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Abstract: Occupancy density is a dynamic measurement that reveals the relationship between the
floor area and occupant count, usually in a room or building. The research presented in this paper
probes further into the relationship between the physical properties of space and occupants’ activity,
to expand the understanding of occupancy density. The presented outcome is an evidence-based
technique for determining room and activity-specific occupancy density limits that can support
the design and be integrated into the design process. In this study, occupant information, namely,
positioning, is simulated in the spatial context, including room dimensions and furniture layout.
Controllable distancing variables, such as those globally introduced in response to the COVID-19
pandemic to prevent the spread of infectious diseases in indoor environments, are used to assess
occupancy density thresholds.

Keywords: occupancy density; social distancing; COVID-19; evidence-based design; architectural
design

1. Introduction

Occupancy information, such as occupant presence, count, and positioning, are impor-
tant to research related to facility management [1], energy savings [2], thermal comfort [3,4],
and the implementation of social distancing norms in buildings during the COVID-19
pandemic [5]. The monitoring of occupant activity and interaction with building systems
provides additional information for research on how buildings are used and managed [6].
There is a fast-growing interest in acquiring data on occupant activity in indoor environ-
ments, in order to inform the operation of building systems for lighting, heating, ventilation,
and air-conditioning, and make them responsive to occupants’ needs [7,8]. The recent
research aims to reduce energy consumption and provide comfort by learning user be-
haviour [9], and suggests that it is key to closing the performance gap between building
design and operation [10]. Moreover, occupant behaviour modelling is undertaken to study
scenarios of disease spread in a building during the COVID-19 pandemic [11]. However,
according to our background research, there is a lack of studies addressing the use of
occupancy data within the design process. To the best of our knowledge, there are no
established methods to enable designers to examine and correct their decisions according to
their implications on occupancy density. The use of computational techniques in this study
is proposed for processing occupancy data, in order to simulate aspects of occupant activity
affected by physical characteristics of space and design decisions. This study explores how
data provided by indoor location systems, and observed in conjunction with spatial design
features, can expand the understanding of occupancy density to support decision-making
during the design process.

Over the past decade, research efforts and technology for indoor location, capturing not
only the number of occupants but also their positioning, advanced significantly, to develop
high-precision-capability, relying on radio frequency identification devices [12], and ultra-
wideband technologies [13], later with an accuracy of tens of centimetres. However, there
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are still very few fully developed systems available on the market, and there is a lack of
standardised guidance and comprehensive testing of people-counting sensors [14]. The
remaining challenges are related to the scale of deployment of location systems, and their
use for tracking multiple occupants in indoor environments [15]. Additional significant
challenges include the protection of personally identifiable information, and developing
frameworks for preserving the privacy of occupancy data [16]. Cameras and image-
based methods provide another viable solution for both occupancy count and positioning,
but their reliability is hampered by the occlusion resulting from the proximity between
occupants and objects in space [17]. Therefore, a combination of systems, through sensor
fusion approaches, is frequently tested to improve the accuracy and reliability of indoor
positioning systems [18]. Other approaches being tested for measuring occupancy include
environmental sensing [19], and data from social media platforms [20]. In addition, machine
learning and statistical methods are employed to improve the accuracy and reliability of
occupancy information [21–23]. The application of advanced computational techniques,
such as artificial neural networks, the Markov chain model, decision trees, k-nearest
neighbour, and support vector machines, in studies addressing occupancy of buildings is
fast-growing [24].

This study focuses on occupancy density from a designer’s perspective. It builds on
our previously published research involving simulation modelling to examine the efficiency
of distancing measures imposed by the COVID-19 pandemic, and establish a method for
determining room-specific occupancy limits [25]. The initial study was limited to occupancy
information, including occupancy count and positioning. This paper presents the research
that followed, and explores how occupancy limits can be informed by physical properties of
space and occupant activity, and how such a deeper and expanded definition of occupancy
density can inform design decisions on room dimensioning and furniture layout. The
principal aim of the presented research is to establish an evidence-based technique for
determining room and activity-specific occupancy limits to support the architectural design
process. To that end, both physical and temporal variables that can be adjusted according to
up-to-date sanitary requirements, and other needs related to the specific usage of buildings
to establish occupancy density thresholds, are utilised. Occupant activity, in this research,
is related to occupant positioning in the spatial and temporal context, such as the location
of objects in the room and the duration of contact between occupants. The goal is to
project how people interact with the built environment to determine occupancy density
thresholds before the building is built and used. Therefore, the presented study revolves
around two research questions: (1) How can occupancy density norms inform architectural
design decisions on room dimensioning and furniture layout? (2) How to include a
variable temporal component of contact duration in determining room and activity-specific
occupancy density norms?

The first research question is addressed by analysing distancing incidents occurring in
occupancy scenarios with different furniture layouts in the same room. The second research
question is answered with an analysis of the distribution of distancing incidents occurring
in occupancy scenarios with and without the contact time consideration.

2. Methods

The methods employed in this study included the simulation of occupancy scenarios
in a room used for educational activities, and statistical analysis of the relationship between
the frequency of occurring distancing incidents and (1) four different furniture layouts, and
(2) with and without assigned contact duration.

The room, providing testing polygon for simulation modelling, is a classroom in MSD
building belonging to the University of Melbourne, measuring approximately 9.6 × 6.0 [m]
in footprint, with a single doorway, and floor to ceiling glazed wall providing the natural
light (Figure 1). The four furniture layouts subjected to analysis respond to actual setups
commonly used in the teaching and learning delivery in the school, identified through
informal interviews with teachers and observation (Figure 2). The activities include (a) pin-
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ups, when students present their work pinned to longitudinal walls; (b) seminars, when
the entire class sits around one large table placed in the middle of the room; (c) group work,
when students are seated in clusters of tables to work in small teams; and (d) individual
work, when students work independently seated in their own workstations. The number
of occupants is limited to 16, corresponding to the number of students in the classroom
during a design studio session according to current teaching and learning standards, which
results in an occupational density of 3.6 [m2] per person. In this research phase, and to
account for the potential precision limitations of the existing indoor localisation systems,
occupant and furniture positioning are restricted to the 0.6 × 0.6 [m] grid nodes.
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Figure 2. The graphic output sample.

A sample graphic output resulting from the model developed for this study shows a
simulated scenario, presented as a schematic floor plan of the classroom with (1) floor area
occupied with the work desks filled with grey, (2) positioning grid, (3) occupant location
with identifiers A–N, and (4) circles of a 0.75 [m] radius that define the space assigned to
occupants A–N (Figure 2). Areas defined by the intersections of circles are filled with red
colour to mark the occurring distancing incidents. Importantly, not all intersections are
deemed distancing incidents, as contact duration is considered in the latter part of this
study. In the presented graphic output sample, the preceding and subsequent position of
occupants are accounted for to underline this aspect.

The simulation, developed with Python programming language for this study, is used
to generate occupancy scenarios, replacing input that the indoor location system would
provide in real life. A new scenario is generated every 20 s during a teaching and learning
session, lasting three hours, thus, providing 541 scenarios for each furniture layout. At the
outset, coordinates defining the locations of 16 occupants are allocated to the area of the
room not occupied by the furniture. Occupants’ movement in the room is modelled so
they cannot move through spatial barriers, including walls that are edges of the observed
room and furniture. In each subsequent scenario, the occupant position is updated in one
of the five possible ways: (1) stay in place, (2) move one space forward in the ‘x’ direction,
(3) move one space backward in the ‘x’ direction, (4) move one space forward in the ‘y’
direction, or (5) move one space backward in the ‘y’ direction, of the 0.6 × 0.6 [m] grid.

There are 16 work desks in the room, measuring 0.6 × 1.2 [m], and they are configured
differently for each analysed activity, as outlined previously in this section of the paper.
The potential change of furniture layout during a single teaching session, and other more
unpredictable aspects of human behaviour, are not considered at this modelling stage. The
presented simulation is structured to provide a baseline for further and deeper analysis of
occupant behaviour. At this research stage, the emphasis is placed on the impact of the fur-
niture layout on occupants’ movement in the room, and on the contact between occupants.

The simulation captures differences between the four typical activities in an educa-
tional setting, using the number of occurring distancing incidents according to changeable
distancing norms as a quantifiable measure to expand a simplistic understanding of occu-
pancy density beyond the ‘area per person’ definition, and to help establish a room and
activity=specific occupancy threshold, informed by the physical characteristics of space
and activities unfolding in that space.

In a subsequent development of the simulation presented in this paper, a temporal
component is added, to provide a more accurate definition of a distancing incident. The
additional input variable is introduced in the simulation to define the contact duration, and
enable the comparison of results with and without contact time considered. The duration
of contact deemed an incident is provisionally set to one minute, only to empower further
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research and testing of the proposed method. The computational model tracks occupants
and identifies distancing incidents only if distancing requirements are breached in the three
consecutive scenarios that capture occupant positioning at 20 s intervals.

The presented simulation method is fully reproducible and applicable in examining
varied furniture layouts and room dimensions. It is designed to allow for the change of
key parameters, including room dimensions, grid size, position and size of floor areas
occupied by the furniture, number of occupants, social distancing requirements, activity
duration, and measuring frequency. An overview of values used for each variable for four
analysed furniture configurations are given below (Table 1). It is important to clarify that
the simulation developed for this study allows for the change of distancing norms, defined
as a radius of a circle with a centre at the location that the indoor location system would
provide for each occupant, and the duration of the contact between occupants. Distancing
variables used in this research phase are provisional, and can be changed according to
the current infectious disease prevention measures, other norms for occupants’ comfort,
or spatial usage efficiency in future research. In this research, the assigned values of the
distancing radius and contact duration were used to help structure the evidence-based
method that can be used to examine design decisions related to the size of the room and
furniture configuration. Answering the posed research problem is based on the simulation
results and adequate statistical analysis. The purpose of data analysis is to examine the
impact of different furniture layouts and varied contact duration on the distribution of
occurring distancing incidents, in a scientific manner.

Table 1. Overview of variables entered by researchers for four activities.

Activity Room
Dimensions

Positioning
Grid Size

Furniture
Coordinates

Number of
Occupants

Activity
Duration

Measuring
Frequency

Distancing
Radius

Contact
Duration

Activity 1 9.6 × 6.0 [m] 0.6 [m] [(0,0) (9.6,0.6)]
[(0,5.4) (9.6,0)] 16 180 [min] 20 [s] 0.75 [m] 0/60 [s]

Activity 2 9.6 × 6.0 [m] 0.6 [m] [(3,1.8) (7.8,4.2)] 16 180 [min] 20 [s] 0.75 [m] 0/60 [s]

Activity 3 9.6 × 6.0 [m] 0.6 [m]
[(1.8,0) (3,2.4)]

[(5.4,0) (6.6,2.4)]
[(3.6,3.6) (8,6)]

[(7.2,3.6) (8.4,6)]
16 180 [min] 20 [s] 0.75 [m] 0/60 [s]

Activity 4 9.6 × 6.0 [m] 0.6 [m]
[(2.4,1.2) (3,6)]

[(4.2,1.2) (4.8,6)]
[(6,1.2) (6.6,6)]

[(7.8,1.2) (7.8,6)]
16 180 [min] 20 [s] 0.75 [m] 0/60 [s]

Results obtained through simulation as datasets showing the distribution of distancing
incidents for four different activities with and without assigned contact duration are used
for statistical analysis. Analysis of variance (ANOVA) is employed for comparing variances
across the means to establish the influence of activity specific furniture layout (independent
variables) on the number of occurring distancing incidents (dependent variables), by
examining the difference between means [26]. The physical distancing requirements are
included as independent variables that are defined in the simulation method as outlined
(Table 1). The objective of the statistical analysis is to establish if there is a significant
statistical difference between the four modelled activities. In the context of the presented
simulation, the significant statistical difference confirms the impact of different furniture
layouts on the frequency of distancing incidents. In addition to ANOVA, the unpaired
two-samples t-test was used for the examination of the statistical difference between the
means with and without contact duration consideration for each of the four modelled
activities [26].

3. Results

The graphic output, from the simulation of occupants positioning in relationship to
four different furniture layouts in a room, corresponding to four typical teaching and
learning activities, without contact time consideration, is presented first. Each simulation is
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conducted for the duration of 180 min, resulting in 541 scenarios, captured at 20 s intervals.
The first 28 scenarios for each activity are presented below (Figures 3–6), while the complete
graphic output is provided at: https://doi.org/10.5281/zenodo.6592405 (accessed on
1 June 2022).
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The count and distribution of distancing incidents during four different teaching and
learning activities, based on simulated occupant positioning according to four furniture
layouts in the same room, without contact time consideration, is presented in the graphs
below (Figure 7). The highest average number of distancing incidents is recorded for
activities 2 and 3, while activity 4 has the lowest number of distancing breaches under the
same occupancy count.
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Figure 7. Distribution of distancing incidents for four furniture layouts corresponding to different
teaching and learning activities, without contact time consideration.

The count and distribution of distancing incidents during four different teaching and
learning activities, based on simulated occupant positioning according to four furniture
layouts in the same room, with contact time consideration, is presented in the graphs
below (Figure 8). The highest average number of distancing incidents is recorded for
activities 2 and 3, while the activity 4 has the lowest number of distancing breaches under
the same occupancy count.

The ANOVA results show a significant statistical difference between the compared
datasets obtained from the four simulated activities with corresponding furniture layouts
without the contact time consideration (Table 2). The starting statistical hypothesis that the
difference between four activities will not be statistically significant is refuted by a p-value
of less than 0.0001. The highest variance is in activities 2 and 3, which have the highest
average of occurring distancing incidents, while activities 1 and 4 have significantly lower
variance, but differ in the average number of incidents (Table 3).
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Table 2. Summary of ANOVA analysis for simulated occupancy for four typical teaching and learning
activities in the same room, without contact time consideration.

Activity Count Sum of
Distancing Incidents

Number of
Occupants

Average Number of
Distancing Incidents

Activity 1 541 6420 11.86691312 7.271143972
Activity 2 541 6755 12.48613678 10.39101116
Activity 3 541 6748 12.47319778 9.323817348
Activity 4 541 5819 10.75600739 7.573690696

Table 3. Summary of ANOVA results for simulated occupancy for four typical teaching and learning
activities in the same room, without contact time consideration.

Source of
Variation SS df MS F p-Value F Crit

Between groups 1072.179298 3 357.3930992 41.36534519 <0.0001 2.609022469
Within groups 18662.21811 2160 8.639915794

Total 19734.39741 2163

The simulation is repeated for the four activities under the same conditions, but with
the contact duration requirement. The aim is to avoid excessive contact count, and consider
only lasting contacts that are relevant to sanitary norms and projected comfort standards.
The duration of the contact is, therefore, introduced as a changeable variable, and the
60 [s] requirement is applied in the second simulation run. Any contact between occupants
lasting less than one minute is not deemed an incident. The graphic output is provided
at: https://doi.org/10.5281/zenodo.6592405 (accessed on 1 June 2022). The count and
distribution of distancing incidents according to 20 s intervals during four different teaching
and learning activities, based on simulated occupancy according to four furniture layouts
in the same room with 60 s contact duration, is provided in the graphs below (Figure 8).

https://doi.org/10.5281/zenodo.6592405
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The resulting number of distancing incidents is significantly lower compared to when
contact duration is not considered (Table 4).

Table 4. Average number of distancing incidents without contact time consideration per activity,
without contact time consideration.

Activity

Average Number of
Distancing Incidents
without Contact Time

Consideration

Average Number of
Distancing Incidents

with Contact Time
Consideration

Activity 1 11.86691312 5.885397412
Activity 2 12.48613678 6.378927911
Activity 3 12.47319778 7.609981516
Activity 4 10.75600739 5.863216266

The ANOVA results show a statistically significant difference between the compared
datasets resulting from the four modelled activities with the contact time consideration.
The highest variance is in activity 3, which has the highest average number of occurring
distancing incidents, while activities 1 and 4 have the lowest variance, and the lowest
average number of incidents (Table 5). Once again, the starting statistical hypothesis that
the difference between four activities will not be statistically significant is refuted by a
p-value of less than 0.0001 (Table 6). The analysis focusing on the correlation between input
and output parameters shows the validity of the results regarding the number of distancing
incidents between occupants for four modelled activities in the same room.

Table 5. Summary of ANOVA analysis for simulated occupancy for four typical teaching and learning
activities in the same room, with contact time consideration.

Activity Count Sum of
Distancing Incidents

Number of
Occupants

Average Number of
Distancing Incidents

Activity 1 541 3184 5.885397412 4.494249333
Activity 2 541 3451 6.378927911 4.935777367
Activity 3 541 4117 7.609981516 6.516122407
Activity 4 541 3172 5.863216266 3.940514822

Table 6. Summary of ANOVA results for simulated occupancy for four typical teaching and learning
activities in the same room, with contact time consideration.

Source of
Variation SS df MS F p-Value F Crit

Between groups 1088.883549 3 362.961183 73.00594696 <0.0001 2.609022469
Within groups 10738.79852 2160 4.971665982

Total 11827.68207 2163

The unpaired two-samples t-test is conducted to examine if there is a significant
difference between the means with and without contact time consideration. T-values,
showing the size of the difference relative to the variation in the sample data, and p-values,
showing the probability that the results from the sample data occurred by chance, are
presented in Table 7.
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Table 7. Summary of t-test results for simulated occupancy for four typical teaching and learning
activities in the same room, with and without contact time consideration.

Activity p-Value t

Activity 1 <0.0001 40.5608
Activity 2 <0.0001 36.2841
Activity 3 <0.0001 28.4214
Activity 4 <0.0001 33.5381

4. Discussion

The first research question on including spatial characteristics, such as furniture layout,
in determining activity specific occupancy limits is answered with simulation and analysis
of results showing a statistically significant difference between the four modelled scenarios.
The presented evidence-based method links the specifics of occupants’ activity with the
physical characteristics of space. The method is fully reproducible and applicable to
different room sizes and furniture layouts and, therefore, can assist designers in examining
those two aspects during the design process. It offers a way to take occupancy density limits
according to the planned activities in a room into consideration, along with other aspects
important to architectural design, such as access, room volume, ventilation, illumination,
and the choice of building materials that were not discussed in this paper. The presented
outcomes provide a way to take aspects of occupant behaviour into account, by simulating
activity-specific occupancy scenarios associated with distinct furniture layouts.

The presented method for establishing occupancy limits prioritises occupant wellbeing,
and it is based on variable distancing norms. In the current course of the pandemic, COVID-
19-safe plans for workplaces and guidelines such as directions from Chief Health Officer,
in accordance with emergency powers arising from declared state of emergency, and
workplace directions for Victoria, Australia usually express distancing requirements as
the distance required between occupants, or the floor area assigned to the occupant [27].
These infectious disease prevention measures may appear to be challenging to implement
in everyday life for practical reasons. However, they generated more research interest in the
relationship between occupancy density and occupant wellbeing. Recent studies addressing
occupancy density are not only contributing to overcoming the current pandemic, but also
to building performance, management, and use [1–4]. One of the aims of this study was to
use distancing requirements to provide a way to capture the relationship between physical
characteristics of space and occupants’ activity that is not only beneficial to preventing the
spread of COVID-19, but also for how buildings are designed, used, and managed beyond
the current pandemic.

The obtained results show that design decisions impact occupancy density limits,
and the presented method shows how design decisions can be assessed and corrected by
measuring their impact on occupancy density thresholds through computational simulation.
The presented simulation addresses only a modest segment of occupant behaviour, yet the
results demonstrate a statistically significant difference between the four examined furniture
layouts. The layout that generates the highest number of distancing incidents is the one that
supports group work, which is common in architecture schools. Designing spaces for group
work may require additional consideration of occupancy limits. The presented method
can be useful for conceptualising and planning complex spatial layouts, by enabling the
examination and correction of occupancy density limits using controllable parameters.

Further studies using this method could examine if the dimensioning of tables, and
spaces between them, could result in different incidents, either for the same activity or
across different activities. As statistical analysis outcomes show the difference between
mean values of four modelled scenarios, it is likely that a statistically significant difference
would occur if more input parameters were included. The presented method enables
designers to test variant solutions and, thus, balance occupants’ well-being and efficiency
of spatial usage when making design decisions.
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The second research question, on how to include the duration of contact between
occupants in determining room and activity-specific occupancy density norms, is answered
with statistical analysis of results obtained through simulation modelling of occupancy
scenarios, with and without time consideration. The comparison shows a significant drop
in the number of contacts deemed as incidents when a 60 s requirement is introduced
instead of the no duration requirement, while statistical analysis confirms the viability of
the model. The method builds on our previous research that uses only spatial distancing
variables to assess occupancy density limits [25]. Just as the ability to include furniture
layout, including the contact duration variable, is a step forward in assessing occupancy
limits, it eliminates the counting of fleeting encounters as contacts between occupants and,
thus, makes simulation more consistent with real life. Contact duration is introduced as a
variable that can be adjusted according to sanitary norms and different usage standards
in different buildings, such as workplaces or medical facilities. The ability to control both
physical and temporal parameters in the presented computational model allows for the
inclusion of up-to-date sanitary requirements, and other needs related to specific activities,
including various standards and recommendations about occupant comfort and spatial
usage, in future research.

The limitations of the study result from its dependence on simulation, rather than
real life data collection. Not all aspects of human behaviour are included, and further
development of the computational model can be undertaken to capture more accurate
occupant behaviour in the room. To that end, the proposed method is structured to use
data provided by indoor location systems, which permits the development of the related
research focusing on post-occupancy evaluation studies, and may provide another way
to validate presented findings. Future work would examine deeper contextualization
of occupancy density using algorithms, and how the presented method can be adapted
to multiple settings, such as different teaching and learning activities that may impact
occupants’ movement.

5. Conclusions

This paper presents an evidence-based method for examining occupancy density, by
considering physical characteristics of space and temporal aspects of social distancing be-
tween occupants. The method integrates simulation and statistical analysis into the design
process, and opens a way to use scientific means in architectural design. Two research
questions are formulated addressing the need to include occupant activity and physical
characteristics of space in establishing room and activity-specific occupancy density. Four
occupancy scenarios are simulated and analysed, while social distancing norms are used
to assess occupancy density thresholds. The presented results show the change in the
number of distancing incidents in the same room with the same number of people, but
with different furniture layouts configured to support different activities. The presented
outcome is an evidence-based technique that employs temporal and physical parameters
for establishing room and activity-specific occupancy limits.
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