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Kurzfassung

Durch die zunehmende Bedeutung von ethischer KI hat das Durchsetzen von ethischen,
gesellschaftlichen und rechtlichen Normen gegenüber autonom agierenden Agenten eben-
falls an Bedeutung gewonnen. Über Normen zu argumentieren (normative reasoning)
ist in vielen Fällen schwer, da sich Normen oft widersprechen, nur unter bestimmten
Umständen gültig sind oder verletzt werden müssen. Eine Art über Normen zu argu-
mentieren ist es, sie in logischer Form zu kodieren (Genaueres dazu auf Seite 63) und
Prioritäten unter ihnen festzulegen. Über die Jahre wurden mehrere Ansätze vorgeschla-
gen. Diese Masterarbeit stellt eine einfache Methode zur Kodierung normativer Systeme
unter Verwendung von “weak constraints” (schwache Einschränkungen) in Answer Set
Programming vor. Answer Set Programming ist ein deklarativer Problemlösungsansatz,
der seine Wurzeln in der Wissensrepräsentation, der logischen Programmierung und der
nicht-monotonen Argumentation hat. Wir haben uns aufgrund der Ausdrucksstärke von
Answer Set Programming und der Effizienz der verfügbaren Löser für diesen Ansatz
entschieden. Standard Deontic Logic ist das erste logische System, das eingeführt wurde,
um über Verpflichtungen, Erlaubnisse und verwandte Konzepte zu argumentieren. Wir
beschreiben einige der bekanntesten deontischen Paradoxa, die zeigen, dass Standard
Deontic Logic manche Aspekte, welche wir im Alltag verwenden um über Normen zu
argumentieren, nicht erfassen kann. Wir kodieren diese Paradoxa fallweise unter Verwen-
dung einer gemeinsamen Basis. Anfangs kodieren wir einige der deontischen Paradoxa.
Wir abstrahieren und verallgemeinern diese Kodierungen um eine einfache Methodik zur
Kodierung normativer Systeme zu entwickeln. Anhand von zwei Fallstudien wird diese
Methodik demonstriert. In der ersten Fallstudie kodieren wir eine vereinfachte Version
eines Beispiels aus der realen Welt, nämlich die Pflichten eines Agenten beim Autofahren.
In der zweiten Fallstudie verwenden wir unsere Methodik, um die Normen für “ethische”
Versionen des Pacman-Videospiels von Neufeld et al. (CADE, 2021) zu kodieren und zu
implementieren.
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Abstract

As ethical AI is becoming increasingly important so is the topic of enforcing ethical, legal
and social norms on agents acting autonomously. Reasoning about norms (normative
reasoning) is in many cases quite hard as often norms contradict each other, might only
hold under certain circumstances or need to be violated. A way to reason about norms, is
to encode them in some logic (discussed further on page 63) and determine prioritisation
among these. Multiple approaches have been proposed over the years. This master thesis
introduces a simple methodology to encode normative systems using weak constraints in
Answer Set Programming. Answer Set Programming is a declarative problem solving
approach, with roots in knowledge representation, logic programming and non-monotonic
reasoning. We chose this approach because of the expressivity of Answer Set Programming
and the efficiency of available solvers. Standard Deontic Logic is the first logical system
introduced to reason about obligations, permissions and related concepts. We discuss
some of the most famous deontic paradoxes which show that Standard Deontic Logic
fails to capture aspects of real world reasoning about norms. We encode these paradoxes
on a case by case basis using a common core. We start by encoding some of the deontic
paradoxes. Through abstracting and generalising those encodings we develop a simple
methodology for encoding normative systems. Our methodology is demonstrated on
two case studies. In the first case study we encode a simplified version of a real world
example, namely the obligations of an agent while driving. For the second case study, we
use our methodology to encode and implement the norms for “ethical” versions of the
video game Pacman by Neufeld et al. (CADE, 2021).
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CHAPTER 1
Introduction

Norms are an integral part of human society. There are many different kinds of norms,
such as social norms where violating them may lead to a loss of standing, embarrassment
or even ostracization. Ethical norms can lead to emotional distress if ones own ethics
are violated as well as loss of opportunities in the future. An example of this would
be companies that practice unethical behaviour and lose customers as a result. Legal
norms can, if violated, lead to sanctions, e.g., in the form of jail time enforced by the
state [Bic06]. As norms have played a big part in most of human history, the logic behind
these norms has fascinated many philosophers over time. In the 12th century Peter of
Poitiers noted that, although if a sinner repents of sin he is guilty of sin, it does not follow
that if a sinner wills to repent of sin he wills to be guilty of sin. A similar case can be
seen in the Good Samaritan Paradox, where it is obligatory for one to help his neighbour
who is in trouble although it is not obligatory for the neighbour to be in trouble. In
the 1950s eontic logics gained traction through the introduction of Standard Deontic
Logic by von Wright. Deontic logic is an area of logic that reasons obligation, permission
and related concepts. See, e.g., Hilpinen and McNamara in [GHP+13] or [vBCF+22] for
more about the history of deontic logics.

Through the advent of autonomous agents, their accountability and ethicality has become
more important. This has also reinvigorated interest in the logic behind the norms these
systems are supposed to act on. A functioning logic for legal norms could take away bias
brought forth by the human part of the legal system. There are multiple works on these
topics, e.g., works on deontic logic in law [JS92] and deontic logics as means of imposing
norms on reinforcement learning agents [NBCG21].
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1. Introduction

Among the various applications of deontic logics this master thesis focuses on Artificial
Intelligence (AI). More precisely, we are interested in encoding norms starting with deon-
tic paradoxes. A methodology for encoding norms could be used to implement ethical
behaviour for autonomous agents. However, currently deontic logics face some challenges
in AI. First of all, there are no efficient provers available for deontic logics. Furthermore,
reasoning about obligations and related concepts oftentimes requires defeasibility. A
rule, obligation, prohibition,. . . is defeasible if there are circumstances under which it is
annulled or in other words if given certain conditions it does not hold. When thinking
about norms in the context of law the need for defeasibility becomes apparent. A lot of
laws have exceptions given extraordinary circumstances. As an example, it is generally
illegal to break windows of homes (unless they are your own). This prohibition is however
lifted if, e.g., a person is hurt and the only way to give first aid to said person would
be to break the window and go through. Deontic logics are mostly monotonic (mean-
ing that conclusions cannot be retracted given new information) and static. Although
there have been some defeasibility mechanisms introduced, such as in Defeasible Deon-
tic Logic (DDL) [GORS13, GR08], there is no commonly accepted defeasible deontic logic.

We aim to address these problems by using Answer Set Programming (ASP) [MNT11] to
reason about deontic concepts. This logic programming approach has become a popular
topic in the logic programming and knowledge representation communities. Informally
speaking, in Answer Set Programming a problem is modelled as a theory in a language of
logic. Solutions for an instance of that problem correspond to models of the theory gained
by encoding it. Through a long and systematic effort of the knowledge representation
community effective tools were developed that are capable of processing programs in ASP
fast [MNT11]. Lack of monotonicity is not a problem when using ASP, as default-negation
and weak constraints allow us to add defeasibility to our encodings of norms.

In this master thesis we introduce a methodology for encoding normative systems in
Answer Set Programming (ASP) using weak constraints. We first encode desired basic
properties in a common core that will be used in all further encodings. By encoding mul-
tiple famous deontic paradoxes (e.g., Chisholm’s Paradox, Good Samaritan Paradox,. . . )
we show that ASP is capable of handling the deontic paradoxes in a satisfactory manner.
By abstracting and generalising the encodings of the paradoxes we then present a simple
methodology for encoding normative systems in ASP. This methodology is also tested
in two case studies. In the first case study we encode a simplified real world example
of a normative system and then test it. The second case study compares our methodol-
ogy with the Defeasible Deontic Logic (DDL) approach taken by Neufeld et al. [NBCG21].

The thesis is organised as follows.

In Chapter 2 we introduce the preliminaries necessary for this work. We start by ex-
plaining the basics of propositional and first-order logic. This chapter also introduces the

2



syntax and semantics of Answer Set Programming in a general sense before introducing
DLV (DataLog with Disjunction, where V represents the symbol for logical disjunction),
our ASP solver of choice. We introduce the syntax and semantics of DLV using examples
and explain weak constraints which take a central role in our encodings. Furthermore,
this section presents Standard Deontic Logic (SDL) and introduces the deontic paradoxes
which will be our basis for developing a method of encoding normative systems. Deontic
paradoxes showcase examples where SDL fails to capture aspects of common sense rea-
soning about norms. These paradoxes also show different kinds of obligations and their
behaviour which will be integral for our methodology. This part also goes into detail on
why SDL is unable to handle these paradoxes.

In Chapter 3 we introduce the vocabulary and common core used in all the encodings.
Using this we encode the paradoxes presented in Chapter 2. This chapter also compares
the approach of this master thesis with similar approaches to encode normative systems
seen in the multi-agent system community, and the logic programming community.

In Chapter 4 we abstract and generalise the encodings presented in the previous chapter.
We start by grouping the paradoxes as in Hilpinen and McNamara [GHP+13] and show
the similarities in the encodings of the paradoxes that are grouped together. Using these
we list different kinds of obligations seen in the paradoxes and explain them. For each
kind of obligations a way of encoding is given as well. The presented encodings are
consistent with the way the obligations were formalised in the encodings of the paradoxes.
Using the encodings for the different types of obligation we propose a general method of
encoding normative systems. The chapter concludes with a case study that considers
a normative system containing multiple different kinds of obligations, which presents a
simplified version of the obligations of an agent driving a car. We encode this normative
system using our proposed methodology. We then test the correctness of our encoding in
DLV using three different situations and checking whether the correct obligations are
derived.

In Chapter 5 we test the viability of encoding normative systems in practice using the
game Pacman as a simple toy example. Neufeld et al. [NBCG21] used a theorem prover
for defeasible deontic logic in order to impose “ethical” constraints on a reinforcement
learning agent. The goal of this work was to let the agent keep the optimal play pattern
it has learned through training while still enforcing norms on the agent. Using the
framework and reinforcement training algorithm in [NBCG21], we train a reinforcement
learning agent and then impose two sets of “ethical” constraints on the agent using our
methodology for encoding normative systems. We compare the results of our encoding
with the results presented by Neufeld et al.

3



1. Introduction

Chapter 6 serves as the conclusion for our work. We talk about the results of our case
studies and discuss the advantages and disadvantages of our methodology. Possible future
work will be addressed as well.

4



CHAPTER 2
Preliminaries

In this chapter, we introduce the basic notions used in this work.

2.1 Propositional and First-Order Logic
Propositional logic and First-order logic are the basis of Standard Deontic Logic resp.
Answer Set Programming.
Here we follow [BKI19, chapter 3] and [Rau10, Bar77] to recall some of the basic
terminology used in this work.

2.1.1 Propositional Logic

Definition 1. (Propositional signature)
A propositional signature Σ is a set of symbols referred to as propositional variables.

These propositional variables are used to build the set of propositional formulas Formula(Σ).

Definition 2. (Set of propositional formulas)
Formula(Σ) is constructed in the following way:

1. All atomic formulas are contained in Formula(Σ). Atomic formulas are formulas
which only consist of a propositional variable.

2. If A and B are propositional formulas, then the following formulas are also proposi-
tional formulas:

• (¬A) which is read as “not A”
• (A ∧ B) which is read as “A and B”

5



2. Preliminaries

• (A ∨ B) which is read as “A or B”
• (A → B) which is read as “if A, then B”
• (A ↔ B) which is read as “A if and only if B”

The operators ¬, ∧, ∨, →, ↔ are referred to as logical connectives. In order to simplify
notation and omit parentheses, the following binding priorities are commonly used:

¬ > ∧ > ∨ >→>↔

For example ¬ binds stronger than ∧, ∧ binds stronger than ∨ and so on, see e.g., [BKI19,
chapter 3]. In order to evaluate propositional formulas, a so called interpretation is used:

Definition 3. (Interpretation function)
Let Σ be a propositional signature. Then a function I : Σ → {0, 1} is called an
interpretation.

A propositional variable is interpreted as True if it is mapped to 1, else it is interpreted
as False.

Definition 4. (Truth value of a formula)
Let I be an interpretation for Σ. For a propositional formula A, its truth value �A�I for
the interpretation I is given by the function:

�.�I : Formula(Σ) → {0, 1}

for which the following conditions hold:

• If A is an atomic formula, then �A�I = I(A)

• If A is of the form ¬B, then �A�I = 1 if �B�I = 0 and vice versa.

• If A is of the form B ∧ C, then �A�I = 1 if �B�I = �C�I = 1. Else �A�I = 0.

• If A is of the form B ∨ C, then �A�I = 0 if �B�I = �C�I = 0. Else �A�I = 1.

• If A is of the form B → C, then �A�I = 0 if �B�I = 1 and �C�I = 0. Else �A�I = 1.

• If A is of the form B ↔ C, then �A�I = 1 if �B�I = �C�I . Else �A�I = 0.

6



2.1. Propositional and First-Order Logic

A commonly used rule of inference is the so-called modus ponens.

Definition 5. (Modus Ponens)
Given two formulas of the form:

A → B

and

A

where each formula is assigned the truth value true, one can derived that the truth value
of B is true as well. In other words, if A implies B and A holds, then B must hold as
well.

Definition 6. (Satisfiability, validity)
A formula A is satisfied by an interpretation I, if �A�I = 1.
A formula A is satisfiable, if there exists an interpretation I, such that �A�I = 1.
A formula A is valid, if for all interpretations I, it holds that �A�I = 1.
A formula A is unsatisfiable, if for all interpretations I, it holds that �A�I = 0.

Many propositional formulas behave in the same way. Formulas such as A ∧ A and A
are satisfied by the same interpretations. Formulas that have the same truth value are
referred to as semantically equivalent. Examples of semantically equivalent formulas can
be seen in [BKI19, chapter 3].

2.1.2 First-Order Logic
First-order Logic (FOL) is a lot more expressive than Propositional Logic. By using
functions and predicates one can describe objects, their relations, attributes, and functions
on these objects.

This added expressive power can be seen in the added complexity of the signature:

Definition 7. (Signature)
A (FOL-)signature Σ = (Func, Pred) consists of a countable set Func of function-
symbols and a countable set Pred of predicate symbols. Each symbol s ∈ Func ∪ Pred
has a fixed arity≥ 0. A function symbol of arity 0 is referred to as a constant.

A Σ-interpretation assigns meanings over a non-empty set of elements (called the universe
U) to the elements in Σ.

The universe U can be any non-empty set.

Definition 8. (Interpretation)
Let Σ be a signature. A Σ-interpretation I = (UI , FuncI , P redI) consists of:

7



2. Preliminaries

• A non-empty set UI called the universe.

• A set FuncI = {fI : UI × . . . × UI� �� �
n times

→ UI | f ∈ Func of arity n} of functions.

• A set PredI = {pI ⊆ UI × . . . × UI� �� �
n times

| p ∈ Pred of arity n} of relations.

The Σ-interpretation assigns meaning to function- and predicate-symbols in the following
way:

• 0-ary functions are interpreted through objects in the universe U . Note that,
although every constant must be mapped to an object in U , multiple constants
may be mapped to the same object.

• Other functions are interpreted through functions, mapping objects in the universe
to objects in the universe.

• 0-ary predicates are treated like propositional variables. Therefore, the interpreta-
tion assigns a truth value to those predicates.

• Unary predicates are interpreted as subsets of the universe, e.g., the predicate
yellow could be interpreted as the subset of objects in U that are yellow.

• Predicates of higher arity are interpreted as relations of that arity over the universe
U . As an example, the binary relation father could denote the relation of one
individual to its father.

Unlike propositional logic FOL allows terms. Terms are functional expressions that are
built using function-symbols in the signature and are interpreted by elements in the
universe.

Definition 9. (Term)
The set TermΣ(V ) of terms over a signature Σ and a set V of variables is the smallest
set containing the following elements:

1. x for every x ∈ V

2. c for every c ∈ Func with arity 0

3. f(t1, . . . , tn) for f ∈ Func with arity n > 0 and t1, . . . , tn ∈ TermΣ(V )

Some examples for terms are:

x1, x2, c, f2(c2, f1(x1, c1), x2)

Terms can then be evaluated using a variable assignment (given an interpretation).

8



2.1. Propositional and First-Order Logic

Definition 10. (Variable assignment)
Given a Σ-interpretation I and a set V of variables, a variable assignment is a function
α : V → UI , such that each variable is assigned to an element from the universe. Note
that multiple variables may be assigned to the same element and there may be elements
that no variable is assigned to.

Definition 11. (Evaluation of a term)
Given a term t ∈ TermΣ(V ), a Σ-interpretation I and a variable assignment V the term
evaluation of t in I under α, written as �t�I,α is given through a function:

�.�I,α : TermΣ(V ) → UI

and is defined in the following way:

1. �x�I,α = α(x), where x is a variable.

2. �f(t1, . . . , tn)�I,α = fI(�t1�I,α, . . . , �tn�I,α), where f is an n-ary (n ≥ 0) function
symbol.

Using terms atomic formulas can now be defined as follows.

Definition 12. (Atomic formula)
An atomic formula (or atom) over a signature Σ and a set of variables V is constructed
in the following way:

1. p if p ∈ Pred and p has arity 0

2. p(t1, . . . , tn) if p ∈ Pred and p has arity n > 0 and t1, . . . , tn ∈ TermΣ(V )

Some examples for atomic formulas are:

p2, p1(c, x1, f(x3, x4), f2(c2, f1(x1, c1), x2)), p3(c), p4(x1, x2, f(x3)).

Definition 13. (Truth value of an atomic formula)
The truth value of an atomic formula p(t1, . . . , tn) given a variable assignment α is true
(or 1) if and only if the evaluation of the terms t1, . . . tn given the interpretation I under
α is contained in the relation that gets assigned to p under I. Otherwise the truth value
is false (or 0). In other words:

�p(t1, . . . , tn)�I,α = 1 if (�t1�I,α, . . . , �tn�I,α) ∈ pI�p(t1, . . . , tn)�I,α = 0 else

Example 14. Consider the following example:

• The signature Σ contains two constants Max and Frank, and the predicate Grand-
father of arity 2.

9
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• The universe U = {me, my_grandfather}
• I(Max) = me; I(Frank) = my_grandfather;

I(Grandfather) = {(me, my_grandfather)}

Then, the formula Grandfather(me, my_grandfather) would be evaluated to true.

Finally the set of formulas and their truth value can be defined.

Definition 15. (Formulas)
The set FormulaΣ(V ) is the set of formulas generated by the signature Σ and a set of
variables V . This set is the smallest set containing the following elements:

1. P , if P is an atomic formula over Σ and V

2. (¬F ), (F1 ∧ F2), (F1 ∨ F2), (F1 ⇒ F2), (F1 ⇔ F2)

3. (∃xF ), (∀xF )

where x ∈ V and F, F1, F2 ∈ FormulaΣ(V ).

Note that atoms and negated atoms are referred to as literals. Let A be an atom, then A
is a positive literal and ¬A is a negative literal. A literal, atom or formula is ground if it
contains no variables. We will use c to refer to constants and x to refer to variables.

Example 16. • literals: p(x1, f(x2, x1)), ¬p3(c), p2(f(x), c2)

• ground literals: p3(c), ¬p(c1, f(c2, c3))

Definition 17. (Clause)
A disjunction of literals is referred to as a clause.

Example 18. An example of a clause would be:

¬p3(c) ∨ p(x1, f(x2, x1)) ∨ p(c1, f(c2, c3)),

The truth values for formulas containing logical connectives are handled in the same
way as in propositional logic. Now, we define the truth values for formulas containing
quantifiers (∀, ∃).

Definition 19. (Truth value of a quantified formula)
Given a quantified formula F ∈ FormulaΣ(V ), a Σ-interpretation I and a variable
assignment α, the truth value of F (written as �F �I,α) is defined by:

�∀xG�I,α = 1 if and only if for all a ∈ UI �G�I,αx/a
= 1 holds

10
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�∃xG�I,α = 1 if and only if for some a ∈ UI �G�I,αx/a
= 1 holds

where αx/a : V → UI is the variable assignment which maps x to a and is otherwise
identical to α.

Note that if no variable assignment is given, a formula is interpreted as true if and only
if it is true under all variable assignments.

2.2 Answer Set Programming
Since its inception logic programming has found multiple practical uses such as in Expert
Systems (a system designed with experts on a certain field that aims to reproduce their
decision-making abilities) [BKI19, chapter 1]. This section will introduce the necessary
background on Answer Set Programming needed in this master thesis. The definitions
follow [BKI19, chapter 9] where further information can be found as well.

A logic program is a set of rules.

Classical logic programming uses a rather simple syntax, which only allows Horn clauses
as rules. Horn clauses are clauses that contain at most one unnegated literal and can be
represented as rules, where the head of the rule consists of at most one atom and the
body of the rule contains only atoms. This leads to less expressiveness. The Horn clause

{H, ¬B1, . . . , ¬Bn}
represents the following rule, which is read as “H holds if B1 and. . . and Bn hold”.

H ← B1, . . . , Bn

Extended logic programs do not have the syntactic restriction of only using Horn clauses.
Furthermore, strong negation as well as default-negation can be used in rules. Default-
negation, also referred to as negation as failure, allows the representation of non-monotonic
assumptions. The distinction between not-knowing (denoted as default-negation) and
definite falsity (denoted as strong negation) allows for a realistic processing of knowledge,
which is more akin to that of human reasoning.

A rule in an extended logic program takes the following form:

H ← A1, . . . An, not B1, . . . , not Bm, (2.1)

where A1, . . . , An, B1, . . . , Bm are (negated) literals.
Informally, it can be read as: “If A1, . . . , An hold and none of B1, . . . , Bm are found to
be true, deduce H”.

11
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However, this gain in expressiveness comes at the cost of a more complicated semantics.
In 1998, Gelfond and Lifschitz introduced stable-model semantics, which has turned
out to be one of the most successful approaches to setting a semantics for extended
logic programs. Some of the extended logic programming approaches allow the use of
disjunction in the head of rules as well. Such a rule can look like this:

H1 ∨ H2 ∨ . . . Hl ← A1, . . . An, not B1, . . . , not Bm.

Informally, one can say that if the body of the rule holds, at least one of the literals in
the head of the rule must hold as well.
In this thesis we consider extended logic programs with disjunctions.

2.2.1 Semantics
In order to accurately describe the answer set semantics, we start with some basic
definitions.

Definition 20. (Herbrand universe, Herbrand base, Herbrand interpretation)
Let P be a logic program and the signature Σ be the set of all function- and predicate-
symbols appearing in Σ. Then, the Herbrand universe is the set of all ground terms over
Σ and the Herbrand base H(P) is the set of all ground atoms over Σ. Every M ⊆ H(P)
is a Herbrand interpretation.

Example 21. Consider the following signature Σ = (Func = {c/0, f1/1, f2/1}, P red =
{p/1}). Here the number after the slash specifies the arity of the function resp. predicate.
Then, the Herbrand universe takes the following form:

{c, f1(c), f2(c), f1(f1(c)), . . .}

The Herbrand base then look like this:

H(P) = {p(c), p(f1(c)), p(f2(c)), p(f1(f1(c))), . . .}

We continue with defining the operator TP .

Definition 22. (TP)
Let M ⊆ H(P). The monotone operator TP : 2H(P) → 2H(P) is defined in the following
way:

A ∈ TP(M) if, there exists a clause H ← B1, . . . , Bn in P and a ground substitution σ,
such that A = σ(H) and {σ(B1), . . . , σ(Bn)} ⊆ M

A ground substitution is a substitution that maps all variables to ground terms.
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Using this operator we can define the meaning of M |=Σ P.

M |=Σ P if TP(M) ⊆ M

In other words, M may not contain the body of a rule if it does not contain the head.

Definition 23. (Herbrand model)
M ⊆ H(P) is a Herbrand model if M |=Σ P.

Note that every Herbrand model is a Herbrand interpretation. Informally one could say,
that a Herbrand interpretation denotes the atoms, which are true in that interpretation
and a Herbrand interpretation is a Herbrand model if it is compatible with the logic
program P.

Example 24. Consider the following small logic program:

grandfather(X, Z) ← father(X, Y ), father(Y, Z).

M1 = {father(Max, James), father(James, Frank)}

The Herbrand interpretation M1 is not a Herbrand Model, as
grandfather(Max, Frank) /∈ M1 but grandfather(Max, Frank) ∈ TP(M1).

M2 = {father(Max, James)}
M3 = {father(Max, James), father(James, Frank), grandfather(Max, Frank)}

M2 and M3 on the other hand are Herbrand models, as TP(M2) ⊆ M2 resp. TP(M3) ⊆
M3.

Since we are looking at extended logic programs, it is not enough to only consider ground
atoms, as we differentiate between definite falsity and absence of knowledge. As such we
also need to consider negated ground literals. Rather than looking at Herbrand models
we now consider states.

The literals P (t1, . . . , tn) and ¬P (t1, . . . , tn) are referred to as complementary. A set S
of ground literals is consistent, if it contains no complementary literals. A consistent set
of ground literals is referred to as a state.

We now introduce the fundamental concept of a reduct.
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Definition 25. (Reduct of an extended logic program P)
Let P be an extended logic program comprised of rules of the form (2.1). Then the
reduct PS for a state S is defined as:

PS := {H ← A1, . . . , An | H ← A1, . . . An, not B1, . . . , not Bm ∈ P,

{B1, . . . , Bm} ∩ S = ∅}
Example 26. Consider the following logic program:

P (a) ← not Q(a).
Q(a) ← not P (a).

Then, for S1 = {P (a)} and S2 = {Q(a)} we have PS1 = {P (a).} and PS2 = {Q(a).}.

We now define what it means for a state S to be closed under a logic program P.

Definition 27. (Closed state)
Let P be an extended logic program without default negation and let S be a state. S is
closed under P if for every rule r in P the following holds:

If pos(r) ⊆ S, then head(r) ∩ S ̸= ∅,

where pos(r) are the non-default negated literals in the body of the rule and head(r) is
the head of the rule.

Using this we can define answer sets for extended logic programs. We start by defining
answer sets for extended logic programs without default-negation.

Definition 28. (Answer sets for logic programs without default negation)
Let P be an extended logic programs without default-negation and let S be a state.
Then, S is an answer set of P if it is minimal (under set inclusion) and closed under P.

Using this we can define answer sets for all extended logic programs, as the reduct PS

does not contain default negation.

Definition 29. (Answer sets)
Let P be an extended logic program and let S be a state. Then, S is called answer set of
P, if S is an answer set of the reduct PS .

Note that, due to the condition head(r) ∩ S ̸= ∅, this semantics works for disjunctive
extended logic programs as well.

Finally we define safety of a rule r, which is required by most compilers of logic programs:
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Definition 30. (Safe rule)
A rule r is safe, if each variable that appears in the head of the rule appears non-default
negated in the body of the rule.

2.2.2 DLV
DLV (DataLog with Disjunction, where V represents the symbol for logical disjunction)
is a deductive database system based on disjunctive logic programming. It was devel-
oped by a research team from the University of Calabria and the Vienna University of
Technology [BFI+20]. All information in this subsection can be found in [BFI+20]

DLV’s language is an extension of Disjunctive datalog, which contains constraints, true
negation and queries.

Syntax
Constants in DLV must either start with a lowercase letter and may contain letters,
underscores and digits or be a number (e.g., a, 2, alphaBeta23, d_).

Variables must always start with a capital letter and can contain letters, underscores and
digits (e.g., A, Person12, Car_1).

There is also the concept of an anonymous variable, which is denoted by an underscore.
It represents a variable which does not appear in another part of the rule. It can be
understood as a variable which can be ignored in the current rule.

More complex terms can be built using function symbols or lists.

Functional symbols must begin with a lowercase letter and can only be comprised of
letters, underscores and digits. Some examples for functional terms are:

f(x); result(a, Person, f(1)); sUm_of(1, 2)
List terms can either be represented through a list of terms in square brackets (e.g.,
[a, b, c, . . .]) or by representing it as a head of a list h and a tail of a list t (which is a list
term) (e.g., [h | t]).

Predicate symbols must begin with a letter (either upper or lower case) and are comprised
of letters, underscores and digits.

Note that not is not a valid predicate symbol or constant, as it is reserved for representing
default negation.
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Atoms are predicate symbols, with some or possibly no terms, representing the tuples in
the relation defined by the predicate. Some examples for atoms can be seen below:

danger; friendly(Person1, albert); Equal(V alue1, 3)

Literals are atoms, which may be strongly or weakly negated. Strong negation is repre-
sented by − or ∼ (although in our encodings only − will be used), while default negation
is represented by not. Note that while default negation may precede strong negation the
inverse is not valid syntax.

Rules are of the form

H1 ∨ . . . ∨ Hm : −A1, . . . , An.

Where A1, . . . , An are literals in the body of the rule and H1, . . . Hm are atoms or strongly
negated atoms, which form the head of the rule.

Note that disjunction may appear in the head of the rule.

Facts are rules that have an empty body. Disjunction may also appear in facts. Below
are some examples for facts:

edible(plant) ∨ unedible(plant).
edible(apple).

Constraints on the other hand are rules that have an empty head. In other words, these
rules do not allow for the body of the rule to be satisfied. This can be used to filter out
unwanted answer sets. Below is an example for constraints:

: −edible(X), unedible(X).

Note that each rule (and therefore constraint and fact as well) must be ended by a period.

In order to guarantee that a rule is logically equivalent to the set of its Herbrand instances,
DLV imposes a safety condition on variables in rules.

A variable X is safe if at least one of the following conditions holds:

• X occurs in a non-default negated predicate in the body of the rule;

• X occurs in a non-default negated strongly negated predicate in the body of the
rule.
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A rule is safe if all variables that appear in said rule are safe.

Below are some examples of unsafe rules:

c(X) ∨ −c(X).
c(X) :− not a(X).
c(X) :− person(Y ), relation(Y, Z).

Example 31. A small program which recognizes danger when driving a vehicle could
look like this:

Danger(X) :− overheat(X), fast(X).
Danger(X) :− overheat(X), heavy(X).

Additional facts could be entered by a separate file which contains the speed of the car
and whether different tools overheat. The contents of this file could look like this:

fast(car). heavy(car).

This file could be generated by a program, that checks whether the car goes over a certain
speed, carries a heavy load, or is overheated.

Weak constraints
Weak constraints are another construct that can be used in DLV. These are constraints
that are only satisfied when possible. In the DLV syntax they are specified in the following
way:

:∼ A1, . . . , An.[x : y]

where A1, . . . , An are literals and x and y are a weight resp. level. The weight or level may
be omitted. In that case the weight resp. level is assumed to be the same for all constraints.

Intuitively, answer sets for logic programs containing weak constraints are found by
taking all answer sets that have minimal weight for violated weak constraints at the
highest level. Afterwards among these answer sets those with minimal weight for violated
weak constraints at the second highest level are taken. This process is repeated until the
lowest level is reached. The remaining answer sets are then the answer sets considering
the weak constraints.
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Definition 32. (Answer sets for logic programs with weak constraints) Let P be a logic
program containing weak constraints and let P ′ be the logic program that is generated
by removing all weak constraints from P.

Every answer set of P must also be an answer set of P ′.

An answer set A of the logic program P ′ is an answer set for P if and only if for any
other answer set A′ of P ′ the weight of the violated weak constraints is either the same
at each level or if for the highest level where the weights of the violated weak constraints
differ, the weight of the violated weak constraints is less for A′.

2.3 Standard Deontic Logic and Its Paradoxes

The logic of norms (that deal with obligations, permissions and related concepts) has
been an area of interest for many centuries. “Deontology”, which is derived from the
greek word “déon” (obligation/necessity), was used to describe the “science of morality”
by Jeremy Bentham. In the 1920s, Austrian philosopher Ernst Mally proposed “Deontik”,
a system of the “fundamental principles of the logic of ought”, which already dealt with
the common notions of deontic logic. In the early 1950s von Wright introduced Standard
Deontic Logic, SDL for short. Since then multiple different deontic logics motivated
by philosophical considerations as well as by applications in various fields have been
proposed. A detailed overview of the research in deontic logic and related topics can be
found in [GHP+13, GHP+21]. Most of these deontic logics face similar difficulties, as
they end up not being able to capture certain aspects of common sense reasoning that
one would want these logics to capture.

This stems from these logics either being too weak or too strong. In other words, they
might not derive statements which are intuitive or derive statements which are counter-
intuitive using common-sense. This is due to the complexity of the considered subject.
Deontic logics may not capture the details needed to reason about norms, as there are
a lot of hidden assumptions, which can also seen in the encodings shown in the later
chapters. So called “deontic paradoxes” are a common way of showcasing examples for
which these deontic logics fail.

This section explores Standard Deontic Logic, some of the most famous paradoxes and
their classification following [JC02].

Standard Deontic Logic, as introduced by von Wright, builds upon classical propositional
logic and is part of the class of normal modal logics. It is a so-called monadic deontic logic,
as the operators O (obligation) and P (permission) are one-place operators, meaning
they apply only to a single formula. The following subsections will follow [JC02] and the
work of Hilpinen and McNamara in [GHP+13].
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2.3.1 Syntax of SDL
Let AT be a set of atomic propositions. The following Backus Normal form generates
the language of monadic deontic logic (and therefore also SDL):

φ := p ∈ AT | ¬φ | (φ) | φ ∨ φ | φ ∧ φ | φ → φ | Oφ | Pφ | Fφ

As one can see every propositional formula is a part of the language of monadic deontic
logic, as well. Oφ is read as “it is obligatory that φ”, Pφ is read as “it is permissible
that φ”, and Fφ is read as “it is forbidden that φ” [PT18].

Axioms of SDL:
The axiomatization of SDL is obtained by adding the following axioms and rules to any
axiomatization of classical propositional logic:

If φ is a theorem, Oφ is a theorem (RND)
O(φ → ψ) → (Oφ → Oψ) (KD)
Oφ → ¬O¬φ (DD)

Note that in the above axioms and rules φ and ψ are schemes representing arbitrary
formula.

(RND) is referred to as the deontic necessitation rule or normality axiom and is added
because of theoretical simplicity as well as continuity with classical propositional logic
and modal logic. In a more general sense (RND) guarantees that for any theorem, the
claim that this theorem is obligatory is also a theorem. This can be understood as a
rule ensuring that any absolute truth is also obligatory. This leads to there always being
obligations; a fact that leads to certain problems as can be seen later on.

(KD) is an analogue to the rule K, which is found in all normal modal logics. It states
that if a condition and its antecedent are obligatory, so is its consequent. While this
seems like a sensible axiom to include, when thinking about reasoning over obligations, it
can be seen that this axiom also leads to some problems.

(DD) states that if p is obligatory, then its negation ¬p is not obligatory. This prevents
conflicting obligations from occurring, as obviously it is not possible to fulfill both p and
¬p.

Due to the axioms (KD) and (DD), SDL is sometimes referred to as the system KD or
system D.
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Defining Operators and Useful Theorems
The so called “Traditional Definitional Scheme” for the operators is usually presupposed
in formulations of SDL:

Pp =df ¬O¬p

Fp =df O¬p

The first equivalence simply states that something being permissible is equivalent to its
negation not being obligatory, e.g., it is permissible to stay home iff it is not obligatory
to not stay home (go out).
The second equivalence states that an action being forbidden is equivalent to its negation
being obligatory, e.g., being forbidden from parking in a spot is equivalent to being
obliged not to park in that spot [PT18].

Using the axiomatization of SDL, the following useful theorems can be derived:
O(p ∧ q) → (Op ∧ Oq) (Conjunctive Distributivity of O)
(Op ∧ Oq) → O(p ∧ q) (Aggregation for O)
O⊤ (ON)
¬O⊥ (OD)
If p → q is a theorem, then Op → Oq is a theorem (RMD)

Note that by combining the theorems (Conjunctive Distributivity of O) and (Aggregation
for O) one can derive the following equality:

O(p ∧ q) ↔ (Op ∧ Oq)
This shows that SDL is incapable of differentiating between an obligation over a conjunc-
tion of actions and the conjunction of obligations. As seen later, this lack of expressiveness
will lead to problems.

(Conjunctive Distributivity of O) is a rather intuitive theorem. It represents the notion
that, should a conjunction of two actions be obligatory, then so are the two actions
themselves. While this works in a lot of cases, such as deriving the obligation to pay
taxes and the obligation to work from the obligation to pay taxes and work, it does not
always make sense, such as when two obligations depend on each other to make sense.

(Aggregation for O) simply formalises the fact that should two actions be obligatory, then
so is the aggregation of those two actions. For example, if it is obligatory to pay rent and
it is obligatory to keep the apartment clean, then it is obligatory to pay rent and keep the
apartment clean. As a consequence of this theorem, SDL is unable to handle conflicting
obligations. Consider the following example, also known as Sartre’s Dilemma [JC02]:

It is obligatory that x
It is obligatory that not x,
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which can be formalised in SDL in the following way:

Ox

O(¬x)

Using (Aggregation for O) this instantly leads to the obligation O(x ∧ ¬x), from which
any obligation can be derived using the axioms (KD) and (RND) by the following steps:

(x ∧ ¬x) → ⊥ (Theorem)
O((x ∧ ¬x) → ⊥) (Application of (RND))

O(x ∧ ¬x) → O(⊥) (Application of (KD))
O(⊥) (Application of modus ponens)

⊥ → φ (Theorem)
O(⊥ → φ) (Application of (RND))

O(⊥) → O(φ) (Application of (KD))
O(φ) (Application of modus ponens)

Since φ can be substituted by any formula, one can see that any obligation is derivable.
This problem is often referred to as “Deontic Explosion”, as the amount of deontic
obligations becomes unbounded [PT18].

The theorems (ON) and (OD) state that ⊤ is always obligatory and ⊥ is never obligatory.
(ON) is directly derived from (RND), since ⊤ is a theorem. Using (ON), (OD) can be
derived using (DD) [PT18]:

O(⊤) → ¬O(¬⊤)

(RMD) intuitively states that should an action p imply an action q, then if p is obligatory
so is q. As an example, consider the obligation to eat the whole meal. Since eating the
entire meal would imply eating the soup as well as the main course, the obligation to eat
the soup as well as the obligation to eat the main course could be derived.

2.3.2 Semantics of SDL
This subsection will take a look at two different semantics for SDL.

“Standard Semantics”
The semantics of SDL uses the well known Kripke Semantics of modal logic. As in Kripke
Semantics sentences can be interpreted with regard to possible worlds.
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For this purpose M = ⟨W, R, I⟩, a possible worlds model of SDL is used. Such a model
consists of:

• A universe of possible situations/worlds W , which would correspond to the nodes
in a Kripke frame.

• A binary relation R on W , which is understood as a relation of deontic alternative-
ness, i.e., sRt denotes that t is an “ideal” successor to s, as it complies with the
obligations which are active at s.

• An interpretation function I, which assigns to each propositional atom p the largest
subset W ′ ⊆ W such that p is deemed true at all u ∈ W ′.

The truth of a formula p under M at a possible situation u ∈ W is then written as
M, u |= p (the situation u in the model M satisfies p) or u |= p (the situation u satisfies
p), when the model M is known. M, u |= p resp. u |= p is defined recursively, as in
Kripke Semantics:

• If p is a propositional atom, then M, u |= p holds if u ∈ I(p).

• If p is of the form p1 ∧ p2, then M, u |= p holds if M, u |= p1 and M, u |= p2.

• If p is of the form p1 ∨ p2, then M, u |= p holds if M, u |= p1 or M, u |= p2.

• If p is of the form p1 → p2, then M, u |= p holds if M, u ̸|= p1 or M, u |= p2.

The truth conditions of the deontic operators O and P are formulated analogously to the
truth conditions of the modal operators □ and ♢:

• u |= Op holds if v |= p holds for all v such that uRv.

• u |= Pp holds if v |= p holds for some v such that uRv.

M must fulfill seriality, as else the axiom (DD) would be violated.

For every u ∈ W, uRv for some v ∈ W.

Given additional assumptions about the structure of the relation R, it is possible to have
further requirements. These requirements can lead to different systems of deontic logic
with different properties.

“Utilitarian Semantics”
A different approach to SDL semantics can be taken as well. Once again consider the
possible worlds model from above, except that R denotes currently reachable situations,
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rather than “ideal” situations.

For each of the possible situations u ∈ W there exists a relation ranking the reachable
situations. The set of these relations is called R. Let ≥u denote the relation for u ∈ W ,
where v ≥u w indicates that v is at least as “good” as w for u. We require these relations
to be reflexive, transitive and connective:

• v ≥u v must hold. (reflexivity)

• If v ≥u w and w ≥u x then v ≥u x must hold as well. (transitivity)

• Either v ≥u w or w ≥u v must hold. (connectivity)

In addition, the so called “Limit assumption” is added for every u:

∀u∃v∀w : v ≥u w (LA)

This assumption ensures that there is always at least one world v relative to u, s.t. v
is at least as good as any other world relative to u. Intuitively, it can be thought of
as ensuring the existence of an u-best world. In this framework the truth of Op in a
situation u ∈ W can be defined as follows:

Op is true at u if p holds in all the u-best worlds

The limit assumption, is however a controversial assumption to make, as in a model
without any best worlds, there would be no obligations and everything would be permis-
sible. To give an instance where this would be nonsensical, consider the deontic dial. The
deontic dial is a dial, which can be turned to any real number r, with 0 ≤ r ≤ 1. Turning
the dial to 0 or 1 leads to disaster, while for 0 < r < 1, increasing values lead to increas-
ingly positive results. E.g. turning the dial to r = 0.7 is preferable to turning it to r = 0.5.

In this model, there obviously doesn’t exist a best world, as the dial could always be
turned higher, without reaching 1. Still the obligations to not turn the dial to 0 or 1
should be a given. In order to accommodate this dilemma, more complex definitions of
obligations were given, as in the work of Hilpinen and McNamara in [GHP+13].

2.3.3 Deontic Paradoxes and Their Classification
As a basis for the work in this thesis, this subsection looks at different deontic paradoxes
and their classification. The considered deontic paradoxes are examples for which SDL
fails, i.e., is unable to capture the nuances of common sense reasoning.

As the number of deontic paradoxes is large, only some of the paradoxes for each of the
classes will be considered and categorised according to the reason for their failure as seen
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in [JC02]. Note that deontic paradoxes are also sometimes referred to under different
names, such as e.g. “puzzles” or “dilemmas”.

This subsection is structured in the following way and contains the following paradoxes:

1. Paradoxes centering around RMD

• Ross’s Paradox
• Good Samaritan Paradox
• Åqvist’s Paradox of Epistemic Obligation

2. Puzzles centering around DD and OD

• Sartre’s Dilemma
• Plato’s Dilemma

3. Puzzles centering around deontic conditionals

• Broome’s Counterexample
• Chisholm’s Contrary-to-Duty Paradox
• Forrester’s Paradox
• Considerate Assassin Paradox
• Asparagus Paradox
• Fence Paradox
• Alternative Service Paradox

4. A problem with RND: The logical necessity of obligations

5. A problem with the idea of deontic logic: Jørgensen’s dilemma

As a reminder the referenced rules and theorems are:

If p → q is a theorem, then Op → Oq is a theorem (RMD)
Oφ → ¬O¬φ (DD)
¬O⊥ (OD)
If φ is a theorem, Oφ is a theorem (RND)

Deontic conditionals refer to obligations that arise situationally. Those conditionals
(sometimes written as O(A | B), meaning “it is obligatory that A if B”) have been
introduced to cope with contrary-to-duty obligations that arise due to another obligation
not being fulfilled.
Note that the problem with RND and Jørgensen’s dilemma are not really paradoxes but
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of a philosophical nature.

Paradoxes centering around RMD
There are multiple paradoxes which arise due to the rule of inference RMD.
In general, these paradoxes show that SDL is too strong as they derive obligations, which
might be seen as nonsensical using common sense reasoning.
Consider first Ross’s Paradox:

Paradox 33.

It is obligatory that the letter is mailed. (1)
It is obligatory that the letter is mailed or burned. (2)

This paradox can be formalised as:

O(m) (1)
O(m ∨ b) (2)

Since m → (m ∨ b) is a theorem, the second obligation follows from the first via RMD in
the following way:

m → (m ∨ b) (Theorem)
O(m) → O(m ∨ b) (Application of RMD)

O(m ∨ b) (Application of Modus Ponens)

One of the properties of an obligation is the possibility of not being satisfied. This can
later be seen in the contrary-to-duty obligations. It seems unintuitive that one can derive
an obligation that is satisfied by burning the letter, when failing to mail the letter. Some
might actually consider the burning of the letter to be worse than simply failing to satisfy
the obligation to mail the letter [JC02].

Another paradox is the Good Samaritan Paradox :

Paradox 34.

It is obligatory Jones helps Smith who is being mugged. (1)
It is obligatory that Smith is being mugged. (2)

One can now consider the following equivalence:

Jones helps Smith who is being mugged if and only if Jones helps Smith
and Smith is being mugged.
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This equivalence then leads to the following formalization of the paradox:

O(h ∧ m) (1)
O(m) (2)

RMD once again leads to the second obligation arising from the first. The obligation of
Smith being mugged is however an obligation, which would not be derived from the first
obligation using common sense. Multiple variations of this paradox, such as the victim
paradox have been proposed over time. They all consider situations, where an obligation
arises from a certain act being performed, therefore making the act obligatory.

Finally we consider Åqvist’s Paradox of Epistemic Obligation:

Paradox 35.

The bank is being robbed. (1)
It is obligatory that the guard knows that the bank is being robbed. (2)
It is obligatory that the bank is being robbed. (3)

Let K be an operator denoting knowledge of the guard. Then Kr would denote the
guard knowing that the event r is happening (r in this case may denote the bank being
robbed). Then a natural way to formalize this problem is:

r (1)
O(Kr) (2)
O(r) (3)

Since knowledge about an event happening implies the event happening, one can assume
that Kφ → φ is a theorem. Then the obligation (3) follows directly from (2) in the
following way:

Kr → r (Theorem)
O(Kr) → O(r) (RMD)

O(r) (Application of modus ponens)

Once again (3) is a rather nonsensical obligation to be derived.

Puzzles centering around DD and OD
Paradoxes that arise from DD and OD

Op → ¬O¬p (DD)
¬O⊥, (OD)

are centered around obligations which are unfulfillable. Consider Sartre’s Dilemma:
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Paradox 36.

It is obligatory, that I meet Mary. (1)
It is obligatory, that I do not meet Mary. (2)

which intuitively would be formalised as:

O(m) (1)
O(¬m) (2)

Such a situation could arise, when promising Mary to meet her, while promising another
friend, not to meet Mary. The presented dilemma leads to a conflict, as (1) leads to
¬O(¬m), which directly contradicts (2). Another way to show the conflict that arises
would be to use the theorem “aggregation for O”:

(Op ∧ Oq) → O(p ∧ q) (Aggregation for O)

Using this theorem we get:

O(m) ∧ O(¬m) → O(m ∧ ¬m)

and via Modus Ponens (as m ∧ ¬m → ⊥):

O(⊥)

Using the theorem “conjunctive distributivity of O”, we can get the opposite direction of
this implication:

O(p ∧ q) → (Op ∧ Oq) (Conjunctive Distributivity of O)

This leads to a conflation of impossible obligations and conflicting obligations. While it
is common to argue that something impossible cannot be obligatory, the same cannot be
said about conflicting obligations. As such, conflict-allowing deontic logics have separated
impossible obligations from conflicting obligations by ranking the obligations, for instance.

Another very similar dilemma is Plato’s Dilemma:

Paradox 37.

It is obligatory that I meet my friend for dinner. (1)
It is obligatory that I rush my child to the hospital. (2)

In this scenario, a medical emergency has arisen, which necessitates immediate interven-
tion. Due to temporary constraints, it is not possible that both obligations are fulfilled.
Once again SDL is incapable of handling this concept. Using common sense reasoning,
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most people would arrive at the conclusion that the second obligation invalidates the
first obligation, as it is of higher importance.

Puzzles centering around deontic conditionals
Further paradoxes center around obligations that arise only under certain circumstances.
First, consider the more abstract paradox of derived obligations, centered around their
representation in SDL. Consider the statement:

Promising to meet Bob commits you to meeting him.

The two natural ways to represent this statement are:

O(p → m) (1)
p → O(m) (2)

However, both representations do not work. This leads to the question of whether a
standard system has the resources to represent conditional obligations.

Consider first (1). The following theorems (derived through RMD), imply that anything
which is forbidden would commit us to everything and for every obligation, everything
would commit us to it.

O(¬p) → O(p → m)
O(m) → O(p → m)

The first derived statement would then read: “If it is obligatory to not promise to meet
Bob, then promising to meet Bob commits you to meeting him”. While this specific
statement may make sense, note that p and m could take any meaning, as the above
formula is a theorem regardless of the meaning assigned to p and m! Therefore if one
were to read p as parking illegally and m as commiting murder one could deduce from
the obligation to not park illegally the obligation to commit murder, should one park
illegally!

The second statement would read: “If it is obligatory to meet Bob, then promising to
meet him commits you to meeting him”. This statement once again makes sense, but
the formula is a theorem regardless of the meaning assigned to p and m. Reading p
as promising to not meet Bob and keeping the meaning of m would then lead to this
nonsensical, yet derivable statement: “If it is obligatory to meet Bob, promising to not
meet him commits you to meeting him”.
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(2) fails for similar reasons. Using the following logical tautologies we obtain the same
absurd claims as above:

¬p → (p → O(m))
O(m) → (p → O(m))

Therefore, there is no suitable way to represent these conditional obligations, without
being able to deduce nonsensical obligations and statements.

(1) however fails for another reason as well, as the formulation in combination with (KD)
leads to some unintuitive conclusions.

O(p → q) → (Op → Oq) (KD)

An example of such is Broome’s Counterexample [Bro13], which shows the paradoxical
nature of the rule (KD):

Paradox 38.

It is obligatory, that one exercises.
It is obligatory, that if one exercises one eats more.

Using the form of derived obligations (1) this leads to the obligation to eat more, which
should not be derivable, as without exercising, eating more would be counterproductive.

The belief that a standard system does not have the capabilities to represent these
conditional obligations and notions of commitment, was reinforced by the next paradoxes.

When talking about derived obligations one cannot omit the class of contrary to duty
(CTD) obligations. CTD obligations arise due to some other obligation(s) not being
fulfilled. An example can be seen in the following situation:

You are obligated to go to the meeting.
If you do not go to the meeting, you are obligated to let your boss know.

The second obligation is an example of a CTD obligation. It arises only when one should
fail to satisfy the first obligation.

Chisholm’s Contrary-to-Duty Paradox, which consists of the following four statements,
exemplifies the issue with CTD obligations:
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Paradox 39.

It ought to be that Jones goes to the assistance of his neighbors. (1)
It ought to be that if Jones goes to the assistance of his neighbors,
then he tells them he is coming. (2)
If Jones doesn’t go to the assistance of his neighbors,
then he ought not tell them he is coming. (3)
Jones does not go to their assistance. (4)

These four sentences are widely considered as mutually consistent and logically indepen-
dent. Treating mutual consistency and logical independence as desiderata, however leads
to no working formulation, as formulations either fail due to a contradiction arising or the
sentences ceasing to be independent. In general the following three possible formalisations
are considered, when talking about Chisholm’s Paradox.

Formalisation 1 takes the following form:

O(g) (1)
O(g → t) (2)
¬g → O(¬t) (3)
¬g (4)

Using KD, one can derive O(g) → O(t) from (2), which using (1) leads to O(t). However,
applying modus ponens to (4) and (3) leads to O(¬t), which contradicts the theorem DD.

Op → ¬O¬p (DD)

The alternative Formalisation 2 is:

O(g) (1)
O(g → t) (2’)
O(¬g → ¬t) (3)
¬g (4)

It does not consist of four logically independent sentences, as O(g) ⊢ O(¬g → ¬t). This
holds as g → (g ∨ ¬t) ↔ (¬g ∨ ¬t).

Formalisation 3 is:

O(g) (1)
g → O(t) (2)
¬g → O(¬t) (3’)
¬g (4)

30



2.3. Standard Deontic Logic and Its Paradoxes

It similarly fails, as ¬g ⊢ g → O(t).

Another paradox in this class is Forrester’s Paradox, also referred to as the “Gentle
Killer Paradox” :

Paradox 40.

Smith ought not kill Jones. (1)
If Smith will kill Jones, then Smith ought to kill Jones gently. (2)
Smith will kill Jones. (3)

Formalised this paradox takes this form:

O(¬k) (1)
k → O(g) (2)
k (3)

Applying modus ponens we derive O(g). In this formulation the implication g → k holds,
as killing someone gently obviously implies killing someone. Using RMD O(g) → O(k)
can be derived, which using modus ponens leads to a contradiction.

A similar paradox is the Considerate Assassin Paradox [PS96]:

Paradox 41.

You should not kill the witness. (1)
If you kill the witness, you should offer him a cigarette. (2)
You should not offer a cigarette. (3)
You kill the witness. (4)

This paradox is created by combining two different moral codes. The first two obligations
are part of the supposed mafia rules and the third obligation is part of general morals.
The formalisation of the paradox takes the following form:

O(¬k) (1)
k → O(oc) (2)
O(¬oc) (3)
k (4)

Through (4) and (2) O(oc) can be derived by applying modus ponens. This obviously
contradicts (3) thereby leading to this paradox.
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A slightly different kind of derived obligation can be seen in the (slightly altered) Asparagus
Paradox [vdT94, Hor97]:

Paradox 42.

Don’t eat with your fingers. (1)
If you are served cold asparagus, eat it with your fingers. (2)
You are served cold asparagus. (3)

In this case (2) is obviously intended as an exception to (1). However, the formalisation
of these statements takes this form:

O(¬fingers) (1)
asparagus → O(fingers) (2)
asparagus (3)

One can once again see that (3) and (2) lead to O(fingers) via modus ponens, thereby
creating a contradiction.

An interesting paradox that combines two different weaknesses of SDL is the unnamed
paradox that we refer to as the Fence Paradox [PS96]:

Paradox 43.

There must be no fence. (1)
If there is a fence then it must be a white fence. (2)
If the cottage is by the sea, there may be a fence. (3)

Here (2) serves as a contrary-to-duty obligation that is active when obligation (1)
is violated. (3) serves as an exception to the obligation generated by (1). Note that
interpreting it this way does not necessitate a fence being white if the cottage is by the sea.

In order to better showcase how this paradox should be understood, we rephrase it in
the following way:

There must be no fence, unless the cottage is by the sea.
If there is a fence in violation of an obligation, then it must be a white fence.

This paradox fails for reasons seen before in the Asparagus Paradox and Forrester’s
Paradox. The reason for considering this paradox will be apparent later when looking at
the encoding on page 60.
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A slightly different inadequacy SDL faces is the lack of expressibility brought forth
through the conjunctive distributivity of O [Han08]:

O(p ∧ q) → (Op ∧ Oq) (Conjunctive Distributivity of O)

This theorem makes it impossible to model obligations, where failing a part of the
obligation makes satisfying the rest unnecessary. Consider Broome’s Counterexample,
discussed on page 29, rephrased in the following way:

It is obligatory to exercise and eat more (in order to live a healthier life).

Due to the conjunctive distributivity one derives the obligation to eat more, which should
not be given when the other part of the obligation is not satisfied.

Another such example can be seen when one promises to bring a salad to a party hosted
by a friend [Han08]. In order to bring a salad, one would have the obligation to buy
lettuce and buy dressing. However, failing to buy the lettuce (and therefore not satisfying
the obligation) would render the obligation to buy dressing moot. (Appearing to the
party with only the dressing might even be considered worse than simply forgetting the
salad.)

The final problem to be mentioned is the Alternative Service Paradox [Hor94], as it shows
the inability of SDL to adequatly deal with obligations over disjunctions:

Paradox 44.

You are obligated to fight in the army or perform alternative service.
You are obligated to not fight in the army.

One would hope to derive the obligation to perform alternative service from this, however
as there does not exist disjunctive distributivity of O, this is not possible [Hor94].

A solution for this might be to simply add disjunctive distributivity of O to the axioms.
However, this leads to its own problems. Consider the following obligation:

You are obligated to pay 500 euros or not buy the bike.

However, neither the obligation to pay 500 euros nor the obligation to not buy the bike
holds, thereby rendering disjunctive distributivity somewhat nonsensical.

A problem with RND: The logical necessity of obligations
We now consider a paradox that, although it is syntactically not part of SDL, as it goes
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beyond propositional logic, is of interest as it shows a more fundamental problem with
SDL. Consider the following statement:

Nothing is obligatory,

which could be formalised as:

¬∃qOq.

or

∀q¬Oq.

Although this may be a valid statement in certain situations, it leads to problems when
considering the axiom RND,

If p is a theorem, Op is a theorem. (RND)

As ⊤ is a theorem it follows that O⊤ must be a theorem as well. As Op ⊢ ∃pOp (propo-
sitional quantification), it then follows that O⊤ ⊢ ∃pOp and as O⊤ is a theorem ⊢ ∃pOp
holds. As such it seems that SDL necessitates the existence of obligations, although a
lack of obligations could plausibly exist given fitting circumstances.

Multiple works have considered this problem, with von Wright’s opinion being that the
obligations which arise from tautologies are a “principle of contingency” for SDL. As it is
neither possible to fulfill nor violate these obligations this problem is considered by some
researchers to “not be a pressing concern”. However, there exist deontic logics that do
not contain the axiom RND and therefore do not run into this problem.

A problem with the idea of deontic logic: Jørgensen’s dilemma
The origin of Jørgensen’s dilemma was the view that evaluative sentences, such as “This
is wrong/right”, are not sentences to which a truth value could be assigned. This is still
a common viewpoint of researchers working on deontic logics and metaethics.

However, this viewpoint leads to a problem, as deductive logic tries to deduce the truth
of statements given the truth value of other statements. This problem is Jørgensen’s
dilemma. Given that the sentences considered in deontic logic are evaluative ones, this
would render deontic logic an impossibility. On the other hand, deontic statements seem
to stand in some logical relationship when using common sense reasoning, which would
suggest that the existence of a deontic logic should be possible.

Multiple solutions to this problem have been proposed, see [JC02] or McNamara
and Hilpinen in [GHP+13]. One is to distinguish between “norms” and “normative
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propositions”. Consider the following statement:

It is forbidden to park in this spot.

This statement could be made by some authority, such as the municipality or by a
passerby, intending to inform you of the no-parking zone.

Such a statement being made by an authority can be referred to as “norming”. The
authority creates the norm by using the sentence (thereby arguably rendering it true),
whereas the usage of the statement by the passerby is descriptive (it could be read as
“Authority forbids parking in this spot”) and can therefore be evaluated to true or false.

All in all, Jørgensen’s dilemma is more of a philosophical problem rather than a problem
with the logic itself. Therefore, it will not be considered in the next chapter, when
encoding the paradoxes in DLV.

While there are further expressive inadequacies for SDL, they will not be considered
in this work. Some of them can be found in the work of Hilpinen and McNamara
in [GHP+13].
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CHAPTER 3
Encoding the Classes of Paradoxes

We encode the deontic paradoxes presented in the previous chapter in DLV. We start by
discussing the intuition behind our encoding. Finally, we discuss related work.

3.1 Vocabulary
Our encodings use the following predicates:

• O(X) denotes X being obligatory.

• F (X) denotes X being forbidden.

• act(X) denotes that we want to reason about whether X is obligatory or not. The
name act was chosen for the predicate as we usually reason about actions. There are
some cases where we reason about obligations that do not necessarily constitute as
actions, however we also use this predicate in those cases for the sake of consistency.

• Do(X) denotes that the agent has chosen to take the action X. Note that −Do(X)
denotes that the agent will not take the action X.

• Diamond(X) is an auxiliary predicate used to denote that an action X is possible.
The naming is a reference to modal logics, where the diamond operator represents
possibility. Note that −Diamond(X) can either mean that the agent cannot take
the action or that the agent has chosen not to take the action.

• Happens(X) is an auxiliary predicate that denotes an event X happening. It is
sometimes used in encodings to denote events happening which are usually outside
the agents control.
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3.2 Methodology
We start by explaining the meanings of the answer sets in the encodings.

Answer sets represent “ethically optimal” ways for an agent to handle the encoded
situations. In other words, each answer set represents a way of handling the imposed
obligations, with none of the answer sets being preferable to any other. Consider the
following example:

Example 45. (Answer sets)
It is obligatory for an agent to either rest or walk. There are two ways to fulfil this
obligation. The agent can either rest or walk. (Arguably both but this might be considered
impossible.) This could be represented by the following two answer sets:

• {Do(walk), O(walk)}
• {Do(sleep), O(sleep)}

The agent then has the choice between the two derived answer sets. Although it may
seem like either the obligation to sleep or the obligation to walk is derived, that is actually
not the case. The agent has the choice between the two answer sets at that point. The
choice between the two options could for example be taken by a reinforcement learning
agent that can choose the optimal option under given circumstances. This will be seen
in a later chapter which encodes a normative supervisor using ASP as in [NBCG21].

The following sections will encode the paradoxes presented in the preliminaries. The goal
is to uniformly encode the paradoxes in order to later get a general method for encoding
paradoxes. Therefore, all encodings will share this common core, which forms the basis
of the encodings.

O(X) ∨ −O(X) :− act(X). (1)
F (X) ∨ −F (X) :− act(X). (2)
:− O(X), −Diamond(X). (3)
− Diamond(X) :− −Do(X), act(X). (4)
:− O(X), F (X). (5)
Do(X) ∨ −Do(X) :− act(X). (6)
:− F (X), Do(X). (7)
Happens(X) :− Do(X). (8)
:− Do(X), −Diamond(X). (9)
:∼ O(X).[1 : 1] (10)
:∼ F (X).[1 : 1] (11)
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In the encoding, the predicate act denotes a constant as an action. This distinction is
made in order for the logic program to only reasons about whether or not taking an
action is obligatory. The first two rules simply denote that each action is either obligatory
or not and also each action is either forbidden or not.

O(X) ∨ −O(X) :− act(X).
F (X) ∨ −F (X) :− act(X).

The third rule states that an obligation to take an action X requires that it is possible
to take that action, or in other words, it is not possible that an action is obligatory and
not possible:

:− O(X), −Diamond(X).

This notion stems from Kant’s law (see Hilpinen and McNamara in [GHP+13]), which
states:

Anything morally obligatory for an agent must be within the agent’s ability.

Kant’s law originated in discussion about ethical morality.
The fourth rule then simply links −Do(X) and −Diamond(X). As explained previously,
−Diamond(X) can either mean an action not being possible or the agent choosing not
to take the action.

− Diamond(X) :− −Do(X), act(X).

The third and fourth rule in combination commit the agent to taking an action that he
is obliged to take in the given answer set. This follows as −Do(X) and act(X) imply
−Diamond(X), while O(X) implies Diamond(X), thereby leading to a conflict should
O(X) and −Do(X) be in the same answer set. Note that this necessitates conflicts
between actions/obligations to be encoded as well.

In order to avoid deducing that an action is both obligatory and forbidden, the fifth rules
leads to a conflict should such an action exist:

:− O(X), F (X).

Rule (6) states that for each action the agent must decide whether he takes that action
or not.

Do(X) ∨ −Do(X) :− act(X).

In order to secure that the agent does not take a forbidden action, we add rule (7):

:− F (X), Do(X).
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This rule might raise the question of why there is no corresponding rule for O(X) that
ensures that the agent takes an obligatory action:

:− O(X), −Do(X).

The reason for this is that this rule is implicitly given by rules (3), (4) and (6). As either
Do(X) or −Do(X) must be in the answer set by rule (6), assume that −Do(X) and
O(X) were in the same answer set. Due to −Do(X), we can derive −Diamond(X) via
rule (4). (act(X) is given as else O(X) would not be derived.) However −Diamond(X)
and O(X) cannot be in the same answer set because of (3). Therefore an equivalent rule
to (7) is given implicitly.

Rule (8) links the two predicates Happens and Do. Intuitively taking an action makes
that action happen:

Happens(X) :− Do(X).

Rule (9) links the predicates Do and Diamond in a different way. It intuitively forbids
the agent from taking actions which are deemed not possible:

:− Do(X), −Diamond(X).

As the first two rules could create answer sets with obligations or prohibitions, which arise
simply because there is no argument against them arising, the following weak constraints
are introduced to filter out those answer sets.

:∼ O(X).[1 : 1]
:∼ F (X).[1 : 1]

Note that these weak constraints are set at the lowest level. All obligations are created
through weak constraints at a higher level as all obligations are considered defeasible
and we do not want an obligation not to be derived, because of the weak constraints (10)
and (11). Note that because DLV minimises the weight of the violated weak constraints
(prioritising the higher levels) these obligations are derived unless a conflicting obligation
or task is derived.

In general all obligations are generated using weak constraints as will be shown in the
following sections.

We will start by considering the correctness of the common core. In the beginning we
will only consider the rules (1) − (9) and ignore the weak constraints (10) and (11).
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To test the common core we add only one action to reason about. Let this be denoted by
action. This reduced program then looks like this:

O(X) ∨ −O(X) :− act(X). (1)
F (X) ∨ −F (X) :− act(X). (2)
:− O(X), −Diamond(X). (3)
− Diamond(X) :− −Do(X), act(X). (4)
:− O(X), F (X). (5)
Do(X) ∨ −Do(X) :− act(X). (6)
:− F (X), Do(X). (7)
Happens(X) :− Do(X). (8)
:− Do(X), −Diamond(X). (9)
act(action).

The idea behind the common core is to create all possible consistent ways of com-
bining O(action), F (action), Happens(action), Do(action), Diamond(action). Note that
Diamond(action) cannot appear as a positive predicate. Furthermore, act(action) must
appear in every answer set. We want the following combinations of predicates to appear:

1. One of the answer sets should deduce O(action), the obligation to take the action.
The action should not be forbidden. Consequently, −F (action) should be in the
answer set. In this case we also want the agent to take the action, therefore
Do(action) should appear in the answer set as well. Therefore, Happens(action)
should also be in the answer set. We therefore want one answer set to take the
following form:

{act(action), O(action), −F (action), Do(action), Happens(action)}

2. One of the answer sets should deduce F (action), forbidding the action to be
taken. The action should not be obligated. Consequently, −O(action) should
be in the answer set. In this case we also do not want the agent to take the
action, therefore −Do(action) should appear in the answer set as well. Therefore,
−Diamond(action) should be in the answer set too (as −Diamond(action) can
also mean that the agent does not choose to take the action). We therefore want
one answer set to take the following form:

{act(action), F (action), −O(action), −Do(action), −Diamond(action)}

3. We want two answer sets where the action is neither obligatory nor forbidden. In
one the agent chooses to take the action, and in one the agent does not. Using
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similar reasoning as in the cases above we want the two answer sets to take the
following form:

{act(action), −F (action), −O(action), −Do(action), −Diamond(action)}
{act(action), −F (action), −O(action), Do(action), Happens(action)}

The common core would create the following answer sets:

1. An answer set where the action is guessed to be obligatory due to rule (1).
Rule (2) can then only guess −F (action), as rule (5) forbids O(action) and
F (action) from being in the same answer set. Rule (6) can then only guess
Do(action), as −Do(action) leads to −Diamond(action) due to rule (4). However,
−Diamond(action) cannot appear in the answer set because of rule (3). Due to
rule (8), Happens(action) is in the answer set as well. This leads to the following
answer set:

{act(action), O(action), −F (action), Do(action), Happens(action)}

2. An answer set where the action is guessed to be forbidden due to rule (2). Rule (1)
can then only guess −O(action), as rule (5) forbids O(action) and F (action) from
being in the same answer set. Rule (6) can then only guess −Do(action), as rule
(7) would forbid it. Due to rule (4), −Diamond(X) is in the answer set as well.
This leads to the following answer set:

{act(action), F (action), −O(action), −Do(action), −Diamond(action)}

3. An answer sets where in rule (1) and (2) the action is guessed to neither be
obligatory nor forbidden and −Do(action) is chosen in rule (6). Due to rule (4)
−Diamond(action) is in the answer set as well. This leads to the following answer
set:

{act(action), −F (action), −O(action), −Do(action), −Diamond(action)}

4. An answer sets where in rule (1) and (2) the action is guessed to neither be
obligatory nor forbidden and Do(action) is chosen in rule (6). Due to rule (8)
Happens(action) is in the answer set as well. This leads to the following answer
set:

{act(action), −F (action), −O(action), Do(action), Happens(action)}

As those answer sets represent all desired possible cases, completeness is given.

Let us now consider combinations of predicates for an action that we want to exclude as
they are inconsistent:
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• {−Diamond(action), O(action)} is not allowed, as we do not want an action to
not be possible to take and obligatory at the same time. Due to rule (4) this
combination of predicates cannot appear as a subset of an answer set.

• {O(action), −Do(action)} is not allowed, as we do not want the agent to not take
an action that has been deemed obligatory under given circumstances. Such a com-
bination cannot appear as a subset of an answer set as −Do(action) would lead to
−Diamond(action) for an action due to rule (4). As seen above −Diamond(action)
and O(action) cannot appear in the same answer set and therefore this combination
of predicates cannot appear as a subset of an answer set.

• {O(action), F (action)} is not allowed, as we do not want an action to be both
obligatory and forbidden. Due to rule (5) this combination of predicates cannot
appear as a subset of an answer set.

• {F (action), Do(action)} is not allowed as we do not want an agent to take an
action which has been deemed forbidden under given circumstances. Due to rule (7)
this combination of predicates cannot appear as a subset of an answer set.

• {−Diamond(action), Do(action)} is not allowed as we do not want an agent to
take an action which has been deemed impossible under current circumstances.
Due to rule (9) this combination of predicates cannot appear as a subset of an
answer set.

The answer sets 1 − 4 all fulfil the above conditions. Therefore, our methodology fulfils
soundness as well.

Adding the weak constraints removes the last two answer sets as the obligation and
the prohibition increase the weight of the violated weak constraints (10) and (11). The
goal is to filter out obligations resp. prohibitions which are not created through weak
constraints at higher levels. This is done in order to ensure that no baseless obligations
and prohibitions can be found in any answer set.

In general obligations that are always active (unless a conflicting obligation arises) are
encoded as a weak constraint on the second level with weight 1. Let assist be an
obligatory action. This would be written in the following way in DLV:

:∼ O(assist).[1 : 2]

There are also different ways of filtering out unwanted answer sets. A more intricate
way is given by [BDRS15] or [ADMR20] which allow for more sophisticated preference
models. Since weak constraints are able to fulfill the desiderata set forth by this work,
this is not used.
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3.2.1 Properties of the Common Core and the Axioms of SDL
This subsection will take a look at some properties of the common core as well as discuss
how the axioms of SDL are handled in the common core.

The first property we will consider is that any answer set that contains O(action) also
contains Do(action) for any action and on the other hand any answer set that contains
F (action) also contains −Do(action). In other words, the agent has to take any action
that is determined as obligatory. An explanation for this behaviour can be seen on
page 42.

While this may seem like an undesired property on the first glance, it is explained through
the semantics of our methodology. In our semantics actions are determined as obligatory,
if and only if taking that action is the optimal way to act given the encoded normative
system. Intuitively, obligations that are less important are waived, should fulfilling them
hinder the agent from fulfilling more important obligations. Note that if an action is
neither determined as obligatory nor forbidden, the agent can choose to take or not take
the action, if it is possible for the agent to take said action.

The predicate Diamond generally only appears negatively in answer sets. As DLV
can only derive predicates that appear in the head of a rule and Diamond does not
appear in any rule it does not appear in any answer set. The reason for us not having
a rule that derives Diamond(X) once again lies in the semantics of our methodology.
−Diamon(action) encodes the fact that it is not possible for the agent to take said
action. In our encoding any action that is not specifically deemed impossible is considered
possible. (One could theoretically add code that determines an action to be possible
unless specified otherwise, we chose to omit this to keep the code simple.)

The predicate Happens generally only appears positively in answer sets. The reason
for this is the same as for Diamond. If an event does not happen, it is not specifically
encoded in our methodology. Note that Happens is not only used to denote that an
action that the agent has chosen to take has happened, but it is also used to denote
events that are outside the agent’s control.

A final notable property of our methodology is that DLV only reasons about actions that
are specifically denoted as such through the predicate act. This is due to the fact that
all rules that would lead to an obligation or prohibition being derived (rule (1) and (2))
contains act(X) in the body of the rule.

We will now take a look at the axioms of SDL (that are not part of the axiomatization of
classical propositional logic) and how they are encoded or why we have chosen to omit
an encoding for them in our common core.
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If φ is a theorem, Oφ is a theorem (RND)
O(φ → ψ) → (Oφ → Oψ) (KD)
Oφ → ¬O¬φ (DD)

The axiom (RND) is not encoded in our common core for multiple reasons. As in our
encoding O is a predicate rather than an operator, logical connectives cannot appear
inside O. Although O(a ∨ ¬a) is a theorem in SDL, it would be nonsensical to encode
it in our methodology. As the agent has no choice but to take an action that always
happens (such as either doing or not doing something) encoding it would only make the
code more complicated without actually benefitting us in any way.

(KD) is not encoded in the common core for similar reasons. It is also related to how we
encode derived obligations. This will be discussed further on page 69.

(DD) is encoded indirectly. Note that for an act action we would encode O(¬action)
as F (action). This can be understood as the obligation to not take an action being
equivalent to that action being forbidden. So we can rephrase the axiom (DD) as:

Oφ → ¬Fφ

which is equivalent to

¬(Oφ ∧ Fφ)

Through this transformation we can see that (DD) is part of our common core through
rule (5):

:− O(X), F (X).

3.3 Ross’s Paradox
We first encode Ross’s Paradox:

It is obligatory that the letter is mailed.
(It is obligatory that the letter is mailed or burned.)

The second sentence (in brackets) is a sentence which would be derived in SDL, but
is nonsensical using common sense reasoning. To show that such an obligation is not
derived in DLV, we encode it by adding the following rules and facts to the core:
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:∼ −O(mail).[1 : 2]
act(mail).
act(burn).

Note that a disjunction over obligations is symbolised by two different answer sets that
each contain one possible way to satisfy the obligation over the disjunction.

First, the obligation is created using the following weak constraint:

:∼ −O(mail).[1 : 2]

Since mail is specified as an action, the logic program has to denote it as obligatory
or not obligatory, as this is specified in the core of the program. The weak constraint
penalises the system at the highest level if the program does not specify mailing the letter
as obligatory. Since the program minimises the constraints violated at the highest level,
all answer sets deduce the obligation to mail the letter, should such an answer set exist.

The final two facts simply denote mail and burn as actions to reason about.

This logic program yields two answer sets:

{act(mail), act(burn), Do(mail), −Do(burn), Happens(mail),
−Diamond(burn), −F (mail), −F (burn), O(mail), −O(burn)}

and

{act(mail), act(burn), Do(mail), Do(burn), Happens(mail),
Happens(burn), −F (mail), −F (burn), O(mail), −O(burn)}

Note that neither of these answer sets derive the obligation to burn the letter. The only
difference between the answer sets is whether the agent chooses to burn the letter or not.
This is valid as it is not forbidden to burn the letter and it is not specified that it is not
possible to both burn and mail the letter.

One may add a rule specifying additional information about the paradox:

:− Do(mail), Do(burn).

This rule specifies that it is not possible to both mail and burn the letter.

This logic program then yields only a single viable answer set:

{act(mail), act(burn), Do(mail), −Do(burn), Happens(mail),
−Diamond(burn), −F (mail), −F (burn), O(mail), −O(burn)}
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This answer set derives the obligation to mail the letter and does not deduce any further
obligations, which would be the natural way to solve this problem.

One may also add an additional rule stating that mailing the letter implies mailing or
burning the letter as this causes the paradox in SDL. However, adding such a rule does
not change the outcome, as a predicate in the head that is not in the body would never
be derived.

3.4 Good Samaritan Paradox
The Good Samaritan Paradox gets encoded similarly.

It is obligatory Jones helps Smith who is being mugged.
(It is obligatory that Smith is being mugged.)

Once again the sentence in the bracket is an obligation, which is derived in SDL. The
difference to the previous paradox is that the obligation of helping Smith arises as Smith
is being mugged. The agent Jones therefore has to reason with the knowledge of this
mugging happening. This gets formalised through the auxiliary predicate Happens that
denotes an event taking place. This leads to the following addition to the core:

:∼ −O(help), Happens(mug).[1 : 2]
Happens(mug).
act(help).

Happens(mug) encodes the information that the mugging of Smith is currently happen-
ing and act(help) specifies that the logic program is to reason about the obligation of
helping.

The weak constraint argues that answer sets may either have no obligation to help or
have the mugging happen, but not both. Deriving an obligation to help while not having
a mugging happen would not violate this rule, but would not be derivable because the
common core would filter such a solution.

This encoding returns one valid answer set:

{act(help), Happens(mug), Do(help), Happens(help), −F (help), O(help)}

This answer set derives the obligation to help and therefore solves the paradox in an
intuitive way. Note that if Happens(mug) was not a fact, the obligation to help would
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not be derived. In that case, the following answer sets are derived:

{act(help), −Do(help), −Diamond(help), −F (help), −O(help)}
and

{act(help), Do(help), Happens(help), −F (help), −O(help)}
Neither of these answer sets derived any obligations. The difference between the answer
sets simply lies in whether the agent decides to help Smith although no mugging is
happening. As there is no rule prohibiting the agent from helping Smith when there is
no emergency this is valid. Should one want to establish such a constraint one could add
a weak constraint or rule that specifies this. Such a constraint could take the following
form:

:∼ Do(help), not Happens(mug).[1 : 2]

The above way of encoding does not give the agent the option to reason about whether
to mug Smith. In order to show that the agent does not derive the obligation to mug
Smith even when given the option, we consider the following slightly edited encoding:

:∼ −O(help), Happens(mug).[1 : 2]
act(help).
act(mug).

The fact act(mug). denotes mugging as an action that the agents needs to reason about.
Note that rule (8) in the common core specifies that mugging Smith implies that a
mugging is happening.

This encoding leads to two different answer sets:

{act(help), act(mug), −Do(help), −Do(mug), −Diamond(help),
−Diamond(mug), −F (help), −F (mug), −O(help), −O(mug)}

and

{act(help), act(mug), Do(help), −Do(mug), Happens(help),
−Diamond(mug), −F (help), −F (mug), −O(help), −O(mug)}

Neither of these answer sets derive the obligation to mug Smith. The only relevant
difference between the two answer set is whether the agent still chooses to help Smith,
although Smith is not being mugged. As there is no prohibition on helping Smith both
answer sets make sense in this case and capture the intuitive solutions to the given
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situation.
When given the additional fact Happens(mug) the following two answer sets are derived:

{act(help), act(mug), Happens(mug), Do(help), −Do(mug), Happens(help),
−Diamond(mug), −F (help), −F (mug), O(help), −O(mug)}

and

{act(help), act(mug), Happens(mug), Do(help), Do(mug),
Happens(help), −F (help), −F (mug), O(help), −O(mug)}

Both answer sets in this case still derive the obligation to help Smith. The difference
between the answer sets is whether the agent mugs Smith. As there is no rule specifying
that it is not possible to both help and mug Smith or even a prohibition stopping the
agent from mugging Smith, this is a valid answer in this case. Should one add such a
rule then the second answer set would not be derived.

3.5 Åqvist’s Paradox of Epistemic Obligation
Next, we consider Åqvist’s Paradox of Epistemic Obligation:

The bank is being robbed.
It is obligatory, that the guard knows the bank is being robbed.
(It is obligatory, that the bank is being robbed.)

Like in the previous paradox we use the auxiliary predicate Happens. Additionally we
introduce the auxiliary function k(x), which denotes the knowledge of x happening. We
formulate this in the following way:

:∼ −O(k(robbery)), Happens(robbery).[1 : 2]
Happens(robbery).
act(k(robbery)).

Note at this point that the predicate act denotes k(robbery) as an action in a broader
sense. While it is debatable whether knowing is an action, knowing whether a robbery is
happening is still the “action” being reasoned about.

The weak constraint once again ensures that should a robbery happen, taking notice
of the robbery happening is obligatory for the agent. Finally, the last rule specifies the
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knowledge of something happening as an action to reason about. The single answer set
returned by this problem is:

{act(k(robbery)), Happens(robbery), Do(k(robbery)),
Happens(k(robbery)), −F (k(robbery)), O(k(robbery))}

Once again the same solution is reached that would be reached using common sense
reasoning. In order to more precisely model the semantics of the k operator an additional
rule could be added. This rule specifies that knowing a robbery is happening is impossible
when no robbery is happening. A more general form of this constraint looks like this:

:− notHappens(X), Do(k(X)).

This however does not influence the solution.

3.6 Sartre’s Dilemma
Consider Sartre’s Dilemma in which the obligations are equally important:

It is obligatory, that I meet Mary.
It is obligatory, that I do not meet Mary.

In cases where two (or more) obligations are equally important one would expect multiple
possible solutions, as there is no real reason to prefer one obligation over the other. Actu-
ally the existence of multiple solutions in such cases is a feature that is crucial in certain
use cases. Consider an implementation of the normative supervisor in [NBCG21]. The
agent chooses which action to take from “ethically optimal” actions, which the normative
supervisor passed on to the agent. In case only one of those ”ethically equivalent” actions
were passed on to the agent, the agent would possibly have to take a suboptimal action.

Considering this requirement Sartre’s Dilemma can be encoded in the following way
(once again the code is given excluding the common core):

:∼ −O(m).[1 : 2]
:∼ −F (m).[1 : 2]
act(m).

The first two weak constraints denote the obligations in the same way known from
previous encodings. m denotes the act of meeting Mary here. The final rule once again
denotes m as an action to be reasoned about.
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Due to the rule :− O(X), F (X). in the core of the logic program it is not possible for an
answer set to contain both O(m) and F (m). Therefore, an optimal solution violates at
least one of the weak constraints set at the second level. As it is possible to satisfy either
one of the weak constraints at the second level an optimal solution satisfies exactly one
of these weak constraints leading to the following two answer sets:

{act(m), Do(m), Happens(m), −F (m), O(m)}

and

{act(m), −Do(m), −Diamond(m), F (m), −O(m)}

The two answer sets fulfill the desiderata, as they derive the obligation to meet Mary
resp. the obligation to not meet Mary.

3.7 Plato’s Dilemma
Since in general the conflicting obligations may not be directly conflicting but indirectly
conflicting, it may be necessary to add a rule specifying that it is not possible to take
both actions. This can be nicely seen in the encoding of Plato’s Dilemma, in which due
to a medical emergency an obligation of higher priority arises:

It is obligatory, that I meet my friend for dinner.
It is obligatory, that I rush my child to the hospital.

Due to time constraints it is not possible for the agent to satisfy both of the obligations.

The desired outcome of Plato’s Dilemma would be for the agent to take their child to
the hospital, thereby violating the obligation of meeting the agent’s friend for dinner.

The two interesting aspects of this encoding are the prioritisation of the obligations
and the impossibility of satisfying of taking both actions. This can be encoded in the
following way:

:∼ −O(help), Happens(emergency).[1 : 3]
:∼ −O(meet).[1 : 2]
act(meet).
act(help).
:− Do(help), Do(meet).
Happens(emergency).
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The encoding starts with a weak constraint at level 3 (the highest level in this encoding),
which penalises answer sets in which emergency is true but the obligation to help is
not derived. In other words, it derives the obligation to help the child in case of an
emergency. emergency is an auxiliary predicate, which denotes that an emergency is
currently occurring. The second weak constraint simply encodes the obligation to meet
the friend for dinner.

Due to the first weak constraint being at a higher level than the second, the program
always ensures that the first weak constraint is satisfied before considering the second
weak constraint.

:− Do(help), Do(meet). encodes that it is not possible to both help the child and meet
the friend. The rest of the assertions simply state that an emergency is currently occuring
and which actions to reason about.

This encoding leads to the following answer set:

{act(help), act(meet), Happens(emergency), Do(help), −Do(meet), Happens(help),
−Diamond(meet), −F (help), −F (meet), O(help), −O(meet)}

As desired only a single possible solution is computed, as the program prioritises the
obligation to help the child.

3.8 Broome’s Counterexample
Broome’s Counterexample involves an obligation that is derived by taking an action. We
encode derived obligations of that kind in the following way:

:∼ Do(p), −O(m).[1 : 2]

This weak constraint can informally be understood as: “Should one take action p,
then one should be obligated to take action m”. Note that the weight and level of
the weak constraint depends on whether any conflicting obligations arise, as seen in
Plato’s Dilemma. Using this way of encoding derived obligations, we encode Broome’s
Counterexample:

It is obligatory, that one exercises.
It is obligatory, that if one exercises one eats more.

Using the encoding we add the following to the common core:
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:∼ −O(exercise).[1 : 2]
:∼ Do(exercise), −O(eat).[1 : 2]
act(exercise).
act(eat).

As expected, there is only one answer set, which derives the obligation to exercise, as
well as the obligation to eat more:

{act(exercise), act(eat), Do(exercise), Do(eat), Happens(exercise),
Happens(eat), −F (exercise), −F (eat), O(exercise), O(eat)}

However, the problem in Broome’s Counterexample arises due to the obligation of exer-
cising not being fulfilled but the obligation to eat more still being derived. Therefore, we
add −Do(exercise). to the encoding.

This leads to two optimal answer sets, which both do not derive the obligation to eat.

{act(exercise), act(eat), −Diamond(exercise), −Do(exercise), −Do(eat),
−Diamond(eat), −F (exercise), −F (eat), −O(exercise), −O(eat)}

and

{act(exercise), act(eat), −Diamond(exercise), −Do(exercise), Do(eat),
Happens(eat), −F (exercise), −F (eat), −O(exercise), −O(eat)}

The difference in the two answer sets simply lies in whether or not the agent does eat
more, which is a valid option, as there is no prohibtion on that action. If one wanted
the agent to not eat more, should the agent not exercise, one could add a fitting constraint.

A problem that was mentioned was the inability of SDL to distinguish between obligations
for which fulfilling a part of the obligation makes sense and obligations for which it does
not. If satisfying a part of the obligation does make sense the encoding is quite simple
as one can encode both of the obligations separately, as in the previous encodings. If
necessary the level and weight of the weak constraint can be adjusted. However, encoding
the other kind of obligations proves to be a bit more tricky.

Since a weak constraint only tries to stop a specific combination of predicates from
appearing in an answer set, these kinds of constraints could be encoded in multiple
weak constraints penalizing each of the cases to violate the obligation. Assume that
the obligation is a conjunction of n different actions, where violating any of them ren-
ders the rest of them moot. Then there are 2n possible ways to act (for each of the
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actions we can either take it or not). Since the only possible way to fulfil the obli-
gation is to take all of the actions, it would require 2n − 1 weak constraints in order
to model this obligation. This exponential growth could prove problematic in future work.

However, there is also an alternative way to encode this problem, which leads to equivalent
results using less weak constraints. The idea of this approach is to introduce a auxiliary
predicate, which is only active when all obligations are active. Then the weak constraints
penalise solutions in which this predicate is not active.

This leads to this rephrasing of Broome’s Counterexample, where both parts need to be
satisfied in order to make sense:

It is obligatory to exercise and eat more (in order to live a healthier life).

This can be encoded by adding the following code to the common core:

:∼ −O(eat), −O(exercise).[1 : 2]
:∼ O(eat), −O(exercise).[1 : 2]
:∼ −O(eat), O(exercise).[1 : 2]
act(exercise).
act(eat).

Here one can see a case of 22 − 1 weak constraints being used in order to encode an
obligation that is a conjunction of n different actions.

Alternatively, it can be encoded in the following way by introducing an auxiliary predicate
Health:

:∼ not Health.[1 : 2]
Health :− O(eat), O(exercise).
act(exercise).
act(eat).

Here, default negation is used in order to penalise answer sets which do not contain both
the obligation to eat and the obligation to exercise. Note that such auxiliary predicates
can also be used to model exceptions in which certain obligations do not hold, which can
be seen in the encoding of the Asparagus Paradox.
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These programs then fulfill our desiderata. Should no other facts be specified, the
programs deduce the obligation to eat and exercise in the following answer set:

{act(eat), act(exercise), Do(eat), Do(exercise), Happens(eat), Happens(exercise),
−F (eat), −F (exercise), O(eat), O(exercise), Health}

Note that the answer set for the first way of encoding does not contain the auxiliary
predicate Health, but is otherwise identical.

Should one of the actions not be possible to take, e.g., by specifying −Do(eat), then the
other obligation is not deduced either leading to the following two answer sets for the
two programs:

{act(eat), act(exercise), −Diamond(eat), −Do(eat), −Do(exercise),
−Diamond(exercise), −F (eat), −F (exercise), −O(eat), −O(exercise)}

and

{act(eat), act(exercise), −Diamond(eat), −Do(eat), Do(exercise),
Happens(exercise), −F (eat), −F (exercise), −O(eat), −O(exercise)}

These two answer sets only differ in whether the agent chooses to exercise, although he is
unable to eat. As no constraint specifies that the agent should not exercise when not
eating, the two answer sets are once again considered to be equally good solutions given
the constraints.

3.9 Chisholm’s Contrary-to-Duty Paradox

Having decided on how to encode derived obligations, the next step is to check how to
encode contrary-to-duty (CTD) obligations. Although these CTDs may seem to be an
entirely different kind of derived obligations, they can be handled in the same way as other
derived obligations. The only difference to the previous case is that these obligations
arise due to an obligatory action not being taken (unless a prohibition is violated) rather
than due to an action being taken.

The most famous example showing SDL’s inability to handle CTD obligations is probably
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Chisholm’s Contrary-to-Duty Paradox :

It ought to be that Jones goes to the assistance of his neighbors.
It ought to be that if Jones goes to the assistance of his neighbors,
then he tells them he is coming.
If Jones doesn’t go to the assistance of his neighbours,
then he ought not tell them he is coming.
Jones does not go to their assistance.

This paradox is encoded by adding the following code to the common core:

:∼ −O(assist).[1 : 2]
:∼ Do(assist), −O(tell).[1 : 2]
:∼ −Do(assist), −F (tell).[1 : 2]
− Do(assist) :− .

act(assist).
act(tell).

The encoding is rather simple with the first three weak constraints encoding the first
three sentences and the final rule specifying the fact that the agent does not go to the
assistance of its neighbors. Finally, the last two facts specify that the agent is to reason
about whether to assist and whether to tell.

Using this encoding only one answer set is returned:

{act(assist), act(tell), −Diamond(assist), −Do(assist), −Do(tell),
−Diamond(tell), −F (assist), F (tell), −O(assist), −O(tell)}

Same as with using common sense reasoning only the obligation to not tell the neighbors
is derived. The obligation to assist is not derived as it cannot be fulfilled, as the agent
has already chosen not to assist. Furthermore the obligation to tell is not derived as the
agent does not assist. If one were to remove the fact that the agent chooses to not assist,
then the single answer set would derive the obligation to assist and the obligation to tell,
thereby not violating any second level constraints.
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3.10 Forrester’s Paradox

Next, we encode another famous CTD paradox, Forrester’s Paradox :

Smith ought not kill Jones.
If Smith will kill Jones, then Smith ought to kill Jones gently.
Smith will kill Jones.

This leads to the following encoding using the same recipe:

:∼ −F (kill).[1 : 2]
:∼ Do(kill), −O(gently(kill)).[1 : 2]
Do(kill).
act(kill).
act(gently(kill)).
Do(kill) :− Do(gently(kill)).

Note that the final rule encodes the connection between killing gently and killing, as
killing someone gently implies killing that person. Just as expected only one answer set
is generated, which only derives the obligation to kill gently:

{act(kill), act(gently(kill)), Do(kill), Happens(kill), Do(gently(kill)),
Happens(gently(kill)), −F (kill), −F (gently(kill)), −O(kill), O(gently(kill))}

3.11 Considerate Assassin Paradox

The Considerate Assassin Paradox combines CTD paradoxes with priorities among
paradoxes:

You should not kill the witness. (1)
If you kill the witness, you should offer him a cigarette. (2)
You should not offer a cigarette. (3)
You kill the witness. (4)

We encode this by adding the following code to the common core:
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:∼ −F (kill).[1 : 2]
:∼ Do(kill), −O(offer).[1 : 3]
:∼ −F (offer).[1 : 2]
Do(kill).
act(kill).
act(offer).

There are multiple ways of setting the levels for the weak constraints in this paradox. One
can argue that the agent values the mafia code higher than general ethics and therefore
put the first two weak constraints at a higher level. In this case we put the second weak
constraint at the third level, while setting the other two weak constraints at the second
level. This is due to the fact that the first prohibition is not influenced by any of the
other obligations or prohibitions. The second weak constraint specifying that the agent
is supposed to offer the witness a cigarette, should he kill him is set at a higher level
than the prohibition stopping the agent from offering a cigarette, as in that case the
agent should still offer a cigarette (although it should not be done under more general
circumstances).

This encoding leads to only a single answer set, deriving the obligation to offer a cigarette:

{act(kill), act(offer), Do(kill), Happens(kill), Do(offer),
Happens(offer), −F (kill), −F (offer), −O(kill), O(offer)}

3.12 Asparagus Paradox
The Asparagus Paradox shows an obligation that has an exception:

Don’t eat with your fingers. (1)
If you are served cold asparagus, eat it with your fingers. (2)
You are served cold asparagus. (3)

We first encode this paradox using this formulation.

:∼ −F (fingers).[1 : 2]
:∼ Served(asparagus), −O(finger).[1 : 3]
Served(asparagus).
act(fingers).

Once again, the second weak constraint is set at a higher level, as the obligation to
eat with your fingers, should you be served cold asparagus, is more important than the
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prohibition to not eat with your fingers.

Only one answer set is returned for this program:

{act(fingers), Served(asparagus), Do(fingers), Happens(fingers), −F (fingers),
O(fingers)}

As one would expect, the obligation to eat with fingers is derived.

The paradox could also be interpreted in the following way:

Don’t eat with your fingers, unless you are served cold asparagus. (1)
You are served cold asparagus. (2)

This can be interpreted as a prohibition on eating with your fingers unless one is served
asparagus. Meaning that being served asparagus does not obligate the agent to eat with
his fingers. This can be encoded in the following way:

:∼ −F (fingers), not Served(asparagus).[1 : 2]
Served(asparagus).
act(fingers).

For this encoding two answer sets are derived:

{act(fingers), Served(asparagus), −Do(fingers), −Diamond(fingers),
− F (fingers), −O(fingers)}

and

{act(fingers), Served(asparagus), Do(fingers), Happens(fingers),
− F (fingers), −O(fingers)}

Neither of the answer sets derive any obligations or prohibitions. The difference between
the two answer sets is only whether the agent decides to eat with his fingers. (As both
options are compliant with the imposed rules.)

This rephrasing nicely shows how an exception to an obligation can be handled using
default negation.
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3.13 Fence Paradox
The Fence Paradox is an interesting paradox as it combines a CTD obligation with an
exception to said obligation. The paradox takes the following form:

There must be no fence. (1)
If there is a fence then it must be a white fence. (2)
If the cottage is by the sea, there may be a fence. (3)

One might think that a contrary-to-duty obligation could be handled like an exception to
an obligation. While one could formulate the contrary-to-duty obligation as “There may
be a fence if it is white”, it would not have the same meaning as in the paradox. Handling
a contrary-to-duty obligation as an exception leads to losing the original obligation to a
certain degree. A contrary-to-duty obligation could in this case be seen as the least thing
to do to set things right. Although the fence being white does better the situation the
fence itself should still not be there [PS96]. A similar example would be if one were to
forget to wish their friend a happy birthday. In such a case one should still congratulate
their friend a few days later, although congratulating on their actual birthday would
have been better.
The important fact to consider is that should the cottage be by the sea then (as obliga-
tion (1) is not active due to the exception in (3)) the fence does not necessarily need to
be white. This will be encoded by adding the following code to the common core:

:∼ −F (have_fence), not Location(sea).[1 : 2]
:∼ Do(have_fence), − O(have_white_fence), not Location(sea).[1 : 2]
act(have_fence).
act(have_white_fence).

The exception is encoded in the same way as in the Asparagus Paradox. The new part of
this encoding is that the exception is also part of the contrary-to-duty obligation as can
be seen above. This needs to be done as the fence has to be white only when the cottage
is not by the sea.

In order to check whether the obligation for the fence to be white is deduced when the
cottage is by the sea the following facts are added to the common core:

Location(sea).
Do(have_fence).
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These facts specify that the cottage is by the sea, and furthermore that there is a fence.
Then two answer sets are derived:

{act(have_fence), act(have_white_fence), Location(sea), Do(have_fence),
Happens(have_fence), −Do(have_white_fence),

−Diamond(have_white_fence), −F (have_fence),
−F (have_white_fence), −O(have_fence), −O(have_white_fence)}

and

{act(have_fence), act(have_white_fence), Location(sea), Do(have_fence),
Happens(have_fence), Do(have_white_fence), Happens(have_white_fence),

−F (have_fence), −F (have_white_fence), −O(have_fence),
−O(have_white_fence)}

As required, neither answer set derives the obligation for the fence to be white.

3.14 Alternative Service Paradox
The Alternative Service Paradox poses the question on how to encode disjunctions. As
mentioned in the previous section, including disjunctive distributivity would not solve this
problem as this leads to a whole separate set of issues. While disjunctive distributivity is
a problem in SDL, it is not when using ASP. Consider the following weak constraint:

:∼ −O(a), −O(b).[1 : 2]

Due to answer sets being interpreted as different ways of optimally satisfying the given
obligation, this weak constraint is semantically equivalent to a disjunction over the
obligation to take action a and the obligation to take action b. When added to the
common core, this leads to two answer sets:

One in which O(a) is derived and one in which O(b) is derived. This is however different
to adding disjunctive distributivity to SDL as neither of the obligations is actually derived.
The agent is simply given two possible answer sets modelling possible ways to optimally
comply with the given constraints. Similar to real life where one could either choose to
satisfy the obligation by taking action a or satisfying the obligation by taking action b,
the agent is given two answer sets that model each of these options.

Using the above way to model obligations over disjunctions, we can encode the Alternative
Service Paradox:

You are obligated to fight in the army or perform alternative service.
You are obligated to not fight in the army.
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The encoding is done by adding the following to the common core:

:∼ −O(fight), −O(alt).[1 : 2]
:∼ −F (fight).[1 : 2]
act(fight).
act(alt).

This program leads to a single answer set:

{act(fight), act(alt), −Do(fight), Do(alt), Happens(alt),
− Diamond(fight), F (fight), −F (alt), −O(fight), O(alt)}

As one can see, two obligations/prohibitions are in the answer set. Firstly, the obligation
to perform alternative service and secondly the prohibition on fighting. This once again
derives the same obligations as common sense reasoning would.

3.15 The Logical Necessity of Obligations

The logical necessity of obligations is a paradox, which does not pose a problem for
encodings in DLV. As all the programs specify which actions to reason about, there is no
way for the logic program to deduce any obligations unless it is specifically requested.
Only using the core would be an example of a program, which does not deduce any
obligation.

One might argue that the weak constraint :∼ O(X).[1 : 1] in the core is an encoding of
the statement: “Nothing is obligatory.”. Although a valid obligation arising would render
this moot. Mirroring the real world this constraint is only relevant until the situation
changes and another stronger obligation arises which renders the statement invalid.

Final Remarks
Using weak constraints, all considered paradoxes could be encoded in a way, such that
the answer sets satisfied all the desiderata posed by common sense reasoning. This was
done using consistent formalisms throughout. It is important to note that the encoded
scenarios showcased necessary parts of encoding a normative system. The next chapter
will generalise them in order to generate a way to encode normative systems in DLV.
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3.16 Related Work
Being a topic of great interest multiple approaches to handling normative systems have
been proposed. Many of the approaches related to the multi-agent systems community
can be seen in [ADL18]. We will discuss below the approaches most similiar to our work.

One of the earlier works on encoding normative systems is [SSK+86]. There Sergot et al.
encoded the British nationality act using logic programming. Their goal was to show
that logic programming was capable of representing the complexities of statutory law.
Due to the rules all being restricted to definite Horn clauses, there were some syntactic
restrictions such as not allowing disjunctions in the head of the rule. Using these tools
they aim to determine whether the British nationality act applies to certain individuals.
Although [SSK+86] does not use deontic logic there has been a lot of research on deontic
logic in law, e.g., [JS92] or the work of Governatori, Rotolo and Sartor in [GHP+21].

[SBD+00] is one of the earliest works on reasoning about obligations and prohibitions of
agents. Subrahmanian et al. introduced semantics (as well as syntax) for this task. In
addition to the operators O, Do and F used in this thesis, their work featured operators
P and W , which classified actions as permissible resp. waived obligations to take an
action. Although multiple semantics (e.g., Feasible status sets, Rational status sets. . . )
were presented in their work, the operators behave differently in most semantics compared
to our semantics. In their semantics it is possible for obligations to be violated. In
other words it is possible for O(α) to be in a status set for an action α but not Do(α).
Furthermore, an agent does not choose to take an action unless there is a justification for
taking that action. In our semantics we “guess” what actions to take, thereby generating
multiple answer sets that differ only on actions which are not necessarily forbidden
or obligated. This “guessing” is not present in their work. The operator P acts as
strong permission, when using the open world assumption (where everything not strictly
forbidden is permissible), thereby waiving prohibitions which would otherwise be in place.
Similarly, the operator W waives obligations which would otherwise be in place. Note
that the operators P and W can be avoided by a different encoding and were added
for user convenience. In this master thesis exceptions to obligations and prohibitions
are encoded as part of the weak constraints generating them and any action that is not
strictly forbidden is permissible. Therefore, we do not have a need for operators P and
W , as an obligation resp. a prohibition would only be waived due to an exception (that
would be encoded as part of weak constraints) or a conflicting obligation resp. prohibition
(that would be encoded in seperate weak constraints) that is of equal or higher priority.
Although also referring to deontic logic the proposed way of dealing with conflicting
obligations in [SBD+00] is to satisfy a maximal subset of obligations. This can be seen
as a weakness of this approach in case a clear preference among obligations exists. An
example of such is Plato’s Dilemma, introduced in Section 2.3.3. In this paradox the
obligation to rush a child to the hospital conflicts with the obligation to meet a friend for
dinner. In this case one needs the agent to fulfill the most important obligation of helping
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the child. This would however not be possible with the framework introduced in [SBD+00].

In [KS18] Kowalski and Satoh utilised abductive logic programs to encode the notion
of obligation and many paradoxes. Although there are some similarities to our work,
there are also notable differences. An obvious difference is the choice of tools. Since in
abductive logic programming integrity constraints are hard constraints, their obligations
(which in general can be violated) are formulated as hard constraints. They achieved this
by using the Andersonian reduction [And58] that reformulates an obligation O(x), to
take an action x, as x∨sanction. Thereby they turn the obligation into a hard constraint
by giving the choice between fulfilling the obligation or being sanctioned. Rather than
trying to derive all optimal ways of fulfilling given obligations, [KS18] focuses on finding
a best model that satisfies given goals (that must be satisfied). Optimality of a given
model is not part of the abductive logic program. They provide a partial ordering of
the models through which it is determined whether a model is part of the best models.
This is for example done by preferring models which do not contain certain sanctions
over others. In our encoding the ordering of the models is part of the ASP program
itself. The paradoxes they consider are resolved in the same way as here, however the
authors did analyse only a subset of the paradoxes considered in this work. Similar to
this work, the encodings of the paradoxes are applicable to more general cases. Our work
also presents a more general way of encoding the different types of obligations as well
as a methodology for encoding systems in general. As they only encode a subset of the
paradoxes encoded in our work, it is unclear whether their approach would work for all
paradoxes and case studies considered in our work.

Using a combination of input-output logic and game theoretic methods, van der Torre
and Boella encoded the behaviour of agents in a multi agent system under a normative
system [BvdT04]. They used the BOID architecture [BDHvdT02] in order to model the
agents. This architecture is used to encode agents that are capable of a more human
kind of reasoning. Van der Torre and Boella establish different kinds of norms and
rules with different properties. In this master thesis a similar differentiation between
rules is given by rules resp. weak constraints and their levels. The approach presented
in [BvdT04] is more complex than the approach taken in this master thesis, as it is not
only capable of having agents take into consideration other agents’ probable actions,
but furthermore it considers the agent’s own goals. This lets the agent violate given
norms should the agent believe the violation to be worth the sanctions incurred. While
the goals of an agent can theoretically be modeled using weak constraints by simply
considering them as obligations the agent imposes upon himself, the game-theoretic
aspect of [BvdT04] would be extremely hard if not impossible to encode given the tools
presented in this master thesis. The acronym BOID [BDHvdT02] stands for beliefs,
obligations, intentions, and desires. The architecture, as the acronym would suggest
is used to model the beliefs, obligations, intentions and desires of an agent. There
are also different kinds of agents, such as selfish or social agents as examples, influ-
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encing how agents act upon the goals generated from the architecture. The idea is to
create consistent sets of goals from the beliefs, obligations, intentions and desires of
the agent and then rank these consistent sets. Afterwards, the agent is supposed to
plan how to fulfill the goals. This kind of reasoning more closely mimics human reasoning.

A type of logic, often seen when reasoning about norms, is Temporal Logic. An advantage
given by Temporal Logic approaches is that they are good at enforcing norms that
indirectly prohibit certain actions [ABDL15, BDK13]. As an example, while it is obvious
to an agent how to satisfy a norm that forbids him from taking a specific action, it is a
lot harder for an agent to satisfy a norm that states that an agent sees to it that a certain
condition is maintained. Consider the obligation: “See to it that the child stays dry.”
For such an obligation it does not suffice to not wet the child, but also take actions to
prevent the child from getting wet by other means. As such it may require stopping the
child from leaving the house if it is about to rain. Like in Modal Logic possible worlds
are given where reaching a certain world from another requires taking or refraining from
certain actions. Temporal Logic approaches aim to choose obligatory or forbidden actions
for the agent by ensuring that the agent taking or refraining from an actions leads to a
situation where the agent can once again take an action to ensure the obligation is still
satisfied. However, building such a model requires a lot of work and may be hard to
build for complex situations.

The approach in [ABDL15] focuses on how and when to restrict an agent’s behaviour in
multi-agent systems. As mentioned before, a model is built that simulates the states of
the system after the agent takes an action. For large universes with lots of worlds it is a
large computational effort to check which actions can safely be taken without landing in
a world that leads to the obligation being violated regardless of which action is taken.
The basic idea is that a guard function gives safe successor states if possible, taking into
account the history of system behaviour up until that point. In order for the runtime to
stay bounded the look-ahead in states is bounded, with different norms requiring different
look-aheads. [BDK13] similarly aims to create monitors that check whether certain runs
satisfy specific Linear temporal logic-formulas in order to check compliance.

A combination between Temporal Logics approaches, deontic logics, and Answer Set
Programming is given by [GMD13]. In order to better verify the compliance of business
processes with norms, Giordano et al. extended temporal logics with deontic modalities
calling the resulting logic DDLTL (Deontic Dynamic Linear Time Temporal Logic). This
allows for Temporal Logics formulas to appear within deontic operators. Within business
process norms, contrary-to-duty obligations take an important role as well. They also
work with types of obligations that are not considered in this master thesis. For example,
their work considers maintenance obligations (where one has to see to it that a certain
state is maintained) and obligations with deadlines (obligations that require one to take
an action until a certain point in time, e.g., repay a debt). By combining DDLTL with
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ASP they generate answer sets that include all the obligations generated during the run
of a business process, given the specification of the business process as well as business
rules.

An ASP approach different from this master thesis is given by deontic logic programs, as
can be seen in [GA12]. Deontic logic programs, which allow atoms in rules to take the form
of complex SDL formulas have found some application. Gonçalves and Alferes [GA12]
were able to embed input-output logic, a deontic logic proposed in [MvdT01], into such
deontic logic programs. Although they do not encode various deontic paradoxes in their
work as they focus only on the embedding of input-output logic, the expressiveness
of deontic logic programs (and more specifically their embedding) should allow one to
encode the deontic paradoxes in a suitable manner. Deontic logic programs as a tool are
however more complicated to use, as they require an understanding of the embedded
logic, whereas our presented methodology can be used without a deeper understanding
of deontic logics.

The usage of weak constraints in ASP, introduced in [BLR97], has been well studied.
Buccafurri et al. also provided complexity results as well as use cases for weak constraints.
Additional problems solved using weak constraints in ASP can be found in the DLV user
manual [BFI+20]. Note that these works do not deal with deontic logics or obligations,
but rather solve general problems such as the minimum vertex cover problem.

This master thesis is set apart from the other works by the simplicity of the method of
encoding presented. Although our method of encoding works when encoding scenarios
and rather simple normative systems, more complex systems may be hard to encode.
Furthermore, the number of considered paradoxes and obligation led to a precise way of
encoding the different kinds of obligations and prohibitions.
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CHAPTER 4
Generalising the Encodings

We abstract and generalise the encodings of the paradoxes presented in the previous
chapter. First, the encodings will be generalised for paradoxes grouped in the same
classification and afterwards a method will be given that aims to encode all kinds of
paradoxes.

4.1 Paradoxes Centering Around RMD
The paradoxes that center around RMD do not pose problems for the logic programming
approach, as the logic program can only use the rules specified in the logic program in
order to deduce knowledge. As a reminder, the paradoxes encoded for this class are:

• Ross’s Paradox

• Good Samaritan Paradox

• Åqvist’s Paradox of Epistemic Obligation

As there is no rule in the common core that would correspond to RMD,

If p → q is a theorem, then Op → Oq is a theorem.

there are no special methods needed to encode these paradoxes.

In general, obligations are encoded as:

:∼ −O(obl).[1 : 2]

Here obl represents the action that is obligatory. Note that the weight and level can
take different values should the situation require them to. Should an obligation only
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situationally arise, the encoding slightly changes.

As an example, should an event happening lead to the rise of an obligation (as can be
seen in the Good Samaritan Paradox) this can be encoded in the following way:

:∼ −O(obl), Happens(event).[1 : 2]

In general the paradoxes centred around RMD are rather simple to encode using auxiliary
predicates in order to better reflect the situations shown in the paradoxes.

4.2 Puzzles Centered Around DD and OD
These paradoxes arise due to multiple obligations which cannot be fulfilled simultaneously.
In general, we can distinguish two cases for these paradoxes:

1. Satisfying either of the obligations is fine, as there is no priority among the
obligations.

2. There is a priority among conflicting obligations.

The two considered paradoxes each fit into one of these cases:

1. Sartre’s Dilemma has no priority among the obligations.

2. Plato’s Dilemma has a priority for the given obligations.

Note that most contradictions between actions need to be encoded in DLV. An example
of such a contradiction would be both going south and going north. This is done in the
following way. Let the mutually exclusive actions be act1 and act2. Then, this can be
encoded in the following way:

: −Do(act1), Do(act2).

Obvious contradictions, such as an obligation to do something and an obligation not to
do something, do not need to be encoded. The paradoxes centered around DD and OD
are encoded in the following way:

1. Start by encoding which actions are mutually exclusive, should the obligations not
be directly contradictory.

2. Determine the priorities of the obligations and encode them as weak constraints at
levels reflecting these priorities.
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• Start by encoding the least important obligations at level 2 and then increase
the levels at which the obligations are encoded as weak constraints as the
importance of obligations increases.

• Obligations of equal importance are encoded at the same level.
• If necessary, add any preconditions for obligations arising (such as the emer-

gency in Plato’s Dilemma).

4.3 Puzzles Centered Around Deontic Conditionals
This class of paradoxes, which is the largest one considered in this work, is the most
interesting. The paradoxes in this class are indeed quite diverse. As is often the case
with obligations in real life, the obligations in this class are only active under certain
circumstances. The paradoxes encoded for this class are:

• Broome’s Counterexample

• Chisholm’s Contrary-to-Duty Paradox

• Forrester’s Paradox

• Considerate Assassin Paradox

• Asparagus Paradox

• Fence Paradox

• Alternative Service Paradox

We start by considering the paradox of derived obligation. In this paradox, the possible
ways of representing a derived obligation are considered. It was shown that either of
the representations leads to nonsensical claims in SDL. The following sentence is to be
encoded:

Promising to meet Bob commits you to meeting him.

The two proposed ways to encode this are:

O(p → m) (1)
p → O(m) (2)

While encoding the first is theoretically possible, it requires a lot of additional work
compared to the second option. The first option can be encoded by introducing a new
constant to represent the formula. The above sentence can then be encoded in the
following way:
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:∼ −O(q).[1 : 2]
− Do(p) ∨ Do(m) :− Do(q).
Do(q) :− −Do(p).
Do(q) :− Do(m).
act(q).
act(p).
act(m).

The three rules specify the relation between fulfilling the more complex formula q repre-
senting p → m and fulfilling the parts p and q. Here q is used as an auxiliary predicate,
as DLV does not allow for disjunction inside of operators.

Note that q (and therefore also p → m) is considered as an action. While one may argue
that p → m does not represent an action, one can rephrase it as ¬p ∨ m. This can be
understood as an action that can be taken in two different ways. Either by not doing p
or by doing m.

Considering the added complexity, we chose option (2). As an example consider the
obligation obl that arises due to the agent taking an action action, as in Broome’s
Counterexample. This can be encoded in the following way (once again leaving open the
possibility of changing the weight and level of the weak constraint):

:∼ Do(p), −O(m).[1 : 2]

Note that contrary-to-duty obligations are encoded in the same way. In case of a
prohibition on an action p the encoding looks the same as above. The case of an
obligation arising due to another obligation being violated, p as an example, can be
encoded in the following way:

:∼ −O(p)
:∼ −Do(p), −O(m).[1 : 2]

Exceptions to obligations are handled in a similar fashion, as can be seen in the Asparagus
Paradox. Here, usually an auxiliary predicate is introduced that models the exception.
Note that this auxiliary predicate can also be derived in a seperate rule if the exception
depends on multiple factors. Assuming the auxiliary predicate is called Exception such
a case can then be encoded in the following way:

:∼ −O(m), not Exception.[1 : 2]

Note that in case there exists a contrary-to-duty obligation for an obligation with an
exception, not Exception needs to be added to the contrary-to-duty obligation as well,
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as in the case of the exception the obligation is not violated.

Auxiliary predicates are used in order to model obligations over conjunctions that
only make sense to be satisfied in their entirety. This is encoded in the following way
using Conjunction as the auxiliary predicate and obl1, . . . , obln as the actions in the
conjunction:

:∼ not Conjunction.[1 : 2]
Conjunction :− O(obl1), . . . , O(obln).

Note that once again weight and level of the weak constraint can vary.

In the Alternative Service Paradox obligations over disjunctions are considered. Given
two possible ways of satisfying the obligation a or b, it was encoded in the following way:

:∼ −O(a), −O(b).[1 : 2]

There is also an alternative way of encoding disjunctions. One could indeed use an
auxiliary action c describing the disjunction in the following way:

Do(c) : −Do(a).
Do(c) : −Do(b).
Do(a) ∨ Do(b) : −Do(c).

Afterwards, the obligation to do c can be added in the usual way (after denoting a, b, c
as actions). Note that this encoding does not return answer sets in which the agent
chooses to take both actions (if no additional rules are given). We chose the first method
of encoding for multiple reasons. First, there are cases in which the agent may want to
take both actions although only one of the actions is obligatory. Furthermore, the first
encoding is simpler and fits with the semantics established in Section 3.2.

Although the puzzles centered around deontic conditionals are similar in nature, they
present multiple different kinds of obligations. These different types of obligations (such
as obligations over conjunctions or derived obligations) require different methods for
encoding. Due to the large number of paradoxes and obligations considered in this section,
we sometimes had to choose between multiple possible methods for encoding the same
kind of obligation. All in all, the puzzles centered around deontic conditionals are the
most challenging and interesting classification among those we considered in this master
thesis.

4.4 General Encoding
Here we abstract and combine the methods of encoding introduced in the previous
sections in order to encode normative systems containing multiple different kinds of
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obligations. The paradoxes not only show cases which SDL is incapable of handling, but
also show intricacies which an encoding of a normative system should be able to handle.
Note that the weights and levels in the examples are placeholders and can take different
values in practice. The intricacies are presented in the following subsections.

4.4.1 Conditional Obligations

These obligations arise due to a condition being met. This condition could for example
be an event taking place. Such obligations can be seen in one version of Broome’s
Counterexample. Assuming that the event that leads to the obligation is outside the
control of the agent it can be formulated in the following way:

:∼ Happens(event), −O(obl).[1 : 2]

The event being outside of the agent’s control is encoded through the predicate Happens.
Events that are in the agent’s control (such as the agent taking an action) would be
encoded using the predicate Do (as an example Do(event)). Note that event and obl are
placeholders denoting the event and the obligation, respectively.

4.4.2 Obligations Over Disjunctions

Obligations over disjunctions are obligations which are satisfied by satisfying any of the
actions in a disjunction. The alternate service paradox showcases such an obligation.
Assume obl1, . . . , obln are the actions in the disjunction. This can be simply encoded in
the following way:

:∼ −O(obl1), −O(obl2), . . . , −O(obln).[1 : 2]

4.4.3 Conjunctions of Obligations That All Need To Be Satisfied

These obligations are only satisfied when all parts of the obligation are satisfied. For this
type of obligations satisfying only part of a conjunction is not preferable to satisfying
none. An example for such an obligation can be seen in the rephrasing of Broome’s
Counterexample. Two possible ways of encoding these obligations were presented. The
shorter way involves an auxiliary predicate. Assume the latter is Conj and obl1, . . . , obln
are the actions in the conjunction. The encoding could then take the following form:

:∼ not Conj.[1 : 2]
Conj :− O(obl1), . . . , O(obln).

Here Conj is the auxiliary predicate. Note that if satisfying parts of the conjunction can
be seen as preferable over not satisfying any part, the individual obligations are encoded
separately.
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4.4.4 Obligations With Exceptions
Often obligations do not hold in certain circumstances. A common example of such an
obligation that is often encountered is an exception to a no-parking zone during certain
times. The Asparagus Paradox shows an exception to an obligation under social norms.
Exceptions can be modelled using auxiliary predicates. Using such an auxiliary predicate,
called Exception in the next example, such an obligation can be encoded in the following
way:

:∼ −O(obl), not Exception.[1 : 2]

4.4.5 Contrary-to-Duty Obligations
Contrary-to-duty obligations arise due to another obligation not being fulfilled. An
example of such obligations can be seen, e.g., in Chisholm’s Contrary-to-Duty Paradox.
Note that these obligations can be considered as a special case of conditional obligations.
In the encodings, they are handled in the following way:

:∼ −O(obl1).[1 : 2]
:∼ −Do(obl1), −O(obl2).[1 : 2]

Note that obl1 and obl2 refer to obligatory actions. The second weak constraint is only
of relevance, should the agent not take the obligatory action (or choose not to).
In case of the violated obligation having an exception, the latter must be encoded as
part of the contrary-to-duty obligation. This could take the following form, where e is an
auxiliary predicate that is active when the exception is given:

:∼ −O(obl1), not e.[1 : 2]
:∼ −Do(obl1), −O(obl2), not e.[1 : 2]

4.4.6 Conflicting Obligations and Prioritization Among Those
It is often the case that we are subject to various obligations that are not satisfiable at
the same time. There are multiple ways of handling such situations. Most important
obligations are either weighted more heavily or generated at a higher level. Suppose
O(obl1) to be the more important obligation and O(obl2) the less important one. This
can be formulated in the following way:

:∼ −O(obl1).[1 : 3]
:∼ −O(obl2).[1 : 2]
:− Do(obl1), Do(obl2).

or alternatively:

:∼ −O(obl1).[2 : 2]
:∼ −O(obl2).[1 : 2]
:− Do(obl1), Do(obl2).
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Depending on the system one is trying to encode either approach may be preferable.
For the second approach the weights need to be well chosen. Consider three obligations
obl1, obl2 and obl3 such that obl3 is the most important and incompatible with either
of the two. When simply choosing weights in ascending order this can be modelled by
adding the following code to the common core:

:∼ −O(obl3).[3 : 2]
:∼ −O(obl2).[2 : 2]
:∼ −O(obl1).[1 : 2]
:− Do(obl1), Do(obl3).
:− Do(obl2), Do(obl3).

If one runs this code there would be two possible combinations of obligations given.
Either obl3 is obligatory or obl1 and obl2 are obligatory, due to the weights of the violated
weak constraints being the same in this case. Depending on the normative system that is
being encoded this may be undesirable. So choosing the method for encoding conflicting
obligations depends on whether there is a directly preferable obligation or fulfilling
multiple obligations may be equally or more preferable.
Note that in our methodology all encoded obligations are comparable. Therefore, our
methodology is limited to encoding only normative systems for which answer sets are al-
ways comparable. As mentioned earlier, [BDRS15] allows for encodings where obligations
respectively answer sets may be incomparable.

4.4.7 Methodology
Note that an obligation may belong to multiple classes of the same time. In general, the
encodings of such cases can be derived from the encodings of the classes the obligation
belongs to. As an example, a contrary-to-duty obligation may have an exception (as
can be seen in the methodology for encoding contrary-to-duty obligations) or consist of
an obligation over a disjunction. This leads to the following general way of encoding
obligations:

1. Determine the types of obligations and their importance.

2. Determine which actions are incompatible at the same time.

3. Encode the different kinds of obligations and their importance (through weight
or level of the weak constraint) in the way described above. (Knowing which
actions are conflicting makes it easier to determine the importance of the specific
obligations.)

4. Encode the exclusion of previously determined incompatible combinations of actions.

5. Encode additional information, e.g., dependencies between actions, such as one
action requiring another action, or what action to reason about. Examples of this
will be given in the next section.
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4.5 A Case Study
To test the method of encoding described above, we design a normative system that aims
to incorporate all the intricacies mentioned in the previous section.

A topic that is currently of great interest is self-driving cars. Inspired by this topic is the
following normative system that presents obligations that hold while driving:

1. It is obligatory to stop if the traffic light is red.

2. It is obligatory to not impede the flow of traffic (by stopping), unless it is to let a
car merge.

3. It is obligatory to move out of the way when an ambulance approaches.

4. If you drive during winter it is obligatory to either have winter tires or all-season
tires.

5. It is obligatory to not cause any damage.

6. It is obligatory to have your drivers license and vehicle registration with you, unless
it was stolen and you have proof (of theft). (Only having one is punished the same
as having none, as the police has to do the same administrative work.)

7. If one causes damage, it is obligatory to drive directly to the next police station to
make a damage report.

8. It is obligatory to give first-aid, when seeing a medical emergency.

We encode the above normative system using our method. We will go through the
methodology step by step.

Step 1:

We start by categorising the obligations.

The first obligation is a derived obligation. The obligation to stop is derived when the
traffic light is red.

The second is an obligation with an exception which is to let a car merge. Note that a
car wanting to merge does not necessitate the car stopping, but it does allow the car to
stop should the agent want to.
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The third obligation is once again an obligation that is derived similarly to the first one.

The fourth obligation is both a derived obligation and a disjunctive obligation. Should
the antecedent be fulfilled one part of the obligation must be satisfied. Note that in this
case it is not possible for both parts of the obligation to be fulfilled (as one cannot have
winter tires and all-season tires at the same time).

The fifth obligation is a regular obligation, with no additional properties.

The sixth obligation consists of a conjunction of obligations that all need to be satisfied
with an exception. This showcases an example of an obligation that belongs to multiple
categories.

The seventh obligation is a CTD obligation, that is active when violating the fifth
obligation.

The eighth obligation is once again a derived obligation.

Step 2:
Next, we look at what combination of obligations cannot be fulfilled at the same time.
Although in this case the obligations are only incompatible in pairs theoretically it can
be possible that a combination of more than two actions is incompatible although any
two actions would be compatible:

• The first two obligations cannot be fulfilled at the same time, as a red traffic light
would commit one to stopping although it is not to let a car merge. The second
statement can be seen as non-contradictory by arguing that one does not impede the
flow of traffic by stopping when the traffic light is red. However, for our encoding
we will consider the two actions contradictory. We want the agent to derive the
obligation to stop.

• The first and third obligation are incompatible, as moving out of the way requires
movement that is obviously contradictory to stopping. Here the agent should move
out of the way as letting the ambulance pass is of utmost importance.

• The second and eighth obligation are incompatible, as giving first aid requires
stopping the car. Here the obligation to give first aid should be prioritised.

• For the same reason the third and eighth obligation are incompatible. In this case
moving out of the way should be prioritised as the ambulance is more qualified
to help in a medical emergency (as they have trained personnel and medical
equipment).
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• The seventh and eighth obligation are contradictory, as one cannot drive directly
to the next police station and at the same time stop and give first aid. Once again,
stopping to give first aid should be deduced by the agent.

As an intermediate step we now list the results from above in a short fashion. In the
following list Oi refers to the i-th obligation. For example, O1 refers to: “It is obligatory
to stop if the traffic light is red.” Summarizing the previous statements we obtain the
following preferences, where Oi ≻ Oj means that Oi is preferred over Oj :

• O1 ≻ O2

• O3 ≻ O1

• O8 ≻ O2

• O3 ≻ O8

• O8 ≻ O7

Step 3:

Using the above conflicts and priorities, we can derive the following weights and levels
for the weak constraints corresponding to the obligations:

1. It is obligatory to stop if the traffic light is red. [1:3]

2. It is obligatory to not impede the flow of traffic (by stopping), unless it is to let a
car merge. [1:2]

3. It is obligatory to move out of the way when an ambulance approaches. [1:4]

4. If you drive during winter it is obligatory to either have winter tires or all-season
tires. [1:2]

5. It is obligatory to not cause any damage. [1:2]

6. It is obligatory to have your drivers license and vehicle registration with you, unless
it was stolen and you have proof (of theft). [1:2]

7. If one causes damage, it is obligatory to drive directly to the next police station to
make a damage report. [1:2]

8. It is obligatory to give first-aid, when seeing a medical emergency. [1:3]
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Note that an obligations is always placed on the lowest level if it cannot be in conflict
with another obligation.

Now we look at the predicates used in the encoding of the above system. Note that once
again the common core is used and as such all predicates mentioned in Section 3.1 are
used as well. The used predicates are:

• Redlight denotes that a red traffic light is active in front of the agent.

• Winter denotes the season being winter.

• Theft denotes that the agent is in possession of proof of theft of his drivers license
and/or registration.

• Licenses is an auxiliary predicate used in the formulation of constraint 6. It is used
in the way described in Subsection 4.4.3.

The constants used in the encoding are:

• stop is an action to be reasoned about. Do(stop) denotes the car stopping.

• merge is an event that can happen. Happens(merge) denotes that a car is trying to
merge onto the lane that the agent is on.

• emergency_vehicle is an event that can happen. Happens(emergency_vehicle)
denotes an ambulance (with active emergency lights) approaching the car.

• move is an action to be reasoned about. Do(move) denotes that the car needs to
move out of the way.

• equip_winter is an action clarifying that the car is equipped with winter tires. Note
that although it can be argued that it is not an action in the narrow sense (as
having tires equipped is more of a state than an action) it will be considered an
action in the scope of this example.

• Similarly, equip_allseason clarifies that the car is equipped with all-season tires.

• damage is an action to be reasoned about. Do(damage) denotes the agent causing
damage.

• carry_license is an action to be reasoned about. Do(carry_license) corresponds to
the agent having his drivers license with him.

• carry_registration is an action to be reasoned about. Do(carry_registration)
corresponds to the agent having his registration with him.
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• drive_police is an action to be reasoned about. Do(drive_police) denotes the agent
driving to the next police station without any detours.

• medical_emergency is an event that can happen. Happens(medical) denotes a
medical emergency happening in the vicinity of the agent.

• give_first_aid is an action to be reasoned about. Do(give_first_aid) denotes the
agent giving first aid.

Finally, we can encode our example. We do this by adding the following lines to the
common core.

First, we encode the obligations themselves:

:∼ Redlight, −O(stop).[1 : 3]
:∼ not Happens(merge), −F (stop).[1 : 2]
:∼ Happens(emergency_vehicle), −O(move).[1 : 4]
:∼ Winter, −O(equip_allseason), −O(equip_winter).[1 : 2]
:∼ −F (damage).[1 : 2]
Licenses :− O(carry_license), O(carry_registration).
:∼ not Licenses, not Theft.[1 : 2]
:∼ Happens(damage), −O(drive_police).[1 : 2]
:∼ Happens(medical_emergency), −O(give_first_aid).[1 : 3]

The encoding of the obligations is done as described in Section 4.4. There are however
two obligations that are combinations of different kinds of obligations.

The fourth obligation is a combination of a derived obligation and a disjunctive obligation.
As such, we are able to encode it in the following way:

∼ Winter, −O(equip_allseason), −O(equip_winter).[1 : 2]

If Winter is not in the answer set, this weak constraint cannot be violated. Therefore,
this weak constraint can only be violated when Winter is true. For answer sets where
Winter is true this weak constraint is violated by the same answer sets that violate the
following weak constraint:

∼ −O(equip_allseason), −O(equip_winter).[1 : 2]

This is the common way of encoding disjunctive obligations. Therefore, the weak con-
straint can be understood as deriving the disjunctive obligation only when winter is true,

79



4. Generalising the Encodings

thereby encoding the combination of a derived obligation with disjunction.

The sixth obligation is a mixture of an obligation over a conjunction of actions and an
obligation with an exception. We once again use an auxiliary predicate to encode the
conjunction of predicates as usual:

Licenses :− O(carry_license), O(carry_registration).

Using this the exception is then encoded the same way as usual:

:∼ not Licenses, not Theft.[1 : 2]

This captures that we either want the exception to be in the answer set or the obligations
to have the license and the registration.

Step 4:

Having encoded the obligations themselves, next the conflicting actions which were
determined in Step 2 are encoded:

:− Do(stop), Do(move).
:− Do(drive_police), Do(give_first_aid).

Step 5:

Finally, the following information is added to the encoding:

:− Theft, Do(carry_license), Do(carry_registration).
Do(stop) :− Do(give_first_aid).
:− Do(first_aid), not Happens(medical_emergency).
act(stop).
act(move).
act(damage).
act(equip_allseason).
act(equip_winter).
act(carry_license).
act(carry_registration).
act(drive_police).
act(give_first_aid).
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The first constraint disallows a proof of theft from existing if the agent has both the
license and the registration (if one or more are stolen he cannot be in possession of both).
It is also clarified that giving first aid implies stopping the car (as else it would not be
possible to give first aid). Furthermore, a constraint prohibits the agent from giving first
aid without a medical emergency happening (as this is not possible). Finally, all the
actions to be reasoned about are denoted as acts.

We now consider some examples of obligations which are derived in such cases.

Example 1

Assume that an agent is driving during winter after having its driver’s license and regis-
tration stolen (and having the corresponding confirmation with him). The agent’s car is
not equipped with all-season tires. Upon driving, the agent comes upon a red light. This
information will be denoted in an additional file in the following way:

Winter.

Theft.

− Do(equip_allseason).
Redlight.

Two answer sets are generated for this. The difference between the two answer sets is
simply whether the agent chooses to directly drive to the police station (as this is not
forbidden). Both answer sets derive the same obligations. Note that only the derived
obligations will be listed due to the large size of the answer sets:

F (damage), O(stop), O(equip_winter)

The same two obligations and one prohibition are derived that would also be derived using
common sense reasoning. The obligation to stop (due to the red light), the prohibition
on damaging cars (that is always active) and the obligation to equip winter tires as the
agent is not in possession of all-season tires.

Example 2

Assume that an agent is driving when witnessing a medical emergency. Furthermore,
an ambulance is approaching with active emergency lighting and a vehicle is trying to
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merge. This case can be encoded in an additional file in the following way:

Happens(medical_emergency).
Happens(emergency_vehicle).
Happens(merge).

Multiple answer sets are derived which differ on unimportant details such as whether the
agent chooses to equip winter or all-season tires.

All answer sets however derive the same obligations:

F (damage), O(move), O(carry_license), O(carry_registration)

The obligation to move is derived as letting the ambulance pass is of higher importance
than treating the medical emergency. The other obligations are obviously active as the
exceptions are not given.

Example 3

Assume that an agent is driving when witnessing a medical emergency after having
damaged another car. This test case is encoded in the following way:

Happens(medical_emergency).
Happens(damage).

Once again multiple answer sets with minor differences are derived, as in the previous
case. However, as expected all answer sets contain the same obligations:

F (damage), O(carry_license), O(carry_registration), O(give_first_aid)

As expected the agent is obligated to give first aid rather than driving directly to the
police station.

This more complex example was also handled well by the generalised method of encoding
described in this section. Using this method, the next section will work on encoding a
normative supervisor for pacman as seen in [NBCG21].
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CHAPTER 5
Encoding Ethical Pacman

Neufeld et al. [NBCG21] combined normative reasoning and reinforcement learning agents
to accommodate complex situations, such as conflicting obligations or situations where
no compliance is possible, trying not to lose the optimal patterns the agent has learned
during training. They introduce a logic-based normative supervisor module. It functions
by informing the reinforcement learning agent of compliant actions it could take. The
agent then chooses from among the actions complying with the norms in force, and one
of the least evil in case there are none.

The normative supervisor is encoded in [NBCG21] in defeasible deontic logic. Defeasible
deontic logic is a deontic logic with defeasible rules. The latter are rules that specify
typical correlations. An example would be that birds usually fly. This however would
not hold if it is known that the bird is a penguin. These exceptions are encoded through
so-called defeaters.

Neufeld et al. tested their framework on a reinforcement learning agent trained to play
the game Pacman. This game was chosen as it simulates a closed environment with
clearly defined (and simple) game mechanics. They added two norm bases in order to
test the functionality of their framework.

Using a theorem prover for defeasible deontic logic (SPINdle), these normbases consisting
of simple ethical constraints (explained in more detail in the next section) are then
enforced upon the reinforcement learning agent.
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This chapter explores an alternate implementation for the normative supervisor, using the
DLV reasoner in the provided framework. We aim to show that the methods described in
previous chapters suffice to encode the norm bases encoded in the theorem prover used
in [NBCG21].

5.1 Pacman and Its “Ethical” Rules

Figure 5.1: Pacman

The video game on which the reinforcement agent is trained is the well known Pacman
game. The starting point of the game can be seen in Figure 5.1. In this game the aim is
for the player of the Pacman character to eat all the pellets placed on the maze that can
be seen in Figure 5.1. There are two ghosts on the map which upon touching Pacman
kill him. Usually Pacman and the ghosts move one step at a time. Should Pacman eat
one of the larger pellets on the map, the ghosts enter a scared state allowing him to eat
the ghosts as well. In this scared state, ghosts only move half a step at a time. A scared
ghost is eaten by Pacman, as soon as they overlap in the graphical interface of the game.
In other words, a scared ghost is eaten if the distance between the ghost and Pacman is
less than 1 (so either 0.5 or 0) on both axes. Points in the game are given for pellets
and ghosts eaten by Pacman before dying with points being deducted depending on how
long the game lasted (the longer the game lasts the more points are deducted). Should
Pacman collect all the pellets he wins. Note that finishing the game quicker is beneficial
as less points are deducted. Two norm bases for this game were introduced simulating
“ethical” constraints. Note that the names for the two norm bases (“Vegetarian” and
“Vegan”) may seem strange but we used the same names introduced in [NBCG21]. In
order for the naming to be more intuitive, one may call the blue ghost “chicken” and the
orange ghost “egg”, as a vegetarian may eat eggs but not chicken and a vegan may not
eat either.
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Vegan

The vegan normbase forbids Pacman from eating any ghost. This can be written in the
following way:

O(¬eat(ghost))

or alternatively using the operator F for a prohibition:

F (eat(ghost))

Note that in the DLV encoding this normbase will not be so simple.

Vegetarian

The vegetarian normbase only prohibits Pacman from eating the blue ghost. (Pacman is
allowed to eat the orange ghost.) This can once again be written in the following way:

O(¬eat(blue_ghost))

or alternatively using the operator F for a prohibition:

F (eat(blue_ghost))

5.2 Technical Details
Neufeld provided the code for the framework presented in [NBCG21], as well as the
documentation that was used in order to implement the DLV reasoner. The code was
written in Java.

In order to embed DLV into Java, the Eclipse IDE plugin JDLV was used as a starting
point [FLGR12]. This plugin was provided by DLV systems. As there was an error with
the JDLV implementation, which we were not able to fix, we manually edited working
code, that was delivered with JDLV as a test case, in order to generate working code for
our example.

As JDLV requires an older version of the Eclipse IDE (Eclipse Juno) that is only compat-
ible with an older version of Java (Java 7), the code provided by Neufeld was rewritten
in order to omit Java 8 functionalities.

All the experiments and coding was done on a Lenovo Y50-70 PC running Ubuntu 22.04
LTS.
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5.3 Encoding of the Norms
The way to encode the above norm bases is rather straightforward. We forbid the agent
playing Pacman to move in a direction if the ghosts are frightened and moving into
that direction could lead to a ghost being eaten. Furthermore, we forbid Pacman from
stopping if this could lead to the ghost moving into Pacman (thereby leading to Pacman
eating the ghost). Note that the encodings of the vegan and vegetarian normbase only
differ in the way that the vegatarian normbase implements the weak constraints for the
blue ghost, whereas the vegan version will implement the weak constraints for both ghosts.

Note that it is still possible for Pacman to eat a ghost. This could be the case if both a
ghost and Pacman move towards a larger pellet from perpendicular directions. In that
case Pacman will eat the pellet and immediately afterwards eat the ghost. As this could
happen in [NBCG21], this will also be possible in this work. Furthermore, Pacman could
be cornered between two frightened ghosts leaving the agent no choice but to eat one of
the ghosts in the vegan norm base.

We start by considering the possible scenarios that could precede Pacman eating a ghost.
These scenarios are the same for both norm bases. Since both the ghost and Pacman can
move at most one field at a time, we can deduce that the Manhattan distance between
Pacman and a frightened ghost can be at most two and at least one in the step preceding
Pacman eating the ghost (as the location of the characters is given through integers).
Let (x1, y1) be Pacman’s coordinates and (x2, y2) the coordinates of a frightened ghost
right before it is eaten. This gives us the following three possibilities for their relative
locations:

Figure 5.2: An example for case 1

1. Pacman and the frightened ghost are on the same path or offset by 0.5 on only on
axis (meaning x1 = x2 ± 0.5 or y1 = y2 ± 0.5) and the distance between them is at
most 1 on the other axis (meaning |x1 − x2| ≤ 1 or |y1 − y2| ≤ 1). An example of
this case can be seen in Figure 5.2.
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There are multiple options that can lead to the ghost being eaten in this situation.
Either Pacman stops and the ghost moves into Pacmans direction or the ghost
stops and Pacman moves into the ghosts direction or both move towards each other.
In this case, forcing Pacman to move into a direction that is not the direction
the ghost is in, suffices to ensure that Pacman cannot eat the ghost. This can be
reformulated as stating that Pacman is prohibited from stopping or moving towards
the ghost.

Figure 5.3: An example for case 2

2. Pacman and the frightened ghost are on the same path or offset by 0.5 on one axis
(meaning x1 = x2 ± 0.5 or y1 = y2 ± 0.5) and the distance between them is at most
2 on the other axis (meaning |x1 − x2| ≤ 2 or |y1 − y2| ≤ 2). An example of this
case can be seen in Figure 5.3.
In this case, the ghost could be eaten if the ghost and Pacman both move towards
each other. That ghost cannot be eaten in such a situation if Pacman does not
move in the direction of the frightened ghost. (Stopping is a valid option in this
case as long as the distance is more than 1, else the first case would hold.)

Figure 5.4: An example for case 3
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3. Pacman and the ghost have a Manhattan distance of at most 2 and Pacman and
the ghost are moving towards the same corner (in other words |x1 − x2| ≤ 1 and
|y1 − y2| ≤ 1). An example of this case can be seen in Figure 5.4.
In this case, the ghost could be eaten if the ghost and Pacman both move towards
the same space. Therefore, prohibiting Pacman from moving towards the ghost
would stop Pacman from eating the ghost in this situation.

Due to an error in the current implementation of JDLV some functionalities that are
available in DLV did not work when using JDLV. The following section will start by
explaining how the norms would be encoded if those functionalities worked in JDLV and
the section afterwards will explain the workaround used in the actual program.

5.3.1 Theoretical Encoding
DLV is capable of handling basic arithmetic, using for example the predicates +, −, ∗.
The predicate used in the theoretical encoding is −. −(X, Y, Z) holds true if Z = X − Y .
Furthermore, positive integers can be compared using the common comparison operators
<, <=, ==, >, >= [BFI+20].

The code gets updated after every move of the agent and gets passed the following
predicates by the game:

• diamond(X), where X is a direction (north, east, south or west). This predicate
denotes that it is possible for Pacman to move into this direction. (Meaning there
is no wall blocking him from moving in that direction.)

• pacman(X, Y ), where X and Y denote the location of pacman on the x-axis
respectively the y-axis.

• blueGhost(X, Y, Z), where X and Y denote the location of the blue ghost on the
x-axis respectively the y-axis. Z is a boolean that denotes that the ghost is scared
if Z = 1.

• orangeGhost(X, Y, Z), where X, Y, Z have the same meanings as for blueGhost.

• F (direction) will be added when it is impossible for Pacman to move into that
direction (as could be the case when there is a wall in that direction). Note that
F is the predicate we use for prohibtion. In the code this could be F (east) as an
example.

Using these predicates we use weak constraints to encode the norms forbidding Pacman
from taking the given actions. We do this by encoding a weak constraint for each of
the cases mentioned earlier. Note that DLV is only capable of working with positive
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integer values. Therefore, we double the value of each coordinate. Then, Pacman always
moves two coordinates and a scared ghost will move only one coordinate. In the following
cases we will only show a weak constraint for one direction as an example, as the weak
constraint is almost the same when the relative positions between Pacman and the ghost
change.

1. In the first possible case, the distance between Pacman and the frightened ghost is
at most 1 on one axis and at most 0.5 on the other. We therefore want to forbid
Pacman from moving towards the ghost or stopping. (As the ghost could move
into Pacman if Pacman stops.) We encode this by adding the following four weak
constraints (for each direction the ghost could be in relative to Pacman and for
each possible shift in the other axis). As an example, we show the case where the
scared ghost is to the right of Pacman:

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (east).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (east).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (stop).[1 : 2]

In the case of the vegan normbase, the same rules need to be added for the orange
ghost. The weight of the upper weak constraint is higher as moving towards the
ghost is worse than stopping. The weights of the weak constraints are important
as we do not want Pacman to not have any possible moves.

2. In the second case, Pacman and the frightened ghost are on the same path (meaning
one of their coordinates are identical) and their distance is 2. We encode this by
adding the following weak constraint (for each direction the ghost could be relative
to Pacman). As an example, we show the case where the scared ghost is to the
right of Pacman:

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 4, −(D, B, G), G ≤ 1, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 4, −(B, D, G), G ≤ 1, −F (east).[1 : 3]

In the case of the vegan normbase, the same rule needs to be added for the orange
ghost. The weights of the weak constraints are chosen as stopping is preferred over
moving towards the direction of the ghost when both options are not optimal.

3. In the third and final case, Pacman and the ghost have a Manhattan distance of
2 but Pacman and the ghost are not on the same path. (Intuitively, Pacman is
around the corner of the ghost.) We encode this by adding the following two weak
constraints (for each direction the ghost could be in relative to Pacman). As an
example, we show the case where the scared ghost is above and to the right of
Pacman:

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (north).[1 : 3]

In the case of the vegan normbase, the same rule needs to be added for the orange
ghost. The weights of the weak constraints are chosen as stopping is preferred over
moving towards the direction of the ghost when both options are not optimal.
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Finally, we also want to ensure that Pacman always has at least one valid move (stopping
does count as a move), so we add the following rule:

:− F (north), F (east), F (south), F (west), F (stop).

Note that this is not a weak constraint, as it is not possible for Pacman to choose none
of these options.
Using the discussed weak constraints and rules we can encode the vegetarian norm base
by adding the following code to the common core, shown in Figure 5.5:

Figure 5.5: Encoding of the vegetarian norm base

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (east).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (east).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (west).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (west).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(D, C, 1), −(C, B, E), E ≤ 2, −(D, A, G), G ≤ 1, −F (north).[1 : 4]
:∼ pacman(A, B), blueGhost(D, C, 1), −(C, B, E), E ≤ 2, −(A, D, G), G ≤ 1, −F (north).[1 : 4]
:∼ pacman(A, B), blueGhost(D, C, 1), −(C, B, E), E ≤ 2, −(A, D, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(D, C, 1), −(C, B, E), E ≤ 2, −(D, A, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(D, C, 1), −(B, C, E), E ≤ 2, −(D, A, G), G ≤ 1, −F (south).[1 : 4]
:∼ pacman(A, B), blueGhost(D, C, 1), −(B, C, E), E ≤ 2, −(A, D, G), G ≤ 1, −F (south).[1 : 4]
:∼ pacman(A, B), blueGhost(D, C, 1), −(B, C, E), E ≤ 2, −(A, D, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(D, C, 1), −(B, C, E), E ≤ 2, −(D, A, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 4, −(D, B, G), G ≤ 1, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 4, −(B, D, G), G ≤ 1, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 4, −(D, B, G), G ≤ 1, −F (west).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 4, −(B, D, G), G ≤ 1, −F (west).[1 : 3]
:∼ pacman(A, B), blueGhost(D, C, 1), −(C, B, E), E ≤ 4, −(A, D, G), G ≤ 1, −F (north).[1 : 3]
:∼ pacman(A, B), blueGhost(D, C, 1), −(C, B, E), E ≤ 4, −(D, A, G), G ≤ 1, −F (north).[1 : 3]
:∼ pacman(A, B), blueGhost(D, C, 1), −(B, C, E), E ≤ 4, −(A, D, G), G ≤ 1, −F (south).[1 : 3]
:∼ pacman(A, B), blueGhost(D, C, 1), −(B, C, E), E ≤ 4, −(D, A, G), G ≤ 1, −F (south).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (north).[1 : 3]
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:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 2, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 2, −F (south).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (west).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (north).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(B, D, G), G ≤ 2, −F (west).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(A, C, E), E ≤ 2, −(B, D, G), G ≤ 2, −F (south).[1 : 3]
:− F (north), F (east), F (south), F (west), F (stop).
act(north). act(east). act(south). act(west). act(stop).

Note that the previously listed predicates detailing the locations, status of the characters,
and the directions in which Pacman cannot move would also be contained in the file. As
the code for the vegan norm base can be generated from the above code by adding the
equivalent weak constraints relating to the orange ghost, it will not be explicitly written
down. Alternatively, the coordinates of the ghosts can be given in the following way:

ghost(col, X, Y, scared)

In this case the color of the ghost would also be given as part of the ghost predicate.

5.3.2 Practical Encoding
The − predicate did not work in JDLV, the java implementation of DLV we used to
integrate DLV reasoning into the norm base. The exact reason for the predicate not
working is unknown to us but our assumption is that it is a bug.

In order to substitute the − predicate, we introduce three new predicates tooclose(direction,
boolean), toooclose(direction, boolean) and cornerclose(direction1, direction2, boolean).
These predicates were passed along when a ghost was too close to Pacman. Each of these
predicates was meant to substitute one case mentioned in the previous section. Note that
the distances in the theoretical encoding are multiplied by 2.

1. tooclose(direction, boolean) is active in the case where Pacman and a scared ghost
have a distance of at most 1 on one axis and at most 0.5 on the other axis. The
boolean is 1 if the scared ghost is the blue ghost and 0 otherwise. As an example,
the following code in the theoretical encoding:

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (east).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (east).[1 : 4]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(B, D, G), G ≤ 1, −F (stop).[1 : 2]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 1, −F (stop).[1 : 2]

is replaced by:

:∼ tooclose(east, 1), −F (east).[1 : 4]
:∼ tooclose(X, 1), −F (stop).[1 : 2]
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in the practical encoding. Note that the second weak constraint contains the
variable X as it does not matter in what direction the ghost is too close. Stopping
should not be allowed in such a situation.

2. toooclose(direction, boolean) is active in the case where Pacman and a scared ghost
have a distance of at most 2 on one axis and at most 0.5 on the other axis. Note
that the name is the same as the name of the previous predicate, except with an
extra o (due to the distance being 1 larger). The boolean is 1 if the scared ghost is
the blue ghost and 0 otherwise. (Note that toooclose is always active if tooclose is
active but not vice versa.) As an example, the following code in the theoretical
encoding:

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 4, −(D, B, G), G ≤ 1, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 4, −(B, D, G), G ≤ 1, −F (east).[1 : 3]

is replaced by:

:∼ toooclose(east, 1), −F (east).[1 : 3]

in the practical encoding.

3. cornerclose(direction1, direction2, boolean) is active in the case where Pacman
and the ghost have a Manhattan distance of 2 but Pacman and the ghost do not
share a coordinate. As an example, the following code in the theoretical encoding:

:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (east).[1 : 3]
:∼ pacman(A, B), blueGhost(C, D, 1), −(C, A, E), E ≤ 2, −(D, B, G), G ≤ 2, −F (north).[1 : 3]

is replaced by:

:∼ cornerclose(north, east, 1), −F (east).[1 : 3]
:∼ cornerclose(north, east, 1), −F (north).[1 : 3]

in the practical encoding.

The code added to the common core in the new encoding for the vegan normbase then
takes the following form in its entirety, shown in Figure 5.6:
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Figure 5.6: Encoding of the vegan norm base

:∼ tooclose(X, Y ), −F (stop).[1 : 2]
:∼ tooclose(east, Y ), −F (east).[1 : 4]
:∼ tooclose(west, Y ), −F (west).[1 : 4]
:∼ tooclose(north, Y ), −F (north).[1 : 4]
:∼ tooclose(south, Y ), −F (south).[1 : 4]
:∼ toooclose(east, Y ), −F (east).[1 : 3]
:∼ toooclose(west, Y ), −F (west).[1 : 3]
:∼ toooclose(north, Y ), −F (north).[1 : 3]
:∼ toooclose(south, Y ), −F (south).[1 : 3]
:∼ cornerclose(north, east, Y ), −F (east).[1 : 3]
:∼ cornerclose(north, east, Y ), −F (north).[1 : 3]
:∼ cornerclose(south, east, Y ), −F (east).[1 : 3]
:∼ cornerclose(south, east, Y ), −F (south).[1 : 3]
:∼ cornerclose(north, west, Y ), −F (west).[1 : 3]
:∼ cornerclose(north, west, Y ), −F (north).[1 : 3]
:∼ cornerclose(south, west, Y ), −F (west).[1 : 3]
:∼ cornerclose(south, west, Y ), −F (south).[1 : 3]
:− F (north), F (east), F (south), F (west), F (stop).
act(north).
act(east).
act(south).
act(west).
act(stop).

Note that in the weak constraints above, the boolean was replaced with a variable Y , as
the value of the boolean (or in other words the ghost that is considered) does not matter
to the agent. The practical encoding for the vegetarian normbase can be constructed by
simply replacing the variable Y with the boolean 1 in the above encoding. Note that in
the actual encoding the directions are written in quotation marks due to coding reasons.
They are left out in the text for the sake of readability.
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In order to shorten the code, one could introduce variables to replace the directions. The
shortened code would then take the form shown in Figure 5.7:

Figure 5.7: Compact encoding of the vegan norm base

:∼ tooclose(X, Y ), −F (stop).[1 : 2]
:∼ tooclose(dir, Y ), −F (dir).[1 : 4]
:∼ toooclose(dir, Y ), −F (dir).[1 : 3]
:∼ cornerclose(dir1, dir2, Y ), −F (dir1).[1 : 3]
:∼ cornerclose(dir1, dir2, Y ), −F (dir2).[1 : 3]
:− F (north), F (east), F (south), F (west), F (stop).
act(north).
act(east).
act(south).
act(west).
act(stop).

5.4 Results
For the comparison of our work to Neufeld et al.’s work [NBCG21] we used the same
conditions as they did. The reinforcement learning agent was trained on 250 games and
then the normative supervisor was tested using 1000 test games. The game always starts
the same way, seen in Figure 5.1. Using our encodings for the norm bases, we got the
following results:

Normbase % Games won Game score (Avg[Max]) Avg ghosts eaten (blue/orange)
Vegan 91.2 1217[1538] 0.013/0.018
Vegetarian 90.6 1366[1751] 0.001/0.788

Compared to the results given by Neufeld et al. in [NBCG21]:

Normbase % Games won Game score (Avg[Max]) Avg ghosts eaten (blue/orange)
Vegan 90.7 1209.86[1708] 0.023/0.02
Vegetarian 94 1413.8[1742] 0.01/0.79

For the vegan norm base our encoding outperformed Neufeld et al.’s encoding. Less
ghosts of each color were eaten and the agent won more games using our encoding. The
lower maximal game score can be explained by the fact that eating ghosts awards 200
points. The higher average game score in our encoding is most likely due to the higher
number of games won, as losing a game always counts as zero points. Therefore, eating
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more ghosts (which is the opposite of our goal) would lead to higher game scores. Our
theory for the higher maximal game score for Neufeld et al.’s vegan norm base could be
explained by there being a game where both ghosts were eaten by Pacman, while there
was no such game for our encoding. So the norms aiming to prevent Pacman from eating
the ghosts were successfully implemented.

For the vegetarian norm base there are two notable differences. First, the average number
of blue ghosts eaten for our encoding is 1/10 of the average number of ghosts eaten in
Neufeld et al.s encoding. Therefore, the goal of the vegetarian norm base was fulfilled.
However, the percentage of games won was decently lower for our encoding. In our
encoding Pacman prefers running into the non-scared orange ghost (thereby losing the
game) over running into the scared blue ghost. This could lead to losing more games.
Note that the lower average game score is probably a result of the higher number of losses
(which award no points). All in all we consider the encoding of the vegetarian norm base
a success as well. The maximal game scores are roughly the same for both encodings.
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CHAPTER 6
Conclusion

In this thesis, we introduced a method for encoding deontic paradoxes and more generally
normative systems in ASP using DLV as the system of choice.

We started by considering SDL, the first logic for reasoning about normative concepts
such as obligations. Using some of the most famous deontic paradoxes to figure out
why SDL is unable to capture the intricacies of common sense reasoning, we built the
foundation for our encodings. These ground rules for reasoning about norms were encoded
in the common core used in all our encodings for the deontic paradoxes. We were able to
encode the paradoxes presented in this master thesis in a uniform and intuitive fashion
using a common core among all the encodings. Weak constraints proved to be a great tool
for encoding conflicting obligations as the level resp. the weights of the weak constraints
can be used to encode the priority of the obligations.

The choice of paradoxes proved to be very important as omitting certain paradoxes lead
to a less expressive methodology for encoding normative systems. As an example, without
the addition of the Fence Paradox, CTD-obligations would have been active even when
an exception to the obligation is given.

In order to generalise the encodings of the paradoxes, we described the different kinds of
obligations and how to encode them. This general way of encoding and distinguishing
the different obligations, seen in the considered paradoxes, and some simple rules sufficed
to build our methodology for encoding normative systems in DLV.

We tested our methodology in multiple ways. Firstly, we built a normative system
consisting of different obligations seen in the paradoxes. Using this normative system, we
encoded some situations to serve as test cases in order to determine whether we were able
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to deduce the correct obligations in given situations. Furthermore, we encoded a simple
norm base in the game Pacman that was used to enforce rules on a reinforcement learning
agent. Through these tests we were able to verify that our methodology is capable of
encoding normative systems.

One of the strongest advantages that our approach provides is the simplicity of the
encoding. In addition to using a commonly researched and well optimized programming
approach with Answer Set Programming, there is a clearly defined common core as well
as well defined ways for encoding different kinds of obligations. Due to the amount of
research on Answer Set Programming the behavior of ASP programs is well studied and
ASP solvers are optimized. The approach described for DLV in this work is also easily
transferable to other ASP languages, such as ASP-Core-2 [CFG+20].

While our proposed method does have some positive characteristics, it does have some
weaknesses as well.

The biggest weakness of our proposed method is that encoding complex normative systems
can lead to extremely large (and confusing) files. This can be seen in Chapter 5 with the
encoding of the vegan norm base for Pacman. Encoding an obligation as simple as “do
not eat a ghost” led to a large number of weak constraints needing to be added. Note
that Pacman as a game was chosen due to its simplicity and the available implementation
using reinforcement learning. Although the number of weak constraints needed in order
to encode these simple constraints for the two norm bases was large, our encoding was
able to successfully enforce the desired constraints. Our encoding even outperformed the
supervisor seen in [NBCG21] when considering ghosts eaten for both norm bases. For
the vegan norm base, our encoding even led to a higher percentage of games won as well
as a higher average score (which likely corresponds to the higher number of games won
as a lost game is worth 0 points).

In general, obligations that require the agent to uphold certain conditions might be
complicated to encode for more complex examples. In such cases taking particular
actions might indirectly lead to failure of upholding the condition, thereby violating the
obligation. For such normative systems using temporal logics approaches in addition to
the DLV reasoner may be preferable. Encoding these normative systems also requires
a large amount of knowledge about the underlying topic, as conflicts between actions
(actions that cannot be taken at the same time) need to be encoded as well. Without
the knowledge of movement speed of Pacman and the movement constraints placed on
Pacman, respectively the ghosts it would not have been possible to encode the norm base
in an effective way.
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The simplicity of our methodology leads to another weakness however. In our methodol-
ogy all encoded obligations are required to be comparable. As such our methodology is
limited to encoding only normative systems for which possible ways of satisfying norms
partially are comparable. While we did not run into problems with our methodology
due to this, there may be cases where answer sets being incomparable at time may
be necessary. Future work could look into other ASP solvers with more sophisticated
methods for filtering out answer sets to model normative reasoning. The clasp extension
asprin [BDRS15] or the DLV2 system that uses the WASP solver [ADMR20], could be
used as examples.

All in all our approach lends itself to encode normative systems when the aim is to
determine optimal ways to handle scenarios using agreed upon prioritization and weights
of the obligations. Our approach could also be used in combination with other software
which determines how to satisfy the given obligations. In the case of Pacman such a
software might have interpreted how the obligation to not eat a ghost could be fulfilled.
Such approaches were not considered in our work as it would have exceeded the scope of
this thesis but remains for further research.

Future work could look into encoding other Deontic Logics, such as Dyadic Deontic Logic,
to encode normative systems, as well as further applications of our method to encode
normative systems.
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CHAPTER 7
Appendix

Abbreviations
AI Artificial Intelligence 2

ASP Answer Set Programming 2

CTD Contrary-to-Duty (usually referring to a type of obligation) 29

DD Part of the axiomatization of SDL 19

DDL Defeasible Deontic Logic 2

DLV DataLog with Disjunction 3

JDLV Java Implementation of DLV 85

KD Part of the axiomatization of SDL 19

OD A theorem in SDL 20

ON A theorem in SDL 20

RMD A theorem in SDL 20

RND Part of the axiomatization of SDL 19

SDL Standard Deontic Logic 3
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Paradoxes

Paradoxes
Alternative Service Paradox 33

Asparagus Paradox 32

Broome’s Counterexample 29

Chisholm’s Contrary-to-Duty Paradox 29

Considerate Assassin Paradox 31

Fence Paradox 32

Forrester’s Paradox also known as “Gentle Killer Paradox” 31

Good Samaritan Paradox 25

Plato’s Dilemma 27

Ross’s Paradox 25

Sartre’s Dilemma 26

Åqvist’s Paradox of Epistemic Obligation 26
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