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Kurzfassung

Wir betrachten eine geeignete Klasse von Gram-Matrizen und zeigen, dass die zugehörigen
Inversen hervorragend durch hierarchischen Matrizen approximiert werden können. Die
Einträge einer solchen Gram-Matrix ergeben sich aus einer vorgegebenen Bilinearform auf
einem geeigneten Funktionenraum sowie einer endlichen Menge von Basisfunktionen. Der-
artige Matrizen treten häufig im Zusammenhang mit Galerkin-Diskretisierungen von parti-
ellen Differentialgleichungen auf, welche zur Beschreibung zahlreicher Probleme aus Physik,
Technik und angewandter Mathematik verwendet werden.
Die hier relevanten Funktionenräume sind die gewohnten Sobolev-Räume ganzzahliger

Ordnung und die Bilinearformen ergeben sich als Varianten der natürlichen Innenprodukte
auf diesen Räumen. Eine wichtige Voraussetzung für unsere Analyse ist die Gültigkeit ei-
ner diskreten Caccioppoli-Ungleichung, welche wir in einem Finite-Elemente-Setting sowie
einem Radiale Basisfunktionen-Setting nachweisen. Die Voraussetzungen an die Basisfunk-
tionen, welche zur Assemblierung der Gram-Matrix verwendet werden, sind sehr allgemein
gehalten und es wird insbesondere keine Lokalität gefordert. Wir setzen stattdessen eine
gewisse Art von Lokalität für die zugehörige duale Basis voraus.

Die Fragestellung, inwiefern inverse Gram-Matrizen durch datenschwache Alternativen
approximiert werden können, ist nicht neu. In mehr als zwei Jahrzehnten Forschungsarbeit
wurden unterschiedliche Herangehensweisen erarbeitet (z.B., [BH03], [Bör10], [Fau15]). Das
Ziel dieser Arbeit besteht darin, diese Ideen in einem abstrakteren Rahmen zu formulieren,
wodurch sich ein breiteres Anwendungsspektrum ergibt. Inbesondere können wir Gitter-
basierte sowie Gitter-freie Probleme auf lokal verfeinerter Gittern und Punktwolken in
beliebigen Raumdimensionen behandeln. Des Weiteren sind unstetige PDE-Koeffizienten,
nicht-polygonale Rechengebiete sowie nicht-lokale Basisfunktionen erlaubt.
Diese Dissertation basiert auf den Werken [AFM21a], [AFM21b] and [AFM22], welche

in Zusammenarbeit mit Dr. Markus Faustmann sowie Univ.-Prof. Jens Markus Melenk,
PhD im Zuge des Doktoratsstudiums des Autors an der Technischen Universität Wien
angefertigt wurden.



Abstract

In this thesis, we prove that the inverse of a certain type of Gram matrix can be ap-
proximated well from the class of hierarchical matrices. The entries of a Gram matrix
are determined by a bilinear form on a suitable function space and by a finite set of basis
functions. Such matrices appear frequently in the context of Galerkin discretizations of par-
tial differential equations and many related problems in physics, engineering and applied
mathematics.
As for the function spaces, we are mainly concerned with the usual Sobolev spaces of

integer order and the bilinear forms under consideration are variants of the inherent inner
products on these spaces. An important prerequisite for the analysis is the validity of a
discrete Caccioppoli inequality, which we derive in a finite element setting and a radial basis
function setting. The assumptions on the basis functions that make up the Gram matrix
are very mild and do not incorporate locality. In fact, we only require some form of locality
for the corresponding dual basis.

The question of low-cost approximability of inverse Gram matrices is certainly not new.
In more than two decades of research, different approaches have been made to answer this
question (e.g., [BH03], [Bör10], [Fau15]). The goal of this work is to unify these ideas and
rephrase them in a more abstract framework, which can be applied to a larger class of
problems. In particular, we can treat mesh-based and mesh-less problems, locally refined
meshes/point clouds in arbitrary space dimensions, rough PDE coefficients, non-polygonal
computation domains and non-local basis functions.

This thesis is based on the papers [AFM21a], [AFM21b] and [AFM22], which were com-
posed as part of the author’s doctoral studies at Technische Universität Wien in collabo-
ration with Dr. Markus Faustmann and Univ.-Prof. Jens Markus Melenk, PhD.
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Abschlussarbeit unerlässlich ist, kann ich nur auf ihr Vorbild zurückführen.
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Danke!



Eidesstattliche Erklärung
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1 Introduction

1.1 The Galerkin method

Consider a real Hilbert space V and let a(·, ·) : V × V −→ R be a continuous, coercive,
possibly non-symmetric, bilinear form (cf. D.4.2). Denote by V ∗ the dual space of V , i.e.,
the space of continuous, linear functionals on V . We are interested in the following abstract
variational problem:

Problem 1.1. Let f ∈ V ∗ be given. Find u∞ ∈ V such that

∀v ∈ V : a(u∞, v) = f(v).

The well-known Lax-Milgram Lemma (e.g., [BS08, Theorem 2.7.7]) guarantees that there
exists a unique solution u∞ ∈ V of this problem. However, the Hilbert space V is typically
infinite-dimensional and the solution u∞ cannot be computed exactly. In the Galerkin
method (e.g., [BS08, Section 2.6]), the space V is replaced by a suitable finite-dimensional
subspace VN ⊆ V . The result is a discrete variational problem:

Problem 1.2. Let f ∈ (VN )∗ be given. Find u ∈ VN such that

∀v ∈ VN : a(u, v) = f(v).

Once again, the Lax-Milgram Lemma yields existence of a unique solution u ∈ VN . Since
VN is finite-dimensional, the discrete solution u is computable. To this end, a basis

{ϕ1, . . . , ϕN} ⊆ VN

must be chosen. In a typical application of the Galerkin method, there is more than one
candidate for such a basis and the particular choice of the basis functions ϕn has far-
reaching practical consequences. In fact, a poor choice of basis can render the method
infeasible, even on modern computer hardware. Once the basis functions ϕn are elected,
we make the ansatz

u =

N�
n=1

cnϕn ∈ VN ,

where c ∈ RN is an unknown coefficient vector. Then, introducing the Gram matrix 1

A := (a(ϕn, ϕm))Nm,n=1 ∈ RN×N

1The term Gram matrix is often reserved for matrices arising from proper inner products (e.g., [HJ13,
Thorem 7.2.10.]). Our bilinear form a(·, ·) need not be symmetric, but we will use the term anyways.

1



1 Introduction

and the load vector
f := (f(ϕm))Nm=1 ∈ RN ,

we can rewrite P.1.2 as an equivalent linear system of equations (LSE):

Ac = f .

The unique solvability of P.1.2 already ensures that the system matrix A is invertible.
In particular, this LSE can be used to compute the unknown coefficient vector c and thus
the unknown solution u to P.1.2. To do so, we have a couple of different options:

1. Gaussian elimination with partial pivoting: Denote by b ∈ {0, . . . , N} the bandwidth2

of A. It is well-known that Gaussian elimination with partial pivoting takes O(bN)
memory and O(b2N) time in order to compute the solution of Ac = f (e.g., [TB97,
Algorithm 21.1.] and [DER17, Chapter 8]). In particular, if b 	 Nβ , for some β ∈
[0, 1], then the memory and time requirements amount to O(N1+β) and O(N1+2β),
respectively. If the problem size N becomes too large (say, hundreds of thousands or
even millions), this approach might become infeasible.

For example, consider the case where Ω := (0, 1)d, V := H1(Ω) and a(·, ·) := 
·, ·�V .
Cutting Ω into O(N1/d) equal slices along each coordinate axis, we can construct a
simplicial, uniform mesh T ⊆ Pow(Ω) with N ∈ N nodes (cf. D.2.60). Denote by ϕn

the hat function corresponding to the n-th mesh node (cf. L.2.72). Then, no matter
the ordering of the indices, there will always be at least two hat functions ϕn, ϕm

with supp(ϕn)∩ supp(ϕm) += ∅ and |n−m| � N1−1/d. It follows that b � N1−1/d, so
that the solution of Ac = f uses O(N2−1/d) memory and O(N3−2/d) time.

2. PLU -decomposition: If Ac = f needs to be solved for multiple right-hand sides
f ∈ RN , it might be favorable to compute a PLU -decomposition of A in advance.
In fact, Gaussian elimination with partial pivoting generates a permutation matrix
P ∈ RN×N , a unit lower triangular matrix L ∈ RN×N and an upper triangular matrix
U ∈ RN×N such that A = PLU . Then, the computation of c can be done in two
steps: First, solve Lc̃ = P−1f for c̃ ∈ RN . Second, solve Uc = c̃ for c. Now, since
L and U also have bandwidth O(b), these two systems can be solved in O(bN) time
by forward- and backward substitution. In total, if Ac = f is to be solved for k ∈ N
different right-hand sides, this precedure takes O(bN) memory and O(b2N + kbN)
time.

3. (P)CG: Consider the case where A is symmetric and positive definite (SPD):

AT = A, ∀d ∈ RN\{0} : 
Ad,d�2 > 0.

The well-known conjugate gradient method (CG) (e.g., [Atk89, Section 8.9], [Epp13,
Section 9.3.3]) generates a sequence (ck)k∈N ⊆ RN of approximations ck ≈ c in a way

2The bandwidth b is the smallest number such that Amn = 0, for all m,n ∈ {1, . . . , N} with |m− n| ≥ b.

2



1 Introduction

that only requires us to perform matrix-vector-multiplications d '→ Ad, for some
d ∈ RN . According to [Epp13, Theorem 9.7], there holds the error bound

�c− ck�2 ≤ 2 cond2(A)1/2
�
1− cond2(A)−1/2

1 + cond2(A)−1/2

�k−1

�c− c1�2,

where cond2(A) := �A�2�A−1�2 ≥ 1 is the spectral condition number of A. Clearly,
the convergence speed is determined by the magnitude of cond2(A), the best case
scenario being cond2(A) = O(1) as N → ∞. In many instances3, however, we
have cond2(A) = O(Nα), for some constant α > 0. In this case, as many as k =
O(ln(ε−1)Nα/2) iteration steps are necessary to reach some prescribed tolerance ε >
0. Since the matrix-vector-multiplication in each step costs at least O(N) floating
point operations, the overall complexity of O(ln(ε−1)N1+α/2) might still be too much
to handle.

This observation is the basis for the preconditioned conjugate gradient method (PCG)
(e.g., [GVL13, Section 11.5.2]), where the LSE Ac = f is replaced by the following,
equivalent LSE:

P−1/2AP−1/2c̃ = P−1/2f ,

P 1/2c = c̃.

Here, P ∈ RN×N is a preconditioner matrix that should satisfy the following require-
ments:

a) P is SPD.

b) cond2(AP ) = O(1).

c) Every LSE of the form Pd = g, where g ∈ RN is given and d ∈ RN is sought,
can be solved quickly (ideally in O(N) time).

In theory, the PCG method is just the CG method applied to the equivalent LSE
above. However, the SPD matrix P−1/2AP−1/2 need not be computed explicitly. In
fact, for each step of the iteration, it suffices to perform a matrix-vector-multiplication
d '→ Ad and solve an LSE Pd = g (apart from a few vector additions and scalar
products). The construction of good preconditioners is a vast field of research (see,
e.g., [Gre97, Part II], [GVL13, Section 11.5], [TB97, Lecture 40] and the references
therein).

4. Hierarchical LU -decomposition: The inefficiency of standard PLU -decompositions
is due to the amount of fill-in that occurs in the triangular factors L and U . To
overcome this problem, [Beb07] showed that so-called H-matrices (cf. Chapter 3)
can be used as approximate LU -factors for finite element stiffness matrices on quasi-
uniform meshes. In fact, under the assumption that the exact inverse A−1 can be
approximated well by an H-matrix, Bebendorf showed that, for all ε > 0, H-matrices

3Example: If A is the FEM stiffness matrix for the problem (−Δu = f , u|∂Ω = 0) on a uniform mesh
T ⊆ Pow(Ω) with meshsize h > 0, then cond2(A) 	 h−2 	 N2/d, according to [EG06, Theorem 4.1.].

3



1 Introduction

LH and UH of block-wise rank r 	 ln(N)α ln(ε−1)β (for some α, β ≥ 0) can be
constructed such that

�A−LHUH�2 ≤ C ln(N)N2/d�L�2�U�2ε+O(ε2).

5. Hierarchical preconditioners: In [Beb06], the author proposed to use the H-inversion
routine (which uses efficient H-arithmetic exclusively) to construct a preconditioner
PH for the PCG method. Under the assumption that the algorithm produces an error
of at most �I −APH�2 ≤ δ < 1, it was shown that cond2(APH) ≤ (1+ δ)/(1− δ) =
O(1), so that the PCG method converges rapidly.

Here, we laid out a variety of strategies for the practical solution of the LSE Ac =
f . One could argue that these techniques are just different approaches to computing an
approximation to the inverse matrix A−1. In the last two instances, [Beb07] and [Beb06],
the approximation class is given by the set of H-matrices of prescribed block-wise rank r.
Then, inevitably, the following fundamental question arises:

Problem 1.3. What are the theoretical limits for the approximation of A−1 from the class
of data-sparse H-matrices?

In our main result, T.4.21, we give an upper bound for the best approximation of A−1

in the class of hierarchical matrices, H(P2, r).

1.2 Literature discussion

The literature on H-matrices has grown substantially during the last two decades. In this
overview, we focus mainly on the work that is most relevant for this dissertation. The list
is by no means exhaustive.

1. The fast multipole method (FMM) introduced in [GR87] was named one of the “top
10 algorithms of the 20th century” in [DS00]. The authors devised a novel, ground-
breaking algorithm to reduce the computational complexity of the famous N -body
problem from O(N2) to O(p2N) (introducing an error O(e−Cp), for some C > 0).

An instance of such an N -body problem occurs in classic celestial mechanics, where
N ∈ N given planets interact with each other via gravitational forces. The trajectory
t '→ xn(t) ∈ R3 of the n-th planet is governed by the ordinary differential equation

Mnx
��
n =

�
m∈{1,...,N}\{n}

GMnMm

�xm − xn�32
(xm − xn),

where G > 0 is a constant and where Mn > 0 is the mass of the n-th planet. In a
typical time stepping scheme (e.g. forward Euler method), a naive implementation
of this formula requires O(N2) arithmetic operations to evolve the whole system one
time step further.

However, Greengard and Rokhlin found that much effort could be spared by organiz-
ing the planets into a hierarchy of groups of nearby planets. The key insight was that

4



1 Introduction

the interaction between two well separated groups can be approximated to arbitrary
accuracy by polynomials of a prescribed degree p ∈ N. (Essentially a truncated Taylor
series of the function x '→ x/�x�32, which is smooth away from the origin.) Assuming
that the groups have N1 and N2 members each, this simplification reduces the cost
from O(N1N2) to O(p(N1 + N2)) and only introduces a marginal error of O(e−Cp),
for some constant C > 0. Finally, the organization in a hierarchy facilitated a divide
and conquer scheme which resulted in an O(p2N)-algorithm.

2. In parallel, Hackbusch and Nowak developed a similar strategy known as panel clus-
tering method (e.g., [HN89]). In a series of works ([Hac99], [HK00a], [HK00b],
[Gra01], [Hac09]), Hackbusch, Khoromskij and Grasedyck formalized the ideas from
[GR87] and [HN89] and introduced hierarchical block partitions P2 of the set of matrix
indices {1, . . . , N} × {1, . . . , N} = {(i, j) | i, j ∈ {1, . . . , N}}. The elements of P2 are
pairs (I, J) of clusters I, J ⊆ {1, . . . , N} satisfying�

·
(I,J)∈P2

I × J = {1, . . . , N} × {1, . . . , N}.

In particular, given a matrix A ∈ RN×N , the set P2 induces a partition of A into a
family of matrix blocks, {A|I×J ∈ RI×J | (I, J) ∈ P2}. Assuming that the (i, j)-th
matrix entry Aij encodes some form of interaction between two physical domains
(or points) Ωi,Ωj ⊆ Rd, it is clear that a matrix block A|I×J represents all pairwise
interactions between two groups of domains, {Ωi | i ∈ I} and {Ωj | j ∈ J}.
The authors constructed the partition P2 in an iterative manner (a tree), starting
from the root ({1, . . . , N}, {1, . . . , N}) and splitting pairs (I, J) successively into four
(or more) children (I1, J1), . . . , (I4, J4) with

4�
·

l=1

Il × Jl = I × J.

The subdivision of a pair (I, J) stops as soon as it becomes admissible or well sepa-
rated, using the terminology of [GR87]. Roughly speaking, admissible means that the
physical sets

�
i∈I Ωi ⊆ Rd and

�
j∈J Ωj ⊆ Rd are small in diameter in comparison

to their distance. In particular, if the interaction between these sets is described
by a sufficiently smooth function, there is a good chance that the approximation
mechanism of [GR87] also applies in this generalized setting.

The authors then proceeded to introduce the class of hierarchical matrices

H(P2, r) ⊆ RN×N ,

where r ∈ N is a prescribed rank bound on the admissible matrix blocks A|I×J .
Furthermore, they managed to define approximate arithmetic operations on this
class including matrix-vector-multiplication, matrix-matrix-addition, matrix-matrix-
multiplication and even matrix-inversion. Assuming that the partition P2 is con-
structed properly, the cost of storage and arithmetic of H-matrices is bounded by
O(rα ln(N)βN), for some (small) values of α, β ∈ N0 (see, e.g., [Gra01, Chapter 5]).

5



1 Introduction

As for applications of H-matrix approximation theory, most of the early work focused
on FEM- and BEM-formulations of second order elliptic PDEs as well as Fredholm
integral operators.

3. In [BH03], the authors proved that the inverse A−1 of a FEM stiffness matrix A ∈
RN×N for a second order elliptic PDE can be approximated by an H-matrix B ∈
H(P2, r) with the same accuracy as the FEM error �u∞ − u�L2(Ω). More precisely,

they showed that �A−1 − B�2 � εN under the assumption that �u∞ − u�L2(Ω) ≤
εN�f�L2(Ω), for all f ∈ L2(Ω). Here u∞ ∈ H1

0 (Ω) is the exact solution and u ∈ VN is
the FEM solution from a discrete ansatz space VN ⊆ H1

0 (Ω) which is based on some
mesh TN ⊆ Pow(Ω). Furthermore, the authors showed that the blockwise rank r of
the approximant B is bounded by r � ln(N)2 ln(ln(N)ε−1

N )d+1.

To mention a few technical details, it was assumed that d ≥ 3, that Ω ⊆ Rd is a
bounded Lipschitz domain, that a(u, v) := 
a1∇u,∇v�L2(Ω) for some a1 ∈ L∞(Ω)d×d,
that homogeneous Dirichlet boundary conditions are employed, and that the mesh
TN is shape regular and quasi-uniform.

The key idea of the proof was to express the exact solution u∞ in terms of the
Green’s function G for the domain Ω. Then, exploiting certain regularity properties
of G, the function G was approximated by separable expansions which were then used
to construct the approximant B.

4. A few years later, [Bör10] improved on [BH03] by using a completely different ap-
proach. Rather than approximating Green’s function, the author approximated the
exact solution u∞ ∈ H1

0 (Ω) directly. The key insight was that u∞ belongs to a class
of locally harmonic functions which satisfy some orthogonality relations on certain
subsets ω ⊆ Ω. This orthogonality could then be exploited to derive a Caccioppoli
inequality of the form |u∞|H1(ω) � dist2(ω, ∂ω

+)−1�u∞�L2(ω+), where ω+ ⊇ ω is a
slightly larger subset of Ω. Fitting L ∈ N concentric subsets ω ⊆ ω1 ⊆ · · · ⊆ ωL ⊆ Ω
around some initial set ω ⊆ Ω, the author was able to approximate the exact solu-
tion u∞|ω by a function uL ∈ L2(ω), producing an error O(2−L) while only using
O(Ld+1) degrees of freedom to do so. This procedure led to an H-matrix approxima-
tion B ∈ H(P2, r) of an auxiliary matrix S ∈ RN×N , which, in some sense, encoded
the abstract solution operator L−1 : H−1(Ω) −→ H1

0 (Ω) of the underlying PDE.
Citing only the case of a quasi-uniform mesh T , the error bound was of the form
�S −B�2 � ln(N)N2−L and the blockwise rank r of B satisfied r � Ld+1.

On the other hand, under the assumption of a shift theorem (f ∈ H−1+ε(Ω) ⇒ u∞ ∈
H1+ε

0 (Ω)), it was shown that the error between the inverse stiffness matrix A−1 and
the auxiliary matrix S could be bounded in the form �A−1 −S�2 � N1−2ε/d (in the
case of a quasi-uniform mesh T ). The final result was

�A−1 −B�2 ≤ �A−1 − S�2 + �S −B�2 � N1−2ε/d + ln(N)N2−L,

so that the overall accuracy of the approximant B was again dominated by the FEM
error.
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5. In his dissertation [Fau15], Faustmann further improved the results from [BH03] and
[Bör10]. Most importantly, he showed that �A−1−B�2 � ε can be achieved for every
ε > 0, independent of the FEM error. In fact, his error bounds took the form

�A−1 −B�2 � Nα exp(−brβ),

for some constants α, β, b > 0 and arbitrary blockwise rank r ∈ N.
Here, the novelty lied in working with the discrete solution u ∈ VN instead of the
exact solution u∞ ∈ H1

0 (Ω). In fact, at no point of the derivation was the exact
solution u∞ needed in any form. Nevertheless, the proof could be seen as a fully
discrete analogue of the one in [Bör10]. The FEM solution u is locally harmonic in
a discrete sense and satisfies a discrete version of the Caccioppoli inequality. The
advantage of this approach was that no auxiliary matrix S needed to be introduced
so that the triangle inequality at the end of [Bör10] could be omitted. Therefore, the
final result is not polluted by the FEM error so that the H-matrix approximation
indeed reaches arbitrary accuracy.

The analysis was carried out for elliptic operators Lu := −div(a1 ·∇u)+a2 ·∇u+a3u
with rough coefficients a1 ∈ L∞(Ω,Rd×d), a2 ∈ L∞(Ω,Rd), a3 ∈ L∞(Ω,R) combined
with Dirichlet-, Neumann- and Robin boundary conditions. The thesis also covers the
Navier-Lamé equation of linear elasticity as well as the boundary element formulation
of the homogeneous Laplace problem. Finally, we mention that the meshes T were
assumed to be shape-regular and quasi-uniform.

1.3 This work’s contribution

Here, in this thesis, we dwell on the fully discrete approach from [Fau15] and apply it in a
more abstract framework. The formulation is general enough to allow for a simultaneous
treatment of mesh-based finite element problems as well as mesh-free radial basis function
(RBF) interpolation problems. The main selling points of the abstract framework are
summarized below:

1. Mesh-based and mesh-less problems (i.e., point clouds) can be treated in the same
way.

2. Meshes and point clouds can be highly non-uniform (e.g., locally refined- or exponen-
tially graded meshes).

3. All spatial dimensions d ∈ N and all integer Sobolev orders k ∈ N0 are covered.

4. The computational domain Ω ⊆ Rd need not be a polyhedron. In fact, we only need
the existence of an extension operator EΩ : Hk(Ω) −→ Hk(Rd) in the sense of D.2.48.

5. The basis functions ϕ1, . . . , ϕN ∈ VN need not have local supports. Instead, we
require that the corresponding dual basis λ1, . . . , λN ∈ (VN )∗ is in some sense local
(cf. A.4.11).
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6. More emphasis is put on the crucial role of the discrete Caccioppoli inequality, since
it is a key ingredient of the construction.4

Under these circumstances, we will show that the inverse system matrix A−1 ∈ RN×N

can be approximated by an H-matrix Br ∈ H(P2, r), for arbitrary r ∈ N. The precise error
bound (cf. T.4.21) is much in the spirit of [Fau15].
Caveat: As was the case in [BH03], [Bör10] and [Fau15], our construction of the approx-

imant B is a theoretical existence result, because it involves certain inaccessible, abstract
operators. In contrast, the previously mentioned H-inversion routine (e.g., [Hac09, Sec-
tion 7.5]) produces a concrete H-matrix B̃ ∈ H(P2, r) which is supposed to approximate
A−1. To the best of our knowledge, a rigorous bound for the error �A−1 − B̃�2 is still
missing to this day. However, if it can be proved that this algorithm produces a Céa-type
best-approximation B̃ in the sense

�A−1 − B̃�2 � inf
B̂∈H(P2,r)

�A−1 − B̂�2,

then our existence result readily yields the convergence B̃ → A−1 as r → ∞.

1.4 How to read this thesis

The advanced reader is probably familiar with most of the results from Chapter 2. However,
the following parts should not be skipped, because they contain non-standard results that
are important throughout the subsequent chapters:

1. In Section 2.3, we introduce axes-parallel boxes B ⊆ Rd along with their inflated
cousins Bδ ⊆ Rd.

2. In Section 2.4, we define the concepts of shape regularity, overlap and spread for
families of subsets Ω1, . . . ,ΩN ⊆ Rd.

3. In Section 2.8.7, we prove a continuous variant of a Caccioppoli inequality.

4. In Section 2.9.6, we construct a discrete cut-off function on a simplicial mesh T .

Then, in Chapter 3, we introduce the class of hierarchical matrices and show how a
matrix B ∈ RN×N can be subdivided into a family of matrix blocks {B|I×J | (I, J) ∈ P2}.
To this end, we construct a block partition P2 using a geometrically balanced clustering
strategy based on axes-parallel boxes.
Chapter 4 contains the main results of this thesis, T.4.20 and T.4.21. We introduce a

general set of assumptions under which these results can be derived. The proof of T.4.20
is quite intricate and thus delayed to Chapter 5.

Finally, in Chapter 6 and Chapter 7, we apply the abstract framework from Chapter 4 to
a finite element discretization of a second-order elliptic PDE and to a radial basis function
interpolation problem. At the end of each chapter, we demonstrate the plausibility of our
theoretical analysis by means of numerical experiments.
4If the reader intends to apply this abstract framework to a new problem, the first thing to check should
be the validity of the discrete Caccioppoli inequality and the locality of the dual basis λ1, . . . , λN .

8



2 Preliminary results

2.1 Notation

1. We use the convention N := {1, 2, 3, . . . } and N0 := {0, 1, 2, 3, . . . }.
2. The cardinality of countable sets M is denoted by #M .

3. Pow(M) is the power set of a given set M (i.e., the set of all subsets).

4. “Large” matrices and vectors are typeset in boldface letters. For example, if a PDE
problem is discretized with N ! 1 degrees of freedom, a linear system of equations
of size N ×N needs to be solved. In this context, the stiffness matrix and load vector
are denoted by A ∈ RN×N and f ∈ RN , respectively.

5. For all matrices A ∈ RN×N and all index sets I, J ⊆ {1, . . . , N}, we denote by
A|I×J ∈ RI×J the matrix block that is formed by all entries Aij with (i, j) ∈ I × J .

6. If an inequality involves a multiplicative constant C > 0, which does not depend
on critical parameters, we use the symbols “�” and “�”. For example, we write
a � b � c � d instead of a ≤ C1b ≤ C2c ≤ C3d. The notation a 	 b is used if both
a � b and a � b hold true.

7. In the context of algorithmic complexity, we also use the capital Landau notation
f(N) = O(g(N)) to describe a relation of the form f(N) � g(N).

8. The Kronecker delta is denoted by

∀i, j ∈ N0 : δij :=

�
1 if i = j
0 if i += j

.

Similarly, the characteristic function of a set Ω ⊆ Rd is given by

∀x ∈ Rd : IΩ(x) :=
�

1 if x ∈ Ω
0 if x /∈ Ω

.

9. Subsets Ω of the d-dimensional coordinate space Rd are frequently referred to as
physical sets. For a subset Ω ⊆ Rd to be a domain, we only require it to be open. In
the context of a variational problem on some domain Ω, we will also use the name
computational domain to emphasize its intended use.

10. The d-dimensional Lebesgue measure of a measurable subset Ω ⊆ Rd is denoted by
meas(Ω) = measd(Ω) ∈ [0,∞]. For subsets Γ ⊆ ∂Ω, we write measd−1(Γ) for the
(d− 1)-dimensional surface measure.

9
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11. Let Ω ⊆ Rd be a set. We denote by Ω its closure, by Ω◦ its interior, and by ∂Ω :=
Ω ∩ Rd\Ω its boundary.

12. Let ω,Ω ⊆ Rd be measurable sets. We say that ω is compactly contained in Ω, if
there exists a compact set K ⊆ Rd such that ω ⊆ K ⊆ Ω. In this case, we write
ω � Ω.

13. Let Ω ⊆ Rd be open. We say that Ω is (path-)connected, if, for any two points
x, y ∈ Ω, there exists a continuous function γ : [0, 1] −→ Rd such that γ(0) = x,
γ(1) = y and γ([0, 1]) ⊆ Ω.

A subset ω ⊆ Ω is a connected component of Ω, if it is connected and if there exists
no other connected subset ω̃ ⊆ Ω such that ω 
 ω̃ (i.e., ω is maximal with respect to
“⊆”).

14. Let Ω ⊆ Rd be open. Unless explicitly told otherwise, all function spaces on Ω are
meant to be real-valued.

15. Let Ω ⊆ Rd be open. The support of a function v : Ω −→ R is defined as

supp(v) := {x ∈ Ω | v(x) += 0},
where the closure is taken in Rd.

16. Let Ω ⊆ Rd and let v : Ω −→ R be a function. For every subset ω ⊆ Ω, we denote by
v|ω : ω −→ R the restriction of v to ω, i.e.,

∀x ∈ ω : (v|ω)(x) := v(x).

17. Let Ω ⊆ Rd be open. Let v : Ω −→ R and w : Ω −→ Rd be sufficiently smooth. For
every i ∈ {1, . . . , d}, we denote by ∂iv : Ω −→ R the partial derivative with respect to
the i-th coordinate. For higher-order partial derivatives, we write, e.g., ∂ijv = ∂i∂jv

and also ∂
(k)
i v = ∂i · · · ∂iv (k ∈ N times). We set

∇v := (∂iv)
d
i=1, Δv :=

d�
i=1

∂iiv, div w :=

d�
i=1

∂iwi.

Depending on the context, ∇v is either a column- or a row-vector.

18. We use the usual multi-index notation: Let d ∈ N and α = (α1, . . . , αd), β =
(β1, . . . , βd) ∈ Nd

0. We set α ± β := (α1 ± β1, . . . , αd ± βd) and write α ≤ β, if
αi ≤ βi, for all i ∈ {1, . . . , d}. Similarly, we write α < β, if α ≤ β but α += β. We set

|α| := α1 + · · ·+ αd, α! := α1! . . . αd!,

�
α

β

�
:=

α!

β!(α− β)!
.

For all x ∈ Rd and all sufficiently smooth functions v : Ω −→ R (Ω ⊆ Rd open), we
write

xα := xα1
1 . . . xαd

d , Dαv = ∂
(α1)
1 . . . ∂

(αd)
d v.
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Let k ∈ N0. Statements of the form “For all α ∈ Nd
0 with |α| ≤ k, . . . ” are usually

abbreviated as “For all |α| ≤ k, . . . ”. Likewise, sums of the form
�

α∈Nd
0:|α|≤k(. . . )

will be written as
�

|α|≤k(. . . ).

19. Inside integrals, we frequently drop the arguments of the integrands. E.g., we abbre-
viate

�
Ω v(x)w(x) dx by

�
Ω vw dx.

2.2 Norms, diameters, distances

Definition 2.1. Let d ∈ N and p ∈ [1,∞]. We define

∀x ∈ Rd : �x�p :=
�

(
�d

i=1 |xi|p)1/p if p ∈ [1,∞)
maxi∈{1,...,d} |xi| if p = ∞ .

In the case p = 2, we define

∀x, y ∈ Rd : 
x, y�2 :=
d�

i=1

xiyi.

Definition 2.2. For all M,N ∈ N, the spectral norm of a matrix A ∈ RM×N is denoted
by

�A�2 := sup
x∈RN

�Ax�2
�x�2 .

Definition 2.3. For all Ω ⊆ Rd, we define

diam2(Ω) := sup
x,y∈Ω

�y − x�2 ∈ [0,∞].

Lemma 2.4. For all Ω ⊆ Rd, there hold the relations

diam2(Ω
◦) ≤ diam2(Ω) = diam2(Ω).

Proof. The relations diam2(Ω
◦) ≤ diam2(Ω) ≤ diam2(Ω) are trivial, because Ω◦ ⊆ Ω ⊆ Ω.

On the other hand, for all n ∈ N and all x, y ∈ Ω, we may pick points xn, yn ∈ Ω with
�x− xn�2 + �y − yn�2 ≤ 1/n, so that

diam2(Ω) ≤ sup
x,y∈Ω

�y − yn�2 + �yn − xn�2 + �xn − x�2 ≤ diam2(Ω) +
1

n

n−→ diam2(Ω).

Definition 2.5. For all subsets Ω1,Ω2 ⊆ Rd, we set

dist2(Ω1,Ω2) := inf
x∈Ω1
y∈Ω2

�y − x�2.
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Definition 2.6. For all x ∈ Rd and r ≥ 0, we define the balls

Ball2(x, r) := {y ∈ Rd | �y − x�2 < r},
Ball2(x, r) := {y ∈ Rd | �y − x�2 ≤ r}.

Lemma 2.7. 1. For all x ∈ Rd and all r ≥ 0, there holds

meas(Ball2(x, r)) = meas(Ball2(x, r)) = C(d)rd,

where C(d) = πd/2(d/2)−1Γ(d/2)−1.

2. For all x1, x2 ∈ Rd and r1, r2 > 0, there holds the following equivalence:

Ball2(x1, r1) ∩ Ball2(x2, r2) = ∅ ⇔ r1 + r2 ≤ �x2 − x1�2.

Proof. Ad item 1: See, e.g., [Fle77, Formula (5.46)].
Ad item 2: If Ball2(x1, r1) ∩ Ball2(x2, r2) += ∅, then we can pick a point x ∈ Rd with

�x− x1�2 < r1 and �x− x2�2 < r2, so that �x2 − x1�2 ≤ �x2 − x�2 + �x− x1�2 < r1 + r2.
On the other hand, if r1+r2 > �x2−x1�2, then the point x := (r2x1+r1x2)/(r1+r2) ∈ Rd

lies in the intersection of Ball2(x1, r1) and Ball2(x2, r2):

�x− x1�2 = r1�x2 − x1�2/(r1 + r2) < r1, �x− x2�2 = r2�x2 − x1�2/(r1 + r2) < r2.

2.3 Axes-parallel boxes

Axes-parallel boxes play an important role throughout this work. In Chapter 3, we will
use them for the purpose of geometric clustering, i.e., to subdivide a given point cloud
x1, . . . , xN ∈ Rd into multiple groups. To this end, we will need a way to split a given box
into smaller ones and also to “inflate” a box by a given amount. Then, in Section 5.4, we
use axes-parallel boxes again in a “partition of unity” argument on a family of overlapping
boxes. Finally, in T.5.16, we work with a nested sequence of axes-parallel boxes.

Definition 2.8. A subset B ⊆ Rd is called (axes-parallel) box, if there exist ai, bi ∈ R,
ai < bi, such that

B =
d×

i=1

[ai, bi).

We denote the set of all boxes by B.

Note that we consider half-open boxes so that we can tile the full space Rd without any
holes or slits. For easy reference later on, we state the following trivial facts:

Lemma 2.9. For all B ∈ B, there hold the following relations:

B += ∅, diam2(B) ∈ (0,∞), meas(B) ∈ (0,∞).
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Next, we demonstrate how to divide a given box A ∈ B into smaller ones. Here, we split
A in half along each one of the coordinate axes, producing 2d smaller boxes.

Definition 2.10. Consider a box A =×d
i=1[ai, bi) ∈ B and let Λ := {0, 1}d. We define

subboxes (A(λ))λ∈Λ in the following way:

A(λ) :=
d×

i=1

[(1− λi)ai + λi(ai + bi)/2, (1− λi)(ai + bi)/2 + λibi) ∈ B.

We denote by
sons(A) := {A(λ) |λ ∈ Λ} ⊆ B

the sons of the box A.

Let us have a look at an example in d = 2 spatial dimensions: If A = [0, 6)× [0, 2), then

A((0,1)) = [0, 3)× [1, 2), A((1,1)) = [3, 6)× [1, 2),

A((0,0)) = [0, 3)× [0, 1), A((1,0)) = [3, 6)× [0, 1).

Lemma 2.11. There hold the following properties:

1. For all λ, λ̃ ∈ Λ with λ += λ̃, there holds A(λ) += A(λ̃). In particular,

#sons(A) = 2d.

2. Let A ∈ B. Then the subboxes sons(A) form a partition of A:

❼ There holds ∅ /∈ sons(A).

❼ For all B, B̃ ∈ sons(A) with B += B̃, there holds B ∩ B̃ = ∅.
❼ For all B ∈ sons(A), there holds B ⊆ A. Furthermore,�

·
B∈sons(A)

B = A.

3. Let A, Ã ∈ B with A ∩ Ã = ∅. Then

sons(A) ∩ sons(Ã) = ∅.

4. Let A ∈ B. For all B ∈ sons(A), there hold the relationships

diam2(B) = 2−1diam2(A), meas(B) = 2−dmeas(A).

Proof. Ad item 1: Let λ, λ̃ ∈ Λ with λ += λ̃. Then it can easily be verified that the point
x := ((1−λi)ai+λi(ai+bi)/2)

d
i=1 ∈ Rd lies in A(λ), but not in A(λ̃). Therefore, A(λ) += A(λ̃).

In particular, #sons(A) = #Λ = 2d.
Ad item 2: The fact that ∅ /∈ sons(A) follows from L.2.9. To see the disjointness, let

B, B̃ ∈ sons(A) with B += B̃ be given. According to item 1, there exist λ, λ̃ ∈ Λ with λ += λ̃,

such that B = A(λ) and B̃ = A(λ̃). Now, abbreviate A =×d
i=1Ai and A(λ) =×d

i=1A
(λi)
i ,
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where Ai := [ai, bi) and A
(λi)
i := [(1−λi)ai+λi(ai+ bi)/2, (1−λi)(ai+ bi)/2+λibi). Since

λ += λ̃, one can easily check that A
(λi)
i ∩ A

(λ̃i)
i = ∅, for at least one i ∈ {1, . . . , d}. The

disjointness of B and B̃ then follows from

B ∩ B̃ = A(λ) ∩A(λ̃) =

� d×
i=1

A
(λi)
i

�
∩
� d×

i=1

A
(λ̃i)
i

�
=

d×
i=1

(A
(λi)
i ∩A

(λ̃i)
i ) = ∅.

On the other hand, since Ai = A
(0)
i ∪A

(1)
i , for all i ∈ {1, . . . , d}, we get

A = {x ∈ Rd |x1 ∈ A1, . . . , xd ∈ Ad}
= {x ∈ Rd |x1 ∈ A

(0)
1 ∪A

(1)
1 , . . . , xd ∈ A

(0)
d ∪A

(1)
d }

=
�
λ∈Λ

{x ∈ Rd |x1 ∈ A
(λ1)
1 , . . . , xd ∈ A

(λd)
d }

=
�
λ∈Λ

A(λ) =
�

B∈sons(A)

B.

Ad item 3: Let A, Ã ∈ B with A ∩ Ã = ∅. If sons(A) ∩ sons(Ã) was not empty, we could
pick a box B ∈ B with B ∈ sons(A) and B ∈ sons(Ã). Then, item 2 yields B ⊆ A∩ Ã = ∅,
which contradicts L.2.9.

Ad item 4: We only prove the first identity, since the second one is very similar. Given
B = A(λ), for some λ ∈ Λ, we compute

diam2(B)2 =
d�

i=1

�
(1− λi)(ai + bi)/2 + λibi − (1− λi)ai + λi(ai + bi)/2

�2

=

d�
i=1

((bi − ai)/2)
2 = 2−2diam2(A)

2.

This finishes the proof.

In D.2.10, we learned how to split a given box into smaller pieces. Next, we show how
to increase the size of a box:

Definition 2.12. Let B =×d
i=1[ai, bi) ∈ B and δ ≥ 0. We define the inflated box1

Bδ :=
d×

i=1

[ai − δ, bi + δ) ∈ B.

Note that Bδ is again a box. In particular, we can iterate (Bδ)δ = B2δ, ((Bδ)δ)δ = B3δ,
et cetera. In the next lemma, we provide a short summary of the relevant properties of
inflated boxes.

Lemma 2.13. 1. For all B ∈ B, δ ≥ 0, x ∈ B and y ∈ Rd with �y − x�2 ≤ δ, there
holds y ∈ Bδ.

1The notation is similar to the one from D.2.10. B(λ) is a smaller box than B and Bδ is a larger one.
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2. For all B ∈ B, δ ≥ 0 and y ∈ Bδ, there exists a point x ∈ B such that

�y − x�2 ≤
√
dδ.

3. For all B ∈ B and δ ≥ 0, there hold the bounds

diam2(B)/
√
d+ 2

√
dδ ≤ diam2(B

δ) ≤ diam2(B) + 2
√
dδ.

4. For all B1, B2 ∈ B and δ1, δ2 ≥ 0, there hold the bounds

dist2(B1
δ1 , B2

δ2) ≤ dist2(B1, B2) ≤ dist2(B1
δ1 , B2

δ2) +
√
d(δ1 + δ2).

Proof. Ad item 1: Let x ∈ B and y ∈ Rd with �y − x�2 ≤ δ. Then ak ≤ xk < bk, for all
k ∈ {1, . . . , d}. Since |yk −xk| ≤ �y−x�2 ≤ δ, we get ak − δ ≤ xk − δ ≤ xk − |yk −xk| ≤ yk
and similarly yk < bk + δ.

Ad item 2: Let y ∈ Bδ, i.e., ak − δ ≤ yk < bk + δ, for all k ∈ {1, . . . , d}. Abbreviating
ck := (ak + bk)/2, we define a point x ∈ Rd in the following way:

∀k ∈ {1, . . . , d} : xk :=
bk − ck

bk + δ − ck
(yk − ck) + ck.

Using the bound

|yk − ck| = max{yk − ck, ck − yk} ≤ max{bk + δ − ck, ck − ak + δ} = bk + δ − ck,

we get |xk− ck| ≤ |bk− ck| = (bk−ak)/2, telling us that xk ∈ [ak, bk], for all k ∈ {1, . . . , d}.
In fact, checking the case yk = bk + δ explicitly, there even holds xk ∈ [ak, bk), so that
x ∈ B. Finally, we have the error bound |yk − xk| = δ|yk − ck|/(bk + δ − ck) ≤ δ, which
readily implies �y − x�2 ≤

√
dδ after summation over all k.

Ad item 3, left-hand inequality: Follows from the norm equivalence �·�2 ≤ �·�1 ≤
√
d�·�2:

√
d diam2(B

δ) ≥ diam1(B
δ) = diam1(B) + 2dδ ≥ diam2(B) + 2dδ.

Ad item 3, right-hand inequality: For all y1, y2 ∈ Bδ, pick points x1, x2 ∈ B as described
in item 2. Then,

diam2(B
δ) ≤ sup

y1,y2∈Bδ

�y2 − x2�2 + �x2 − x1�2 + �x1 − y1�2 ≤ diam2(B) + 2
√
dδ.

Ad item 4, left-hand inequality: Follows immediately from the inclusions B1 ⊆ B1
δ1 and

B2 ⊆ B2
δ2 .

Ad item 4, right-hand inequality: Using item 2 again, we estimate

dist2(B1, B2) = inf
b1∈B1
b2∈B2

�b2 − b1�2 ≤ inf
a1∈B1

δ1

a2∈B2
δ2

inf
b2∈B2

�b2 − a2�2 + �a2 − a1�2 + inf
b1∈B1

�a1 − b1�2

≤ dist2(B1
δ1 , B2

δ2) +
√
d(δ1 + δ2).
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2.4 Shape regularity, overlap and spread

Shape regularity is a well-known concept in the literature (e.g., [Bra13, Chapter 2, Section
5], [BS08, Chapter 4] and [LB13, Section 3.1]). It is a prerequisite for almost all stability
and error estimates in the context of finite element discretizations. In mesh-based methods,
shape regularity is frequently accompanied by the notion of overlap, which somehow reflects
the interaction between adjacent mesh elements. Finally, in the realm of mesh-less methods,
we have to assume some sort of spatial boundedness of the degrees of freedom. To this end,
we introduce spread.

Definition 2.14. For every subset Ω ⊆ Rd, we define

hΩ := diam2(Ω).

Remark 2.15. In this work, we are dealing mainly with two types of subsets Ω ⊆ Rd. On
one hand, we have “small” subsets Ω1, . . . ,ΩN ⊆ Rd coming from an approximation process
(e.g., mesh elements T ∈ T , D.2.60). On the other hand, we use “large” axes parallel boxes
B ∈ B (cf. D.2.8) to subdivide the smaller sets Ωn into multiple groups. The diameters
of the sets Ωn are typically O(N−α), for some α > 0, whereas the diameters of the boxes
B ∈ B range from O(N−α) up to O(1). As is customary in numerical analysis, we will
use the character h for the diameters of the “small” sets Ωn, but we will not use it for the
diameters of the mostly “large” boxes B.

Definition 2.16. Let σshp ≥ 1 and Ω ⊆ Rd. We say2 that Ω has shape regularity σshp, if

hΩ ∈ (0,∞)

and if there exists a point xshp ∈ Ω such that3

Ball2(xshp, (2σshp)
−1hΩ) ⊆ Ω.

In this case, xshp is called an incenter of Ω. Similarly, a family of subsets Ω1, . . . ,ΩN ⊆
Rd is said to have shape regularity σshp, if each individual set Ωn has shape regularity σshp.

Note that an incenter need not be unique. We summarize the relevant facts about shape
regular sets:

Lemma 2.17. Let Ω, Ω̃ ⊆ Rd be given sets with shape regularity σshp ≥ 1. Furthermore,
let xshp ∈ Ω and �xshp ∈ Ω̃ be given incenters.

1. There holds
xshp ∈ Ball2(xshp, (2σshp)

−1hΩ) ⊆ Ω◦,

where Ω◦ is the interior of Ω.

2We will also use the phrase “Ω is σshp-shape regular” or simply “Ω is shape regular” and implicitly assume
that a constant σshp ≥ 1 was prescribed in advance.

3The factor 2−1 guarantees that balls themselves are shape regular with σshp = 1.
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2. There hold the relations

meas(Ω) ≤ hdΩ ≤ C(d)σd
shpmeas(Ω).

3. If Ω◦ ∩ Ω̃◦ = ∅, then
hΩ + hΩ̃ ≤ 2σshp��xshp − xshp�2.

Proof. Ad item 1: Since hΩ > 0, it is clear that xshp ∈ Ball2(xshp, (2σshp)
−1hΩ). The subset

Ball2(xshp, (2σshp)
−1hΩ) ⊆ Ω is open and thus contained in the largest open subset of Ω,

which is the interior Ω◦.
Ad item 2: Denote by e1, . . . , ed ∈ Rd the Euclidean unit vectors. For all k ∈ {1, . . . , d},

let ak := infx∈Ω
x, ek�2 and bk := supx∈Ω
x, ek�2. ThenB :=×d
k=1[ak, bk] is an axes-parallel

bounding box of Ω and we get

meas(Ω) ≤ meas(B) =

d�
k=1

bk − ak =

d�
k=1

sup
x,y∈Ω


x− y, ek�2 ≤ hdΩ.

On the other hand, we have

C(d)σ−d
shph

d
Ω

L.2.7
= meas(Ball2(xshp, (2σshp)

−1hΩ))
D.2.16≤ meas(Ω).

Ad item 3: Using step 1, we have

Ball2(xshp, (2σshp)
−1hΩ) ∩ Ball2(�xshp, (2σshp)−1hΩ̃) ⊆ Ω◦ ∩ Ω̃◦ = ∅.

It then follows from L.2.7 that (2σshp)
−1(hΩ + hΩ̃) ≤ ��xshp − xshp�2.

When dealing with multiple sets Ω1, . . . ,ΩN ⊆ Rd, we have to account for the possibility
of overlap.

Definition 2.18. Let σovlp ≥ 1, N ∈ N and Ω1, . . . ,ΩN ⊆ Rd. We say that the family
{Ω1, . . . ,ΩN} has overlap σovlp, if there holds4

max
n∈{1,...,N}

#{m ∈ {1, . . . , N} |Ω◦
m ∩ Ω◦

n += ∅} ≤ σovlp.

The number σovlp allows us to quantify how many sets Ωn can agglomerate at a given
point in space. In particular, if a set Ωn has “too many” neighbours Ωm, their diameters
cannot be arbitrarily large.

Lemma 2.19. Let σshp, σovlp ≥ 1. Let N ∈ N and consider a family Ω1, . . . ,ΩN ⊆ Rd of
sets with shape regularity σshp and overlap σovlp. Furthermore, for every n ∈ {1, . . . , N},
let xn ∈ Ωn be an incenter (cf. D.2.16). Then, for every index set I ⊆ {1, . . . , N} with
#I > σovlp, there holds the bound

max
n∈I

hΩn ≤ 2σshp max
m,n∈I

�xm − xn�2.
4Note that we require the interiors of Ωm and Ωn to overlap. In particular, the intersection must have
non-zero Lebesgue measure.
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Proof. Let n ∈ I. Then there must exist an index m ∈ I such that Ω◦
m ∩ Ω◦

n = ∅, because
otherwise we would get the contradiction

σovlp < #I = #{m̃ ∈ I |Ω◦
m̃ ∩ Ω◦

n += ∅} ≤ #{m̃ ∈ {1, . . . , N} |Ω◦
m̃ ∩ Ω◦

n += ∅} D.2.18≤ σovlp.

We obtain

Ball2(xm, (2σshp)
−1hΩm) ∩ Ball2(xn, (2σshp)

−1hΩn)
L.2.17⊆ Ω◦

m ∩ Ω◦
n = ∅,

which in turn implies (2σshp)
−1(hΩm + hΩn) ≤ �xm − xn�2 (cf. L.2.7). Then,

hΩn ≤ 2σshp�xm − xn�2 ≤ 2σshp max
m̃,ñ∈I

�xm̃ − xñ�2.

Taking the maximum over all n ∈ I, the desired bound follows.

Questions of overlap also arise when dealing with integrals. If a function f : Rd −→ R
is integrated over subsets Ω1,Ω2 ⊆ Rd with Ω1 ∩ Ω2 += ∅, then we have

�
Ω1∪Ω2

f dx +=�
Ω1

f dx +
�
Ω2

f dx in general, because the contribution
�
Ω1∩Ω2

f dx is counted twice on
the right-hand side. To measure the discrepancy between the two, we can make use of the
quantity σovlp again.

Lemma 2.20. Let Ω ⊆ Rd be open, k ∈ N0, p ∈ [1,∞) and f ∈ W k,p(Ω) (cf. D.2.37). Let
σovlp ≥ 1, N ∈ N and consider a family Ω1, . . . ,ΩN ⊆ Ω of sets with overlap σovlp. Then,
for all index sets I ⊆ {1, . . . , N}, there hold the bounds

�f�p
Wk,p(ΩI)

≤
�
n∈I

�f�p
Wk,p(Ωn)

≤ σovlp�f�pWk,p(ΩI)
,

where ΩI :=
�

n∈I Ωn ⊆ Ω.

Proof. For every subset ω ⊆ Ω, denote by Iω ∈ L∞(Ω) its characteristic function (cf.
Section 2.1). Since

�f�p
Wk,p(ω)

=
�
|α|≤k

�Dαf�pLp(ω) =

�
Ω

Iω(x)
�
|α|≤k

|(Dαf)(x)|p dx,

it suffices to show that, for almost all x ∈ Ω,

IΩI
(x) ≤

�
n∈I

IΩn(x) ≤ σovlpIΩI
(x).

The left-hand inequality follows readily from the identity ΩI =
�

n∈I Ωn and the fact
that Iω1∪ω2 ≤ Iω1 + Iω2 , for all subsets ω1, ω2 ⊆ Ω. To see the right-hand inequality, let
x ∈ Ω\M , where M :=

�
n∈I ∂Ωn satisfies meas(M) = 0. (The set M is defined such that

x ∈ Ωn, if and only if x ∈ Ω◦
n.) In the case x /∈ ΩI , both sides of the inequality become zero.
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In the remaining case x ∈ ΩI , we can find an index n0 ∈ I such that x ∈ Ωn0\M ⊆ Ω◦
n0
.

In particular,�
n∈I

IΩn(x) = #{n ∈ I |x ∈ Ω◦
n} ≤ #{n ∈ I |Ω◦

n ∩ Ω◦
n0

+= ∅} D.2.18≤ σovlp = σovlpIΩI
(x).

This finishes the proof.

We finish this section with the definition of spread. For mesh-based methods, spread is
not an issue, since the computation domains is typically assumed to be bounded anyways.
However, in the context of mesh-less methods, we are usually working with point clouds
x1, . . . , xN ∈ Rd (or tiny bubbles Ω1, . . . ,ΩN ⊆ Rd) that need not be associated with any
underlying domain. In order to rule out the case of individual points wandering off too far
from the cloud’s center, we assume a uniform bound on the cloud diameter. (Note that
this does not rule out a scenario where the cloud as a whole wanders off to infinity.)

Definition 2.21. Let σsprd ≥ 1, N ∈ N and Ω1, . . . ,ΩN ⊆ Rd. We say that the family
{Ω1, . . . ,ΩN} has spread σsprd, if

diam2

� N�
n=1

Ωn

�
≤ σsprd.

Clearly, if the diameter of the family Ω1, . . . ,ΩN is bounded by σsprd, we can wrap it in
an axes-parallel box B ∈ B (cf. D.2.8) with side length σsprd.

Lemma 2.22. Let σsprd ≥ 1, N ∈ N and Ω1, . . . ,ΩN ⊆ Rd be a family of sets with spread
σsprd. Then, there exists a box B ∈ B with the following properties:

Ω1, . . . ,Ωn ⊆ B, diam2(B) =
√
dσsprd, meas(B) = σd

sprd.

Proof. Abbreviate Ω :=
�N

n=1Ωn ⊆ Rd. Using the Euclidean unit vectors e1, . . . , ed ∈ Rd,
we introduce the quantities

ai := inf
x∈Ω


x, ei�2, bi := sup
x∈Ω


x, ei�2, ci := (ai + bi)/2.

and the box

B :=
d×

i=1

[ci − σsprd/2, ci + σsprd/2) ∈ B.

Note that

bi − ai = sup
x∈Ω


x, ei�2 − inf
y∈Ω


y, ei�2 = sup
x,y∈Ω


x− y, ei�2 ≤ diam2(Ω)
D.2.21≤ σsprd.

In particular, for all x ∈ Ω and i ∈ {1, . . . , d}, we get


x, ei�2 ≤ bi = (ai + bi)/2 + (bi − ai)/2 ≤ ci + σsprd/2
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and similarly 
x, ei�2 ≥ ci − σsprd/2. Therefore, we have the inclusions Ωn ⊆ Ω ⊆ B.
Finally, we compute

diam2(B)2 =
d�

k=1

((ci + σsprd/2)− (ci − σsprd/2))
2 = dσ2

sprd,

meas(B) =
d�

k=1

((ci + σsprd/2)− (ci − σsprd/2)) = σd
sprd.

2.5 Affine transformations

Definition 2.23. A function F : Rd −→ Rd is called affine (transformation), if there exist
a regular matrix A ∈ Rd×d and a vector a ∈ Rd, such that

∀x ∈ Rd : F (x) = Ax+ a.

If A = Q, for some orthogonal matrix5 Q ∈ Rd×d with det(Q) = 1, then we call F a
rigid body transformation.

Note that the regularity of A is part of the definition of affinity. Furthermore, note that
an affine transformation F is smooth and that there holds ∇F ≡ A. In particular, for all
x ∈ Rd, we have F (x) = (∇F )x+ a. The stability properties of affine transformations are
tightly connected with the notion of shape regularity from D.2.16.

Lemma 2.24. Let F : Rd −→ Rd be affine.

1. Then F is bijective and its inverse F−1 : Rd −→ Rd is again affine with

∇(F−1) = (∇F )−1.

2. Let Ω̂,Ω ⊆ Rd be such that F (Ω̂) = Ω. If Ω̂ is �σshp-shape regular, for some �σshp ≥ 1,
then Ω is σshp-shape regular, where

σshp := �σshp�∇(F−1)�2hΩh−1

Ω̂
≥ 1.

3. Let Ω̂,Ω ⊆ Rd be such that F (Ω̂) = Ω. Suppose that Ω̂ is �σshp-shape regular and
that Ω is σshp-shape regular, for some �σshp, σshp ≥ 1. Then, there hold the following
bounds:

C(d)−1σ−d
shph

d
Ωh

−d

Ω̂
≤ |det∇F | ≤ C(d)�σshpdhdΩh−d

Ω̂
,

hΩh
−1

Ω̂
≤ �∇F�2 ≤ �σshphΩh−1

Ω̂
.

Proof. Ad item 1: If F (x) = Ax+ a, then F−1(y) = A−1y −A−1a.
Ad item 2: Write F (x) = Ax+ a. According to D.2.16, we have hΩ̂ ∈ (0,∞). Therefore,

hΩ = sup
x,y∈Ω

�y − x�2 = sup
x̂,ŷ∈Ω̂

�F (ŷ)− F (x̂)�2 = sup
x̂,ŷ∈Ω̂

�A(ŷ − x̂)�2 ≤ �A�2hΩ̂ < ∞.

5Recall that a regular matrix Q ∈ Rd×d is orthogonal, if there holds Q−1 = QT . In this case |det(Q)| = 1.
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Similarly, 0 < hΩ̂ ≤ �A−1�2hΩ, so that hΩ > 0 as well.

Next, owing to D.2.16 again, we may pick a point �xshp ∈ Ω̂ such that

Ball2(�xshp, (2�σshp)−1hΩ̂) ⊆ Ω̂.

Set σshp := �σshp�A−1�2hΩh−1

Ω̂
and xshp := F (�xshp) ∈ Ω. We want to show that

Ball2(xshp, (2σshp)
−1hΩ) ⊆ Ω.

To this end let x ∈ Ball2(xshp, (2σshp)
−1hΩ). Then, its pre-image x̂ := F−1(x) satisfies

�x̂− �xshp�2 = �F−1(x)− F−1(xshp)�2 = �A−1(x− xshp)�2 ≤ �A−1�2�x− xshp�2
≤ �A−1�2(2σshp)−1hΩ = (2�σshp)−1hΩ̂.

We obtain
x̂ ∈ Ball2(�xshp, (2�σshp)−1hΩ̂) ⊆ Ω̂

and ultimately x = F (x̂) ∈ F (Ω̂) = Ω.
Ad item 3: Write F (x) = Ax + a. To bound the determinant, we use the well-known

identity |detA| = meas(Ω)meas(Ω̂)−1 (e.g., [Rud87, Theorem 2.20, Lemma 2.23]):

C(d)−1σ−d
shph

d
Ωh

−d

Ω̂

L.2.17≤ meas(Ω)

meas(Ω̂)
= |detA| = meas(Ω)

meas(Ω̂)

L.2.17≤ C(d)�σshpdhdΩh−d

Ω̂
.

The lower bound hΩh
−1

Ω̂
≤ �A�2 was already shown in step 2. Finally, D.2.16 allows us

to pick a point �xshp ∈ Ω̂ such Ball2(�xshp, r̂) ⊆ Ω̂, for all r̂ ∈ (0, (2�σshp)−1hΩ̂). We compute

�A�2 = sup

ξ
2=1

�Aξ�2 = (2r̂)−1 sup

ξ
2=1

�F (�xshp + r̂ξ)− F (�xshp − r̂ξ)�2

≤ (2r̂)−1 sup
x̂,ŷ∈Ω̂

�F (ŷ)− F (x̂)�2 = (2r̂)−1hΩ.

Sending r̂ → (2�σshp)−1hΩ̂, the upper bound �A�2 ≤ �σshphΩh−1

Ω̂
follows.

Note that we can get analogous bounds for |det∇(F−1)| and �∇(F−1)�2 by reversing
the roles of Ω̂ and Ω.

2.6 Some function spaces

Definition 2.25. Let Ω ⊆ Rd be open and let p ∈ N0. We define the space of polynomials
of degree p,

Pp(Ω) :=

�
v : Ω −→ R

!!!! ∃(cα)|α|≤p ⊆ R : ∀x ∈ Ω : v(x) =
�
|α|≤p

cαx
α

�
.

Furthermore, we set
P−1(Ω) := {v : Ω −→ R | v ≡ 0}.
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We mention that the dimension of this space is given by

dim(Pp(Ω)) =

�
d+ p

d

�
=

(d+ p)!

d!p!
= O(pd),

if p ∈ N0, and dim(P−1(Ω)) = 0 (see, e.g., [EG04, Section 1.2.3]).
Note that a function v ∈ Pp(Ω) is represented by the same coefficient set (cα)|α|≤p on all

of Ω, even if Ω is not connected. In order to allow for distinct coefficient sets on distinct
connected components of Ω, we introduce the following, slightly larger space:

Definition 2.26. Let Ω ⊆ Rd be open and let p ∈ N0 ∪ {−1}. We define the space

Pp
conn(Ω) := {v : Ω −→ R | ∀ connected components ω ⊆ Ω : v|ω ∈ Pp(ω)}.

For the next definition, we remind the reader of the notion of uniform continuity: Let
Ω ⊆ Rd be an open set. A function v : Ω −→ R is said to be continuous on Ω, if the
following statement is true:

∀x ∈ Ω : ∀ε > 0 : ∃δ > 0 : sup
y∈Ω:


y−x
2≤δ

|v(y)− v(x)| ≤ ε.

On the other hand, the function v is uniformly continuous on Ω, if

∀ε > 0 : ∃δ > 0 : sup
x,y∈Ω:


y−x
2≤δ

|v(y)− v(x)| ≤ ε.

In this case, v can be extended to a continuous function v : Ω −→ R (e.g., [AF03, Section
1.28]). If, additionally, v is bounded, then its extension to Ω is bounded as well.

Definition 2.27. Let Ω ⊆ Rd be open and k ∈ N0 ∪ {∞}. We set6

Ck(Ω) := {v : Ω −→ R | v is k times continuously differentiable},
Ck(Ω) := {v ∈ Ck(Ω) | ∀|α| ≤ k : Dαv unif. cont. and bounded},
Ck
0 (Ω) := {v ∈ Ck(Ω) | supp(v) � Ω}.

The functions v ∈ C∞
0 (Ω) are called test functions.

2.7 Lebesgue spaces

Lebesgue spaces are a core pillar of the theory of partial differential equations. More details
can be found, e.g., in [Fle77, Section 5.13], [Rud87, Chapter 3], [AF03, Chapter 2], [Bre11,
Chapter 4] or [Leo17, Appendix B.7.].

6See Section 2.1 for the definition of the relation “A � B”.
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Definition 2.28. Let I ⊆ N and p ∈ [1,∞]. We define the sequence space

lp(I) := {v = (vi)i∈I ∈ RI | �v�lp(I) < ∞},

where

�v�lp(I) :=
�

(
�

i∈I |vi|p)1/p if p ∈ [1,∞)
supi∈I |vi| if p = ∞ .

In the case p = 2, we set


v, w�l2(I) :=
�
i∈I

viwi.

If the set I has the form I = {1, . . . , N}, for some N ∈ N, then we abbreviate lp(N) :=
lp({1, . . . , N}).
Lemma 2.29. Let I ⊆ N and let p, q, r ∈ [1,∞] with 1/p + 1/q = 1/r. Then, for all
v ∈ lp(I) and w ∈ Lq(I), there holds the Hölder inequality

�vw�lr(I) ≤ �v�lp(I)�w�lq(I).

Proof. See, e.g., [AF03, Corollary 2.5].

In the special case p = q = 2 and r = ∞, Hölder’s inequality is also known as the
Cauchy-Schwarz inequality.

Definition 2.30. Let Ω ⊆ Rd be a measurable set and p ∈ [1,∞]. We define the Lebesgue
space

Lp(Ω) := {v : Ω −→ R | v is measurable, �v�Lp(Ω) < ∞},
where

�v�Lp(Ω) :=

�
(
�
Ω |v(x)|p dx)1/p if p ∈ [1,∞)

ess supx∈Ω|v(x)| if p = ∞ .

In the case p = 2, we set


v, w�L2(Ω) :=

�
Ω

v(x)w(x) dx.

Lemma 2.31. Let Ω ⊆ Rd be measurable and p, q, r ∈ [1,∞] with 1/p+ 1/q = 1/r. Then,
for all v ∈ Lp(Ω) and w ∈ Lq(Ω), there hold vw ∈ Lr(Ω) and the Hölder inequality

�vw�Lr(Ω) ≤ �v�Lp(Ω)�w�Lq(Ω).

Proof. See, e.g., [AF03, Corollary 2.5].

An immediate consequence of Hölder’s inequality is the following result:

Lemma 2.32. Let Ω ⊆ Rd be measurable with meas(Ω) < ∞. Then, for all p, p̃ ∈ [1,∞]
with p̃ ≤ p, there holds

Lp(Ω) ⊆ Lp̃(Ω).
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Finally, we need to know what happens to the space Lp(Ω) if we perform an affine
coordinate transformation (cf. D.2.23).

Lemma 2.33. Let F : Rd −→ Rd be affine and let Ω̂,Ω ⊆ Rd be such that F (Ω̂) = Ω.
Let p ∈ [1,∞] and v : Ω −→ R be a measurable function. Then there holds the following
equivalence7:

v ∈ Lp(Ω) ⇔ v ◦ F ∈ Lp(Ω̂).

Furthermore, there holds the relation8

|det∇F |1/p�v ◦ F�Lp(Ω̂) = �v�Lp(Ω).

Proof. The case p = ∞ is trivial and the case p ∈ [1,∞) follows from the well-known (e.g.,
[Rud87, Theorem 7.26]) transformation rule for integrals,�

Ω

v dx =

�
Ω̂

v ◦ F · |det∇F | dx.

2.8 Sobolev spaces

The literature on Sobolev spaces is vast and we can only name a few: [Gri85, Chapter 1],
[McL00, Chapter 3], [GT01, Chapter 7], [EG04, Appendix B.3], [BS08, Chapter 1], [Eva10,
Section 5.2.], [Bre11, Chapter 8] or [Neč12, Chapter 2]. Whole books dedicated to the
subject include, among others, [Maz85], [AF03] and [Leo17].

2.8.1 Definition

A fundamental concept in the theory of Sobolev spaces is the notion of weak derivatives.
Given an open set Ω ⊆ Rd, a function v ∈ Ck(Ω), a test function w ∈ C∞

0 (Ω) and a
multi-index α ∈ N0, it is well known that there holds the formula of partial integration:�

Ω

v(Dαw) dx = (−1)|α|
�
Ω

(Dαv)w dx.

However, the formula also makes sense if we only require9 v,Dαv ∈ Lp(Ω), for some p ∈
[1,∞]. This observation allows us to generalize the notion of differentiability significantly:

7More precisely, we should write v ◦ (F |Ω̂) ∈ Lp(Ω̂).
8In the case p = ∞, the convention 1/∞ := 0 is used.
9In fact, it suffices to require v,Dαv ∈ L1

loc(Ω), where L1
loc(Ω) := {v : Ω −→ R | ∀ω � Ω : v|ω ∈ L1(ω)}

denotes the space of locally integrable functions. However, the simpler setting of Lp(Ω) is sufficient for
the purpose of the present work.
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Definition 2.34. Let Ω ⊆ Rd be an open set, p ∈ [1,∞], v ∈ Lp(Ω) and α ∈ Nd
0. We say

that v has an α-th weak derivative, if there exists a function vα ∈ Lp(Ω) such that, for all
w ∈ C∞

0 (Ω), there holds the identity�
Ω

v(Dαw) dx = (−1)|α|
�
Ω

vαw dx.

As we shall see, there can be at most one such function vα. To this end, we need the
following well-known result, which goes by the name of Fundamental Lemma of Calculus
of Variations or du Bois-Reymond Lemma:

Lemma 2.35. Let Ω ⊆ Rd be open, k ∈ N0 and p ∈ [1,∞]. Let v ∈ Lp(Ω) be such that�
Ω

v(Dαw) dx = 0,

for all w ∈ C∞
0 (Ω) and all |α| = k. Then, there holds10 v ∈ Pk−1

conn(Ω).

Proof. Proofs of the cases k ∈ {0, 1} can be found, e.g., in [AF03, Lemma 3.31] and [GH96,
Chapter 1, Section 2., Subsection 2.3., Lemma 4], respectively.

We quickly summarize the basic properties of weak derivatives.

Lemma 2.36. Let Ω ⊆ Rd be open, p ∈ [1,∞] and α, β ∈ Nd
0.

1. Uniqueness: If u ∈ Lp(Ω) has an α-th weak derivative uα ∈ Lp(Ω), then uα is unique.
In particular, the following notation is justified:

Dαu := uα ∈ Lp(Ω).

2. Commutativity: Suppose u ∈ Lp(Ω) has an α-th and a β-th weak derivative Dαu,
Dβu ∈ Lp(Ω). If either one of the weak derivatives Dα+βu,Dα(Dβv),Dβ(Dαu) ∈
Lp(Ω) exists, then all of them exist and coincide.

3. Linearity: If u, v ∈ Lp(Ω) have α-th weak derivatives Dαu,Dαv ∈ Lp(Ω), then, for
all a, b ∈ R, the function au + bv ∈ Lp(Ω) has an α-th weak derivative given by
Dα(au+ bv) = a(Dαu) + b(Dαv) ∈ Lp(Ω).

4. Restrictions: Consider an open subset ω ⊆ Ω. If u ∈ Lp(Ω) has an α-th weak
derivative Dαu ∈ Lp(Ω), then the restriction u|ω ∈ Lp(ω) has an α-th weak derivative
given by Dα(u|ω) = (Dαu)|ω ∈ Lp(ω).

Proof. To see item 1, let vα,�vα ∈ Lp(Ω) be such that
�
Ω v(Dαw) dx = (−1)|α|

�
Ω vαw dx

and
�
Ω v(Dαw) dx = (−1)|α|

�
Ω �vαw dx, for all w ∈ C∞

0 (Ω). Then
�
Ω(vα − �vα)w dx = 0,

for all w ∈ C∞
0 (Ω), so that vα = �vα, by L.2.35. The remaining items are straightforward

computations.
10Recall from D.2.25 and D.2.26 that P−1

conn(Ω) = {0}.
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Definition 2.37. Let Ω ⊆ Rd be open, k ∈ N0 and p ∈ [1,∞]. We define the Sobolev
space

W k,p(Ω) := {v ∈ Lp(Ω) | ∀|α| ≤ k : ∃Dαv ∈ Lp(Ω)}.
The space W k,p(Ω) is equipped with the norm

�v�Wk,p(Ω) :=

�
(
�

|α|≤k �Dαv�pLp(Ω))
1/p if p ∈ [1,∞)

max|α|≤k �Dαv�L∞(Ω) if p = ∞ .

Furthermore, for all l ∈ {0, . . . , k}, we define the seminorm

|v|W l,p(Ω) :=

�
(
�

|α|=l �Dαv�pLp(Ω))
1/p if p ∈ [1,∞)

max|α|=l �Dαv�L∞(Ω) if p = ∞ .

In the case p = 2, we write Hk(Ω) := W k,2(Ω) and set


v, w�Hk(Ω) :=
�
|α|≤k


Dαv,Dαw�L2(Ω).

Remark 2.38. For general subsets Ω ⊆ Rd, which are not necessarily open, we adopt the
convention from [Cia78, Remark 2.1.3.] and abbreviate

W k,p(Ω) := W k,p(Ω◦).

From a functional analytic point of view, the spaces W k,p(Ω) and Hk(Ω) have a nice
structure.

Lemma 2.39. Let Ω ⊆ Rd be open, k ∈ N0 and p ∈ [1,∞]. The space W k,p(Ω) is a Banach
space. Furthermore, Hk(Ω) is a Hilbert space.

Proof. See, e.g., [Eva10, Section 5.2., Theorem 2].

The concept of “weak differentiability” from D.2.34 generalizes “classic differentiability”.
In fact, if a function v ∈ Ck(Ω) is such that all of its classic derivatives Dαv ∈ C0(Ω),
|α| ≤ k, lie in Lp(Ω) (for some p ∈ [1,∞]), then all weak derivatives Dαv ∈ Lp(Ω), |α| ≤ k,
exist and coincide with the corresponding classic ones.
In contrast to possible other forms11 of “generalized differentiability”, weak derivatives

still allow us to infer “v ≡ const” from “∇v = 0”. (As for classic derivatives, a proof of this
fact can be found, e.g., in [Fol02, Theorem 2.42].) To deal with the issue of non-connected
sets Ω, we remind the reader of the space Pp

conn(Ω) from D.2.26.

Lemma 2.40. Let Ω ⊆ Rd be an open set. Furthermore, let k ∈ N0 and p ∈ [1,∞]. Then,
for all v ∈ W k,p(Ω), there holds the following equivalence:

|v|Wk,p(Ω) = 0 ⇔ v ∈ Pk−1
conn(Ω).

Proof. The direction “⇐” is trivial and the direction “⇒” follows immediately from L.2.35.

11One could, for example, define “generalized differentiability” as differentiability almost everywhere in Ω.
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Many more properties of classic derivatives still hold true for weak derivatives. The next
theorem is a handy tool in these types of proofs.

Theorem 2.41. Let k ∈ N0 and p ∈ [1,∞).

1. Let Ω ⊆ Rd be open. Then, for every v ∈ W k,p(Ω), there exists a sequence

(vn)n∈N ⊆ W k,p(Ω) ∩ C∞(Ω),

such that12 �v − vn�Wk,p(Ω)
n−→ 0.

2. Let Ω ⊆ Rd be an open, bounded set with a Lipschitz boundary. Then, for every
v ∈ W k,p(Ω), there exists a sequence

(vn)n∈N ⊆ W k,p(Ω) ∩ C∞(Ω),

such that13 �v − vn�Wk,p(Ω)
n−→ 0.

3. Let Ω ⊆ Rd be open. Then, for every v ∈ W k,p(Ω), there exists a sequence

(vn)n∈N ⊆ C∞
0 (Rd),

such that �v − vn�Lp(Ω)
n−→ 0 and �v − vn�Wk,p(ω)

n−→ 0, for all ω � Ω.

4. For every v ∈ W k,p(Rd), there exists a sequence

(vn)n∈N ⊆ C∞
0 (Rd),

such that �v − vn�Wk,p(Rd)
n−→ 0.

Proof. Item 1 is attributed to [MS64]. Item 2 can easily be derived from item 1 via an
extension operator EΩ : W k,p(Ω) −→ W k,p(Rd) (see D.2.48 below). Item 3 can be found
in [Mv98, Chapter 5, Section 4, Theorem 1] or [Bre11, Theorem 9.2]. As for item 4, see
[Leo17, Remark 11.26.].

2.8.2 Product rule

T.2.41 can be used, for example, to derive Leibniz’ product rule for weak derivatives.

Lemma 2.42. Let Ω ⊆ Rd be open, k ∈ N0 and p, q, r ∈ [1,∞] with 1/p+ 1/q = 1/r. Let
u ∈ W k,p(Ω) and v ∈ W k,q(Ω). Then uv ∈ W k,r(Ω) and, for all |α| ≤ k, there holds the
Leibniz formula

Dα(uv) =
�
β≤α

�
α

β

�
(Dβu)(Dα−βv) ∈ Lr(Ω).

In particular, for all l ∈ {0, . . . , k}, there holds the bound

|uv|W l,r(Ω) ≤ C(d,Ω, k, p, q, r)
l�

j=0

|u|W j,p(Ω)|v|W l−j,q(Ω).

12In other words, W k,p(Ω) ∩ C∞(Ω) is a dense subspace of W k,p(Ω).
13In other words, W k,p(Ω) ∩ C∞(Ω) is a dense subspace of W k,p(Ω).
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Proof. We only prove the case k = 1. Let u ∈ W 1,p(Ω) and v ∈ W 1,q(Ω). Using Hölder’s
inequality (cf. L.2.31), we get, for all i ∈ {1, . . . , d},

�uv�Lr(Ω) ≤ �u�Lp(Ω)�v�Lq(Ω) < ∞,

�(∂iu)v + u(∂iv)�Lr(Ω) ≤ |u|W 1,p(Ω)�v�Lq(Ω) + �u�Lp(Ω)|v|W 1,q(Ω) < ∞.

It remains to prove that (∂iu)v+u(∂iv) ∈ Lr(Ω) is indeed the i-th weak partial derivative
of uv ∈ Lr(Ω) in the sense of D.2.34. To this end, we introduce the quantities

p̃ :=

�
p/r if r < ∞
2 if r = ∞ , q̃ :=

�
q/r if r < ∞
2 if r = ∞ .

Keeping in mind that p, q, r ∈ [1,∞] and that 1/p + 1/q = 1/r, the relevant properties
of p̃ and q̃ are the following:

p̃, q̃ ∈ [1,∞], 1/p̃+ 1/q̃ = 1, p̃ ≤ p, q̃ ≤ q, (p̃ < ∞ or q̃ < ∞).

Now, let w ∈ C∞
0 (Ω) be given. Since supp(w) � Ω (cf. D.2.27), we can find an open,

bounded set ω ⊆ Ω such that supp(w) ⊆ ω. Using p̃ ≤ p and q̃ ≤ q, we know from L.2.32
that

u|ω ∈ W 1,p(ω) ⊆ W 1,p̃(ω), v|ω ∈ W 1,q(ω) ⊆ W 1,q̃(ω).

W.l.o.g., let us assume that q̃ < ∞ (recall that p̃ < ∞ or q̃ < ∞ or both). Then we
may apply T.2.41 to the space W 1,q̃(ω) and obtain a sequence (vn)n∈N ⊆ W 1,q̃(ω)∩C∞(ω)
such that �v − vn�W 1,q̃(ω)

n−→ 0. In particular, using Hölder’s inequality from L.2.31 for the
conjugate exponents p̃ and q̃, we have

| �ω uv(∂iw) dx− �
ω uvn(∂iw) dx| ≤ �u�Lp̃(ω)�v − vn�Lq̃(ω)|w|W 1,∞(ω)

n−→ 0,

| �ω u(∂iv)w dx− �
ω u(∂ivn)w dx| ≤ �u�Lp̃(ω)|v − vn|W 1,q̃(ω)�w�L∞(ω)

n−→ 0,

| �ω(∂iu)vw dx− �
ω(∂iu)vnw dx| ≤ |u|W 1,p̃(ω)�v − vn�Lq̃(ω)�w�L∞(ω)

n−→ 0.

Note that the integral
�
ω(∂iu)vnw dx on the third line is susceptible for partial integration

(i.e., D.2.34), since vnw ∈ C∞
0 (ω). The integrand then becomes −u∂i(vnw) and we can

apply the classic Leibniz rule ∂i(vnw) = (∂ivn)w + vn(∂iw). Putting everything together,
we compute�

Ω

((∂iu)v + u(∂iv))w dx =

�
ω

(∂iu)vw + u(∂iv)w dx
n←−
�
ω

(∂iu)vnw + u(∂ivn)w dx

p.i.
=

�
ω

−u∂i(vnw) + u(∂ivn)w dx
Lbz.
= −

�
ω

uvn(∂iw) dx
n−→ −

�
ω

uv(∂iw) dx = −
�
Ω

uv(∂iw) dx.

This concludes the proof.

28



2 Preliminary results

2.8.3 Chain rule

Next, we develop the chain rule for the weak derivatives. The chain rule is often used
in the context of a scaling argument, where stability/error bounds on a family of subsets
Ω1, . . . ,ΩN ⊆ Rd are reduced to stability/error bounds on a single reference element Ω̂ ⊆
Rd. Similar results on the chain rule can be found, e.g., in [AF03, Theorem 3.41], [EG04,
Lemma 1.101.], [Bre11, Proposition 9.6] or [Bra13, Lemma 6.6].
For the next lemma, we remind the reader of D.2.23 and D.2.16, where we defined affine

transformations and shape regular sets.

Lemma 2.43. Let F : Rd −→ Rd be affine and let Ω̂,Ω ⊆ Rd be sets with F (Ω̂) = Ω.
Suppose that Ω̂ has shape regularity �σshp ≥ 1 and that Ω has shape regularity σshp ≥ 1.
Furthermore, let k ∈ N0 and p ∈ [1,∞]. Then, for every measurable function v : Ω −→ R,
there holds the following equivalence14:

v ∈ W k,p(Ω) ⇔ v ◦ F ∈ W k,p(Ω̂).

In this case, for all l ∈ {0, . . . , k} and all j1, . . . , jl ∈ {1, . . . , d}, we have15

∂j1 · · · ∂jl(v ◦ F ) =

d�
i1,...,il=1

(∂i1 · · · ∂ilv) ◦ F · (∇F )i1j1 · · · (∇F )iljl ∈ Lp(Ω̂).

Furthermore, there exists a constant C = C(d, k, p, Ω̂, �σshp, σshp) ≥ 1, such that, for all
l ∈ {0, . . . , k},

C−1hlΩ|v|W l,p(Ω) ≤ h
d/p
Ω |v ◦ F |W l,p(Ω̂) ≤ ChlΩ|v|W l,p(Ω).

Proof. We only prove the case k = 1. Abbreviate A := ∇F ∈ Rd×d and let v ∈ W 1,p(Ω)
and j ∈ {1, . . . , d}. Using L.2.33, a straightforward computation proves that v ◦F ∈ Lp(Ω̂)
as well as

�d
i=1(∂iv) ◦ F ·Aij ∈ Lp(Ω̂) (very similar to the stability bounds below).

We argue that
�d

i=1(∂iv) ◦ F · Aij is indeed the j-th weak partial derivative of v ◦ F in

the sense of D.2.34. To this end, let ŵ ∈ C∞
0 (Ω̂) be given. Since F is affine, there holds

ŵ ◦ F−1 ∈ C∞
0 (Ω). Furthermore, using the chain rule for classic derivatives, there holds

the following (pointwise) identity on Ω:

d�
i=1

∂i(ŵ ◦ F−1)Aij =
d�

i=1

d�
m=1

(∂mŵ) ◦ F−1 · (A−1)miAij

=
d�

m=1
(∂mŵ) ◦ F−1 · (A−1A)mj = (∂jŵ) ◦ F−1.

14More precisely, we should write v ◦ (F |Ω̂) ∈ W k,p(Ω̂).
15Alternatively, one could use Faa di Bruno’s formula for Dα(v ◦ F ), for all multi-indices α ∈ Nd

0 with
|α| ≤ k. See, e.g., [CS96] for an explicit formula in the multivariate setting.
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With this identity, we compute�
Ω̂

� d�
i=1

(∂iv) ◦ F ·Aij

�
ŵ dx =

d�
i=1

Aij

�
Ω̂

((∂iv) ◦ F )ŵ dx

=
d�

i=1

Aij |detA|−1

�
Ω

(∂iv)(ŵ ◦ F−1) dx
D.2.34
= −

d�
i=1

Aij |detA|−1

�
Ω

v∂i(ŵ ◦ F−1) dx

= −|detA|−1

�
Ω

v((∂jŵ) ◦ F−1) dx = −
�
Ω̂

(v ◦ F )(∂jŵ) dx.

Since ŵ ∈ C∞
0 (Ω̂) was arbitrary, it follows that ∂j(v◦F ) =

�d
i=1(∂iv)◦F ·Aij , as required.

Finally, to see the stability bounds, we compute (with an implicit constant C(d, p))

(σ−1
shphΩh

−1

Ω̂
)d/p�v ◦ F�Lp(Ω̂)

L.2.24

� |det∇F |1/p�v ◦ F�Lp(Ω̂)

L.2.33
= �v�Lp(Ω).

Similarly, using the bound

max
i,j∈{1,...,d}

|Aij | = max
i,j∈{1,...,d}

|
Aej , ei�2| ≤ �A�2,

we get, for all j ∈ {1, . . . , d},

(σ−1
shphΩh

−1

Ω̂
)d/p�∂j(v ◦ F )�Lp(Ω̂) = (σ−1

shphΩh
−1

Ω̂
)d/p

    d�
i=1

(∂iv) ◦ F ·Aij

    
Lp(Ω̂)

≤ (σ−1
shphΩh

−1

Ω̂
)d/p

d�
i=1

�(∂iv) ◦ F�Lp(Ω̂)�A�2 �
d�

i=1

�∂iv�Lp(Ω)�A�2
L.2.24

� �σshphΩh−1

Ω̂
|v|W 1,p(Ω).

In summary, for all l ∈ {0, 1}, we have

(σ−1
shphΩh

−1

Ω̂
)d/p|v ◦ F |W l,p(Ω̂) ≤ C(d, p, l)(�σshphΩh−1

Ω̂
)l|v|W l,p(Ω).

This concludes the first case where v ∈ W 1,p(Ω) was asserted. To see the reverse direction,
suppose that v : Ω −→ R is such that v̂ := v ◦ F ∈ W 1,p(Ω̂). Since F−1 is again a regular
affine transformation (cf. L.2.24), we can apply the previous results to the function v̂ ◦F−1

and get v = v̂ ◦ F−1 ∈ W 1,p(Ω). Reversing the roles of Ω̂ and Ω, it follows that, for all
l ∈ {0, 1},

(�σshp−1hΩ̂h
−1
Ω )d/p|v|W l,p(Ω) = (�σshp−1hΩ̂h

−1
Ω )d/p|v̂ ◦ F−1|W l,p(Ω)

≤ C(d, p, l)(σshphΩ̂h
−1
Ω )l|v̂|W l,p(Ω̂)

= C(d, p, l)(σshphΩ̂h
−1
Ω )l|v ◦ F |W l,p(Ω̂).

This finishes the proof.

30



2 Preliminary results

2.8.4 Lipschitz boundaries, traces and extensions

Many important results in the theory of Sobolev spaces require some regularity assumptions
on the boundary of the computation domain Ω ⊆ Rd. The concept of a locally Lipschitz-
continuous boundary (or simply Lipschitz boundary) turned out to be a particularly fruitful
one (e.g., [Cia78, Section 1.2.], [McL00, Pages 89-96], [AF03, Chapter 4] or [Neč12, Section
1.1.3]). Here, we restrict the presentation to the case of open, bounded subsets Ω ⊆ Rd,
but the notion of a Lipschitz boundary also exists for open, unbounded sets (e.g., [AF03,
Chapter 4]).

Definition 2.44. Let δ > 0. A function γ : (−δ, δ)d−1 −→ R is called Lipschitz continuous,
if

sup
x,x̃∈(−δ,δ)d−1

|γ(x)− γ(x̃)|
�x− x̃�2 < ∞.

For the next definition, we remind the reader of D.2.23, where we introduced rigid body
transformations.

Definition 2.45. Let Ω ⊆ Rd be open and bounded. We say that Ω ⊆ Rd has a Lipschitz
boundary, if there exist ε, δ > 0, L ∈ N, rigid body transformations F1, . . . , FL : Rd −→ Rd

and Lipschitz continuous functions16 γ1, . . . , γL : (−δ, δ)d−1 −→ R, such that

L�
l=1

{Fl(x, y) |x ∈ (−δ, δ)d−1, y ∈ γl(x) + (−ε, 0)} ⊆ Ω,

L�
l=1

{Fl(x, y) |x ∈ (−δ, δ)d−1, y = γl(x)} = ∂Ω,

L�
l=1

{Fl(x, y) |x ∈ (−δ, δ)d−1, y ∈ γl(x) + (0, ε)} ⊆ Rd\Ω.

Lipschitz boundaries allow us to define boundary values for functions v ∈ W 1,p(Ω) in the
form of a trace operator (·)|Γ : W 1,p(Ω) −→ Lp(Γ). For the definition of the space Lp(Γ),
Γ ⊆ ∂Ω, we refer the reader to [Neč12, Section 2.4]. More details on the trace operator can
be found, e.g., in [Gri85, Section 1.5] or [McL00, Pages 100-106].

Lemma 2.46. Let Ω ⊆ Rd be an open, bounded set with a Lipschitz boundary and let
Γ ⊆ ∂Ω be a part of the boundary with measd−1(Γ) > 0. Furthermore, let p ∈ [1,∞). Then,
there exists a linear trace operator

(·)|Γ : W 1,p(Ω) −→ Lp(Γ)

with the following properties:

1. For all v ∈ W 1,p(Ω) ∩ C∞(Ω) and x ∈ Γ, there holds (v|Γ)(x) = v(x).

2. For all v ∈ W 1,p(Ω), there holds the stability bound17

�v�Lp(Γ) ≤ C(d,Ω,Γ, p)�v�W 1,p(Ω).
16In the case d = 1, the functions γl have to be replaced with constant values γl ∈ R.
17Here and in the sequel we abbreviate 	v|Γ	Lp(Γ) by 	v	Lp(Γ).
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Proof. See, e.g., [Neč12, Section 2.4] or [Leo17, Chapter 18].

The trace operator allows us to define the space H1
0 (Ω), which will make a short appear-

ance in Chapter 6.

Definition 2.47. Let Ω ⊆ Rd be an open, bounded set with a Lipschitz boundary and let
Γ ⊆ ∂Ω be a part of the boundary with measd−1(Γ) > 0. Furthermore, let p ∈ [1,∞). We
define the space

W 1,p
0 (Ω,Γ) := {v ∈ W 1,p(Ω) | v|Γ = 0}.

In the case Γ = ∂Ω, we abbreviate W 1,p
0 (Ω) := W 1,p

0 (Ω, ∂Ω). Furthermore, if p = 2, we

set H1
0 (Ω,Γ) := W 1,2

0 (Ω,Γ) and again H1
0 (Ω) := H1

0 (Ω, ∂Ω).

Another important aspect of Lipschitz boundaries is the fact that they allow us to extend
a function v ∈ W k,p(Ω) to a function ṽ ∈ W k,p(Rd).

Definition 2.48. Let Ω ⊆ Rd be an open set, k ∈ N0 and p ∈ [1,∞]. We say that Ω is a
W k,p-extension domain, if there exists a linear operator

EΩ : W k,p(Ω) −→ W k,p(Rd)

such that, for all v ∈ W k,p(Ω) and all l ∈ {0, . . . , k},

(EΩv)|Ω = v, �EΩv�W l,p(Rd) ≤ C(d,Ω, k, p)�v�W l,p(Ω).

More details on extension domains can be found, e.g., in [Leo17, Section 13.1.].

Lemma 2.49. 1. The set Ω = Rd itself is a W k,p-extension domain.

2. Let Ω ⊆ Rd be an open, bounded18 set with a Lipschitz boundary. Then, Ω is a
W k,p-extension domain.

Proof. Ad item 1: Take EΩ as the identity operator from W k,p(Rd) to W k,p(Rd).
Ad item 2: See [Ste70, Chapter 6, Section 3].

2.8.5 Embedding theorems

Next, we briefly discuss embedding theorems. While the literature on this subject is ex-
tensive (e.g., [AF03], [BS08], [Bre11]), we only need the following two results. The first
one is known as a Sobolev embedding theorem and the second one as a Rellich-Kondrachov
embedding theorem.

Theorem 2.50. Let Ω ⊆ Rd be an open, bounded19 set with a Lipschitz boundary. Fur-
thermore, let k ∈ N be such that k > d/2. Then, there holds the continuous embedding

Hk(Ω) ⊆ C0(Ω).

18The assumption of boundedness can be dropped, if the notion of Lipschitz boundaries for unbounded
domains from [AF03, Chapter 4] is used.

19Once again, the assumption of boundedness can be dropped, if Lipschitz boundaries are defined as in
[AF03, Chapter 4].
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In other words, for all v ∈ Hk(Ω), there holds20 v ∈ C0(Ω) and

�v�C0(Ω) ≤ C(d,Ω, k)�v�Hk(Ω).

Proof. See, e.g., [AF03, Theorem 4.12].

Theorem 2.51. Let Ω ⊆ Rd be an open, bounded21 set with a Lipschitz boundary. Fur-
thermore, let k ∈ N. Then, the there holds the compact embedding

Hk(Ω) ⊆ Hk−1(Ω).

In other words, for every bounded sequence (vn)n∈N ⊆ Hk(Ω), there exist a subsequence

(vn(i))i∈N and a function v ∈ Hk−1(Ω), such that �v − vn(i)�Hk−1(Ω)
i−→ 0.

Proof. See, e.g., [AF03, Theorem 6.3].

2.8.6 Poincaré inequality

An important consequence of the Rellich-Kondrachov embedding theorem is the so-called
Poincaré inequality, of which there exist several variants. For the purpose of the present
work, we need the following version:

Lemma 2.52. Let Ω ⊆ Rd be an open, bounded set with a Lipschitz boundary and k ∈ N0.
Let (Z, � · �Z) be a normed space and ιZ : Hk(Ω) −→ Z be a linear operator with the
following properties:

1. For all v ∈ Hk(Ω), there holds �ιZv�Z ≤ C(d,Ω, k, Z, ιZ)�v�Hk(Ω).

2. For all v ∈ Pk−1
conn(Ω) with ιZv = 0, there holds v = 0.

Then, there holds the following Poincaré type inequality:

∀v ∈ Hk(Ω) : �v�Hk(Ω) ≤ C(d,Ω, k, Z, ιZ)(|v|Hk(Ω) + �ιZv�Z).

Proof. The case k = 0 is trivial, so let us assume that k ≥ 1. If the Poincaré type inequality
were not true, then we could find a sequence (vn)n∈N ⊆ Hk(Ω) with �vn�Hk(Ω) = 1 (after
possible normalization) and

|vn|Hk(Ω) + �ιZvn�Z <
1

n
�vn�Hk(Ω) =

1

n

n−→ 0.

According to T.2.51, there exist a function v ∈ Hk−1(Ω) and a subsequence of (vn)n∈N,
denoted by (vn)n∈N again, such that �v − vn�Hk−1(Ω)

n−→ 0. Then, in view of the bound

�vn − vm�Hk(Ω) � |vn|Hk(Ω) + |vm|Hk(Ω) + �vn − v�Hk−1(Ω) + �v − vm�Hk−1(Ω),

20More precisely: We can pick a continuous representative from the equivalence class v.
21Here, in contrast to T.2.50, the assumption of boundedness cannot be omitted.
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it follows that (vn)n∈N is a Cauchy sequence inHk(Ω). SinceHk(Ω) is complete (cf. L.2.39),
there exists a function w ∈ Hk(Ω) such that �w − vn�Hk(Ω)

n−→ 0. From the inequality

�v − w�Hk−1(Ω) ≤ �v − vn�Hk−1(Ω) + �vn − w�Hk(Ω)
n−→ 0

we get that v = w ∈ Hk(Ω) and that �v − vn�Hk(Ω) = �w − vn�Hk(Ω)
n−→ 0. Therefore,

|v|Hk(Ω) + �ιZv�Z ≤ |v − vn|Hk(Ω) + |vn|Hk(Ω) + �ιZ(v − vn)�Z + �ιZvn�Z
� |vn|Hk(Ω) + �v − vn�Hk(Ω) + �ιZvn�Z n−→ 0.

We obtain |v|Hk(Ω) = 0 and ιZv = 0. Using L.2.40 and the assumption on the operator

ιZ , we obtain v ∈ Pk−1
conn(Ω) and ultimately v = 0. This produces the contradiction

1 = lim
n→∞ �vn�Hk(Ω) = �v�Hk(Ω) = 0.

One of the most famous variants of the Poincaré inequality (e.g., [Leo17, Theorem 13.19])
reads as follows:

Corollary 2.53. Let Ω ⊆ Rd be an open, bounded set with Lipschitz boundary and let
H1

0 (Ω) be defined as in D.2.47. Then, there holds the following bound:

∀v ∈ H1
0 (Ω) : �v�H1(Ω) ≤ C(d,Ω)|v|H1(Ω).

Proof. Apply L.2.52 to the space Z := L2(∂Ω) and the trace operator ιZ := (·)|∂Ω from
L.2.46.

2.8.7 Inverse- and Caccioppoli inequality

The Poincaré type inequality from L.2.52 allows us to bound lower order derivatives of a
function v ∈ Hk(Ω) by higher order derivatives (plus an additional term that accounts for
polynomials). On the other hand, bounding higher order derivatives by lower order ones is
certainly not possible for arbitrary functions v ∈ Hk(Ω). To see this, consider the sequence
vn := sin(2πn ·) on Ω := (0, 1) ⊆ R. Then �vn�L2(Ω) = 1/

√
2 and |vn|H1(Ω) =

√
2πn, so that

the inequality |vn|H1(Ω) ≤ C�vn�L2(Ω) cannot hold true for a constant C > 0 independent
of n.
If, however, we have additional information about v ∈ Hk(Ω), then such a bound is

indeed possible. Below, we present two instances of such inequalities. The first one is
concerned with polynomials and goes by the name of inverse- or Markov inequality.

Lemma 2.54. Let Ω ⊆ Rd be an open, bounded and convex set. Let k, l ∈ N0 with l ≤ k
and p ∈ N0. Then, for all v ∈ Pp(Ω), there holds the inverse inequality

p−2k|v|Hk(Ω) ≤ C(d,Ω, k)p−2l|v|Hl(Ω).

Proof. The case (k = 1, l = 0) can be found, e.g., in [Dit92]. The general case follows easily
by induction on k.
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The second instance is known as a Caccioppoli inequality or inverse Poincaré inequality
(see, e.g., [Gia83, Proposition 2.1] and [Eva10, Section 6.3.] for similar bounds). We provide
a short proof, because discrete Caccioppoli inequalities will play an important role later
on (cf. A.4.19) and it might be helpful to the reader to see how such an inequality can be
proved in a continuous setting.

Lemma 2.55. Let Ω ⊆ Rd be an open, bounded set with a Lipschitz boundary. Let D ⊆ Rd

and consider a function f ∈ L2(Ω) with supp(f) ⊆ Ω ∩D. Denote by u ∈ H1
0 (Ω) the weak

solution of (−Δu = f, u|∂Ω = 0), i.e.,

∀v ∈ H1
0 (Ω) : 
∇u,∇v�L2(Ω) = 
f, v�L2(Ω).

Furthermore, let B ∈ B be a box (D.2.8) and let δ > 0 be such that the inflated box
Bδ ∈ B (D.2.12) satisfies Bδ ∩D = ∅. Then, there holds the Caccioppoli type inequality

δ|u|H1(Ω∩B) ≤ C(d,Ω)�u�L2(Ω∩Bδ).

Proof. The key element of the proof is a cut-off function κ with the following properties
(cf. L.5.3):

κ ∈ C∞
0 (Rd), supp(κ) ⊆ Bδ, κ|B ≡ 1, 0 ≤ κ ≤ 1, |κ|W 1,∞(Rd) � δ−1.

Now, the fact that the product v := κ2u lies in H1
0 (Ω) allows us to use v as a test function

in the variational equation that defines u. On the one hand, since supp(f) ⊆ Ω ∩ D and
supp(v) ⊆ Ω ∩Bδ, we know that


∇u,∇v�L2(Ω) = 
f, v�L2(Ω) = 
f, v�L2(Ω∩D∩Bδ) = 0.

On the other hand, we can expand ∇v = ∇(κ2u) = 2κu∇κ+ κ2∇u to find that

0 = 
∇u,∇v�L2(Ω) = 2
κ∇u, u∇κ�L2(Ω) + �κ∇u�2L2(Ω).

Solving for �κ∇u�2L2(Ω) and applying the Cauchy-Schwarz inequality, we get

�κ∇u�2L2(Ω) = −2
κ∇u, u∇κ�L2(Ω)

≤ 2�κ∇u�L2(Ω)�u∇κ�L2(Ω) � δ−1�κ∇u�L2(Ω)�u�L2(Ω∩Bδ),

which ultimately results in the desired bound:

|u|H1(Ω∩B) = �κ∇u�L2(Ω∩B) ≤ �κ∇u�L2(Ω) ≤ δ−1�u�L2(Ω∩Bδ).

We mention that this proof works for other geometric shapes than boxes as well (e.g.,
balls). The only requirement for the sets B and Bδ is that a cut-off function κ with all of
the mentioned properties can be constructed.
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2.8.8 Deny-Lions Lemma

The error bound in the following corollary goes by the name of Deny-Lions Lemma (e.g.,
[Cia78, Theorem 3.1.1.]) and can also be seen as a variant of the Bramble-Hilbert Lemma
([BH71, Theorem 1, Theorem 2]).

Corollary 2.56. Let Ω ⊆ Rd be an open, bounded, connected set with a Lipschitz boundary
and k ∈ N0. Furthermore, denote by

J : Hk(Ω) −→ Pk−1(Ω)

the orthogonal projection onto the closed subspace Pk−1(Ω) ⊆ Hk(Ω). Then, for all v ∈
Hk(Ω), there holds the following error bound:

�v − Jv�Hk(Ω) = inf
w∈Pk−1(Ω)

�v − w�Hk(Ω) ≤ C(d,Ω, k)|v|Hk(Ω).

Proof. We apply L.2.52 to the normed space Z := Hk(Ω) and the linear operator ιZ := J .
Since J is an orthogonal projection, there holds �ιZv�Z ≤ �v�Hk(Ω), for all v ∈ Hk(Ω).

Furthermore, for all v ∈ Pk−1(Ω) with ιZv = 0, the projection property of J yields v =
Jv = ιZv = 0. Now L.2.52 tells us that, for all w ∈ Hk(Ω),

�w�Hk(Ω) ≤ C(d,Ω, k)(|w|Hk(Ω) + �Jw�Hk(Ω)).

Finally, given v ∈ Hk(Ω), we plug in w := v − Jv ∈ Hk(Ω) and find that

�v − Jv�Hk(Ω) � |v − Jv|Hk(Ω) + �J(v − Jv)�Hk(Ω) = |v|Hk(Ω).

2.9 Meshes

In this section, we introduce the basic concepts regarding (simplicial) meshes. We will
need these results later on in Chapter 6, where we apply the abstract framework from
Chapter 4 to a mesh-based finite element problem. The introduction of a mesh on a given
computational domain Ω ⊆ Rd is often the first step in the analysis of the finite element
method for the discretization of partial differential equations. For further reading, see, e.g.,
[Cia78, Chapter 2], [EG04, Section 1.3], [BS08, Chapter 3], [Bra13, Chapter 2, Section 5]
or [LB13, Chapter 3].

2.9.1 Simplices

Definition 2.57. Let d ∈ N and k ∈ {0, . . . , d}. A subset S ⊆ Rd is called k-simplex, if
there exist points N0, . . . , Nk ∈ Rd such that the vectors {N1 −N0, . . . , Nk −N0} ⊆ Rd are
linearly independent and such that

S =

�
N0 +

k�
i=1

ti(Ni −N0)

!!!! t1, . . . , tk ≥ 0,

k�
i=1

ti ≤ 1

�
.

The points N (S) := {N0, . . . , Nk} are called nodes of S. In the case k = d, we drop the
prefix “d-” and call S a simplex.
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Note that S is closed, i.e., it contains its boundary. Furthermore, we mention that there
is some ambiguity in the set of nodes N (S) in that a reordering of the nodes produces
the same physical set S ⊆ Rd. In d = 3 space dimensions, a 3-simplex is a tetrahedron,
a 2-simplex is a triangle, a 1-simplex is a line segment and a 0-simplex is a point (all of
which are subsets/elements of R3).

Lemma 2.58. Let T ⊆ Rd be a simplex with shape regularity σshp ≥ 1 (cf. D.2.16). Then,
there hold the relations

(2σ−1
shp)hT ≤ min

M,N∈N (T ):
M �=N

�M −N�2 ≤ max
M,N∈N (T )

�M −N�2 = hT .

Proof. Let N (T ) = {N0, . . . , Nd} and assume w.l.o.g. that minM �=N �M − N�2 = �Nd −
N0�2. Consider the (d− 1)-dimensional, parallel hyperplanes

Γ0 := N0 + span {Ni −N0 | i ∈ {1, . . . , d− 1}},
Γd := Nd + span {Ni −N0 | i ∈ {1, . . . , d− 1}}

and denote the enclosed slice by

Ω := {(1− t)x+ ty |x ∈ Γ0, y ∈ Γd, t ∈ [0, 1]} ⊆ Rd.

Since Ball2(xshp, (2σshp)
−1hT ) ⊆ T ⊆ Ω (cf. D.2.16), we have

(2σshp)
−1hT ≤ dist2(Γ0,Γd) ≤ �Nd −N0�2 = min

M,N∈N (T ):
M �=N

�M −N�2.

The other relations being trivial, it remains to show that hT ≤ maxM,N �M −N�2. To

this end, consider arbitrary points x, y ∈ T . We expand x =
�d

i=0 siNi and y =
�d

j=0 tjNj

with coefficients t0, . . . , td, s0, . . . , sd ∈ [0, 1] satisfying
�d

i=0 si =
�d

j=0 tj = 1. Then,

hT = sup
si,tj

    d�
i=0

siNi −
d�

j=0

tjNj

    
2

= sup
si,tk

    d�
i,j=0

sitj(Ni −Nj)

    
2

≤ max
N,N∈N (T )

�M −N�2.

One particular simplex will play an important role in the sequel.

Definition 2.59. Let N̂0 := 0 ∈ Rd and, for all i ∈ {1, . . . , d}, let N̂i := ei ∈ Rd, the i-th
Euclidean unit vector. The corresponding simplex T̂ ⊆ Rd is called reference element.
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2.9.2 Simplicial meshes

Figure 2.1: A simplicial mesh in 2D.

Definition 2.60. Let Ω ⊆ Rd be an open, bounded set with Lipschitz boundary (cf. D.2.45).
Furthermore, let σshp, σlqu ≥ 1 be given constants. A system T ⊆ Pow(Ω) is called (sim-
plicial) mesh on Ω, if the following conditions are satisfied:

1. The set T is finite.

2. Every T ∈ T is a simplex in the sense of D.2.57.

3. Every T ∈ T has shape regularity σshp (cf. D.2.16).

4. For all T, T̃ ∈ T with T += T̃ and T ∩ T̃ += ∅, there exists a k ∈ {0, . . . , d − 1}, such
that T ∩ T̃ is a k-simplex with N (T ∩ T̃ ) ⊆ N (T ) ∩N (T̃ ).

5. There holds
Ω =

�
T∈T

T.

6. For all T, T̃ ∈ T with N (T ) ∩N (T̃ ) += ∅, there holds the bound

hT̃ ≤ σlquhT .

Remark 2.61. Item 6 says that T is locally quasi-uniform, i.e., simplices T, T̃ ∈ T sharing
a common node N have comparable diameters. This assumption is automatically fulfilled
in d ≥ 2 space dimensions. To see this, one can exploit the Lipschitz property of ∂Ω to
construct a “fan” of elements T1, . . . , TL ∈ T with

T1 = T, TL = T̃ , N ∈ N (Tl), #(N (Tl) ∩N (Tl+1)) ≥ 2.
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Since Tl and Tl+1 have a common edge, we obtain the relation hTl+1
≤ C(σshp)hTl

from
L.2.58. Solving the recursion, it follows that hT̃ ≤ C(σshp)

L−1hT . Finally, since all Tl have
N as a common node, the upcoming L.2.64 yields L ≤ C(d, σshp) as well.

Definition 2.62. Let Ω ⊆ Rd be an open, bounded set with Lipschitz boundary. We say
that Ω is a polyhedron, if there exists a mesh T ⊆ Pow(Ω) on Ω.

Note that, according to D.2.57, every T ∈ T is a closed subset of Rd. In order to remove
the ambiguity in the orientation of the simplices, we henceforth assume that, for every
T ∈ T , an ordering of the nodes N (T ) has been fixed in advance. Before we go on, we
introduce a few names:

Definition 2.63. 1. The members T of a mesh T are called (mesh) elements. In anal-
ogy to D.3.6, a subset B ⊆ T is called (mesh) cluster.

2. The (mesh) nodes are given by N :=
�

T∈T N (T ).

3. For every T ∈ T , we fix an incenter xT ∈ T (cf. D.2.16).

4. For every physical subset B ⊆ Rd, we define the patch22

T (B) := {T ∈ T |T ∩B += ∅}.

In particular, T (T ) is the patch of a mesh element T ∈ T , T (x0) := T ({x0}) is the
patch of a point x0 ∈ Rd and T (N) is the patch of a node N ∈ N .

5. For all B ⊆ T , we set

hB := hmax,B := max
T∈B

hT , hmin,B := min
T∈B

hT .

Note that, given an element T ∈ T and a node N ∈ N , there holds the equivalence

N ∈ N (T ) ⇔ T ∈ T (N).

In the next lemma, we show that the number of mesh elements in any given node/element
patch is uniformly bounded.

Lemma 2.64. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh.

1. For all T, T̃ ∈ T with T += T̃ , there holds

T ∩ T̃ ⊆ (∂T ) ∩ (∂T̃ ).

In particular, T ◦ ∩ T̃ ◦ = ∅.
2. For all x0 ∈ Rd and T0 ∈ T , there hold the bounds

#T (x0) ≤ C(d, σshp),

#T (T0) ≤ C(d, σshp).
22Note that T (B) ⊆ T is just a collection of mesh elements, whereas

� T (B) ⊆ Rd is the corresponding
physical set.
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Proof. Ad item 1: Let T, T̃ ∈ T with T += T̃ . If T ∩ T̃ = ∅, then the statement becomes
trivial. On the other hand, if T ∩ T̃ += ∅, then we know from D.2.60 that S := T ∩ T̃ is a
k-simplex, for some k ∈ {0, . . . , d− 1}, and that N (S) ⊆ N (T ) ∩ N (T̂ ). But then S must
be a subset of a hyperplane going through one of T ’s faces so that S ⊆ ∂T . The same holds
true for T̃ , which ultimately leads to S ⊆ (∂T ) ∩ (∂T̃ ).
Ad item 2: The idea is to shrink the patch elements T (x0) towards the common point

x0 so that they all have the same size. To this end, let

hmin := min
T∈T (x0)

hT .

Now, consider an element T ∈ T (x0). We define T̃ := FT (T ) ⊆ Rd, where FT is the
following affine transformation (cf. D.2.23):

∀x ∈ Rd : FT (x) :=
hmin

hT
(x− x0) + x0 =

hmin

hT
x+

�
1− hmin

hT

�
x0.

The mapping FT shrinks the original element T towards the point x0, which itself lies both
in T and T̃ . Since hmin/hT ∈ [0, 1], the shrunk element T̃ consists of convex combinations
of points from T . But T is convex, so that there must hold T̃ ⊆ T . As for the diameter of
T̃ , we have

σ−1
shphmin = σ−1

shp�∇FT �2hT
L.2.24≤ hT̃

L.2.24≤ �∇FT �2hT = hmin.

Furthermore, according to L.2.24, T̃ is �σshp-shape regular, where

�σshp := σshp�∇(F−1
T )�2hT̃h−1

T = σshphT̃h
−1
min ≤ σshp.

Now, since x0 ∈ T̃ , there holds the following chain of inclusions:

BT := Ball2(�xshp, (2�σshp)−1hT̃ )
L.2.17⊆ T̃ ◦ ⊆ T̃ ⊆ Ball2(x0, hT̃ ) ⊆ Ball2(x0, hmin) =: B.

In particular, we have

σ−2d
shp hdmin ≤ (�σshp−1hT̃ )

d
L.2.7

� meas(BT ), meas(B)
L.2.7

� hdmin.

Note that the balls {BT |T ∈ T (x0)} are pairwise disjoint, because the supersets T ◦ ⊇
T̃ ◦ ⊇ BT are pairwise disjoint (cf. item 1). Putting everything together, we obtain

σ−2d
shp hdmin#T (x0) �

�
T∈T (x0)

meas(BT ) = meas

� �
·

T∈T (x0)

BT

�
≤ meas(B) � hdmin.

Dividing by hdmin, we obtain the desired bound #T (x0) ≤ C(d, σshp). This finishes the
case of a single point x0 ∈ Rd.
Finally, let T0 ∈ T . For every T ∈ T (T0), we know from D.2.60 that T0 and T share

at least one common node. Therefore, using the previously established bound for single
points,

#T (T0) ≤
�

N∈N (T0)

#T (N) ≤ C(d, σshp).
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2.9.3 The affine reference mappings

Many aspects of the finite element method are easier to handle on the simplex T̂ ⊆ Rd

from D.2.59. Since every mesh element T ∈ T is a simplex as well, it is not surprising that
we can find an affine transformation (cf. D.2.23) between T̂ and T .

Definition 2.65. For every mesh element T ∈ T with nodes N (T ) = {N0, . . . , Nd}, we
define the affine transformation

FT :

�
Rd −→ Rd

x '−→ N0 +
�d

i=1 xi(Ni −N0)
.

Note that FT can also be interpreted as a function FT : T̂ −→ T and we will frequently
do so in the sequel.
What D.2.65 tells us is that we can think of mesh elements T ∈ T having a particularly

“nice” form. Suppose, for example, that we want to prove some inequality on one of the
elements T ∈ T . More often than not, there will be implicit constants C > 0 involved,
which depend on the integration domain, i.e., the element T itself. Without any further
information about the shape of T , this could be problematic. In order to avoid this pitfall,
we can proceed in three steps: First, we use FT to transform the goal inequality to the
reference element T̂ . Second, we prove the inequality on T̂ and inherit a constant C(T̂ ) > 0,
which need not bother us. Third, we transform the inequality back to the mesh element T
itself. Note that transforming back and forth between T̂ and T poses no problem, because
the stability properties of FT are controlled by the shape regularity constant σshp (cf. L.2.24
and L.2.43).
An instance of such an argument can be found in the next lemma, which states that the

behaviour of a polynomial of degree 1 is determined by its values on the element’s nodes.

Lemma 2.66. For all T ∈ T and all v ∈ P1(T ), there hold the following bounds:

�v�L∞(T ) ≤ C(d, σshp)

�
min
x∈T

|v(x)|+ hT |v|W 1,∞(T )

�
,

hT |v|W 1,∞(T ) ≤ C(d, σshp) max
M,N∈N (T )

|v(M)− v(N)|.

Proof. Denote by T̂ ⊆ Rd the reference element from D.2.59 and recall that its nodes are
given by N (T̂ ) = {0, e1, . . . , ed}, where ei ∈ Rd is the i-th Euclidean unit vector.
Consider a polynomial w ∈ P1(T̂ ). Since |w(·)| is continuous on the compact set T̂ , we

can pick a point x̂0 ∈ T̂ such that |w(x̂0)| = minx̂∈T̂ |w(x̂)|. Then, using a Taylor expansion
of w around x̂0, we get

�w�L∞(T̂ ) ≤ |w(x̂0)|+ d|w|W 1,∞(T̂ )diam2(T̂ ) � min
x̂∈T̂

|w(x̂)|+ |w|W 1,∞(T̂ ).

On the other hand, a Taylor expansion around 0 tells us that ∂iw ≡ w(ei)−w(0), for all
i ∈ {1, . . . , d}. In particular,

|w|W 1,∞(T̂ ) = max
i∈{1,...,d}

|w(ei)− w(0)| ≤ max
M̂,N̂∈N (T̂ )

|w(M̂)− w(N̂)|.
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Now, denote by FT : T̂ −→ T the affine transformation from D.2.65. Then, for all
v ∈ P1(T ),

�v�L∞(T )

L.2.43

� �v ◦ FT �L∞(T̂ ) � min
x̂∈T̂

|(v ◦ FT )(x̂)|+ |v ◦ FT |W 1,∞(T̂ )

L.2.43

� min
x∈T

|v(x)|+ hT |v|W 1,∞(T ).

Furthermore, since FT maps the nodes of T̂ to the nodes of T ,

hT |v|W 1,∞(T )

L.2.43

� |v ◦ FT |W 1,∞(T̂ ) ≤ max
M̂,N̂∈N (T̂ )

|(v ◦ FT )(M̂)− (v ◦ FT )(N̂)|

= max
M,N∈N (T )

|v(M)− v(N)|.

This concludes the proof.

Lemma 2.67. Let k, l ∈ N0 with l ≤ k and p ∈ N0. For all T ∈ T and all v ∈ Pp(T ), there
holds the inverse inequality

p−2khkT |v|Hk(T ) ≤ C(d, k, σshp)p
−2lhlT |v|Hl(T ).

Proof. Since T̂ is bounded and convex, we know from L.2.54 that, for all w ∈ Pp(T̂ ), there
holds

p−2k|w|Hk(T̂ ) � p−2l|w|Hl(T̂ ).

Denote by FT : T̂ −→ T the affine element transformation from D.2.65 and let v ∈ Pp(T ).
Since v ◦ FT ∈ Pp(T̂ ), we get

p−2khkT |v|Hk(T )

L.2.43

� p−2kh
d/2
T |v ◦ FT |Hk(T̂ ) � p−2lh

d/2
T |v ◦ FT |Hl(T̂ )

L.2.43

� p−2lhlT |v|Hl(T ).

2.9.4 Mesh refinement

In D.2.60, we required that mesh elements sharing a common node have comparable di-
ameters, but we made no assumptions about the global distribution of element diameters.
In particular, heavily non-uniform meshes such as exponentially graded- or locally refined
ones are allowed (cf. D.6.15).

Remark 2.68. Given a polyhedron Ω ⊆ Rd, a shape regular, possibly non-uniform family
of meshes (Tl)l∈N can be constructed from an arbitrary initial mesh T1 via a procedure called
adaptive mesh refinement. Assuming that Tl is already defined, the construction of Tl+1 is
done in four steps:

1. For every element T ∈ Tl, a so-called error estimator ηT ∈ [0,∞) is computed.
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2. From the error estimators (ηT )T∈Tl, a subset Ml ⊆ Tl of marked elements is deter-
mined. (Typically the elements with the largest error estimators.)

3. The marked elements T ∈ Ml are subdivided into smaller elements.

4. If needed, elements which are “close” to marked elements also get subdivided. (Might
be necessary to ensures the adjacency condition from D.2.60.)

The error estimators ηT can be used to specify regions of Ω where the current mesh
Tl is too coarse. The choice of a specific type of error estimator usually depends on the
application the user has in mind (e.g., [CFPP14] or [EG04, Chapter 10]). If the element
subdivision in step 3 is done via bisection ([Ste08]), then the mesh family (Tl)l∈N is indeed
shape regular in the sense of D.2.60.

We close this short section with a rigorous proof of the seemingly trivial fact that, given
a number δ > 0 and a mesh element T ∈ T , we can split T into a family of smaller simplices
of diameter 	 δ.

Lemma 2.69. Let Ω ⊆ Rd be a polyhedron, T ⊆ Pow(Ω) be a mesh and C0 ≥ 1 be a given
constant. Let T ∈ T and let δ > 0 be such that δ < C0hT . Then, there exists a family
S ⊆ Pow(Rd) of simplices S ⊆ Rd with the following properties:

1. There holds
�

S∈S S = T .

2. Every S ∈ S is �σshp-shape regular, where �σshp = C(d)σshp.

3. There hold the bounds hmax,S ≤ δ ≤ C(d)C0hmin,S .

Proof. Denote by T̂ ⊆ Rd the reference element from D.2.59 and by F : Rd −→ Rd the
affine element transformation from D.2.65 which maps F (T̂ ) = T . We know from L.2.24
that there exists a constant C1 := C(d) ≥ 1, such that

C−1
1 hT ≤ �∇F�2 ≤ C1hT , C−1

1 h−1
T ≤ �∇(F−1)�2 ≤ C1σshph

−1
T .

Now, let M ∈ N be a free parameter. According to [EG00], the simplex T̂ can be
subdivided into a family Ŝ ⊆ Pow(T̂ ) of simplices Ŝ ⊆ Rd with the following properties
(for some C2 := C(d) ≥ 1):

1. There holds
�

Ŝ∈Ŝ Ŝ = T̂ .

2. Every Ŝ ∈ Ŝ is C2-shape regular.

3. For every Ŝ ∈ Ŝ, there hold the bounds C−1
2 M−1 ≤ hŜ ≤ C2M

−1.

We define the corresponding family of simplices on T :

S := {F (Ŝ) | Ŝ ∈ Ŝ} ⊆ Pow(T ).

Clearly,
�

S∈S S = T . Furthermore, for every S = F (Ŝ) ∈ S, we know from L.2.24 that
S is σ-shape regular, where

σ := C2�∇(F−1)�2hSh−1

Ŝ
≤ C2�∇(F−1)�2�∇F�2 ≤ C2(C1σshph

−1
T )(C1hT ) = C2

1C2σshp.

43



2 Preliminary results

Finally, let us derive the bounds for hmax,S and hmin,S : L. 2.24 tells us that hS ≤
hŜ�∇F�2 ≤ C2hS , which readily implies

C−1
1 C−2

2 hTM
−1 ≤ hS ≤ C1C2hTM

−1.

Now, using the ceiling function �·�, we choose

M := �C1C2hT δ
−1� ∈ N.

Since we assumed δ < C0hT , we have

M = �C1C2hT δ
−1� ≥ C1C2hT δ

−1,
M = �C1C2hT δ

−1� ≤ C1C2hT δ
−1 + 1 < (C1C2 + C0)hT δ

−1,

which leads us to the bounds

hmax,S = max
S∈S

hS ≤ C1C2hTM
−1 ≤ δ,

hmin,S = min
S∈S

hS ≥ C−1
1 C−2

2 hTM
−1 ≥ C−1

1 C−2
2 (C1C2 + C0)

−1δ.

This concludes the proof.

2.9.5 Spline spaces

Next, we introduce the well-known spline spaces. To this end, we remind the reader of
D.2.25, D.2.37 and D.2.47, where we defined polynomial and Sobolev spaces.

Definition 2.70. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh. For all p ∈ N,
we define the spline spaces

Sp,1(T ) := {v ∈ H1(Ω) | ∀T ∈ T : v ◦ FT ∈ Pp(T̂ )},
Sp,10 (T ) := {v ∈ H1

0 (Ω) | ∀T ∈ T : v ◦ FT ∈ Pp(T̂ )}.
Similarly, for all p ∈ N0, we set

Sp,0(T ) := {v ∈ L2(Ω) | ∀T ∈ T : v ◦ FT ∈ Pp(T̂ )}.

Note that, trivially, Sp,10 (T ) ⊆ Sp,1(T ) ⊆ Sp,0(T ). We will refer to functions v ∈ Sp,0(T )
as being discrete.
Given a simplex T ⊆ Rd and a polynomial v ∈ Pp(T ), the support of v can either be

empty or almost all of T . Since there are no other possibilities in between, it makes sense
to introduce a slightly different notion of supports for discrete functions:

Definition 2.71. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh. For all p ∈ N0

and v ∈ Sp,0(T ), we set
suppT (v) := {T ∈ T | v|T +≡ 0}.
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Note that suppT (v) is a set of mesh elements, rather than a physical set. In particular,
we have suppT (v) ⊆ T and

�
suppT (v) ⊆ Rd. (In comparison, the usual support is a

subset supp(v) ⊆ Rd.)
One of the most widely used ansatz spaces in real world FEM applications is S1,1(T ),

i.e., the lowest-order case p = 1. A natural choice for a set of basis functions is associated
with the mesh nodes N .

Lemma 2.72. Let Ω ⊆ Rd be a polyhedron and let T ⊆ Pow(Ω) be a mesh with nodes N .
There exists a system of hat functions

{ψN |N ∈ N} ⊆ S1,1(T )

with the following properties:

1. {ψN |N ∈ N} is a basis of S1,1(T ) and {ψN |N ∈ N\∂Ω} is a basis of S1,10 (T ).

2. For all M,N ∈ N , there holds ψN (M) = δNM .

3. For all N ∈ N , there holds suppT (ψN ) ⊆ T (N).

4. For all N ∈ N , there holds 0 ≤ ψN ≤ 1.

5. There holds
�

N∈N ψN ≡ 1 on all of Ω.

Proof. See, e.g., [EG04, Section 1.1.2] for the case d = 1 or [LB13, Section 3.2.2] for the
case d = 2.

2.9.6 Discrete cut-off functions

In Section 2.8.7, we already hinted that Caccioppoli type inequalities will play an important
role later on. During the proof of L.2.55, we then used a smooth cut-off function κ ∈ C∞(Ω)
for the derivation of a Caccioppoli inequality in the continuous problem setting. This result
will serve as a blueprint for the proof of our main result, T.4.21. However, T.4.21 is derived
in a fully discrete setting (cf. A.4.19), meaning we only work with the solution of the
discrete problem, rather than the continuous one.
In Chapter 6, we then verify the assumption from A.4.19 and prove a discrete version

of the Caccioppoli in the context of a finite element discretization. Therefore, it is not
surprising that we also need a discrete version of the cut-off function κ.
Let us quickly recapitulate the relevant properties of the function κ from L.2.55: We had

κ ∈ C∞(Ω), κ|Ω∩B ≡ 1, supp(κ) ⊆ Ω ∩Bδ,

where Bδ ∈ B is a slightly inflated version of the box B ∈ B (cf. D.2.8 and D.2.12). A first
attempt on a discrete counterpart would obviously be κ’s nodal interpolant κ̃ ∈ S1,1(T ).
The problem with this approach is that κ̃ might have a prohibitively large support. At the
very least, the interpolation process adds one layer of mesh elements T to the support of
κ (which encompasses at least Ω ∩ B). This is not problematic in the vicinity of elements
T ∈ T with “small” diameters hT � δ. However, close to elements T ∈ T with “large”
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diameters hT � δ, even a single layer of additional elements increases the support by hT ,
which we cannot control in terms of δ. In particular, even by tweaking δ, there is no hope of
achieving supp(κ̃) ⊆ Ω∩Bδ. Here, the reason for failure is that the initial cut-off function
κ is coupled to the shape of the box B ⊆ Rd instead of the (possibly highly irregular) set�

{T ∈ T (B) |hT � δ} ⊆ Rd.

In this section, we construct a discrete cut-off function κ̃ ∈ S1,1(T ) that addresses this
very problem (cf. L.2.77). First, we need a discrete analogue for the inflated boxes Bδ ∈ B
from D.2.12. To this end, recall from D.2.63 that, for every mesh element T ∈ T , we fixed
an incenter xT ∈ T in the sense of D.2.16. Furthermore, recall that hB is the maximal
element diameter in a subset B ⊆ T .

Definition 2.73. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh. For all B ⊆ T
and all δ ≥ 0, we define the inflated cluster

Bδ := {T ∈ T | ∃T̃ ∈ B : �xT − xT̃ �2 ≤ δ}.

Lemma 2.74. 1. For all B ⊆ T and δ ≥ 0, there holds the bound

hBδ ≤ max{hB, 2σshpδ}.

2. Let B ∈ B be a box, B ⊆ T (B) and δ > 0 with 3hB ≤ δ. Let ε := (6σshp)
−1δ > 0.

Then, there holds the inclusion �
Bε ⊆ Ω ∩Bδ.

Proof. Ad item 1: Let T ∈ Bδ. By definition of Bδ, there exists an element T̃ ∈ B such
that �xT − xT̃ �2 ≤ δ. In the case T = T̃ , we have hT = hT̃ ≤ hB. On the other hand, if

T += T̃ , then L.2.64 implies T̃ ◦ ∩ T ◦ = ∅ and we find that

hT
L.2.17≤ 2σshp�xT − xT̃ �2 ≤ 2σshpδ.

Ad item 2: Consider an element T ∈ Bε. Note that, using item 1, we have

hT ≤ max{hB, 2σshpε} Def.ε
= max{hB, δ/3} = δ/3.

Now, according to D.2.73, there exists an element T̃ ∈ B such that �xT −xT̃ �2 ≤ ε. Note

that hT̃ ≤ hB ≤ δ/3, according to the assumption 3hB ≤ δ. Since T̃ ∈ B ⊆ T (B), we can

pick a point x ∈ T̃ ∩B and find that, for all y ∈ T ,

�y − x�2 ≤ �y − xT �2 + �xT − xT̃ �2 + �xT̃ − x�2 ≤ hT + ε+ hT̃ ≤ δ/3 + δ/3 + δ/3 = δ.

Due to L.2.13, this implies y ∈ Bδ. Taking the union over all T ∈ Bε and y ∈ T , the
desired result follows.
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Now we know how to inflate a set of mesh elements B ⊆ T by a prescribed amount δ > 0.
Note that this inflation process is isotropic (uniform in all directions), does not care for the
number of added “element layers” and also ignores the shape of the underlying domain Ω.
In fact, Bδ might include mesh elements T ∈ T that lie on “the other side” of a gap/hole
in Ω. The geodesic distance (i.e., the shortest path inside Ω) between the elements T̃ ∈ B
and the elements T ∈ Bδ might be much longer than the beeline δ. The idea of geodesic
distances is the topic of the next definition.

Definition 2.75. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh with nodes N .

1. A set K = {N1, . . . , NL} ⊆ N is called node chain, if, for every l ∈ {1, . . . , L − 1},
there exists an element Tl ∈ T such that

Nl, Nl+1 ∈ N (Tl).

2. For every node chain K = {N1, . . . , NL} ⊆ N with L = 1, we set |K| := 0. If L ≥ 2,
then

|K| :=
L−1�
l=1

�Nl+1 −Nl�2.

We refer to |K| as the length of the node chain.

3. Let N,M ∈ N . If there exists a node chain K ⊆ N with N,M ∈ K, then we define

distN (N,M) := min{|K| | K ⊆ N node chain with N,M ∈ K}.

If no such node chain exists, then distN (N,M) := ∞. For subsets M ⊆ N , we set

distN (N,M) := inf
M∈M

distN (N,M) (∈ [0,∞]).

We call distN (·, ·) the geodesic node distance.

We collect the relevant properties of node chains and the geodesic node distance.

Lemma 2.76. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh with nodes N .

1. The function distN (·, ·) defines a metric on N (with values in [0,∞]).

2. For all T ∈ T and all M ⊆ N , there holds

max
N1,N2∈N (T )

|distN (N1,M)− distN (N2,M)| ≤ hT .

3. Denote by σlqu ≥ 1 the constant from D.2.60 and let K = {N1, . . . , NL} ⊆ N be a
chain. Then, for all Tstart, Tend ∈ T with N1 ∈ N (Tstart) and NL ∈ N (Tend), there
holds the bound

hTend
≤ σlqumax{hTstart , 2σshp|K|}.
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Proof. Ad item 1: We only prove the triangle inequality: Let N1, N2, N3 ∈ N and assume
that distN (N1, N2) and distN (N2, N3) are both finite (otherwise, the triangle inequality is
trivially fulfilled). Then we can find minimal node chains K12,K23 ⊆ N connecting N1

with N2 and N2 with N3, respectively. We can then easily form a node chain from N1 to
N3 by K13 := K12 ∪ K23. Since N2 is part of both node chains, we get

distN (N1, N3) ≤ |K13| ≤ |K12|+ |K23| = distN (N1, N2) + distN (N2, N3).

Ad item 2: Let T ∈ T and N1, N2 ∈ N (T ). Since K := {N1, N2} is a node chain with
N1, N2 ∈ K, there holds

distN (N1, N2) ≤ |K| = �N2 −N1�2 ≤ hT .

In particular, for all M ⊆ N ,

distN (N1,M) = inf
M∈M

distN (N1,M)

≤ inf
M∈M

distN (N1, N2) + distN (N2,M) ≤ distN (N2,M) + hT .

An analogous bound holds true for reversed roles of N1 and N2. The asserted bound
then follows readily.
Ad item 3: In the case L = 1, we have N1 ∈ N (Tstart) ∩ N (Tend), proving that this set

is not empty. Then, D.2.60 implies

hTend
≤ σlquhTstart .

In the remaining case L ≥ 2, there exists an element TL−1 ∈ T such that NL−1, NL ∈
N (TL−1). It follows that NL ∈ N (TL−1) ∩N (Tend), so that

hTend

D.2.60≤ σlquhTL−1

L.2.58≤ 2σshpσlqu�NL −NL−1�2 ≤ 2σshpσlqu|K|.

We close this section with the promised discrete cut-off function. The construction is
similar to [AFM21a, Lemma 3.18] and makes use of the geodesic node distance distN (·, ·).
Lemma 2.77. Let Ω ⊆ Rd be a polyhedron and T ⊆ Pow(Ω) be a mesh. Denote by
σshp, σlqu ≥ 1 the constants from D.2.60. Let B ⊆ T and δ > 0 be such that δ ≥ 4σlquhB.
Then, there exists a discrete cut-off function

κδB ∈ S1,1(T )

with the following properties:

1. There holds the inclusion suppT (κδB) ⊆ Bδ.

2. There holds κδB|B ≡ 1 and 0 ≤ κδB ≤ 1.

3. For every l ∈ {0, 1}, there holds the stability bound

|κδB|W l,∞(Ω) ≤ C(d, σshp, σlqu)δ
−l.
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Proof. Denote by N the nodes of T and by {ψN |N ∈ N} ⊆ S1,1(T ) the basis of hat
functions from L.2.72. We introduce a subset of nodes M ⊆ N and a parameter α > 0:

M :=
�
T∈B

N (T ), α := (8σshpσlqu)
−1 > 0.

Now, let

κδB := κ :=
�
N∈N

κNψN ∈ S1,1(T ),

where the nodal values κN are defined as

κN := max

�
0, 1− distN (N,M)

αδ

�
∈ [0, 1].

The idea is that the node values κN fall off with a constant slope δ−1 along the node
chains that make up the shortest connection between any given node N ∈ N and the set
M.
Ad item 1: Let T ∈ suppT (κ), i.e., κ|T +≡ 0 (cf. D.2.71). Since the polynomial κ|T ∈

P1(T ) is uniqely determined by the values {κN |N ∈ N (T )}, there must exist a node
N ∈ N (T ) with κN += 0, i.e., distN (N,M) < αδ. Since distN (N,M) is the length of the
shortest chain from N to M =

�
T̃∈B N (T̃ ), we can find an element Tstart ∈ B and a chain

K = {N1, . . . , NL} such that

N1 ∈ N (Tstart), NL = N ∈ N (T ), |K| = distN (N,M) < αδ.

Exploiting both the definition of the parameter α and the assumption δ ≥ 4σlquhB, we
get the following bound for the Euclidean distance between the incenters xTstart ∈ Tstart

and xT ∈ T :

�xTstart − xT �2 ≤ �xTstart −N1�2 + |K|+ �NL − xT �2 ≤ hTstart + |K|+ hT
L.2.76≤ hTstart + |K|+ σlqumax{hTstart , 2σshp|K|} ≤ 2σlquhB + 4σshpσlquαδ ≤ δ/2 + δ/2 = δ.

According to D.2.73, this proves T ∈ Bδ and ultimately suppT (κ) ⊆ Bδ.
Ad item 2: Let T ∈ B. For all N ∈ N (T ), there holds N ∈ M, so that distN (N,M) = 0

and κN = 1. For the remaining nodes N ∈ N\N (T ), the support properties of the hat
functions ψN guarantee ψN |T ≡ 0 (cf. L.2.72). Thus,

κ|T L.2.72
=

�
N∈N (T )

κN (ψN |T ) +
�

N∈N\N (T )

κN (ψN |T ) =
� �

N∈N
ψN

�!!!!
T

L.2.72≡ 1.

Furthermore, since 0 ≤ ψN ≤ 1 and κN ∈ [0, 1], we have

0 ≤
�
N∈N

κNψN = κ, κ =
�
N∈N

κNψN ≤
�
N∈N

ψN = 1.
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Ad item 3: The fact that 0 ≤ κ ≤ 1 immediately gives �κ�L∞(Ω) ≤ 1. In order to get a
bound for |κ|W 1,∞(Ω), let T ∈ T be given. Using the identity κ(N) = κN , for all N ∈ N ,
and the bound |max{0, t} −max{0, s}| ≤ |t− s|, for all t, s ∈ R, we compute

hT |κ|W 1,∞(T )

L.2.66

� max
N1,N2∈N (T )

|κN1 − κN2 |

≤ (αδ)−1 max
N1,N2∈N (T )

|distN (N1,M)− distN (N2,M)|
L.2.76≤ (αδ)−1hT

Def.α

� δ−1hT .

Dividing by hT and taking the maximum over all T ∈ T , we obtain |κ|W 1,∞(Ω) ≤
C(d, σshp, σlqu)δ

−1.
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This chapter shall serve as an introduction to the theory of hierarchical matrices (H-
matrices in short) and contains everything the reader needs to know in preparation for
the main result of this thesis, T.4.21. Most importantly, we develop the block partition P2

that we need for the definition of H(P2, r), the class of H-matrices. For more introductory
material on H-matrices, we suggest the dissertation [Gra01] and the book [Hac09].

3.1 Motivation

Before we start with the rigorous construction of the block partition P2, we want to artic-
ulate the ideas presented in Section 1.2 in more detail. Denote by

A := (a(ϕn, ϕm))Nm,n=1 ∈ RN×N

the Gram matrix from Section 1.1, i.e., a(·, ·) is a bilinear form on some suitable Hilbert
space V , VN ⊆ V is a finite-dimensional subspace and {ϕ1, . . . , ϕN} ⊆ VN is a basis. To be
more specific, assume that V is a function space on some computational domain Ω ⊆ Rd

and that the sets
Ωn := supp(ϕn) ⊆ Rd

are small, e.g., tiny balls or mesh elements.
We consider two index sets I, J ⊆ {1, . . . , N} (so-called clusters) and the corresponding

physical domains

ΩI :=
�
i∈I

Ωi ⊆ Rd, ΩJ :=
�
j∈J

Ωj ⊆ Rd.

Suppose that ΩI and ΩJ are well separated in the following sense: There exist a constant
σadm > 0 and boxes BI , BJ ∈ B (cf. D.2.8) such that ΩI ⊆ BI , ΩJ ⊆ BJ and such that the
following admissibility condition is satisfied:

max{diam2(BI), diam2(BJ)} ≤ σadmdist2(BI , BJ).

Clearly, the interaction between the groups {ϕi | i ∈ I} and {ϕj | j ∈ J} is somehow
encoded in the matrix block A|I×J ∈ RI×J . If the physical law behind the bilinear form
a(·, ·) is governed by a “well-behaved” kernel function (e.g., asymptotically smooth as in
[Hac09, Section 4.2.4]), then it is safe to assume that the interdependence of the groups
{ϕi | i ∈ I} and {ϕj | j ∈ J} can be modeled using fewer bits of information than expected.
In a naive implementation, the memory requirements to store the (possibly fully popu-

lated) matrix block A|I×J ∈ RI×J amount to #I#J . However, if its singular values decay
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rapidly, we can reduce the memory footprint considerably without losing too much infor-
mation. To this end, recall (e.g., [Str80, Section 6.3]) that any matrix B ∈ RI×J can be
written in the form of a singular values decomposition (SVD)

B = XY T ∈ RI×J ,

where X ∈ RI×J is the product of an orthogonal matrix U ∈ RI×I with a diagonal matrix
Σ ∈ RI×J and where Y ∈ RJ×J is an orthogonal matrix. The diagonal entries of Σ are
given by the singular values σ1 ≥ σ2 ≥ · · · ≥ 0 of the original matrix B. Then, given a
rank bound r ∈ N with r % min{#I,#J}, we can assemble a truncated singular values
decomposition

Br := XrY
T
r ∈ RI×J ,

whereXr ∈ RI×r and Y r ∈ RJ×r only contain the first r columns ofX and Y , respectively.
Note that Br has the same number of rows and columns as B, but the individual matrix
entries come from much shorter sums (Jr only contains the first r members of J):

∀(i, j) ∈ I × J : Bij =
�
k∈J

XikY jk, (Br)ij =
�
k∈Jr

XikY jk.

The matrices Xr and Y r can be regarded as an efficient representation of Br, provided
that we store them as separate entities and refrain from carrying out the implied multi-
plication. While the matrix Br would need #I#J bits of memory, the cumulative cost of
storing Xr and Y r as two separate matrices only amounts to r(#I +#J). The truncation
error between B and Br is given by (e.g., [TB97, Theorem 5.8.])

�B −Br�2 = σr+1,

which should quickly tend to zero (as r → ∞) if the initial matrix B has a “low information
content”. In particular, we can choose a small value1 for the rank bound r, so that the
reduction in memory cost from #I#J to r(#I +#J) is indeed significant.
Finally, we mention that the representation of Br via Xr and Y r can even be used

to perform matrix-vector-multiplications efficiently: Given some input vector c ∈ RJ , we
first compute c̃ := Y T

r c and then Xrc̃, which produces Brc = XrY
T
r c. With this simple

two-step procedure, the total work load reduces to O(r(#I + #J)), which is again much
better than O(#I#J) for the naive matrix-vector-product Brc.

Figure 3.1 shall serve as a visualization of the difference between storing the matrix Br

explicitly versus storing its constituents Xr and Y r separately. The left-hand matrix Br ∈
R12×10 needs 12 · 10 = 120 units of memory, whereas the right-hand matrices Xr ∈ R12×2

and Y r ∈ R10×2 only need 12 · 2 + 10 · 2 = 44 units. Although Br is an almost fully
populated matrix here, its information content is less than 37%.

1Typical real world applications require r to be chosen on the order of O(ln(N)) or even O(1).
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

−4 9 −6 −1 0 −6 8 −4 −6 −2
8 −17 12 5 2 10 −14 6 8 8
−6 10 −9 −12 −7 −2 5 1 5 −17
−4 10 −6 2 2 −8 10 −6 −10 2
−6 15 −9 3 3 −12 15 −9 −15 3
6 −9 9 15 9 0 −3 −3 −9 21
−4 7 −6 −7 −4 −2 4 0 2 −10
2 −8 3 −10 −7 10 −11 9 17 −13
8 −12 12 20 12 0 −4 −4 −12 28
2 −8 3 −10 −7 10 −11 9 17 −13
6 −14 9 0 −1 10 −13 7 11 1
0 −1 0 −3 −2 2 −2 2 4 −4



=



2 −1
−4 1
3 2
2 −2
3 −3
−3 −3
2 1
−1 4
−4 −4
−1 4
−3 2
0 1



·



−2 0
4 −1
−3 0
−2 −3
−1 −2
−2 2
3 −2
−1 2
−1 4
−3 −4



T

Figure 3.1: Representing a (12× 10)-matrix by a (12× 2)- and a (10× 2)-matrix.

Now let us return to the Gram matrix A = (a(ϕn, ϕm))Nm,n=1 from the beginning of this

section. Truncated SVDs promise good compression rates for blocks A|I×J ∈ RI×J , whose
domains ΩI ,ΩJ ⊆ Rd are well separated (i.e., included in admissible boxes). However,
there will also be matrix blocks A|I×J , whose domains ΩI and ΩJ are not well-separated
(e.g., on the diagonal of A, where I ∩ J += ∅ and thus ΩI ∩ ΩJ += ∅). In these cases, we
need to make sure that min{#I,#J} is smaller than some predefined threshold σsmall ≥ 1.
Then, we can simply store the full matrix block A|I×J as is, which results in a memory
cost of

#I#J = min{#I,#J} ·max{#I,#J} ≤ σsmall(#I +#J).

We are now left with the following task:

Problem 3.1. Construct a partition of the full matrix index set {1, . . . , N} × {1, . . . , N}
into blocks I × J , such that each block satisfies one or both of the following conditions:

1. There holds min{#I,#J} ≤ σsmall.

2. The physical sets ΩI ,ΩJ ⊆ Rd are well separated.

In the remainder of this chapter, we will use the adaptive, geometrically balanced clus-
tering strategy from [GHLB04] to construct such a partition. Before we proceed, a few
remarks are necessary.

Remark 3.2. In our discussion of truncated SVDs, we argued that the pair of matrices
(Xr,Y r) can be seen as an efficient representation of Br. Continuing this theme, the
elements of the block partition P2 will be pairs (I, J) of clusters I, J ⊆ {1, . . . , N}, as
opposed to cartesian products I × J . We hope that this slight misnomer is no cause for
confusion.

Remark 3.3. For the ease of presentation, the motivation was formulated in terms of
the Gram matrix A itself. However, the ultimate goal of this thesis is an approximation

53



3 Hierarchical matrices

result for its inverse A−1. The heuristic still applies, though, because our assumptions on
the bilinear form a(·, ·) and the basis functions ϕi in Chapter 4 will guarantee that A−1 is
again a Gram matrix (cf. L.4.15).

Remark 3.4. A common compression technique for large matrices A ∈ RN×N is exploiting
sparsity. If most entries of A are zero, then it might be cheaper to store the positions and
values of the non-zero-entries in three short lists and use these to represent A. We want
to emphasize, however, that the cost efficiency of H-matrices does not come from sparsity.
In fact, an H-matrix A might very well be fully populated. The only requirement for A to
be an H-matrix is that the “admissible” subblocks A|I×J must have a small rank, so that a
cheap representation via matrix pairs (Xr,Y r) is possible.

3.2 The characteristic sets Ωn

Definition 3.5. Let σshp, σovlp, σsprd ≥ 1 and N ∈ N. We consider a family of subsets

Ω1, . . . ,ΩN ⊆ Rd

with shape regularity σshp, overlap σovlp and spread σsprd (cf. D.2.16, D.2.18, D.2.21). The
sets Ωn are called characteristic sets.

Definition 3.6. 1. A subset I ⊆ {1, . . . , N} is called cluster.

2. For all clusters I ⊆ {1, . . . , N}, we define

ΩI :=
�
n∈I

Ωn ⊆ Rd.

3. For every n ∈ {1, . . . , N}, we fix an incenter xn ∈ Ωn (cf. D.2.16). The points
x1, . . . , xN are called characteristic points.

4. For all n ∈ {1, . . . , N} and I ⊆ {1, . . . , N}, we set (cf. D.2.14)

hn := hΩn , hI := hmax,I := max
n∈I

hn, hmin,I := min
n∈I

hn, hmin := min
n∈{1,...,N}

hn.

The upcoming clustering algorithm mainly deals with the characteristic points x1, . . . , xN
and the quantities σshp, σovlp, σsprd. The characteristic sets Ω1, . . . ,ΩN only play a minor
role.

Definition 3.7. Denote by x1, . . . , xN ∈ Rd the characteristic points from D.3.6. For every
subset B ⊆ Rd, we define the corresponding cluster

ι(B) := {n ∈ {1, . . . , N} |xn ∈ B}.
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3.3 The box tree T

In this section, we use a geometric clustering algorithm to construct a box tree T:

1. The nodes of T are axes-parallel boxes B ∈ B (cf. D.2.8).

2. The root is a large box containing all of the characteristic points x1, . . . , xN .

3. Using the splitting method sons(·) : B −→ Pow(B) from D.2.10, the initial box is
successively split into smaller boxes.

4. The splitting stops when the number of characteristic points xn inside the current
box falls below a predefined threshold.

5. The boxes at the leaves of the tree form a partition of the root box. In particular,
they can be used to partition the points x1, . . . , xN (and thus the abstract index set
{1, . . . , N}).

To get the clustering algorithm going, we need a box to start with. The assumption
about the family {Ω1, . . . ,ΩN} having spread σsprd allows us to utilize a previous result.

Definition 3.8. Denote by Bstart ∈ B the box from L.2.22.

Lemma 3.9. There hold the following properties:

Ω1, . . . ,ΩN ⊆ Bstart, ι(Bstart) = {1, . . . , N},
diam2(Bstart) =

√
dσsprd, meas(Bstart) = σd

sprd.

Proof. See L.2.22.

Next, we introduce the threshold for the stopping criterion. We will refer to this number
as being a clustering parameter.

Definition 3.10. Denote by σovlp ≥ 1 the quantity from D.3.5. Let σsmall ≥ 1 be a number
that satisfies

σovlp ≤ σsmall.

For a given system of characteristic sets Ω1, . . . ,ΩN , it might be impossible to determine
the precise value of σovlp. However, if the sets Ωn are constructed algorithmically, a the-
oretical upper bound to σovlp may be available (e.g., L.6.8). D.3.10 then says that σsmall

must be chosen larger than this theorical bound.
We encode the stopping criterion of the algorithm in form of a subset Bstop ⊆ B. If a

branch of the tree T reaches Bstop, it won’t grow any further.

Definition 3.11. Let σsmall ≥ 1 be the clustering parameter from D.3.10. A box B ∈ B is
called small, if there holds

#ι(B) ≤ σsmall.

We set
Bstop := {B ∈ B |B is small} ⊆ B.

55



3 Hierarchical matrices

The boxes B ∈ B that have not yet reached the stopping set Bstop must contain more
than σsmall characteristic points xn. Since we assumed σsmall ≥ σovlp in D.3.10, such a box
B then also contains more than σovlp characteristic points. According to L.2.19, this puts
an upper limit on the diameters hn of the characteristic sets Ωn:

Lemma 3.12. Denote by σshp ≥ 1 the quantity from D.3.5. Then, for every box B ∈
B\Bstop, there holds the bound

hι(B) ≤ 2σshpdiam2(B).

Proof. Since B /∈ Bstop, we know from D.3.11 and D.3.10 that #ι(B) > σsmall ≥ σovlp.
Then, using the fact that xn ∈ B, for all n ∈ ι(B) (cf. D.3.7), we get

hι(B)
D.3.6
= max

n∈ι(B)
hΩn

L.2.19≤ 2σshp max
m,n∈ι(B)

�xm − xn�2 ≤ 2σshpdiam2(B).

Now that we know how to start, split and stop, we can construct the individual levels of
the box tree T:

Definition 3.13. Let Bstart ∈ B be the box from D.3.8, let sons(·) : B −→ Pow(B) be the
splitting procedure defined in D.2.10 and denote by σsmall ≥ 1 the clustering parameter from
D.3.10. Furthermore, let Bstop ⊆ B be defined as in D.3.11. We define a sequence (Tl)l∈N
of subsets Tl ⊆ B in a recursive manner:

T1 := {Bstart},
∀l ≥ 2 : Tl := {B |A ∈ Tl−1\Bstop, B ∈ sons(A)}.

Remark 3.14. This recursive definition can easily be converted to an actual computer
program. Assuming the level Tl−1 ⊆ B has already been computed, we simply iterate over
all A ∈ Tl−1 and determine the corresponding index cluster ι(A) ⊆ {1, . . . , N} through a
series of “point-in-box” checks (cf. D.3.7). If the final score #ι(A) exceeds σsmall, then A
is split up and produces 2d sons on the next level Tl.

The number of “point-in-box” checks can be reduced significantly, if the boxes A are stored
along with their associated clusters ι(A). In this case, the tree nodes are the pairs (A, ι(A))
and we split A and ι(A) simultaneously. The clusters ι(B) of the children B ∈ sons(A)
can then be determined from ι(A) and we don’t need to go through all N points x1, . . . , xN
afresh.

In fact, we could also work with an alternate definition of T where every node is a pair
(B, I) of a box B ∈ B and a cluster I ⊆ {1, . . . , N}. However, the upcoming results really
only depend on the properties of the boxes B and not so much on the properties of the index
sets I. Therefore, we proceed with the original definition of T, which is far less cumbersome
anyways.

We summarize the most important properties of the sequence (Tl)l∈N:
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Lemma 3.15. 1. Let l ∈ N. For all B ∈ Tl, there holds B ⊆ Bstart. Furthermore, for
all B, B̃ ∈ Tl with B += B̃, there holds B ∩ B̃ = ∅. In particular,�

·
B∈Tl

B ⊆ Bstart.

2. For all l ∈ N and all B ∈ Tl, there hold the following identities:

diam2(B) = 2
√
dσsprd2

−l, meas(B) = (2σsprd)
d2−dl.

3. For all l, k ∈ N with l += k, there holds Tl ∩ Tk = ∅.
Proof. Ad item 1: We only prove the statement about disjointness. Induction basis l = 1:
Trivial, since T1 only contains one element. Induction step l − 1 '→ l: Let B, B̃ ∈ Tl with
B += B̃ be given. By definition of Tl, there exist A, Ã ∈ Tl−1\Bstop such that B ∈ sons(A)

and B̃ ∈ sons(Ã). If A = Ã, then B, B̃ ∈ sons(A) and L.2.11 yields B ∩ B̃ = ∅. On the
other hand, if A += Ã, then B ∩ B̃ ⊆ A ∩ Ã = ∅ by the induction hypothesis.
Ad item 2: Follows easily from L.2.11 and L.3.9 by induction on l.
Ad item 3: If Tl ∩ Tk += ∅, then we can find a box B with B ∈ Tl and B ∈ Tk. Then,

using item 2, we get

l = − log2(2
−l) = − log2((2

√
dσsprd)

−1diam2(B)) = − log2(2
−k) = k.

Next, let us demonstrate that the sequence (Tl)l∈N must halt at some point. The deter-
mining factors are the quantities σshp, σsprd ≥ 1 and hmin > 0 from D.3.5 and D.3.6.

Lemma 3.16. There exists an l ∈ N such that Tl ⊆ Bstop. The minimizer

L := min{l ∈ N |Tl ⊆ Bstop}

has the following properties:

1. There holds TL += ∅ and TL+1 = TL+2 = · · · = ∅.
2. There holds the bound

L ≤ log2(8
√
dσshpσsprdh

−1
min).

Proof. Ad item 1: If there existed a sequence (Bl)l∈N such that Bl ∈ Tl\Bstop, for all l ∈ N,
then we would get the following contradiction:

0 < hmin ≤ hι(Bl)

L.3.12≤ 2σshpdiam2(Bl)
L.3.15
= 4

√
dσshpσsprd2

−l l−→ 0.

Now, denote by L ∈ N the minimal value such that TL ⊆ Bstop. If L = 1, then trivially
TL = {Bstart} += ∅. If L ≥ 2, then TL−1 +⊆ Bstop, due to the minimality assumption. It
follows that Bstop\TL−1 += ∅ and ultimately TL += ∅. As for the subsequent levels, the
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relation TL\Bstop = ∅ immediately implies TL+1 = ∅. Then, inductively, Tl = ∅, for all
l ≥ L+ 1.
Ad item 2: In the case L ≥ 2, the minimality of L tells us that there must exist a

B ∈ TL−1 with B /∈ Bstop. Using the same estimates as in the previous step, we find

that hmin ≤ 4
√
dσshpσsprd2

−(L−1). This can easily be rearranged into the equivalent form
L ≤ log2(8

√
dσshpσsprdh

−1
min). In the remaining case L = 1, the bound

hmin
D.3.6
= min

n∈{1,...,N}
diam2(Ωn)

L.3.9≤ diam2(Bstart)
L.3.9
=

√
dσsprd ≤ 4

√
dσshpσsprd

readily yields L = log2(2) ≤ log2(8
√
dσshpσsprdh

−1
min) as well.

The previous lemma tells us that the sequence (Tl)l∈N terminates after roughly ln(h−1
min)

steps. The non-trivial levels constitute the box tree T to be defined next. Keep in mind
that the levels Tl are pairwise disjoint, i.e., a box B ∈ B cannot occur on more than one
level (cf. L.3.15).

Definition 3.17. Let (Tl)l∈N be the sequence from D.3.13 and L ∈ N be the value from
L.3.16. We define the box tree

T :=
L�
·

l=1

Tl ⊆ B

and set depth(T) := L. The sets Tl are called levels of T. Furthermore, we say that T is
based on the clustering parameters Bstart, sons(·) and σsmall (D.3.8, D.2.10, D.3.10).

For the remainder of this section, we are concerned with the computational complexity
of storing and assembling the box tree T.

Lemma 3.18. Let Bstart ∈ B be the box from D.3.8. Furthermore, let f : Pow(Rd) −→
[0,∞) be an additive function, i.e., for all M, M̃ ⊆ Rd with M ∩ M̃ = ∅, there holds

f(M ∪ M̃) = f(M) + f(M̃).

Then, there holds the bound�
B∈T

f(B) ≤ depth(T)f(Bstart).

Proof. Every non-negative, additive function is monotone, i.e., for all M, M̃ ⊆ Rd with
M ⊆ M̃ , there holds

f(M) ≤ f(M) + f(M̃\M) = f(M ∪ (M̃\M)) = f(M̃).

Now, abbreviate L := depth(T). Recall from L.3.15 that, for each l ∈ N, the boxes
B ∈ Tl are pairwise disjoint and that

�· B∈Tl
B ⊆ Bstart. Therefore,

�
B∈T

f(B)
D.3.17≤

L�
l=1

�
B∈Tl

f(B) =

L�
l=1

f

� �
·

B∈Tl

B

�
≤

L�
l=1

f(Bstart) = Lf(Bstart).
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L.3.18 allows us to find an upper bound for #T in terms of the quantity σsmall ≥ 1 from
D.3.10, the tree depth from D.3.17 and the number of characteristic points.

Lemma 3.19. There holds the bound

#T ≤ C(d)σ−1
smalldepth(T)N.

Proof. Abbreviating L := depth(T), we compute

#T ≤
L�
l=1

#Tl

D.3.13

�
L�
l=2

#(Tl−1\Bstop)
L.3.15
= #

�� L�
·

l=2

Tl−1

�
\Bstop

�
≤ #(T\Bstop)

=
�

B∈T\Bstop

1
D.3.11
< σ−1

small

�
B∈T

#ι(B)
L.3.18≤ σ−1

smalldepth(T)#ι(Bstart)
L.3.9
= σ−1

smalldepth(T)N.

This concludes the proof.

Remark 3.20. In R.3.14, we argued that one should consider storing the pairs (B, ι(B))
instead of just B. In this case, the total memory usage and assembly time of T amounts to
O(

�
B∈T #ι(B)). Looking at the proof of L.3.19 again, we actually showed that�

B∈T
#ι(B) ≤ depth(T)N.

As for the memory usage alone, we can do even better: After splitting a node (A, ι(A))
into its sons (B, ι(B)), we can relabel the characteristic points x1, . . . , xN in a way such
that ι(B) is a contiguous subset of N. Regardless of its cardinality, such a cluster can be
represented by 2 numbers alone, namely its minimum and its maximum. Then, the cost of
storing T is again on the order of O(#T).

3.4 The product box tree T2

The leaves of the box tree T can be used to partition the index set {1, . . . , N} into a family
of clusters I ⊆ {1, . . . , N}. Next, we introduce the product box tree T2 that will allow us
to divide the set {1, . . . , N} × {1, . . . , N} into a block partition. One might be tempted to
use the tensor product tree T×T = {(B1, B2) |B1, B2 ∈ T} for this task, but, according to
L.3.19, this structure contains up to #(T × T) = #T#T � σ−2

smalldepth(T)
2N2 members,

which is prohibitively large. Instead, we construct a substructure T2 ⊆ T×T that contains
just O(#T) elements.
The construction of the product box tree T2 is very similar to the one of T:

1. The nodes of T2 are pairs (B1, B2) of axes-parallel boxes B1, B2 ∈ B.

2. The root is just the pair (Bstart, Bstart).

3. Splitting a pair (A1, A2) ∈ B2 means splitting A1 and A2 individually (cf. D.2.10)
and forming all pairs (B1, B2) of boxes B1 ∈ sons(A1) and B2 ∈ sons(A2).
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4. The splitting of a pair (B1, B2) stops as soon as it is deemed small or admissible (cf.
D.3.22).

5. The leaves of the tree can be used to form a partition of {1, . . . , N} × {1, . . . , N}.
The stopping criterion is the biggest conceptual novelty, because it involves the spatial

distance between the boxes B1 and B2 that make up the pair (B1, B2). This kind of
coupling is the reason why T2 contains significantly fewer elements than the full tensor
product T × T. We begin by laying out the playing field for the algorithm.

Definition 3.21. We denote the set of pairs of boxes by B2 := B × B.

We already know what the root of the tree T2 will be and we also know how to split
pairs of boxes. It remains to define a rigorous stopping criterion.

Definition 3.22. Let σsmall ≥ 1 be the clustering parameter from D.3.10. Let σ̃adm > 0 be
a another clustering parameter. A pair of boxes (B1, B2) ∈ B2 is called small, if

min{#ι(B1),#ι(B2)} ≤ σsmall.

Similarly, the pair (B1, B2) is called admissible, if

max{diam2(B1), diam2(B2)} ≤ σ̃admdist2(B1, B2).

We set
B2
stop := {(B1, B2) ∈ B2 | (B1, B2) is small or admissible}.

Note that a pair (B1, B2) is small, iff at least one of its components is small in the sense
of D.3.11. Furthermore, we emphasize that B2

stop is not the same as Bstop×Bstop (see L.3.24
below).

Remark 3.23. In the literature on H-matrices, the admissibility of a pair (B1, B2) ∈ B2

is sometimes phrased in terms of the minimum of the diameters, i.e., via the relation

min{diam2(B1), diam2(B2)} ≤ σ̃admdist2(B1, B2).

However, as we shall see later in L.3.26, if a pair (B1, B2) is an element of the product
cluster tree T2, then its components B1 and B2 lie on the same level of the box tree T.
L.3.15 then implies that their diameters must coincide, so that, trivially,

min{diam2(B1), diam2(B2)} = max{diam2(B1), diam2(B2)}.

Hence, in the case of geometrically balanced clustering, the two notions of admissibility
are equivalent.

Lemma 3.24. There hold the following inclusions:

Bstop × Bstop ⊆ (Bstop × B) ∪ (B × Bstop) ⊆ B2
stop,

{B ∈ B | (B,B) ∈ B2
stop} ⊆ Bstop.
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Proof. We only prove the bottom line. Let B ∈ B be such that (B,B) ∈ B2
stop. According

to D.3.22, the pair (B,B) is small or admissible. However, it cannot be admissible, since
otherwise

0
L.2.9
< diam2(B) = max{diam2(B), diam2(B)} ≤ σ̃admdist2(B,B) = 0.

Therefore, (B,B) must be small, so that #ι(B) = min{#ι(B),#ι(B)} ≤ σsmall. According
to D.3.11, this means B ∈ Bstop.

The levels of the product box tree T2 are again defined recursively:

Definition 3.25. Let Bstart ∈ B be the box from D.3.8, let sons(·) : B −→ Pow(B) be
the splitting procedure from D.2.10 and denote by σsmall ≥ 1 and σ̃adm > 0 the clustering
parameters from D.3.10 and D.3.22. Furthermore, let B2

stop ⊆ B2 be defined as in D.3.22.
We define a sequence (T2

l )l∈N of subsets T2
l ⊆ B2 in a recursive manner:

T2
1 := {(Bstart, Bstart)},

∀l ≥ 2 : T2
l := {(B1, B2) | (A1, A2) ∈ T2

l−1\B2
stop, B1 ∈ sons(A1), B2 ∈ sons(A2)}.

Once again, T2
l is not the same as Tl ×Tl. The reason being that a pair (A1, A2) ∈ T2

l−1

can be admissible without A1 or A2 being small. Such a pair will not produce any sons in
T2
l , whereas A1 and A2 do have sons in Tl.

Lemma 3.26. 1. For all l ∈ N, there hold the inclusions

{(B,B) |B ∈ Tl} ⊆ T2
l ⊆ Tl × Tl.

2. For all l, k ∈ N with l += k, there holds T2
l ∩ T2

k = ∅.
Proof. Item 1, left-hand inclusion: The case l = 1 is trivial. To see the induction step
l− 1 '→ l, let B ∈ Tl be given. According to the definition of Tl (cf. D.3.13), there exists a
box A ∈ Tl−1\Bstop such that B ∈ sons(A). The induction hypothesis implies (A,A) ∈ T2

l−1

and L.3.24 yields (A,A) ∈ T2
l−1\B2

stop. Then, by D.3.25, (B,B) ∈ T2
l .

Item 1, right-hand inclusion: The case l = 1 is trivial. To see the induction step l−1 '→ l,
let (B1, B2) ∈ T2

l . By definition of T2
l , there exists a pair (A1, A2) ∈ T2

l−1\B2
stop such that

B1 ∈ sons(A1) and B2 ∈ sons(A2). Using L.3.24 and the induction hypothesis, we have

(A1, A2) ∈ T2
l−1\B2

stop ⊆ (Tl−1 × Tl−1)\(Bstop × Bstop) = (Tl−1\Bstop)× (Tl−1\Bstop),

so that A1, A2 ∈ Tl−1\Bstop. According to D.3.13, this implies (B1, B2) ∈ Tl × Tl.
Ad item 2: Let l, k ∈ N with l += k. Then, using item 1,

T2
l ∩ T2

k ⊆ (Tl × Tl) ∩ (Tk × Tk) = (Tl ∩ Tk)× (Tl ∩ Tk)
L.3.15
= ∅ × ∅ = ∅.

The next lemma establishes the fact that the trees T and T2 have the same depth.
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Lemma 3.27. There exists an l ∈ N such that T2
l ⊆ B2

stop. The minimizer

L := min{l ∈ N |T2
l ⊆ B2

stop}
has the following properties:

1. There holds T2
L += ∅ and T2

L+1 = T2
L+2 = · · · = ∅.

2. There holds L = depth(T), where depth(T) is defined as in D.3.17.

Proof. Abbreviate M := depth(T) = min{l ∈ N |Tl ⊆ Bstop}. The relation

T2
M

L.3.26⊆ TM × TM ⊆ Bstop × Bstop

L.3.24⊆ B2
stop

proves that there exists an l ∈ N such that T2
l ⊆ B2

stop. Now, denote by L ∈ N the minimal
value such that T2

L ⊆ B2
stop. The proof of item 1 is completely analogous to the one in

L.3.16, so let us go straight to item 2: On one hand, the minimality of L immediately
yields L ≤ M . On the other hand, if L < M were true, then T2

M = ∅ by item 1. However,
since TM += ∅ by L.3.16, we would end up with the following contradiction:

∅ += {(B,B) |B ∈ TM} L.3.26⊆ T2
M = ∅.

As was the case in D.3.17, we are only interested in the non-trivial levels T2
l . Furthermore,

recall from L.3.26 that they are pairwise disjoint, meaning that a box pair (B1, B2) cannot
occur on more than one level.

Definition 3.28. Let (T2
l )l∈N be the sequence from D.3.25 and L ∈ N be the value from

L.3.27. We define the product box tree

T2 :=
L�
·

l=1

T2
l ⊆ B2

and set depth(T2) := L. The sets T2
l are called levels of T2. Furthermore, we say that T2 is

based on the clustering parameters Bstart, sons(·), σsmall and σ̃adm (D.3.8, D.2.10, D.3.10,
D.3.22).

In the remainder of this section, we will see why T2 is indeed much smaller than T × T.

Definition 3.29. We define the sparsity constant

σsparse(T2) := max

�
max
B∈T

#{(B1, B2) ∈ T2 |B1 = B}, max
B∈T

#{(B1, B2) ∈ T2 |B2 = B}
�
.

The next lemma shows that the value of σsparse(T2) is indeed uniformly bounded.

Lemma 3.30. There holds the uniform bound

σsparse(T2) ≤ C(d)(2 + σ̃−1
adm)

d.
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Proof. We focus on finding a bound for the left-hand maximum in D.3.29 and suggest
that the right-hand maximum can be treated analogously. First, recalling the inclusion
T2
l ⊆ Tl × Tl from L.3.26, we simplify2

max
B∈T

#{(B1, B2) ∈ T2 |B1 = B} = max
l∈N

max
B∈Tl

#{(B1, B2) ∈ T2
l |B1 = B}.

Now, for all l ∈ N and all B ∈ Tl, let us abbreviate

T2
l (B) := {(B1, B2) ∈ T2

l |B1 = B} ⊆ T2
l .

Clearly, if we can find a constant C ≥ 1 such that #(T2
l (B)) ≤ C, then also σsparse(T2) ≤ C.

Let us first have a look at the non-trivial case l ≥ 2: Given a pair (B1, B2) ∈ T2
l (B), we

know from D.3.25 that there exists a pair (A1, A2) ∈ T2
l−1\B2

stop such that B1 ∈ sons(A1)
and B2 ∈ sons(A2). First, according to L.2.11, we have B1 ⊆ A1 and B2 ⊆ A2. Second,
since (A1, A2) ∈ T2

l−1 ⊆ Tl−1 × Tl−1, we know from L.3.15 that

diam2(A1) = 4
√
dσsprd2

−l, diam2(A2) = 4
√
dσsprd2

−l.

And third, since (A1, A2) ∈ B2\B2
stop, we know from D.3.21 that the pair (A1, A2) is neither

small nor admissible. In particular,

max{diam2(A1), diam2(A2)} > σ̃admdist2(A1, A2).

Now, fix a point b ∈ B and let a1 ∈ A1, a2 ∈ A2 be such that �a2−a1�2 = dist2(A1, A2).
Then, since b ∈ B = B1 ⊆ A1,

sup
b2∈B2

�b2 − b�2 ≤ sup
b2∈B2

�b2 − a2�2 + �a2 − a1�2 + �a1 − b�2
≤ diam2(A2) + dist2(A1, A2) + diam2(A1)

≤ diam2(A2) + σ̃−1
admmax{diam2(A1), diam2(A2)}+ diam2(A1)

= 4
√
d(2 + σ̃−1

adm)σsprd2
−l.

Abbreviating C0 := 4
√
d(2 + σ̃−1

adm)σsprd, we just proved that�
(B1,B2)∈T2

l (B)

B2 ⊆ Ball2(b, C02
−l).

Furthermore, this union must be disjoint. To see this, consider two pairs (B1, B2),
(B̃1, B̃2) ∈ T2

l (B) with (B1, B2) += (B̃1, B̃2). According to L.3.26, we have B1, B2, B̃1, B̃2 ∈
Tl. Now, since B1 = B = B̃1, it must be the case that B2 += B̃2. Then, L.3.15 already
implies B2 ∩ B̃2 = ∅.
Next, we compute

C(d)Cd
02

−dl L.2.7
= meas(Ball2(b, C02

−l)) ≥ meas

� �
·

(B1,B2)∈T2
l (B)

B2

�
=

�
(B1,B2)∈T2

l (B)

meas(B2)
L.3.15
= (2σsprd)

d2−dl#(T2
l (B)).

2In other words, given a box B ∈ T, it suffices to look for “partners” B2 on the same tree level.
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Solving for #(T2
l (B)), we obtain the desired bound:

#(T2
l (B)) ≤ C(d)Cd

02
−dl

(2σsprd)d2−dl
≤ C(d)(2 + σ̃−1

adm)
d.

This concludes the case l ≥ 2. Finally, in the case l = 1, we have T1 = {Bstart}, so that

#(T2
1(Bstart)) = #{(Bstart, Bstart)} = 1 ≤ C(d)(2 + σ̃−1

adm)
d.

The sparsity constant allows us to bound sums over T2 by sums over T.

Lemma 3.31. Let f1, f2 : B −→ [0,∞) be given functions. Then, there holds the bound�
(B1,B2)∈T2

f1(B1) + f2(B2) ≤ σsparse(T2)
�
B∈T

f1(B) + f2(B).

Proof. Using the definition of the sparsity constant σsparse(T2) from D.3.29, we compute�
(B1,B2)∈T2

f1(B1) + f2(B2) ≤
�
B∈T

� �
(B1,B2)∈T2:

B1=B

f1(B1) +
�

(B1,B2)∈T2:
B2=B

f2(B2)

�

=
�
B∈T

�
#{(B1, B2) ∈ T2 |B1 = B}f1(B) + #{(B1, B2) ∈ T2 |B2 = B}f2(B)

�
≤ σsparse(T2)

�
B∈T

f1(B) + f2(B).

As an immediate consequence, we get the following result:

Corollary 3.32. There holds the bound

#(T2) ≤ σsparse(T2)#T.

Proof. We apply L.3.31 to the functions f1(B) := f2(B) := 1/2. Then,

#(T2) =
�

(B1,B2)∈T2

1 ≤ σsparse(T2)
�
B∈T

1 = σsparse(T2)#T.

Remark 3.33. The time needed to compute the product box tree T2 is proportional to its
memory footprint. The recursion in D.3.25 requires us to go through all pairs (A1, A2) ∈
T2
l−1 and check whether (A1, A2) ∈ B2

stop. According to D.3.22, we need two checks for
smallness in the sense of D.3.11 and one check for admissibility. The information about
smallness is already available in the box tree T (i.e., a trivial lookup) and admissibility of
boxes can easily be checked in O(1) time.
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3.5 The leaves T2
stop

Recall from R.3.2 that the goal of this chapter is to construct a family P2 of cluster pairs
(I, J) such that

�· (I,J)∈P2 I × J = {1, . . . , N} × {1, . . . , N}. The product box tree T2

contains pairs of boxes that lie on top of each other, meaning that pairs of characteristic
points (xi, xj) will end up on more than one level of T2. To get a proper partition of
{1, . . . , N} × {1, . . . , N}, we may only take the box pairs from the leaves of T2.

Definition 3.34. We define the leaves of T2 by

T2
stop := T2 ∩ B2

stop.

Lemma 3.35. In the sense of a disjoint union, there holds�
·

(B1,B2)∈T2
stop

B1 ×B2 = Bstart ×Bstart.

Proof. First, we prove pairwise disjointness: Consider two pairs (B1, B2), (B̃1, B̃2) ∈ T2
stop

with (B1, B2) += (B̃1, B̃2) and let l, l̃ ∈ N be such that (B1, B2) ∈ T2
l and (B̃1, B̃2) ∈ T2

l̃
.

Let us check the case l < l̃ first: Backtracking the predecessors of (B̃1, B̃2), we can find
a pair (Ã1, Ã2) ∈ T2

l \B2
stop such that B̃1 ⊆ Ã1 and B̃2 ⊆ Ã2 (cf. L.2.11). Note that

B1, B2, Ã1, Ã2 ∈ Tl by L.3.26. There must hold (B1, B2) += (Ã1, Ã2), because (B1, B2) ∈
B2
stop, whereas (Ã1, Ã2) /∈ B2

stop. If B1 += Ã1, then already B1∩ Ã1 = ∅, according to L.3.15.

Similarly, if B2 += Ã2, then B2 ∩ Ã2 = ∅. Either way, it follows that

(B1 ×B2) ∩ (B̃1 × B̃2) ⊆ (B1 ×B2) ∩ (Ã1 × Ã2) = (B1 ∩ Ã1)× (B2 ∩ Ã2) = ∅.

This concludes the proof of pairwise disjointness in the case l < l̃. Due to symmetry, the
case l > l̃ is completely analogous. Finally, in the case l = l̃, the pair (B̃1, B̃2) itself plays
the role of (Ã1, Ã2).

It remains to show that the sets {B1×B2 | (B1, B2) ∈ T2
stop} make up all of Bstart×Bstart.

To this end, we introduce subsets Ml,Ml,stop ⊆ Rd × Rd, l ∈ {1, . . . , L}, L := depth(T2),
in the following way:

Ml :=
�

(A1,A2)∈T2
l

A1 ×A2, Ml,stop :=
�

(A1,A2)∈T2
l ∩B2

stop

A1 ×A2.
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For all l ∈ N, l ≥ 2, we have the following recursion:

Ml−1 =
�

(A1,A2)∈T2
l−1

A1 ×A2

L.2.11
=

�
(A1,A2)∈
T2
l−1∩B2

stop

A1 ×A2 ∪
�

(A1,A2)∈
T2
l−1\B2

stop

� �
B1∈sons(A1)

B1

�
×
� �

B2∈sons(A2)

B2

�

=
�

(A1,A2)∈
T2
l−1∩B2

stop

A1 ×A2 ∪
�

(A1,A2)∈
T2
l−1\B2

stop

�
B1∈sons(A1),
B2∈sons(A2)

B1 ×B2

D.3.25
=

�
(A1,A2)∈
T2
l−1∩B2

stop

A1 ×A2 ∪
�

(B1,B2)∈T2
l

B1 ×B2

= Ml−1,stop ∪Ml.

Since T2
1 = {(Bstart, Bstart)}, the first element of the recursion reads M1 = Bstart×Bstart.

On the other hand, the last element satisfies ML,stop = ML, because in L.3.27 we defined
L such that T2

L ⊆ B2
stop. Then,

Bstart ×Bstart = M1 = M1,stop ∪M2 = · · · =
L�
l=1

Ml,stop =
�

(B1,B2)∈T2
stop

B1 ×B2,

which concludes the proof.

3.6 The block partition P2

We are finally in the position to define the block partition P2. Recall from D.3.7 that
ι(B) = {n ∈ {1, . . . , N} |xn ∈ B} is the index cluster that belongs to a given physical set
B ⊆ Rd. We mention that some of the box pairs (B1, B2) ∈ T2

stop might be “empty” in the
sense that they contain none of the characteristic points x1, . . . , xN .

Definition 3.36. Denote by T2
stop the leaves of the product box tree as defined in D.3.34.

We define the block partition

P2 := {(ι(B1), ι(B2)) | (B1, B2) ∈ T2
stop with ι(B1) += ∅, ι(B2) += ∅}.

Lemma 3.37. In the sense of a disjoint union, there holds�
·

(I1,I2)∈P2

I1 × I2 = {1, . . . , N} × {1, . . . , N}.

Proof. We start with pairwise disjointness: Let (I1, I2), (Ĩ1, Ĩ2) ∈ P2 with (I1, I2) += (Ĩ1, Ĩ2).
By definition of P2, there exist (B1, B2), (B̃1, B̃2) ∈ T2

stop such that (I1, I2) = (ι(B1), ι(B2))
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and (Ĩ1, Ĩ2) = (ι(B̃1), ι(B̃2)). Note that there must hold (B1, B2) += (B̃1, B̃2), because
otherwise (I1, I2) and (Ĩ1, Ĩ2) would coincide. It then follows from L.3.35 that (B1 ×B2)∩
(B̃1 × B̃2) = ∅. Therefore,

(I1 × I2) ∩ (Ĩ1 × Ĩ2) = {(m,n) |xm ∈ B1, xn ∈ B2} ∩ {(m,n) |xm ∈ B̃1, xn ∈ B̃2}
= {(m,n) | (xm, xn) ∈ (B1 ×B2) ∩ (B̃1 × B̃2)} = ∅.

Finally, we have�
(I1,I2)
∈P2

I1 × I2 =
�

(B1,B2)
∈T2

stop

{(m,n) |xm ∈ B1, xn ∈ B2} =

�
(m,n)

!!!! (xm, xn) ∈
�

(B1,B2)
∈T2

stop

B1 ×B2

�

L.3.35
= {(m,n) | (xm, xn) ∈ Bstart ×Bstart} L.3.9

= {1, . . . , N} × {1, . . . , N}.

This finishes the proof.

The previous lemma tells us that any given matrix B ∈ RN×N can be represented by a
family of matrix blocks, i.e.,

B ↔ {B|I1×I2 | (I1, I2) ∈ P2}.

The clustering algorithm in D. 3.13 generates a hierarchy of boxes B ∈ B based on
the positions of the characteristic points x1, . . . , xN ∈ Rd from D.3.6 alone. But there is
no guarantee that the corresponding characteristic sets Ω1, . . . ,ΩN ⊆ Rd from D.3.5 are
fully contained in these boxes. We can inflate the boxes slightly (cf., D.2.12) to rectify
this inconvenience, but then the inflated box pairs do not satisfy the original admissibility
condition from D.3.22 any more. However, by tuning the clustering parameter σ̃adm > 0
appropriately, we can regain admissibility with respect to a different admissibility parameter
σadm > 0 (the one we actually care about).

Lemma 3.38. Denote by σshp, σsprd ≥ 1 and hmin > 0 the quantities from D.3.5 and
D.3.6. Let σadm > 0 be a given number (yet another clustering parameter). Suppose that
the product box tree T2 from D.3.28 is based on the clustering parameters Bstart, sons(·),
σsmall and σ̃adm (D.3.8, D.2.10, D.3.10, D.3.22), where σ̃adm is chosen as

σ̃adm :=
σadm

(1 + 4
√
dσshp)(1 + σadm)

> 0.

Then, for every pair (I1, I2) ∈ P2, there holds at least one of the following statements:

1. There holds
min{#I1,#I2} ≤ σsmall.
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2. There exist boxes A1, A2 ∈ B such that3

ΩI1 ⊆ A1,

ΩI2 ⊆ A2,

hmin ≤ min{diam2(A1), diam2(A2)},
max{diam2(A1), diam2(A2)} ≤ σadmdist2(A1, A2),

dist2(A1, A2) ≤
√
dσsprd.

Proof. Let (I1, I2) ∈ P2 be given. According to D.3.36, there exists a pair (B1, B2) ∈ T2
stop =

T2 ∩ B2
stop (cf. D.3.34) such that (I1, I2) = (ι(B1), ι(B2)). In particular, by definition of

B2
stop (cf. D.3.22), at least one of the following conditions is satis➫fied:

min{#I1,#I2} ≤ σsmall,

max{diam2(B1), diam2(B2)} ≤ σ̃admdist2(B1, B2).

If the first condition is satisfied, then we already have what we want. It remains to
check the case where the first condition is violated and the second one is valid. Using the
quantities hI1 = maxn∈I1 hn and hI2 from D.3.6, we define the inflated boxes (cf. D.2.12)

A1 := B1
hI1 ∈ B, A2 := B2

hI2 ∈ B.

We will show that the boxes A1 and A2 have all of the desired properties. To this end, let
y ∈ ΩI1 . Then there exists an index n ∈ I1 such that y ∈ Ωn. Note that the characteristic
point xn ∈ Ωn (cf. D.3.6) satisfies xn ∈ B1 by definition of I1 = ι(B1) (cf. D.3.7). Then,
since �y − xn�2 ≤ diam2(Ωn) = hn ≤ hI1 , L.2.13 tells us that y ∈ B1

hI1 = A1. Using a
similar argument for I2, we obtain the inclusions

ΩI1 ⊆ A1, ΩI2 ⊆ A2.

Next, since we are currently in the case min{#I1,#I2} > σsmall, we know from D.3.11
that B1, B2 ∈ B\Bstop. According to L.3.12, it follows that

hI1 = hι(B1) ≤ 2σshpdiam2(B1), hI2 ≤ 2σshpdiam2(B2).

Then, abbreviating γ := 1 + 4
√
dσshp, we compute

max{diam2(B1), diam2(B2)}
≤ σ̃admdist2(B1, B2)

L.2.13≤ σ̃admdist2(A1, A2) +
√
dσ̃adm(hI1 + hI2)

≤ σ̃admdist2(A1, A2) + 2
√
dσshpσ̃adm(diam2(B1) + diam2(B2))

≤ σ̃admdist2(A1, A2) + γσ̃admmax{diam2(B1), diam2(B2)}.

3Lines 3 and 5 are merely a byproduct and we mention them only for easier reference later on. The reader
should focus his attention on lines 1, 2 and 4.
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Since γσ̃adm = σadm/(1+ σadm) < 1, we can absorb the last term in the left-hand side of
the overall inequality. It follows that

max{diam2(A1), diam2(A2)}
L.2.13≤ max{diam2(B1) + 2

√
dhI1 , diam2(B2) + 2

√
dhI2}

≤ γmax{diam2(B1), diam2(B2)}
≤ γσ̃adm

1− γσ̃adm
dist2(A1, A2)

Def.σ̃adm= σadmdist2(A1, A2).

The lower bound for the diameters of A1 and A2 can be seen as follows:

hmin

D.3.6≤ min{hI1 , hI2}
L.2.13≤ min{diam2(B1

hI1 ), diam2(B1
hI1 )} = min{diam2(A1), diam2(A2)}.

It remains to prove the upper bound for the distance between A1 and A2. From D.3.34,
L.3.26 and L.3.15 we know that B1, B2 ⊆ Bstart. Therefore,

dist2(A1, A2) = dist2(B1
hI1 , B2

hI2 )
L.2.13≤ dist2(B1, B2) ≤ diam2(Bstart)

L.3.9
=

√
dσsprd.

This finishes the proof.

L.3.38 tells us that the cluster pairs (I1, I2) ∈ P2 can be categorized into two different
groups.

Definition 3.39. We define

P2
small := {(I1, I2) ∈ P2 | min{#I1,#I2} ≤ σsmall}, P2

adm := P2\P2
small.

The next lemma will come in handy when we estimate the memory requirements for an
arbitrary H-matrix (cf. L.3.44).

Lemma 3.40. There holds the bound�
(I1,I2)∈P2

#I1 +#I2 ≤ 2σsparse(T2)depth(T)N.

Proof. We compute�
(I1,I2)∈P2

#I1 +#I2
D.3.36≤

�
(B1,B2)∈T2

stop

#ι(B1) + #ι(B2)
D.3.34≤

�
(B1,B2)∈T2

#ι(B1) + #ι(B2)

L.3.31≤ 2σsparse(T2)
�
B∈T

#ι(B)
L.3.18≤ 2σsparse(T2)depth(T)#ι(Bstart)

L.3.9
= 2σsparse(T2)depth(T)N.
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Finally, we need to relate the operator norm of a full matrix B ∈ RN×N to the norms of
its subblocks B|I1×I2 as determined by P2.

Lemma 3.41. For all B ∈ RN×N , there holds the bound

�B�2 ≤ σsparse(T2)depth(T) max
(I1,I2)∈P2

�B|I1×I2�2.

Proof. Let x ∈ RN and set y := Bx ∈ RN . We compute

�Bx�22 = 
y,Bx�2 =
N�

i,j=1

yiBijxj
L.3.37
=

�
(I1,I2)∈P2

�
(i,j)∈I1×I2

yiBijxj

=
�

(I1,I2)∈P2


y|I1 ,B|I1×I2x|I2�l2(I1) ≤
�

(I1,I2)∈P2

�y�l2(I1)�B|I1×I2�2�x�l2(I2)

≤
�

max
(I1,I2)∈P2

�B|I1×I2�2
� �

(I1,I2)∈P2

�y�l2(I1)�x�l2(I2)

≤
�

max
(I1,I2)∈P2

�B|I1×I2�2
�� �

(I1,I2)∈P2

�y�2l2(I1)
�1/2� �

(I1,I2)∈P2

�x�2l2(I2)
�1/2

.

The term in the middle can be treated as follows:�
(I1,I2)∈P2

�y�2l2(I1)
D.3.36≤

�
(B1,B2)∈T2

stop

�y�2l2(ι(B1))

D.3.34≤
�

(B1,B2)∈T2

�y�2l2(ι(B1))

L.3.31≤ σsparse(T2)
�
B∈T

�y�2l2(ι(B))

L.3.18≤ σsparse(T2)depth(T)�y�2l2(ι(Bstart))

L.3.9
= σsparse(T2)depth(T)�y�22.

With an analogous bound for
�

(I1,I2)∈P2 �x�2l2(I2), we get

�Bx�22 ≤ σsparse(T2)depth(T)
�

max
(I1,I2)∈P2

�B|I1×I2�2
�
�y�2�x�2.

Finally, dividing by �y�2 = �Bx�2 and taking the supremum over all x ∈ RN , the
alleged inequality follows.

This finishes our construction of the block partition P2. We collect all of our findings in
a corollary.

Corollary 3.42. Let σshp, σovlp, σsprd ≥ 1 and N ∈ N. Consider a family of subsets

Ω1, . . . ,ΩN ⊆ Rd

with shape regularity σshp, overlap σovlp and spread σsprd (cf. D.2.16, D.2.18, D.2.21).
Denote by hmin > 0 the minimal element diameter as defined in D.3.6. Finally, let σsmall ≥
1 be a number with σovlp ≤ σsmall and let σadm > 0. Then, there exist sets P2, P2

small, P2
adm

with the following properties:
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1. There holds P2 = P2
small ∪ P2

adm.

2. The elements of P2 are tuples (I, J) of clusters I, J ⊆ {1, . . . , N}.
3. There holds �

·
(I,J)∈P2

I × J = {1, . . . , N} × {1, . . . , N}.

4. For every (I, J) ∈ P2
small, there holds

min{#I,#J} ≤ σsmall.

5. For every (I, J) ∈ P2
adm, there exist axes-parallel boxes B,D ∈ B with the following

properties4:

ΩI ⊆ B,

ΩJ ⊆ D,

hmin ≤ min{diam2(B), diam2(D)},
max{diam2(B), diam2(D)} ≤ σadmdist2(B,D),

dist2(B,D) ≤
√
dσsprd.

6. There holds the bound�
(I,J)∈P2

#I +#J ≤ C(d, σshp, σsprd, σadm) ln(h
−1
min)N.

7. For all B ∈ RN×N , there holds the bound

�B�2 ≤ C(d, σshp, σsprd, σadm) ln(h
−1
min) max

(I,J)∈P2
�B|I×J�2.

Proof. We obviously pick the systems from D.3.36 and D.3.39. Items 1, 2, 4 are trivial,
item 3 was proved in L.3.37 and item 5 follows from the dichotomy in L.3.38. Finally, to
see items 6 and 7, recall that

σ̃adm
L.3.38
=

σadm

(1 + 4
√
dσshp)(1 + σadm)

= C(d, σshp, σadm),

so that

σsparse(T2)
L.3.30≤ C(d)(2 + σ̃−1

adm)
d ≤ C(d, σshp, σadm).

Furthermore,

depth(T)
L.3.16≤ log2(8

√
dσshpσsprdh

−1
min) ≤ C(d, σshp, σsprd) ln(h

−1
min).

4Recall from D.3.6 that ΩI :=
�

n∈I Ωn ⊆ Rd, for every cluster I ⊆ {1, . . . , N}.
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We conclude that�
(I,J)∈P2

#I +#J
L.3.40≤ 2σsparse(T2)depth(T)N ≤ C(d, σshp, σsprd, σadm) ln(h

−1
min)N

and that

∀B ∈ RN×N : �B�2
L.3.41≤ σsparse(T2)depth(T) max

(I,J)∈P2
�B|I×J�2

≤ C(d, σshp, σsprd, σadm) ln(h
−1
min) max

(I,J)∈P2
�B|I×J�2.

This finishes the proof.

3.7 The class of hierarchical matrices H(P2, r)

Figure 3.2: Two typical H-matrices.

Once the block partition P2 = P2
small ∪ P2

adm is available, the corresponding class of hierar-
chical matrices is easy to describe.

Definition 3.43. Let P2, P2
small, P2

adm be defined as in C.3.42. Furthermore, let r ∈ N be
a given rank bound. We define the class5 of H-matrices by

H(P2, r) := {B ∈ RN×N | ∀(I, J) ∈ P2
adm : rank(B|I×J) ≤ r}.

We end this chapter with a note on the memory requirements for an arbitrary H-matrix
B ∈ H(P2, r). Since the rank of an admissible block B|I×J is bounded by r, we know from

5Note that H(P2, r) is not a vector space, because the sum of two matrices with rank r has rank 2r, in
general.
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Section 3.1 that there exist matrices Xr ∈ RI×r and Y r ∈ RJ×r such that B|I×J = XrY
T
r .

The pair (Xr,Y r) then takes up r(#I +#J) units of memory. The small blocks B|I×J ,
on the other hand, can simply be stored in full. The total memory requirements for B then
add up to �

(I,J)∈P2
small

#I#J +
�

(I,J)∈P2
adm

r(#I +#J).

This quantity can be bounded as follows:

Lemma 3.44. For all r ∈ N, there holds the bound�
(I,J)∈P2

small

#I#J +
�

(I,J)∈P2
adm

r(#I +#J) ≤ C(d, σshp, σsprd, σadm)(σsmall + r) ln(h−1
min)N.

Proof. For all (I, J) ∈ P2
small, we know from C.3.42 that

#I#J = min{#I,#J}max{#I,#J} ≤ σsmall(#I +#J).

Then, using item 6 from C.3.42,�
(I,J)∈P2

small

#I#J +
�

(I,J)∈P2
adm

r(#I +#J) ≤ (σsmall + r)
�

(I,J)∈P2

#I +#J

≤ C(d, σshp, σsprd, σadm)(σsmall + r) ln(h−1
min)N.
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This chapter contains the main results of this thesis. We present an abstract framework
for the approximation of inverse Gram matrices from the class of H-matrices discussed in
Chapter 3.

4.1 The discrete model problem

As usual, the first step of a rigorous analysis is to fix the functional analytic setting. Here,
we use the Sobolev space Hk(Ω) from D.2.37 as the ambient space.

Definition 4.1. Let d, k ∈ N and let Ω ⊆ Rd be an Hk-extension domain (cf. D.2.48). Let

V ⊆ Hk(Ω)

be a closed subspace with the following property:

∀κ ∈ C∞
0 (Rd) : ∀v ∈ V : (κ|Ω)v ∈ V.

Recall from D.2.37 that the natural inner product and norm on Hk(Ω) are given by


v, w�Hk(Ω) =
�
|α|≤k


Dαv,Dαw�L2(Ω), �v�Hk(Ω) =

� �
|α|≤k

�Dαv�2L2(Ω)

�1/2

.

Apart from 
·, ·�Hk(Ω), we need another bilinear form on V , which need not be symmetric:

Definition 4.2. Let a(·, ·) : V × V −→ R be a continuous, coercive bilinear form, i.e.,
there exists a constant σcoco ≥ 1 such that, for all u, v ∈ V ,

|a(u, v)| ≤ σcoco�u�Hk(Ω)�v�Hk(Ω), σ−1
coco�v�2Hk(Ω) ≤ a(v, v).

Next, following Section 1.1, we introduce a discrete ansatz space.

Definition 4.3. Let N ∈ N and let
VN ⊆ V

be a finite-dimensional subspace with dim(VN ) = N . Furthermore, let

{ϕ1, . . . , ϕN} ⊆ VN

be a basis of this space. The corresponding coordinate mapping is denoted by

Φ :

�
RN −→ VN

c '−→ �N
n=1 cnϕn

.

74
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Note that Φ must be bijective, because the functions ϕn form a basis of VN .
We also need the dual space of VN . Since VN is finite-dimensional, every linear functional

on VN is already continuous (with respect to any norm) so that the algebraic- and the
topological dual space coincide.

Definition 4.4. We define the dual space

V ∗
N := (VN )∗ := {f : VN −→ R | f linear}.

For all f ∈ V ∗
N and v ∈ VN , we set


f, v�∗ := f(v), �f�∗ := sup
v∈VN

|
f, v�∗|
�v�Hk(Ω)

.

Our assumptions on the bilinear form a(·, ·) ensure that P.1.2 is a well-posed problem.

Lemma 4.5. Let f ∈ V ∗
N . Then, there exists a unique function u ∈ VN that satisfies the

following discrete variational problem:

∀v ∈ VN : a(u, v) = 
f, v�∗.
Furthermore, there holds the stability bound

�u�Hk(Ω) ≤ σcoco�f�∗.
Proof. See, e.g., [BS08, Theorem 2.7.7, Remark 2.7.11] (Lax-Milgram Lemma).

Definition 4.6. The linear operator

SN : V ∗
N −→ VN

that maps a right-hand side f ∈ V ∗
N to the corresponding discrete solution SNf := u ∈ VN

is called discrete solution operator.

Remark 4.7. The continuous problem P.1.1 only serves as a reference. The upcoming
analysis is based solely on the properties of the discrete problem P.1.2.

Before we go to the next section, let us quickly lay out which applications we have in
mind:

1. In Chapter 6, we will look at a finite element discretization of a second-order elliptic
PDE with homogeneous Dirichlet boundary conditions. There, the ambient space is
V := H1

0 (Ω) and a(·, ·) is the usual bilinear form for a second-order elliptic differential
operator. The discrete ansatz space VN is the spline space Sp,10 (T ) on a mesh T (cf.
D.2.60 and D.2.70).

2. In Chapter 7, we are interested in a radial basis function interpolation problem,
where a function of the form u :=

�N
n=1 cnϕ(· − xn) is used to interpolate given

target values f ∈ RN on a set of predefined interpolation points x1, . . . , xN ∈ Rd.
The correct ambient space for this problem is V = Hk(Rd), for some k > d/2, and
the bilinear form a(·, ·) is a variant of the natural inner product on Hk(Rd). The
ansatz space VN is the span of the translates ϕ(· − xn).
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4.2 The Gram matrix A

As discussed in Section 1.1, the discrete variational problem P.1.2 can be written as a linear
system of equations, which is governed by the following matrix:

Definition 4.8. We define the Gram matrix

A := (a(ϕn, ϕm))Nm,n=1 ∈ RN×N .

The next lemma establishes a few basic properties of this matrix. Recall that Φ : RN −→
VN is the coordinate mapping from D.4.3.

Lemma 4.9. 1. For all c,d ∈ RN , there holds the identity


Ac,d�2 = a(Φc,Φd).

2. The matrix A is positive definite1, i.e.,

∀c ∈ RN\{0} : 
Ac, c�2 > 0.

3. The matrix A is invertible.

Proof. Ad item 1: For all c,d ∈ RN , we have


Ac,d�2 D.4.8
=

N�
m,n=1

a(ϕn, ϕm)cndm = a

� N�
n=1

cnϕn,

N�
m=1

dmϕm

�
D.4.3
= a(Φc,Φd).

Ad item 2: Let c ∈ RN\{0}. Using the identity from item 1 and exploiting the bijectivity
of the coordinate mapping Φ, we compute


Ac, c�2 = a(Φc,Φc)
D.4.2≥ σ−1

coco�Φc�2Hk(Ω) > 0.

Ad item 3: Since A is a square matrix, it suffices to show injectivity. In fact, for every
c ∈ RN with c += 0, the relation 
Ac, c�2 > 0 from item 2 already implies Ac += 0.

4.3 The dual basis λ1, . . . , λN

Our main result, T.4.21, is a statement about the approximability of the inverse A−1 ∈
RN×N from the class of hierarchical matrices. The proof is based on an explicit formula
for A−1 in terms of the discrete solution operator SN : V ∗

N −→ VN from D.4.6. If we want
to express the action of A−1 on a given vector f ∈ RN , we first need to convert f to a
linear functional f ∈ V ∗

N , which can be plugged into SN . Since VN is finite-dimensional, we
have dim(V ∗

N ) = dim(VN ) = N (e.g., [Axl15, Lemma 3.95]) and we may pick a basis with
N elements:

1Note that A need not be symmetric, though.
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Definition 4.10. Denote by {ϕ1, . . . , ϕN} ⊆ VN the basis functions from D.4.3. We define
the dual basis {λ1, . . . , λN} ⊆ V ∗

N via the following conditions:

∀n,m ∈ {1, . . . , N} : 
λn, ϕm�∗ = δnm.

Note that the functionals λn indeed form a basis of the dual space V ∗
N , so that the name

dual basis is justified. Furthermore, we mention that the dual basis is unique. The following
locality assumption is essential for the subsequent analysis.

Assumption 4.11. There exists a family of subsets

Ω1, . . . ,ΩN ⊆ Ω

with the following properties:

1. There exist numbers k0 ∈ {0, . . . , k} and σstab ≥ 1 such that, for all n ∈ {1, . . . , N}
and all v ∈ VN ,

|
λn, v�∗| ≤ σstab�v�Hk0 (Ωn)
.

2. There exist numbers σshp, σovlp, σsprd ≥ 1 such that the sets Ω1, . . . ,ΩN have shape
regularity σshp, overlap σovlp and spread σsprd (D.2.16, D.2.18, D.2.21).

The second part of the assumption allows us to apply the results from Chapter 3. We
adopt the name characteristic sets from D.3.5 and also some notation from D.3.6:

Definition 4.12. For all I ⊆ {1, . . . , N} and all n ∈ {1, . . . , N}, we define

ΩI :=
�
n∈I

Ωn ⊆ Rd, hΩn := diam2(Ωn), hmin := min
n∈{1,...,N}

hΩn .

The dual basis comes with its own set of coordinate mappings:

Definition 4.13. We define the operators

Λ :

�
RN −→ V ∗

N

f '−→ �N
n=1 fnλn

, ΛT :

�
VN −→ RN

v '−→ (
λn, v�∗)Nn=1
.

We summarize the essential properties of Λ and ΛT and their connection to the coordinate
mapping Φ : RN −→ VN from D.4.3.

Lemma 4.14. 1. The operators Λ and ΛT are transposed in the following sense:

∀f ∈ RN : ∀v ∈ VN : 
Λf , v�∗ = 
f ,ΛT v�2.

2. The operators Φ and Λ are dual in the following sense:

∀f , c ∈ RN : 
Λf ,Φc�∗ = 
f , c�2.

3. There holds ΛT = Φ−1. In other words,

∀c ∈ RN : ΛTΦc = c, ∀v ∈ VN : ΦΛT v = v.
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4. Denote by k0 ∈ {0, . . . , k} and σstab, σovlp ≥ 1 the quantities from A.4.11. Then, for
all f ∈ RN , I ⊆ {1, . . . , N} and v ∈ VN , there hold the following relations2:

�Λf�∗ ≤ σstabσ
1/2
ovlp�f�2,

�ΛT v�l2(I) ≤ σstabσ
1/2
ovlp�v�Hk0 (ΩI)

.

Proof. Ad item 1: For all f ∈ RN and v ∈ VN , we have


Λf , v�∗ =
� N�

n=1

fnλn, v

�
∗
=

N�
n=1

fn
λn, v�∗ = 
f ,ΛT v�2.

Ad item 2: For all f , c ∈ RN , there holds


Λf ,Φc�∗ =
� N�

n=1

fnλn,

N�
m=1

cmϕm

�
∗
=

N�
n,m=1


λn, ϕm�∗fncm
D.4.10
=

N�
n=1

fncn = 
f , c�2.

Ad item 3: Let c ∈ RN . Then, abbreviating f := c−ΛTΦc ∈ RN and using the identities
from items 1 and 2, we obtain

�c− ΛTΦc�22 = 
f , c− ΛTΦc�2 = 
f , c�2 − 
f ,ΛTΦc�2 = 
f , c�2 − 
Λf ,Φc�∗ = 0.

Next, let v ∈ VN . Since Φ is bijective, we may introduce the coefficient vector c :=
Φ−1v ∈ RN . Using the previous identity, we get

ΦΛT v = Φ(ΛTΦc) = Φc = v.

Ad item 4: Let f ∈ RN . To get an estimate for �Λf�∗, we compute, for arbitrary v ∈ VN ,

|
Λf , v�∗| =

!!!!� N�
n=1

fnλn, v

�
∗

!!!! = !!!! N�
n=1

fn
λn, v�∗
!!!!

≤
N�

n=1

|fn||
λn, v�∗|
A.4.11≤ σstab

N�
n=1

|fn|�v�Hk0 (Ωn)

C.S.≤ σstab�f�2
� N�

n=1

�v�2
Hk0 (Ωn)

�1/2 L.2.20≤ σstabσ
1/2
ovlp�f�2�v�Hk0 (Ω).

Since k0 ≤ k, we can plug in �v�Hk0 (Ω) ≤ �v�Hk(Ω) and obtain

�Λf�∗ D.4.4
= sup

v∈VN

|
Λf , v�∗|
�v�Hk(Ω)

≤ σstabσ
1/2
ovlp�f�2.

Finally, for all I ⊆ {1, . . . , N} and v ∈ VN , we have

�ΛT v�2l2(I) =
�
n∈I


λn, v�2∗
A.4.11≤ σ2

stab

�
n∈I

�v�2
Hk0 (Ωn)

L.2.20≤ σ2
stabσovlp�v�2Hk0 (ΩI)

.

This concludes the proof.

2The norm 	 · 	∗ was defined in D.4.4 and the sets ΩI were introduced in D.4.12.
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4.4 The inverse matrix A−1

Next, we derive the promised representation formula for the inverse Gram matrix A−1 in
terms of the discrete solution operator SN from D.4.6 and the coordinate mappings Λ,ΛT

from D.4.13. The mapping properties of these operators can be visualized as follows:

RN Λ−→ V ∗
N

SN−−→ VN
ΛT−−→ RN .

As we shall see now, A−1 is the matrix that represents the composition of these three
operators. Furthermore, we show that A−1 is again a Gram matrix.

Lemma 4.15. Denote by A ∈ RN×N the Gram matrix from D.4.8. Then, there holds the
following identity:

∀f ∈ RN : A−1f = ΛTSNΛf .

In particular, we have

∀m,n ∈ {1, . . . , N} : (A−1)mn = 
λm, SNλn�∗.

Proof. Let f ∈ RN . Setting v := SNΛf ∈ VN , we know from L.4.14 that ΦΛT v = v. Then,
for all c ∈ RN , we compute


AΛT v, c�2 L.4.9
= a(ΦΛT v,Φc) = a(v,Φc) = a(SNΛf ,Φc)

D.4.6
= 
Λf ,Φc�∗ L.4.14

= 
f , c�2.

Since c ∈ RN was arbitrary, we get AΛT v = f and ultimately A−1f = ΛT v = ΛTSNΛf .
Finally, for all m,n ∈ {1, . . . , N}, using the Euclidean unit vectors em, en ∈ RN ,

(A−1)mn = 
em,A−1en�2 = 
em,ΛTSNΛen�2 L.4.14
= 
Λem, SNΛen�∗ = 
λm, SNλn�∗.

This finishes the proof.

4.5 The discrete Caccioppoli inequality

In L.2.55, we saw an example of a continuous variational problem whose solutions satisfy a
so-called Caccioppoli inequality, i.e., a bound of a strong norm on a small set by a weaker
norm on a slightly larger set. Here, we require a discrete version of such an inequality.

Definition 4.16. The support of a vector f ∈ RN is defined by

supp(f) := {n ∈ {1, . . . , N} |fn += 0}.

In analogy to D.3.7, we make the following definition:

Definition 4.17. For every subset D ⊆ Rd, we define the corresponding cluster

ι(D) := {n ∈ {1, . . . , N} |Ωn ⊆ D}.

79



4 The main results

Note that D.4.17 is slightly different from D.3.7, because, in order for an index n ∈
{1, . . . , N} to lie in ι(D), the whole set Ωn must be included in D. From this point onward,
we only need the mapping ι : B −→ Pow{1, . . . , N} as defined in D.4.17.

Definition 4.18. Denote by SN : V ∗
N −→ VN and Λ : RN −→ V ∗

N the operators from D.4.6
and D.4.13. For every subset D ⊆ Rd, we define the subspace

Vsol(D) := {SNΛf |f ∈ RN with supp(f) ⊆ ι(D)} ⊆ VN .

In particular, every function u ∈ Vsol(D) can be written in the following form (for some
fn ∈ R):

u = SN

� �
n∈ι(D)

fnλn

�
.

Next, we remind the reader of D.2.8 and D.2.12, where we defined axes-parallel boxes
B ∈ B and their inflated cousins Bδ ∈ B. We make the following assumption:

Assumption 4.19. There exists a constant σCacc ≥ 1, such that, for all D ∈ B and all
u ∈ Vsol(D), the following statement is true: For all B ∈ B and all radii δ > 0 satisfying
Bδ ∩D = ∅, there holds the discrete Caccioppoli inequality

δk|u|Hk(Ω∩B) ≤ σCacc

k−1�
l=0

δl|u|Hl(Ω∩Bδ).

Figure 4.1 shall serve as a visual guide for the situation in A.4.19.

Figure 4.1: An example of boxes B,D ∈ B and δ > 0 with Bδ ∩D = ∅.
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4.6 The main results

We are finally in the position to formulate the main results of this thesis. The bulk of the
work lies in the construction of an approximation operator Qr

B,D : Vsol(D) −→ Vsol(D) for
functions u lying in the solution space Vsol(D) from D.4.18. We only state the theorem
here (cf. T.4.20) and defer its proof to Chapter 5. Then, in T.4.21, we use this operator
Qr

B,D to construct approximations Br
I,J ∈ RI×J of the admissible blocks A−1|I×J of the

inverse Gram matrix A−1. Stitching these matrix blocks Br
I,J together then produces an

approximant Br ≈ A−1 in the class of H-matrices, H(P2, r).
We summarize the objects and assumptions that are relevant for the formulation of T.4.20

and T.4.21:

1. d, k ∈ N, Ω ⊆ Rd is an Hk-extension domain (cf. D.2.48) and V ⊆ Hk(Ω) is the
subspace from D.4.1.

2. a(·, ·) : V ×V −→ R is the bilinear form from D.4.2. The constant σcoco ≥ 1 describes
both continuity and coercivity.

3. N ∈ N and VN ⊆ V is an N -dimensional subspace. The system {ϕ1, . . . , ϕN} ⊆ VN

constitutes a basis (cf. D.4.3).

4. A ∈ RN×N is the Gram matrix from D.4.8.

5. B is the set of axes-parallel boxes in Rd (cf. D.2.8).

6. It is assumed that the dual basis {λ1, . . . , λN} ⊆ V ∗
N is local in the sense of A.4.11.

The numbers k0 ∈ {0, . . . , k} and σstab ≥ 1 govern the stability bound and the
quantities σshp, σovlp, σsprd ≥ 1 describe shape regularity, overlap and spread of the
characteristic sets Ω1, . . . ,ΩN ⊆ Rd (cf. D.2.16, D.2.18, D.2.21).

7. It is assumed that there holds a discrete Caccioppoli inequality on the subspaces
Vsol(D) ⊆ VN from D.4.18, where D ∈ B. The respective constant is called σCacc > 0
(cf. A.4.19).

8. P2 = P2
small ∪P2

adm is the block partition from C.3.42, based on the characteristic sets
Ωn ⊆ Rd from A.4.11. The quantity hmin > 0 is the minimal diameter of the sets Ωn

(cf. D.3.6) and the numbers σsmall ≥ 1 and σadm > 0 are the clustering parameters
from C.3.42 (recall that σsmall ≥ σovlp was required). The symbol H(P2, r) ⊆ RN×N

denotes the class of hierarchical matrices based on the block partition P2 and the
rank bound r ∈ N (cf. D.3.43).

Now let us start with our first main result:

Theorem 4.20. Consider two boxes B,D ∈ B that satisfy the following bounds:

hmin ≤ diam2(B) ≤ σadmdist2(B,D) ≤ σadm
√
dσsprd.

Then, for every r ∈ N, there exists a linear operator

Qr
B,D : Vsol(D) −→ Vsol(D)

with the following properties:
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1. There holds the rank bound
rank(Qr

B,D) ≤ r.

2. There exist numbers C0 ≥ 1 and σexp > 0 of the form

C0 = C(d, k,Ω, σsprd, σadm), σexp = C(d, k,Ω, σsprd, σadm)
−1σ−1

Cacc,

such that, for all m ∈ {0, . . . , k} and u ∈ Vsol(D), the following error bound is
satisfied:

�u−Qr
B,Du�Hm(Ω∩B) ≤ C0σ

m
Cacch

−m
min exp(−σexpr

1/(d+1))�u�Hk(Ω).

Proof. The proof will be given in the next chapter.

T.4.20 tells us that the number of degrees of freedom to describe a function u ∈ Vsol(D)
can be greatly reduced without losing too much information. In our second main result,
we use this property to construct an H-matrix approximation of the inverse Gram matrix.

Theorem 4.21. For every r ∈ N, there exists an H-matrix

Br ∈ H(P2, r)

with the following properties:

1. The memory requirements to store Br can be bounded by

C(d, σshp, σsprd, σadm)(σsmall + r) ln(h−1
min)N.

2. There exist numbers C0 ≥ 1 and σexp > 0 of the form

C0 = C(d, k,Ω, σcoco, σshp, σsprd, σadm), σexp = C(d, k,Ω, σsprd, σadm)
−1σ−1

Cacc

such that the following error bound is satisfied:

�A−1 −Br�2 ≤ C0σ
2
stabσovlpσ

k0
Cacc ln(h

−1
min)h

−k0
min exp(−σexpr

1/(d+1)).

Proof. Let r ∈ N. We construct the matrix Br in a block-wise manner. For all (I, J) ∈
P2
small, we simply use the matrix A−1 itself:

Br|I×J := A−1|I×J .

Now let (I, J) ∈ P2
adm. According to C.3.42, we can find boxes B,D ∈ B such that

ΩI ⊆ B, ΩJ ⊆ D, hmin ≤ diam2(B) ≤ σadmdist2(B,D) ≤ σadm
√
dσsprd,

where ΩI =
�

n∈I Ωn ⊆ Ω and ΩJ =
�

n∈J Ωn ⊆ Ω (cf. D.4.12). Denote by EJ : RJ −→ RN

the trivial extension by zeros and by RI : RN −→ RI the restriction of a vector c ∈ RN

to the entries (ci)i∈I . Furthermore, denote by SN : V ∗
N −→ VN , Λ : RN −→ V ∗

N and
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ΛT : VN −→ RN the operators from D.4.6 and D.4.13, respectively. Then, using the
representation formula from L.4.15, we have the following identity:

∀f ∈ RJ : A−1|I×Jf = RIΛ
TSNΛEJf .

Note that supp(EJf) ⊆ J ⊆ ι(D) (cf. D.4.17) so that SNΛEJf ∈ Vsol(D), according
to D.4.18. In particular, we may plug this function into the operator Qr

B,D : Vsol(D) −→
Vsol(D) from T.4.20. Now, letBr

I,J ∈ RI×J be the matrix that represents the linear operator

RIΛ
TQr

B,DSNΛEJ , i.e.,

∀f ∈ RJ : Br
I,Jf = RIΛ

TQr
B,DSNΛEJf .

Clearly,

rank(Br
I,J) ≤ rank(Qr

B,D)
T.4.20≤ r.

As for the error bound, we get, for every f ∈ RJ :

�A−1|I×Jf −Br
I,Jf�l2(I) = �ΛT (id−Qr

B,D)SNΛEJf�l2(I)
L.4.14

� σstabσ
1/2
ovlp�(id−Qr

B,D)SNΛEJf�Hk0 (ΩI)
T.4.20

� σstabσ
1/2
ovlpσ

k0
Cacch

−k0
min exp(−σexpr

1/(d+1))�SNΛEJf�Hk(Ω)
L.4.5

� σstabσ
1/2
ovlpσ

k0
Cacch

−k0
min exp(−σexpr

1/(d+1))�ΛEJf�∗
L.4.14≤ σ2

stabσovlpσ
k0
Cacch

−k0
min exp(−σexpr

1/(d+1))�f�l2(J).

Now, set
Br|I×J := Br

I,J .

Then the definition of the matrix Br ∈ RN×N is complete. Since the ranks of the
admissible blocks of Br are bounded by r, it is clear that Br ∈ H(P2, r) (cf. D.3.43). The
global error bound can be seen as follows:

�A−1 −Br�2
C.3.42

� ln(h−1
min) max

(I,J)∈P2
adm

�A−1|I×J −Br
I,J�2

� σ2
stabσovlpσ

k0
Cacc ln(h

−1
min)h

−k0
min exp(−σexpr

1/(d+1)).

This completes the proof of item 2. Item 1 is taken from L.3.44.
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5.1 Overview

In this chapter, we provide the proof of T.4.20, i.e., we construct the operator Qr
B,D :

Vsol(D) −→ Vsol(D). First, let us give a rough overview:

1. Let B,D ∈ B be admissible boxes, let r ∈ N and let u ∈ Vsol(D). Our goal is to
construct a “low-dimensional” function ũ ∈ Vsol(D) such that the error �u−ũ�Hk(Ω∩B)

is small.

2. Since B is “far away” from D, we can inflate it L ∈ N times by a tiny amount δ > 0
before hitting D (cf. Figure 5.1). This procedure generates a sequence of nested
boxes:

B = Bδ · 0 ⊆ Bδ · 1 ⊆ · · · ⊆ Bδl ⊆ · · · ⊆ BδL ⊆ Rd\D.

3. The hardest part of the proof is to construct a so-called1 single-step coarsening oper-
ator Qδ

B̃,D
: Vsol(D) −→ Vsol(D), where B̃ is any one of the boxes Bδl. This operator

has rank O(Ld) and satisfies an error bound of the form

�u−Qδ
B̃,D

u�Ω∩B̃,k,H ≤ 1

2
�u�Ω∩B̃δ ,k,H ,

where H = O(δ) and where � · �Ω∩B̃,k,H is a certain H-weighted Hk-norm. We then
combine L instances of this operator (one for each box) into a multi-step coarsening

operator Qδ,L
B,D : Vsol(D) −→ Vsol(D). This operator has rank O(Ld+1) and the error

recursion reduces roughly to

�u−Qδ,L
B,Du�Hk(Ω∩B) � 2−L�u�Hk(Ω).

4. Finally, the operator Qr
B,D is just Qδ,L

B,D for a certain choice of the parameters δ and
L, where, roughly,

L 	 r1/(d+1), δ 	 dist2(B,D)L−1.

Let us fill in a few more details regarding the single-step coarsening operator, since its
design is quite complicated.

1. Let B,D ∈ B and δ > 0 be such that Bδ ∩ D = ∅. Given u ∈ Vharm(D), we want
to find a “low-dimensional” function ũ ∈ Vsol(D) such that �u − Qδ

B,Du�Ω∩B,k,H is
small.

1The name shall reflect the fact that a comparatively coarse mesh-like structure is used for approximation.
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2. Since we know almost nothing about the shape of the set Ω∩B, it might be difficult to
find a good approximant using standard approximation techniques with polynomials.
We circumvent this problem by first extending u to a global function EΩu ∈ Hk(Rd)
and then looking for an approximant ũ ∈ Hk(Rd) such that �EΩu− ũ�B,k,H is small.
The extension of u is possible due to the assumption of Ω being an Hk-extension
domain (cf. D.4.1).

3. The approximation step itself is done by a low-rank approximation operator JH :
Hk(Rd) −→ Hk(Rd). We use a partition of unity method, i.e., we subdivide Rd into
a family of congruent, overlapping boxes T ∈ B of side length O(H), where H > 0 is
a free parameter. Along with the boxes T comes a family (gT )T ⊆ C∞

0 (Rd) of bump
functions which sum to 1 at every point x ∈ Rd. Given v ∈ Hk(Rd), we pick, for each
box T , a polynomial vT ∈ Pk−1(Rd) such that

�k
l=0H

l|v−vT |Hl(T ) is small. We then

set JHv :=
�

T vT gT and derive a global error bound on Rd in terms of H.

4. Then, we restrict the output of JHEΩu from Rd to Ω. We obtain an object in Hk(Ω),
which in turn needs to be mapped to the subspace Vsol(D).

5. Now comes the part where things get complicated. Recall that our goal is to achieve
an error bound of the form

�u− ũ�Ω∩B,k,H ≤ 1

2
�u�Ω∩Bδ ,k,H ,

i.e., the integration domain on the right-hand side must not exceed Ω∩Bδ. Since JH

is a global operator acting on the full space Rd, we need to squeeze in two smooth
cut-off functions κ ∈ C∞

0 (Rd) (with κ|B ≡ 1 and supp(κ) ⊆ Bδ/2) in the right places2:

a) The first κ is applied even before the extension from Ω to Rd is done. One of the
last steps of the error estimation is the stability bound �EΩv�Hk(Rd) � �v�Hk(Ω)

and we need the cut-off function to reduce the remainder to �v�Hk(Ω∩Bδ/2).

b) The second κ is applied right after the extension from Ω to Rd. The problem is
that the extension operator EΩ is not local, meaning that supp(EΩ(κu)) ⊆ Rd

might be much larger than supp(κu) ⊆ Ω ∩ Bδ/2. As a remedy, we simply
multiply EΩ(κu) with κ again.

6. At this point, our approximant looks like

ũ = (JHκEΩ(κu))|Ω ∈ Hk(Ω)

and we have to find a way to turn ũ into an element of Vsol(D) again. It is tempting
to use the orthogonal projection P : Hk(Ω) −→ Vsol(D) for this purpose, but this ap-
proach interferes with the cut-off functions κ. The problem is that (κEΩ(κu))|Ω need
not lie in the space Vsol(D) again and we would have to balance the approximation
properties of the operators JH and P (which seems impossible).

The trick is to introduce a slightly larger space Vsol(B,D) ⊇ Vsol(D) that is closed
under multiplication with the cut-off function κ. Then, we can use the orthogonal

2Strictly speaking, we have κ ∈ C∞(Ω) in the first instance and κ ∈ C∞
0 (Rd) in the second instance.
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projection PH
B,D : Hk(Ω) −→ Vsol(B,D) (with respect to a certain H-weighted Hk-

norm) and we don’t get irreconcilable error terms. The last step is to use a “minimum
norm extension” operator EB,D : Vsol(B,D) −→ Vsol(D), so that the final output of
the single-step coarsening operator Qδ

B,D indeed lies in Vsol(D).

7. Using the error bound of the operator JH and the stability bounds of all the other
operators, we then end up with the following estimate:

�u−Qδ
B,Du�Ω∩B,k,H � (H/δ)k

k�
l=0

δl|u|Hl(Ω∩Bδ/2).

At this point, the discrete Caccioppoli inequality from A.4.19 enters the picture and
we can kill the k-th summand in the right-hand sum (in exchange for a slightly larger
intergration domain). Finally, choosing H = O(δ) correctly, we can produce the
promised prefactor 1/2 for the error bound in the H-weighted norms.

5.2 Weighted Sobolev norms

In D.2.37, we introduced the Sobolev spaces Hk(Ω) along with the following quantities:


v, w�Hk(Ω) :=
�
|α|≤k


Dαv,Dαw�L2(Ω), |v|Hl(Ω) :=

� �
|α|=l

�Dαv�2L2(Ω)

�1/2

,

�v�Hk(Ω) :=

� k�
l=0

|v|2Hl(Ω)

�1/2

.

In this chapter, we frequently use weighted variants thereof.

Definition 5.1. Let Ω ⊆ Rd be open, k ∈ N0 and ε > 0. For all v, w ∈ Hk(Ω), we set


v, w�Ω,k,ε :=

k�
l=0

ε2l
�
|α|=l


Dαv,Dαw�L2(Ω), |v|Ω,k,ε := εk|v|Hl(Ω),

�v�Ω,k,ε :=

� k�
l=0

ε2l|v|2Hl(Ω)

�1/2

.

Lemma 5.2. Let Ω ⊆ Rd be open, k ∈ N0 and ε, δ > 0. For all v ∈ Hk(Ω), there hold the
following inequalities:

k−1/2
k�

l=0

εl|v|l
Hl(Ω)

≤ �v�Ω,k,ε ≤
k�

l=0

εl|v|l
Hl(Ω)

,

min{1, ε}k�v�Hk(Ω) ≤ �v�Ω,k,ε ≤ max{1, ε}k�v�Hk(Ω),

min{1, ε/δ}k�v�Ω,k,δ ≤ �v�Ω,k,ε ≤ max{1, ε/δ}k�v�Ω,k,δ.

In particular, the norms � · �Hk(Ω) and � · �Ω,k,ε are equivalent.
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Proof. The first line follows from the norm equivalence k−1/2� · �1 ≤ � · �2 ≤ � · �1 on Rk.
As for the second and third line, we only show the right-hand inequality:

�v�2Ω,k,ε =
k�

l=0

ε2l|v|2Hl(Ω) ≤
�

max
l∈{0,...,k}

ε2l
�
�v�2Hk(Ω) = max{1, ε}2k�v�2Hk(Ω).

Similarly,

�v�2Ω,k,ε =

k�
l=0

ε2l|v|2Hl(Ω) =

k�
l=0

(ε/δ)2lδ2l|v|2Hl(Ω) ≤ max{1, ε/δ}2k�v�2Ω,k,δ.

5.3 The cut-off operator Kδ
ω,B

In this short section, we introduce the cut-off operator Kδ
ω,B : Hk(ω) −→ Hk(ω), which

multiplies any given input v ∈ Hk(ω) with a fixed, smooth cut-off function κδB ∈ C∞
0 (Rd).

The subscript ω is necessary, because we will need two separate instances of this operator,
one on the Hk-extension domain ω = Ω from D.4.1 and one on the full space ω = Rd (cf.
Section 5.1).

We remind the reader of D.2.8 and D.2.12, where we defined axes-parallel boxes B ∈ B
and their inflated relatives Bδ ∈ B.

Lemma 5.3. Let B ∈ B and δ > 0. Then, there exists a smooth cut-off function

κδB ∈ C∞
0 (Rd)

with the following properties:

1. There holds the inclusion supp(κδB) ⊆ Bδ.

2. There holds κδB|B ≡ 1 and 0 ≤ κδB ≤ 1.

3. For every l ∈ N0, there holds the stability bound |κδB|W l,∞(Rd) ≤ C(d, l)δ−l.

Proof. See [Hör90, Theorem 1.4.1.]

It is convenient to wrap the action of multiplying a given function with this cut-off
function into an operator.

Definition 5.4. Let ω ⊆ Rd be open, B ∈ B and δ > 0. Denote by κδB ∈ C∞
0 (Rd) the

smooth cut-off function from L.5.3. We define the cut-off operator3

Kδ
ω,B :

�
Hk(ω) −→ Hk(ω)

v '−→ κδBv
.

3More precisely, we should write (κδ
B |ω)v instead of κδ

Bv.
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Let us quickly summarize the defining properties of this operator:

Lemma 5.5. 1. For all v ∈ Hk(ω), there holds supp(Kδ
ω,Bv) ⊆ ω ∩Bδ.

2. For all v ∈ Hk(ω), there holds (Kδ
ω,Bv)|ω∩B = v|ω∩B.

3. For all v ∈ Hk(ω), there holds the stability bound (cf. D.5.1)

�Kδ
ω,Bv�ω,k,δ ≤ C(d, k)�v�ω∩Bδ ,k,δ.

Proof. Items 1 and 2 follow immediately from L.5.3. To see item 3, we compute

�Kδ
ω,Bv�ω,k,δ

L.5.2≤
k�

l=0

δl|Kδ
ω,Bv|Hl(ω) =

k�
l=0

δl|κδBv|Hl(ω∩Bδ)

L.2.42

�
k�

l=0

δl
l�

j=0

|κδB|W l−j,∞(Rd)|v|Hj(ω∩Bδ)

L.5.3

�
k�

j=0

δj |v|Hj(ω∩Bδ)

L.5.2

� �v�ω∩Bδ ,k,δ.

5.4 The low-rank approximation operator JH

This operator is based on a partition of unity method, which is a well-known concept in
general approximation theory (see, e.g., [Hör90, Section 1.4.] or [BM97]). The basic idea
is to construct a family T of overlapping boxes T ∈ B that covers the full space Rd.
Furthermore, we need a corresponding family of bump functions gT ∈ C∞

0 (Rd) that sums
to 1 at each individual point x ∈ Rd.

Remark 5.6. In this section, we use much the same notation as for simplicial meshes in
Section 2.9, because the concepts are so similar. However, we emphasize that the symbol T
now denotes a family of overlapping, axes-parallel boxes rather than a simplicial4 mesh in
the sense of D.2.60. To make the distinction clearer, we will call the members T ∈ T cells
(as opposed to elements).

Definition 5.7. Let H > 0.

1. We define the reference cell

T̂ := [−1/4, 5/4)d ∈ B.

2. We define the family
T := {H(T̂ +m) |m ∈ Zd}.

3. For every T = H(T̂ + m) ∈ T , we define the following affine transformation (cf.
D.2.23):

∀x ∈ Rd : FT (x) := H(x+m).
4If anything, T would be a tensor product mesh, but the fact that the “elements” are overlapping prevent
it from being an actual tensor product mesh.
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4. For every physical subset B ⊆ Rd, we define its patch

T (B) := {T ∈ T |T ∩B += ∅}.

Note that the elements T ∈ T are overlapping and that the transformations FT are set
up such that FT (T̂ ) = T .

Lemma 5.8. 1. For every B ∈ B, there holds the bound

#T (B) ≤ C(d)(1 + diam2(B)/H)d.

2. For all S ⊆ T , all l ∈ {0, . . . , k} and all v ∈ Hk(Rd), there hold the bounds

|v|2Hl(
�S) ≤

�
S∈S

|v|2Hl(S) ≤ C(d)|v|2Hl(
�S).

Proof. Ad item 1: For every T ∈ T (B), we can pick a point x ∈ T ∩B. Then, for all y ∈ T ,
we have �y − x�2 ≤ diam2(T ) = (3

√
d/2)H and L.2.13 implies�

T∈T (B)

T ⊆ B(3
√
d/2)H ,

where the right-hand side is an inflated box (cf. D.2.12). On the other hand, since the
subsets {FT ([0, 1)

d) |T ∈ T (B)} are pairwise disjoint, we have

Hd ·#T (B) =
�

T∈T (B)

meas(FT ([0, 1)
d)) = meas

� �
·

T∈T (B)

FT ([0, 1)
d)

�
≤ meas

� �
T∈T (B)

T

�

≤ meas(B(3
√
d/2)H) ≤ diam2(B

(3
√
d/2)H)d

L.2.13≤ C(d)(diam2(B) +H)d.

Ad item 2: This can be proved in the same way as L.2.20. Here, according to item 1,
the “overlap factor” is bounded by a constant C(d) > 0.

Next, we construct the bump functions that correspond to the individual cells T ∈ T .

Lemma 5.9. There exists a system of functions

{gT |T ∈ T } ⊆ C∞
0 (Rd)

with the following properties:

1. For all T ∈ T , there holds supp(gT ) ⊆ T .

2. For all T ∈ T and l ∈ N0, there holds |gT |W l,∞(Rd) ≤ C(d, l)H−l.

3. There holds the following identity:

∀x ∈ Rd :
�
T∈T

gT (x) = 1.
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Proof. Applying L.5.3 to the situation Ω = Rd, B = [0, 1)d ∈ B and δ = 1/4, we may
pick a function κ ∈ C∞

0 (Rd) with supp(κ) ⊆ T̂ , κ|[0,1)d ≡ 1 and 0 ≤ κ ≤ 1. The function

κ̃ :=
�

m∈Zd κ(· −m) then satisfies κ̃ ∈ C∞(Rd), because the sum only ranges over a finite
number of terms on each bounded subset of Rd (cf. L.5.8). Furthermore, there holds κ̃ ≥ 1,
because for every x ∈ Rd, there exists at least one m(x) ∈ Zd such that x−m(x) ∈ [0, 1)d.
Now it is not difficult to see that the function ĝ := κ/κ̃ has the following properties:

supp(ĝ) ⊆ T̂ , ĝ ≥ 0, ∀x ∈ Rd :
�
m∈Zd

ĝ(x−m) = 1.

Next, for every T ∈ T , we use the affine transformation FT : Rd −→ Rd from D.5.7 to
define the function

gT := ĝ ◦ F−1
T .

Clearly, gT ∈ C∞
0 (Rd) with supp(gT ) ⊆ T . Furthermore, for all l ∈ N0, we have the

stability bound

|gT |W l,∞(Rd) = |ĝ ◦ F−1
T |W l,∞(T )

L.2.43

� h−l
T |ĝ|W l,∞(T̂ ) � H−l.

Finally, for all x ∈ Rd, we compute�
T∈T

gT (x) =
�
m∈Zd

ĝ(x/H −m) = 1.

This concludes the proof.

Now we have everything we need to build the operator JH . The basic idea was already
presented in Section 5.1.

Lemma 5.10. Let H > 0. Then, there exists a low-rank approximation operator

JH : Hk(Rd) −→ Hk(Rd)

with the following properties:

1. For every box B ∈ B, there holds the following local rank bound:

dim {JHv | v ∈ Hk(Rd) with supp(v) ⊆ B} ≤ C(d, k)(1 + diam2(B)/H)d.

2. For all v ∈ Hk(Rd), there holds the following global error bound:

�v − JHv�Rd,k,H ≤ C(d, k)|v|Rd,k,H .

Proof. Let T̂ ⊆ Rd, T ⊆ Pow(Rd) and FT : Rd −→ Rd be defined as in D.5.7. Denote
by {gT |T ∈ T } the corresponding smooth partition of unity from L.5.9. Furthermore, let
Ĵ : Hk(T̂ ) −→ Pk−1(T̂ ) be the orthogonal projection onto the closed subspace Pk−1(T̂ ) ⊆
Hk(T̂ ).
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Now, given a function v ∈ Hk(Rd), we introduce an approximating polynomial via

vT := Ĵ(v ◦ FT ) ◦ F−1
T ∈ Pk−1(Rd).

(Note that we implicitly restricted v ◦ FT from Rd to T̂ and extended the polynomial
Ĵ(v ◦ FT ) from T̂ to Rd.) The asserted linear operator is defined as follows:

JH :

�
Hk(Rd) −→ C∞(Rd)

v '−→ �
T∈T vT gT

.

We mention that, in a neighbourhood around any given point x ∈ Rd, the number of
non-zero summands is finite, so that JHv is indeed a smooth function.
In order to derive the asserted rank bound, let B ∈ B be a given box. For every function

v ∈ Hk(Rd) with supp(v) ⊆ B and every T ∈ T \T (B), there holds (v ◦ FT )|T̂ ≡ 0, so that
vT = 0. Therefore,

dim {JHv | v ∈ Hk(Rd), supp(v) ⊆ B} = dim

� �
T∈T (B)

vT gT

!!!! v ∈ Hk(Rd), supp(v) ⊆ B

�

≤ dim

� �
T∈T (B)

wT gT

!!!!wT ∈ Pk−1(Rd)

�
≤ dim(Pk−1(Rd))#T (B)

L.5.8

� (1 + diam2(B)/H)d.

Finally, in order to prove the error bound, let v ∈ Hk(Rd) be given. For every element
T ∈ T , the scaling argument L.2.43 and the Deny-Lions lemma5 C.2.56 yield

k�
l=0

H l|v − vT |Hl(T ) � Hd/2�v ◦ FT − Ĵ(v ◦ FT )�Hk(T̂ ) � Hd/2|v ◦ FT |Hk(T̂ ) � Hk|v|Hk(T ).

Since the functions gS sum to one (L.5.9), we have v =
�

S∈T vgS . Then, for every
T ∈ T , we obtain the following error bound:

k�
l=0

H l|v − JHv|Hl(T ) =

k�
l=0

H l

!!!! �
S∈T (T )

(v − vS)gS

!!!!
Hl(T )

≤
k�

l=0

H l
�

S∈T (T )

|(v − vS)gS |Hl(T∩S)
L.2.42

�
k�

l=0

H l
�

S∈T (T )

l�
j=0

|v − vS |Hj(S)|gS |W l−j,∞(Rd)

L.5.9

�
�

S∈T (T )

k�
j=0

Hj |v − vS |Hj(S) � Hk
�

S∈T (T )

|v|Hk(S).

Summing the squares over all T ∈ T and applying the bounds from L.5.8, the global
error bound follows. In particular, using a simple triangle inequality, we also get the
global stability bound �JHv�Hk(Rd) ≤ C(d,H)�v�Hk(Rd) < ∞, which proves that JH :

Hk(Rd) −→ Hk(Rd). This finishes the proof.

5Note that T̂ ◦ = (−1/4, 5/4)d is open, bounded, connected and has a Lipschitz boundary.
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5.5 The orthogonal projection PH
B,D

We remind the reader of the spaces from D.4.18:

Vsol(D) = {SNΛf |f ∈ RN with supp(f) ⊆ ι(D)} ⊆ VN .

As mentioned in Section 5.1, these spaces have the following drawback: Let u ∈ Vsol(D)
and let B ∈ B be a second box. If we modify u outside of B, the result need not lie
in Vsol(D) again. For example, if we multiply u with a cut-off function κ that satisfies
κ|B ≡ 1, then κu /∈ Vsol(D), in general. To rectify this problem, we introduce a superspace
Vsol(B,D) ⊇ Vsol(D), where this is indeed the case.

Definition 5.11. Let B,D ∈ B be given boxes. We set

Vsol(B,D) := {u ∈ V | ∃ũ ∈ Vsol(D) such that ũ|Ω∩B = u|Ω∩B}.

Note that Vsol(B,D) consists of global functions u : Ω −→ R that merely happen to have
a special structure on the subset Ω ∩ B. On the remaining part Ω\B, nothing is assumed
about u.

Lemma 5.12. Let B,D ∈ B.

1. There hold the inclusions Vsol(D) ⊆ Vsol(B,D) ⊆ V ⊆ Hk(Ω).

2. For every δ > 0, there holds Vsol(B
δ, D) ⊆ Vsol(B,D).

3. Let u ∈ Vsol(B,D). For every v ∈ V with v|Ω∩B = u|Ω∩B, there holds v ∈ Vsol(B,D).

4. The subspace Vsol(B,D) ⊆ Hk(Ω) is closed.

Proof. We only prove the statement about closedness: Consider the subspace

Z := {ũ|Ω∩B | ũ ∈ Vsol(D)} ⊆ Hk(Ω ∩B).

Since dim(Z) ≤ dim(VN ) = N < ∞, we know that Z is a closed subspace of Hk(Ω∩B).
Note that, for any given function u ∈ Hk(Ω), there holds the following equivalence:

v ∈ Vsol(B,D) ⇔ (u ∈ V ∧ u|Ω∩B ∈ Z).

Now, let (un)n∈N ⊆ Vsol(B,D) and u ∈ Hk(Ω) with �u − un�Hk(Ω)
n−→ 0. In particular,

for every n ∈ N, we know that un ∈ V and that un|Ω∩B ∈ Z. Since V ⊆ Hk(Ω) is closed
(cf. D.4.1), we infer u ∈ V . On the other hand, the trivial bound �u − un�Hk(Ω∩B) ≤
�u− un�Hk(Ω)

n−→ 0 and the closedness of Z yield u|Ω∩B ∈ Z. According to the equivalence
above, this means u ∈ Vsol(B,D).

We finish this section with a projection from Hk(Ω) to the subspace Vsol(B,D) ⊆ Hk(Ω).
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Lemma 5.13. Let B,D ∈ B be given boxes and H > 0 be a given parameter. There exists
a linear operator

PH
B,D : Hk(Ω) −→ Vsol(B,D)

with the following properties:

1. Projection: For every u ∈ Vsol(B,D), there holds PH
B,Du = u.

2. Stability: For all u ∈ Hk(Ω), there holds the stability bound

�PH
B,Du�Ω,k,H ≤ �u�Ω,k,H .

Proof. From L.5.2, we know that the norms � · �Hk(Ω) and � · �Ω,k,H are equivalent (with

constants depending on H). Furthermore, L.5.12 tells us that Vsol(B,D) ⊆ Hk(Ω) is a
closed subspace with respect to � · �Hk(Ω) and thus also with respect to � · �Ω,k,H . In

particular, the orthogonal projection PH
B,D : Hk(Ω) −→ Vsol(B,D) with respect to the

H-weighted inner product 
·, ·�Ω,k,H from D.5.1 is well-defined. Item 1 is self-explanatory
and item 2 follows easily from the fact that PH

B,D is the orthogonal projection.

5.6 The minimum-norm extension operator EB,D

Let B,D ∈ B be given boxes and consider an element u ∈ Vsol(B,D) (cf. D.5.11). By
definition of this space, there exists at least one function ũ ∈ Vsol(D) such that ũ|Ω∩B =
u|Ω∩B. However, such an extension6 ũ need not be unique. In fact, for every ũ0 ∈ Vsol(D)
with ũ0|Ω∩B = 0, the sum ũ+ũ0 is a viable extension of u as well. Immediately, the question
arises of how to make a meaningful choice from this affine subspace. For our purposes, the
minimum-norm extension is sufficient7:

Lemma 5.14. Let B,D ∈ B be given boxes. There exists a linear operator

EB,D : Vsol(B,D) −→ Vsol(D)

with the following properties:

1. For all u ∈ Vsol(B,D), there holds (EB,Du)|Ω∩B = u|Ω∩B.

2. For all u ∈ Vsol(B,D), there holds the bound

�EB,Du�Hk(Ω) ≤ inf
ũ∈Vsol(D):

ũ|Ω∩B=u|Ω∩B

�ũ�Hk(Ω).

6Usually, an extension of a function f : M −→ R is a function f̃ : M̃ −→ R which is defined on a larger
set M̃ ⊇ M and which satisfies f̃ |M = f . Here, we somewhat abuse the term extension, because u and
ũ are already defined on the same set (namely Ω).

7In fact, we only need the process of choosing an extension to be a linear operator. We state the stability
bound for the sake of completeness, but we won’t actually need it later on.
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Proof. Consider the subspace

Z := {u ∈ Vsol(D) |u|Ω∩B = 0} ⊆ Hk(Ω).

Then Z is finite-dimensional and thus a closed subspace of Hk(Ω). In particular, we may
introduce the orthogonal projection P : Hk(Ω) −→ Z. Recall that, for every ũ ∈ Hk(Ω),
the image Pũ ∈ Z is characterized by the following variational equation:

∀z ∈ Z : 
Pũ, z�Hk(Ω) = 
ũ, z�Hk(Ω).

Now, for every given u ∈ Vsol(B,D), we pick a function ũ ∈ Vsol(D) with ũ|Ω∩B = u|Ω∩B
and set

EB,Du := ũ− Pũ ∈ Vsol(D).

First, let us check that this definition is independent of the choice of ũ. In fact, if
u ∈ Vsol(D) is another function with u|Ω∩B = u|Ω∩B, then the error u− ũ lies in Z. Since
P is a projection onto Z, we get P (u− ũ) = u− ũ. It follows that ũ and u indeed produce
the same result:

u− Pu = (u− ũ)− P (u− ũ) + (ũ− Pũ) = ũ− Pũ.

Now that the mapping EB,D is well-defined, let us derive its main properties: Its linearity
follows from Vsol(D) being a vector space and the linearity of P . To see item 1, let u ∈
Vsol(B,D) and pick ũ ∈ Vsol(D) with ũ|Ω∩B = u|Ω∩B. Since Pũ ∈ Z vanishes on Ω∩B, we
find that

(EB,Du)|Ω∩B = ũ|Ω∩B − (Pũ)|Ω∩B = ũ|Ω∩B = u|Ω∩B.

Finally, to see the stability bound, let u ∈ Vsol(B,D) and u ∈ Vsol(D) with u|Ω∩B =
u|Ω∩B. Since P is an orthogonal projection, we obtain

�EB,Du�Hk(Ω) = �u− Pu�Hk(Ω) = inf
z∈Z

�u− z�Hk(Ω)

= inf
ũ∈Vsol(D):

ũ|Ω∩B=u|Ω∩B

�ũ�Hk(Ω) = inf
ũ∈Vsol(D):

ũ|Ω∩B=u|Ω∩B

�ũ�Hk(Ω).

This concludes the proof.

5.7 The single-step coarsening operator Qδ
B,D

This section contains the most complicated part in the derivation of our main result, T.4.21.
We combine all of the operators from the previous sections in this chapter (and the extension
operator from D.2.48) and construct the single-step coarsening operator.

Theorem 5.15. Denote by σsprd > 0 and σCacc ≥ 1 the constants from A.4.11 and A.4.19.
Let B,D ∈ B be given boxes and δ > 0 be a free parameter with δ ≤ σsprd and Bδ ∩D = ∅.
Then, there exists a linear single-step coarsening operator

Qδ
B,D : Vsol(D) −→ Vsol(D)

with the following properties:
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1. There holds the rank bound

rank(Qδ
B,D) ≤ C(d, k,Ω, σsprd)σ

d
Cacc(1 + diam2(B)/δ)d.

2. There exists a number H > 0 of the form

H =
δ

C(d, k,Ω, σsprd)σCacc

such that, for all u ∈ Vsol(D), there holds8

�u−Qδ
B,Du�Ω∩B,k,H ≤ 1

2
�u�Ω∩Bδ ,k,H .

Proof. The alleged operator Qδ
B,D is composed of seven other operators:

1. Denote by K
δ/2
Ω,B : Hk(Ω) −→ Hk(Ω) the cut-off operator from D.5.4, applied to the

set Ω, the box B and the parameter δ/2. Similarly, let K
δ/2

Rd,B
: Hk(Rd) −→ Hk(Rd)

be the cut-off operator corresponding to the set Rd, the box B and the parameter
δ/2.

2. Denote by EΩ : Hk(Ω) −→ Hk(Rd) the Sobolev extension operator from D.2.48
(recall from D.4.1 that Ω ⊆ Rd is assumed to be an Hk-extension domain).

3. Let H > 0 and denote by JH : Hk(Rd) −→ Hk(Rd) the low-rank approximation
operator from L.5.10. The precise value of H will be chosen during the proof.

4. Let RΩ : Hk(Rd) −→ Hk(Ω) be the restriction operator, i.e., RΩv := v|Ω.
5. Denote by PH

B,D : Hk(Ω) −→ Vsol(B,D) the projection from L.5.13 with respect to
the parameter H > 0 from before.

6. Let EB,D : Vsol(B,D) −→ Vsol(D) be the minimum-norm extension operator from
L.5.14.

The mapping properties of these operators are summarized in the following schematic:

Vsol(D)
D.4.18⊆ V

D.4.1⊆ Hk(Ω)
K

δ/2
Ω,B−−−→ Hk(Ω)

EΩ−−→ Hk(Rd)
K

δ/2

Rd,B−−−−→ Hk(Rd) . . .

. . .
JH−−→ Hk(Rd)

RΩ−−→ Hk(Ω)
PH
B,D−−−→ Vsol(B,D)

EB,D−−−→ Vsol(D).

Now, define

Qδ
B,D := EB,D PH

B,D RΩ JH K
δ/2

Rd,B
EΩK

δ/2
Ω,B : Vsol(D) −→ Vsol(D).

8In fact, we may even write k − 1 instead of k on the right-hand side.
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We begin our analysis with the error bound, since it tells us how to choose the free
parameter H > 0. To this end, let u ∈ Vsol(D) be given. In order to bound the error
u−Qδ

B,Du on Ω∩B, we first have to find similar expressions for u|Ω∩B and (Qδ
B,Du)|Ω∩B.

On one hand, using the definition of Qδ
B,D, we have

(Qδ
B,Du)|Ω∩B = (EB,D PH

B,D RΩ JH K
δ/2

Rd,B
EΩK

δ/2
Ω,B u)|Ω∩B

L.5.14
= (PH

B,D RΩ JH K
δ/2

Rd,B
EΩK

δ/2
Ω,B u)|Ω∩B.

On the other hand, dropping the operators PH
B,D and JH from the remaining expression,

let us introduce the auxiliary function

v := RΩK
δ/2

Rd,B
EΩK

δ/2
Ω,B u ∈ Hk(Ω).

Recall from D.5.4 that the cut-off operators K
δ/2

Rd,B
and K

δ/2
Ω,B realize the multiplication

with the smooth cut-off function κ := κ
δ/2
B ∈ C∞

0 (Rd) from L.5.3. In particular, we can
write v in the following way:

v = RΩK
δ/2

Rd,B
EΩK

δ/2
Ω,B u = (RΩκ) · (RΩEΩK

δ/2
Ω,Bu)

D.2.48
= (κ2|Ω)u.

From this representation, it follows that v ∈ V , because u ∈ Vsol(D) ⊆ Vsol(B,D) ⊆ V
and V is closed under multiplication with test functions (cf. D.4.1). In fact, L.5.12 and the
identity

v|Ω∩B = (κ2|Ω∩B)(u|Ω∩B)
L.5.3
= u|Ω∩B

even yield v ∈ Vsol(B,D). It follows that PH
B,Dv = v, because PH

B,D is a projection onto the
space Vsol(B,D). We obtain the following representation of u on Ω ∩B:

u|Ω∩B = v|Ω∩B = (PH
B,Dv)|Ω∩B = (PH

B,D RΩK
δ/2

Rd,B
EΩK

δ/2
Ω,B u)|Ω∩B.

Note that the expressions for u|Ω∩B and (Qδ
B,Du)|Ω∩B only differ by JH . In particular, in

order to estimate (u−Qδ
B,Du)|Ω∩B, it suffices to have an error bound for JH and stability

bounds for all the remaining operators. As for the extension operator EΩ, we will need
the following bound, which holds true for all v ∈ Hk(Ω) and makes use of the assumption
δ ≤ σsprd:

�EΩv�Rd,k,δ

L.5.2≤
k�

l=0

δl|EΩv|Hl(Ω)

D.2.48

�
k�

l=0

δl�v�Hl(Ω) �
k�

l=0

δl|v|Hl(Ω)

L.5.2

� �v�Ω,k,δ.

Furthermore, the assumption Bδ ∩ D = ∅ allows us to apply the discrete Caccioppoli
inequality from A.4.19 to the function u ∈ Vsol(D), the box Bδ/2 and the parameter δ/2.
Expressed in terms of the weighted norms from D.5.1, we get

�u�Ω∩Bδ/2,k,δ ≤ C(k)σCacc�u�Ω∩Bδ ,k−1,δ.

Finally, we have everything we need to bound the error (u − Qδ
B,Du)|Ω∩B. We start

with the H-weighted norm (= natural choice for JH), switch to the δ-weighted norm in
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between (= natural choice for cut-off operators and Caccioppoli inequality) and finish with
the H-weighted norm again:

�u−Qδ
B,Du�Ω∩B,k,H = �PH

B,D RΩ (id− JH)K
δ/2

Rd,B
EΩK

δ/2
Ω,Bu�Ω∩B,k,H

≤ �PH
B,D RΩ (id− JH)K

δ/2

Rd,B
EΩK

δ/2
Ω,Bu�Ω,k,H

L.5.13

� �RΩ (id− JH)K
δ/2

Rd,B
EΩK

δ/2
Ω,Bu�Ω,k,H

≤ �(id− JH)K
δ/2

Rd,B
EΩK

δ/2
Ω,Bu�Rd,k,H

L.5.10

� |Kδ/2

Rd,B
EΩK

δ/2
Ω,Bu|Rd,k,H

D.5.1
= (H/δ)k|Kδ/2

Rd,B
EΩK

δ/2
Ω,Bu|Rd,k,δ

L.5.5

� (H/δ)k�EΩK
δ/2
Ω,Bu�Rd,k,δ

� (H/δ)k�Kδ/2
Ω,Bu�Ω,k,δ

L.5.5

� (H/δ)k�u�Ω∩Bδ/2,k,δ

� σCacc(H/δ)k�u�Ω∩Bδ ,k−1,δ
L.5.2

� (σCacc/2)(H/δ)k max{1, δ/H}k−1�u�Ω∩Bδ ,k−1,H .

Now, denote by C0 := C(d, k,Ω, σsprd) ≥ 1 the implicit cumulative constant. Then, the
choice

H :=
δ

C0σCacc
> 0

guarantees that

C0(σCacc/2)(H/δ)k max{1, δ/H}k−1 =
C0σCacc

2(C0σCacc)k
max{1, C0σCacc}k−1 =

1

2

and the asserted error bound follows:

�u−Qδ
B,Du�Ω∩B,k,H ≤ 1

2
�u�Ω∩Bδ ,k−1,H ≤ 1

2
�u�Ω∩Bδ ,k,H .

Finally, we turn our attention to the rank bound. We compute

rank(Qδ
B,D) = dim {EB,D PH

B,D RΩ JH K
δ/2

Rd,B
EΩK

δ/2
Ω,B u |u ∈ Vsol(D)}

L.5.5≤ dim {JHv | v ∈ Hk(Rd) with supp(v) ⊆ Bδ/2}
L.5.10

� (1 + diam2(B
δ/2)/H)d

L.2.13

� (1 + diam2(B)/H + δ/H)d
Def.H

� σd
Cacc(1 + diam2(B)/δ)d.

This concludes the proof.

5.8 The multi-step coarsening operator Qδ,L
B,D

The hardest part now lies behind us and we can proceed with the plan from Section 5.1.
The next step is to combine L ∈ N instances of the single-step coarsening operator Qδ

B,D

to a multi-step coarsening operator Qδ,L
B,D.
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Figure 5.1: A nested sequence of inflated boxes, B ⊆ Bδ ⊆ · · · ⊆ BδL.

Theorem 5.16. Denote by σsprd > 0 and σCacc ≥ 1 the constants from A.4.11 and A.4.19,
respectively. Let B,D ∈ B be given boxes and let δ > 0, L ∈ N be free parameters with
δ ≤ σsprd and BδL ∩D = ∅. Then, there exists a linear multi-step coarsening operator

Qδ,L
B,D : Vsol(D) −→ Vsol(D)

with the following properties:

1. There holds the rank bound

rank(Qδ,L
B,D) ≤ C(d, k,Ω, σsprd)σ

d
Cacc(L+ diam2(B)/δ)d+1.

2. For all m ∈ {0, . . . , k} and all u ∈ Vsol(D), there holds the error bound

�u−Qδ,L
B,Du�Hm(Ω∩B) ≤ C(d, k,Ω, σsprd)(σCacc/δ)

m2−L�u�Hk(Ω∩BδL).

Proof. Consider the following sequence of nested, inflated boxes (cf. Figure 5.1):

B = Bδ · 0 ⊆ Bδ · 1 ⊆ · · · ⊆ Bδl ⊆ · · · ⊆ BδL.

Clearly, for each l ∈ {0, . . . , L− 1}, there holds (Bδl)δ ∩D = Bδ(l+1) ∩D ⊆ BδL ∩D = ∅.
In particular, we may apply T.5.15 to the boxes Bδl, D and the parameter δ. For the
corresponding single-step coarsening operators, we abbreviate

Ql := Qδ
Bδl,D : Vsol(D) −→ Vsol(D).

The definition of Qδ,L
B,D is such that the subsequent error analysis becomes very simple:

∀u ∈ Vsol(D) : Qδ,L
B,Du := u− (id−Q0) ◦ · · · ◦ (id−QL−1)(u) ∈ Vsol(D).
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Denote by H := C(d, k,Ω, σsprd)
−1σ−1

Caccδ the number from the error bound in T.5.15.
Then,

�u−Qδ,L
B,Du�Ω∩B,k,H = �(id−Q0) ◦ · · · ◦ (id−QL−1)(u)�Ω∩Bδ · 0,k,H

≤ 2−1�(id−Q1) ◦ · · · ◦ (id−QL−1)(u)�Ω∩Bδ · 1,k,H

≤ 2−2�(id−Q2) ◦ · · · ◦ (id−QL−1)(u)�Ω∩Bδ · 2,k,H
...

≤ 2−L�u�Ω∩BδL,k,H .

Using the norm equivalences from L.5.2, we also get an estimate in the standard Hm-
norms, m ∈ {0, . . . , k}:

�u−Qδ,L
B,Du�Hm(Ω∩B) ≤

max{1, H}k
min{1, H}m 2−L�u�Hk(Ω∩BδL).

Since H ≤ δ ≤ σsprd, we can plug in max{1, H} ≤ σsprd and min{1, H} ≥ H/σsprd, so
that

�u−Qδ,L
B,Du�Hm(Ω∩B) ≤ σk+m

sprd H−m2−L�u�Hk(Ω∩BδL)

Def.H

� (σCacc/δ)
m2−L�u�Hk(Ω∩BδL).

Finally, let us derive the rank bound. By induction on L, one can easily derive the
following alternative representation of the operator Qδ,L

B,D:

Qδ,L
B,Du =

L−1�
l=0

Ql(id−Ql+1) ◦ · · · ◦ (id−QL−1)u.

(Note that the (L− 1)-th summand is just QL−1u.) From this identity, we get

rank(Qδ,L
B,D) ≤

L−1�
l=0

rank(Ql)
T.5.15

� σd
Cacc

L−1�
l=0

(1 + diam2(B
δl)/δ)d

L.2.13

� σd
Cacc

L−1�
l=0

(1 + diam2(B)/δ + l)d ≤ σd
Cacc(L+ diam2(B)/δ)d+1.

This concludes the proof.

5.9 The approximation operator Qr
B,D

In this section, we complete the proof of T.4.20. We remind the reader of the relevant
objects from the statement of T.4.20:

1. Denote by σsprd ≥ 1 and σCacc ≥ 1 the constants from A.4.11 and A.4.19, respectively.
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2. Let hmin > 0 and σadm > 0 be given numbers9.

3. Let B,D ∈ B be given boxes that satisfy the following bounds:

hmin ≤ diam2(B) ≤ σadmdist2(B,D) ≤ σadm
√
dσsprd.

4. Let r ∈ N.

Proof of T.4.20. We employ the operator Qδ,L
B,D from T.5.16 for specific values of δ > 0 and

L ∈ N. We leave L unspecified for the moment and fix δ in relation to L:

δ :=
dist2(B,D)

2
√
dL

> 0.

The asserted bounds on B and D guarantee that

δ =
dist2(B,D)

2
√
dL

≤
√
dσsprd

2
√
dL

≤ σsprd

and also the disjointness of BδL and D:

dist2(B
δL, D)

L.2.13≥ dist2(B,D)−
√
dδL

Def.δ
= dist2(B,D)/2 ≥ hmin/(2σadm) > 0.

Therefore, the assumptions of T.5.16 are fulfilled and we may use the operator

Qr
B,D := Qδ,L

B,D : Vsol(D) −→ Vsol(D).

As for the rank, we have

rank(Qr
B,D)

T.5.16

� σd
Cacc(L+ diam2(B)/δ)d+1 Def.δ

= σd
Cacc

�
L+

diam2(B)

dist2(B,D)
2
√
dL

�d+1

� σd
Cacc((1 + σadm)L)

d+1 ≤ (σCacc(1 + σadm)L)
d+1.

Now, denote the implicit cumulative constant by C0 := C(d, k,Ω, σsprd) ≥ 1. Then, the
choice (�·� is the floor function)

L :=



(r/C0)

1/(d+1)

σCacc(1 + σadm)

�
∈ N

leads to the desired rank bound:

rank(Qr
B,D)

Def.C0≤ C0(σCacc(1 + σadm)L)
d+1

Def.L≤ r.

Finally, let us derive the error bound. Let m ∈ {0, . . . , k} and u ∈ Vsol(D). Using the
assumptions on B and D once again, we get

�u−Qr
B,Du�Hm(Ω∩B)

T.5.16

� (σCacc/δ)
m2−L�u�Hk(Ω)

Def.δ
=

�
σCacc2

√
dL

dist2(B,D)

�m

2−L�u�Hk(Ω)

� (σCaccσadm/hmin)
mLk2−L�u�Hk(Ω).

9In the statement of T.4.20, these numbers have a specific meaning. Here, we only need them to be
positive.
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5 Construction of the operator Qr
B,D

Sacrificing a small fraction of 2−L, we can get rid of the distracting factor Lk. We use
the following elementary relations:

ε := ln(2)− 1/2 ≈ 0.19, sup
t∈[0,∞)

tk

eεt
=

�
k

eε

�k

� 1, L ≥ (r/C0)
1/(d+1)

2σCacc(1 + σadm)
.

Then,

Lk

2L
=

Lk

eεL
exp(−L/2) � exp(−L/2) ≤ exp

�
− (r/C0)

1/(d+1)

4σCacc(1 + σadm)

�
.

Finally, by setting

σexp := (4σCacc(1 + σadm)C
1/(d+1)
0 )−1 > 0,

we obtain the overall bound

�u−Qr
B,Du�Hm(Ω∩B) � (σCaccσadm/hmin)

m exp(−σexpr
1/(d+1))�u�Hk(Ω).

This finishes the proof.
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6 An application in a FEM setting

The finite element method (FEM) is a well-established (e.g., [Cia78], [EG04], [BS08],
[Bra13], [LB13]) approximation scheme for partial differential equations. Among the nu-
merous advantages over other numerical schemes (e.g., finite differences method) is the
fact that it allows for a rigourous mathematical analysis. Here, we look at the analyst’s
favourite example of a second order elliptic PDE with homogeneous Dirichlet boundary
conditions. We apply our main result, T.4.21, to the inverse stiffness matrix A−1.

For the reader’s convenience, we summarize the necessary steps:

1. Choose the space V from D.4.1 and the bilinear form a(·, ·) from D.4.2. Find an
upper bound for the quantity σcoco ≥ 1.

2. Choose the ansatz space VN ⊆ V and the basis {ϕ1, . . . , ϕN} ⊆ VN from D.4.3.

3. Prove that the dual basis {λ1, . . . , λN} ⊆ V ∗
N satisfies a local stability bound as

required by A.4.11 and determine the corresponding values of k0 ∈ {0, . . . , k} and
σstab > 0. Determine the shape-regularity-, overlap- and spread factors σshp, σovlp,
σsprd of the characteristic sets Ω1, . . . ,ΩN ⊆ Ω. Furthermore, estimate the number
hmin > 0 from D.4.12.

4. Choose the clustering parameter σsmall ≥ 1 from C. 3.42 large enough to ensure
σovlp ≤ σsmall.

5. Prove the discrete Caccioppoli inequality from A.4.19.

6.1 An elliptic PDE

Let d ∈ {1, 2, 3} and Ω ⊆ Rd be a polyhedron (cf. D. 2.62). Furthermore, let a1 ∈
L∞(Ω,Rd×d), a2 ∈ L∞(Ω,Rd) and a3 ∈ L∞(Ω,R) be given coefficient functions and fΩ ∈
L2(Ω) be a given right-hand side. We seek a weak solution u ∈ H1

0 (Ω) to the following
elliptic PDE1:

−div(a1∇u) + a2 · ∇u+ a3u = fΩ in Ω,
u = 0 on ∂Ω.

We assume that a1 is pointwise symmetric and that there exist constants α1 > 0 and
α2, α3 ≥ 0 such that, for all x ∈ Ω and y ∈ Rd, the following relations are satisfied:

α−1
1 �y�22 ≤ 
a1(x)y, y�2, �a1(x)�2 ≤ α1,

�a2(x)�2 ≤ α2, |a3(x)| ≤ α3,
2C2

Pα1(α2 + α3) ≤ 1,

1Note that a1∇u is a matrix-vector product, a2 · ∇u is a dot product and a3u is just a multiplication.
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6 An application in a FEM setting

Here, CP := C(d,Ω) ≥ 0 is the constant in the Poincaré inequality �·�H1(Ω) ≤ CP |·|H1(Ω)

on H1
0 (Ω) (cf. C.2.53).

6.2 The space V

First, we fix the functional analytic setting for this problem.

Definition 6.1. Let k := 1 and
V := H1

0 (Ω).

For all u, v ∈ V , set2

a(u, v) := 
a1∇u,∇v�L2(Ω) + 
a2 · ∇u, v�L2(Ω) + 
a3u, v�L2(Ω).

Lemma 6.2. 1. The set Ω is an H1-extension domain and the space V satisfies the
requirements from D.4.1.

2. The bilinear form a(·, ·) is continuous and coercive in the sense of D. 4.2 with a
constant

σcoco = C(d,Ω, α1, α2, α3).

Proof. Item 1: According to D.2.62 and L.2.49, the polyhedron Ω is a H1-extension domain.
Furthermore, V is a closed subspace of H1(Ω) and, for all κ ∈ C∞

0 (Rd) and v ∈ V , there
holds (κ|Ω)v ∈ V .
Item 2: For all u, v ∈ V , we have

|a(u, v)| ≤
�
Ω

|
a1∇u,∇v�2|+ |(a2 · ∇u)v|+ |a3uv| dx

≤
�
Ω

α1�∇u�2�∇v�2 + α2�∇u�2|v|+ α3|u||v| dx � �u�H1(Ω)�v�H1(Ω).

On the other hand, using the Cauchy-Schwarz- and the Poincaré inequality,

α−1
1 |u|2H1(Ω) ≤

�
Ω


a1∇u,∇u�2 dx = a(u, u)−
�
Ω


a2,∇u�2u+ a3u
2 dx

≤ a(u, u) +

�
Ω

α2�∇u�2|u|+ α3u
2 dx ≤ a(u, u) + α2|u|H1(Ω)�u�L2(Ω) + α3�u�2L2(Ω)

≤ a(u, u) + C2
P (α2 + α3)|u|2H1(Ω) ≤ a(u, u) + (2α1)

−1|u|2H1(Ω).

If we subtract the last term from both sides (and apply the Poincaré inequality again)
we end up with the asserted coercivity bound:

(2C2
Pα1)

−1�u�2H1(Ω) ≤ (2α1)
−1|u|2H1(Ω) ≤ a(u, u).

2In this chapter, we use the abbreviation �F,G�L2(Ω) :=
�
Ω
�F,G�2 dx for vector-valued functions F,G :

Ω −→ Rd.
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6 An application in a FEM setting

6.3 The space VN

Next, we fix the discrete ansatz space VN and the basis functions ϕn. For this purpose,
we use the spline spaces Sp,10 (T ) from D.2.70. Our assumptions on the basis functions
{ϕ1, . . . , ϕN} reflect a common pattern in the construction of finite element bases: First, a
polynomial basis {ϕ̂1, . . . , ϕ̂L} on the reference element T̂ is chosen (the shape functions).
Then, these polynomials are transferred to the individual mesh elements T ∈ T via the
affine transformations FT : T̂ −→ T (cf. D.2.65). Finally, these element shape functions
are glued together along the element interfaces to construct the global basis functions ϕn.
We mention that the classic hat functions from L.2.72 (p = 1) fall into this category along
with the more general Lagrange elements (p ≥ 1).

Definition 6.3. Let T ⊆ Pow(Rd) be a mesh (cf. D.2.60) on the polyhedron Ω. Fur-
thermore, let p ∈ N, L :=

�
p+d
d

�
and let {ϕ̂1, . . . , ϕ̂L} ⊆ Pp(T̂ ) be a basis. We set

N := dim(Sp,10 (T )) and consider the ansatz space

VN := Sp,10 (T ) ⊆ V.

A basis
{ϕ1, . . . , ϕN} ⊆ Sp,10 (T )

is called FEM basis, if the following conditions are satisfied:

1. Local supports: For every n ∈ {1, . . . , N}, there exists a characteristic element Tn ∈
T such that3

Tn ∈ suppT (ϕn) ⊆ T (Tn).

2. Simple structure: For every n ∈ {1, . . . , N} and every T ∈ suppT (ϕn), there exists
an index l(n, T ) ∈ {1, . . . , L} such that

ϕn|T = ϕ̂l(n,T ) ◦ F−1
T .

3. Local distinctness: For all m,n ∈ {1, . . . , N} with m += n and all T ∈ suppT (ϕn) ∩
suppT (ϕm), there holds

l(n, T ) += l(m,T ).

4. Stability: There exists a constant γ ≥ 0, such that, for all c ∈ RL, there holds the
bound

�c�2 ≤ C(d)pγ
    L�

l=1

clϕ̂l

    
L2(T̂ )

.

Example 6.4. See [FMPR15, Lemma 4.4.] for an example of shape functions {ϕ̂1, . . . , ϕ̂L}
in d = 2 space dimensions with γ = 3.

In the sequel, we assume that a FEM basis {ϕ1, . . . , ϕN} ⊆ Sp,10 (T ) is given and that the
characteristic elements Tn ∈ T from item 1 are kept fixed.

3Recall that suppT (v) ⊆ T is the discrete support of a discrete function v ∈ Sq,0(T ) (cf. D.2.71) and that
T (Tn) denotes the elements touching Tn (cf. D.2.63).
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6 An application in a FEM setting

6.4 A weak formulation

As usual, a weak formulation of the model problem from Section 6.1 is derived by multi-
plication with v ∈ VN and integration over Ω. Using the bilinear form a(·, ·) from D.6.1,
the left-hand side of the equation can be expressed as a(u, v). The right-hand side can be
written in the form of a linear functional f ∈ V ∗

N :

∀v ∈ VN : 
f, v�∗ := 
fΩ, v�L2(Ω).

In particular, the model problem from Section 6.1 falls into the problem class described
in P.1.2 and L.4.5: Find u ∈ VN such that

∀v ∈ VN : a(u, v) = 
f, v�∗.

6.5 The dual basis λ1, . . . , λN

In this section, we derive a local stability bound for the dual basis λ1, . . . , λN ∈ V ∗
N from

D.4.10. Furthermore, we determine the values of the quantities σshp, σovlp and σsprd from
A.4.11.

Definition 6.5. Denote by T1, . . . , TN ∈ T the characteristic mesh elements from D.6.3.
For all n ∈ {1, . . . , N}, we set

Ωn := Tn.

Lemma 6.6. Denote by hmin,T > 0 and hmin > 0 the quantities from D.2.63 and D.4.12,
respectively. There holds the relationship

hmin ≥ hmin,T .

Proof. We compute

hmin
D.4.12
= min

n∈{1,...,N}
hΩn = min

n∈{1,...,N}
hTn ≥ min

T∈T
hT

D.2.63
= hmin,T .

Next, we derive the local stability bound. The trick is to find a representation of the
n-th dual functional λn ∈ V ∗

N in terms of a “density” µn ∈ L2(Ω).

Lemma 6.7. Denote by σshp ≥ 1 the shape regularity constant of the mesh T (cf. D.2.60)
and let γ ≥ 0 be defined as in D.6.3. Denote by {λ1, . . . , λN} ⊆ V ∗

N the dual basis (cf.
D.4.10). Then, for all v ∈ VN , there holds the following local stability bound:

|
λn, v�∗| ≤ C(d, σshp)p
γh

−d/2
min,T �v�L2(Ωn).

Proof. Denote by FT : T̂ −→ T the affine transformations from D.2.65. Furthermore,
denote by L ∈ N, {ϕ̂1, . . . , ϕ̂L} ⊆ Pp(T̂ ), Tn ∈ T and l(n, T ) ∈ {1, . . . , L} the objects from
D.6.3.
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6 An application in a FEM setting

Let {µ̂1, . . . , µ̂L} ⊆ Pp(T̂ ) be the basis of dual polynomials which is uniquely determined
by the following conditions:

∀k, l ∈ {1, . . . , L} : 
µ̂k, ϕ̂l�L2(T̂ ) = δkl.

Now, for each n ∈ {1, . . . , N}, we define a (discontinuous) function µn ∈ Sp,0(T ) in a
piecewise manner: For every T ∈ T \{Tn}, we set µn|T := 0, whereas

µn|Tn := |det(∇FTn)|−1 · (µ̂l(n,Tn) ◦ F−1
Tn

).

We use the function µn as a density to define a linear functional λ̃n ∈ V ∗
N :

∀v ∈ VN : 
λ̃n, v�∗ := 
µn, v�L2(Ω).

If we can show that 
λ̃n, ϕm�∗ = δnm, for all n,m ∈ {1, . . . , N}, then already λ̃n = λn

by the uniqueness of the dual basis (cf. D.4.10). To this end, let n,m ∈ {1, . . . , N}. First,
consider the case where Tn /∈ suppT (ϕm). Then, the fact that Tn ∈ suppT (ϕn) from D.6.3
implies that there must hold m += n. It follows that δnm = 0 and thus


λn, ϕm�∗ = 
µn, ϕm�L2(Tn∩supp(ϕm)) = 0 = δnm.

In the remaining case Tn ∈ suppT (ϕm), it follows from the structure assumption in D.6.3
that there exists an index l(m,Tn) ∈ {1, . . . , L} such that

ϕm|Tn = ϕ̂l(m,Tn) ◦ F−1
Tn

.

We argue that there holds the identity δl(n,Tn)l(m,Tn) = δnm: If n = m, then both sides
yield the value 1. On the other hand, if n += m, then the fact that Tn ∈ suppT (ϕn) ∩
suppT (ϕm) and the asserted local distinctness from D.6.3 yield l(n, Tn) += l(m,Tn), so that
both sides of the equation become 0. Now, using the definition of µn, we obtain


λn, ϕm�∗ = 
µn, ϕm�L2(Tn) = |det(∇FTn)|−1
µ̂l(n,Tn) ◦ F−1
Tn

, ϕ̂l(m,Tn) ◦ F−1
Tn

�L2(Tn)

= 
µ̂l(n,Tn), ϕ̂l(m,Tn)�L2(T̂ ) = δl(n,Tn)l(m,Tn) = δnm.

It follows that, indeed λ̃n = λn. Then, for all v ∈ VN , we get

|
λn, v�∗| = |
λ̃n, v�∗| = |
µn, v�L2(Tn)| ≤ �µn�L2(Tn)�v�L2(Tn).

It remains to bound the norm of µn. To this end, we first need a bound for the dual
polynomials µ̂1, . . . , µ̂L. Expanding the k-th polynomial in the form µ̂k =

�L
l=1 clϕ̂l (for

some c ∈ RL), we get

�µ̂k�2L2(T̂ )
=

�
µ̂k,

L�
l=1

clϕ̂l

�
L2(T̂ )

=

L�
l=1

cl
µ̂k, ϕ̂l�L2(T̂ ) = ck ≤ �c�2
D.6.3

� pγ�µ̂k�L2(T̂ ).

Then,

�µn�L2(Tn) = |det(∇FTn)|−1�µ̂l(n,Tn) ◦ F−1
Tn

�L2(Tn)

L.2.33
= |det(∇FTn)|−1/2�µ̂l(n,Tn)�L2(T̂ )

L.2.24

� pγh
−d/2
Tn

≤ pγh
−d/2
min,T .

This concludes the proof.
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In the last part of this section, we determine the values of the quantities σshp, σovlp, σsprd
as required by A.4.11. For the definition of these numbers, see D.2.16, D.2.18 and D.2.21.

Lemma 6.8. Denote by σshp ≥ 1 the shape-regularity constant of the mesh T (cf. D.2.60).
The characteristic sets Ω1, . . . ,ΩN ⊆ Ω from D.6.5 have shape-regularity σshp, overlap σovlp
and spread σsprd, where

σovlp =

�
d+ p

d

�
, σsprd = C(Ω).

Proof. Since the sets Ωn are mesh elements, they are clearly shape-regular with respect
to the shape factor σshp of the mesh T . The fact that the polyhedron Ω is by definition
bounded (cf. D.2.62) immediately yields a uniformly bounded spread factor σsprd:

diam2

� N�
n=1

Ωn

�
⊆ diam2

� �
T∈T

T

�
= diam2(Ω) < ∞.

The overlap factor σovlp requires a bit more work: According to D.2.18, we need to find
an upper bound for the quantity

max
n∈{1,...,N}

#{m ∈ {1, . . . , N} |Ω◦
m ∩ Ω◦

n += ∅}.

To this end, recall from L.2.64 that distinct mesh elements can only intersect at their
boundaries. In particular, the condition Ω◦

m ∩ Ω◦
n += ∅ is satisfied, if and only if Tm = Tn.

Therefore, it suffices to determine a bound for the quantity maxT∈T #ms(T ), where

ms(T ) := {m ∈ {1, . . . , N} |Tm = T}.

Recall from the proof of L.6.7 that the dual functionals λ1, . . . , λN ∈ V ∗
N can be repre-

sented by densities µ1, . . . , µN ∈ Sp,0(T ). Since the functionals λn are linearly independent,
it is not difficult to see that the densities µn are linearly independent as well (as functions
on all of Ω). Then, given an arbitrary element T ∈ T , the restrictions

{µm|T |m ∈ ms(T )} ⊆ Pp(T )

are again linearly independent (as functions on T ). To see this, consider coefficients
(cm)m∈ms(T ) ⊆ R such that

�
m∈ms(T ) cm(µm|T ) ≡ 0 on T . Since supp(µm) = Tm = T ,

for all m ∈ ms(T ), we also have
�

m∈ms(T ) cmµm ≡ 0 on Ω\T . Combining both, we get�
m∈ms(T ) cmµm ≡ 0 on all of Ω, so that necessarily cm = 0, for all m ∈ ms(T ). Now that

the linear independence of the polynomials {µm|T |m ∈ ms(T )} is settled, we obtain

#ms(T ) = dim(span {µm|T |m ∈ ms(T )}) ≤ dim(Pp(T )) =

�
d+ p

d

�
.

This finishes the proof.
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6.6 The discrete Caccioppoli inequality

Now we come to the hardest part of this chapter. In this section, we show that the discrete
Caccioppoli inequality from A.4.19 is satisfied for some constant

σCacc = C(d, σshp, σlqu)p
(9−d)/2,

where σshp, σlqu ≥ 1 are the quantities from D.2.60. Let us quickly give an outline of the
proof:

1. Let D ∈ B be an axes-parallel box (cf. D.2.8) and consider a function u ∈ Vsol(D).
Furthermore, let B ∈ B and δ > 0 be such that Bδ ∩ D = ∅, where Bδ ∈ B is the
inflated box (cf. D.2.12). Our goal is to show that there exists a number σCacc ≥ 1
such that

δ|u|H1(Ω∩B) ≤ σCacc�u�L2(Ω∩Bδ).

2. To this end, we split the patch elements T (B) = {T ∈ T |T ∩ B += ∅} (cf. D.2.63)
into two groups, based on the relative size of the element diameter hT and the value
of δ:

Bsmall := {T ∈ T (B) | 24σshpσlquhT ≤ δ},
Blarge := {T ∈ T (B) | 24σshpσlquhT > δ}.

Clearly,

δ2|u|2H1(Ω∩B) = δ2
�

T∈T (B)

|u|2H1(T∩B) = δ2
�

T∈Bsmall

|u|2H1(T∩B) + δ2
�

T∈Blarge

|u|2H1(T∩B),

and we need to find bounds for both sums.

3. The large elements T ∈ Blarge with T ⊆ Bδ are easy to handle, because δ � hT , and
the inverse inequality from L.2.54 already gives us

δ|u|H1(T∩B) ≤ δ|u|H1(T ) � hT |u|H1(T )

L.2.54

� �u�L2(T ) = �u�L2(T∩Bδ).

However, there might be large elements T ∈ Blarge which are not fully contained in
the inflated box Bδ. As a remedy, we first break T into smaller pieces S ⊆ T (cf.
L.2.69). Then, we apply the previous argument only to those pieces S which cover
T ∩B and lie inside of T ∩Bδ.

4. While the large elements can be treated individually, the small elements Bsmall need
to be treated as a group. The proof is a fully discrete version of the continuous
Caccioppoli inequality from L.2.55. There, we used a suitable smooth cut-off function
κ ∈ C∞(Ω) and exploited the orthogonality a(u, κ2u) = 0, which relies on the fact
that κ2u ∈ H1

0 (Ω) may be plugged into the variational equation that defines the
function u ∈ H1

0 (Ω).

Here, in the discrete setting, the fact that max{hT |T ∈ Bsmall} � δ allows us to
employ a suitable discrete cut-off function κ ∈ S1,1(T ) (cf. L.2.77), which lives inside
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a small neighbourhood of Bsmall. However, the product κ2u ∈ Sp+2,1
0 (T ) is not an

element of the FEM space VN = Sp,10 (T ) and we cannot use it as a test function
directly. Therefore, we take an interpolation operator

Jp
T : H2

pw(T ) ∩H1
0 (Ω) −→ Sp,10 (T )

and use Jp
T (κ

2u) ∈ Sp,10 (T ) instead. As it turns out, the induced error κ2u− Jp
T (κ

2u)
does not pose a problem for the validity of the discrete Caccioppoli inequality.

We start with the large elements Blarge:

Lemma 6.9. Let u ∈ Sp,0(T ), B ∈ B and δ > 0. Then, for all T ∈ T (B) with
24σshpσlquhT > δ, there holds the inequality

δ|u|H1(T∩B) ≤ C(d, σshp, σlqu)p
2�u�L2(T∩Bδ).

Proof. Let T ∈ T (B) with 24σshpσlquhT > δ. According to L.2.69, we can find a family
S ⊆ Pow(Rd) of simplices S ⊆ Rd with the following properties:

1. There holds
�

S∈S S = T .

2. Every S ∈ T is �σshp-shape regular, where �σshp = C(d)σshp.

3. There hold the bounds hmax,S ≤ δ ≤ C(d, σshp, σlqu)hmin,S .

We only need the subsimplices that touch the set B,

S(B) := {S ∈ S |S ∩B += ∅}.
First, note that

T ∩B =

� �
S∈S

S

�
∪B =

�
S∈S

(S ∩B) =
�

S∈S(B)

(S ∩B) ⊆
�

S∈S(B)

S.

On the other hand, for every S ∈ S(B), we may pick a point x0 ∈ S ∩ B and find the
following relation:

∀x ∈ S : �x− x0�2 ≤ diam2(S) = hS ≤ hmax,S ≤ δ.

Due to L.2.13, this implies S ⊆ Bδ. In summary, we have

T ∩B ⊆
�

S∈S(B)

S ⊆ T ∩Bδ.

Finally, using the inverse inequality from L.2.67, we compute

δ2|u|2H1(T∩B) � h2min,S |u|2H1(T∩B) ≤
�

S∈S(B)

h2S |u|2H1(S)

L.2.67

�
�

S∈S(B)

p4�u�2L2(S) ≤ p4�u�2L2(T∩Bδ).

Note that the constant from the inverse inequality depends on �σshp, which is bounded
by C(d)σshp. This concludes the proof.

109



6 An application in a FEM setting

Now that the large elements are taken care of, we turn our attention to the small elements
Bsmall. To this end, we introduce the interpolation operator Jp

T that was already mentioned
in the overview paragraph at the beginning of this section.

Lemma 6.10. Suppose d ∈ {1, 2, 3}. There exists a linear operator4

Jp
T : H2

pw(T ) −→ Sp,0(T )

with the following properties:

1. For all v ∈ H2
pw(T ) ∩H1

0 (Ω), there holds Jp
T v ∈ Sp,10 (T ).

2. For all q ∈ N0 and all v ∈ Sq,0(T ), there holds5

suppT (J
p
T v) ⊆ suppT (v).

3. For all v ∈ H2
pw(T ) and all T ∈ T , there holds the error bound

1�
l=0

hlT |v − Jp
T v|Hl(T ) ≤ C(d, σshp)p

(1−d)/2 inf
w∈Pp(T )

2�
l=0

hlT |v − w|Hl(T ).

Proof. Denote by T̂ ⊆ Rd the reference element (cf. D. 2.59). In [MR20], under the
assumption d ∈ {1, 2, 3}, an operator

Ĵp : H(d+1)/2(T̂ ) −→ Pp(T̂ )

with the following properties was constructed:

1. For every v ∈ H(d+1)/2(T̂ ), every k ∈ {0, . . . , d− 1} and every k-simplex Γ̂ ⊆ Rd with
N (Γ̂) ⊆ N (T̂ ) (cf. D.2.57), the value of (Ĵpv)|Γ̂ is uniquely determined by v|Γ̂.

2. For every v ∈ H(d+1)/2(T̂ ), there holds the error bound

�v − Ĵpv�H1(T̂ ) ≤ C(d)p(1−d)/2 inf
w∈Pp(T̂ )

�v − w�H(d+1)/2(T̂ ).

Now, for every v ∈ H2
pw(T ), the image Jp

T v ∈ Sp,0(T ) is defined in a piecewise manner

via the element transformations FT : T̂ −→ T from D.2.65:

(Jp
T v)|T := Ĵp(v ◦ FT ) ◦ F−1

T .

The preservation of global continuity and homogeneous boundary values follows from
the first property of Ĵp. The preservation of discrete supports is clear from the piecewise

4The space Hk
pw(T ) consists of all functions v ∈ L2(Ω) with v|T ∈ Hk(T ), for all T ∈ T .

5Discrete supports suppT (·) were defined in D.2.71.
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definition of Jp
T . Finally, let us derive the error bound. Let v ∈ H2

pw(T ) and T ∈ T .

Denote by v̂ := v ◦ FT ∈ H2(T̂ ) the corresponding pull-back. Then,

1�
l=0

hlT |v − Jp
T v|Hl(T )

L.2.43

� h
d/2
T �v̂ − Ĵpv̂�H1(T̂ ) � p(1−d)/2h

d/2
T inf

ŵ∈Pp(T̂ )
�v̂ − ŵ�H2(T̂ )

� p(1−d)/2 inf
ŵ∈Pp(T̂ )

2�
l=0

h
d/2
T |v̂ − ŵ|Hl(T̂ )

L.2.43

� p(1−d)/2 inf
w∈Pp(T )

2�
l=0

hlT |v − w|Hl(T ).

This concludes the proof.

At this point, we remind the reader of D.2.63 and D.2.73, where we defined the maximal
element diameter hB of a mesh cluster B ⊆ T and also the inflated mesh cluster Bδ, δ > 0.
Now we have everything we need to treat the small elements Bsmall. The following result
can be seen as a discrete version of L.2.55.

Theorem 6.11. Let B ⊆ T and δ > 0 be such that 4σlquhB ≤ δ � 1. Let u ∈ Sp,10 (T ) be

such that, for all v ∈ Sp,10 (T ) with6 suppT (v) ⊆ Bδ, there holds

a(u, v) = 0.

Then, there holds the inequality

δ|u|H1(B) ≤ C(d, σshp, σlqu)p
(9−d)/2�u�L2(Bδ).

Proof. Since we assumed δ ≥ 4σlquhB, we know from L.2.77 that there exists a discrete
cut-off function κ := κδB ∈ S1,1(T ) with the following properties:

suppT (κ) ⊆ Bδ, κ|B ≡ 1, 0 ≤ κ ≤ 1, ∀l ∈ {0, 1} : |κ|W l,∞(Ω) � δ−l.

Denote by Jp
T : H2

pw(T ) −→ Sp,0(T ) the approximation operator from L.6.10. Since the

product κ2u lies in Sp+2,1
0 (T ), we know that

v := Jp
T (κ

2u) ∈ Sp,10 (T ).

Furthermore, we have

suppT (v) = suppT (J
p
T (κ

2u))
L.6.10⊆ suppT (κ

2u) ⊆ suppT (κ) ⊆ Bδ.

In particular, the assumption on u tells us that a(u, v) = 0. Then, using an element-wise
stability bound of a(·, ·) (similar to L.6.2), we compute

a(u, κ2u) = a(u, κ2u− v) = a(u, (id− Jp
T )(κ

2u)) �
�
T∈Bδ

�u�H1(T )�(id− Jp
T )(κ

2u)�H1(T ).

6For the definition of Bδ, see D.2.73.
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In order to bound the error term, we choose a point x0 ∈ T such that |κ(x0)| =
minx∈T |κ(x)|. Since κ± κ(x0) ∈ P1(T ), L.2.66 provides us with the following bounds:

�κ+ κ(x0)�L∞(T ) � min
x∈T

|κ(x) + κ(x0)|+ hT |κ+ κ(x0)|W 1,∞(T ) � |κ(x0)|+ hT δ
−1,

�κ− κ(x0)�L∞(T ) � min
x∈T

|κ(x)− κ(x0)|+ hT |κ− κ(x0)|W 1,∞(T ) � hT δ
−1.

Therefore,

�(id− Jp
T )(κ

2u)�H1(T )

L.6.10

� p(1−d)/2h−1
T inf

w∈Pp(T )

2�
l=0

hlT |κ2u− w|Hl(T )

L.2.67

� p(9−d)/2h−1
T inf

w∈Pp(T )
�κ2u− w�L2(T )

≤ p(9−d)/2h−1
T �κ2u− κ(x0)

2u�L2(T )

≤ p(9−d)/2h−1
T �κ+ κ(x0)�L∞(T )�κ− κ(x0)�L∞(T )�u�L2(T )

� p(9−d)/2δ−1(|κ(x0)|+ hT δ
−1)�u�L2(T ).

Recall that the element-wise stability bound for a(u, κ2u) requires us to multiply both
sides with �u�H1(T ) 	 �u�L2(T )+ |u|H1(T ). On the right-hand side, the following two terms
emerge:

(|κ(x0)|+ hT δ
−1)�u�2L2(T ) � δ−1�u�2L2(T ),

(|κ(x0)|+ hT δ
−1)|u|H1(T )�u�L2(T )

L.2.67

� �κ∇u�L2(T )�u�L2(T ) + p2δ−1�u�2L2(T ).

We summarize our findings:

a(u, κ2u) �
�
T∈Bδ

�u�H1(T )�(id− Jp
T )(κ

2u)�H1(T )

� p(9−d)/2δ−1
�
T∈Bδ

(|κ(x0)|+ hT δ
−1)(�u�2L2(T ) + |u|H1(T )�u�L2(T ))

� p(9−d)/2δ−1
�
T∈Bδ

p2δ−1�u�2L2(T ) + �κ∇u�L2(T )�u�L2(T )

C.S.

� p(13−d)/2δ−2�u�2L2(Bδ) + p(9−d)/2δ−1�κ∇u�L2(Ω)�u�L2(Bδ).

On the other hand, we can use the definition of a(·, ·) from D.6.1 to expand the term
a(u, κ2u) explicitly. One of the summands is amenable to the coercivity of the PDE co-
efficient a1. In particular, using Hölder’s inequality and Young’s inequality with a free
parameter ε > 0, we get

�κ∇u�2L2(Ω) � 
a1κ∇u, κ∇u�L2(Ω)

= a(u, κ2u)− 2
a1κ∇u, u∇κ�L2(Ω) − 
a2 ·∇u, κ2u�L2(Ω) − 
a3u, κ2u�L2(Ω)

� p(13−d)/2δ−2�u�2L2(Bδ) + p(9−d)/2δ−1�κ∇u�L2(Ω)�u�L2(Bδ)

� ε−1p9−dδ−2�u�2L2(Bδ) + ε�κ∇u�2L2(Ω).
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Since the Young parameter ε can be chosen arbitrarily small, we may absorb the last
summand in the left-hand side of the overall inequality. Finally,

δ|u|H1(B) = δ�κ∇u�L2(B) ≤ δ�κ∇u�L2(Ω) � p(9−d)/2�u�L2(Bδ).

This concludes the proof.

Remark 6.12. During the proof of T.6.11, the interpolation operator Jp
T : H2

pw(T ) −→
Sp,0(T ) from L.6.10 was used to turn the function κ2u into an element of the ansatz space
VN = Sp,10 (T ). However, since κ2u lies in the discrete space Sp+2,1

0 (T ) anyways, we could
achieve the same result with a similar operator J̃p

T : Sp+2,0(T ) −→ Sp,0(T ), which we
constructed in an earlier work (cf. [AFM22, Lemma 3.9.]). The advantage of J̃p

T over Jp
T

is that its proof was carried out in an arbitrary space dimension d ∈ N, whereas [MR20]
assumed d ∈ {1, 2, 3}. In compensation, J̃p

T would produce worse powers of p, because
[AFM22, Lemma 3.9.] was derived in the “wrong” norms. L.6.10 is the only reason why
this chapter is limited to space dimensions d ∈ {1, 2, 3}.
We finish this section with the complete proof of the discrete Caccioppoli inequality

from A.4.19. As discussed in the overview paragraph of this section, the trick is to consider
“small” and “large” elements separately.

Corollary 6.13. Denote by σshp, σlqu ≥ 1 the mesh related quantities from D.2.60. Then,
A.4.19 is satisfied with a constant

σCacc = C(d, σshp, σlqu)p
(9−d)/2.

Proof. Let B,D ∈ B and δ > 0 be such that Bδ ∩ D = ∅. Furthermore, let u ∈ Vsol(D).
We divide the patch

T (B) = {T ∈ T |T ∩B += ∅}
into the groups

Bsmall := {T ∈ T (B) | 24σshpσlquhT ≤ δ},
Blarge := {T ∈ T (B) | 24σshpσlquhT > δ}

and start estimating:

δ2|u|2H1(Ω∩B) = δ2
�

T∈T (B)

|u|2H1(T∩B) ≤ δ2|u|2H1(Bsmall)
+

�
T∈Blarge

δ2|u|2H1(T∩B).

First, we treat the individual large elements with L.6.9:�
T∈Blarge

δ2|u|2H1(T∩B)

L.6.9

�
�

T∈Blarge

p4�u�2L2(T∩Bδ) ≤
�
T∈T

p4�u�2L2(T∩Bδ) = p4�u�2L2(Ω∩Bδ).

It remains to take care of the small elements, which we now abbreviate by B := Bsmall.
We want to apply T.6.11 to the set B, the parameter ε := (6σshp)

−1δ > 0 and the function
u. First, we check that ε is indeed a viable choice:

4σlquhB ≤ 4σlquδ

24σshpσlqu
= ε.
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Next, we need to verify the assumption on the function u. To this end, consider a test
function v ∈ Sp,10 (T ) with suppT (v) ⊆ Bε. Since B ⊆ T (B) and since 3hB ≤ 24σshpσlquhB ≤
δ, we have

supp(v) ⊆
�

suppT (v) ⊆
�

Bε
L.2.74⊆ Ω ∩Bδ.

In particular, for all n ∈ ι(D) (cf. D.4.17), there holds7

|
λn, v�∗|
L.6.7

� �v�L2(Ωn)

n∈ι(D)

≤ �v�L2(D)
Bδ∩D=∅

= 0.

According to D.4.18, we can write u in the form8 u = SNΛf (for some f ∈ RN with
supp(f) ⊆ ι(D)), so that

a(u, v) = a(SNΛf , v)
D.4.6
= 
Λf , v�∗ D.4.13

=

� N�
n=1

fnλn, v

�
∗
=

�
n∈ι(D)

fn
λn, v�∗ = 0.

We may then apply T.6.11 and obtain the following bound:

δ2|u|2H1(Bsmall)
	 ε2|u|2H1(B)

T.6.11

� p9−d�u�2L2(Bε) ≤ p9−d�u�2L2(Ω∩Bδ).

Note that p9−d ≥ p4, because d ∈ {1, 2, 3}. Finally, we combine the estimates for both
groups:

δ2|u|2H1(Ω∩B) � (p9−d + p4)�u�2L2(Ω∩Bδ) � p9−d�u�2L2(Ω∩Bδ).

This concludes the proof.

6.7 A corollary

Now that we completed all the necessary steps for the application of T.4.21, we summarize
our findings in a corollary:

Corollary 6.14. Let p ∈ N. Denote by A ∈ RN×N the Gram matrix that corresponds
to the bilinear form a(·, ·) from D.6.1 and the FEM basis {ϕ1, . . . , ϕN} ⊆ Sp,10 (T ) from
D.6.3. Assume that the block partition P2 from C.3.42 is constructed using the parameter
σsmall :=

�
d+p
d

�
. Then, for every r ∈ N, there exists an H-matrix

Br ∈ H(P2, r)

with the following properties:

1. The memory requirements to store Br can be bounded by

C(d,Ω, σshp, σadm)(p
d + r) ln(h−1

min,T )N.

7The implicit constant is of the form C(d, σshp, p, γ, hmin,T ).
8The operators SN : V ∗

N −→ VN and Λ : Rd −→ V ∗
N were defined in D.4.6 and D.4.13, respectively.
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2. There exist numbers C0 ≥ 1 and σexp > 0 of the form9

C0 = C(d,Ω, α1, α2, α3, σshp, σlqu, σadm),

σexp = C(d,Ω, σshp, σlqu, σadm)
−1p−(9−d)/2

such that the following error bound is satisfied:

�A−1 −Br�2 ≤ C0p
d+2γ ln(h−1

min,T )h
−d
min,T exp(−σexpr

1/(d+1)).

Proof. Over the course of L.6.2, L.6.6, L.6.7, L.6.8 and C.6.13, we derived the following
relations:

σcoco = C(d,Ω, α1, α2, α3), k0 = 0, σstab = C(d, σshp)p
γh

−d/2
min,T ,

σovlp =

�
d+ p

d

�
, σsprd = C(Ω), hmin ≥ hmin,T , σCacc = C(d, σshp, σlqu)p

(9−d)/2.

Ad item 1: The bound on the storage complexity from T.4.21 now reads

C(d, σshp, σsprd, σadm)(σsmall + r) ln(h−1
min)N ≤ C(d,Ω, σshp, σadm)(p

d + r) ln(h−1
min,T )N.

Ad item 2: The numbers C0 and σexp from T.4.21 become

C0
T.4.21
= C(d, k,Ω, σcoco, σshp, σsprd, σadm) = C(d,Ω, α1, α2, α3, σshp, σadm)

and

σexp
T.4.21
= C(d, k,Ω, σsprd, σadm)

−1σ−1
Cacc = C(d,Ω, σshp, σlqu, σadm)

−1p−(9−d)/2.

Finally, the prefactor in the error bound from T.4.21 turns into

σ2
stabσovlpσ

k0
Cacc ln(h

−1
min)h

−k0
min � (pγh

−d/2
min,T )

2pd ln(h−1
min,T )

= pd+2γ ln(h−1
min,T )h

−d
min,T .

Note that C.6.14 holds true for any simplicial mesh T as defined in D.2.60. However,
in order to get a useful complexity bound, we need to make an assumption about the
relationship between hmin,T and N . In fact, in the extreme case hmin,T 	 e−N , the com-
plexity bound reads O(N2) and the result becomes useless. For a large class of meshes, the
dependence of hmin on N is of algebraic nature and we get satisfactory results.

Definition 6.15. Let Ω ⊆ Rd be a polyhedron (D.2.62) and let T ⊆ Pow(Ω) be a mesh. Let
Γ ⊆ Ω be a set with10 T ◦∩Γ = ∅, for all T ∈ T . Furthermore, let H > 0 and σgrade ∈ [1,∞].
We say that T has grading σgrade, if there exists a constant C := C(d,Ω,Γ) ≥ 1, such that
the following relation is satisfied11:

∀T ∈ T : C−1hT ≤ dist2(xT ,Γ)
1−1/σgradeH ≤ ChT .

The case σgrade = 1 is called uniform grading, the case σgrade ∈ (1,∞) is an algebraic
grading and the case σgrade = ∞ is an exponential grading.

9The constants α1, α2, α3 were introduced in the initial problem statement, Section 6.1.
10In other words, Γ is a subset of the mesh’s skeleton.
11Recall from D.2.63 that, for every mesh element T ∈ T , we fixed an incenter xT ∈ T .
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We mention that the notion of “gradedness” can easily be formulated for general points
clouds x1, . . . , xN ∈ Rd as well. Later, in Section 7.10, we will look at several examples of
graded point clouds.

Lemma 6.16. Denote by Γ ⊆ Ω, H > 0 and σgrade ∈ [1,∞] the quantities from D.6.15. If
σgrade ∈ [1,∞), then there exist constants C(d,Ω, σshp,Γ, σgrade) ≥ 1 such that

(#T )−σgrade/d � Hσgrade � hmin,T ≤ hT � H.

Proof. Since 1− 1/σgrade ≥ 0, we can estimate

hT = max
T∈T

hT
D.6.15

� max
T∈T

dist2(xT ,Γ)
1−1/σgradeH ≤ diam2(Ω)

1−1/σgradeH � H.

On the other hand, for every T ∈ T , we have

Ball2(xT , (2σshp)
−1hT ) ∩ Γ

L.2.17⊆ T ◦ ∩ Γ
D.6.15
= ∅.

This implies dist2(xT ,Γ) ≥ (2σshp)
−1hT and we get

hT
D.6.15

� dist2(xT ,Γ)
1−1/σgradeH � h

1−1/σgrade

T H.

Since it was assumed that σgrade < ∞, we can easily solve for hT and obtain the relation
hT � Hσgrade . Taking the minimum over all T ∈ T , it follows that hmin,T � Hσgrade .
Finally, we estimate

1 � meas(Ω) =
�
T∈T

meas(T )
L.2.17≤

�
T∈T

hdT ≤ (#T )hdT � (#T )Hd,

and deduce (#T )−1/d � H.

Uniformly- or algebraically graded meshes indeed yield good complexity bounds.

Corollary 6.17. If T is a mesh with grading σgrade ∈ [1,∞), then C.6.14 holds verbatim
with a complexity bound of the form

O((pd + r) ln(N)N).

Proof. Follows immediately from L.6.16 and the crude bound

#T ≤ pd#T 	 dim(Sp,10 (T ))
D.6.3
= N.
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If T is exponentially graded, i.e., σgrade = ∞, then we cannot say anything about the
relationship between hmin and N . In Figure 6.1 (third image from the left), we show an
example of exponential grading towards an edge of the unit square in R2. In this case, the
relationship is of the form hmin,T 	 N−1. However, in the fourth image, the exponential
grading steers towards a corner and the relationship reads hmin,T 	 2−N .

Figure 6.1: From left to right: Uniform, algebraically graded towards edge, exponentially
graded towards edge, exponentially graded towards corner. The complexity
bound from C.6.17 is satisfied in the first, second and third case, but not in the
last one.

We close this section with a remark on exponentially graded meshes.

Remark 6.18. One possible application of exponentially graded meshes can be found in the
context of the boundary concentrated FEM, e.g., [KM02] and [KM03]. This method is sim-
ilar to the boundary element method (BEM), in that most mesh element lie on the boundary
of Ω. However, we mention that C.6.14 is not directly applicable to this method, because
[KM03] replaces the (constant-degree) spline spaces Sp,10 (T ) from D.2.70 with varying-degree

spline spaces Sp,10 (T ), p = {pT |T ∈ T }.

6.8 Numerical examples

In this subsection, we illustrate the validity of C.6.14 by means of several numerical exam-
ples. The examples are taken from [AFM21a, Section 4] and [AFM22, Section 5].

6.8.1 Algebraic grading

For the geometry we choose the L-shape Ω := ((0, 1) × (0, 1))\([1/2, 1] × [1/2, 1]) ⊆ R2

in two space dimensions. The PDE coefficients for the model problem from Section 6.1
are given by a1(x) = ( 10 −1

−1 1 ), a2(x) := ( 10x2
0 ) and a3(x) := 1. The mesh T has grading

σgrade = 5 towards Γ := {(1/2, 1/2)} and the coarse mesh width is given by H := 0.0095.

We use the lowest-order spline space S1,10 (T ) from D.2.70 and the basis of hat-functions

{ϕ1, . . . , ϕN} ⊆ S1,10 (T ) (cf. L.2.72). The block partition P2 is then constructed using the
clustering strategy from Chapter 3 and the clustering parameters are set to σadm := 2 and
σsmall := 25 (cf. C.3.42).
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Since the approximant Br ∈ H(P2, r) from C.6.14 is of theoretical nature, we revert to
the truncated SVDs from Section 3.1. First, we compute the exact inverse A−1 ∈ RN×N

explicitly. Then, for every admissible block A−1|I×J , we compute the first r ∈ {1, . . . , 50}
singular values and end up with the following computable error bound:

�A−1 −Br�2
C.3.42

� ln(h−1
min) max

(I,J)∈P2
adm

σr+1(A
−1|I×J).

The numerical example is implemented in MATLAB ([MAT]). For the inversion of the full
matrix A ∈ RN×N we use MATLAB’s built-in procedure inv(...). For the SVDs we use
svds(...). Recall that an exact matrix inversion needs O(N2) memory and O(N3) time
to compute, which effectively restricts the maximal feasible problem size to N ≈ 70.000 on
our machine.

Figure 6.2: The mesh T , the box tree T (cf. D.3.17) and the block partition P2 (cf. C.3.42)
for N ≈ 2.000 degrees of freedom.

In Figure 6.2, we choose N ≈ 2.000 degrees of freedom. The elements are graded towards
the reentrant corner with a grading exponent σgrade = 5. The cluster tree T is clearly deeper
near the grading center. The block partition P2 uses sorted indices internally. Only a few
admissible blocks are far away from the diagonal, lots of small blocks agglomerate along
the diagonal. The sparsity pattern becomes more pronounced as N → ∞.
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Figure 6.3: Approximation error and memory allocation for N ≈ 72.000 degrees of freedom.

In Figure 6.3, we choose N ≈ 72.000 degrees of freedom. The computable error bound
from above (for r ∈ {1, . . . , 50}) is depicted on a linear abscissa and a logarithmic ordinate.
The values are below a straight line with slope −0.37 indicating an exponential decay
error(r) � 10−0.37r. This is even better than the theoretical bound from C.6.14 and might
be attributable to the fact that block-wise truncated SVDs produce the best possible H-
matrix approximant, whereas C.6.14 produces some H-matrix approximant. The allocated
memory in MBytes is plotted on a linear abscissa and a linear ordinate. The values are
below a straight line with slope 103.57 indicating a polynomial growth memory(r) � r.
Choosing a rank bound r = 37, for example, gives an approximation error ≈ 10−14 and
uses ≈ 4.2 GByte memory. In comparison, the full matrixA−1 takes ≈ 41.4 GByte memory.

Figure 6.4: Comparison of approximation errors for different grading parameters, σgrade ∈
{1, 2, 3, 4, 5}. The number of degrees of freedom is kept constant at roughly
N ≈ 17.500 throughout all five runs.

Finally, in Figure 6.4, we choose N ≈ 17.500 degrees of freedom and multiple grading
exponents in the range {1, 2, 3, 4, 5}. The case σgrade = 1 corresponds to a uniform mesh,
whereas σgrade = 5 is “heavily” graded. Again, the computable error bound from above is
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shown on a linear abscissa and a logarithmic ordinate. The convergence speed seems to be
largely independent of the grading exponent σgrade.

6.8.2 Exponential grading

Next, we take a look at an example on the unit square Ω := (0, 1)× (0, 1) ⊆ R2. The mesh
T is exponentially graded towards the left edge (Γ := {0} × [0, 1], H := 0.25, σgrade = ∞
in D.6.15). To get a computable error bound, we proceed as in Section 6.8.1, i.e., A−1 is
computed exactly and we use block-wise truncated SVDs.

Figure 6.5: Left: The mesh T . Center: The block partition P. Right: Empirical approxi-
mation errors.

The right-hand image in Figure 6.5 depicts a comparison between three different problem
sizes of roughly N ≈ 15.000, N ≈ 21.500 and N ≈ 31.000 degrees of freedom. The error
appears to decline at a rate of exp(−2.5r), which is again much better than our theoretical
prediction exp(−σexpr

1/3) from C.6.14.

6.8.3 Some H-arithmetic12

In this final example, we use the same mesh T as in Section 6.8.2, but we increase the
polynomial degree to p ∈ {5, 6}. We employ a combination of the finite element code
NGSolve from [NGS] (which is capable of higher order polynomials) and the H-matrix
library H2Lib from [H2L]. Both libraries are coupled using a code which was previously
used in [EMM+21]. We use the polynomial degrees p = 5 and p = 6, which lead to problem
sizes of N ≈ 5.800 and N ≈ 17.000, respectively. This time, an H-matrix approximant
Br is computed via an H-Cholesky decomposition A ≈ LHLT

H and a subsequent inversion
thereof. We then use the error measure

�A−1 − (LHLT
H)−1�2

�A−1�2
≤ �I − (LHLT

H)
−1A�2,

12This experiment was performed by Dr. Markus Faustmann, a co-author of [AFM22].
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6 An application in a FEM setting

which does not involve an explicit inversion of A−1. Figure 6.6 shows exponential conver-
gence of this error measure.

Figure 6.6: Exponential convergence of H-matrix approximations for p ∈ {5, 6}.
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7 An application in an RBF setting

Amajor drawback of mesh-based approximation schemes (such as the finite element method
from the previous chapter) is the necessity for good mesh-generation algorithms. To allevi-
ate this problem, a variety of so-called mesh-less methods has been developed over a period
of more than four decades. In this chapter, we take a look at a radial basis function (RBF)
interpolation problem and show how this seemingly unrelated problem can be expressed in
the framework of our main result, T.4.21.
Inspiration for this part of the thesis was mainly taken from the book [Wen05], which

provides a comprehensive introduction to the theory of radial basis functions. However, we
mention that [Wen05] uses mostly Fourier transformation techniques, whereas the present
text focuses more on the variational aspects of the theory. For an overview of general
meshless methods, we refer to [DO95] and also [WQ19, Chapter 1].
The structure of this chapter is identical to the one of Chapter 6. We formulate the basic

model problem, find the appropriate functional analytic setting, verify the assumptions
from Section 4.6 and develop bounds for the quantities σcoco, k0, σstab, σshp, σovlp, σsprd
and hmin. Finally, we summarize our findings in a corollary of T.4.21.

7.1 An interpolation problem

Figure 7.1: An interpolation problem in 1D.

Let d ∈ N and N ∈ N. We consider a family of functions {ϕ1, . . . , ϕN} ⊆ C0(Rd) of the
form

ϕn := ϕ(· − xn),

where ϕ ∈ C0(Rd) is fixed and where x1, . . . , xN ∈ Rd are given (pairwise distinct) inter-
polation points. Furthermore, let f ∈ RN be a given vector of target values. We seek a
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7 An application in an RBF setting

solution u ∈ span {ϕ1, . . . , ϕN} of the following interpolation problem:

∀m ∈ {1, . . . , N} : u(xm) = fm.

7.2 The radial basis function ϕ

If we want to apply the results from Chapter 4, we first have to find a weak formulation
of the interpolation problem. To this end, we need to express the point evaluations of u
as integrals. This can be achieved via Fourier transformation techniques. Here, we use the
following definition of Fourier transforms: For all f ∈ L1(Rd) and all y ∈ Rd,

�f(y) := (2π)−d/2

�
Rd

f(x)e−i�y,x�2 dx, f̌(y) := (2π)−d/2

�
Rd

f(x)ei�y,x�2 dx.

We also use the symbols Ff := �f and F−1f := f̌ . For basic properties of Fourier
transforms, we refer the reader to, e.g., [Yos80, Chapter 6] or [Eva10, Section 4.3.].

Definition 7.1. Let k ∈ N with k > d/2 and let b ∈ (0,∞). We consider the following
radial basis function1

∀x ∈ Rd : ϕ(x) :=
(4π)−d/2

Γ(k)

∞�
0

tk−d/2−1e−b2te−
x
22/(4t) dt.

Note that ϕ is indeed a radial function, i.e., ϕ(x) only depends on �x�2. We mention
that ϕ can also be written in the form

ϕ(x) =
(2π)−d/2

2k−1Γ(k)

��x�
b

�k−d/2

Kk−d/2(b�x�),

which goes by the name of Matérn function, Sobolev spline or Bessel potential in the
literature (e.g., [AS61]). Here,

Kν(r) :=

∞�
0

e−r cosh(s) cosh(νs) ds =

∞�
−∞

e−r(es+e−s)/2eνs/2 ds

is the well-known modified Bessel function of the second kind. The formula for ϕ(x) can be
derived by plugging in ν = k − d/2 and r = b�x� and then substituting s = ln(2bt/�x�).
Furthermore, in the case where d ∈ {1, 3, 5, . . . }, there holds the explicit representation

ϕ(x) =
(4π)(1−d)/2

Γ(k)(2b)2L+1

L�
l=0

(2L− l)!

l!(L− l)!
(2b�x�)le−b
x
 , L := k − d/2− 1/2 ∈ N0.

1Here, Γ(k) :=
�∞
0

tk−1e−t dt is the Gamma function.

123



7 An application in an RBF setting

This follows easily from the known identity

KL+1/2(r) =

L�
l=0

π1/2(L+ l)!

l!(L− l)!

e−r

(2r)l+1/2
,

which can be found, e.g., in [GR07, Page 925].
The relevant properties of the function ϕ are summarized in the next lemma, which is

taken from [AFM21b, Lemma 2.10.]:

Lemma 7.2. 1. For all x0 ∈ Rd, there holds ϕ(· − x0) ∈ Hk(Rd). In particular, ϕ ∈
Hk(Rd).

2. The function ϕ is a fundamental solution of the differential operator

D2k := (b2 −Δ)k =
k�

l=0

�
k

l

�
b2(k−l)(−Δ)l.

More precisely, there holds the following identity:

∀x0 ∈ Rd : ∀v ∈ C∞
0 (Rd) :

�
Rd

ϕ(x− x0)(D
2kv)(x) dx = v(x0).

Proof. Ad item 1: Using the substitution t = s/b2 and the assumption k > d/2, we can
check that the integral defining ϕ(x) is indeed well-defined:

∞�
0

|tk−d/2−1e−b2te−
x
2/(4t)| dt ≤
∞�
0

tk−d/2−1e−b2t dt

= bd−2k

∞�
0

sk−d/2−1e−s ds =
Γ(k − d/2)

b2k−d
< ∞.

In fact, using Fubini’s Theorem for non-negative integrands and the transformations
x =

√
ty and t = s/b2, we find that ϕ ∈ L1(Rd):

�ϕ�L1(Rd) 	
∞�
0

tk−d/2−1e−b2t

�
Rd

e−
x
2/(4t) dx dt

=

� ∞�
0

tk−1e−b2t dt

���
Rd

e−
y
2/4 dy
�

=
C(d)Γ(k)

b2k
< ∞.

Next, we compute the Fourier transform of ϕ. Recall (e.g., [Yos80, Chapter 6]) that the
Gauß kernel e−
·
2/2 is a fixpoint of the Fourier transform and that there holds the relation
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7 An application in an RBF setting

F(e−
·
2/(4t))(y) = (2t)d/2e−t
y
2 for all t > 0 and y ∈ Rd. Substituting t = s/(b2 + �y�2),
we obtain the following expression:

�ϕ(y) =
(4π)−d/2

Γ(k)

∞�
0

tk−d/2−1e−b2tF(e−
·
2/(4t))(y) dt

=
(2π)−d/2

Γ(k)

∞�
0

tk−1e−(b2+
y
2)t dt =
(2π)−d/2

(b2 + �y�2)k .

Using polar coordinates, a straightforward computation shows that �ϕ ∈ L1(Rd)∩L2(Rd)
and we know from theory that then also ϕ ∈ L2(Rd) (e.g., [Eva10, Section 4.3.1.]). A similar
computation reveals (1 + � · �2)k/2 �ϕ ∈ L2(Rd) and it follows that even ϕ ∈ Hk(Rd) (e.g.,
[Eva10, Section 5.8.5.]). Finally, a simple integral transformation also yields ϕ(· − x0) ∈
Hk(Rd), for all x0 ∈ Rd.
Ad item 2: Let x0 ∈ Rd and v ∈ C∞

0 (Rd). Using standard Fourier manipulation rules
and the explicit formula for �ϕ, we compute�

Rd

ϕ(x− x0)(D
2kv)(x) dx =

�
Rd

ϕ(x− x0)F((b2 + � · �2)kv̌)(x) dx

=

�
Rd

�ϕ(y)e−i�x0,y�(b2 + �y�2)kv̌(y) dy = (2π)−d/2

�
Rd

v̌(y)e−i�x0,y� dy = v(x0).

This concludes the proof.

7.3 The space V

L.7.2 provides a hint about the “correct” function space setting for the interpolation prob-
lem from Section 7.1.

Definition 7.3. Denote by k ∈ N and b ∈ (0,∞) the parameters from D.7.1. Let Ω := Rd.
We consider the native space

V := Hk(Rd)

and equip it with the following bilinear form:

∀u, v ∈ V : a(u, v) :=
k�

l=0

�
k

l

�
b2(k−l)

�
|α|=l

l!

α!

Dαu,Dαv�L2(Rd).

Note that V also carries its natural inner product and norm from D.2.37, 
·, ·�Hk(Rd) and
� · �Hk(Rd).

Lemma 7.4. 1. The space V satisfies the requirements from D.4.1.
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7 An application in an RBF setting

2. The bilinear form a(·, ·) defines an inner product on V and the induced norm � · �a
is equivalent to the natural norm � · �Hk(Rd):

∀v ∈ V : C(d, k, b)−1�v�Hk(Rd) ≤ �v�a ≤ C(d, k, b)�v�Hk(Rd).

In particular, a(·, ·) is continuous and coercive in the sense of D.4.2 with a constant

σcoco = C(d, k, b).

Additionally, for all u, v ∈ V , there holds the local stability bound

|a(u, v)| ≤ C(d, k, b)�u�Hk(supp(v))�v�Hk(supp(u)).

3. There holds the inclusion V ⊆ C0(Rd) along with the following stability bound:

∀v ∈ V : �v�C0(Rd) ≤ C(d, k)�v�Hk(Rd).

In particular, every v ∈ V has well-defined point values.

4. The subspace C∞
0 (Rd) ⊆ V is dense with respect to � · �Hk(Rd) (and also with respect

to � · �a).
5. Denote by ϕ the radial basis function from D.7.1. Then, for all x0 ∈ Rd, there holds

ϕ(· − x0) ∈ V . In particular, ϕ ∈ V .

6. There holds the following reproducing kernel formula2

∀v ∈ V : ∀x0 ∈ Rd : a(v, ϕ(· − x0)) = v(x0).

Proof. Item 1 is trivial and items 3, 4 and 5 follows from T.2.50, T.2.41 and L.7.2, respec-
tively.
Ad item 2: The norm equivalence � · �Hk(Rd) 	 � · �a follows immediately from the defini-

tion of the natural inner product 
·, ·�Hk(Rd) in D.2.37 and the fact that
�
k
l

�
b2(k−l)l!/α! 	 1.

In particular, a(·, ·) is strictly positive definite and defines an inner product on V . To see
the local stability bound, we compute, for all u, v ∈ V ,

|a(u, v)| �
�
|α|≤k

|
Dαu,Dαv�L2(Ω)| � �u�Hk(supp(v))�v�Hk(supp(u)).

Ad item 6: Let v ∈ C∞
0 (Ω), x0 ∈ Rd and bbreviate ϕ0 := ϕ(·−x0) ∈ V . Using successive

2In particular, the triple (V, a(·, ·), ϕ(· − ·)) constitutes a so-called reproducing kernel Hilbert space. See,
e.g., [Wen05, Section 10.1] for more details on this matter.
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partial integrations, we have,

a(v, ϕ0) =

k�
l=0

�
k

l

�
b2(k−l)

�
|α|=l

l!

α!

Dαv,Dαϕ0�L2(Rd)

=
k�

l=0

(−1)l
�
k

l

�
b2(k−l)

� �
|α|=l

l!

α!
D2αv, ϕ0

�
L2(Rd)

=
k�

l=0

�
k

l

�
b2(k−l)
(−Δ)lv, ϕ0�L2(Rd)

L.7.2
= 
D2kv, ϕ0�L2(Rd)

=

�
Rd

(D2kv)(x)ϕ(x− x0) dx
L.7.2
= v(x0).

Now, consider a general v ∈ V . Since C∞
0 (Rd) ⊆ V is dense (see item 3), we can find

a sequence (vn)n∈N ⊆ C∞
0 (Rd) with �v − vn�Hk(Rd)

n−→ 0. In particular, by the previous
argument, a(vn, ϕ(· − x0)) = vn(x0), so that

|a(v, ϕ0)− v(x0)| ≤ |a(v, ϕ0)− a(vn, ϕ0)|+ |vn(x0)− v(x0)|
≤ �v − vn�a�ϕ0�a + �vn − v�C0(Rd)

Items 1,2

� (�ϕ0�a + 1)�v − vn�Hk(Rd)
n−→ 0.

The proof is then complete.

7.4 The space VN

Next, we need to fix the discrete ansatz space VN ⊆ V from D.4.3 along with a basis
{ϕ1, . . . , ϕN} ⊆ VN . This time, in contrast with the FEM setting (cf. D.6.3), we pick the
basis functions ϕn first and the space VN last.

Definition 7.5. Let ϕ ∈ V be defined as in D.7.1. Let N ∈ N and denote by x1, . . . , xN ∈
Rd the interpolation points from Section 7.1. For all n ∈ {1, . . . , N}, we set

ϕn := ϕ(· − xn) ∈ V.

Furthermore, let
VN := span {ϕ1, . . . , ϕN} ⊆ V.

Lemma 7.6. The system {ϕ1, . . . , ϕN} ⊆ V is linearly independent. In particular, there
holds dim(VN ) = N .

Proof. In the upcoming L.7.12, we will construct a family of linear functionals λ̃1, . . . , λ̃N ∈
V ∗
N with 
λ̃n, ϕm�∗ = δnm. In particular, if c ∈ RN is such that

�N
m=1 cmϕm ≡ 0, then, for

all n ∈ {1, . . . , N},

0 = 
λ̃n, 0�∗ =
�
λ̃n,

N�
m=1

cmϕm

�
∗
=

N�
m=1

cm
λ̃n, ϕm�∗ = cn.
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7.5 A weak formulation

The reproducing kernel formula from L.7.4 allows us to write the interpolation problem
from Section 7.1 in weak form. Recall that, given target values f ∈ RN , we want to find a
function u ∈ span {ϕ1, . . . , ϕN} = VN such that u(xm) = fm, for all m ∈ {1, . . . , N}. The
point values of u can be expressed in the form u(xm) = a(u, ϕm). To encode the right-hand
side in a linear functional f ∈ V ∗

N , we use the dual basis λ1, . . . , λN ∈ V ∗
N from D.4.10 and

the coordinate mapping Λ : RN −→ V ∗
N from D.4.13:

f := Λf =
N�

n=1

fnλn ∈ V ∗
N .

Indeed, for all m ∈ {1, . . . , N}, we have


f, ϕm�∗ =
N�

n=1

fn
λn, ϕm�∗ = fm.

In particular, the interpolation problem from Section 7.1 fits into the setting from P.1.2
and L.4.5: Find u ∈ VN such that

∀v ∈ VN : a(u, v) = 
f, v�∗.
However, note that there is no “continuous” equivalent on the full space V (comparable

to P.1.1), because the original interpolation problem from Section 7.1 already has a discrete
character.

7.6 The dual basis λ1, . . . , λN

Following the same steps as in Chapter 6, our next goal is to find a local stability bound
for the dual basis {λ1, . . . , λN} ⊆ V ∗

N .

Definition 7.7. Denote by x1, . . . , xN ∈ Rd the interpolation points from Section 7.1. We
define the separation distance

hsep := min
m,n∈{1,...,N}

m �=n

�xn − xm�2 > 0.

Definition 7.8. For all n ∈ {1, . . . , N}, we set

Ωn := Ball2(xn, hsep/2).

The value of hsep is chosen such that these balls are essentially pairwise disjoint.

Lemma 7.9. 1. For all m,n ∈ {1, . . . , N} with m += n, there holds

Ω◦
m ∩ Ω◦

n = ∅.
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2. The quantity hmin from D.4.12 satisfies

hmin = hsep.

Proof. Ad item 1: Follows from L.2.7 and the fact that, for all m,n ∈ {1, . . . , N} with
m += n, there holds

hsep/2 + hsep/2 = hsep
D.7.7
= min

m̃,ñ∈{1,...,N}
m̃ �=ñ

�xñ − xm̃�2 ≤ �xn − xm�2.

Ad item 2: We compute

hmin
D.4.12
= min

n∈{1,...,N}
hΩn = min

n∈{1,...,N}
diam2(Ball2(xn, hsep/2)) = hsep.

Up until this point, we have not made any assumptions about the interpolation points
x1, . . . , xN that would allows us to make an inference about the spread factor σsprd from
D.2.21.

Assumption 7.10. We assume that there exists a number σsprd ≥ 1, independent of N ,
such that

2 · max
m,n∈{1,...,N}

�xm − xn�2 ≤ σsprd.

The name “σsprd” for the constant in A.7.10 is not a coincidence.

Lemma 7.11. Denote by σsprd ≥ 1 the constant from A.7.10. The characteristic sets
Ω1, . . . ,ΩN ⊆ Rd from D.7.8 have shape-regularity σshp, overlap σovlp and spread σsprd,
where

σshp = σovlp = 1.

Proof. Since the sets Ωn = Ball2(xn, hsep/2) are balls with pairwise disjoint interiors (cf.
L.7.9), it is clear that σshp = σovlp = 1. To compute the spread, let m,n ∈ {1, . . . , N},
x ∈ Ωm and y ∈ Ωn. Then,

�y − x�2 ≤ �y − xn�2 + �xn − xm�2 + �xm − x�2 ≤ hsep/2 + �xn − xm�2 + hsep/2

D.7.7
= �xn − xm�2 + min

m̃,ñ∈{1,...,N}
m̃ �=ñ

�xñ − xm̃�2 ≤ 2�xn − xm�2
A.7.10≤ σsprd

and ultimately.

diam2

� N�
n=1

Ωn

�
≤ sup

m,n∈{1,...,N}
sup
x∈Ωm
y∈Ωn

�y − x�2 ≤ σsprd.

According to D.2.21, this implies the sets Ω1, . . . ,ΩN having spread σsprd.
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It remains to derive a local stability bound for the dual functionals λn. Analogous to
L.6.7, the trick is to express λn in terms of a suitable density function µn : Ω −→ R.

Lemma 7.12. Denote by hsep and σsprd the quantities from D.7.7 and A.7.10. Furthermore,
denote by {λ1, . . . , λN} ⊆ V ∗

N the dual basis (cf. D.4.10). Then, for all v ∈ VN , there holds
the local stability bound

|
λn, v�∗| ≤ C(d, k, b, σsprd)h
d/2−k
sep �v�Hk(Ωn).

Proof. Consider the following bump function:

∀�x�2 < 1 : µ(x) := e exp(− 1
1−
x
22

),

∀�x�2 ≥ 1 : µ(x) := 0.

It is well known (e.g., [AF03, Lemma 2.28]), that

µ ∈ C∞
0 (Rd), supp(µ) = Ball2(0, 1), µ(0) = 1, 0 ≤ µ ≤ 1.

Then, for every n ∈ {1, . . . , N}, we use the function

µn := µ(2h−1
sep(· − xn)) ∈ C∞

0 (Rd) ⊆ V

as a density to define a linear functional λ̃n ∈ V ∗
N :

∀v ∈ VN : 
λ̃n, v�∗ := a(µn, v).

Now, if we can show that 
λ̃n, ϕm�∗ = δnm, then already λ̃n = λn by the uniqueness of
the dual basis (cf. D.4.10). To this end, let m ∈ {1, . . . , N}. If m = n, then we have


λ̃n, ϕm�∗ = 
λ̃n, ϕn�∗ = a(µn, ϕn)
L.7.4
= µn(xn) = µ(0) = 1 = δnm.

On the other hand, if m += n, then L.7.9 tells us that xm /∈ Ωn = supp(µn), so that


λ̃n, ϕm�∗ = a(µn, ϕm)
L.7.4
= µn(xm) = 0 = δnm.

It follows that, indeed, λ̃n = λn. In particular, for all v ∈ VN , we have

|
λn, v�∗| = |
λ̃n, v�∗| = |a(µn, v)|
L.7.4

� �µn�Hk(Rd)�v�Hk(Ωn).

Finally, using the trivial relation hsep ≤ σsprd/2, the norm of µn can be bounded as
follows:

�µn�Hk(Rd) 	
k�

l=0

|µ(2h−1
sep(· − xn))|Hl(Rd) �

k�
l=0

hd/2−l
sep |µ|Hl(Rd) � hd/2−k

sep .

The proof is now complete.
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7.7 The discrete Caccioppoli inequality

In this section, we prove the discrete Caccioppoli inequality from A.4.19. Once again, the
derivation is based on a suitable cut-off function.

Lemma 7.13. Denote by b ∈ (0,∞) the parameter from D.7.1. Then, A.4.19 is satisfied
with a constant

σCacc = C(d, k, b).

Proof. Let D ∈ B and u ∈ Vsol(D) (D.4.18). Furthermore, let B ∈ B and δ > 0 be such
that Bδ ∩D = ∅, where Bδ ∈ B is the inflated box (cf. D.2.12). Our goal is to show that
there exists a constant σCacc ≥ 1 such that

δk|u|Hk(B) ≤ σCacc

k−1�
l=0

δl|u|Hl(Bδ).

To this end, we use the smooth cut-off function κ := κδRd,B
∈ C∞

0 (Rd) from L.5.3:

supp(κ) ⊆ Bδ, κ|B ≡ 1, 0 ≤ κ ≤ 1, ∀l ∈ N0 : |κ|W l,∞(Rd) � δ−l.

Clearly, for all m ∈ {1, . . . , N} with xm /∈ Bδ, we have κ(xm) = 0. On the other hand,
consider an index m ∈ {1, . . . , N} with xm ∈ Bδ. Then there must hold m /∈ ι(D) (cf.
D.4.17), because otherwise we would get the contradiction xm ∈ Bδ ∩ Ωm ⊆ Bδ ∩D = ∅.
According to D.4.18, we can write u in the form3 u = SNΛf (for some f ∈ RN with
supp(f) ⊆ ι(D)), so that

u(xm)
L.7.4
= a(u, ϕm) = a(SNΛf , ϕm)

D.4.6
= 
Λf , ϕm�∗ D.4.13

=

� N�
n=1

fnλn, ϕm

�
∗

=

N�
n=1

fn
λn, ϕm�∗ D.4.10
=

N�
n=1

fnδnm =
�

n∈ι(D)

fnδnm
m/∈ι(D)
= 0.

In other words, the product κ2u ∈ V vanishes at all interpolation points x1, . . . , xN .
Now, since u ∈ Vsol(D) ⊆ VN , we can expand it in the form u =

�N
n=1 cnϕn with certain

coefficients cn ∈ R. It follows that

a(κ2u, u) = a

�
κ2u,

N�
n=1

cnϕn

�
=

N�
n=1

cna(κ
2u, ϕn)

L.7.4
=

N�
n=1

cnκ(xn)
2u(xn) = 0.

On the other hand, using the definition of a(·, ·) from D.7.3 as well as Leibniz’ product
rule, we can expand the term a(κ2u, u) explicitly (with cα :=

�
k
l

�
b2(k−l) l!

α! > 0 and cα,β :=
cα
�
α
β

�
> 0):

0 = a(κ2u, u) =
�
|α|≤k

cα
Dα(κ2u),Dαu�L2(Rd) =
�
|α|≤k

�
β≤α

cα,β
Dα−β(κ2)Dβu,Dαu�L2(Rd).

3The operators SN : V ∗
N −→ VN and Λ : RN −→ V ∗

N were defined in D.4.6 and D.4.13, respectively.
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We transfer the summands with β < α to the other side of the equality and obtain the
following expression:�

|α|≤k

�κDαu�2L2(Rd) �
�
|α|≤k

cα�κDαu�2L2(Rd) = −
�
|α|≤k

�
β<α

cα,β
Dα−β(κ2)Dβu,Dαu�L2(Rd)

�
�
|α|≤k

� d�
i=1

|
∂i(κ2)Dα−eiu,Dαu�L2(Rd)|+
�
β<α,

|β|≤|α|−2

|
Dα−β(κ2)Dβu,Dαu�L2(Rd)|
	
.

For the summands in the first sum, we use Young’s inequality (with variable ε > 0):

|
∂i(κ2)Dα−eiu,Dαu�L2(Rd)| = 2|
(∂iκ)Dα−eiu, κDαu�L2(Bδ)|
� �∂iκ�L∞(Rd)�Dα−eiu�L2(Bδ)�κDαu�L2(Rd)

� δ−1|u|H|α|−1(Bδ)�κDαu�L2(Rd)

� ε−1δ−2|u|2
H|α|−1(Bδ)

+ ε�κDαu�2L2(Rd).

Note that, by choosing ε sufficiently small, we can absorb the O(ε)-term in the left-hand
side of the overall inequality.
For the summands in the second sum, we can pick an index i ∈ {1, . . . , d} with αi ≥ 1

(in the case α = 0, the sum is empty anyways). Then, we perform partial integration with
respect to the i-th coordinate:

|
Dα−β(κ2)Dβu,Dαu�L2(Rd)|
= |
Dα−β+ei(κ2)Dβu+Dα−β(κ2)Dβ+eiu,Dα−eiu�L2(Bδ)|
≤ (�Dα−β+ei(κ2)�L∞(Rd)�Dβu�L2(Bδ)

+�Dα−β(κ2)�L∞(Rd)�Dβ+eiu�L2(Bδ))�Dα−eiu�L2(Bδ)

� (δ−|α|+|β|−1|u|H|β|(Bδ) + δ−|α|+|β||u|H|β|+1(Bδ))|u|H|α|−1(Bδ)

= δ−2|α|(δ|β||u|H|β|(Bδ) + δ|β|+1|u|H|β|+1(Bδ))(δ
|α|−1|u|H|α|−1(Bδ))

� δ−2|α|
|α|−1�
i=0

δ2i|u|2Hi(Bδ).

Finally, exploiting κ|B ≡ 1, we put everything together:

δ2k|u|2Hk(B) � δ2k
�
|α|≤k

�κDαu�2L2(Rd) �
�
|α|≤k

δ2(k−|α|)
|α|−1�
i=0

δ2i|u|2Hi(Bδ) �
k−1�
i=0

δ2i|u|2Hi(Bδ).

This concludes the proof.
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7.8 A corollary

All of the prerequisites for T.4.21 have now been checked and we may collect the fruits of
our labour.

Corollary 7.14. Denote by A ∈ RN×N the Gram matrix that corresponds to the bilin-
ear form a(·, ·) from D.7.3 and the radial basis functions {ϕ1, . . . , ϕN} ⊆ V from D.7.5.
Furthermore, denote by hsep > 0 and σsprd ≥ 1 the quantities from D.7.7 and A.7.10,
respectively. Then, for every r ∈ N, there exists an H-matrix

Br ∈ H(P2, r)

with the following properties:

1. The memory requirements to store Br can be bounded by

C(d, σsprd, σadm)(σsmall + r) ln(h−1
sep)N.

2. There exist numbers C0 ≥ 1 and σexp > 0 of the form

C0 = C(d, k, b, σsprd, σadm), σexp = C(d, k, b, σsprd, σadm)
−1,

such that the following error bound is satisfied:

�A−1 −Br�2 ≤ C0 ln(h
−1
sep)h

d−3k
sep exp(−σexpr

1/(d+1)).

Proof. We collect the relations from L.7.4, L.7.9, L.7.12, L.7.11 and L.7.13:

σcoco = C(d, k, b), k0 = k, σstab = C(d, k, b, σsprd)h
d/2−k
sep ,

σshp = 1, σovlp = 1, hmin = hsep, σCacc = C(d, k, b).

Ad item 1: The bound on the memory complexity from T.4.21 becomes

C(d, σshp, σsprd, σadm)(σsmall + r) ln(h−1
min)N = C(d, σsprd, σadm)(σsmall + r) ln(h−1

sep)N.

Ad item 2: The numbers C0 and σexp from T.4.21 read

C0
T.4.21
= C(d, k,Ω, σcoco, σshp, σsprd, σadm) = C(d, k, b, σsprd, σadm)

and
σexp

T.4.21
= C(d, k,Ω, σsprd, σadm)

−1σ−1
Cacc = C(d, k, b, σsprd, σadm)

−1.

Finally, the prefactor of the error bound from T.4.21 turns out as

σ2
stabσovlpσ

k0
Cacc ln(h

−1
min)h

−k0
min � (hd/2−k

sep )2 ln(h−1
sep)h

−k
sep = ln(h−1

sep)h
d−3k
sep .

Note that C.7.14 holds true for any distribution of interpolation points x1, . . . , xN ∈ Rd

(as long as the points are pairwise distinct). Using a similar notion of “gradedness” as in
D.6.15, we can easily achieve the bound from C.6.17 again.
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7.9 The case of a semi-definite bilinear form

The radial basis function ϕ from D.7.1 is very special in that its native space V (cf. D.7.3)
is a Sobolev space with a proper norm � · �a. In a previous work ([AFM21b]), we also
looked at the case of thin-plate splines, in which the bilinear form a(·, ·) is merely positive
semi -definite. The final approximability result is very similar to T.4.21, but we had to
take a few sidesteps to get there. The functional analytic setting from [AFM21b] is quite
different to the one from Chapter 4, the most important difference being that the basis
functions ϕn do not lie in the space V individually. However, for certain coefficient vectors
c ∈ RN , the linear combinations

�N
n=1 cnϕn do lie in V . This quirk leads to the surprising

non-identity

a

�
v,

N�
n=1

cnϕn

�
+=

N�
n=1

cna(v, ϕn), v ∈ V,

because the right-hand side is not even well-defined. In this section, we merely present the
challenges of the thin-plate spline case and highlight the differences between both theories.
As for proofs, we refer the interested reader to the original work [AFM21b].
For the interpolation with thin-plate splines we need a different native space:

Definition 7.15. Let k ∈ N with k > d/2. We define the Beppo-Levi space4

V := BLk(Rd) := {v ∈ L1
loc(Rd) | ∀|α| = k : Dαv ∈ L2(Rd)}.

For all u, v ∈ V , we set

a(u, v) :=
�
|α|=k

k!

α!

Dαu,Dαv�L2(Rd), |v|a :=

�
a(v, v).

Furthermore, we define the space

P := Pk−1(Rd) ⊆ V.

The function a(·, ·) defines a symmetric, positive semi-definite bilinear form on V and
| · |a defines a seminorm with kernel P . Furthermore, for every v ∈ V and every open,
bounded set ω ⊆ Rd, there holds v ∈ Hk(ω) ⊆ C0(ω).

Definition 7.16. Denote by x1, . . . , xN ∈ Rd the interpolation points from Section 7.1.
We define the corresponding evaluation operator

EN :

�
C0(Rd) −→ RN

v '−→ (v(xn))
N
n=1

.

The operator EN is a convenient way to describe interpolation conditions:

(∀m ∈ {1, . . . , N} : u(xm) = f(xm)) ⇔ ENu = ENf.

4A common alternative name is homogeneous Sobolev space. For more details on theses spaces, see, e.g.,
[DL95], [SSN98] or [Wen05, Section 10.5].
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In Section 7.5, the initial interpolation problem from Section 7.1 was rephrased as a
variational problem over the discrete space VN = span {ϕ1, . . . , ϕN}. This change of per-
spective was crucial, because it put us right into the framework of Chapter 4 (see L.4.5). In
the case of thin-plate splines, the underlying variational problem looks somewhat different.
Most importantly, we are now dealing with the infinite-dimensional space

V0 := {v ∈ V |ENv = 0}
instead of the N -dimensional space VN .

Problem 7.17. Let f ∈ V . Find u ∈ V , such that

ENu = ENf, (∀v ∈ V0 : a(v, u) = 0).

We mention that the orthogonality side conditions ensure that the solution u minimizes
the seminorm | · |a over the affine space {ũ ∈ V |EN ũ = ENf}. Furthermore, looking at
the proof of L.7.13 again, we can see that these orthogonality conditions are precisely what
we need to derive the discrete Caccioppoli inequality (note that κ2u ∈ V0). P.7.17 is indeed
uniquely solvable and we can express u in the form u = u0 + f , where u0 ∈ V0 solves
(∀v ∈ V0 : a(v, u0) = −a(v, f)).
At first glance, the solution u looks like an infinite-dimensional object. However, it can

be shown that u has the form

u =
N�

n=1

cnϕn +
L�
l=1

dlπl,

for certain cn,dl ∈ R, ϕn ∈ C0(Rd) and basis polynomials π1, . . . , πL ∈ P . This is the
point where the thin-plate splines enter the stage.

Definition 7.18. We define the thin-plate spline

(d ∈ {1, 3, 5, . . . }) ϕ(x) := C1�x�2k−d,
(d ∈ {2, 4, 6, . . . }) ϕ(x) := C2�x�2k−d ln �x�,

where

C1 :=
Γ(d/2− k)

4kπd/2(k − 1)!
, C2 :=

(−1)k+(d−2)/2

22k−1πd/2(k − 1)!(k − d/2)!
.

Furthermore, for all n ∈ {1, . . . , N}, we set

ϕn := ϕ(· − xn).

We already hinted at the beginning of this section that ϕ /∈ V , in general. In fact, in the
simplest case d = k = 1, we have ϕ� 	 | · |� = sgn /∈ L2(R).

Definition 7.19. We define the following set of coefficient vectors5:

C := {c ∈ RN | ∀p ∈ P : 
c, ENp�2 = 0}.
5Up until this point, we used boldface letters only for matrices and vectors. Here, we use C for a set of
vectors.
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The relevance of the set C should become clear in the next lemma:

Lemma 7.20. 1. For all x0 ∈ Rd, there holds ϕ(· − x0) ∈ C0(Rd). In particular,
ϕ ∈ C0(Rd).

2. The function ϕ is a fundamental solution of the differential operator (cf. L.7.2)

D2k := (−Δ)k.

3. For all c ∈ C, there holds
N�

n=1

cnϕn ∈ V.

Proof. See [AFM21b, Lemma 2.11.].

Now, in order to get the representation of the solution u of P.7.17 in terms of the translates
ϕn and the polynomials πl, we introduce the following matrices:

Definition 7.21. We define

A := (ϕn(xm))Nm,n=1 ∈ RN×N , B := (πl(xn))
L,N
l=1,n=1 ∈ RL×N .

Note that A is not a Gram matrix in the sense of D.4.8, because there is no bilinear form
involved. The connection between the matrices A and B and the solution u of P.7.17 is
described in the following lemma:

Lemma 7.22. Let f ∈ V and denote by (c,d) ∈ RN × RL the unique solution of the
following saddle point system: �

A BT

B 0

��
c
d

�
=

�
ENf
0

�
.

Then, the solution u ∈ V of P.7.17 is given by

u =
N�

n=1

cnϕn +
L�
l=1

dlπl ∈ V.

Proof. See [AFM21b, Lemma 3.12.].

Note that the first line of the system encodes the interpolation conditions ENu = ENf .
In fact, the matrices A and BT can be written in the form A = (ENϕ1| . . . |ENϕN ) and
BT = (ENπ1| . . . |ENπL), so that

Ac+BTd =
N�

n=1

cnENϕn +

L�
l=1

dlENπl = EN

� N�
n=1

cnϕn +

L�
l=1

dlπl

�
= ENu.

The second line of the system reads Bc = 0, which is equivalent to the condition c ∈ C.
The final approximation result concerns only the upper-left block of the inverse system

matrix.
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Theorem 7.23. Write the inverse of the system matrix from L.7.22 in the form�
A BT

B 0

�−1

=

�
S11 S12

S21 S22

�
,

where S11 ∈ RN×N , S21 ∈ RL×N , S12 ∈ RN×L and S22 ∈ RL×L. Then, for every r ∈ N,
there exists an H-matrix

Sr ∈ H(P2, r)

with the following properties:

1. The memory requirements to store Sr can be bounded by

C(d, σsprd, σadm)(σsmall + r) ln(h−1
sep)N.

2. There exist numbers C0 ≥ 1 and σexp > 0 of the form

C0 = C(d, k, b, σsprd, σadm), σexp = C(d, k, b, σsprd, σadm)
−1,

such that the following error bound is satisfied:

�S11 − Sr�2 ≤ C0 ln(h
−1
sep)h

d−3k
sep exp(−σexpr

1/(d+1)).

Proof. The complexity bound is the same as in C.7.14. The error bound is essentially taken
from [AFM21b, Theorem 2.18.], but without plugging in the assumption 1 ≤ CNσcardhdsep
from [AFM21b, Definition 2.2.].

7.10 Numerical examples

In this section, which is taken from [AFM21b, Section 4], we present some numerical exam-
ples to demonstrate the plausibility of C.7.14 and T.7.23. The experiments are performed
in MATLAB ([MAT]) and H2Lib ([H2L]).

7.10.1 TU Wien logo

In our first example, the domain of interest is the TU Wien logo, which consists of the
unit square in R2 and a series of holes in the shape of letters. We place roughly N ≈
30.000 interpolation points inside the logo and perform some algebraic grading (cf. D.6.15,
σgrade = 2) at the convex corners. As for the radial basis function, we use the thin-plate
spline ϕ(x) = �x�2 ln �x� from D.7.18 with k = 2.
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Figure 7.2: Interpolation of smooth data on a non-uniform point distribution.

The left image in Figure 7.2 shows the positions xn of the interpolation points and the
one in the middle depicts the pairs (xn,fn). Here, the target values fn come from a
smooth indicator function of the letters. On the right-hand side, the solution u ∈ VN of
the interpolation problem P.7.17 is rendered.

7.10.2 A uniform grid in 2D

Figure 7.3: A typical hierarchical block partition and a typical error plot in 2D.

Figure 7.3 shows the results of a problem in space dimension d = 2. The N = 900
interpolation points xn produce a regular 30× 30 grid in the unit square [0, 1]× [0, 1] ⊆ R2

(i.e., the case σgrade = 1 in D.6.15). Once again, the thin plate-spline ϕ(x) = �x�22 ln �x�2
with k = 2 is employed. In the left image, we can see a typical block partition P2 in the sense
of C.3.42. The somewhat fractal pattern of small and admissible cluster blocks arises from
the fact that we order the interpolation points in a row-wise fashion, i.e., x1 = (0, 0/29),
x31 = (0, 1/29), x61 = (0, 2/29), et cetera.

The right-hand image is empirical evidence that the error bound in T.7.23 is correct.
To generate this plot, we use the same strategy as in Section 6.8.1, i.e., the interpolation
matrix (A BT

B 0
) is inverted exactly and we compute block-wise truncated SVDs for the main

block S11 (cf. T.7.23). The semi-logarithmic error plot depicts the computable error bound

138



7 An application in an RBF setting

from Section 6.8.1 along with a dashed reference line. The apparent similarity suggests a
relation of the form �S11 − Sr�2 � C(N) exp(−σexpr), which is again better than our
theoretical prediction C(N) exp(−σexpr

1/3).
On a side note, we mention that the standard 16-digit precision arithmetic in MATLAB is

not enough to generate a conclusive error plot. As is well-established in the literature (e.g.,
[Wen05, Chapter 12]), the condition number of the interpolation matrix (A BT

B 0
) scales

very poorly with respect to the separation distance hsep introduced in D.7.7. To overcome
this fundamental problem, we use MATLAB’s variable-precision arithmetic vpa(...) with
32 digits. This brute-force approach allows us to carry out the explicit matrix inversion
with sufficient accuracy.

7.10.3 A uniform grid in 3D

Figure 7.4: A comparison of different problem sizes N for a uniform 3D grid.

The next example, Figure 7.4, covers the case d = 3 and a uniform point distribution in
the unit cube [0, 1]× [0, 1]× [0, 1] ⊆ R3, visualized in the left image. This time, we use the
Bessel potential ϕ(x) = e−
x
2 from D.7.1 as the basis function (with k = 2 and b = 1).
The error plot shows a comparison between N ≈ 10.000, N ≈ 15.000 and N ≈ 20.000
interpolation points, as well as a reference curve of the form r '→ C exp(−σexpr

1/4). In
accordance with C.7.14, the empirical decay rate seems to be independent of the problem
size N .

7.10.4 An algebraically graded grid in 3D

In Figure 7.5, we investigate the influence of the grading parameter σgrade from D.6.15 on
the error decay rate in d = 3 space dimensions. Once again, we use the Bessel potential
ϕ(x) = e−
x
2 as the basis function (D.7.1, k = 2, b = 1). The error plot compares the
cases σcard ∈ {1, 2, 3}, where σcard = 1 is a uniform grid and σcard = 3 is “strongly“ graded
towards the origin 0 ∈ R3. The problem size N ≈ 10.000 is held constant throughout all
three runs. The plot suggests that the constant σexp from the error bound in C.7.14 is
independent of the grading parameter σcard.
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Figure 7.5: Experimenting with an algebraically graded grid in 3D.

7.10.5 Some H-arithmetic6

Previous numerical results have established that H-matrix arithmetic is a viable tool for
solving RBF interpolation problems (e.g., [LM17], [LBW19], [LBW20]). In the following,
we use the library H2Lib ([H2L]) for this purpose.
Here, we look at the thin-plate splines ϕ(x) = �x�22 ln �x�2 in 2D and the Bessel potential

ϕ(x) = e−
x
2 in 3D. The bessel potentials are treated as in Section 6.8.3, i.e., we compute
an H-Cholesky factorization A ≈ AH ≈ LHLT

H and invert it. (The intermediate matrix
AH is necessary, because A is fully populated.) The H-Cholesky factorization is discussed,
e.g., in [Beb07].
In the case of the thin-plate splines, the saddle point structure of the interpolation matrix

makes this approach infeasible. Instead, we follow the approach from [BLB12] and [LBW19]
and employ the augmented Lagrangian A + γBTB (γ > 0), which is SPD and therefore
amenable to an H-matrix inversion.

6This experiment was performed by Dr. Markus Faustmann, a co-author of [AFM21b].
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Figure 7.6: Experiment using H-arithmetics to approximate the inverse system matrix.
Left: 2D thin-plate splines. Right: 3D Bessel potential.

In Figure 7.6, we plot the error measure from Section 6.8.3 for the relative error. In the
2D case, we work with N = 10.000 interpolation points on the unit square in a uniform grid
(i.e. σgrade = 1 in D.6.15). The parameter in the definition of the augmented Lagrangian
is set to γ := 1. In the 3D case, we take N ≈ 4.100 uniformly distributed points in the
unit cube. Once again, we observe exponential convergence as predicted by C.7.14 and
T.7.23. However, we mention that the error flattens out before we arrive at the level of
machine precision, which is most likely attributable to the initial approximation A ≈ AH
by interpolation.
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[LM17] M. Löhndorf and J. M. Melenk. On thin plate spline interpolation. In Spectral
and high order methods for partial differential equations—ICOSAHOM 2016,
volume 119 of Lect. Notes Comput. Sci. Eng., pages 451–466. Springer, Cham,
2017.

[MAT] MATLAB. Available at https://mathworks.com/.

[Maz85] Vladimir G. Maz’ja. Sobolev spaces. Springer Series in Soviet Mathematics.
Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposh-
nikova.

[McL00] William McLean. Strongly elliptic systems and boundary integral equations.
Cambridge University Press, Cambridge, 2000.

[MR20] J. M. Melenk and C. Rojik. On commuting p-version projection-based inter-
polation on tetrahedra. Math. Comp., 89(321):45–87, 2020.

[MS64] Norman G. Meyers and James Serrin. H = W . Proc. Nat. Acad. Sci. U.S.A.,
51:1055–1056, 1964.
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