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Kurzfassung

Das Glioblastoma multiforme ist der tödlichste primäre Hirntumortyp. Obwohl Immun-
therapien eine Behandlungsmethode für andere Krebsarten sind, gibt es sie nicht für das
Glioblastom. Die Forschung hat gezeigt, dass die immunologische Mikroumgebung eine
entscheidende Rolle bei erfolgreichen Immuntherapien spielt. Tumor-infiltrierende Lym-
phozyten sind ein wesentlicher Bestandteil der Mikroumgebung und für Immuntherapien
von Bedeutung.

Diese Arbeit beschreibt zwei Ansätze zur Vorhersage solcher Tumor-infiltrierender Lym-
phozyten aus in vivo Magnetresonanz-Volumina. Die verwendeten Methoden extrahieren
Informationen aus manuell segmentierten Regions-of-Interest, um maschinelle Lernmo-
delle zu erstellen, die die extrahierten Merkmale mit Markern der Tumor-infiltrierenden
Lymphozyten in Verbindung bringen. Der erste Ansatz nutzt radiomische Merkmale
und verwendet elastische Netze und Random Forests. Der zweite Ansatz verwendet ein
modifiziertes ResNet50 als Deep-Learning-Komponente.

In den Experimenten werden 56 bis 88 Sätze von Magnetresonanz-Volumina und Tumor-
Infiltrations-Lymphozyten-Markern verwendet, um die Methoden zu trainieren und zu
bewerten. In einer quantitativen Analyse werden die Korrelationen zwischen den Werten
der Grundwahrheit der Tumor-Infiltrations-Lymphozyten-Marker und den vorhergesagten
Werten untersucht. Die qualitative Analyse bewertet die Stabilität der ausgewählten
prädiktiven Merkmale und die Herkunft der am besten prädiktiven Merkmale.

Die Ergebnisse zeigen, dass der Radiomics-Ansatz einige Tumor-Infiltrations-Lymphozyten-
Marker auf Grundlage der Magnetresonanz-Volumina vorhersagen kann, aber nicht alle.
Die Auswahl der prädiktiven Merkmale ist stabil, während sich einige der prädiktiven
Merkmale auf bestimmte Teile des Glioblastoms konzentrieren. Der Deep-Learning-Ansatz
hingegen kann die Zielwerte für die Testdaten nicht vorhersagen.
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Abstract

Glioblastoma multiforme is the most lethal primary brain tumor type. Although im-
munotherapies are a treatment method for other cancer types, they are not available for
glioblastoma. Research has revealed that the immune microenvironment plays a crucial
role in successful immunotherapies. Tumor-Infiltrating Lymphocytes are an essential
part of the microenvironment and are of high significance for immunotherapies.

This thesis describes two approaches for predicting such Tumor-Infiltration Lymphocytes
from in vivo magnetic resonance imaging data. The methods used extract information
from manually segmented Regions-of-Interest to build machine learning models that
associate the features extracted from images with markers of the Tumor-Infiltrating
Lymphocytes. To this end, the first approach utilizes radiomics features, elastic nets
regression, and random forests. The second approach uses a modified ResNet50 as a deep
learning component for prediction.

The experiments use 56 to 88 sets of magnetic resonance volumes and Tumor-Infiltration
Lymphocytes markers to train and evaluate the methods. A quantitative analysis
investigates the correlations between the ground truth values of the Tumor-Infiltration
Lymphocytes markers and the predicted values. The qualitative analysis evaluates the
stability of the predictive features chosen and the origin of the most predictive features.

Results show that the radiomics approach can predict some Tumor-Infiltration Lympho-
cytes markers based on the magnetic resonance volumes, but not all of them. The choice
of the predictive features is stable, while some of the predictive features’ origins focus
on particular parts of the glioblastoma. The deep learning approach cannot predict the
target values for the test data in our experiments.
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CHAPTER 1
Introduction

This first chapter presents the motivation and problem statement of this thesis. Subse-
quently, this chapter also gives the motivation from a medical point of view and the aims
of this thesis. In the end, this chapter provides the structure of this work.

1.1 Motivation
Cancer is a disease [100] that is investigated in a broad range of studies, such as, [21],
[46], [55] to name a few. A cell whose growth and spread becomes uncontrollable marks
the beginning of cancer [100]. Figure 1.1 depicts the percentage of total death causes
worldwide for 2019, based on the data published by the World Health Organization
(WHO) [68], and shows that cancer is the second most frequent cause of death.

Cancer can originate from almost every tissue in the body [100], and the brain is no
exception to that [21]. The so-called GlioBlastom Multiforme (GBM) is a type of brain
cancer with a median survival duration of 12 to 15 months [21]. The tumor’s rapid
growth and aggressive, neurologically destructive, and highly invasive behavior is a major
cause of the short survival duration [61]. Due to their characteristics, GBMs are among
the most lethal cancers in humans [61].

Figure 1.2 presents the most lethal cancers worldwide for 2019, based on the data of the
WHO [68]. As Figure 1.2 indicates, GBMs (and brain cancers in general) are not among
the most common types of malignant neoplasms, but their characteristics cause them to
be among the deadliest [61].

The molecular heterogeneity of GBMs is one of the significant obstacles for treatments
trying to improve the survival duration [21]. The heterogeneity limits molecular biomark-
ers from representing all biological activities of the entire tumor since such a biomarker
usually originates from a single confined subregion of the GBM [21].
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1. Introduction

Figure 1.1: This chart shows the worldwide estimated numbers for the death causes
categories for 2019 (data published by the WHO [68]). The bar for cancers is highlighted
in red since GBMs belong to this category.

Figure 1.2: This chart shows the worldwide estimated numbers of deaths due to different
malignant neoplasms for 2019 (data published by the WHO [68]). The bar for brain
cancers is highlighted in red since GBMs belong to this category.
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1.2. Problem Statement: Determining Tumor Characteristics from Imaging Data

Using medical imaging (or information derived from the images) as a surrogate for
the tumor has the potential to solve the challenge of heterogeneity [106]. Medical
imaging, usually Magnetic Resonance Imaging (MRI), is the standard clinical practice
for diagnosing GBMs and monitoring the patients’ treatment [21]. It captures the tumor
in vivo, avoiding surgical risks, which makes medical imaging a safer approach [21].
In addition, it is possible to acquire medical images multiple times over the course of
the diagnosis and treatment, which allows tracking of the disease’s progression [106].
Medical imaging also captures the entire tumor’s radiological heterogeneity and the
surrounding environment, compared to molecular analysis of the tissue performed on a
local sample [106].

1.2 Problem Statement: Determining Tumor
Characteristics from Imaging Data

This thesis aims at determining tumor characteristics that are relevant for treatment
decisions from in vivo imaging data.

Clinicians treat GBMs with the commonly known treatment methods for cancers, i.e.,
surgery, radiation therapy, and chemotherapy [90]. However, Thomas et al. point out
that these treatment methods do not boost the survival prediction [90]. Immunotherapy
is a different mechanistic approach, and immunotherapy treatments are successful for
other cancer types [90]. However, studies about immunotherapies for GBMs indicate that
patients do not benefit from immunotherapies treatment [64]. But such studies also reveal
that this treatment method is successful for a small subpopulation [76], [102]. However,
the exact reasons for the existence of these subpopulations remain undetermined [76],
[102]. This fact only emphasizes that further research regarding immunotherapies as a
treatment for GBMs is needed. A first step can be taken by investigating and identifying
the receptive subpopulation.

A relation between Tumor-Infiltrating Lymphocytes (TILs) and the information derived
from the medical images may identify the small subpopulation. If they are related,
TILs could be predicted based on the information derived from the medical imaging
data, similar to how Wu et al. [106] predict the TILs for breast cancer. Later research
could focus on the relations between the TILs and the success of immunotherapies. In
the ideal case, identifying the small subpopulation and separating them from the other
patients will be possible with the findings of this work. In this case, TILs based on the
medical imaging information are valid biomarkers. In the long run, a relation between
the medical imaging information of GBMs and TILs could be the first step to successful
immunotherapy for such a lethal cancer type as GBMs.

TILs are of interest since they are a significant factor in the immune microenvironment,
which is important for successful immunotherapy [62]. In addition, TILs are widely
tested as biomarkers [106]. As Wu et al. point out, the guideline commonly used to
determine TILs states that pathologists count within the stromal regions to obtain the

3



1. Introduction

TIL values [106]. Despite the guideline, there is no way to optimally assess TILs under
specific clinical scenarios as biopsy inevitably introduces a sampling bias, and estimating
TILs remains subjective [106]. An evaluation of a one-time point biopsy hardly represents
the dynamic evolution of the microenvironment, but repeated biopsies are impractical
and put the patients at risk of complications [106]. “Therefore, a non-invasive biomarker
that can assess and monitor the tumor immune contexture by in vivo imaging would
overcome the aforementioned hurdles and be invaluable for patient management” ([106],
p. 311).

1.3 Aims of the Work
This study’s has four aims:

1. Prediction of TIL values from imaging data containing GBMs and evaluation of
accuracy for different TIL values.

2. Comparison of radiomics and deep learning approaches for the prediction of TIL
values.

3. Identification of visual signatures of TILs that have an association with the imaging
data.

4. Comparison of features extracted from different regions of interest.

All in all, this study’s general aim is to investigate if it is possible to predict values of TILs,
specifically Cluster of Differentiation 3 (CD3+), Cluster of Differentiation 8 (CD8+),
and Programmed cell Death-1 (PD1+), with information derived from the imaging data.
This study investigates the TILs separately. Due to this, a possible outcome can be that
CD8+ values are predictable, while values of PD1+ are not.

1.4 Structure of the Work
The outline of the thesis is as follows:

• Chapter 1 introduces the field of this thesis and provides an overview of the
motivation, problem statement, and thesis’ aims.

• Chapter 2 provides background information on the medical aspects of this work,
focusing on GBMs and TILs.

• Chapter 3 introduces the concept of radiomics and discusses the steps of the
method in detail.

4



1.4. Structure of the Work

• Chapter 4 reviews relevant basic machine learning methods and introduces the
ElasticNet and Random Forest methods in detail. This chapter also discusses
validation approaches.

• Chapter 5 discusses the background information about deep learning. The ex-
planation focuses on neural networks and Convolutional Neural Networks (CNN)s
more specifically.

• Chapter 6 provides the related work of this thesis. This chapter focuses on studies
about radiomics with GBMs, deep learning with GBMs, and the prediction of TILs.

• Chapter 7 describes the main contribution of this thesis, methods to estimate
values of different TILs from MRI images.

• Chapter 8 reports the experiments’ results for the radiomics and the deep learning
approach.

• Chapter 9 discusses the findings and results of the experiments. In addition, the
research question is answered in this chapter as well.

• Chapter 10 gives the conclusion of this work and provides insight into future
work.

5





CHAPTER 2
Medical Background

This chapter describes the medical background of this thesis. At the start, the description
focuses on GBMs. Afterward, this chapter provides the relationship between cancers
and the immune system. The end of the chapter gives the medical background of TILs,
including the types of TILs used in this work.

2.1 Glioblastoma Multiforme
Cushing introduced the term GBM in the second half of the nineteenth century, while
in Vienna in 1904, the first operation on a patient suffering from this tumor was per-
formed [96]. The term GBM describes a primary brain neoplasm, which consists of
a phenotypically and genetically heterogeneous group of tumors [43], [65], [96]. As
Urbańska et al. [96] describe, over 90% of diagnosed GBM cases develop as primary
GBM, arising through multistep oncogenesis from normal glial cells. Secondary neoplasm,
developing from low-grade tumors through progression [41], [93], make up the remaining
cases of GBM [96]. Even though the genetic basis and molecular pathways underlying the
development of primary and secondary GBM differ [43], they are not showing significant
morphological differences [47], [96]. Figure 2.1 shows an exemplary case of a GBM.

Urbańska et al. state that the etiology of GBMs has yet to be fully elucidated [96]. GBM
is a spontaneous tumor, despite the medical history describing the occurrences of GBMs
in related people [34], [96]. However, only 1% of the cases make up the familial form [83],
and the genetic background for development differs from spontaneously arising ones [23].
In the course of genetic diseases such as tuberous sclerosis [69], Turcot syndrome [31],
multiple endocrine neoplasia type IIA [89], or neurofibromatosis type I [16] GBMs may
also develop [96]. Head injuries might predispose the development of GBMs as well [66],
[107]. Viruses (e.g., the human cytomegalovirus) and ionizing radiation are potential
etiologic agents that increase the probability of developing a GBM [96].

7



2. Medical Background

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Example of a GBM, (a) shows the T1 contrast-enhanced (T1c) sequence of
this example, in (b) the GBM is segmented/highlighted, while in (c) the GBM and the
caused edema is segmented; (d) depicts the same GBM but with the FLuid Attenuated
Inversion Recovery (FLAIR) sequence, (e) and (f) show again the segmentation for
the tumor, and the edema plus tumor, respectively. (Source: The GBM images and
segmentations displayed are from the data set used in this thesis.)

Infiltrating growth is a characteristic of GBMs, making it difficult to distinguish normal
tissue clearly from the tumor mass [43], [107]. Increasing intracranial pressure can be
caused by a growing tumor [17], as well as occasionally hydrocephaly [39]. Metastases of
GBMs are rare and occur by blood [59] or cerebrospinal fluid [12], but not by lymphatic
vessels, since the brain is devoid of those [77]. Reported targets of metastases are spleen,
lungs, liver, bones, lymph nodes, pleura, pancreas, and small intestine [2], [36], [67], [77],
[98], [103]. Researches hypothesize that the barrier created by cerebral meninges, the
rapid tumor growth, and the short course of GBMs are reasons for the low metastatic
likelihood [94].
The most common symptoms of GBMs are headaches, ataxia, dizziness, vision distur-
bances, and frequent syncope, depending on the location and the increasing intracranial

8



2.2. Cancer and the Immune System

pressure caused by the GBM’s clinical stage [54], [80]. Potential misdiagnoses of GBMs
are inflammations, infections, and immunological and circulatory diseases because the
symptoms are unspecific [54]. Further indications for GBMs are seizures in people not
suffering from epilepsy [80]. MRI is the primary tool for diagnosing a GBM [96], while a
histopathological examination of the tumor removed (or its parts) is the basis for the
definitive diagnosis [44]. If removing the tumor via surgery is impossible, a fine-needle
aspiration biopsy is performed [82]. Criteria of the WHO are the basis for morphological
diagnosis, whereas the staging of central nervous system tumors includes a proliferative
index, survival time, response to treatment, assessment of their morphology, and grade of
malignancy (grade I-IV) [96]. While grade I includes non-malignant tumors, and grade II
relatively non-malignant tumors, grade III classifies low-grade malignancy tumors, and
grade IV describes the most malignant tumors; GBM is a grade IV tumor [48].

Complete resection is impossible since GBM infiltrates the surrounding tissue, and
radiotherapy is not always efficient [43]. The blood-brain barrier makes treatment
difficult, and tumor cells in the areas of hypoxia are resistant to radiotherapy [19].
Feasible surgical resection followed by radiotherapy and chemotherapy is the mainstay of
the treatment for GBMs [87].

2.2 Cancer and the Immune System
The immune system can detect external threats (e.g., bacteria or viruses) and internal
threats such as malignant cells [101]. The vaccines’ success in preventing diseases indicates
that the immune system has a kind of memory to protect the human body [101]. The
innate and adaptive immunities form the protective memory [101].

Throughout vertebrate evolution, the innate immunity has been present [97], [101]. Even
though the innate immune system is primitive, it can respond within minutes to hours [97],
[101]. However, the innate immune system is not built against any specific organism
since it does not possess an immunological memory [97], [101]. Macrophages, dendritic
cells, neutrophils, mononuclear phagocytes, and natural killer cells are among the innate
immune system components [101].

Compared to that, the adaptive immune system rearranges antigen receptors on T- and
B-cells [101]. With this, specific structures on antigens (so-called epitopes), which trigger
immune responses, can be recognized [97], [101]. Immunoglobulin M and G antibodies are
relevant to cancer immunity as they remove pathogens and clear circulating antigens [97],
[101]. In addition, these immunoglobins affect complement fixation, antibody-dependent
cellular cytotoxicity, and target cell signaling [97], [101].

Cancer induces inflammatory and immune responses when it invades healthy tissue and
forms metastasis [70]. These responses can eliminate a tumor with the so-called immune
surveillance which is a hypothesis that proposes that surveying the body for malignant
cells and tumors, as well as recognizing and eliminating those cells, is a significant role of
the immune system [70], [97]. If the immune surveillance and response are successful,
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the immune system can eliminate tumors at the early stages [70]. Developing tumors
need to use immune tolerance induction or immune evasion processes to survive [70],
[97]. Immune tolerance induction describes a process where tumors adapt to their
immunological environment in a way that prevents immune responses, which can be
harmful [70]. Creating a local microenvironment that inhibits immune cell activity, which
targets the tumors, describes the immune evasion process [70].

Cancer immunotherapy aims to resurrect the suppressed immune system so that it attacks
the tumor cells again and ideally eradicates cancer [49], [97]. The dominant mechanism
of immune evasion taken by the tumor provides a potential Achilles’ heel [97], [101].
Therapeutically attacking this potential Achilles’ heel can restore immune control [97],
[101]. Multiple mechanisms may be present, but many cancer types are likely to use
similar immune evasion mechanisms [97], [101]. Some cancer immunotherapies cause a
narrow activation range of the immune system, while others result in a broad activation [3].
Some immunotherapies, e.g., monoclonal antibodies, are available commercially, while
others require personalization with genetic engineering [3].

2.3 Tumor-Infiltrating Lymphocyte

Part of the immune system are TILs which penetrate tumor defenses to attack malignant
cells [97]. Cancers can use immune checkpoints to evade elimination by deactivating TILs
- immune checkpoints are ligand and receptor pairs that are part of immune response
modulations [97]. As an example, when the immune checkpoint ligand Programmed Death
Ligand-1, expressed by malignant cells, engages the corresponding immune checkpoint
receptor (PD1+) on the surfaces of activated T-cells, the T-cells become ineffective and
adopt an “exhausted” phenotype [97], [101].

CD3+ and CD8+ are receptor glycoproteins on mature T-lymphocytes, where they act as
antigens [75]. Rathore et al. [75] report that CD3+ cell density is already correlating with
oropharyngeal, colon, or cervical cancer, and CD8+ correlates with colon and ovarian
carcinoma [75]. In addition, Rathore et al. [75] mention that CD8+ TILs may inhibit
tumor growth and that a higher number of CD8+ TILs links with disease-free survival
and overall survival in particular [75].

Another promising immunotherapy target is the PD1+ receptor present on activated
T-cells [3], [70]. PD1+’s main role is preventing autoimmunity during an inflammatory
response by limiting T-cell activity [3], [70]. Binding PD1+ to its ligands (PD-L1
or PD-L2) on CD8+ T-cells, leads to apoptosis [3], [97]. The binding also leads to
decreased T-cell proliferation and cytokine production [3], [97]. Tumor cells and the
tumor microenvironment overexpress the ligands PD-L1 and PD-L2 [3], [70]. As a result,
many cancer types and a large proportion of many tumor types’ TILs express PD-L1 [3],
[70]. Consequently, a treatment attacking the PD1+/PD-L1 pathway can cause a more
prolonged and active antitumor immune response [33].
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2.4 Cancer Imaging
Medical imaging is a significant factor that has informed medical science and treatment [1].
Clinicians use imaging for oncologic diagnosis and treatment guidance by non-invasively
assessing tissue’s characteristics [1]. Medical institutions have access to image acquisition
and reconstruction methods, such as MRI, modern Computer Tomography (CT), Position
Emission Tomography (PET), and combined PET/CT [28]. Imaging has the potential
to guide therapy since it provides a comprehensive view of the tumor and can be used
to monitor progression [1]. In addition, clinicians acquire images during treatment
repeatedly in routine practice, and imaging is considered less invasive than surgery or
biopsies [1].

Compared to that, methods relying on surgeries or biopsies do not allow a complete
characterization of the entire tumor, as these methods extract only small samples of
the tissue for analysis [1]. Clinicians use MRI routinely for diagnosis, characterization,
and clinical management of GBMs [24]. MRI is a non-invasive and powerful diagnostic
imaging tool that allows a global assessment of a GBM and its interaction with the
local environment [24]. Images acquired with MRI capture multidimensional and in vivo
snapshots of GBMs [24]. MRI can extract functional, physiological, compositional, and
structural information [24].

MRI utilizes the body’s natural magnetic characteristics to produce detailed images [7].
Imaging methods use the hydrogen nucleus (a single proton) due to its abundance in fat
and water [7]. The protons spin on their axis, behaving like a bar magnet while these
axes are aligned randomly [7]. However, the protons’ axes line up when the body is in a
strong magnetic field like an MRI scanner [7]. Adding additional energy (with a radio
wave) to the magnetic field causes the magnetic vector to deflect [7]. Switching off the
radiofrequency’s source causes the magnetic vector to return to its resting state and emit
a signal (another radio wave) [7]. This emitted signal is detected and used to create the
images [7]. There are two ways to measure the time it takes for the protons’ complete
relaxation [7]. The first’s name is T1 relaxation time, which is the time the magnetic
vector needs to return to its resting state [7]. T2 relaxation is the name of the second
time which the axial spin takes to return to its resting state [7]. Relaxation times build
the basis for the differentiation between the (e.g., fat and water)), as different tissues
have individual relaxation times [7]. Unlike x-ray and CT, MRI uses radiation in the
radiofrequency range, which does not harm the tissue and is found all around us, and
consequently, researchers consider MRI as non-invasive [7].

FLAIR and T1c are MRI sequences that can be useful for brain tumors such as GBMs [53].
In detecting subtle changes in various brain areas, FLAIR sequences are useful since they
display a high sensitivity to many diseases [22]. Figure 2.2 displays an example of a GBM
patient’s FLAIR and T1c sequences. Figure 2.2a shows the patient’s T1c sequence, where
the bright area depicts the contrast-enhanced part of the tumor. Figure 2.2b displays the
FLAIR sequence where the bright area in the brain depicted shows the edema caused by
the tumor, while the dark areas within the bright area show the brain tumor itself.

11



2. Medical Background

(a) (b)

Figure 2.2: Example of T1c and FLAIR sequences acquired of a GBM patient. (a)
displays the T1c sequence, here the bright area is the contrast-enhanced part of the
tumor. (b) shows the patient’s FLAIR sequence. The dark area within the brain is the
tumor itself, while the brighter area shows the edema caused by the tumor. (Source: The
GBM images displayed are from the data set used in this thesis.)

2.5 Summary
This chapter describes the medical background focusing on GBMs, the immune system,
TILs, and methods for imaging cancer. Regarding GBMs, this chapter describes what
they are, how they can occur, what is done to treat them, and why they are so lethal.
In addition, this chapter provides an overview of the general workings of the immune
system and its interaction with cancers. In detail, an introduction to TILs and their
importance in immune therapy is described. Methods for cancer imaging are presented,
focusing on the MRI sequences FLAIR and T1c used in this thesis.
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CHAPTER 3
State-of-the-Art: Radiomics

Kumar et al. [53] point out that the term radiomics describes a process of the extraction
and analysis of large amounts of imaging features obtained from medical images, which
have a high throughput [53]. The general hypothesis of radiomics is that the heterogeneity
in the medical images is a result of the underlying genetic heterogeneity of the tissue [108].
With this, radiomics aims to identify quantitative imaging indicators which predict
clinical outcomes, such as response to a specific cancer treatment [108]. Radiological
practice for cancer is usually qualitative [53], such as a peripherally enhancing mass in the
upper right lobe. Quantitative radiologic measurements are limited to the tumor size, but
such quantitative measurements do not reflect the complexity of the tumor morphology
or behavior [53]. Changes in these measures do not provide predictive therapeutic benefit
in many cases [53]. Radiomics aims to transform images into mineable data with high
throughput and fidelity [53]. Radiomics is an accumulation - a pipeline - of multiple steps
when looked at it in detail [53]. The most common parts of the radiomics pipeline are:

• acquisition of the medical images. Typical medical imaging modalities are
MRI, CT, diffusion-weighted imaging, or PET [42], [53].

• Region-of-Interest (ROI)’s segmentation. Segmenting ROIs in images, e.g.,
tumor tissue, necrotic tissue, or normal tissue, is an important, required step for
further analysis [53].

• extraction of radiomics features. Radiomics features are extracted from the
ROIs defined and describe characteristics such as shape or texture patterns [53].

• analysis of the features extracted. Statistical modeling highlights associations
between the clinical characteristics and features extracted [18].

By extracting quantitative features from clinical images, radiomics aims to improve the
understanding of biology and treatment [108]. As cancer imaging analytic methods
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have produced novel insights, computational models based on imaging are becoming an
important technology that allows identification, analysis, and validation of quantitative
features extracted [108]. Though radiomics primarily origins from basic research and is
most well-developed in oncology, applications in many scenarios are possible [28].

Figure 3.1 displays a typical architecture of the radiomics pipeline, consisting of the four
main modules: image acquisition, ROI segmentation, feature extraction, and feature
analysis.

Figure 3.1: Illustrates a typical architecture of a radiomics pipeline. The illustration
contains the four main modules of a radiomics pipeline: image acquisition, ROI segmen-
tation, feature extraction, and feature analysis. (Source: Adapted from [1]; The GBM
images and the segmentations displayed are from the data set used in this thesis.)

3.1 Region-of-Interest Segmentation
A requirement for radiomic image analysis is accurate labeling of the ROI [18]. Tumor
volume, edema volume, normal tissue, and other anatomical structures need to be defined
to extract radiomic features from them [18], [53]. The terms segmentation or labeling
describe an act of employing pathological, clinical, and imaging features to mark out
the ROI on two-dimensional MRI images [18]. Clinicians - typically an oncologist or
radiologist - segment the ROI [18]. This manual segmentation is treated as ground
truth [53], but it suffers from interreader variability since the ROI definitions differ
between clinicians [18]. To overcome this issue, each clinician generates their own ROIs,
and the true ROI is considered the common area [18], or the clinicians find a consensus [72].
Later on, the final segmentation is matched with the corresponding MRI images to extract
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the radiomic features [18]. Figure 3.2 shows examples of ROIs segmented by clinicians for
this work. In Figure 3.2a an example of a ROI segmenting the contrast-enhanced tumor
is displayed, while a ROI labeling the edema and tumor region is shown in Figure 3.2b.

Even though different anatomical regions and imaging modalities require ad hoc seg-
mentation approaches, they share some common requirements [53]. A segmentation
method should be time-efficient, provide accurate and reproducible boundaries, and be as
automatic as possible [53]. Alternatives to manual segmentation are semiautomatic and
automatic segmentation [53]. Across different imaging modalities and various anatomical
regions like the lung or brain, semiautomatic and automatic segmentation methods can
be used [53]. Automatic segmentation methods are preferable for their time efficiency and
precision [58]. However, a significant signal difference between the background and the
lesion is needed for an automatic method to be feasible [58]. Due to this, semiautomatic
methods are preferable when tumors are surrounded by relatively homogenous structures,
as an experienced clinician is required to correct the ROIs automatically segmented [58].

(a) (b)

Figure 3.2: These images show examples of ROI segmentation on the FLAIR and T1c
sequences of a GBM patient. The red areas are the ROIs segmented, although they have
different meanings. The ROI displayed in (a) segments the contrast-enhanced tumor,
while the complete affected area consisting of edema and tumor is the ROI segmented
in (b). (Source: The GBM images and the segmentations displayed are from the data set
used in this thesis.)

3.2 Extraction of Radiomics Features
The extraction of the radiomics features, which quantitatively describe the ROI, is the
core of the radiomics pipeline [28]. The features extracted can be separated into two types

15



3. State-of-the-Art: Radiomics

- “semantic” and “agnostic” features [28]. While features commonly used in radiology
are semantic features, agnostic features capture the lesion’s heterogeneity [28]. These
agnostic features are descriptors of the ROI mathematically extracted and are usually not
within the radiologists’ lexicon [28]. First-order, second-order, and higher-order statistics
are among agnostic features [28].

First-order statistical outputs describe the distribution of individual voxel’s values without
concern for any spatial associations [28]. Typical first-order statistics are methods that
reduce the image intensities of an ROI to single values like minimum, maximum, mean,
median, entropy, skewness, as well as histogram-based methods [28]. Second-order
statistics describe statistical interrelationships between voxels with non-similar or similar
contrast values; hence second-order statistics are generally referred to as “texture”
features [28]. Texture analysis can measure the lesion’s heterogeneity in radiomics [28].
To extract (non-)repetitive patterns, higher-order statistics impose filter grids on the
image [28]. Among these are wavelets, which are filter transforms that multiply a matrix
of complex-linear or radial “waves” with the image [28]. Laplacian transforms of Gaussian
bandpass filters, which extract areas with increasingly coarse texture patterns, are another
example of higher-order statistical methods [28].

PyRadiomics is a software library that extracts the radiomics features from medical
images [30]. Equation 3.1 describes mathematically the extraction of radiomics features
from a (preprocessed) image:

ffe(Ipreproc
j ) = &xradiomics

j , (3.1)

where ffe() describes the feature extraction process, Ipreproc
j is the preprocessed image of

sample j, and &xradiomics
j is the resulting radiomics feature vector for sample j.

3.3 Feature Analysis and Prediction
Statistical modeling can highlight relationships between a given feature’s scope and a
clinical characteristic once the radiomic features are extracted [18]. Feature analysis can
use statistical methods, machine learning, or artificial intelligence, such as neural networks,
random forests, and Bayesian networks [28]. Since, in practice, not all information is
available for each patient, models should be able to handle sparse data [28]. The size of
the data set and the data quality determine the power of the statistical model entirely [28].

Supervised machine learning methods (e.g., Least Absolute Shrinkage and Selection
Operator (LASSO), random forest, neural network, Bayesian network) place varying
numbers of the pre-determined predictive features into groups [18]. To determine the
most reliable combination, the features’ relative contribution to the model’s predictability
is changed [18]. These methods make no assumptions about the meaning of individual
features, despite using a priori knowledge through a training set [28]. A random forest is
a simple classifier that automatically selects predictive features [18].
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Feature analysis can be done univariate or multivariate [18]. Univariate analysis deter-
mines if a single feature is a predictor for the clinical characteristic on its own, whereas
significance is typically defined as a p < 0.05 or p < 0.01 [18]. Among univariate analysis
are methods for assessing the correlation (like Pearson, Spearman rank) and significance
(like Wilcoxon test or log-rank) [18]. The multivariate analysis separates seemingly
relevant features on univariate analysis from likely independent predictors [18]. It is
crucial to limit non-predictive features from influencing the final statistical model [18].
Equation 3.2 describes the prediction step of radiomics mathematically:

fpred
radiomics(&xradiomics

j ) = ŷj , (3.2)

where fpred
radiomics() describes the process of predicting a new outcome ŷj based on the

radiomics feature vector &xradiomics
j for sample j.

3.4 Summary
This chapter describes state-of-the-art radiomics. First, this chapter provides information
about what radiomics is and introduces the most common steps. Afterward, ROI
segmentation is described, and different methods to tackle this issue are presented. After
segmenting the ROI, the radiomics features can be extracted, whereas different categories
of radiomics features are described. In the end, the radiomics features extracted can be
analyzed and used for the prediction model - this chapter outlines methods for that step
as well.
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CHAPTER 4
State-of-the-Art: Machine

Learning

Jordan and Mitchell describe that machine learning addresses how a computer can
automatically improve through experience [38]. The term learning problem defines the
problem of improving a performance measure through training experience when executing
a task [38]. Figure 4.1 provides an non-exhaustive taxonomy of different machine learning
methods. A machine learning problem deals with data(sets), which are composed of
multiple data points (or so-called samples) [4]. Each data point represents what should
be analyzed, e.g., a patient in a group of patients [4].

The properties of each data point are described as features, which can be categorical
(e.g., sex of the patient), ordinal (e.g., tumor stage), or numerical (e.g., the diameter of
the tumor) [4]. A data point can consist of features with different categories [4], e.g., a
female patient suffering from a stage II tumor with a diameter of 3 cm. The combination
of all features makes up the feature space, as each feature represents one dimension of
it [4]. The value of a feature determines the placement of the data point along each
dimension [4]. Combining all values of all features creates the so-called feature vector [4].

A similarity or distance measure needs to be defined to compare two feature vectors [4].
Simple similarity measures would be the Euclidean distance (see Equation 4.1, taken
from [4]) between the feature vectors of two samples (&xi and &xl) for features h = 1 . . . m [4].
However, depending on the data type, much more complex similarity measures can be
used [4].

fed(&xi, &xl) =

���� m�
h=1

(xi,h − xl,h)2 with i and l ∈ 1, . . . , n, i �= l, (4.1)
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Figure 4.1: Non-exhaustive taxonomy of different machine learning methods (adapted
from [4])

where xi,h is the feature at position h, h ∈ 1, . . . , m of the feature vector &xi of sample i.
Likewise, xl,h is the feature at the same position of feature vector &xl of sample l. The
results euclidean distance is described with fed(&xi, &xl).

4.1 Supervised Learning
As Figure 4.1 indicates, the term supervised learning describes a subset of machine
learning methods [4]. Supervised machine learning methods consist of approaches where
the data points are labeled, which means that their data points’ outcome variable is
known and present during the learning process [4], [92]. Supervised learning aims to learn
generalized rules (or a generalized model) that maps the data points to their respective
labels [4], [92]. A supervised machine learning model trained correctly should be able to
predict unseen, new data points without knowing their associated label [4]. Supervised
learning consists of two main categories, on one hand classification where the labels are
qualitative, and on the other hand regression where the labels are quantitative [4], [92].
This work focuses on regression, as the target values (the TILs) are quantitative.

Mathematically speaking, a learning set D consists of data pairs (xj , yj), j = 1 . . . n where
xj represents the input for data point j and yj is the target value [13]. In regression
tasks, the yjs are quantitative values yj ∈ R, j = 1 . . . n [92]. Equation 4.2 describes the
training f learn() and evaluation process of a machine learning model, where a machine
learning model mtrained trained with D and the features of a sample &xj are used during
the prediction step to predict ŷj .

f learn(D) = mtrained → mtrained(&xj) = ŷj (4.2)

Based on the observed data points, the model parameters are estimated [4]. This
procedure is the so-called model fitting [4]. A similarity measure between the model and
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the data is defined [4]. Minimizing the similarity measure derives the optimal values
of the model parameters [4]. This similarity measure, which is also called loss function
or cost function, should always be minimized regardless of the chosen similarity measure,
as this is the aim of model fitting [4]. Badillo et al. [4] state, that this minimization has
two requirements:

• The values predicted from the model should be close to the observed values of the
data points to avoid underfitting, and the model has a high bias [4].

• The predictive model should generalize beyond the observed data points [4]. When
a model predicts well on the training dataset but poorly on an unseen test dataset,
the model overfits [4]. An overfitting model is often too complex, causing the
predictive model to have a high variance [4].

4.2 Overfitting and Underfitting
A learning algorithm aims to learn a model that describes the observed training data
and can generalize to new unseen data while avoiding overfitting and underfitting [4].
If the model is too simple or there are not enough informative features extracted from
the training data, underfitting can occur [4]. Overfitting can occur when the model is
too complex or by extracting too many features over a small set of training samples [4].
“This underfitting/overfitting issue is also often referred to as the bias/variance trade-off,
which comes from the expression of the expected prediction error, including both bias and
variance terms” ([4] p. 876).

The bias reflects the model’s average error for different training sets [4]. The variance
indicates the model’s sensitivity to the training data set [4]. Increasing the model
complexity decreases the bias but increases the variance, so a trade-off between minimizing
bias and variance is needed [4]. Figure 4.2 illustrates an example of overfitting and
underfitting while also providing a good fit for these data points. Figure 4.2a illustrates
an example of underfitting. Figure 4.2b presents an example of a good fit and a fitting
bias/variance trade-off. Figure 4.2c illustrates an example of overfitting.

4.3 Regularized Linear Regression
A linear regression model builds on the assumption that the regression function is linear
regarding its inputs [92]. Such a linear regression model has h predictors xj,1, . . . , xj,h

for sample j [109]. The prediction of the linear regression model’s response ŷ is given in
Equation 4.3:

ŷj = β̂0 + xj,1β̂1 + · · · + xj,hβ̂h, (4.3)

where the coefficients vector β̂ = (β̂0, . . . , β̂h) have to be produced by the model fitting
process [109]. Depending on the circumstances, the evaluation criteria for the model’s
quality will differ [109]. Usually the two aspects prediction accuracy on new, unseen data
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(a) Underfitting (b) Good fit (c) Overfitting

Figure 4.2: Examples of overfitting, a good fit, and underfitting. (a) presents an example
of underfitting, (b) provides an example of a good fit, while (c) illustrates an example of
overfitting (adapted from [4]).

and interpretability of the model are of importance [109]. The ordinary least squares
estimates are an example of fitting the coefficients vector, but they often perform poorly
in both aspects [109]. This is especially the case if a high number of predictors exist [109].
Penalization techniques can improve ordinary least squares [109]. Minimizing the residual
sum of squares where the coefficients are subject to a bound on the L2-norm, ridge
regression is an example of an improvement [109].

Tibshirani [91] proposed another technique – the so-called LASSO [109]. The LASSO
uses the L1-penalty for simultaneous shrinkage and variable selection [109]. Zou and
Hastie state that the LASSO has some limitations, despite success displayed in several
situations [109]. The following three scenarios are of special interest:

1. The LASSO selects n variables at most before it saturates when the number of
predictors is larger than the number of samples since the optimization problem is
convex [109]. Zou and Hastie point out that this seems to be a limiting feature for
the variable selection procedure and that the LASSO is not well defined when the
bound on the L1-norm is not below a certain threshold. [109].

2. The LASSO tends to select only one variable from a group of variables, among
which the pairwise correlations are high, and it pays no attention to which variable
it selects [109].

3. If the predictors are highly correlated ridge regression dominates the prediction
performance of LASSO [91], [109].

In the early 2000s, Zou and Hastie proposed a new variable selection and regularization
method - the so-called elastic net [109]. It is a generalization of the LASSO, which
fixes the issues mentioned but also performs well when the LASSO performs well [109].
Like the LASSO, the elastic net simultaneously performs a continuous shrinkage and
automatic variable selection [109]. In addition, the elastic net can select groups of
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correlated variables [109]. Experiments with real-life data examples and simulation
studies show that the elastic net often outperforms the LASSO regarding prediction
accuracy [109].

Zou and Hastie define their so-called naïve elastic net [109] as follows. Let the data
set have n observations with m predictors, &̂y = (ŷ1, . . . , ŷn) be the response, and EN =
(mEN,1, . . . , mEN,n) the model matrix, whereas &xj = (x1,h, . . . , xn,h), h = 1, . . . , m are
the predictors [109]. The response is centered, and the predictors are standardized after
a scale and location transformation (see (4.4)) [109].

n�
j=1

ŷj = 0,
n�

j=1
xj,h = 0 and

n�
j=1

x2
j,h = 1, for h = 1, . . . , m (4.4)

Equation 4.5 defines the naïve elastic net criterion for any fixed non-negative λ1 and
λ2 [109]. Zou and Hastie [109] point out, that the naïve elastic net estimator β̂ is the
minimizer of Equation 4.5 (see Equation 4.6).

L(λ1, λ2, β) = |y − ENβ|2 + λ2

m�
h=1

β2
h + λ1

m�
h=1

|βh| (4.5)

β̂ = arg min
β

{L(λ1, λ2, β)} (4.6)

The naïve elastic net tackles the issues described in the first and second scenarios since
it is an automatic variable selection method [109]. However, Zou and Hastie call it
the naïve elastic net since empirical evidence shows that it only satisfactorily performs
when it is close to LASSO or ridge regression [109]. The (corrected) elastic net estimator
β̂∗ is a rescaled version of the naïve elastic net estimator, the definition is given in
Equation 4.7 [109].

β̂∗ = (1 + λ2)β̂ (4.7)

The corrected version preserves the variable selection property of the naïve elastic net,
while the shrinkage is undone [109]. Zou and Hastie [109] empirically found that the
elastic net performs well compared to ridge regression and the LASSO. As the elastic
net outperforms the LASSO, it also tackles the issue described in the third scenario
mentioned [109]. Equation 4.8 describes the training process of elastic net model mEN ,
where an elastic net trained with D. Equation 4.9 describes the prediction step of elastic
net model mEN where it predicts the response ŷj for the input sample xj .

mEN = f learn
EN (D) (4.8)

ŷj = mEN (xj) (4.9)
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All in all, a trained elastic net model mEN provides a model to predict outcomes for
new, unseen data points [109]. In addition, the elastic net estimator β̂∗ has only a subset
of non-zero variables which are the variables selected [109].

4.4 Random Forest
Breiman devised random forests in the early 2000s [14]. They belong to the most
successful machine learning methods currently available for general-purpose classification
and regression tasks [10]. Random forests belong to the supervised learning methods
and are based on randomized decision trees and the “divide and conquer” principle [10].
Biau and Scornet describe the “divide and conquer” principle applied as follows: “sample
fractions of the data, grow a randomized tree predictor on each small piece, then paste
(aggregate) these predictors together” ([10] p. 2).

Random forests have few parameters for tuning and they can be applied to numerous
prediction problems, which is why this method is so popular [10]. In addition, random
forests can deal with high-dimensional feature spaces and small sample sizes, and they
are recognized for their accuracy [10]. Due to the concept used, random forests are simple
to parallelize and can potentially deal with large real-life systems [10].

Even though random forests are popular, properly analyzing them is difficult due to
their black-box behavior [10]. Bagging [13] and the Classification And Regression Trees
(CART)-split [15] are crucial components of random forests [10]. “Bagging (a contraction
of bootstrap-aggregating) is a general aggregation scheme, which generates bootstrap
samples from the original data set, constructs a predictor from each sample, and decides
by averaging” ([10] p. 3). Each node for each tree selects the best cut with the optimized
CART-split criterion [10]. The so-called Gini impurity builds the basis for the CART-
split criterion in classification tasks, while the prediction squared error is the basis for
regression tasks [10].

How the random forest algorithm grows t different (randomized) trees is described by
Biau and Scornet [10] as follows. Before constructing a tree, nu samples are chosen
randomly from the original data set [10]. The tree building takes these - and only these
- nu samples chosen into account [10]. Afterward, each node of every tree performs a
split by maximizing the CART-split criterion over the feature subset chosen uniformly at
random from the original ones [10]. When all nodes contain less than nnodeSize points,
the construction stops [10]. For any xu ∈ &xu with u ∈ {1, . . . , t}, each tree predicts ŷu,
which are averaged at the end in case of a regression task [10]. Figure 4.3 shows a
random forest example for a regression task. Equation 4.10 describes the training f learn

RF ()
and evaluation process of a machine learning model, where a random forest model mRF

trained with D and the features of a sample &xj are used during the prediction step to
predict ŷj .

f learn
RF (D) = mRF → mRF (&xj) = ŷj (4.10)
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Figure 4.3: Example of a random forest for regression task

4.5 Cross-Validation
Cross-validation is a data resampling method used to assess the generalization ability of
predictive models [8]. With that, cross-validation estimates the actual prediction error of
predictive models and supports tuning model parameters [8]. The ideal way to assess the
generalization ability of a predictive model would be by using new, unseen data which
originate from the same population as the training data [8].

However, independent validation studies/data are often not feasible [8]. Berrar continues
that estimating the predictive model’s performance should happen before investing time
and resources for an independent validation [8]. For tuning the model parameter, cross-
validation is applied multiple times for different values of tuning parameters, where the
final model uses the parameter minimizing the cross-validated error [8]. Due to this,
cross-validation addresses the overfitting issue as well [8].

The single hold-out method samples some cases for the test set from the learning set
at random, while the remaining cases make up the training set [8]. The k-fold random
subsampling method generates k pairs of Dtrain

i and Dtest
i , i = 1 . . . k by repeating the

single hold-out method k times, whereas any pair of training and test set are disjoint,
i.e., Dtrain

i ∩ Dtest
i = ∅ [8]. Cross-validation shares characteristics with the repeated

subsampling method, but the sampling ensures that no two test data sets overlap [8].

4.5.1 K-Fold Cross-Validation
K-fold cross-validation is a variant of cross-validation where the available training set
is split into k disjoint subsets [8]. These disjoint subsets have approximately the same
size, whereas the samples are chosen randomly without replacement [8]. The term “fold”
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describes the amount of resulting subsets [8]. The model is trained with k − 1 subsets
and is afterward evaluated with the remaining subset, the so-called validation set, to
measure the performance [8]. Cross-validation repeats this process until every subset has
been a validation set [8].

The cross-validation performance is measured by averaging the k performances of the
k validation sets [8]. The process of a k-fold cross-validation for k = 10, i.e., 10-Fold
Cross-Validation (10-FCV) is depicted in Figure 4.4. The first subset is the validation
set Dval

i and the remaining nine subsets combined are the training set Dtrain
1 in the first

fold, and so on [8].

Figure 4.4: Illustrates a 10-FCV as example for k-fold cross-validation. (Adapted from [8])

Berrar further states that cross-validation often involves stratified random sampling, which
causes the proportions of the targets in the individual subsets to reflect the proportions in
the learning set [8]. For example, suppose the learning set consists of n = 100 cases whose
targets are from 1 to 100, with 80 of the 100 cases having targets below 50 [8]. Without
stratification, the random sampling can generate validation sets that only consist of cases
with targets above or below 50 [8]. The stratification guarantees that each validation
set consists of about 8 cases with values below 50 and 2 cases above 50 when using
10-FCV [8]. Kohavi recommends stratified 10-FCV for real-world data sets [50].

4.5.2 Leave-One-Out Cross-Validation
Leave-One-Out Cross-Validation (LOOCV) is a special case of k-fold cross-validation,
where k = n [8]. In LOOCV, each case serves as a validation set in turn, which means
the first validation set contains only the first case x1, the second validation set consists
only of the second case x2, and so on [8]. Figure 4.5 shows an example of the LOOCV
procedure. Although the test error of LOOCV is approximately an unbiased estimate
of the actual prediction error, its variance is high since two different training sets differ
only in one case [92].
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Figure 4.5: Illustrates a leave-one-out cross-validation. (Adapted from [8])

4.6 Summary
This chapter describes state-of-the-art machine learning focusing on subtopics related
to this thesis. First, this chapter provides information on machine learning and its
major components and workings in general. This chapter describes how supervised
learning operates and presents the overfitting/underfitting issue. Afterward, the first
machine learning method used for the radiomics approach - elastic nets - is described.
Random forests, the second machine learning method used for the radiomics approach,
are presented next. In the end, this chapter reports on cross-validation, in detail k-fold
cross-validation and LOOCV.
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CHAPTER 5
State-of-the-Art: Deep Learning

Linear classifiers, on top of hand-crafted features, are used in many practical applications
of machine learning [56]. Such linear classifiers can only split the input space into simple
regions [56]. The input-output function needed in problems like image recognition has to
be insensitive to irrelevant input variations, e.g., position variations, and they need to
be sensitive to minor changes of specific characteristics [56]. Hand-designing a feature
extractor is the conventional option, which requires a certain amount of domain expertise
and engineering skill [56]. This issue makes it difficult for non-experts to exploit machine
learning techniques for their studies, especially in medical-related research [86]. Avoiding
the problems mentioned is possible when predictive features can be extracted and learned
automatically by a general-purpose procedure, such as deep learning [56].

The architecture of a deep learning procedure consists of multiple layers, each holding
a stack of modules [56]. The modules or nodes are subject to learning, and many of
them compute non-linear input-output mappings [56]. Every module transforms the
input to increase the selectivity and representation’s invariance [56]. A system consisting
of multiple non-linear layers can implement intricate functions of its input that are
insensitive to irrelevant features (e.g., the pose or the background) while maintaining a
high sensitivity to minute details [56].

Deep learning is an improvement over conventional artificial neural networks, as networks
with more than two layers can be constructed [86]. The advances in processing units, the
availability of large data sets, and the improvements in learning algorithms cause the
success of deep learning approaches [86]. Deep learning methods need large data sets
during the training stage to be highly effective [86]. However, most medical applications
have only smaller data sets available [86]. Applying deep learning to such small data sets
to build models without suffering from overfitting is considered a primary challenge [86].
Artificially expanding the data set by applying affine transformations (i.e., data augmen-
tation) is among the strategies used to overcome the challenge of small data sets [86].
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Another method takes only image patches (instead of the full-sized images) as input to
reduce the input dimensionality (thus the number of model parameters) [86].

5.1 Artificial Neural Networks

Artificial neural networks can be characterized as computation models with certain proper-
ties like the ability to learn, generalize, or cluster data while using parallel processingl [88].
Despite descriptions of parallels with the biological systems, artificial neural networks
seem to be an oversimplification of biological systems, as knowledge about the biological
systems is limited [88]. After the McCulloch and Pitts [63] introduced simplified neurons,
the first wave of interest in neural networks emerged [88]. Shen et al. state that the
perceptron [79] is the first trainable neural network, which has an input and output
layer [86].

Figure 5.1 displays examples of a typical neural network architecture. The network
shown in Figure 5.1a consists only of input and output layer, whereas the perceptron of
Rosenblatt [79] is an example of such a network architecture [86]. Figure 5.1b displays a
neural network that contains a hidden layer between the input and output layer as well.

(a) (b)

Figure 5.1: Examples for architectures of different neural networks. The neural network
in (a) shows a network consisting only of input and output layer. The network displayed
in (b) contains a hidden layer between the input and output layer as well. (Adapted
from [86])

If data flows within a neural network strictly from input to output neurons, the neural
networks are called feed-forward neural networks [88]. While the data processing can
extend across multiple layers in feed-forward networks, there are no feedback connections
present [88]. These feedback connections could extend from the output of neurons to
the input of neurons in the same layer or the previous layer [88]. Neural networks that
contain such feedback connections are called recurrent networks [88]. The perceptron of
Rosenblatt [79] is a typical example of a feed-forward neural network [88]. The commercial
interest in deep learning intensified when Krizhevsky et al. [51] won the ImageNet object
recognition challenge by utilizing a deep learning network [29].
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5.1.1 Basic Building Blocks of an Artificial Neural Network
Each neural network’s architecture uses similar modules which perform the processing [88].
These modules communicate with each other by sending signals over many weighted
connections [88]. Among the modules/building blocks of every neural network are [88]:

• a set of processing units (i.e., neurons),

• an activation state of every neuron, which is the output of the neuron at the same
time,

• weighted connections between units, whereas the connection’s weights determine
the impact of the signal sent from one neuron to the other,

• an activation function that uses the current activation state and the effective input
to determine the new activation state,

• an environment in which the system operates while it provides input signals and
handles possible error signals.

Neurons & Weighted Connections

A neuron receives input from neurons connected or external sources, uses that to compute
an output signal, and forwards the output signal to other neurons connected [88]. Apart
from this processing task, a neuron adjusts its weights as well [88]. As many neurons can
compute simultaneously, the system is inherently parallel [88]. There are three types of
layers holding the neurons in a neural network: a) input layer, which receives the data
from external sources (i.e., outside the neural network), and b) output layer, which sends
the data out of the network, and c) hidden layer(s), which input signals origin from the
layer before it, while it sends its output to the layer following it [88]. In Figure 5.1, the
neurons are illustrated as circles, while the figure displays the layered structure of neural
networks.

Mostly, each neuron contributes additively to the input provided by another neuron [88].
The total input of a neuron is the weighted sum of the outputs provided by the neurons
connected, plus a possible bias term [88]. The term excitation refers to a positive
contribution to the weight, while inhibition refers to a negative contribution [88]. In
neural networks, every neuron of a layer has connections to neurons in the neighboring
layers, but there are no connections between the neurons within the same layer [86].
Neural networks consisting of only input and output layers are regarded as linear models,
prohibiting their application in tasks that involve complex data patterns [86]. Neural
networks need hidden layers to overcome that limitation [86]. The role of hidden layers
is to find informative features for a certain task [86]. Figure 5.1 illustrates the weighted
connections within a neural network with arrows from neurons from one layer to neurons
at the next layer, but there are no connections between neurons of the same layer.
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Activation Function

The activation function of a neuron takes its current activation and the total input
to produce a new activation value [88]. In many cases, the activation function is a
non-decreasing function of the total input of a neuron, although other functions can be
activation functions as well [88]. In general, some kind of threshold function is used
as activation function [88]. Such a threshold function can be a hard limiting threshold
function (e.g., a sgn function), a semi-linear function, or a smoothly limiting threshold
function (e.g., a sigmoid function) [88]. Figure 5.2 displays three examples of possible
activation functions: the left panel displays a sgn-function, the middle panel shows a
semi-linear function, while the right figure depicts a sigmoid activation function.

Figure 5.2: Examples of different activation functions used in neural networks. The
activation function on the left shows a semi-linear function, while the function displayed
in the middle illustrates a sigmoid activation function (i.e., smoothly limiting function). A
sgn-function (i.e., a hard limiting function) is illustrated on the right. (Adapted from [88])

5.1.2 Training an Artificial Neural Network

The configuration of artificial neural networks demands that the application of an input
set leads to the desired set of outputs [88]. This configuration is handled by setting
the weights of the connections [88]. One option is to set the weights explicitly (using a
priori knowledge) [88]. Another option feds the neural network teaching patterns and
lets it change its weights according to a cost function [88]. The neural network aims to
approximate some function, which takes the input and the weights to produce a certain
output, making the training of an artificial neural network about finding the values for
the weights leading to the best approximation for the function [29]. The training of a
neural network requires a cost function, the optimization of the weights to minimize
the costs of the cost function (by utilizing gradient descent), and back-propagation to
compute the gradients [29].

Cost Function

The training process of an artificial neural network needs a cost function, aiming to find
weights that minimize the cost function [29]. The choice of the cost function is a crucial
aspect of the neural network’s design [29]. Often the cost function uses the cross-entropy
between the predictions and the training data (the maximum likelihood principle) [29].
The total cost function used to train an artificial neural network is often a combination
of a primary cost function and a regularization term [29].
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The specific form of the cost function varies slightly, depending on the model distribu-
tion [29]. Deriving the cost function from maximum likelihood provides the advantage
that models can share the design of the cost function [29]. The gradient of the cost
function must be predictable and large enough to impact the learning algorithm [29]. A
saturating cost function undermines that goal when the gradient becomes too small [29].
The negative log-likelihood or cross-entropy helps to avoid this issue [29].

Goodfellow et al. show that the mean squared error can be used as a maximum likelihood
estimation procedure since both criteria have the same optimal location despite having
different values [29]. Willmott et al. [104] propose, that the Mean Absolute Error (MAE)

MAE = 1
n

n�
j=1

|yj − ŷj |, (5.1)

with n as the number of samples, yj the ground truth label of a sample j, and ŷj the
value predicted by the model for j should be the preferred over the (root) mean squared
error [104]. Measures of average errors based on the sum of squared errors (e.g., (root)
mean squared error) do not describe the average error alone but rather the distribution
of squared errors as well [104]. The analysis of Willmott et al. show that MAE is the
most natural and unambiguous measure of average error magnitude, hence it should be
used preferably compared to (root) mean squared error [104].

Gradient Descent

Gradient descent is commonly used as an algorithm to minimize the cost function
&̂y = g by changing the parameters of the model d [29]. Most optimization problems are
minimization problems since maximization problems can be turned into minimization
problems by minimizing −g [29]. Utilizing the first derivative of a function g� to decide
how to change the parameters to minimize the cost is the basic idea behind gradient
descent [29]. The first derivative of g(b) gives the function’s slope at a certain point b, thus
determining how to scale a small change in the function’s input to obtain a corresponding
change in the output [29]. A function’s derivative is useful for the function’s minimization,
as it determines how to make a small change in the network parameters to make a small
improvement in the output [29].

The learning rate acts as a constant of proportionality for these infinitesimal steps [88].
A function’s derivative (i.e., the gradient) is positive if the gradient points uphill and
negative when it points downhill [29]. Moving in the direction of the negative gradient
decreases the function f , hence the name gradient descent [29].

The derivative provides no information about in which direction to move, if g�(b) = 0 [29].
Points where g�(b) = 0 are called critical points, among which are local minima, local
maxima, saddle points, and a global minimum [29]. If g(b) is lower than at all neighboring
points, the current point is a local minimum, as decreasing g(b) is no longer possible
by making infinitesimal steps [29]. If a point not only satisfies the criteria for a local
minimum but is the absolute lowest value of g(b), it is a global minimum [29]. The
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counterpart to a local minimum is a local maximum that is a point where g(b) is higher
than at all neighboring points and thus can no longer be increased by making infinitesimal
steps [29]. Critical points that are neither minima nor maxima are saddle points [29].
Figure 5.3 illustrates the three types of critical points, i.e., minimum, maximum, and
saddle points.

Figure 5.3: Illustrates how the functions of three types of critical points look like. Each
of these critical points has a slope of zero [29]. (Adapted from [29])

Back-Propagation

Back-propagation describes a process where the errors of the output layer are propagated
back to the hidden layers to determine their errors, thus providing a way to adjust the
weights of the input connections [88]. Learning a pattern causes the activation values
to propagate to the output layer, which compares the network’s output to the output
desired [88]. A disparity between the two values results in error values (usually, there
is an error value for each neuron in the output layer) [88]. These error values should
reach zero, whereas the simplest method to achieve this is the greedy method [88]. The
greedy method changes the weights so that the next time around, the error will be zero
for that pattern [88]. The output or another hidden layer distributes the error to all
connected hidden neurons weighted by their connections to propagate the error to the
hidden units [88]. Back-propagation repeats this process until the neurons’ weights in all
layers (including the input layer) are adjusted [56].

5.2 Convolutional Neural Networks
A particular type of deep, feed-forward network generalizes better than networks with
full connectivity between neighboring layers and is easier to train; this is a CNN [56].
CNNs are a special kind of neural networks for processing data, which are known to
have a grid-like structure [29]. As the name implies, a CNN uses an operation called
convolution that is a special mathematical operation [29]. Another operation that CNNs
usually employ is called pooling.

5.2.1 Typical Convolutional Neural Network Architecture
The typical architecture of a CNN is a series of stages [56]. Convolutional layers and
pooling layers make up the first few stages of a CNN, while the rest are usually fully-
connected layers [56]. The units in a convolutional layer are organized in feature maps,
whereas each unit within is connected to local patches of the previous layer’s feature
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map through weights called a filter bank [56]. The algorithm passes the resulting local
weighted sum through a non-linearity, such as the sgn-function [56]. A filter bank is
shared by all units of a feature map, while different feature maps use different filter
banks [56]. The idea behind sharing the filter bank is that a pattern can appear in
multiple parts of an image [56]. As a result, units at different locations share their weights
to possibly detect the same pattern in various parts of the image [56]. More theoretically
speaking, local statistics of images are invariant to location, and local value groups are
often highly correlated in image data [56].

The pooling layer merges semantically similar features into one [56]. A pooling layer
typically computes the local patch’s maximum of the units in one feature map or a few
feature maps [56]. “Neighboring pooling units take input from patches that are shifted
by more than one row or column, thereby reducing the dimension of the representation
and creating an invariance to small shifts and distortions” ([56], p. 439). A CNN stacks
multiple stages of convolution, non-linearity, and pooling, followed by more convolutional
and fully-connected layers [56].

Back-propagation of gradients is not more difficult in a CNN than in a regular deep neural
network, which allows the training of all weights in all filter banks [56]. In general, deep
neural networks exploit the characteristic that natural signals are typically compositional
hierarchies [56]. The composition of lower-level features allows the acquisition of higher-
level features [56]. In images, such a compositional hierarchy can start with a combination
of local edges that form patterns, where patterns assemble into parts, and parts make up
objects [56].

Figure 5.4 displays the architecture of a typical CNN for a regression task. The first
convolutional layer takes the input images. With a series of convolutional and pooling
layers followed by some fully connected layers, the CNN calculates the regression and
returns the output at the end [56]. The number of convolutional and pooling layers, and
the number of fully connected layers, vary from network to network.

Figure 5.4: Illustrates the typical architecture of a CNN for a regression task. A series
of convolutional and pooling layers extracts the information derived from the input.
After these layers, some fully connected layers calculate the output of the regression and
network. (Adapted from [55])
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5.2.2 Convolution
“In its most general form, convolution is an operation on two functions of a real-valued
argument” ([29], p. 327). Typically, an asterisk denotes the convolution operation, such
as in equation 5.2 [29]

s = (INN
j ∗ w), (5.2)

where INN
j is denoted as input, while the second function w is referred to as kernel [29].

The result of equation 5.2 s is typically called feature map [29]. Usually, the kernel
is much smaller than the input image [29]. Mathematically speaking, the convolution
operation is a weighted averaging operation [29]. In most applications, the input INN

j is a
multidimensional data array, while the kernel w is a multidimensional array of parameters
optimized by the learning algorithm [29].

To improve the machine learning system, convolution leverage three ideas: sparse in-
teractions, parameter sharing, and equivariant representations [29]. Sparse interactions
(also called sparse connectivity or weights) are accomplished by making kernels smaller
than the input, as not every output needs every input [29]. Parameter sharing describes
learning only one parameter set during a convolution operation instead of a separate set
of parameters for each location [29]. Equivariant representation or equivariance means
that the output changes the same way the input changes [29].

Figure 5.5 displays an example of a convolution in a CNN. From left to right, Figure 5.5
illustrates an input image, the convolution kernel, the multiplication result of the kernel
and the input image, and the output image as a result of the convolution operation.

Figure 5.5: Illustrates the convolution operation of a CNN, with (l.t.r.) the input image,
the convolution kernel, the multiplication result, and the output image of the convolution.
(Adapted from [78])

5.2.3 Pooling
Pooling uses a kernel to generate an output at a specific location within the net with
summary statistics of the previous output at that location and of previously neighboring
outputs [29]. An example of a pooling function is max pooling, which calculates and
reports the maximum output from a rectangular neighborhood [29]. The average of
a rectangular neighborhood or the L2 norm of a rectangular neighborhood is another
example of pooling functions [29].
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Pooling supports making the representation (approximately) invariant to small input
translations, independently of the pooling function used [29]. With invariance to trans-
lation, a small translation of the input should not change most pooled outputs [29].
If it is more important to know whether a feature is present than its exact location,
invariance to local translation is a convenient characteristic [29]. As pooling summarizes
the neighborhood’s outputs, the computational efficiency of the CNN improves since the
next layer has fewer inputs to process [29].

Figure 5.6 shows an example of an averaging pooling operation, where the average of
the input image becomes the value in the output image. Figure 5.6 illustrates the input
image, the pooling operation, and the resulting output, from left to right.

Figure 5.6: Illustrates the average pooling operation of a CNN layer, with (l.t.r.) the
input image, the pooling operation (i.e., the averaging operation), and the output image
of the pooling. (Adapted from [78])

5.2.4 Residual Learning
Improving the learning power of neural networks is not as simple as stacking more
layers in the network due to the vanishing/exploding gradient problem [32]. When
a deep neural network starts to converge, a degradation problem has been exposed:
with increasing network depth, accuracy gets saturated and then degrades rapidly [32].
He et al. [32] propose a solution for this problem by introducing deep residual learning [32].
He et al. [32] approximate the residual function

F (INN
j ) := H(INN

j ) − INN
j (5.3)

instead of the expected mapping H(INN
j ), where INN

j denotes the input to the first layer
of the mapping [32]. The solution proposed is based on the idea that when multiple
nonlinear layers can approximate complex functions, then it should be possible that these
layers approximate the residual function [32]. When the layers added can be constructed
as identity mappings, the training error of the deeper model should not be greater than
from a corresponding shallower model [32].

He et al. [32] adopt residual learning to every few stacked layers, with a building block
formally defined as [32]:

ŷj = F (INN
j , Wi) + INN

j (5.4)

where INN
j denotes the input, ŷ the output, and the function F (INN

j , Wi) the residual
mapping to be learned [32]. Figure 5.7 illustrates a building block of residual learning,
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where it shows how neural networks use the residual learning idea presented in Equation 5.4
practically.

Figure 5.7: Illustrates an example of a building block for residual learning. (Following [32])

5.3 Summary
First, a general overview of deep learning is provided, followed by a description of neural
nets and CNNs. This chapter presents the basic building blocks and inner workings of
neural nets. In addition, the key components for training a neural net are described. CNNs
are a subtype of neural nets used in this thesis. This chapter presents key components
and processes of CNNs, and residual learning since this thesis uses a ResNet50 for the
deep learning approach.
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CHAPTER 6
State-of-the-Art: Image Analysis

in Brain Tumors

This chapter presents the related work of this thesis. In detail, the related work focuses
on studies that use radiomics in combination with GBMs, and studies that utilize deep
learning to tackle problems related to GBMs. In addition, this chapter covers studies
that predict TILs as well.

6.1 Radiomics & Glioblastoma
In the research of GBMs, radiomics is gaining momentum as studies (e.g., [6], [21], [27], [45],
[46], [72]) make use of it in their research. Kickingereder et al. [45] evaluate if signatures of
radiomics features extracted from MRI data allow the prediction of the patient’s survival
and the stratification of patients with newly diagnosed GBMs. Kickingereder et al. [45]
predict progression-free and overall survival with Cox proportional hazards models based
on supervised principal component analysis. The findings of Kickingereder et al. show
that it is possible to predict survival and that radiomics signatures can stratify patients
with newly diagnosed GBMs [45]. The findings further show that accuracy improved
compared to established clinical and radiological risk models [45]. Bae et al. [6] find that
improving survival prediction is possible while indicating that radiomic MRI phenotyping
integrated with genetic and clinical profiles can create a potentially practical imaging
biomarker.

While Bae et al. [6] and Kickingereder et al. [45] analyze GBMs directly, Kim et al. [46]
utilize radiomics to feasibly distinguish GBMs from primary central nervous system
lymphoma, which is another type of brain tumor. As the treatment of the tumor
types investigated differ substantially, a feasible differentiation before surgery can be
useful [46]. Kim et al. use the minimum redundancy maximum likelihood and the LASSO
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algorithm with 10-FCV based on radiomics features extracted from multi-parametric
MRI data [46]. Kim et al.’s findings suggest that radiomics features derived from MRI
data can differentiate the two tumor types with high accuracy [46].

The research question of Priya et al. [72] is similar to the one of Kim et al. [46], but
Priya et al. differentiate GBMs from intracranial metastatic disease. Radiomics features
extracted from MRI data build the basis of the research presented by Priya et al. [72].
Compared to Kim et al. [46], Priya et al. compare findings of single-parametric and
multi-parametric MRI, as well as combinations of MRI sequences, and how the different
tumor segmentations affect the results [72]. To determine the optimized configurations,
Priya et al. [72] cross-compared multiple machine learning models based on radiomics
using multi-parametric MRI, where the LASSO model performs the best for the multi-
and single-parametric MRI. Further findings of Priya et al. suggest that the radiomics
features used are more important than the sequence(s) used, as the results show no
significant difference between the top-performing models [72].

The research of Gao et al. [27] aims to predict tumor grades and pathological biomarkers
using machine learning algorithms on radiomics features extracted from MRI data. With
this work, Gao et al. tackle the issue that grading and pathological biomarkers of GBMs
have important guiding significance for the individual treatment [27]. The machine
learning algorithms investigated are logistic regression, support vector machines, and
random forests [27]. Compared with the other algorithms, the results achieved by the
random forests are consistently better [27]. The findings of Gao et al. suggest that
predicting GBM grades and pathological biomarkers non-invasively, pre-surgery, and
with good predictive accuracy and stability is possible with machine learning algorithms
based on radiomics data [27].

Choi et al. [21] investigate the potential of radiomics to serve as an imaging biomarker for
GBM patients while using a radio-genomics approach to explore the molecular rationale
behind radiomics. Choi et al. extract the radiomics features used in the research from
multiple habitats of the GBM and multi-parametric MRI data [21]. Choi et al. use the
Cox-LASSO algorithm to build a survival prediction model that is the basis for their
findings [21]. Based on their results, Choi et al. [21] conclude that radiomics has the
potential to act as an imaging biomarker regarding the clinical and genomic significance,
which they confirmed by the integrated radio-genomics approach [21].

6.2 Deep Learning & Glioblastoma
With the increasing popularity of deep learning, several studies (e.g., [5], [26], [55], [105])
incorporate deep learning in research regarding GBMs. Training deep learning models
can improve results compared to (traditional) machine learning algorithms but require
data sets that are large [55]. In medical imaging analysis, data sets are often not large
enough for deep learning algorithms to reach their full potential [55], which is why
Lao et al. [55] use transfer learning and fine-tuning. Apart from the features extracted
via deep learning, Lao et al. extract (handcrafted) radiomics features from MRI data [55].
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Combining radiomics features and features extracted via deep learning, Lao et al. generate
radiomics signatures with the LASSO Cox regression model to predict the overall survival
and patient stratification, which indicates the potential of incorporating deep learning
regarding pre-surgery care of GBM patients [55].

Bae et al. [5] evaluate the generalizability and diagnostic performance of deep learning
and traditional machine learning models for differentiating single brain metastasis from
GBMs using radiomics. This differentiation is significant, as the diagnostic workup and
treatment following differs between the two diseases since the treatment depends on
identifying the primary tumor and the current tumor-spreading status in case of a brain
metastasis [5]. Deep learning using radiomics features can help differentiate metastasis
from GBMs without neglecting generalizability [5].

Fu et al. propose a fully automatic workflow for survival prediction of GBM patients using
deep learning [26]. Fu et al. use a 3D CNN for automatic segmentation of the GBMs,
which they use to generate tumor contours for several GBM patients [26]. Handcrafted
radiomics features are extracted from auto-contours of explicitly designed algorithms,
while a pre-trained CNN extracts the deep learning features [26]. To create handcrafted
and deep learning signatures, Fu et al. [26] train Cox regression models with regularization
techniques. The 3D CNN proposed generates accurate GBM contours, and the deep
learning-based signature outperforms the signature created from handcrafted radiomics
features [26]. Fu et al.’s results demonstrate the potential of improving survival prediction
and patient stratification with the automatic workflow proposed [26].

Wong et al. [105] use deep learning to discover prognostic genes for GBM patients’
survival. To assess the predictive value of the deep learning features in addition to clinical,
methylation, and mutation factors, Wong et al. use univariate and multivariate Cox
survival models [105]. Compared to traditional machine learning methods, including the
ridge, adaptive LASSO, and elastic net Cox regression models, deep learning provides non-
redundant prognostic covariates for patient survival [105]. The findings of Wong et al. show
that the deep learning model learns genes related to GBM stem cells and treatment-
resistant genes [105]. Using the approach proposed, Wong et al. identify many specific
genes which can be potential biomarkers or targets for treatment [105].

In their study, Ma et al. [60] propose two CNN models to predict the glioma’s grade based
on pathological and radiological data. One of the models presented by Ma et al. is based
on a ResNet for classifying 2D slices of pathological data [60]. The results achieved with
the CNN-based models proposed suggest that these models can improve the accuracy of
glioma grading since the models performed well at the CPM-RadPath-2019 challenge [60].
The models presented by Ma et al. have the potential to support the diagnosis and
treatment planning of glioma for radiologists and pathologists [60].

41



6. State-of-the-Art: Image Analysis in Brain Tumors

6.3 Prediction of Tumor-Infiltrating Lymphocytes
The prediction of TILs based on analysis of MRI data is subject to some studies, e.g., [9],
[37], [52], [57], [106], [110]. Ku et al. [52] predict TILs in triple-negative breast cancer
patients based on MRI data. Ku et al. divide the patients into two groups for the
analysis, one with high TIL levels and one with low TIL levels [52]. The results of
Ku et al. demonstrate that the prediction model proposed can help to identify TIL levels
in triple-negative breast cancer patients and has the potential to be used as an imaging
biomarker [52].

The prediction model proposed by Bian et al. [9] could predict the TILs for patients with
pancreatic ductal adenocarcinoma. Bian et al. split the patients into score-high TILs
and score-low TILs groups, where the Cox regression model acquires the TILs score [9].
They use the LASSO and the extreme gradient boosting to select features and construct
the prediction model [9]. Bian et al.’s findings demonstrate that the model based on the
extreme gradient boosting could predict the TILs and support clinical decision-making
for immune therapies [9].

Li et al. [57] present another study investigating pancreatic ductal adenocarcinoma,
where they use a multilayer perceptron network to predict the CD20+ expression in
that tumor [57]. Novel therapeutic targets are necessary for treating pancreatic ductal
adenocarcinoma as conventional chemotherapy has limited benefit [57]. The network
proposed is based on radiomics features extracted from MRI data and selected by the
minimum absolute contraction and selective operator logistic regression algorithms [57].
The findings of Li et al. demonstrate that predicting the CD20+ expression for patients
suffering from pancreatic ductal adenocarcinoma is possible by utilizing a multilayer
perceptron network [57].

Jeon et al. [37] propose an MRI-derived radiomics signature to predict CD8+ TIL density
changes in chemoradiotherapy patients with rectal cancer. They utilize the LASSO
method on MRI-derived radiomics data to establish a radiomics signature [37]. The
findings of Jeon et al. suggest the utilization of radiomics-immunophenotype modeling in
clinics for evaluating the tumor immune status following neoadjuvant chemoradiation in
rectal cancer [37].

As TILs establish themselves as a prognostic indicator of immunotherapy, Çelebi [110]
investigate the effectiveness of imaging features regarding the prediction of histologic
stromal TIL levels in invasive breast cancer patients [110]. Çelebi et al. use logistic
regression analysis to find the statistically significant parameters in predicting histologic
stromal TIL levels [110]. The findings of Çelebi et al. show that imaging features can play
a role as an adjunct tool in uncertain situations and could improve the biopsy results’
accuracies [110]. As Çelebi et al. conclude, their approach could give imaging features an
opportunity for the prognosis prediction of invasive breast cancer patients [110].

Wu et al. provide an overview of studies about radiogenomics in the era of immunother-
apy [106]. They inform about the high potential of studies confirming the link between
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radiological imaging and tumor immune microenvironment [106]. However, most studies
have issues regarding the small sample size and external validation [106]. As future
studies will advance and investigate radiogenomic relations on promising evidence, these
studies can propose predictive biomarkers for selecting patients who will benefit from
immunotherapy [106]. Wu et al. state that it may be possible to non-invasively monitor
and assess the molecular and tumor microenvironment’s evolutions during the treatment
with reliable radiogenomic surrogates [106].

6.4 Summary
This chapter presents state-of-the-art image analyses of brain tumors. First, this chapter
focuses on image analysis using radiomics as a methodology. Afterward, state-of-the-art
using deep learning as a method is presented. Then, various studies are described that
predict TILs using image analysis.
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CHAPTER 7
Methodology

This chapter describes the methodology of the thesis. The state-of-the-art and background
information provided in the previous chapters are the basis for this thesis’ methodology.
The beginning of the chapter introduces TIL markers as they serve as the actual prediction
targets for the experiments. Following the TIL markers, a section provides the image
preprocessing steps taken. Preprocessing of the medical images is used since the images
contain the entire head, while only the brain is needed. In addition, the same section
describes the ROI segmentation used for the experiments. Afterward, the chapter provides
the methodology of the radiomics approach, consisting of descriptions regarding the
feature extraction, the machine learning models, and the methods used for voxel-based
experiments. The beginning of the methodology regarding the deep learning approach
provides the preprocessing and data augmentation used, while the section presents the
actual deep learning model afterward. In the end, this chapter describes the evaluation.

7.1 Prediction Targets
This study does not use the TILs directly as prediction targets, but specific characteristics
of the TILs, the so-called TIL markers. This section describes the individual TIL markers
used as prediction targets. Afterward, it provides the management applied to handle
outliers of TIL markers.

TIL marker

TIL markers are characteristics of a TIL used in the experiments.

Positive describes the total number of TILs in the tissue analyzed. The term ypos
j

denotes the ground truth value of this marker for a sample j.

Negative provides the total amount of cells not regarded as Positive. The term yneg
j

denotes the ground truth value of this marker for a sample j.
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Density defines the density of the TILs per mm2. The term yden
j denotes the ground

truth value of this marker for a sample j.

Percentage labels the relative share of the TILs in the tissue analyzed. Equation 7.1
provides the formula for calculating this marker. The term yper

j denotes the ground truth
value of this marker for a sample j.

yper
j =

ypos
j

ypos
j + yneg

j

(7.1)

Each TIL marker is present for every TIL, i.e., CD3+ Density, CD3+ Percentage, CD3+
Positive, CD3+ Negative, CD8+ Density, and so on. As a result, there are 12 separate
prediction targets for the experiments. Clinicians acquire the values of each TIL marker for
the patients in the data set with the Definiens software (Definiens AG, Munich, Germany),
but not every TIL marker is present for each patient. In most cases, clinicians do not
capture the TIL (and thus the TIL markers) during the data acquisition. Additionally,
this study regards a few individual TIL markers as outliers and excludes those from the
experiments.

Outlier Management

This study uses a criterion for possible outliers of TIL markers as outliers struck out
while studying the data set. If a value yj fulfills the criterion denoted in Equation 7.2,
this study uses it in the experiments, otherwise, this value is regarded as an outlier:

µtm − 2 ∗ σtm < yj < µtm + 2 ∗ σtm, (7.2)

where µtm is the mean of the values of TIL marker tm and σtm is the corresponding
standard deviation. As this criterion is applied for each TIL marker individually, the
experiments may use PD1+ Density from a patient, but not PD1+ Negative. The TIL
markers cleared of outliers are used for all experiments of both radiomics and deep
learning approaches.

7.2 Image Preprocessing
This study preprocesses the MRI sequences, FLAIR and T1c, before using them in the
radiomics or deep learning approach. This section provides the methodology used for
image preprocessing. One part of the preprocessing is the ROI segmentation, while a
step referred to as skull stripping preprocesses the MRI images. Equation 7.3 denotes
the image preprocessing mathematically for a sample j:

Ipreproc
j = fpp(Iacquired

j ), (7.3)

where Ipreproc
j denotes the resulting preprocessed image, fpp() describes the preprocessing

steps, and Iacquired
j is the imaging data acquired.
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7.2.1 Region-of-Interest Segmentation
The ROIs used in this thesis are segmented by two independent clinicians, whereas they
agreed on a usual segmentation if their segmentations differ. One segmentation builds
upon the FLAIR sequence, where the segmentation covers the high contrast area, which
refers to the GBM and the peritumoral edema - this study calls that segmentation edema.
The T1c sequence is the basis for the other segmentation that covers the GBM, which
is the contrast-enhanced region displayed in the MRI image. This thesis refers to that
segmentation as tumor.

7.2.2 Skull Stripping
The preprocessing of the MRI sequences aims to remove the unnecessary parts of the
head displayed in the MRI, which is everything except the brain and to homogenize
the MRI images. The process of skull stripping consists of a few steps described in
the following and uses FMRIB Software Library (FSL; https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FSL), ImageMagick (https://imagemagick.org/), FreeSurfer
(https://surfer.nmr.mgh.harvard.edu/) and Advanced Normalization Tools
(ANTs; https://stnava.github.io/ANTs/).

Resampling: This step ensures that every voxel covers the same volume across all
samples [95], e.g., a voxel covers 1mm3. Without resampling, the size represented by a
voxel can differ between samples making the radiomics features extracted incomparable.

Reorient and Crop: Reorienting the MRI sequences is necessary, as some patients
might have their heads slightly tilted during the MRI scan. Cropping the MRI sequences
removes unwanted parts or artifacts outside the skull [35]. Reorienting and cropping
the MRI sequences supports the following preprocessing steps as these steps remove
unwanted data and simplify brain extraction and registration.

Bias Field correction: As Juntu et al. [40] explain, MRI machines can corrupt MRI
images with the so-called bias field signal, which is a smooth and low-frequency signal.
The results of algorithms using the pixel’s graylevel values (e.g., texture analysis) will be
unsatisfactory if the experiments use corrupted MRI images. Hence, correcting the bias
field of the MRI images is a necessary step for the experiments of this thesis.

Brain extraction: For the experiments of this thesis extracting the brain from the
head displayed in the MRI image is advantageous. Brain extraction causes the images to
contain only the brain and reduce the file size, which speeds up computation since less
information needs to be processed. Furthermore, the intensities of the bones, eyes, etc. do
not affect the intensity rescaling step and thus do not affect the features extracted.

Registration: Registration ensures that both MRI sequences are within the same
coordinate system, which is necessary for feature extraction [95]. Without registration,
the ROI would only be available to the MRI sequences for which it is segmented. However,
as this study uses both MRI sequences (FLAIR and T1c) for feature extraction, the ROI
must be available for both MRI sequences. This thesis investigates all three possibilities.
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The first option regards the FLAIR sequence as the registration target - this method is
later called flair. Using the T1c sequence as the target is the second method, called t1c.
The third option registers only the ROI while the sequences remain in their respective
spaces - orig refers to this method.

Intensity Rescaling: The intensity of an MRI image impacts the features extracted
significantly [95]. Without rescaling, the predictive features learned by a machine learning
model can focus on the intensity difference between the images caused by the MRI scanner
settings and may not originate from the tissue in the ROI [95]. Intensity rescaling reduces
that impact and causes the features extracted to focus more on the actual content of the
MRI image.

Figure 7.1 displays how the image preprocessing steps affect the MRI images. The images
on the left display the original images captured by the MRI with the FLAIR sequenced
shown in Figure 7.1a, and T1c displayed in Figure 7.1c. Figure 7.1b displays the FLAIR
image after the preprocessing steps, Figure 7.1d the T1c image after preprocessing. In
both examples, the intensity rescaling causes a higher contrast, while the removal of the
skull can be seen as well, especially for the FLAIR sequence.

(a) (b) (c) (d)

Figure 7.1: Illustrates the effects of the image preprocessing steps on the MRI images
acquired. Figure a displays the original FLAIR sequence while Figure b shows the image
preprocessed. For the T1c sequences, Figure 7.1c shows the original MRI image acquired
and Figure d displays the T1c image preprocessed. (Source: The GBM images displayed
are from the data set used in this thesis.)

7.3 Radiomics Approach
This section provides the methodology of the radiomics approach and build upon the
state-of-the-art provided in the chapter above (see Chapter 3 and 4). Firstly, this section
explains the methods used for feature extraction. The machine learning models use
radiomics features extracted to find patterns and predict new, unseen data samples.
This part presents the methods used for elastic net and random forest. Voxel-based
experiments can visualize the origin of the (predictive) features extracted, providing
an opportunity to see where the most predictive parts of the ROI are. The end of this
section provides the methods for the voxel-based experiments.
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7.3.1 Feature Extraction
The different image registration methods and ROIs provided during the preprocessing
allow for six different settings (2 ROIs * 3 image registration methods). Moreover,
an additional setting is created by applying wavelet filters for all six original settings,
as studies report their positive impact [1], [42]. As a result, there are twelve settings
investigated in total by the radiomics approach - six settings that use the radiomics
features only and another six settings that utilize the radiomics features and the wavelet
features. This thesis uses the open-source Python-based software PyRadiomics [30] to
extract the radiomics features. The features extracted can be categorized as either

• Shape-based,

• First-order statistics,

• Gray Level Co-occurrence Matrix (GLCM),

• Gray Level Size Zone Matrix (GLSZM),

• Gray Level Run Length Matrix (GLRLM),

• Neighboring Gray Tone Difference Matrix (NGTDM),

• Gray Level Dependence Matrix (GLDM), or

• Wavelet-based (only present if the setting uses wavelet-filters)

features [73]. The features are extracted for each setting individually. The feature values
of different settings are not the same since the settings used for their extraction are not
the same, e.g., the settings differ regarding the ROI used (i.e., one setting uses the edema
ROI, while the other uses the tumor ROI), or regarding the use of wavelet filter.

Equation 7.4 describes the extraction of radiomics features for sample j mathematically:

&xradiomics
j = ffe(Ipreproc

j ) with &xradiomics
j ∈ R, (7.4)

where &xradiomics
j is the radiomics feature vector, ffe() the feature extraction process, and

Ipreproc
j the preprocessed image.

7.3.2 Machine Learning Model
The radiomics features extracted build the basis for the machine learning models, which
try to find patterns in the training data and predict new, unseen data samples. The
thesis uses the two machine learning methods Elastic Net mEN and Random Forest mRF .
Afterward, this part describes the methodology used for the voxel-based experiments.
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Elastic Net

As described in the state-of-the-art in Section 4.3, elastic nets are a generalization of
LASSO that use additional parameters. For the experiments, this thesis uses the Python-
based glmnet [25] for the elastic net. Before the radiomics features extracted are handed
to the elastic nets as the input, they are z-scored. The parameter α is a value in the range
[0, 0.1, 0.2, . . . , 1], resulting in 11 elastic nets trained for each TIL marker and setting.
The other parameter λ is chosen by the elastic net itself, whereas out of 100 values, the
one that results in a minimal MSE. Equation 7.5 describes how a elastic net model mEN

predicts a value ŷj mathematically based on the feature vector &xradiomics
j .

ŷj = mEN (&xradiomics
j ) (7.5)

Random Forest

The methodology of random forests follows the state-of-the-art described in Section 4.4.
Before random forests use the radiomics features extracted, the algorithm z-scores them.
This study uses the Python-based software scikit-learn [71] as random forest regressor.
Each random forest consists of 100.000 trees. Compared to elastic nets, only one random
forest is calculated per combination of TIL marker and setting since the random forest does
not have a parameter like the elastic net’s α. Equation 7.6 describes how a random forest
model mRF predicts a value ŷj mathematically based on the feature vector &xradiomics

j .

ŷj = mRF (&xradiomics
j ) (7.6)

7.3.3 Visualizing Predictive Features
The voxel-based experiments use the results obtained from either elastic net or random
forest and are only exemplary. They visualize the most predictive features of a result and
illustrate their origin within the ROI. The steps taken to accomplish this are presented
in the following.

1. Three results in total are chosen - one result per TIL - e.g., the results of elastic
nets with α = 0.1 for PD1+ Density in the setting tumor/orig. The following steps
are done for each of the three results chosen.

2. The top 5 features of the result are identified. This is accomplished by focusing on
the feature coefficients (if it is an elastic net model mEN ) or the Gini-impurities
(in the case of a random forest model mRF ). Both indicate the importance of a
feature, the higher the value, the more important the feature. As a result, these
coefficients are ranked, and the top 5 entries are chosen.

3. Each of the 5 features chosen is re-calculated for each voxel of ROI used in the
setting by PyRadiomics [30] (e.g., for each voxel of the tumor ROI in the example
mentioned above). This results in one file per feature, which holds the information
where that feature is how strong.
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4. These files are in the .nrrd format and need to be converted to the NIFTI
format used by the original files for visualizing them. This thesis uses a special
Python-based tool (see [11]) for this step.

5. Furthermore, this work uses ANTs and FSL for rescaling the intensity of the voxel
features and for aligning the images with the voxel features with the original imaging
data.

Overlaying the original imaging data with the voxel images highlights the areas of the
ROI where that feature is particularly strong. This illustrates the regions that give these
top features their predictive power and show which parts of the ROI have a significant
impact on predicting the TIL marker.

7.4 Deep Learning Approach
This section presents the methodology of the deep learning approach based on the
state-of-the-art presented in Chapter 5. A task before using the deep learning model is
applying image preprocessing and data augmentation. The deep learning model uses these
further preprocessed and augmented images. This section provides the methods used
for preprocessing, data augmentation, and the deep learning model. The experiments
with the deep learning approach are not as far-reaching as the radiomics approach’s
experiments since this study considers the deep learning approach a proof of concept.
Regarding the TIL markers available, the deep learning approach investigates only the
density markers, i.e., CD3+ Density, CD8+ Density, and PD1+ Density.

7.4.1 Preprocessing & Data Augmentation
The preprocessed images (see Section 7.2) need further preprocessing for the CNN to use
them. As the CNN uses the images directly as input, compared to the radiomics approach
that uses the radiomics features extracted, the images need to be further reduced in
size to achieve a feasible computational speed. First, the algorithm uses only a 2D
slice instead of the entire 3D MRI sequence (similar to Shboul et al. [85]), whereas the
algorithm chooses the 2D slice with the largest ROI in the horizontal plane.

After slicing all images, the algorithm rescales them to a consistent size. Afterward,
augmentation of the images increases the image number for training the CNN. The
algorithm applies the following data augmentations to each image:

1. Flipping horizontally,

2. Flipping vertically,

3. Flipping horizontally and vertically,

4. Rotating the original image 90° counter-clockwise,
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5. Rotating the image flipped horizontally 90° counter-clockwise,

6. Rotating the image flipped vertically 90° counter-clockwise,

7. Rotating the image flipped horizontally & vertically 90° counter-clockwise,

8. Performing a random affine transformation to all of the above and the original
image,

9. Performing random noise to the original image and all augmentations from (1-7),
and

10. Performing a random elastic deformation to the original image and all augmentations
from (1-7).

With this, the data augmentation creates 31 images for each original slice, resulting in
32 images per sample in the original data set. The algorithm uses PyTorch (https:
//pytorch.org/) for the augmentations 1-7 mentioned above, and TorchIO [74] for
the augmentations described in 8-10.

7.4.2 Deep Learning Model
This study uses a modified PyTorch ResNet50 as a deep learning model mNN for the
experiments as Ma et al [60] achieved favorable results with a ResNet50 in a related
study. The modifications concern the convolutional first and the fully-connected layer of
the ResNet. The first convolutional layer’s modification is necessary to accommodate
the two images (one for each MRI sequence) as a single input with two channels to the
ResNet50. The fully-connected layer’s adaptation causes the output layer to consist of
only one neuron, as the output is a single number. The CNN uses MAE as a cost function
with the Adam optimizer. The ResNet50 used is not pretrained, causing the results to
only depend on the input images. The algorithm tries to find applicable values for the
parameters learning rate and number of epochs with a grid search. The possible values
for the learning rate are 5 ∗ 10−4, 5 ∗ 10−5, and 5 ∗ 10−6. The values for the number of
epochs are 90, 100, 110, and 120.

Compared to the radiomics approach, the deep learning approach investigates fewer
combinations of ROI and registration methods due to the characteristics of a CNN. The
deep learning approach does not investigate the combinations using the wavelet filters, as
the CNN uses the images directly as input and not features extracted. On the contrary,
a CNN extracts the features from the images provided, which means investigating these
combinations of ROI and registration method is unintended. Furthermore, this approach
does not investigate all settings with the registration method orig since the CNN receives
the two images as input channels. The images registered with the orig method are (most
likely) not congruent as the ROI is registered and therefore altered. As a result, the images
used as input channels would not be exactly of the same size or show the same part of the
GBM. This concludes that the deep learning approach only investigates the remaining
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four combinations of ROI and registration method: tumor/flair, tumor/t1c, edema/flair,
and edema/t1c.

Equation 7.7 describes how a CNN mNN predicts a value ŷj mathematically based on
the imaging data INN

j .
ŷj = mNN (INN

j ) (7.7)

7.5 Evaluation
This section presents the evaluation methods used in this thesis. Firstly, this section
provides the evaluation methods used for the radiomics approach. Afterward, this section
describes the evaluation methodology of the deep learning approach. This work uses the
Python-based software library seaborn [99] for visualizing evaluation results.

7.5.1 Evaluation of Radiomics Approach
We evaluate the accuracy of predicting TIL markers from imaging data with mEN

and mRF . The evaluation methodology used by elastic nets and random forests is the
same and builds upon cross-validation, which follows the state-of-the-art described in
Section 4.5. With cross-validation, all samples are part of a test set at some point,
which is advantageous for this study since a dedicated test set could contain only high
or low values of a TIL marker if chosen at random. In addition, cross-validation allows
testing the generalizability of the results with all samples. The experiments of elastic
nets and random forests use LOOCV and 10-FCV. LOOCV uses all but one sample
for training, which provides the machine learning method with more data for learning.
On the contrary, 10-FCV allocates more samples for testing purposes, making it more
representative.

The evaluation process correlates the TIL marker values for the test samples predicted
with their corresponding ground truth values. This thesis uses the Spearman method
to calculate the correlation, because it focuses on the monotonic relationship instead of
the linear relationship [81], which is an advantageous property since the Python-based
glmnet implements the naïve elastic net [25]. In addition, the Spearman coefficient is
relatively robust against outliers [81]. A positive correlation indicates that the model
learned (at least part of) the TIL marker values’ distribution based on the radiomics
features extracted. Due to that, a negative correlation would make no sense, as that
would mean that the values predicted would decrease while the ground truth increases.
As a result, a negative correlation can be regarded as no correlation since the model
learned is not predictive.

For summarizing evaluations of the correlations achieved, results are regarded as predictive
if the Spearman correlation r > 0.2 and p < 0.05. The elastic net algorithm trains multiple
elastic nets for each TIL marker and setting due to the α parameter. The predictive
results are counted for each TIL marker and setting combination, evaluating how robust
the prediction is.
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The stability of the predictive features chosen is subject to further evaluation. This
evaluation builds on the feature coefficients of the elastic nets and the Gini-impurity
of the random forests. In both cases, the values are averaged across all samples and
normalized. Visualizing these averaged results allows a qualitative evaluation. The
evaluation of the voxel-based experiments is qualitative and visual.

7.5.2 Evaluation of Deep Learning Approach

We evaluate the accuracy of predicting TIL markers from imaging data with mNN . The
evaluation of the deep learning approach does not use cross-validation since that would
be infeasible with a CNN. Instead, it builds upon splitting the available data into two
subsets, the training set, and the test set. The test set contains 20% of the original data
set, while the remaining 80% are part of the training data set. While the size of the test
set is higher in related work, e.g., Fu et al. [26] uses about 25%, the total size of the data
set in related work is higher as well. However, since data set available to this work is
only half to about a third (depending on the TIL marker) of Fu et al.’s data set size, the
training set size is increased to 80% to provide more information to the CNN during
the training. The training process of the CNN uses only data from the training set. A
randomized stratification algorithm chooses the samples for the test set. The stratification
allows a more equalized representation of the data distribution by the test set since the
target TIL marker values distribution is unequal. A non-stratified randomized choice
of test samples bears the risk that the test set can contain only samples with high TIL
marker values. In that case, the training set could consist of samples with lower TIL
marker values only, which could cause the model learned to miss important information
for samples in the test set. While the training uses all augmented images, the testing
process only uses the original slices. Algorithm 7.1 illustrates the stratification process of
the test set. The TIL marker values investigated are z-scored based on the samples in
the training set.

Algorithm 7.1: ResNet Test set Stratification Algorithm
Input: A vector &x with the samples; a vector &y with the targets
Output: &xtrain with the training samples; &xtest with the test samples

1 ntest ← 
n ∗ 0.2�
2 nbins ← n / ntest

3 &ysorted ← sort(&y)
4 &xtest ← ∅
5 for q ← 0 to ntest − 1 do
6 z ← random number from 
q ∗ nbins� to min(
(q + 1) ∗ nbins�, nbins − 1)
7 add element of &x corresponding with &ysortedz

to &xtest

8 end
9 &xtrain ← &x \ &xtest

10 return &xtrain and &xtest
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At first, the evaluation process evaluates the CNNs trained with the samples for the train-
ing set. The process correlates the values predicted with their respective ground truth
with the Spearman correlation method. The next step is choosing the parameter values
for the learning rate and the number of epochs of the CNN with the highest correlation
for each grid search. In addition, the significance of the CNN has to be lower than 0.05,
i.e., p < 0.05. Afterward, the process evaluates the CNN chosen with the test set to assess
the generalizability of the deep learning model. The evaluation of the test set correlates
the values predicted with their corresponding ground truth with the Spearman method.
A positive correlation indicates that the ResNet model learned generalizes well, while a
correlation near 0 and a negative correlation suggests the model does not generalize well.
The evaluation process also visualizes the gradients of the model’s layers for a training and
test sample. The visualizations build upon the PyTorch-based software tool (https://
github.com/vickyliin/gradcam_plus_plus-pytorch) and provide Gradient-
weighted Class Activation Mapping (GradCAM) [84] and GradCAM++ [20]. These
visualizations allow a qualitative evaluation of areas where the predictive features origi-
nate.

7.6 Summary
This chapter introduces the methodology of this work. First, the targets of the predictions
are provided. Following that, the image preprocessing steps taken are provided, including
the ROI segmentation used in this study and the skull stripping process. The methods
used by the radiomics approach are described, consisting of feature extraction methods
and machine learning models (elastic nets and random forests) to analyze the features
extracted. In addition, methods to visualize predictive features are presented. Then the
deep learning approach used in this work is presented, which consists of further image
preprocessing and data augmentation, and the deep learning model itself - a modified
ResNet50. In the end, the methodology used for evaluating the prediction accuracy of
the different approaches is introduced.
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CHAPTER 8
Experiments & Results

This chapter describes and presents the results of the thesis. First, this chapter provides
the results acquired through the experiments with the radiomics approach. The part about
the radiomics results presents the experiments & results with elastic nets and random
forests. Furthermore, that part shows the results of exemplary voxel-based experiments.
Afterward, the results achieved with the deep learning approach are presented. This
chapter only provides the presentation and description of the experiments and results,
while the following chapter provides the discussion. We compare results for different ROI
definitions, different features, and different MRI sequences.

The different ROIs provided and image registration methods used during the preprocessing
allow various combinations. The labels used have a dedicated structure, which is

<ROI><wavelet filters>/<registration method>.

The first part provides the ROI used for that setting, followed by information about the
use of wavelet filter features. The second part shows the registration method used during
the image preprocessing. The three components can have the following values:

ROI:

• edema indicates that this setting uses the segmentation of the FLAIR sequence

• tumor indicates that this setting uses the segmentation of the T1c sequence

wavelet filters: The suffix _wv of the ROI used indicates the use of wavelet filters for
that setting. If the ROI does not have such a suffix, only the radiomics features without
the wavelet filters are used in that setting.
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registration method:

• flair indicates that the method registers the T1c sequence of the patient onto the
FLAIR sequence

• t1c indicates that the method registers the FLAIR sequence of that patient onto
the T1c sequence

• orig indicates that neither sequence is registered, which means that this setting
used both sequences with their respective original space

Due to these values, possible labels for settings are, e.g., edema/orig, tumor_wv/t1c,
or tumor/flair.

8.1 Data

Clinicians use MRI scanners to capture the imaging data and the Definiens software
(Definiens AG, Munich, Germany) to calculate the TIL markers from histology. Table 8.1
summarizes the number of samples used in the experiments. The number of samples
available for a TIL marker counts how many samples have the FLAIR and T1c sequences
and the corresponding TIL marker. The outlier column displays how many samples are
outliers since these samples do not meet the rule mentioned in Section 7.1. The last
column provides the number of samples for each TIL marker available for the experiments.

TIL marker Samples available Outliers Total data samples
CD3+ Density 91 3 88
CD3+ Positive 91 3 88
CD3+ Negative 91 3 88
CD3+ Percentage 91 4 87
CD8+ Density 77 1 76
CD8+ Positive 77 0 77
CD8+ Negative 77 2 75
CD8+ Percentage 77 1 76
PD1+ Density 59 2 57
PD1+ Positive 59 3 56
PD1+ Negative 59 2 57
PD1+ Percentage 59 3 56

Table 8.1: Summarizes the data available for each TIL marker

58



8.2. Results of the Radiomics Approach

8.2 Results of the Radiomics Approach
This section provides the results achieved with the radiomics approach. First, this section
presents the results of the elastic nets. The second part shows the results acquired with
random forests. Finally, the results of the visualization of predictive features in the
imaging data are shown.

8.2.1 Results: Elastic Net
Figure 8.1 displays the results achieved by the experiments with elastic nets and 10-FCV.
Figure 8.1a summarizes the correlations between the ground truth of the TIL values and
their predicted counterparts for different combinations of features, ROI, and registration.
The x-axis holds the different TIL markers, namely Density, Positive, Negative, and
Percentage for CD3+, CD8+, and PD1+. The labels for the y-axis (rows of the heatmap)
show the combination (features, ROI, registration) used for the experiment.

For each entry in the heatmap, e.g., for PD1+ Density in the setting tumor/orig, 11
elastic nets with α = {0, 0.1, . . . , 1} are fitted. The elastic net with α = 0 corresponds to
a ridge regression, while an elastic net with α = 1 corresponds to a LASSO [109]. Due to
the absence of a dedicated test set, the evaluation method uses 10-FCV. The evaluation
method calculates the Spearman correlation coefficient r of TIL values predicted with
the ground truth provided. If r > 0.2 , the elastic net with the α used is considered
as predictive. Figure 8.1b is structured in the same way as Figure 8.1a. The resulting
elastic nets for each entry in Figure 8.1b are considered predictive, if not only r > 0.2,
but the corresponding p-value p meets p < 0.05 as well.

The results displayed indicate that PD1+ Density can be predicted as long as the tumor
ROI is used. On the contrary, all markers of PD1+ remain unpredictable if the edema
ROI is part of the setting, likewise the markers of CD3+ are unpredictable when using the
tumor ROI. Moreover, PD1+ is the only TIL where the markers Density and Percentage
can be predicted, while Positive and Negative are unpredictable. Contrary to that, only
the markers Positive and Negative can be predicted for the TILs CD3+ and CD8+. The
results displayed in both figures are similar, which shows that most elastic nets which
have r > 0.2 also meet p < 0.05.

Experiments for the setting tumor/orig

The experiments provided here evaluate the predictability of the elastic nets for various
TIL markers for the setting tumor/orig. Figure 8.2 displays the correlation results. The
x-axis holds the different α values for the elastic nets, while the y-axis shows the TIL
markers. A red cell indicates a positive correlation, and a blue cell a negative correlation.
The darker the color, the stronger the correlation, i.e., a dark red cell indicates a stronger
positive correlation, and a dark blue cell indicates a strong negative correlation.

The results displayed in Figure 8.2 show that elastic nets can predict PD1+ Density
the best. Additionally, the results displayed reveal that the α parameter influences the
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(a) (b)

Figure 8.1: Overview of the results achieved with the elastic nets and 10-FCV. The more
elastic nets are predictive for a combination of TIL marker and setting, the darker the
green tone.

correlation’s strength, but not if a TIL marker is predictable (has a positive r) or not.
This indicates that this is related to the TIL markers themselves and not to the choice of
the α parameter.

Prediction accuracy of PD1+ Density

This part presents experiments and detailed results for the TIL marker PD1+ Density
in the setting tumor/orig. The experiments provided here evaluate the predictability of
the elastic nets for PD1+ Density in the setting tumor/orig. Figure 8.3 illustrates the
detailed correlation results for the different α values of PD1+ Density in the tumor/orig
setting. Each plot displays the ground truth, the prediction results, and the correlation
resulting from them for the elastic nets with a certain α value. The header of each plot
shows the α value used, the Spearman correlation coefficient r, and the significance of
the correlation p. As an example, for the plot in the top right corner of Figure 8.3, a
α value of 0.1 has been used and the resulting r is 0.423 with a p of 0.001. The x-axes
display the ground truth labels, while the y-axes show the predicted values.

The correlations displayed in Figure 8.3 are similar, which suggests that PD1+ Density
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Figure 8.2: Correlation results of the elastic net with 10-FCV in the setting tumor/orig.
The darker the color tone, the stronger the correlation, whereas red represents a positive
correlation and blue a negative correlation.

can be predicted in the tumor/orig setting with elastic nets. However, the results also
indicate that the α parameter influences the prediction accuracy achieved. A lower value
for α, e.g., 0.1 or 0.2 causes the elastic nets to predict the TIL markers more accurately,
compared to elastic nets using a higher value for α, e.g., 0.8 or 0.9.

Stability of features predicting for PD1+ Density

The experiments provided in this part evaluate the stability of the elastic nets for PD1+
Density in the setting tumor/orig in choosing predictive features. Figure 8.4 shows the
predictive features chosen by the elastic nets for the setting tumor/orig. A feature is
predictive and chosen by the elastic net algorithm if its coefficient is not zero. The x-axis
of Figure 8.4 holds all the features, while the y-axis holds the different α values of the
elastic nets. Counting how many times a feature coefficient is non-zero in the elastic nets
results for each feature and α value creates the heatmap displayed in Figure 8.4. The
darker the green tone of a cell is, the more often the corresponding feature coefficient is
non-zero. As a result, the heatmap shows the features chosen and the choice’s stability.

The results displayed in Figure 8.4 suggest that elastic nets choose the most predictive
features independent of the α value used. This indicates the stability of the predictive
features as elastic nets keep repeating their choice of features driving the prediction.
Appendix A provides further results of the elastic net experiments. These outcomes
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Figure 8.3: Correlation plots of the elastic nets with 10-FCV for the PD1+ density marker
in the tumor/orig setting. A different α value is the basis for each result displayed in a
plot. The header of each plot displays the α value, the Spearman correlation coefficient r,
and the corresponding significance p. The x-axes display the ground truth labels, while
the y-axes show the predicted values.

demonstrate that the radiomics approach using elastic nets can predict other TIL markers
in different settings.

8.2.2 Results: Random Forest
Figure 8.5 displays the results achieved by the experiments with random forests and
10-FCV. Figure 8.5a displays the correlations between the TIL values’ ground-truth and
their predicted counterparts for multiple settings. The x-axis holds the different TIL
markers, namely density, positive, negative, and percentage for CD3+, CD8+, and PD1+,
e.g., the last column of the heatmap contains PD1+ percentage. The labels for the y-axis
show the setting used for the experiments. Compared to the results of the elastic net
and Figure 8.1a, Figure 8.5a displays only two green tones, since the random forests do
not have a parameter α like an elastic net. Due to that, the correlation either meets the
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Figure 8.4: Stability of the features chosen by the elastic net for the tumor/orig setting
and the PD1+ density marker for various α values. The darker the green tone, the more
often the corresponding feature is considered predictive by the elastic nets. The x-axis
holds the radiomics features extracted, while the y-axis holds the different α values.

threshold of r > 0.2 or does not.

The results displayed in Figure 8.5b take the correlation and the significance into account.
A result is predictive, if r > 0.2 and p < 0.05.

The results displayed indicate that PD1+ Density can be predicted as long as the tumor
ROI is used. On the contrary, all markers of PD1+ remain unpredictable if the edema
ROI is part of the setting. Moreover, CD8+ is the TIL whose markers can be predicted
most with CD8+ Positive sticking out especially. Contrary to that, CD3+ is almost
unpredictable. Furthermore, the results are worse when using the ROI edema with the
wavelet filters compared to the other settings. The results displayed in both figures are
similar, which shows that the majority of random forests meet both criteria - r > 0.2
and p < 0.05.

Prediction accuracy for the tumor/orig setting

The experiments evaluate the prediction accuracy of random forests for the tumor/orig
setting. Figure 8.6 shows the correlation between the TIL values predicted and the
ground truth obtained with a random forest and 10-FCV. The predictions are along the
y-axes of the plots, the ground truth along the x-axes. The title of each figure states the
TIL, the Spearman correlation coefficient r, and the p value.

The results displayed in Figure 8.6 show that random forests can predict PD1+ Density
and CD8+ Positive. However, random forests are not able to predict the other TIL
markers in the tumor/orig setting, as the results displayed show that the values predicted
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(a) (b)

Figure 8.5: Illustrates an overview of the results achieved with random forests and
10-FCV.

and the ground truth are uncorrelated or their correlation is not strong enough to be
considered predictive.

Stability of predictive features for the tumor/orig setting

The experiments presented in this part evaluate the stability of the features chosen by
random forests for all TIL markers in the setting tumor/orig in choosing predictive
features. Figure 8.7 displays the mean values of the radiomics feature’s Gini-impurities.
The x-axis holds the Gini-impurities of the radiomics features, while the y-axis holds the
TIL markers. The darker a green cell is, the higher the Gini-impurity of that feature for
the TIL marker. With this, Figure 8.7 shows the importance of each feature (for every
TIL marker) for the prediction of the TIL values.

The results displayed in Figure 8.7 suggest that random forests choose the most predictive
features independent of the cross-validation fold, as there are only a few features with a
high averaged Gini-impurity. This indicates the stability of the predictive features as
random forests keep repeating their choice of features driving the prediction.

Appendix A provides further results of the random forest experiments. These outcomes
demonstrate that the radiomics approach using random forests can predict other TIL
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Figure 8.6: Correlations of the predicted TIL values and the ground truths for the
tumor/orig setting. The experiments use a random forest and 10-FCV to obtain the
predictions.

markers in different settings.

8.2.3 Visualizing predictive Features
This part presents exemplary results for voxel-based maps of features. These results
illustrate the top image features predicting a TIL marker. The illustrations can provide
novel medical insights into the relations between TILs and GBMs. The following parts
present figures of the top 5 features found for the TIL markers PD1+ Density, CD8+
Density, and CD3+ Percentage. In addition, the parts provide a brief explanation of the
top features investigated and displayed in the visualizations.

Features Predicting PD1+ Density

The voxel-based experiments illustrate the area of origin of the predictive features for
PD1+ Density in the tumor/orig setting. The basis for these visualizations are results
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Figure 8.7: Averages of Gini-impurities of all radiomics features for every TIL marker of
the tumor/orig setting. The darker a cell, the higher the average Gini-impurity for that
feature. A higher Gini-impurity average indicates higher importance of the feature for
predicting the TIL values.

obtained with the elastic net (α = 0.1) with 10-FCV. Figure 8.8 displays the areas
investigated with their respective ROIs and the results of these voxel-based experiments.
Figure 8.8a shows the FLAIR sequence, Figure 8.8b depicts the segmentation with
the FLAIR sequence. The T1c sequence is shown in Figure 8.8e with the Figure 8.8f
displaying the sequence with ROI.

The Figures 8.8c and 8.8d display the top features found that originate from the FLAIR
sequence. The Figures 8.8g, 8.8h and 8.8i display the top features found that originate
from the T1c sequence. The illustrations display the features as colored overlays, whereas
the more opaque the color is, the stronger the feature expressed in that voxel. Table 8.2
summarizes displays which plot shows which top feature, the sequence from which the
feature originates, the feature’s name, and the category to which the feature belongs.
The top 5 features used express roughly the following information1:

Figure Sequence Feature Feature Category
8.8g T1c Strength NGTDM
8.8h T1c ShortRunHighGrayLevelEmphasis GLRLM
8.8i T1c HighGrayLevelRunEmphasis GLRLM
8.8c FLAIR Strength NGTDM
8.8d FLAIR MCC GLCM

Table 8.2: This table summarizes which top feature is depicted in which figure and to
what radiomics feature category it belongs.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 8.8: Illustrates parts of the FLAIR (a) and T1c (e) sequences showing a GBM
case, with the respective ROIs (b and f). These images show how the sequences’ parts
look without overlay, while the ROIs indicate what area is part of the GBM. The Figures
(c, d) illustrate the origin of top features from the FLAIR sequence. The Figures (g, h, i)
illustrate the origin of top features from the T1c sequence. The more opaque the color
overlay of a voxel is, the stronger the feature expressed at that voxel.

• Strength measures the image primitives, i.e., the value is high when the intensity
changes slowly but with larger coarse differences in gray level intensities [73].
This means Strength measures if the brightness changes slowly but the brightness
differences are high.

• ShortRunHighGrayLevelEmphasis measures the joint distribution of short lengths
of pixels with the same high gray level value [73], which means it measures if there
is a small number of consecutive pixels with the same high brightness value.

• HighGrayLevelRunEmphasis measures high gray level values’ distribution [73],
which means it measures if there is a high concentration of bright pixels.

• MCC measures how complex the texture of the image is [73], which means a more
complex/inhomogeneous structure results in a higher value.

Features Predicting CD8+ Density

The voxel-based experiments illustrate the area of origin of the predictive features for
CD8+ Density in the tumor/orig setting. The basis for these visualizations are results
obtained with the random forest and LOOCV. Figure 8.9 displays the areas investigated
with their respective ROIs and the results of these voxel-based experiments. Figure 8.9a
shows the FLAIR sequence, Figure 8.9b depicts the segmentation with the FLAIR

1detailed information about the features can be found at [73]
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sequence. The T1c sequence is shown in Figure 8.9g with the Figure 8.9h displaying the
sequence with ROI.

Figure 8.9i displays the top features found originating from the T1c sequence. The
Figures 8.9c, 8.9d, 8.9e and 8.9f display the top features found that originate from the
FLAIR sequence. The illustrations display the features as colored overlays, whereas the
more opaque the color is, the stronger the feature expressed in that voxel. Table 8.3

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 8.9: Illustrates parts of the FLAIR (a) and T1c (g) sequences showing a GBM
case, with the respective ROIs (b and h). These images show how the sequences’ parts
look without overlay, while the ROIs indicate what area is part of the GBM. The Figures
(c, d, e, and f) illustrate the origin of top features from the FLAIR sequence. The Figure
(i illustrates the origin of top features from the T1c sequence. The more opaque the color
overlay of a voxel is, the stronger the feature expressed at that voxel.

summarizes displays which plot shows which top feature, the sequence from which the
feature originates, the feature’s name, and the category to which the feature belongs.

Figure Sequence Feature Feature Category
8.9c FLAIR LargeDependenceEmphasis GLDM
8.9d FLAIR SmallDependenceHighGrayLevelEmphasis GLDM
8.9e FLAIR Imc1 GLCM
8.9f FLAIR LongRunEmphasis GLRLM
8.9i T1c LowGrayLevelRunEmphasis GLRLM

Table 8.3: This table summarizes which top feature is depicted in which figure and to
what radiomics feature category it belongs.

The top 5 features used express roughly the following information2:

2detailed information about the features can be found at [73]
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• LargeDependenceEmphasis measures the distribution of larger dependencies, whereas
a dependency is the number of connected pixels within a certain distance that
depend on the center voxel [73]. This means a larger value of LargeDependenceEm-
phasis indicates a more homogeneous texture.

• SmallDependenceHighGrayLevelEmphasis measures the joint distribution of small
dependencies with high gray level values [73], which means it measures small areas
with high brightness.

• Imc1 measures the correlation of the texture’s complexity [73].

• LongRunEmphasis measures the distribution of the length of consecutive pixels
with the same gray level value [73], which means it measures if there are more
coarse/homogeneous structural textures.

• LowGrayLevelRunEmphasis measures the distribution of low gray level values [73],
which means it measures if there are darker areas in the image.

Features Predicting CD3+ Percentage

The voxel-based experiments illustrate the area of origin of the predictive features for
CD3+ Percentage in the edema/flair setting. The basis for these visualizations are results
obtained with the random forest and 10-FCV. Figure 8.9 displays the areas investigated
with their respective ROIs and the results of these voxel-based experiments. Figure 8.10a
shows the FLAIR sequence, Figure 8.10b depicts the segmentation with the FLAIR
sequence. The T1c sequence is shown in Figure 8.10e with the Figure 8.10f displaying
the sequence with ROI.

The Figures 8.10c and 8.10d display the top features found that originate from the
FLAIR sequence. The Figures 8.10g and 8.10h display the top features found that
originate from the T1c sequence. The illustrations display the features as colored overlays,
whereas the more opaque the color is, the stronger the feature expressed in that voxel.
The fifth top feature (Flatness) is not displayed here since it is based on the shape of
the segmentation, and information about the shape is not available at the voxel level.
Table 8.4 summarizes displays which plot shows which top feature, the sequence from
which the feature originates, the feature’s name, and the category to which the feature
belongs.

Figure Sequence Feature Feature Category
8.10c FLAIR InverseVariance GLCM
8.10d FLAIR DependenceVariance GLDM
8.10g T1c InverseVariance GLCM
8.10h T1c LongRunEmphasis GLRLM

Table 8.4: This table summarizes which top feature is depicted in which figure and to
what radiomics feature category it belongs.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.10: Illustrates parts of the FLAIR (a) and T1c (e) sequences showing a GBM
case, with the respective ROIs (b and f). These images show how the sequences’ parts
look without overlay, while the ROIs indicate what area is part of the GBM. The Figures
(c, d) illustrate the origin of top features from the FLAIR sequence. The Figures (g, h)
illustrate the origin of top features from the T1c sequence. The more opaque the color
overlay of a voxel is, the stronger the feature expressed at that voxel.

The top 4 features used express roughly the following information3:

• InverseVariance measures the inverse variance of the image [73].

• DependenceVariance measures the variance of the dependencies’ sizes in the im-
age [73]. This means DependenceVariance measures the variance of the different
numbers of connected voxels within a certain distance that depend on the center
voxel.

• LongRunEmphasis measures the distribution of the length of consecutive pixels
with the same gray level value [73], which means it measures if there are more
coarse/homogeneous structural textures.

8.3 Results of the Deep Learning Approach
This section provides the results achieved with the deep learning approach. The section
contains three parts, one for each TIL marker investigated, i.e., CD3+ Density, CD8+
Density, and CD8+ Density. Each of these parts presents the experiments and the results
for that TIL marker in a setting.

8.3.1 Experiments for CD3+ Density in the edema/t1c setting
This part presents the experiments and results for the TIL marker CD3+ Density in the
edema/t1c setting. This segment provides the experiments and results achieved with the

3detailed information about the features can be found at [73]
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training data at first, while it gives the results with the test data afterward. Note that
the results on training data are provided as a reference and are not informative regarding
how well the model would perform on unseen data.

Results with training data

This segment provides the experiments and results achieved with the training data. The
illustrations use the results obtained from the CNN with a parameter configuration
leading to the highest Spearman correlation r. Figure 8.11a presents the correlation of
the data used for the training of the CNN with a learning rate of 5 ∗ 10−5 and 100 epochs.
Figure 8.11b shows the loss’ course throughout the epochs for the CNN. Figure 8.11c
illustrates the GradCAM [84] and GradCAM++ [20] of the first layer as heatmaps for a
sample of the training data. From left to right, the first image shows the FLAIR sequence
slice, the second the T1c slice, the third the GradCAM, and the fourth the GradCAM++.
The fifth image illustrates the FLAIR slice with the GradCAM image as an overlay, while
the sixth depicts the FLAIR slice with the GradCAM++ as an overlay. The seventh
illustration presents the T1c sequence with the GradCAM images as an overlay, and the
eighth shows the T1c sequence with a GradCAM++ overlay. The Spearman correlation
achieved for the training data in this setting is r = 0.77 with a significance of p < 0.01.
The MAE of the last iteration is 0.0384.

Results with test data

This segment provides the experiments and results achieved with the test data. The
illustrations use the same CNN used for the training data. Figure 8.12a presents the corre-
lation of the test data. Figure 8.12b illustrates the GradCAM [84] and GradCAM++ [20]
of the first layer as heatmaps for a sample of the test data. From left to right, the
first image shows the FLAIR sequence slice, the second the T1c slice, the third the
GradCAM, and the fourth the GradCAM++. The fifth image illustrates the FLAIR
slice with the GradCAM image as an overlay, while the sixth depicts the FLAIR slice
with the GradCAM++ as an overlay. The seventh illustration presents the T1c sequence
with the GradCAM images as an overlay, and the eighth shows the T1c sequence with a
GradCAM++ overlay. The Spearman correlation achieved is r = 0.224 with a significance
of p = 0.405. The MAE of the test data is 0.6983.

8.3.2 Experiments for CD8+ Density in the tumor/flair setting

This part presents the experiments and results for the TIL marker CD8+ Density in the
tumor/flair setting. This segment provides the experiments and results achieved with the
training data at first, while it gives the results with the test data afterward. Appendix A
holds the result figures of this part. Note that the results on training data are provided
as a reference and are not informative regarding how well the model would perform on
unseen data.
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(a) (b)

(c)

Figure 8.11: Illustrates the results with the training data for the CD3+ Density and
edema/t1c setting. Figure (a) displays the correlation of the CNN with the height Spear-
man r, while Figure (b) shows the loss throughout the epochs. Figure (c) presents the
GradCAM and GradCAM++ of the first layer, where the first two image (from left to
right) are the FLAIR and T1c slices, followed by the GradCAM and the GradCAM++ il-
lustrations as heatmaps. The other images depict the slices with GradCAM/GradCAM++
as overlay: 5. FLAIR & GradCAM, 6. FLAIR & GradCAM++, 7. T1c & GradCAM, and
8. T1c & GradCAM++. The sample presented in Figure (c) has a high CD3+ Density
value.

Results with training data

This segment provides the experiments and results achieved with the training data. The
illustrations use the results obtained from the CNN with a parameter configuration
leading to the highest Spearman correlation r. Figure A.16a presents the correlation of
the data used for the training of the CNN with a learning rate of 5 ∗ 10−5 and 100 epochs.
Figure A.16b shows the loss’ course throughout the epochs for the CNN. Figure A.16c
illustrates the GradCAM [84] and GradCAM++ [20] of the first layer as heatmaps for a
sample of the training data. From left to right, the first image shows the FLAIR sequence
slice, the second the T1c slice, the third the GradCAM, and the fourth the GradCAM++.
The fifth image illustrates the FLAIR slice with the GradCAM image as an overlay, while
the sixth depicts the FLAIR slice with the GradCAM++ as an overlay. The seventh
illustration presents the T1c sequence with the GradCAM images as an overlay, and the
eighth shows the T1c sequence with a GradCAM++ overlay. The Spearman correlation
achieved is r = 0.715 with a significance of p < 0.01. The MAE of the last iteration is
0.0294.
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(a)

(b)

Figure 8.12: Illustrates the outcomes with the test data for the CD3+ Density and
edema/t1c setting. Figure (a) displays the correlation of the CNN with the height
Spearman r. Figure (b) presents the GradCAM and GradCAM++ of the first layer,
where the first two image (from left to right) are the FLAIR and T1c slices, followed by
the GradCAM and the GradCAM++ illustrations as heatmaps. The other images depict
the slices with GradCAM/GradCAM++ as overlay: 5. FLAIR & GradCAM, 6. FLAIR &
GradCAM++, 7. T1c & GradCAM, and 8. T1c & GradCAM++. The sample presented
in Figure (b) has a high CD3+ Density value.

Results with test data

This segment provides the experiments and results achieved with the test data. The
illustrations use the same CNN used for the training data. Figure A.17a presents the
correlation of the test data. Figure A.17b illustrates the GradCAM [84] and Grad-
CAM++ [20] of the first layer as heatmaps for a sample of the test data. From left
to right, the first image shows the FLAIR sequence slice, the second the T1c slice, the
third the GradCAM, and the fourth the GradCAM++. The fifth image illustrates the
FLAIR slice with the GradCAM image as an overlay, while the sixth depicts the FLAIR
slice with the GradCAM++ as an overlay. The seventh illustration presents the T1c
sequence with the GradCAM images as an overlay, and the eighth shows the T1c sequence
with a GradCAM++ overlay. The Spearman correlation achieved is r = 0.108 with a
significance of p = 0.714. The MAE of the test data is 0.6388.
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8.3.3 Experiments for PD1+ Density in the edema/flair setting
This part presents the experiments and results for the TIL marker PD1+ Density in
the edema/flair setting. This segment provides the experiments and results achieved
with the training data at first, while it gives the results with the test data afterward.
Appendix A holds the result figures of this part. Note that the results on training data
are provided as a reference and are not informative regarding how well the model would
perform on unseen data.

Results with training data

This segment provides the experiments and results achieved with the training data. The
illustrations use the results obtained from the CNN with a parameter configuration
leading to the highest Spearman correlation r. Figure A.18a presents the correlation of
the data used for the training of the CNN with a learning rate of 5 ∗ 10−5 and 120 epochs.
Figure A.18b shows the loss’ course throughout the epochs for the CNN. Figure A.18c
illustrates the GradCAM [84] and GradCAM++ [20] of the first layer as heatmaps for a
sample of the training data. From left to right, the first image shows the FLAIR sequence
slice, the second the T1c slice, the third the GradCAM, and the fourth the GradCAM++.
The fifth image illustrates the FLAIR slice with the GradCAM image as an overlay, while
the sixth depicts the FLAIR slice with the GradCAM++ as an overlay. The seventh
illustration presents the T1c sequence with the GradCAM images as an overlay, and the
eighth shows the T1c sequence with a GradCAM++ overlay. The Spearman correlation
achieved is r = 0.695 with a significance of p < 0.01. The MAE of the last iteration is
0.0435.

Results with test data

This segment provides the experiments and results achieved with the test data. The
illustrations use the same CNN used for the training data. Figure A.19a presents the
correlation of the test data. Figure A.19b illustrates the GradCAM [84] and Grad-
CAM++ [20] of the first layer as heatmaps for a sample of the test data. From left
to right, the first image shows the FLAIR sequence slice, the second the T1c slice, the
third the GradCAM, and the fourth the GradCAM++. The fifth image illustrates the
FLAIR slice with the GradCAM image as an overlay, while the sixth depicts the FLAIR
slice with the GradCAM++ as an overlay. The seventh illustration presents the T1c
sequence with the GradCAM images as an overlay, and the eighth shows the T1c sequence
with a GradCAM++ overlay. The Spearman correlation achieved is r = 0.212 with a
significance of p = 0.556. The MAE of the test data is 0.6887.

8.4 Summary
In this chapter, the evaluation results of the different approaches are shown. A quantitative
evaluation shows that the radiomics approach - both elastic nets and random forests

74



8.4. Summary

- can predict TIL markers in various settings. The results further suggest an impact
the settings (ROI chosen, registration method) have on the results. The quantitative
evaluation shows that the predictive features chosen are stable, while the qualitative
evaluation displays that predictive features tend to originate from specific parts of the
ROIs or focus on specific textures. The results of the deep learning approach show that
this method cannot accurately predict the TIL markers of the test set.
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CHAPTER 9
Discussion

This chapter summarizes, compares, and discusses the results obtained through the
experiments. In addition, this chapter provides further insights and results aside from
the predictability of TILs. In the end, this chapter describes the limitations of this study.

9.1 Radiomics Approach
This part discusses the elastic net’s and random forest’s results before comparing them.
Additionally, this chapter discusses the results of the exemplary voxel-based experiments.

9.1.1 Elastic Net Results
Figure 8.1b provides a useful overview of the results obtained with elastic nets, as it
displays which TIL markers are predictable with a relevant significance. The figure
demonstrates that some TIL markers (e.g., PD1+ Density in the setting tumor/orig)
can be predicted constantly across various settings, while others do not seem to be
predictable at all (e.g., PD1+ Negative - independent of the setting). The stability varies
substantially among the predictable combinations of setting and TIL markers. Some
results such as CD8+ Negative with edema/t1c are almost unpredictable, while others
such as PD1+ Density with tumor/orig are completely stable and predictable.

Since the populations are rather small (56 to 88 patients, depending on the TIL marker),
it might be useful to look at the results without taking the significance into account, as
the size of the test set is rather small with 10-FCV (around 5 to 9 samples). Figure 8.1a
summarizes these results. Comparing the results in the two figures shows their similarities,
indicating that most of the predictable results can achieve statistical significance. Despite
that, the differences between the figures suggest that some combinations may predict
TIL marker values, but more data is needed to verify this trend.
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The results displayed in both figures indicate that the segmentation chosen affects the
predictability of the TIL markers. On one hand, all markers of CD3+ remain unpredictable
when using the tumor segmentation, on the other hand, that tumor segmentation appears
to be vital for the prediction of any PD1+ marker. This indicates, that the edema
segmentation contains important information regarding CD3+, information that is missing
in the tumor segmentation. Apparently, the features of PD1+ lose their predictive power
when the larger edema segmentation is chosen over the smaller tumor segmentation. On
the contrary, CD8+ appears unaffected by the segmentation used.

The choice of registration method during the preprocessing steps affects the predictability
of the TIL markers. Especially the results shown in Figure 8.1b indicate, that CD3+
and PD1+ have their lowest predictability with an elastic net, when the t1c registration
method is chosen. These results suggest that the FLAIR sequence transformed at the
t1c registration method contains important information needed for a feasible prediction.

Figures like Figure 8.4 present the predictive features chosen by the elastic net. Apparently,
the elastic nets choose the same features over and over again as predictive features, as
the results show in Figure 8.4. The outcomes demonstrate the stability of the feature
choice regarding the cross-validation and the different α. Despite the rising α values
causing stricter rules for the elastic net, the same features are chosen again (although
they are thinned out) instead of different ones. Especially with higher α values, the
number of features chosen is low. The low number indicates that the same features are
chosen independently of the cross-validation fold, suggesting that they do not originate
from certain samples or a subpopulation. These results are not limited to one setting
and TIL marker, since Figure A.6 illustrates the same behavior.

9.1.2 Random Forest Results

Figure 8.1b presents a result overview of the predictability of TIL markers with a feasible
significance using random forests. The figure shows in which settings what TIL marker is
predictable, e.g., CD8+ Density in the tumor_wv/orig setting can be predicted feasibly,
but CD8+ Density can not be predicted with feasible significance in the edema/flair
setting. Figure 8.5a summarizes TIL markers that are predictable regardless of the
significance achieved. These results can be worth a look because of the small population
sizes of the different TIL markers in the various settings.

The choice of segmentation seems to affect not only the results of the elastic nets but also
the results achieved with the random forests. While PD1+ appears to be unpredictable
with a certain significance when the edema segmentation is used the results indicate that
CD8+ is unaffected of the segmentation chosen. Even though CD3+ is predictable with
feasible significance by using either segmentation, the amount of successful predictions
for CD3+ remains sparse, making the TIL almost unpredictable. The results presented
in Figure 8.5a show that the almost unpredictability of CD3+ is independent of the
significance achieved by the results of the random forests.
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While the choice of registration method seems to affect the results of the elastic nets, the
results achieved by the random forests appear to be affected by the segmentation chosen.
This can be seen in Figure 8.5b as TIL markers remain the barely unpredictable when
the edema_wv segmentation is used and the results’ significance is taken into account.
However, more TIL markers are predictable with feasible significance when the edema
segmentation is used, which indicates that the wavelet filters used for the segmentation
edema_wv appear to worsen some results, e.g., CD8+ Density for the edema/t1c setting.

As the elastic net chooses the more predictive features, some features have a higher impact
on the prediction result of a random forest than other features. Figure 8.7 illustrates
which features are regarded as more predictive than others by the random forests for
the setting tumor/orig. As the figure displays, a few features are driving the prediction
of each TIL marker, while most of the other features have a negligible impact. The
same features are among the more predictive features for most of the cross-validations’
folds since the averages displayed in Figure 8.7 appear to be high for mostly those
features. These results indicate the stability of the features’ choice, as they appear to be
independent of the samples in a cross-validation fold.

9.1.3 Comparison of the Radiomics Approaches
A comparison of the results achieved by the elastic nets and random forest shows their
similarities.

• Some TIL markers can be predicted with feasible significance by both methods,
but not all.

• The choice of segmentation appears to have a significant impact on prediction
accuracy for the TILs PD1+ and CD3+

• The methods choose most of the features regarded as predictive stably, which
indicates that the information described by these features is crucial for the prediction,
and not the result of few outlier examples.

• Both methods can almost constantly predict the TIL marker PD1+ Density, as
long as they use the tumor segmentation.

• TIL CD3+ appears to be the most unpredictable TIL among the three investigated
in this work, as results indicating predictability (even ignoring significance) are
rare.

There are some differences between the results achieved by both methods. For example,
the random forests appear to achieve predictability for more TIL markers than the elastic
nets. However, the common characteristics outweigh the differences, demonstrating that
the radiomics approach can predict TIL markers, even though not all.
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9.1.4 Voxel-based maps of relevant features
The voxel-based experiments investigate where the predictive features’ origin in the
GBM is. As these experiments support visualization of the results achieved, they are
only exemplary. The results of the voxel-based results presented in Figure 8.8 illustrate
the top 5 predictive features for the TIL marker PD1+ Density. The colored overlays
illustrate the top features, with the intensity of the colored overlay at a voxel indicating
the feature’s strength. The features extracted from the T1c sequence focus on the (border
of the) contrast-enhanced part of the GBM. Compared to that, the features extracted
from the FLAIR sequence focus on the inhomogeneity of the ROI. These results indicate
that a contract-enhanced area visible in the T1c sequence and an inhomogeneous texture
displayed in the FLAIR sequence are important for predicting PD1+ Density.

Contrary to that, most of the top features of the TIL marker CD8+ Density displayed
in Figure 8.9 originate from the FLAIR sequences. 2 of the top 5 features are almost
congruent while coming from the same sequence and focusing on homogeneous textures,
highlighting the importance of that characteristic. In addition, the feature extracted from
the T1c sequence focuses on darker areas. As a result, homogeneous textures displayed
in the FLAIR sequence and dark areas in the T1c sequence are significant for predicting
CD8+ Density.

The top features for CD3+ Percentage displayed in Figure 8.10 seem to be extracted
evenly from the FLAIR and T1c sequences. Compared to the top features of the other TIL
markers investigated, the top features for CD3+ Percentage appear to be scattered over
the complete edema segmentation used. Especially, a possible combination of the features
presented in Figure 8.10d and Figure 8.10c appear to cover the entire segmentation, as
both features seems to be weak in parts where the other is strong.

All in all, the voxel-based experiments allow a spatial interpretation of the predictive
features extracted concerning the GBM. These visualizations provide insights into which
regions of a GBM drive the different TIL markers. Especially the results found for CD8+
Density and PD1+ Density demonstrate this as their results are almost contradictory.
The results of CD8+ Density focus on the FLAIR sequence, the results of PD1+ Density
favor the T1c sequence, and the features extracted from the T1c sequence focus either on
darker areas or on brighter ones. These findings suggest that different areas of a GBM
are important for different TIL markers, indicating that the tissue displayed in MRI
images is indeed related to the TIL markers.

9.2 Deep Learning Results
This section summarizes and discusses the results of the deep learning approach. The
results of all three TIL markers presented show that the CNN can predict the values of the
training data (see, e.g., Figure 8.11a). In addition, the course of the loss curve throughout
the training epochs (see, e.g., Figure 8.11b) implies that the CNNs are learning to predict
the TIL marker values based on the training images. Despite that, non of the ResNets
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generalizes well enough to predict the test set with feasible significance (p < 0.05; see,
e.g., Figure 8.12a). Even without considering the significance achieved, the correlation of
the test results are substantially lower than the correlations achieved with the training
data (compare, e.g, Figure 8.12a and Figure 8.11a).

Using GradCAM [84] and GradCAM++ [20], this study investigates the origin of the
CNNs predictive power. The heatmaps created depict where the most important areas of
the image are - for an image of the training set, e.g., Figure 8.11c and an image of the test
set , e.g., Figure 8.12b. These visualizations suggest that the CNNs focus on the more
prominent areas of the input images, e.g., the heatmaps displayed in Figure 8.11c resemble
the contrast-enhanced region of T1c slices and slightly highlight the brighter area of the
FLAIR image. The test sample illustrated in Figure 8.12b shows a similar distribution
indicating that CNN potentially learned to focus on these features. The heatmaps based
on results for another TIL marker and depicted in Figure A.18c and Figure A.19b show
a different distribution. While the heatmaps of the training sample (see Figure A.18c)
still focus on some characteristics of the GBMs displayed, the GradCAM heatmap of the
test sample displayed in Figure A.19b does not show a focus on any part of the image.
Even the GradCAM++ heatmap appears to focus just outside the GBM displayed in the
images. These findings do not only demonstrate the poor generalizability of the CNN
model learned but raise the question of what exactly the CNN learned here.

The results achieved with the deep learning approach suggest that the methodology used
cannot predict TIL marker values for unseen MRI images. There are various possible
reasons for these results, e.g., the potential overfitting of the CNNs on the training data
or a loss of predictive information in the images due to image preprocessing. Moreover,
the data sets available are comparatively small for CNNs, e.g., Bae et al. [5] use 166
samples which almost doubles the size of the largest data set available for this thesis
(CD3+ Density has 88 samples available). Changing the methodology could improve the
results with the test data, possibly achieving a model with a feasible generalizability.

9.3 Radiomics vs. Deep Learning
A comparison of the experiments and the results achieved with the radiomics and deep
learning approach is non-trivial since the methodologies used for the two approaches
differ in various aspects. While the radiomics approach utilizes cross-validation, the deep
learning approach uses a dedicated test set due to time constraints regrading repeated
retraining. The radiomics approach makes use of the entire (3D) ROI, while the deep
learning approach has only access to a (2D) slice of the ROI. The deep learning approach
only investigates the Density TIL markers, while the radiomics approach studies all of
them.

Nevertheless, the methodology of the radiomics approach allows a prediction of the
TIL marker values based on the MRI sequences. At the same time, the deep learning
approach cannot achieve this goal. In addition, the voxel-based experiments of the
radiomics approach reveal that the most predictive features mostly focus on prominent
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aspects of the ROI (see, e.g., Figure 8.8h). However, a similar investigation of the results
achieved with the deep learning approach shows that such features do not necessarily
focus on prominent aspects (see, e.g., Figure A.19b).

9.4 Limitations
The methodology underlies the limitations discussed in this section. The size of the
data set is a limitation, as up to 88 samples are problematic for the deep learning
approach. Additionally, manual segmentations are a limitation for all experiments due to
the segmentation’s imprecision. Stratification can partly rebalance the unbalanced TIL
marker values, but this does not fix the issue entirely. Machine learning models trained
with unbalanced data sets focus on the more prominent part, which reduces the model’s
generalizability.

The deep learning approach does not use the entire ROI defined as an input but only the
slice where the ROI is the largest, which is a limitation of the deep learning approach.
Although using only one slice speeds up computation by a significant margin (and maybe
using the complete ROI or even MRI is infeasible), this step drops a big amount of
information. Removing so much information influences the results since the information
outside the slice chosen is unavailable to the CNN. Thus it might be a reason for the
particularly poor performance of CNN in our experiment.

9.5 Summary
This chapter discussed the evaluation results and insights gained from them. The
results obtained with the radiomics approach are discussed, first the ones with elastic
nets, and afterward the results obtained with random forests. Additionally, insights
regarding the impact of the ROIs chosen or the stability of the predictive features are
discussed. The methods of elastic nets and random forests and their results are compared,
focusing on their similarities and differences. The visualizations of predictive features
are discussed, and insights gained from them are presented. The evaluation results of
the deep learning approach are discussed, including possible reasons for the prediction
inability. A comparison of the two approaches is given, discussing their differences and
comparing the results achieved. If one should be recommended it would be the radiomics
approach since it can accurately predict the target values of new, unseen data samples.

82



CHAPTER 10
Conclusion & Future Work

This thesis introduces methods for predicting TIL marker values of GBMs based on MRI
images. This study describes and evaluates a radiomics approach using either an elastic
net or random forest and a deep learning approach. The methodology utilizes three
different registration methods to register both sequences with one ROI into the same
space during the preprocessing, as two ROIs are available for two MRI sequences. The
radiomics approach utilizes handcrafted radiomics features extracted from an ROI in
the MRI images preprocessed with cross-validation to avoid overfitting. The evaluation
of the results predicted by the machine learning models focuses on their ability to
predict TIL marker values based on features extracted and their robustness. The results
demonstrate that some TIL markers are predictable based on the MRI images by the
radiomics approach, while other TIL markers remain unpredictable. Especially the TIL
marker PD1+ Density appears to be predictable as long as the experiments use the
tumor ROI. As a density marker is the only marker investigated independent of the
GBMs size/volume, the results achieved for the density marker are of interest from a
medical point of view.
Investigating the results achieved by the radiomics approach further with voxel-based
experiments yielded insights into the origin of the predictive features in the ROI. These
voxel-based results show a particular characteristic of the top features for the prediction
of PD1+ Density and CD8+ Density, suggesting that different areas of a GBM are
predictive for varying TIL markers. From a medical point of view, the voxel-based results
are of interest as the significant areas visualized can be identified by clinicians.
The deep learning approach utilizes a modified ResNet50 to learn the relations between
2D slices of the MRI images and the TIL markers. The deep learning model is independent
of the handcrafted radiomics features since it uses the images preprocessed directly. At
the same time, the deep learning approach does not utilize cross-validation to prevent
overfitting but a splitting of the data set in train and a stratified test set. Even though
the 2D slices are the only feasible option, the model misses possible predictive features
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since this step removes most of the ROI. The results achieved with the deep learning
approach indicate that a CNN cannot predict TIL marker values based on slices of MRI
sequences in our experiment setting. Although the deep learning experiments show
that the CNNs can learn an association between the MRI slices and the TIL marker
values, they cannot predict new, unseen data samples. Moreover, the visualizations of
the predictive areas reveal that the CNNs do not appear to focus on the more prominent
areas as the top predictive features of the radiomics approach do. These findings suggest
that the methodology chosen for the deep learning approach cannot produce results
similar to the radiomics approach.

While this thesis demonstrates that TIL marker values are predictable with information
derived from MRI images, future work can deepen the understanding and possibly answer
questions that arose during this thesis. Possible future work can include research questions
such as the following:

• Can the findings of this thesis be reproduced with a different data set?

• Why does the predictability of some TIL markers depend on the ROI used? Why
is PD1+ with the radiomics approach only predictable when using the smaller ROI?

• Can changes in the methodology for the deep learning approach cause a CNN to
predict the TIL markers based on the MRI images?

• How can a deep learning approach use more information of the ROI feasibly?

• Is it possible to visualize the difference between higher and lower TIL marker values
like the top predictive features by the voxel-based experiments?
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APPENDIX A
Result Appendix

This appendix provides further results of this thesis. First, this appendix presents
additional outcomes of the elastic net experiments. The appendix gives more results of
the random forest experiments afterward. The end of this chapter gives further results of
the CNN experiments.

A.1 ElasticNet Results

This section provides further results of the elastic net experiments. Figures are structured
as described in the results chapter. The results presented originate from different ROI
and registration method combinations and TIL markers, e.g., Figure A.1 displays the
correlation overview for the elastic nets of the edema_wv/orig setting, while Figure A.5
shows the correlations for CD8+ Positive with the edema/t1c setting.

Figure A.7 displays the results for the tumor/orig setting where the elastic nets use
LOOCV instead of 10-FCV. The results presented show, that some TIL markers can be
predicted (e.g., PD1+ Density) with LOOCV while others cannot (e.g., CD3+ Density).

A.2 Random Forest Results

This section presents additional results of the random forest experiments. Figures are
structured as described in the results chapter. The results presented originate from
different ROI and registration method combinations, e.g., Figure A.10 displays the
correlation overview for the random forests of the tumor/flair setting, while Figure A.12
shows the correlations of the edema/flair setting.
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Figure A.1: Correlation results of the elastic net with 10-FCV in the setting
edema_wv/orig. The darker the color tone, the stronger the correlation, whereas red
represents a positive correlation and blue a negative correlation.

Figure A.2: Correlation plots of the elastic nets with 10-FCV for the CD-3 negative
marker in the edema_wv/orig setting. Each plot is obtained with a different α value,
whereas that α, the Spearman correlation coefficient r, and the corresponding significance
p are stated in the header of each plot. The ground truth is along the x-axes, while along
the y-axes the results predicted are displayed.
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Figure A.3: Stability of the features chosen by the elastic net for the edema_wv/orig
setting and the CD-3 negative marker for various α values. The darker the green tone,
the more often the corresponding feature is considered predictive by the elastic nets.
The x-axis holds the radiomics features extracted, while the y-axis holds the different α
values.

Figure A.4: Correlation results of the elastic net with 10-FCV in the setting edema/t1c.
The darker the color tone, the stronger the correlation, whereas red represents a positive
correlation and blue a negative correlation.
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Figure A.5: Correlation plots of the elastic nets with 10-FCV for the CD-8 positive
marker in the edema/t1c setting. Each plot is obtained with a different α value, whereas
that α, the Spearman correlation coefficient r, and the corresponding significance p are
stated in the header of each plot. The ground truth is along the x-axes, while along the
y-axes the results predicted are displayed.

Figure A.6: Stability of the features chosen by the elastic net for the edema/t1c setting
for various α values. The darker the green tone, the more often the corresponding feature
is considered predictive by the elastic nets.
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Figure A.7: Correlation results of the elastic net with LOOCV in the setting tumor/orig.
The darker the color tone, the stronger the correlation, whereas red represents a positive
correlation and blue a negative correlation.

Figure A.8: Correlation plots of the elastic nets with LOOCV for the PD-1 density
marker in the tumor/orig setting. Each plot is obtained with a different α value, whereas
that α, the Spearman correlation coefficient r, and the corresponding significance p are
stated in the header of each plot. The ground truth is along the x-axes, while along the
y-axes the results predicted are displayed.
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Figure A.9: Stability of the features chosen by the elastic net for the tumor/orig setting
and the PD-1 density marker for various α values. The darker the green tone, the more
often the corresponding feature is considered predictive by the elastic nets. The x-axis
holds the radiomics features extracted, while the y-axis holds the different α values.

A.3 Deep Learning Results
This section presents additional results of the CNN experiments. Figures are structured
as described in the results chapter.
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Figure A.10: Correlations of the predicted TIL values and the ground truths for the
tumor/flair setting. The predictions are obtained with a random forest and 10-fold cross
validation.
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Figure A.11: Gini-impurity means of all radiomics features for every TIL marker of the
tumor/flair setting. The darker a cell, the higher the average gini-impurity for that
feature. A higher gini-impurity mean indicates a higher importance of the feature for the
prediction of the TIL values.
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Figure A.12: Correlations of the predicted TIL values and the ground truths for the
edema/flair setting. The predictions are obtained with a random forest and 10-fold cross
validation.
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Figure A.13: Gini-impurity means of all radiomics features for every TIL marker of the
edema/flair setting. The darker a cell, the higher the average gini-impurity for that
feature. A higher gini-impurity mean indicates a higher importance of the feature for the
prediction of the TIL values.

94



A.3. Deep Learning Results

Figure A.14: Correlations of the predicted TIL values and the ground truths for the
edema/t1c setting. The predictions are obtained with a random forest and 10-fold cross
validation.
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Figure A.15: Gini-impurity means of all radiomics features for every TIL marker of
the edema/t1c setting. The darker a cell, the higher the average gini-impurity for that
feature. A higher gini-impurity mean indicates a higher importance of the feature for the
prediction of the TIL values.
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(a) (b)

(c)

Figure A.16: Illustrates the results with the training data for the CD8+ Density and
tumor/flair setting. Figure (a) displays the correlation of the CNN with the height
Spearman r, while Figure (b) shows the loss throughout the epochs. Figure (c) presents
the GradCAM and GradCAM++ of the first layer, where the first two image (from left to
right) are the FLAIR and T1c slices, followed by the GradCAM and the GradCAM++ il-
lustrations as heatmaps. The other images depict the slices with GradCAM/GradCAM++
as overlay: 5. FLAIR & GradCAM, 6. FLAIR & GradCAM++, 7. T1c & GradCAM, and
8. T1c & GradCAM++. The sample presented in Figure (c) has a high CD8+ Density
value.
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(a)

(b)

Figure A.17: Illustrates the outcomes with the test data for the CD8+ Density and
tumor/flair setting. Figure (a) displays the correlation of the CNN with the height
Spearman r. Figure (b) presents the GradCAM and GradCAM++ of the first layer,
where the first two image (from left to right) are the FLAIR and T1c slices, followed by
the GradCAM and the GradCAM++ illustrations as heatmaps. The other images depict
the slices with GradCAM/GradCAM++ as overlay: 5. FLAIR & GradCAM, 6. FLAIR &
GradCAM++, 7. T1c & GradCAM, and 8. T1c & GradCAM++. The sample presented
in Figure (b) has a high CD8+ Density value.
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(a) (b)

(c)

Figure A.18: Illustrates the results with the training data for the PD1+ Density and
edema/flair setting. Figure (a) displays the correlation of the CNN with the heighest
Spearman r, while Figure (b) shows the loss throughout the epochs. Figure (c) presents
the GradCAM and GradCAM++ of the first layer, where the first two image (from left to
right) are the FLAIR and T1c slices, followed by the GradCAM and the GradCAM++ il-
lustrations as heatmaps. The other images depict the slices with GradCAM/GradCAM++
as overlay: 5. FLAIR & GradCAM, 6. FLAIR & GradCAM++, 7. T1c & GradCAM, and
8. T1c & GradCAM++. The sample presented in Figure (c) has a low PD1+ Density
value.
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(a)

(b)

Figure A.19: Illustrates the outcomes with the test data for the PD1+ Density and
edema/flair setting. Figure (a) displays the correlation of the CNN with the heighest
Spearman r. Figure (b) presents the GradCAM and GradCAM++ of the first layer,
where the first two image (from left to right) are the FLAIR and T1c slices, followed by
the GradCAM and the GradCAM++ illustrations as heatmaps. The other images depict
the slices with GradCAM/GradCAM++ as overlay: 5. FLAIR & GradCAM, 6. FLAIR &
GradCAM++, 7. T1c & GradCAM, and 8. T1c & GradCAM++. The sample presented
in Figure (b) has a low PD1+ Density value.
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