGS Publications, Inc., 1994, pp. 149-166.

[11] J. Rumbaugh, Blaha M., Premerlani W., Eddy F., and Lorensen W., Object Oriented

Modeling and Design. New Jersey, USA: Prentice Hall, 1991.

[12] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object Oriented Software

Engineering: A Use Case Driven Approach.: Addison-Wesley, 1992.

[13] International Organization for Standardization. ISO/IEC 14977:1996(E).

www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

[14] E. Seidewitz, "What Models Mean," IEEE Software, no. 20, pp. 26-32, 2003.

[15] R. France, A. Evans, K. Lano, and B. Rumpe, "The UML as a formal modeling notation,"

Computer Standards & Interfaces, vol. 19, no. 7, pp. 325-334, 1998.

[16] C.B. Jones, Systematic Software Development using VDM.: In Prentice Hall, 1990.

[17] J. Davies and J. Woodcock, Using Z: Specification, Refinement and Proof.: In Prentice

Hall, 1996.

[18] S. Schneider, B Method - An introduction.: Palgrave, Cornersones of Computing series,

2001.

[19] J. Warmer and A. Kleppe, The Object Constraint Language: Precise Modeling with UML,

http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/OCL/2.0/PDF/
http://www.sparxsystems.eu/enterprisearchitect/
http://www.eclipse.org/projects/project.php?id=modeling.mdt.ocl
http://savage.net.au/SQL/sql-92.bnf.html
www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

 <References

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 116

1st ed. Bosten, USA: Addison-Wesley, 1998.

[20] M. Gogolla, An Extended Entity-Relationship Model: Fundamentals and Pragmatics.

Berlin: Springer, 1993.

[21] W. Kim and F. H. Lochovsky, Object-Oriented Concepts, Databases, and Applications.

Michigan, USA: ACM Press, 1989.

[22] S. Cook and J. Daniels, Designing Object Systems: Object-Oriented Modelling with

Syntropy.: Prentice Hall, 1994.

[23] M. Vaziri and D. Jackson, "Some Shortcomings of OCL, the Object Constraint Language

of UML," in TOOLS '00 Proceedings of the Technology of Object-Oriented Languages and

Systems, Washington, 1999, pp. 555-572.

[24] M. Gogolla and U. Hohenstein, "Towards a semantic view of an extended entity-

relationship model," ACM Transactions on Database Systems (TODS), no. 16, pp. 369 -

416, September 1991.

[25] M. Gogolla and M. Richters, "On constraints and queries in UML," in The Unified

Modeling Language - Technical Aspects and Applications. Heidelberg, Deutschland:

Physica-Verlag, 1998, pp. 109-121.

[26] R. F. van der Lans, Introduction to SQL: Mastering the Relational Database Language,

4th ed.: Pearson, 2006.

[27] K. Kline, Kline D., and B. Hunt, SQL in a Nutshell, 3rd ed. O'Reilly Media, USA: O'Reilly

Media, 2008.

[28] M. Blaha and W. Premerlani, Object-Oriented Modeling and Design for Database

Applications, 1st ed. Groningen, The Netherlans: Prentice Hall, 1997.

[29] A. Schmidt, Untersuchungen zur Abbildung von OCL-Ausdrücken auf SQL (Master

Thesis), 1998.

[30] B. Demuth and H. Hussmann, "Using UML/OCL Constraints for Relational Database

Design," in UML'99 Proceedings of the 2nd international conference on the unified

modeling language, Heidelberg, 1999.

[31] S. Loecher, B. Demuth, and H. Hussmann, "OCL as a Specification Language for Business

Rules in Database Applications," in Proceedings of the 4th International Conference on

The Unified Modeling Language, Modeling Languages, Concepts, and Tools, London,

2001, pp. 104-117.

[32] A. De Almeida, G. Boff, and J. L. De Oliveira, "A Framework for Modeling, Building and

Maintaining Enterprise Information Systems Software," in Proceedings of the 2009 XXIII

Brazilian Symposium on Software Engineering, USA: DC, 2009, pp. 115-125.

[33] C. Calgano, W. Taha, L. Huang, and X. Leroy, "Implementing multi-stage languages using

ASTs, Gensym and Rejection," in Generative Programming and Component Engineering

 <References

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 117

(GPCE) Conference, LNCS 2830, 2003, pp. 57-76.

[34] T. Cormen, Ch. Leiserson, R. Rivest, and C. Stein, "Depth-first search," in Indrocution to

Algorithms, MIT Press and McGraw-Hill, Ed. Cambridge, 2001, ch. 22.3, pp. 540-549.

[35] A. P. Sheth and J. A. Larson, "Federated database systems for managing distributed,

heterogeneous, and autonomous databases," ACM Computing Surveys (CSUR) - Special

issue on heterogeneous databases, no. 22, pp. 183-236, September 1990.

[36] R. Blake, "A survey of Schema Matching Research," University of Massachusetts Boston,

Boston, UMBCMWP 1031 2007.

[37] E. Rahm and P. A. Bernstein, "A survey of approaches to automatic schema matching,"

The VLDB Journal — The International Journal on Very Large Data Bases, no. 10, pp.

334-350, December 2001.

[38] H. Wache et al., "Ontology-based integration of information - a survey of existing

approaches," In Proceedings of the workshop on Ontologies and Information Sharing at

the International Joint Conference on Artificial Intelligence (IJCAI), pp. 108-117, 2001.

[39] R.A. Brooker, I.R. Maccallum, D. Morris, and J.S. Rohl, "The Compiler Compiler," in

Annual Review in Automatic Programming, Vol. 3, London, 1963, pp. 229-275.

[40] J. Jørgensen, "Generating a compiler for a lazy language by partial evaluation," in POPL

'92 Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, New York, USA, 1993, pp. 258-268.

[41] Ch. Consol and O. Danvy, "Partial evaluation: Principles and Perspectives," in POPL'93

Proceedings of the ACM-SIGPLAN Symposium on Principiles of Programming Languages,

1993.

[42] T. Parr, The Definitive Antlr Reference: Building Domain-Specific Languages. USA: San

Fransico: The Pragmatic Programmers, 2007.

[43] L. M. Garshol. (2008, August) BNF and EBNF: What are they and how do they work.

www.garshol.priv.no/download/text/bnf.html

[44] Ch. Ullenboom. (2007, Juli) Das ANTLR Eclipse-Plugin.

http://www.tutego.de/blog/javainsel/2007/07/das-antlr-eclipse-plugin/

[45] D. Akehurst and O. Patrascoiu, "OCL 2.0 - Implementing the Standard for Multiple

Metamodels," Electronic Notes in Theoretical Computer Science (ENTCS), vol. 102, pp.

21-41, November 2004.

[46] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, 1st ed. Amsterdam: Addison-Wesley Longman, 1994.

[47] F. Heidenreich, C. Wende, and B. Demuth, "A Framework for Generating Query

Language Code From OCL Invariants," in Proceeding of the Workshop Ocl4All - Modeling

Systems with OCL at Models , Berlin, 2008.

www.garshol.priv.no/download/text/bnf.html
http://www.tutego.de/blog/javainsel/2007/07/das-antlr-eclipse-plugin/

 <References

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 118

[48] R. Carnap, Introduction to Symbolic Logic and Its Applications. New York, 1958.

[49] E. Mendelson, Introduction to Mathemetical Logic, 4th ed., Chapman & Hall, Ed.

London: Springer, 1997.

[50] A. Tarski, On the Concept of Logical Consequence. Indianapolis: Hackett, 1983, pp. 409-

420.

[51] F. L. Deremer, "PRACTICAL TRANSLATORS FOR LR(K) LANGUAGES," Massachusetts

Institute of Technology , USA, Dissertation 1969.

[52] S. C. Johnson, "Yacc: Yet Another Compiler Compiler," Bell Laboratories, New Jersey,

Technical Report 1975.

[53] G. Mezei, L. Lengyel, T. Levendovszky, and H. Charaf, "Extending an OCL Compiler for

Metamodeling and Model Transformation Systems: Unifying the Twofold Functionality

," in Intelligent Engineering Systems - INES '06. Proceedings, Budapest, 2006, pp. 57-62.

[54] R. Heckel, "Graph Transformation in a Nutshell," Electronic Notes in Theoretical

Computer Sciene, vol. 148, 2006.

[55] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, and T. Levendovszky, "Model transformation

by graph transformation: A comparative study," MTiP: International Workshop on

Model Transformations in Practise (Satellite Event of MoDELS), 2005.

[56] S. Loecher and S. Ocke, "A Metamodel-Based OCL-Compiler for UML and MOF,"

Electronic Notes in Theoretical Computer Science (ENTCS), vol. 102, pp. 43-61,

November 2004.

[57] J. Cabot and E. Teniente, "Constraint Support in MDA Tools: A Survey," in ECMDA-FA'06

Proceedings of the Second European Conference on Model Driven Architecture:

Foundations and Applications, Heidelberg, 2006, pp. 256-267.

[58] J. D. Chimiak-Opoka et al., "OCL Tools Report based on the IDE4OCL Feature Model,"

Electronic Communications of the EASST, vol. 44, 2011.

[59] F. Heidenreich et al., "Integrating OCL and textual modelling languages," in MODELS'10

Proceedings of the 2010 international conference on Models in software engineering,

Heidelberg, 2010, pp. 349-363.

[60] Object Management Group. (2011, January) Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification. http://www.omg.org/spec/QVT/1.1/PDF/

[61] M. Richters. (2013, January) The UML-based Specification Environment.

sourceforge.net/apps/mediawiki/useocl/index.php

[62] F. Büttner and M. Gogolla, "Modular Embedding of the Object Constraint Language," in

SBMF'11 Proceedings of the 14th Brazilian conference on Formal Methods: Foundations

and Applications, Heidelberg, 2011, pp. 124-139.

[63] L. Hamann and M. Gogolla, "Improving Model Quality by Validating Constraints with

http://www.omg.org/spec/QVT/1.1/PDF/
sourceforge.net/apps/mediawiki/useocl/index.php

 <References

An Adaptable OCL Engine for Validating Models in Different Tool Environments Page 119

Model Unit Tests," in MODEVVA '10 Proceedings of the 2010 Workshop on Model-Driven

Engineering, Verification, and Validation, Washington, 2010, pp. 49-54.

[64] A.J. Lait and D. Randell, "An Assessment of Name Matching Algorithms," University of

Newcastle, 1996.

[65] B.M. Diaz, "Computers in Genealogy," in Nominal data visualisation: The Star-Trek

Paradigm., 1994, pp. 23-34.

[66] Software Technology Group at Technische Universität Dresden. (1999) Dresden OCL.

http://dresden-ocl.sourceforge.net/

[67] M. Richters and M. Gogolla, "Validating UML Modells and OCL Constraints," in UML'00

Proceedings of the 3rd international conference on the unified modeling language:

advancing the standard, Heidelberg, 2000.

[68] E. Song, R. B. France, D. K. Kim, and S. Gosh, "Using Roles for Pattern-based Model

Refactoring," in Proceedings of the Workshop on Critical Systems Development with

UML (CSDUML '02), 2002.

[69] D. H. Akehurst and Kent S., "A Relational Approach to Defining Transformations in a

Metamodel," in UML '02 Proceedings of the 5th International Conference on The Unified

Modeling Language , London, 2002, pp. 243-258.

[70] F. Jounalt and I. Kurtev, "On the architectural alignment of ATL and QVT," in SAC '06

Proceedings of the 2006 ACM symposium on Applied computing, New York, 2006, pp.

1188-1195.

[71] S. J. Miller, "Pattern-based model approach: A metamodel-based approach to model

evolution," Southern University, Baton Rouge, Dissertation 2004.

[72] G. Bouchard and Ch. Pouyez, "Historial Methods," in Name Variations And

Computerised Record Linkage.: Spring, 1980, pp. 119-125.

[73] J. M. Kim. (1995) Name Matching for Data Quality Mediator.

[74] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling

Framework, 2nd Edition. Amsterdam: Addison-Wesley Professional, 2008.

http://dresden-ocl.sourceforge.net/

