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Kurzfassung

Wir betrachten eine geeignete Klasse von Gram-Matrizen und zeigen, dass die zugehdrigen
Inversen hervorragend durch hierarchischen Matrizen approximiert werden kénnen. Die
Eintrége einer solchen Gram-Matrix ergeben sich aus einer vorgegebenen Bilinearform auf
einem geeigneten Funktionenraum sowie einer endlichen Menge von Basisfunktionen. Der-
artige Matrizen treten hiufig im Zusammenhang mit Galerkin-Diskretisierungen von parti-
ellen Differentialgleichungen auf, welche zur Beschreibung zahlreicher Probleme aus Physik,
Technik und angewandter Mathematik verwendet werden.

Die hier relevanten Funktionenrdume sind die gewohnten Sobolev-Réume ganzzahliger
Ordnung und die Bilinearformen ergeben sich als Varianten der natiirlichen Innenprodukte
auf diesen Rdumen. Eine wichtige Voraussetzung fiir unsere Analyse ist die Giiltigkeit ei-
ner diskreten Caccioppoli- Ungleichung, welche wir in einem Finite- Elemente-Setting sowie
einem Radiale Basisfunktionen-Setting nachweisen. Die Voraussetzungen an die Basisfunk-
tionen, welche zur Assemblierung der Gram-Matrix verwendet werden, sind sehr allgemein
gehalten und es wird insbesondere keine Lokalitét gefordert. Wir setzen stattdessen eine
gewisse Art von Lokalitét fiir die zugehorige duale Basis voraus.

Die Fragestellung, inwiefern inverse Gram-Matrizen durch datenschwache Alternativen
approximiert werden konnen, ist nicht neu. In mehr als zwei Jahrzehnten Forschungsarbeit
wurden unterschiedliche Herangehensweisen erarbeitet (z.B., [BH03], [Bor10], [Faul5]). Das
Ziel dieser Arbeit besteht darin, diese Ideen in einem abstrakteren Rahmen zu formulieren,
wodurch sich ein breiteres Anwendungsspektrum ergibt. Inbesondere kénnen wir Gitter-
basierte sowie Gitter-freie Probleme auf lokal verfeinerter Gittern und Punktwolken in
beliebigen Raumdimensionen behandeln. Des Weiteren sind unstetige PDE-Koeffizienten,
nicht-polygonale Rechengebiete sowie nicht-lokale Basisfunktionen erlaubt.

Diese Dissertation basiert auf den Werken [AFM21a], [AFM21b] and [AFM22], welche
in Zusammenarbeit mit Dr. Markus Faustmann sowie Univ.-Prof. Jens Markus Melenk,
PhD im Zuge des Doktoratsstudiums des Autors an der Technischen Universitdt Wien
angefertigt wurden.
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Abstract

In this thesis, we prove that the inverse of a certain type of Gram matrix can be ap-
proximated well from the class of hierarchical matrices. The entries of a Gram matrix
are determined by a bilinear form on a suitable function space and by a finite set of basis
functions. Such matrices appear frequently in the context of Galerkin discretizations of par-
tial differential equations and many related problems in physics, engineering and applied
mathematics.

As for the function spaces, we are mainly concerned with the usual Sobolev spaces of
integer order and the bilinear forms under consideration are variants of the inherent inner
products on these spaces. An important prerequisite for the analysis is the validity of a
discrete Caccioppoli inequality, which we derive in a finite element setting and a radial basis
function setting. The assumptions on the basis functions that make up the Gram matrix
are very mild and do not incorporate locality. In fact, we only require some form of locality
for the corresponding dual basis.

The question of low-cost approximability of inverse Gram matrices is certainly not new.
In more than two decades of research, different approaches have been made to answer this
question (e.g., [BHO3], [Bor10], [Faul5]). The goal of this work is to unify these ideas and
rephrase them in a more abstract framework, which can be applied to a larger class of
problems. In particular, we can treat mesh-based and mesh-less problems, locally refined
meshes/point clouds in arbitrary space dimensions, rough PDE coefficients, non-polygonal
computation domains and non-local basis functions.

This thesis is based on the papers [AFM21a], [AFM21b] and [AFM22], which were com-
posed as part of the author’s doctoral studies at Technische Universitdt Wien in collabo-
ration with Dr. Markus Faustmann and Univ.-Prof. Jens Markus Melenk, PhD.
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1 Introduction

1.1 The Galerkin method

Consider a real Hilbert space V' and let a(-,-) : V' x V. — R be a continuous, coercive,
possibly non-symmetric, bilinear form (cf. D.4.2). Denote by V* the dual space of V| i.e.,
the space of continuous, linear functionals on V. We are interested in the following abstract
variational problem:

Problem 1.1. Let f € V* be given. Find usx € V such that
YvoeV: a(Uoo, V) = f(v).

The well-known Lax-Milgram Lemma (e.g., [BS08, Theorem 2.7.7]) guarantees that there
exists a unique solution u, € V of this problem. However, the Hilbert space V is typically
infinite-dimensional and the solution u., cannot be computed exactly. In the Galerkin
method (e.g., [BS08, Section 2.6]), the space V is replaced by a suitable finite-dimensional
subspace Vy C V. The result is a discrete variational problem:

Problem 1.2. Let f € (Vn)* be given. Find u € Viy such that
Yv e Vy: a(u,v) = f(v).

Once again, the Lax-Milgram Lemma yields existence of a unique solution u € V. Since
Vi is finite-dimensional, the discrete solution u is computable. To this end, a basis

{p1,.-.,on} C VN

must be chosen. In a typical application of the Galerkin method, there is more than one
candidate for such a basis and the particular choice of the basis functions ¢, has far-
reaching practical consequences. In fact, a poor choice of basis can render the method
infeasible, even on modern computer hardware. Once the basis functions ,, are elected,

we make the ansatz
N

U:ch(PneVN7

n=1
where ¢ € RY is an unknown coefficient vector. Then, introducing the Gram matriz!

A= (a(()om @m))%,n:l e RN

YThe term Gram matriz is often reserved for matrices arising from proper inner products (e.g., [HJ13,
Thorem 7.2.10.]). Our bilinear form a(-,-) need not be symmetric, but we will use the term anyways.
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1 Introduction

and the load vector
f = (f(em))m=1 € RY,

we can rewrite P.1.2 as an equivalent linear system of equations (LSE):
Ac=f.

The unique solvability of P.1.2 already ensures that the system matrix A is invertible.
In particular, this LSE can be used to compute the unknown coefficient vector ¢ and thus
the unknown solution u to P.1.2. To do so, we have a couple of different options:

1. Gaussian elimination with partial pivoting: Denote by b € {0, ..., N} the bandwidth?
of A. Tt is well-known that Gaussian elimination with partial pivoting takes O(bN)
memory and O(b>N) time in order to compute the solution of Ac = f (e.g., [TB97,
Algorithm 21.1.] and [DER17, Chapter 8]). In particular, if b = N7, for some 3 €
[0,1], then the memory and time requirements amount to O(N'*#) and O(N'*+28),
respectively. If the problem size N becomes too large (say, hundreds of thousands or
even millions), this approach might become infeasible.

For example, consider the case where Q := (0,1)¢, V := H'(Q) and a(-,-) := (-, ")v.
Cutting Q into O(N 1/ @) equal slices along each coordinate axis, we can construct a
simplicial, uniform mesh 7 C Pow(Q2) with N € N nodes (cf. D.2.60). Denote by ¢,
the hat function corresponding to the n-th mesh node (cf. L.2.72). Then, no matter
the ordering of the indices, there will always be at least two hat functions ¢, ©m
with supp(¢n) Nsupp (@) # 0 and |n—m| > N'=1/4, 1t follows that b > N1=1/4 so
that the solution of Ac = f uses O(N>~Y/%) memory and O(N3~2/%) time.

2. PLU -decomposition: If Ac = f needs to be solved for multiple right-hand sides
f € RV, it might be favorable to compute a P LU-decomposition of A in advance.
In fact, Gaussian elimination with partial pivoting generates a permutation matrix
P c RY*N a unit lower triangular matrix L € RY*Y and an upper triangular matrix
U € RV*N such that A = PLU. Then, the computation of ¢ can be done in two
steps: First, solve Lé = P~ f for & € RY. Second, solve Uc = & for ¢. Now, since
L and U also have bandwidth O(b), these two systems can be solved in O(bN) time
by forward- and backward substitution. In total, if Ac = f is to be solved for k € N
different right-hand sides, this precedure takes O(bN) memory and O(b>N + kbN)

time.

3. (P)CG: Consider the case where A is symmetric and positive definite (SPD):

AT = A, vd € RV\{0}: (Ad,d)s > 0.

The well-known conjugate gradient method (CG) (e.g., [Atk89, Section 8.9], [Eppl3,
Section 9.3.3]) generates a sequence (c;)ren € RY of approximations ¢; ~ ¢ in a way

2The bandwidth b is the smallest number such that A,,, = 0, for all m,n € {1,..., N} with |m — n| > b.
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that only requires us to perform matrix-vector-multiplications d — Ad, for some
d € RN. According to [Eppl3, Theorem 9.7], there holds the error bound

1—cond2(A)—1/2 k-1 -
I+ condy(a)12)  lle—el

e — exllz < 2 condQ(A)1/2<

where condy(A) := ||A||2]|A7 |2 > 1 is the spectral condition number of A. Clearly,
the convergence speed is determined by the magnitude of conds(A), the best case
scenario being conda(A) = O(1) as N — oo. In many instances®, however, we
have condz(A) = O(N?), for some constant o > 0. In this case, as many as k =
O(In(e~')N*/2) iteration steps are necessary to reach some prescribed tolerance & >
0. Since the matrix-vector-multiplication in each step costs at least O(N) floating
point operations, the overall complexity of O(In(e~1)N1t%/2) might still be too much
to handle.

This observation is the basis for the preconditioned conjugate gradient method (PCG)
(e.g., [GVL13, Section 11.5.2]), where the LSE Ac = f is replaced by the following,
equivalent LSE:

pl2ap-12g — P_1/2f,
P'c = &

Here, P € RN*N is a preconditioner matrix that should satisfy the following require-
ments:

a) P is SPD.

b) condy(AP) = O(1).

c¢) Every LSE of the form Pd = g, where g € RY is given and d € RY is sought,

can be solved quickly (ideally in O(N) time).

In theory, the PCG method is just the CG method applied to the equivalent LSE
above. However, the SPD matrix P~/2AP~Y2 need not be computed explicitly. In
fact, for each step of the iteration, it suffices to perform a matrix-vector-multiplication
d — Ad and solve an LSE Pd = g (apart from a few vector additions and scalar
products). The construction of good preconditioners is a vast field of research (see,
e.g., [Gre97, Part II], [GVL13, Section 11.5], [TB97, Lecture 40] and the references
therein).

. Hierarchical LU -decomposition: The inefficiency of standard PLU-decompositions

is due to the amount of fill-in that occurs in the triangular factors L and U. To
overcome this problem, [Beb07] showed that so-called H-matrices (cf. Chapter 3)
can be used as approximate LU-factors for finite element stiffness matrices on quasi-
uniform meshes. In fact, under the assumption that the exact inverse A~! can be
approximated well by an H-matrix, Bebendorf showed that, for all € > 0, H-matrices

[ 3ibliothek,
Your knowledge hub

3Example: If A is the FEM stiffness matrix for the problem (—Awu = f, ulsq = 0) on a uniform mesh
T C Pow(Q) with meshsize h > 0, then condz2(A) = h~2 = N*? according to [EG06, Theorem 4.1.].
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1 Introduction

Ly and Uy of block-wise rank 7 ~ In(N)*In(s~)? (for some o, 3 > 0) can be
constructed such that

IA = LyUsl2 < Cln(N)N?||L|j5|[U]|2¢ + O(?).

5. Hierarchical preconditioners: In [Beb06], the author proposed to use the H-inversion
routine (which uses efficient H-arithmetic exclusively) to construct a preconditioner
Py, for the PCG method. Under the assumption that the algorithm produces an error
of at most || I — APyll2 <6 < 1, it was shown that conda(APy) < (149)/(1—9) =
O(1), so that the PCG method converges rapidly.

Here, we laid out a variety of strategies for the practical solution of the LSE Ac =
f. One could argue that these techniques are just different approaches to computing an
approximation to the inverse matrix A~!. In the last two instances, [Beb07] and [Beb06],
the approximation class is given by the set of H-matrices of prescribed block-wise rank r.
Then, inevitably, the following fundamental question arises:

Problem 1.3. What are the theoretical limits for the approzimation of A~' from the class
of data-sparse H-matrices?

In our main result, T.4.21, we give an upper bound for the best approximation of A"
in the class of hierarchical matrices, H(P?,r).

1.2 Literature discussion

The literature on H-matrices has grown substantially during the last two decades. In this
overview, we focus mainly on the work that is most relevant for this dissertation. The list
is by no means exhaustive.

1. The fast multipole method (FMM) introduced in [GR87] was named one of the “top
10 algorithms of the 20th century” in [DS00]. The authors devised a novel, ground-
breaking algorithm to reduce the computational complexity of the famous N-body
problem from O(N?) to O(p?>N) (introducing an error O(e~?), for some C > 0).

An instance of such an N-body problem occurs in classic celestial mechanics, where
N € N given planets interact with each other via gravitational forces. The trajectory
t > x,(t) € R3 of the n-th planet is governed by the ordinary differential equation

M,z = (Tm — p),

Z GM, M,

_ 3
et A oy 1Fm — @nl:
where G > 0 is a constant and where M,, > 0 is the mass of the n-th planet. In a
typical time stepping scheme (e.g. forward Euler method), a naive implementation
of this formula requires O(N?) arithmetic operations to evolve the whole system one
time step further.

However, Greengard and Rokhlin found that much effort could be spared by organiz-
ing the planets into a hierarchy of groups of nearby planets. The key insight was that
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the interaction between two well separated groups can be approximated to arbitrary
accuracy by polynomials of a prescribed degree p € N. (Essentially a truncated Taylor
series of the function = ~ x/||z||3, which is smooth away from the origin.) Assuming
that the groups have N; and Ns members each, this simplification reduces the cost
from O(N1N3) to O(p(Ny + No)) and only introduces a marginal error of O(e=“P),
for some constant C' > 0. Finally, the organization in a hierarchy facilitated a divide
and conquer scheme which resulted in an O(p?N)-algorithm.

. In parallel, Hackbusch and Nowak developed a similar strategy known as panel clus-

tering method (e.g., [HN89]). In a series of works ([Hac99], [HKO00a], [HKO0O0b],
[Gra01], [Hac09]), Hackbusch, Khoromskij and Grasedyck formalized the ideas from
[GRR7] and [HN89] and introduced hierarchical block partitions P? of the set of matrix
indices {1,...,N} x {1,...,N} = {(3,7) |4i,5 € {1,...,N}}. The elements of P? are
pairs (I, J) of clusters I,J C {1,..., N} satisfying

) IxJ={1,... N} x{1,...,N}.
(I1,J)eP?

In particular, given a matrix A € RV*V  the set P? induces a partition of A into a
family of matrix blocks, {A|;x; € R/ |(I,J) € P?}. Assuming that the (i, j)-th
matrix entry A;; encodes some form of interaction between two physical domains
(or points) €;,8; C RY, it is clear that a matrix block A|7 s represents all pairwise
interactions between two groups of domains, {; i € I} and {Q;|j € J}.

The authors constructed the partition P? in an iterative manner (a tree), starting
from the root ({1,...,N},{1,..., N}) and splitting pairs (I, J) successively into four
(or more) children (11, J1),..., (14, Js) with

4
Uhxﬁz[xl
=1

The subdivision of a pair (I, .J) stops as soon as it becomes admissible or well sepa-
rated, using the terminology of [GR87]. Roughly speaking, admissible means that the
physical sets J;c; 2 C R? and Uje 79 C R? are small in diameter in comparison
to their distance. In particular, if the interaction between these sets is described
by a sufficiently smooth function, there is a good chance that the approximation
mechanism of [GR87] also applies in this generalized setting.

The authors then proceeded to introduce the class of hierarchical matrices
H(]P)Q, T) g RNXN,

where r € N is a prescribed rank bound on the admissible matrix blocks A7y .
Furthermore, they managed to define approximate arithmetic operations on this
class including matrix-vector-multiplication, matrix-matrix-addition, matrix-matrix-
multiplication and even matrix-inversion. Assuming that the partition P? is con-
structed properly, the cost of storage and arithmetic of H-matrices is bounded by
O(r*In(N)PN), for some (small) values of o, B € Ny (see, e.g., [Gra01, Chapter 5]).
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As for applications of H-matrix approximation theory, most of the early work focused
on FEM- and BEM-formulations of second order elliptic PDEs as well as Fredholm
integral operators.

. In [BHO3], the authors proved that the inverse A~! of a FEM stiffness matrix A €

RNXN for a second order elliptic PDE can be approximated by an H-matrix B €
H(P?,r) with the same accuracy as the FEM error |[us — ul| r2(q)- More precisely,
they showed that ||[A™! — Bl < ey under the assumption that |[ue, — ullz2) <
enllfllz2(q), for all f € L%(Q). Here uy, € H} () is the exact solution and u € Vyy is
the FEM solution from a discrete ansatz space Viy C Hg(£2) which is based on some
mesh 7Ty € Pow(Q2). Furthermore, the authors showed that the blockwise rank r of
the approximant B is bounded by r < In(N)? In(In(N)e ')+,

To mention a few technical details, it was assumed that d > 3, that Q@ C R? is a
bounded Lipschitz domain, that a(u,v) := (a1Vu, Vv)2(q) for some a1 € L(Q)4xd,
that homogeneous Dirichlet boundary conditions are employed, and that the mesh
Tn is shape regular and quasi-uniform.

The key idea of the proof was to express the exact solution us, in terms of the
Green’s function G for the domain 2. Then, exploiting certain regularity properties
of G, the function G was approximated by separable expansions which were then used
to construct the approximant B.

. A few years later, [Bérl0] improved on [BHO03] by using a completely different ap-

proach. Rather than approximating Green’s function, the author approximated the
exact solution us, € Hy () directly. The key insight was that ue, belongs to a class
of locally harmonic functions which satisfy some orthogonality relations on certain
subsets w C 2. This orthogonality could then be exploited to derive a Caccioppoli
inequality of the form |uco|p1(wy S dista(w, dw™) ™|t f2(+), where wt D w is a
slightly larger subset of €. Fitting L € N concentric subsets w Cw; C--- Cwp CQ
around some initial set w C €2, the author was able to approximate the exact solu-
tion wuso|, by a function uy € L?(w), producing an error O(2~%) while only using
O(L*1) degrees of freedom to do so. This procedure led to an H-matrix approxima-
tion B € H(P?,7) of an auxiliary matrix § € RY*¥  which, in some sense, encoded
the abstract solution operator L™ : H1(Q) — H}(Q) of the underlying PDE.
Citing only the case of a quasi-uniform mesh 7T, the error bound was of the form
|S — Bllz2 < In(N)N2~" and the blockwise rank r of B satisfied r < L9*1,

On the other hand, under the assumption of a shift theorem (f € H=17¢(Q) = uy, €
Hy (1)), it was shown that the error between the inverse stiffness matrix A~' and
the auxiliary matrix S could be bounded in the form ||A™ — S|s < N2/ (in the
case of a quasi-uniform mesh 7). The final result was

|A™" =By <||A™! = S|l2 + IS ~ Bll S N7/ 4 In(N) N2,

so that the overall accuracy of the approximant B was again dominated by the FEM
error.
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1 Introduction

5.

In his dissertation [Faulb|, Faustmann further improved the results from [BHO03] and
[Bor10]. Most importantly, he showed that [|A~! — B||2 < e can be achieved for every
€ > 0, independent of the FEM error. In fact, his error bounds took the form

|A™Y — BJls < N¥exp(—br),

for some constants «, 5,b > 0 and arbitrary blockwise rank r € N.

Here, the novelty lied in working with the discrete solution u € Vi instead of the
exact solution us, € H}(2). In fact, at no point of the derivation was the exact
solution us, needed in any form. Nevertheless, the proof could be seen as a fully
discrete analogue of the one in [B6r10]. The FEM solution w is locally harmonic in
a discrete sense and satisfies a discrete version of the Caccioppoli inequality. The
advantage of this approach was that no auxiliary matrix S needed to be introduced
so that the triangle inequality at the end of [Bor10] could be omitted. Therefore, the
final result is not polluted by the FEM error so that the H-matrix approximation
indeed reaches arbitrary accuracy.

The analysis was carried out for elliptic operators Lu := —div(ay-Vu)+az-Vu+asu
with rough coefficients a; € L>®(Q, R™*?), ay € L>(Q,RY), az € L>=(Q, R) combined
with Dirichlet-, Neumann- and Robin boundary conditions. The thesis also covers the
Navier-Lamé equation of linear elasticity as well as the boundary element formulation
of the homogeneous Laplace problem. Finally, we mention that the meshes T were
assumed to be shape-regular and quasi-uniform.

1.3 This work’s contribution

Here, in this thesis, we dwell on the fully discrete approach from [Faul5] and apply it in a
more abstract framework. The formulation is general enough to allow for a simultaneous
treatment of mesh-based finite element problems as well as mesh-free radial basis function
(RBF) interpolation problems. The main selling points of the abstract framework are
summarized below:

1.

Mesh-based and mesh-less problems (i.e., point clouds) can be treated in the same
way.

Meshes and point clouds can be highly non-uniform (e.g., locally refined- or exponen-
tially graded meshes).

All spatial dimensions d € N and all integer Sobolev orders k € Ny are covered.

The computational domain Q C R? need not be a polyhedron. In fact, we only need
the existence of an extension operator Eq : H¥(Q) — H¥(R?) in the sense of D.2.48.

The basis functions ¢1,...,on € Vy need not have local supports. Instead, we
require that the corresponding dual basis Aq,..., Ay € (V)" is in some sense local
(cf. A.4.11).
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1 Introduction

6. More emphasis is put on the crucial role of the discrete Caccioppoli inequality, since
it is a key ingredient of the construction.*

Under these circumstances, we will show that the inverse system matrix A~! € RV*N
can be approximated by an H-matrix B, € H(P?,r), for arbitrary r € N. The precise error
bound (cf. T.4.21) is much in the spirit of [Faul5].

Caveat: As was the case in [BHO03], [Bor10] and [Faul5], our construction of the approx-
imant B is a theoretical existence result, because it involves certain inaccessible, abstract
operators. In contrast, the previously mentioned H-inversion routine (e.g., [Hac09, Sec-
tion 7.5]) produces a concrete H-matrix B € H(P?,r) which is supposed to approximate
A~!. To the best of our knowledge, a rigorous bound for the error ||[A™" — Bl is still
missing to this day. However, if it can be proved that this algorithm produces a Céa-type
best-approximation B in the sense

AT =B S inf AT =By,
Be(P2,r)

then our existence result readily yields the convergence B A lasr— oo

1.4 How to read this thesis

The advanced reader is probably familiar with most of the results from Chapter 2. However,
the following parts should not be skipped, because they contain non-standard results that
are important throughout the subsequent chapters:

1. In Section 2.3, we introduce axes-parallel boxes B C R? along with their inflated
cousins B® C RY,

2. In Section 2.4, we define the concepts of shape reqularity, overlap and spread for
families of subsets Q1,...,Qx C R%,

3. In Section 2.8.7, we prove a continuous variant of a Caccioppoli inequality.
4. In Section 2.9.6, we construct a discrete cut-off function on a simplicial mesh 7.

Then, in Chapter 3, we introduce the class of hierarchical matrices and show how a
matrix B € RV*Y can be subdivided into a family of matrix blocks {B|rx s | (I, J) € P2}.
To this end, we construct a block partition P? using a geometrically balanced clustering
strategy based on axes-parallel boxes.

Chapter 4 contains the main results of this thesis, T.4.20 and T.4.21. We introduce a
general set of assumptions under which these results can be derived. The proof of T.4.20
is quite intricate and thus delayed to Chapter 5.

Finally, in Chapter 6 and Chapter 7, we apply the abstract framework from Chapter 4 to
a finite element discretization of a second-order elliptic PDE and to a radial basis function
interpolation problem. At the end of each chapter, we demonstrate the plausibility of our
theoretical analysis by means of numerical experiments.

41f the reader intends to apply this abstract framework to a new problem, the first thing to check should
be the validity of the discrete Caccioppoli inequality and the locality of the dual basis Ai,..., An.
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2 Preliminary results

2.1

10.

Notation

. We use the convention N :={1,2,3,...} and Ny :={0,1,2,3,... }.
. The cardinality of countable sets M is denoted by # M.

. Pow(M) is the power set of a given set M (i.e., the set of all subsets).

“Large” matrices and vectors are typeset in boldface letters. For example, if a PDE
problem is discretized with N > 1 degrees of freedom, a linear system of equations
of size N x N needs to be solved. In this context, the stiffness matrix and load vector
are denoted by A € RV*N and f € RV, respectively.

. For all matrices A € RV*N and all index sets I,J C {1,..., N}, we denote by

Alrxy € R/ the matrix block that is formed by all entries A;; with (4,7) € I x J.

. If an inequality involves a multiplicative constant C' > 0, which does not depend

on critical parameters, we use the symbols “<” and “2”. For example, we write
a <b< e <dinstead of a < C1b < Cyc < Csd. The notation a = b is used if both
a < band a 2 b hold true.

. In the context of algorithmic complexity, we also use the capital Landau notation

f(N)=0O(g(N)) to describe a relation of the form f(N) < g(V).

. The Kronecker delta is denoted by

o 1 ifi=j
Vi,j € No: 5ij::{0 if#j.

Similarly, the characteristic function of a set Q C R is given by

1 ifzeQ

d . —
Vo e R®: HQ(CC).—{O frd Q"

. Subsets Q of the d-dimensional coordinate space R? are frequently referred to as

physical sets. For a subset Q C R? to be a domain, we only require it to be open. In
the context of a variational problem on some domain {2, we will also use the name
computational domain to emphasize its intended use.

The d-dimensional Lebesgue measure of a measurable subset Q C R? is denoted by
meas(2) = measg(2) € [0,00]. For subsets I' C 02, we write measy_1(I") for the
(d — 1)-dimensional surface measure.
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11.

12.

13.

14.

15.

16.

17.

18.

Let © C R? be a set. We denote by € its closure, by Q° its interior, and by 99 :=
QN RAQ its boundary.

Let w,Q C R¢ be measurable sets. We say that w is compactly contained in ), if
there exists a compact set K C R such that w € K C Q. In this case, we write
w € €.

Let Q C R? be open. We say that Q is (path-)connected, if, for any two points
x,y € Q, there exists a continuous function v : [0,1] — R such that (0) = z,
7(1) =y and ([0, 1]) € Q.

A subset w C Q is a connected component of €, if it is connected and if there exists
no other connected subset @ C €2 such that w C @ (i.e., w is maximal with respect to
“g” ) .

Let © C R? be open. Unless explicitly told otherwise, all function spaces on Q are
meant to be real-valued.

Let Q C R? be open. The support of a function v : Q — R is defined as

supp(v) := {z € Q|v(z) # 0},

where the closure is taken in R?.

Let © C R? and let v : © — R be a function. For every subset w C Q, we denote by
V|, : w — R the restriction of v to w, i.e.,

Vo € w: (v]w)(x) = v(x).

Let Q C R be open. Let v : @ — R and w : © — R? be sufficiently smooth. For
every i € {1,...,d}, we denote by 0,v : @ — R the partial derivative with respect to
the i-th coordinate. For higher-order partial derivatives, we write, e.g., Bijv = 8Z0jv

and also 9Mv = 0;---0;v (k € N times). We set

d d
Vo = (9v)L, Av = Z@iiv, divw := Z@iwi.
i=1 i=1

Depending on the context, Vv is either a column- or a row-vector.

We use the usual multi-index notation: Let d € N and a = (a1,...,0q),8 =
(Bi,...,B4) € N&. We set a + 3 = (a1 £ Bi1,...,aq £ B4) and write a < 3, if
a; < B, for all i € {1,...,d}. Similarly, we write o < 3, if @ < 8 but a # §. We set

|
‘04| =1+ + Qg al = ()41!.”ad!7 (O[) = ai
B Bl a = B)!

For all # € R? and all sufficiently smooth functions v : 2 — R (2 C R? open), we

write
o, 01 aq (e} (1) ()
=2ty D% =0,"...0; “v.

10
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Let & € Ny. Statements of the form “For all o € Ng with |a| < k, ...” are usually
abbreviated as “For all |a] < k, ...”. Likewise, sums of the form ZaeNg:|a\§k(' )

will be written as >, < (.- )

19. Inside integrals, we frequently drop the arguments of the integrands. E.g., we abbre-
viate [, v(x)w(x)dz by [, vwdz.
2.2 Norms, diameters, distances

Definition 2.1. Let d € N and p € [1,00]. We define

d |p\1/p i
Vo € RY - |z, = { (> izt |@il?) pr € [1,00) )
maxie{1,...,d} |zs| if p= o0

In the case p = 2, we define

d
Vz,y € R?: (T,y)2 == Zl’zyz
i=1
Definition 2.2. For all M, N € N, the spectral norm of a matriz A € RM*N s denoted
by
Ax |2
I|A|l2 := sup |Az] .
vernN ||zll2

Definition 2.3. For all Q C R?, we define

diamsy(Q) := sup ||y — x[|2 € [0, oq].
z,y€e)

Lemma 2.4. For all Q) C Rd, there hold the relations
diams(Q°) < diamz(Q) = diams ().

Proof. The relations diams(2°) < diamg(Q) < diams () are trivial, because 2° C Q C Q.
On the other hand, for all n» € N and all z,y € Q, we may pick points z,,1, € Q with
|z — xnll2 + ||y — ynll2 < 1/n, so that

. Y 1 1 3
diama($2) < sup ||y — ynll2 + lyn — @all2 + (|70 — z[]2 < diams(Q2) + - 2 diams ().

z,y€efd

Definition 2.5. For all subsets Q1,Qs C R?, we set

diStQ(Ql, QQ) = xlené Hy - xHQ
yeﬂé

11
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Definition 2.6. For all x € R¢ and r > 0, we define the balls

Bally(z,7) = {yeR[|ly—z|2 <7},
Bally(z,7) = {yeR’||ly—az|s<r}.

Lemma 2.7. 1. For all x € R and all r > 0, there holds
meas(Bally(z, ) = meas(Bally(z, 7)) = C(d)r?,
where C(d) = n¥?(d/2)~'T(d/2)~".
2. For all z1,22 € R and 1,79 > 0, there holds the following equivalence:
Balla(z1,r1) NBally(z2,7m2) =0 < ri+1r2 < |lzg — z1]f2.

Proof. Ad item 1: See, e.g., [Fle77, Formula (5.46)].

Ad item 2: If Bally(z1,71) N Bally(xa,72) # 0, then we can pick a point 2 € R? with
|z —z1]]2 <71 and ||z — x2||2 < ro, so that ||zg — z1]|2 < ||z2 — x|l2 + ||& — z1]|2 < r1 + 72.
On the other hand, if 7y + 73 > ||xg — z1||2, then the point x := (roxy +7122)/(r1 +172) € RY
lies in the intersection of Bally(z1,71) and Balla(xa,72):

|z — 1]l = r1llwa — 212/ (r1 +12) <71, |2 — z2ll2 = roflwa — 212/ (r1 + 12) < 72

O

2.3 Axes-parallel boxes

Axes-parallel boxes play an important role throughout this work. In Chapter 3, we will
use them for the purpose of geometric clustering, i.e., to subdivide a given point cloud
z1,...,xn € R? into multiple groups. To this end, we will need a way to split a given box
into smaller ones and also to “inflate” a box by a given amount. Then, in Section 5.4, we
use axes-parallel boxes again in a “partition of unity” argument on a family of overlapping
boxes. Finally, in T.5.16, we work with a nested sequence of axes-parallel boxes.

Definition 2.8. A subset B C R? is called (axes-parallel) box, if there exist a;,b; € R,
a; < b;, such that

We denote the set of all bozes by B.

Note that we consider half-open boxes so that we can tile the full space R? without any
holes or slits. For easy reference later on, we state the following trivial facts:

Lemma 2.9. For all B € B, there hold the following relations:

B # 0, diamsy(B) € (0, 00), meas(B) € (0,00).

12
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Next, we demonstrate how to divide a given box A € B into smaller ones. Here, we split
A in half along each one of the coordinate axes, producing 2¢ smaller boxes.

Definition 2.10. Consider a box A = ngl[ai,bi) € B and let A := {0,1}?. We define
subboxes (AM)yep in the following way:

AP = (1= Aag + Ni(ai +b;)/2, (1= N)(a; +b;)/2 + \ib;) € B
We denote by
sons(A) := {AMN A e A} CB
the sons of the box A.
Let us have a look at an example in d = 2 spatial dimensions: If A =[0,6) x [0,2), then

AV = 10,3) x [1,2), A = 13,6) x [1,2),
AWO0) = 10,3) x [0,1), AWLD) = [3,6) x [0, 1).

Lemma 2.11. There hold the following properties:
1. For all \, A € A with X\ # X, there holds AN +£ AN I particular,
#sons(A) = 24,
2. Let A € B. Then the subboxes sons(A) form a partition of A:
e There holds () ¢ sons(A).

e For all B, B € sons(A) with B # B, there holds BN B = (.
e For all B € sons(A), there holds B C A. Furthermore,

) B=A

Besons(A)

3. Let A,A € B with ANA=10. Then

sons(A) Nsons(A) = 0.

4. Let A€ B. For all B € sons(A), there hold the relationships

diamy(B) = 27 diamy(A), meas(B) = 2~ %meas(A).

Proof Ad item 1: Let A, A € A with A # X. Then it can easily be verified that the point
= ((I1=X\)a;+ A\ (az—i—b )/2)L, € R? lies in AWM, but not in AN, Therefore, AX) £ AR
In particular, #sons(A) = #A = 29,
Ad item 2: The fact that (0 ¢ sons(A) follows from L.2.9. To see the disjointness, let
B, B € sons(A) with B # B be given. According to item 1, there exist A, A € A Wlth £,

such that B = A® and B = AW, Now, abbreviate A = >< 1 A; and AR = >< A(’\)

13
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where A; := [CLZ‘, bz) and AEAZ) = [(1 — )\i)ai +~/\i(ai -+ bi)/Q, (1 — )\z)(az -+ bz)/Q + /\sz) Since
A\ #£ ), one can easily check that AE/\") N AE’\i) = (), for at least one i € {1,...,d}. The
disjointness of B and B then follows from

- d d - d -
i=1 i=1 i=1
On the other hand, since A; = AEO) U Agl), for all i € {1,...,d}, we get
A = {z2eRYx € Ay,...,xq€ Ay}
— {zeRz e AVual . zse AV ualy
- U{x eRl|z; € A&Al),...,xd € Ayd)}

AEA
= Ua»= J B
AEA Besons(A)

A) Nsons(A) was not empty, we could
). Then, item 2 yields BC AN A =),

Ad item 3: Let A, A € B with AN A = (). If sons(
pick a box B € B with B € sons(A) and B € sons(A
which contradicts L.2.9.

Ad item 4: We only prove the first identity, since the second one is very similar. Given
B =AW, for some A € A, we compute

d 2
diamg(B)2 = Z ((1 —Xi)(ai +b;)/2+ Xbi — (1 — N\y)a; + Ai(a; + bi)/?)
i=1
d
= > ((bi — a;)/2)* = 2 2diamy(A)>.
i=1

This finishes the proof.
Ol

In D.2.10, we learned how to split a given box into smaller pieces. Next, we show how
to increase the size of a box:

Definition 2.12. Let B = X?Zl[ai, b)) €B and 6 > 0. We define the inflated box!

d
B? := Xla; — 0,b; + 0) € B.
i=1
Note that B’ is again a box. In particular, we can iterate (B°)® = B?°, ((B?%)%)% = B%,
et cetera. In the next lemma, we provide a short summary of the relevant properties of
inflated boxes.

Lemma 2.13. 1. Forall BEB, § >0, x € B and y € R? with ||y — x|2 < 6, there
holds y € BY.

!The notation is similar to the one from D.2.10. B® is a smaller box than B and B? is a larger one.

14
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2. ForallB€B, § >0 and y € B, there exists a point © € B such that

ly — @ll2 < V3.

3. For all B € B and 6 > 0, there hold the bounds

diamy(B)/Vd + 2v/d§ < diamy(B%) < diamy(B) + 2V d6.

4. For all B1,Bs € B and 61,09 > 0, there hold the bounds
diStg(Bl(sl,BQ(Sz) < diStQ(Bl, Bg) < diStQ(B161,3252) + \/;1(51 + 52)

Proof. Ad item 1: Let € B and y € R? with ||y — z||s < 6. Then a; < 3 < by, for all
ke{1,...,d}. Since |yp — x| < |ly—z|]2 <0, we get a, —0 <z, — 6 < xp — |yp — zx| < Yk
and similarly y < b + 9.

Ad item 2: Let y € B%, ie., ap — 6 <y < by + 6, for all k € {1,...,d}. Abbreviating
cr := (ag + bg)/2, we define a point = € R in the following way:

b, — cx

Vk 1,....d}: =
E{v 7} Tk bk+5_ck

(Y — ck) + ck.

Using the bound
lyr — cx| = max{yr — cx,cx — Yy} < max{by +0 — ¢, ¢ —ap + 0} = by +0 — ¢y,

we get |z — ci| < |br — x| = (bp — ax)/2, telling us that xy € [ag, b, for all k € {1,...,d}.
In fact, checking the case yr = by + J explicitly, there even holds xj € [ag,by), so that
r € B. Finally, we have the error bound |y, — 21| = d|lyx, — cx|/(bx + 3 — cx) < 0, which
readily implies ||y — (|2 < V/d§ after summation over all k.

Ad item 3, left-hand inequality: Follows from the norm equivalence [|-|[2 < ||-|l1 < V/d||-||2:

Vd diamy(B°®) > diam; (B?) = diam, (B) + 2dé > diamy(B) + 2d6.

Ad item 3, right-hand inequality: For all y1,y» € B°, pick points x1, 22 € B as described
in item 2. Then,

diamg(B‘S) < sup . lly2 — z2ll2 + [|z2 — 1|2 + ||z1 — y1||2 < diama(B) + 2V/d6.
y1,Y2€8

Ad item 4, left-hand inequality: Follows immediately from the inclusions B; C B;%" and
By C By,
Ad item 4, right-hand inequality: Using item 2 again, we estimate
diStg(Bl, BQ) = inf ||b2 — b1||2 < inf inf ||b2 — a2||2 + ||a2 — CL1||2 + inf ||a1 — b1H2
b1€By b1€B

a1€B1%1 b2€B2
b2€Ba a263252

< dista (B, Bo%) + Vd(8; + 6).

15
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2.4 Shape regularity, overlap and spread

Shape regularity is a well-known concept in the literature (e.g., [Bral3, Chapter 2, Section
5], [BS08, Chapter 4] and [LB13, Section 3.1]). It is a prerequisite for almost all stability
and error estimates in the context of finite element discretizations. In mesh-based methods,
shape regularity is frequently accompanied by the notion of overlap, which somehow reflects
the interaction between adjacent mesh elements. Finally, in the realm of mesh-less methods,
we have to assume some sort of spatial boundedness of the degrees of freedom. To this end,
we introduce spread.

Definition 2.14. For every subset Q C R, we define
hq := diama ().

Remark 2.15. In this work, we are dealing mainly with two types of subsets @ C R%. On
one hand, we have “small” subsets Q,...,Qn C R coming from an approzimation process
(e.g., mesh elements T € T, D.2.60). On the other hand, we use “large” axes parallel boxes
B € B (c¢f. D.2.8) to subdivide the smaller sets €, into multiple groups. The diameters
of the sets Q, are typically O(N~—%), for some a > 0, whereas the diameters of the boxes
B € B range from O(N~%) up to O(1). As is customary in numerical analysis, we will
use the character h for the diameters of the “small” sets ,, but we will not use it for the
diameters of the mostly “large” boxes B.

Definition 2.16. Let og,p > 1 and 2 C R?. We say?® that 2 has shape regularity Oshp, if
hg € (0,00)
and if there exists a point xg,, € 2 such that’
Bally(Zghp, (205hp) ~Tha) C Q.

In this case, Tenp 18 called an incenter of Q). Similarly, a family of subsets (,..., QN C
R? is said to have shape regularity Oshp, if each individual set €, has shape reqularity ognp.

Note that an incenter need not be unique. We summarize the relevant facts about shape
regular sets:

Lemma 2.17. Let Q,§~2~§ R? be given sets with shape regularity Oshp = 1. Furthermore,
let xghp € Q and Tghp € Q be given incenters.

1. There holds
Tehp € Bally(Tenp, (205np) Tha) C Q°,

where ° is the interior of €2.

2We will also use the phrase “Q is oshp-shape regular” or simply “Q2 is shape regular” and implicitly assume
that a constant osnp > 1 was prescribed in advance.
3The factor 27! guarantees that balls themselves are shape regular with oenp, = 1.
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2. There hold the relations

meas(Q) < hd < C(d)aghpmeas(ﬁ).

3. IfFQ°NQ° =0, then
ha + hfz < 2Jshp||-i—s\ﬁ;) - xshp”2-

Proof. Aditem 1: Since hg > 0, it is clear that zg,p, € Balla(2gnp, (2ashp)_1hg). The subset
Balla (2ghp, (QJShp)_th) C Q is open and thus contained in the largest open subset of €2,
which is the interior £2°.

Ad item 2: Denote by ey, ..., eq € R? the Euclidean unit vectors. For all k € {1,...,d},
let ay, = inf ez, ex)2 and by := sup,cq(z, ex)2. Then B := Xzzl[ak, bi] is an axes-parallel
bounding box of 2 and we get

d d
meas(Q2) < meas(B) = H by, — ap = H sup (z — v, er)s < hd.
k=1 f=1 TYEL
On the other hand, we have
D.2.16
C(d)ogdhd "2 meas (Balla(onp, (205mp) tha)) < meas(€).

Ad item 3: Using step 1, we have
Bally (Zehps (205np) " ha) N Balla(Zahp, (205hp) Hhg) € Q°NQ° = 0.

It then follows from L.2.7 that (204hp) " (ha + hg) < [|[Tshp — Tshp||2-
O

When dealing with multiple sets Q, ..., Qx € R%, we have to account for the possibility
of overlap.

Definition 2.18. Let o5y, > 1, N € N and €q,...,Qy C R?. We say that the family
{,...,Qn} has overlap ogyip, if there holds*
e{l,...,.N}|Q;, NnQ < Oovlp-
ne‘I{Ill,E.iffN} #{m { } ‘ m n 7& (Z)} = Oovlp
The number o4, allows us to quantify how many sets 2, can agglomerate at a given

point in space. In particular, if a set €2, has “too many” neighbours €2,,, their diameters
cannot be arbitrarily large.

Lemma 2.19. Let ognp, 00vip > 1. Let N € N and consider a family €q,...,0y C R¢ of
sets with shape reqularity ognyp and overlap ooyy. Furthermore, for every n € {1,..., N},
let z, € §, be an incenter (cf. D.2.16). Then, for every index set I C {1,..., N} with
#1 > oovp, there holds the bound

max hg,, < 205hp nax, [Zm — Tnll2.

4Note that we require the interiors of Q.. and Q, to overlap. In particular, the intersection must have
non-zero Lebesgue measure.
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Proof. Let n € I. Then there must exist an index m € I such that Qf, N QS = (), because
otherwise we would get the contradiction

Goniy < T = #{m € T|Q% NS £ 0} < #{m € {1,..., N} Q2 A0 £0} 2 oou.

We obtain
L.2.17
Bally (2, (205hp) " ha,,) N Balla (2, (204p) Tha,) < Q0, NQ0 =0,
which in turn implies (20snp) " (ha,, + ha,) < [|[@m — znll2 (cf. L.2.7). Then,

ha, < 20shpl|Tm — Znll2 < 204np max lzm — za|2.

Taking the maximum over all n € I, the desired bound follows.
O

Questions of overlap also arise when dealing with integrals. If a function f : RY — R
is integrated over subsets 1,9 C RY with Q1 N Q, # (), then we have leUQ2 fdx #
Jo, fdz + [, fdz in general, because the contribution [, o fdz is counted twice on
the right-hand side. To measure the discrepancy between the two, we can make use of the
quantity oeyp again.

Lemma 2.20. Let Q C R? be open, k € No, p € [1,00) and f € WEP(Q) (c¢f. D.2.37). Let
Oovip = 1, N € N and consider a family €1y,...,Qn C Q of sets with overlap o4v1,. Then,
for all index sets I C {1,..., N}, there hold the bounds

1 Wy < S0 I ey < Tl Ihynaay

nel
where Q := J,er On C 2.

Proof. For every subset w C €, denote by I, € L>() its characteristic function (cf.
Section 2.1). Since

5o = 3 1Dy = [ o) 3 01 @)7 do

|| <k Q o<k

it suffices to show that, for almost all x € €,

Io, () <> To,(2) < oouplo, ().
nel

The left-hand inequality follows readily from the identity Q7 = (J,c; Qn and the fact
that Ly, uw, < Ly, + Lo, for all subsets wy,ws C 2. To see the right-hand inequality, let
xr € Q\M, where M := |, c; 082, satisfies meas(M) = 0. (The set M is defined such that
x € Qp, if and only if z € QF.) In the case z ¢ Qp, both sides of the inequality become zero.
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In the remaining case x € €7, we can find an index ng € I such that z € Q,,\M C Qp .
In particular,

D.2.18
o, (@) =#{nellzeW}<#{nellQnQ #0} < oo = oouplo, (z).
nel

This finishes the proof.
Ol

We finish this section with the definition of spread. For mesh-based methods, spread is
not an issue, since the computation domains is typically assumed to be bounded anyways.
However, in the context of mesh-less methods, we are usually working with point clouds
r1,...,xy € R? (or tiny bubbles Qi,...,Qx C R?) that need not be associated with any
underlying domain. In order to rule out the case of individual points wandering off too far
from the cloud’s center, we assume a uniform bound on the cloud diameter. (Note that
this does not rule out a scenario where the cloud as a whole wanders off to infinity.)

Definition 2.21. Let ogprq > 1, N € N and y,...,Qyx C R?. We say that the family
{Q,...,Qn} has spread ogprq, if

N
diam2< U Qn) < Osprd-
n=1
Clearly, if the diameter of the family €q,...,Qy is bounded by og,rq, we can wrap it in

an axes-parallel box B € B (cf. D.2.8) with side length ogprq.

Lemma 2.22. Let og5pq > 1, N € N and Qq,...,Qn C R? be a family of sets with spread
Osprd- Then, there exists a box B € B with the following properties:

M,...,Q, C B, diamg(B) = Vdogpd, meas(B) = agprd.

Proof. Abbreviate ) := Ug:1 Q, C R%. Using the Euclidean unit vectors eq,...,eq € R,
we introduce the quantities

a; = inf <.%', 6@)2, b; == Sup(*%'a €i>2a Ci = (ai + bz)/2
e e
and the box ]
B = >< [Ci - Usprd/2a Ci + Usprd/2) 6 B
i=1
Note that
) ) D.2.21
bi — a; = sup(z, ;)2 — inf (y, e;)2 = sup (r —y, ;)2 < diama(2) < ogpra-

In particular, for all z € Q and i € {1,...,d}, we get

(z,ei)2 < b; = (a; +b;)/24 (bi — a;)/2 < ¢; + Osprd/2
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and similarly (z,e;)2 > ¢; — ogprd/2. Therefore, we have the inclusions 2, C Q C B.
Finally, we compute

diamy(B)? = Zd: ((ci + ospra/2) — (ci — JSprd/2))2 = d0s2prd?
kjl
meas(B) = H ((Cz + Usprd/2) - (Ci - Usprd/2)) = ngrd'

B
Il
—

2.5 Affine transformations

Definition 2.23. A function F: R — RY is called affine (transformation), if there exist
a regular matriz A € R4 and a vector a € RY, such that

Vo € RY: F(z) = Az +a.

If A = Q, for some orthogonal matriz® @ € R with det(Q) = 1, then we call F a
rigid body transformation.

Note that the regularity of A is part of the definition of affinity. Furthermore, note that
an affine transformation F' is smooth and that there holds VF = A. In particular, for all
r € R?, we have F(z) = (VF)z + a. The stability properties of affine transformations are
tightly connected with the notion of shape regularity from D.2.16.

Lemma 2.24. Let F : R* — R? be affine.
1. Then F is bijective and its inverse F~' : R? — R? is again affine with
V(F Y= (vF)L
2. Let Q,Q C R® be such that F(Q) = Q. If Q is Tshp-shape reqular, for some Ggnp > 1,
then § is ognp-shape regular, where
G = G|V (F ) [zhahy! > 1.
3. Let Q,Q C RY be such that F(Q) = Q. Suppose that Q s Tshp-shape regular and

that € is ognp-shape regular, for some a/sh\p,ashp > 1. Then, there hold the following
bounds:

Cd)toglhgho® < |det VF| < C(d)oap'hbh.?,
hohy! < |IVFls < Taphahy '

Proof. Ad item 1: If F(z) = Az + a, then F~'(y) = A~y — A7 'a.
Ad item 2: Write F'(z) = Az +a. According to D.2.16, we have hg € (0,00). Therefore,

ho = sup |ly —zll2 = sup [|[F(9) — F(2)[l2 = sup [|A(g—2)|[2 < [|All2hg < oo,
z,y€N #,9€Q #,9€Q

Recall that a regular matrix Q € R**? is orthogonal, if there holds Q ~* = Q7. In this case |det(Q)| = 1.
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Similarly, 0 < hg < [|[A7!|2hq, so that hq > 0 as well.
Next, owing to D.2.16 again, we may pick a point g, € Q) such that

Ballo(Zenp, (2050p) "' hey) € Q.
Set oghp = a/sh\pHAAHQthST)l and Zgnp 1= F(Zgnp) € Q. We want to show that

Bally(Zghp, (20shp) ~Tha) C Q.
To this end let @ € Bally(2shp, (20shp) ~*hq). Then, its pre-image & := F~!(x) satisfies

& —Zaplla = [F (@) = F (@ap)lla = [A7 (@ — zanp)l2 < A7 2llz — zanpll2
< HA_1H2(2ashp)_1hQ = (2ff/sh\p)_1hQ-

We obtain A
T € aﬂz(ﬂ?shpa (QUshp) lh()) cQ

and ultimately x = F (&) € ( ) =
Ad item 3: Write F(z) = Ax —|— To bound the determinant, we use the well-known
identity |det A| = meas(2)meas(Q2)~* (e.g., [Rud87, Theorem 2.20, Lemma 2.23)):

Q) L.2.17 -
— (det A| = 1eaSE) BRI o gy j—a.
meas(€2) meas (£2) @
The lower bound th_l < ||Al|2 was already shown in step 2. Finally, D.2.16 allows us

to pick a point Zepp, € Q such Bally(Zgn, 7) C €, for all # € (0, (205hp) ' hg). We compute

Al = sup [|AElla = (27)7" sup [|F(Tanp + 7€) — F(Tahp — 7E) |2
l€ll2=1 [€ll2=1
< (27)7 sup |F(9) — F(@)]2 = (27) " he.
Z,9€0)

Sending 7 — (20shp) " 'hg, the upper bound ||All2 < a/sh\phghél follows.
0

Note that we can get analogous bounds for |det V(F~Y)| and [|[V(F~1)||l2 by reversing
the roles of €2 and €.

2.6 Some function spaces

Definition 2.25. Let Q C R? be open and let p € Ng. We define the space of polynomials
of degree p,

PP(Q) := {v Q0 —R ‘ I(ca)jaj<p CR:VE €Q: v(z) = Y cama}.

lo|<p

Furthermore, we set

P1Q):={v:Q —R|lv=0}
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We mention that the dimension of this space is given by

dim(PP(Q)) = (‘Hp) =Wl o),

d dp!

if p € Ny, and dim(P~(Q)) = 0 (see, e.g., [EG04, Section 1.2.3]).

Note that a function v € PP(Q) is represented by the same coefficient set (cq)jq|<p On all
of 2, even if € is not connected. In order to allow for distinct coefficient sets on distinct
connected components of €2, we introduce the following, slightly larger space:

Definition 2.26. Let Q C R be open and let p € Ng U {—1}. We define the space

PP

conn

(Q) :={v:Q — R|V connected components w C Q: v|, € PP(w)}.

For the next definition, we remind the reader of the notion of uniform continuity: Let
Q C R? be an open set. A function v :  — R is said to be continuous on €, if the
following statement is true:

VeeQ:Ve>0:30>0: sup  |u(y) —v(x)| <e.
ye:
ly—=ll2<o

On the other hand, the function v is uniformly continuous on 2, if

Ve>0:30>0: sup |v(y) —v(z)| <e.
z,ye:
ly—zll2<6

In this case, v can be extended to a continuous function v : @ — R (e.g., [AF03, Section
1.28]). If, additionally, v is bounded, then its extension to € is bounded as well.

Definition 2.27. Let Q C R? be open and k € Ng U {oc}. We set®

CH() = {v:Q— R|visk times continuously differentiable},
CHQ) = {veC*Q)|V|al <k:D unif. cont. and bounded},
CH(S) = {veC*Q)|supp(v) € N}.

The functions v € C§°(Q) are called test functions.

2.7 Lebesgue spaces

Lebesgue spaces are a core pillar of the theory of partial differential equations. More details
can be found, e.g., in [Fle77, Section 5.13], [Rud87, Chapter 3], [AF03, Chapter 2|, [Brell,
Chapter 4] or [Leol7, Appendix B.7.].

6See Section 2.1 for the definition of the relation “A € B”.
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Definition 2.28. Let I C N and p € [1,00]. We define the sequence space
P(I) := {v = (vi)ier € R [ |[0]lwry < o0},

where . ’
[ollie(ry = { (Licr )0 rp € [lo0)

sup;er |vil if p=o00

In the case p = 2, we set

(v, () = Z VW

el
If the set I has the form I ={1,...,N}, for some N € N, then we abbreviate [P(N) :=
P({1,...,N}).

Lemma 2.29. Let I C N and let p,q,r € [1,00] with 1/p + 1/q = 1/r. Then, for all
v e lP(I) and w € L1(I), there holds the Holder inequality

[owllir(ry < [|vller(ryllwlliacr)

Proof. See, e.g., [AF03, Corollary 2.5]. O

In the special case p = ¢ = 2 and » = oo, Holder’s inequality is also known as the
Cauchy-Schwarz inequality.

Definition 2.30. Let Q C R? be a measurable set and p € [1,00]. We define the Lebesgue
space
LP(Q) := {v : Q@ — R|v is measurable, ||v||rrq) < oo},

where f 1/
_ o lv(@)Pdz)™ P if p € [1,00)
HUHLP(Q) : { ess sup,eqlv(z)|  ifp= oo .

In the case p = 2, we set
(v, w)2(q) = /U(x)w(:v) dz.
Q

Lemma 2.31. Let Q C R? be measurable and p,q,r € [1,00] with 1/p+1/q=1/r. Then,
for allv € LP(Q) and w € LY(2), there hold vw € L"(2) and the Holder inequality

[vwllzr@) < vllr@)llwllLa@)-
Proof. See, e.g., [AF03, Corollary 2.5]. O

An immediate consequence of Holder’s inequality is the following result:

Lemma 2.32. Let Q C R? be measurable with meas(Q) < co. Then, for all p,p € [1,00]
with p < p, there holds
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Finally, we need to know what happens to the space LP(Q) if we perform an affine
coordinate transformation (cf. D.2.23).

Lemma 2.33. Let F : RY — R? be affine and let Q,Q C RY be such that F(Q) = Q.
Let p € [1,00] and v : Q — R be a measurable function. Then there holds the following

equivalence”:
velLP()) & wolF e LP(Q).

Furthermore, there holds the relation®
|det VP ||v o Fl gy = 10l o)

Proof. The case p = oo is trivial and the case p € [1,00) follows from the well-known (e.g.,
[Rud87, Theorem 7.26]) transformation rule for integrals,

/vdx:/voF‘\detVﬂdx.
) a

2.8 Sobolev spaces

The literature on Sobolev spaces is vast and we can only name a few: [Gri85, Chapter 1],
[McL00, Chapter 3], [GT01, Chapter 7], [EG04, Appendix B.3], [BS08, Chapter 1], [Eval0,
Section 5.2.], [Brell, Chapter 8] or [Necl2, Chapter 2]. Whole books dedicated to the
subject include, among others, [Maz85], [AF03] and [Leol7].

2.8.1 Definition

A fundamental concept in the theory of Sobolev spaces is the notion of weak derivatives.
Given an open set Q C R? a function v € C¥(Q), a test function w € C§°(Q) and a
multi-index o € Ny, it is well known that there holds the formula of partial integration:

/’U(Daw) dz = (=1)l /(D%)w dz.
Q Q

However, the formula also makes sense if we only require? v, D% € LP(2), for some p €
[1,00]. This observation allows us to generalize the notion of differentiability significantly:

"More precisely, we should write v o (F|s) € LP(Q).

81n the case p = oo, the convention 1/00 := 0 is used.

°In fact, it suffices to require v, D% € L (Q), where L (Q) == {v: Q — R|Vw € Q: v|, € L'(w)}
denotes the space of locally integrable functions. However, the simpler setting of L” () is sufficient for
the purpose of the present work.
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Definition 2.34. Let Q C R? be an open set, p € [1,0], v € LP(Q) and o € N&. We say
that v has an a-th weak derivative, if there exists a function v, € LP(Q)) such that, for all
w € C°(Q), there holds the identity

/ o(D%w) dz = (— 1)l / vaw dz.
Q

Q

As we shall see, there can be at most one such function v,. To this end, we need the
following well-known result, which goes by the name of Fundamental Lemma of Calculus
of Variations or du Bois-Reymond Lemma:

Lemma 2.35. Let Q C R be open, k € Ny and p € [1,00]. Let v € LP(Q) be such that

/U(Daw) dz = 0,

Q
for all w € C§°(Q) and all || = k. Then, there holds'’ v € PE L (Q).

Proof. Proofs of the cases k € {0, 1} can be found, e.g., in [AF03, Lemma 3.31] and [GH96,
Chapter 1, Section 2., Subsection 2.3., Lemma 4], respectively.
O

We quickly summarize the basic properties of weak derivatives.
Lemma 2.36. Let Q C R? be open, p € [1,00] and o, 3 € N¢.

1. Uniqueness: Ifu € LP(Q) has an a-th weak derivative uy € LP(QY), then u, is unique.
In particular, the following notation is justified:

D% 1= u, € LP(Q).

2. Commutativity: Suppose uw € LP(Q2) has an a-th and a (-th weak derivative D%u,
DAu € LP(Q). If either one of the weak derivatives D*+Pu, D*(DPv), D (DY) €
LP(Q) ewists, then all of them exist and coincide.

3. Linearity: If u,v € LP(Q) have a-th weak derivatives D*u,D% € LP(Q)), then, for
all a,b € R, the function au + bv € LP(Q) has an a-th weak derivative given by
D%(au + bv) = a(D%u) + b(D*) € LP(Q).

4. Restrictions: Consider an open subset w C Q. If u € LP(Q) has an a-th weak
derivative D®u € LP(Q), then the restriction ul,, € LP(w) has an a-th weak derivative
given by D*(ul,) = (DY), € LP(w).

Proof. To see item 1, let vy, v, € LP(Q2) be such that [, v(D%w)dz = (—1)l°l [, vawdz
and [, v(Dw)dz = (—1)l°l [, vawdz, for all w € C§°(Q). Then [,(va — va)wdz = 0,
for all w € C§°(Q2), so that v, = Vg, by L.2.35. The remaining items are straightforward
computations. O

ORecall from D.2.25 and D.2.26 that P, (Q) = {0}.
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Definition 2.37. Let Q C R? be open, k € Ng and p € [1,00]. We define the Sobolev
space
WEP(Q) := {v e LP(Q) |V|a| < k : ID% € LP(Q)}.

The space WHP(Q) is equipped with the norm

HUH . - (Z\odgk ||Dav||ll)}7(Q))1/p pr € [17 OO)
whr@) - max|o<i [D|[pe)  ifp=o0

Furthermore, for alll € {0,...,k}, we define the seminorm

Wl = § (2lal=t D0l )7 if p € [1,00)
w vP(Q) . maXla‘:l ||D(X'U||LOO(Q) pr — .

In the case p = 2, we write H*(Q) := W"2(Q) and set

<’U,’UJ>Hk(Q) = Z <DaU,Daw>L2(Q).
la| <k

Remark 2.38. For general subsets Q C R?, which are not necessarily open, we adopt the
convention from [Cia78, Remark 2.1.3.] and abbreviate

WkP(Q) .= WhP(Q°).

From a functional analytic point of view, the spaces W*?(Q) and H*(Q) have a nice
structure.

Lemma 2.39. Let Q C R be open, k € Ng and p € [1,00]. The space WEP(Q) is a Banach
space. Furthermore, H*(Q) is a Hilbert space.

Proof. See, e.g., [Eval0, Section 5.2., Theorem 2]. O

The concept of “weak differentiability” from D.2.34 generalizes “classic differentiability”.
In fact, if a function v € C*(Q) is such that all of its classic derivatives D € C°(€Q),
la] <k, lie in LP(Q) (for some p € [1,00]), then all weak derivatives D*v € LP(Q), |a| < k,
exist and coincide with the corresponding classic ones.

In contrast to possible other forms'' of “generalized differentiability”, weak derivatives
still allow us to infer “v = const” from “Vv = 0”. (As for classic derivatives, a proof of this
fact can be found, e.g., in [Fol02, Theorem 2.42].) To deal with the issue of non-connected
sets 2, we remind the reader of the space Phonn () from D.2.26.

Lemma 2.40. Let Q C R? be an open set. Furthermore, let k € Ny and p € [1,00]. Then,
for all v € WFP(Q), there holds the following equivalence:

|’U’Wk,p(Q) =0 <~ DS ]P)Icco_nln(Q)

Proof. The direction “<” is trivial and the direction “=" follows immediately from L.2.35.
O

10One could, for example, define “generalized differentiability” as differentiability almost everywhere in €.
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Many more properties of classic derivatives still hold true for weak derivatives. The next
theorem is a handy tool in these types of proofs.

Theorem 2.41. Let k € Ny and p € [1,00).
1. Let Q CR? be open. Then, for every v € WFP(Q), there exists a sequence
(v)ner € WHP(@) N C®(Q),
such that'? ||v — Unllwrp () 0.

2. Let Q C R? be an open, bounded set with a Lipschitz boundary. Then, for every
v e WFP(Q), there exists a sequence

(0n)nen € WHP(Q) N C™=(Q),
such that'? ||v — Unllwrp ) 0.
3. Let Q C R? be open. Then, for every v € WFP(Q), there exists a sequence
(vn)nen € C5°(RY),
such that [[v — vn| 1r(q) 50 and |jv — Unllwp () 0, for all w € Q.
4. For every v € WFP(RY), there erists a sequence
(Vn)nen C CSO(Rd%
such that [[v — vp |l yr.p(ra) 0.

Proof. Ttem 1 is attributed to [MS64]. Item 2 can easily be derived from item 1 via an
extension operator Eq : WEP(Q) — WHP(R?) (see D.2.48 below). Item 3 can be found
in [Mv98, Chapter 5, Section 4, Theorem 1] or [Brell, Theorem 9.2]. As for item 4, see

[Leol7, Remark 11.26.].
O

2.8.2 Product rule
T.2.41 can be used, for example, to derive Leibniz’ product rule for weak derivatives.

Lemma 2.42. Let Q C R? be open, k € Ny and p,q,r € [1,00] with 1/p+1/q=1/r. Let
u € WkP(Q) and v € W*4(Q). Then wv € WE™(Q) and, for all |a| < k, there holds the
Leibniz formula

D% (uwv) = Z (a) (DPu) (D Pv) e L™ (Q).
B<a B
In particular, for alll € {0,...,k}, there holds the bound
l
|UU‘WZ”"(Q) < C(d7 Q7 kvpv q, T) Z |U‘Wj’p(Q)‘U’Wl_j’q(ﬂ)‘

7=0
2In other words, W*?(Q) N C™(Q) is a dense subspace of W*?(Q).
13In other words, W*P(Q) N C*°(Q) is a dense subspace of W*?(Q).
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Proof. We only prove the case k = 1. Let u € WHP(Q) and v € W4(Q). Using Holder’s
inequality (cf. L.2.31), we get, for all i € {1,...,d},

lwllr) < llullzr@llvllzag) < oo,
[(Ou)v +u(00)llLr@) < |ulwrryllvlize@) + [ullze@lvlwraq) < oo

It remains to prove that (9,u)v+u(9,v) € L"(12) is indeed the i-th weak partial derivative
of uv € L"(2) in the sense of D.2.34. To this end, we introduce the quantities

. [ p/r ifr<oo _ [ oq/r ifr<oo
PP=l12 ifr=oc’ T2 ifr=oc’

Keeping in mind that p,q,r € [1,00] and that 1/p + 1/q = 1/r, the relevant properties
of p and ¢ are the following:

p,q € [1, 00, 1/p+1/g=1, p<p, q<4q (p < oo or g<oo).

Now, let w € C3°(€2) be given. Since supp(w) € 2 (cf. D.2.27), we can find an open,
bounded set w C € such that supp(w) C w. Using p < p and ¢ < ¢, we know from 1.2.32
that

uly € WH(w) € WH(w), vlw € WH(w) € WH(w).

W.lo.g., let us assume that § < oo (recall that p < oo or § < oo or both). Then we
may apply T.2.41 to the space W4(w) and obtain a sequence (v,,)neny € Wh(w)NC>®(w)
such that [[v — vnlyae) 2 0. In particular, using Holder’s inequality from L.2.31 for the
conjugate exponents p and ¢, we have

| [, wo(Ow) da — [ uwoa(Bw) dz| < |ull gy [0 = vnll Ly lwlwre @) = 0,
| [, w@)wdz — [ uw(@up)wdz] < lull oy v — vnlwrag) [wlipew)y — 0,
| [, (Ou)vwdz — [ (Qu)vpwdr] < Julwrse)llv = vnllpallwllzewy — 0.

Note that the integral [ (d;u)v,w dx on the third line is susceptible for partial integration
(i.e., D.2.34), since vyw € C§°(w). The integrand then becomes —u0;(v,w) and we can
apply the classic Leibniz rule 9,(v,w) = (0,v,)w + v, (0;w). Putting everything together,
we compute

/((@u)v + u(9v))wdr = /(@u)vw + u(O;v)w da <& /(@u)vnw + u(0;vn)w dx

Q w
o /—u@i(vnw) + w(0;vp)w dz Lbe. —/ wvn (Oyw) dr & — [ ww(Ow) de = —/ uv(O;w) dz.
w w w Q
This concludes the proof. ]
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2.8.3 Chain rule

Next, we develop the chain rule for the weak derivatives. The chain rule is often used
in the context of a scaling argument, where stability/error bounds on a family of subsets
Q1,...,0v C R? are reduced to stability/error bounds on a single reference element OC
R?. Similar results on the chain rule can be found, e.g., in [AF03, Theorem 3.41], [EG04,
Lemma 1.101.], [Brell, Proposition 9.6] or [Bral3, Lemma 6.6].

For the next lemma, we remind the reader of D.2.23 and D.2.16, where we defined affine
transformations and shape regular sets.

Lemma 2.43. Let F : RY — R? be affine and let Q,Q C RY be sets with F()) = Q.
Suppose that Q has shape reqularity ogn, > 1 and that Q@ has shape regularity osn, > 1.
Furthermore, let k € Ny and p € [1,00]. Then, for every measurable function v : Q — R,
there holds the following equivalence :

veWHP(Q) & wvoF eWrrP().

In this case, for alll € {0,...,k} and all j1,...,5 € {1,...,d}, we have!®

d
0,0 (woF) = 3 (3, -00) 0 F- (VF)iyj, - (VF)y € LP(Q).

J1
i1,e.t=1

Furthermore, there exists a constant C = C(d,k,p,fl,a/sh\p,ashp) > 1, such that, for all
1eA{0,...,k},

_ d
C lhéﬂvlwl,p(g) < hg/p‘v o F|Wl,p(Q) < Cth’U|leP(Q)-

Proof. We only prove the case k = 1. Abbreviate A := VF € R¥? and let v € WHP(Q)
and j € {1,...,d}. Using L.2.33, a straightforward computation proves that vo F' € LP(Q)
as well as z;i:l(aiv) oF - Ay elL? (Q) (very similar to the stability bounds below).

We argue that Zle((“)iv) o F'- A;; is indeed the j-th weak partial derivative of v o F' in
the sense of D.2.34. To this end, let w € Cgo(f)) be given. Since F' is affine, there holds
wo F~! € C§°(Q). Furthermore, using the chain rule for classic derivatives, there holds

the following (pointwise) identity on €:

d
2161(111 o Fﬁl)Aij =

1(3mu7) o F7h (A7) Ay

B, ) 0 F~L - (AL A),, = (90)0 FL.

m

M
M

<.
I
—

I
M=
~ 3

1

3
I

“More precisely, we should write v o (F|g) € W*P(Q).
15 Alternatively, one could use Faa di Bruno’s formula for D%(v o F'), for all multi-indices o € N¢ with
|a] < k. See, e.g., [CS96] for an explicit formula in the multivariate setting.
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With this identity, we compute

d

Q/ <Z(aiv) o F - Al-j)ﬁ)dx - gAij Q/((aiv) o Py da

i=1

d
—ZAZ]]detA| 1/( v) (o F~Y) da D‘%M_ZAij|detAy—1/vai(woF—l)dx
Q

i=1 Q i=1
— —|det A /v((ajw) o Flyds = — /(v o F)(9,1) dx.
Q a

Since @ € C§°(Q) was arbitrary, it follows that 9;(vol') = Zle (O;v)oF-A;j, as required.
Finally, to see the stability bounds, we compute (with an implicit constant C'(d, p))

(a7 o0 F| g L'%24 |det V|7 ||vo F 1, B2 0l ooy
Similarly, using the bound
L | Aij| = e (Aej, ei)a| < [|A]l2,
we get, for all j € {1,...,d},
d
(Tamhahs N P110; (v o F) 1y = (0amhahy )P Z;(aiv) o F - Ay oy

d d L.2.24
< (o0gphahy") )N () o Fllo@yllAll2 < > ol eyl Allz < Taphahg ! olwrsq)-
i=1 i=1

In summary, for all [ € {0,1}, we have
( shthh )d/p‘,v © F|WLP(Q) < C(d7p7 l)(O{Sh\Pthél)IW‘WZ’P(Q)'

This concludes the first case where v € WP () was asserted. To see the reverse direction,
suppose that v : @ —s R is such that ¢ := vo F' € WhP(Q). Since F~! is again a regular
affine transformation (cf. 1.2.24), we can apply the previous results to the function 9o F~*
and get v = 9o F~1 € WHP(Q). Reversing the roles of Q) and Q, it follows that, for all
l € {0,1},

(T~ el )P lolwin) = (Gamp haha )P0 0 F 7 wiag)
< O, p,D)(osnphhg ) 0l

C(d,p, l)(ashphﬁhﬁl)lw © F|Wl,p(())'

This finishes the proof.
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2.8.4 Lipschitz boundaries, traces and extensions

Many important results in the theory of Sobolev spaces require some regularity assumptions
on the boundary of the computation domain Q C R?. The concept of a locally Lipschitz-
continuous boundary (or simply Lipschitz boundary) turned out to be a particularly fruitful
one (e.g., [Cia78, Section 1.2.], [McL00, Pages 89-96], [AF03, Chapter 4] or [Ne¢12, Section
1.1.3]). Here, we restrict the presentation to the case of open, bounded subsets  C RY,
but the notion of a Lipschitz boundary also exists for open, unbounded sets (e.g., [AF03,
Chapter 4]).

Definition 2.44. Let§ > 0. A functiony : (—6,8)*' — R is called Lipschitz continuous,

if

sp B @]

sge(—soyd-1 |z =22
For the next definition, we remind the reader of D.2.23, where we introduced rigid body
transformations.

Definition 2.45. Let Q C R? be open and bounded. We say that @ C R? has a Lipschitz
boundary, if there exist €,6 > 0, L € N, rigid body transformations Fy, ..., Fy : R? — R?
and Lipschitz continuous functions'® vy, ... ,yp : (=6,6)1 — R, such that

L

lyl{ﬂ(x,y) |z € (=6,0)"", y e m(z) + (—£,0)} <

Ule) |z € (<601, y = (o) - o0,

Uthite.n) o€ (<60 yen@)+ 05} € BRI

Lipschitz boundaries allow us to define boundary values for functions v € W1P(Q) in the
form of a trace operator (-)|r : WP(Q) — LP(T). For the definition of the space LP(I),
I' C 992, we refer the reader to [Ne¢12, Section 2.4]. More details on the trace operator can
be found, e.g., in [Gri85, Section 1.5] or [McL00, Pages 100-106].

Lemma 2.46. Let Q C R? be an open, bounded set with a Lipschitz boundary and let
' C 99 be a part of the boundary with measg_1(I") > 0. Furthermore, let p € [1,00). Then,
there exists a linear trace operator

()l = WHP(Q) — LP(T)
with the following properties:
1. For allv € WP(Q)NC>®(Q) and x € T, there holds (v|r)(x) = v(x).
2. For all v € WYP(Q), there holds the stability bound'”

[vll ey < C(d, T, p)[[vllwie -

1811 the case d = 1, the functions 7; have to be replaced with constant values y; € R.
'"Here and in the sequel we abbreviate |[v|r||z» ) by [|v]|zer)-
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Proof. See, e.g., [Ne¢12, Section 2.4] or [Leol7, Chapter 18]. O

The trace operator allows us to define the space H&(Q), which will make a short appear-
ance in Chapter 6.

Definition 2.47. Let Q C R% be an open, bounded set with a Lipschitz boundary and let
' C 09 be a part of the boundary with measy_1(I') > 0. Furthermore, let p € [1,00). We

define the space
Wy P(Q,T) := {v € WH(Q) |v|p = 0}.

In the case T' = 08, we abbreviate Wol’p(Q) = Wol’p(Q,GQ). Furthermore, if p = 2, we
set HY(Q,T) := Wol’Q(Q,F) and again HY(Q) = H}(Q,09).

Another important aspect of Lipschitz boundaries is the fact that they allow us to extend
a function v € W*P(Q) to a function o € WhP(R?).

Definition 2.48. Let Q C R? be an open set, k € Ny and p € [1,00]. We say that Q is a
WkP_extension domain, if there exists a linear operator

Eq : WFP(Q) — WFP(RY)
such that, for allv € W*P(Q) and all 1 € {0, ...k},
Eala=v. | Bavlwss < @2k Dlvlwiso.
More details on extension domains can be found, e.g., in [Leol7, Section 13.1.].
Lemma 2.49. 1. The set Q = R? itself is a W*P-extension domain.

2. Let Q C R% be an open, bounded'® set with a Lipschitz boundary. Then, Q is a
WHEP_extension domain.

Proof. Ad item 1: Take Eq as the identity operator from WP (R?) to W*»(R?).
Ad item 2: See [Ste70, Chapter 6, Section 3]. O

2.8.5 Embedding theorems

Next, we briefly discuss embedding theorems. While the literature on this subject is ex-
tensive (e.g., [AF03], [BS08], [Brell]), we only need the following two results. The first
one is known as a Sobolev embedding theorem and the second one as a Rellich-Kondrachov
embedding theorem.

Theorem 2.50. Let Q C R? be an open, bounded!? set with a Lipschitz boundary. Fur-
thermore, let k € N be such that k > d/2. Then, there holds the continuous embedding

H*(Q) € C°(Q).

18The assumption of boundedness can be dropped, if the notion of Lipschitz boundaries for unbounded
domains from [AF03, Chapter 4] is used.

190nce again, the assumption of boundedness can be dropped, if Lipschitz boundaries are defined as in
[AF03, Chapter 4].
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In other words, for all v € H*(Q), there holds®*’ v € C°(Q) and
[0l co@y < C(d, R0l (-
Proof. See, e.g., [AF03, Theorem 4.12]. Ol

Theorem 2.51. Let Q C R? be an open, bounded®! set with a Lipschitz boundary. Fur-
thermore, let k € N. Then, the there holds the compact embedding

H*(Q) € H1(Q).
In other words, for every bounded sequence (vy)neny € H¥(Q), there exist a subsequence
(Uni))ien and a function v € H*1(2), such that |lv — Un(ay | v =1 () 5 0.

Proof. See, e.g., [AF03, Theorem 6.3]. O

2.8.6 Poincaré inequality

An important consequence of the Rellich-Kondrachov embedding theorem is the so-called
Poincaré inequality, of which there exist several variants. For the purpose of the present
work, we need the following version:

Lemma 2.52. Let Q C R¢ be an open, bounded set with a Lipschitz boundary and k € Ny.
Let (Z,] - ||z) be a normed space and vz : H¥(Q) — Z be a linear operator with the
following properties:

1. For all v € H*(Q), there holds |uzv|z < C(d, 2k, Z, Lz)|[0]| () -
2. For all v € PEL(Q) with 1zv = 0, there holds v = 0.

conn

Then, there holds the following Poincaré type inequality:
Vv € Hk(Q) : HUHH’“(Q) < C(d7Q7k7 Z, LZ)(W‘H’“(Q) + HLZUHZ)‘

Proof. The case k = 0 is trivial, so let us assume that £ > 1. If the Poincaré type inequality
were not true, then we could find a sequence (v, )neny € HF(Q) with [vnll ey = 1 (after
possible normalization) and

0.

S|

1
[onl () + llezonllz < llonllaro) =

According to T.2.51, there exist a function v € kal(Q) and a subsequence of (v, )nen,
denoted by (vn)nen again, such that [|v — v ge-1(q) 2 0. Then, in view of the bound

lvn = vmll e ) S |vnlms) + [omlmr@) + lvn = vllEr-19) + [[v = vill gr-1(0)

20More precisely: We can pick a continuous representative from the equivalence class v.
21Here, in contrast to T.2.50, the assumption of boundedness cannot be omitted.
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it follows that (vy,)nen is a Cauchy sequence in H*(Q). Since H*(Q) is complete (cf. 1.2.39),
there exists a function w € H*(Q2) such that ||w — v,|| HE(Q) 2 0. From the inequality

[v = wll gr-1(9y < v = vnllgre—1(0) + llvn — |l i) = 0
we get that v = w € H¥(Q) and that ||v — Onll k() = l[w — vnll e (o) 2 0. Therefore,

[Vle) +llezollz - < v = valar@) + [onlar@) + [lez(v = von)llz + [lezvnllz

S Noalr@) + 110 = vnllgrg) + lezoallz = 0.

We obtain ]v|Hk(Q) =0 and tzv = 0. Using L.2.40 and the assumption on the operator

Lz, we obtain v € PE-1 (Q) and ultimately v = 0. This produces the contradiction

L= lm {lval () = v/l 50y = 0-
O

One of the most famous variants of the Poincaré inequality (e.g., [Leol7, Theorem 13.19])
reads as follows:

Corollary 2.53. Let Q C R? be an open, bounded set with Lipschitz boundary and let
HE(Q) be defined as in D.2.47. Then, there holds the following bound:

Voe HiQ): ol < O )l o).

Proof. Apply L.2.52 to the space Z := L?(0€) and the trace operator tz := (-)|spq from
1L.2.46. O

2.8.7 Inverse- and Caccioppoli inequality

The Poincaré type inequality from L.2.52 allows us to bound lower order derivatives of a
function v € H*(Q) by higher order derivatives (plus an additional term that accounts for
polynomials). On the other hand, bounding higher order derivatives by lower order ones is
certainly not possible for arbitrary functions v € H*(Q). To see this, consider the sequence
vy i=sin(27n-) on Q := (0,1) C R. Then [lvy| 12(0) = 1/+/2 and [Un| 1 () = V270, so that
the inequality |vn|g1(q) < Cllvn|lp2) cannot hold true for a constant C' > 0 independent
of n.

If, however, we have additional information about v € H¥(f2), then such a bound is
indeed possible. Below, we present two instances of such inequalities. The first one is
concerned with polynomials and goes by the name of inverse- or Markov inequality.

Lemma 2.54. Let Q C R? be an open, bounded and convex set. Let k,l € Ny with | < k
and p € Ng. Then, for all v € PP(QQ), there holds the inverse inequality

p_2k|U|Hk(Q) < C(vavk)p_2l|v|Hl(Q)'

Proof. The case (k = 1,1 = 0) can be found, e.g., in [Dit92]. The general case follows easily
by induction on k. O
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The second instance is known as a Caccioppoli inequality or inverse Poincaré inequality
(see, e.g., [Gia83, Proposition 2.1] and [Eval0, Section 6.3.] for similar bounds). We provide
a short proof, because discrete Caccioppoli inequalities will play an important role later
on (cf. A.4.19) and it might be helpful to the reader to see how such an inequality can be
proved in a continuous setting.

Lemma 2.55. Let Q C R? be an open, bounded set with a Lipschitz boundary. Let D C RY
and consider a function f € L*(Q) with supp(f) C QN D. Denote by u € H}(Q) the weak
solution of (—Au = f, ulpq = 0), i.e.,

Yv € H&(Q) : <VU, v’U)LQ(Q) = <f, U>L2(Q)'

Furthermore, let B € B be a box (D.2.8) and let § > 0 be such that the inflated box
B e B (D.2.12) satisfies BN D = 0. Then, there holds the Caccioppoli type inequality

Slulgranpy < C(d, Q)||ull L2(nps)-

Proof. The key element of the proof is a cut-off function x with the following properties
(cf. L.5.3):

ke CFPMRY), supp(k) C B, klp=1, 0<k<1, Koo (rey S 6L,

Now, the fact that the product v := k?u lies in HE(Q) allows us to use v as a test function
in the variational equation that defines u. On the one hand, since supp(f) € Q2N D and
supp(v) € QN B®, we know that

(Vu, Vv) o) = (f,v)2) = (f,0) 12(0nDnBs) = 0
On the other hand, we can expand Vv = V (k%u) = 2kuVk + k?Vu to find that
0= (Vu, Vv)r200) = 2(kVu,uVK) 20y + HFLVUH%Q(Q)'
Solving for ||/iVu||i2 @) and applying the Cauchy-Schwarz inequality, we get
16V ullfz0) = —2(kVu,uVr) 20
< 2w Vull 2o [uVEl L2) S 6 IkVull L2y lull 2055,
which ultimately results in the desired bound:

lul g onpy = 16V Ul 20nm) < 1KV Ul 20y < 0wl r2n 58

O

We mention that this proof works for other geometric shapes than boxes as well (e.g.,
balls). The only requirement for the sets B and B is that a cut-off function & with all of
the mentioned properties can be constructed.
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2.8.8 Deny-Lions Lemma

The error bound in the following corollary goes by the name of Deny-Lions Lemma (e.g.,
[Cia78, Theorem 3.1.1.]) and can also be seen as a variant of the Bramble-Hilbert Lemma
([BHT1, Theorem 1, Theorem 2]).

Corollary 2.56. Let Q C R? be an open, bounded, connected set with a Lipschitz boundary
and k € Ng. Furthermore, denote by

J: HF Q) — PFL(Q)
the orthogonal projection onto the closed subspace PE=1(Q) C H*(Q). Then, for all v €
HF(Q), there holds the following error bound:

v = Jollgrq) = welg,f{fl(m [v—wl| gr@) < C(d,Q,Ek)|v|grq)-

Proof. We apply L.2.52 to the normed space Z := H*(Q) and the linear operator ¢z := J.
Since J is an orthogonal projection, there holds [[tzvllz < [|v]|gr(q), for all v € HE(Q).

Furthermore, for all v € P*=1(Q) with tzv = 0, the projection property of .J yields v =
Jv = 1zv = 0. Now L.2.52 tells us that, for all w € H*(Q),

1wl gry < C(d, Q) (Jw] ey + [[Jwl] gr(a))-
Finally, given v € H¥(Q), we plug in w := v — Jv € H¥(Q) and find that

v = Jollgr) S v —Jvlgrq) + 1 (v = JV) || gr ) = [v]Er@)-

2.9 Meshes

In this section, we introduce the basic concepts regarding (simplicial) meshes. We will
need these results later on in Chapter 6, where we apply the abstract framework from
Chapter 4 to a mesh-based finite element problem. The introduction of a mesh on a given
computational domain Q C R? is often the first step in the analysis of the finite element
method for the discretization of partial differential equations. For further reading, see, e.g.,
[Cia78, Chapter 2|, [EG04, Section 1.3], [BS08, Chapter 3], [Bral3, Chapter 2, Section 5]
or [LB13, Chapter 3.

2.9.1 Simplices

Definition 2.57. Let d € N and k € {0,...,d}. A subset S C R? is called k-simplex, if
there exist points Ny, ..., Ny, € R? such that the vectors {N1 — Ny, ..., Ny — No} C R? are
linearly independent and such that

k k
S = {No—l—Zti(Ni—No) oty >0, > 4 < 1}.
i=1

=1
The points N (S) := {No, ..., Ny} are called nodes of S. In the case k = d, we drop the
prefix “d-” and call S a simplex.
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Note that S is closed, i.e., it contains its boundary. Furthermore, we mention that there
is some ambiguity in the set of nodes A/(S) in that a reordering of the nodes produces
the same physical set S C R%. In d = 3 space dimensions, a 3-simplex is a tetrahedron,
a 2-simplex is a triangle, a 1-simplex is a line segment and a O-simplex is a point (all of
which are subsets/elements of R3).

Lemma 2.58. Let T C R? be a simplex with shape regularity Oshp > 1 (cf. D.2.16). Then,
there hold the relations

20Ny < M— N M — Ny = hy.
(204, hr < MNHGI;{} | 2 < ?]I\}IE%(T)H |2 = hr
M;éN

Proof. Let N(T') = {Ny,...,Nq} and assume w.l.o.g. that miny/zy [|[M — Nl = |[|[Ng —
Npl|2. Consider the (d — 1)-dimensional, parallel hyperplanes

Iy := No+span{N; — Nolie{l,...,d—1}},
I'y = Ng+span{N; — Nglie{l,...,d—1}}

and denote the enclosed slice by
Q:={(1 —t)z+ty|z cTo,yclytel01]}CRL
Since Bally(Zgpp, (20shp) "thr) €T C Q (cf. D.2.16), we have

(QUShp)flhT < diStQ(Fo,Pd) < HNd — NOH2 = MNm,l/\I/l(T ||M N||2
M#N

The other relations being trivial, it remains to show that hr < maxys n ||[M — N||2. To
. . . . d d
this end, consider arbitrary points z,y € T'. We expand = 7, s;N; and y = ijo tiN;
with coefficients to, ..., tq, So, - . -, Sq € [0, 1] satisfying Z?:o 8; = Z;l:o tj = 1. Then,

d d d
Z Z > sitj(N; — N)
-0 -0 i.7—0

< max ||[M — Nl.

= sup
9  N,NeN(T)

2 Sistk

T—Sup

S7,7

One particular simplex will play an important role in the sequel.

Definition 2.59. Let Ny := 0 € R? and, for alli € {1,...,d}, let N; := e; € R%, the i-th
Euclidean unit vector. The corresponding simplex T C R is called reference element.
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2 Preliminary results

2.9.

2 Simplicial meshes

vl

Figure 2.1: A simplicial mesh in 2D.

Definition 2.60. Let Q C R? be an open, bounded set with Lipschitz boundary (cf. D.2.45).

Furthermore, let ognp, Olqu > 1 be given constants. A system T C Pow(QQ) is called (sim-
plicial) mesh on Q, if the following conditions are satisfied:

1.

2
3.
4

The set T is finite.
. Bvery T € T is a simplex in the sense of D.2.57.
Every T € T has shape regularity ogp, (cf. D.2.16).

. For all T,NT eT withT # T (deﬁz~1 # (), there evists a k € {0,...,d — 1}, such
that TN'T is a k-simplex with N(TNT) CN(T)NN(T).

a=r

TeT

There holds

For all T,T € T with N(T) NN (T) # 0, there holds the bound

h,f < UlquhT-

Remark 2.61. Ttem 6 says that T is locally quasi-uniform, i.e., simplices T,T € T sharing
a common node N have comparable diameters. This assumption is automatically fulfilled
in d > 2 space dimensions. To see this, one can exploit the Lipschitz property of 0 to
construct a “fan” of elements T1,..., Ty € T with

=T, Tp=T, NeN(T),  #WNT)NN(Ti)) =2
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Since Ty and Tiy1 have a common edge, we obtain the relation hy,,, < C(ogwp)ht from
L.2.58. Solving the recursion, it follows that hy < C(O‘Shp)L_lhT. Finally, since all T} have
N as a common node, the upcoming L.2.64 yields L < C(d, oghp) as well.

Definition 2.62. Let Q C R? be an open, bounded set with Lipschitz boundary. We say

that Q is a polyhedron, if there exists a mesh T C Pow(2) on Q.

Note that, according to D.2.57, every T' € T is a closed subset of R%. In order to remove
the ambiguity in the orientation of the simplices, we henceforth assume that, for every
T € T, an ordering of the nodes N (T') has been fixed in advance. Before we go on, we
introduce a few names:

Definition 2.63. 1. The members T of a mesh T are called (mesh) elements. In anal-
ogy to D.3.6, a subset B C T is called (mesh) cluster.

2. The (mesh) nodes are given by N := Jpcr N(T).
3. For every T € T, we fiz an incenter xp € T (cf. D.2.16).

4. For every physical subset B C RY, we define the patch®?

T(B):={T €T|TnNB #0}.
In particular, T(T) is the patch of a mesh element T € T, T (xo) := T ({xo}) is the
patch of a point g € R% and T(N) is the patch of a node N € N.
5. For all B C T, we set

i := hunax 5 = ma b, hmin i = i hr.

Note that, given an element 7' € T and a node N € N, there holds the equivalence
NeN(T) & TeT(N).

In the next lemma, we show that the number of mesh elements in any given node/element
patch is uniformly bounded.

Lemma 2.64. Let Q C R? be a polyhedron and T C Pow(Q) be a mesh.
1. For all T,T € T with T # T, there holds

TNT C(8T)N (dT).

In particular, T° NT° = (.
2. For all zo € R? and Ty € T, there hold the bounds
#T (x0) < C(d,0snp),
#T(Ty) < C(d,osnp)-

22Note that T(B) C T is just a collection of mesh elements, whereas | J7(B) C R? is the corresponding
physical set.

39



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Preliminary results

Proof. Ad item 1: Let 7,7 € T with T # T. If TNT = 0, then the statement becomes
trivial. On the other hand, if TNT # (), then we know from D.2.60 that S := T NT is a
k-simplex, for some k € {0,...,d — 1}, and that N'(S) € N(T) NN(T). But then S must
be a subset of a hyperplane going through one of T’s faces so that S C 9T. The same holds
true for 7', which ultimately leads to S C (9T) N (9T).
Ad item 2: The idea is to shrink the patch elements 7 (z¢) towards the common point
xo so that they all have the same size. To this end, let
Amin := min hp.
TeT (xo0)
Now, consider an element T € T (zg). We define T := Fp(T) C RY, where Fr is the
following affine transformation (cf. D.2.23):

hmin hmin hmin
Ve e RY: Fr(x) := (x — o) + 29 = x4+ (1-— x0.
hr hr hr

The mapping Fr shrinks the original element T" towards the point xg, which itself lies both
in 7 and T. Since Amin /hr € [0,1], the shrunk element T consists of convex combinations
of points from 7. But 7' is convex, so that there must hold 7' C T'. As for the diameter of
T, we have

. . L.224  L.2.24
Oqpltmin = 0 [IVET|2hr < hy < ||V Fr|l2hr = huin.
Furthermore, according to L.2.24, T is osnp-shape regular, where
— —1 -1 -1
Oshp -= O-Sthv(FT )||2hThT = O'shphj“hmjn < Oshp-

Now, since xg € T , there holds the following chain of inclusions:
L.217 . -
BT = Ballg(.i—si;, (20%)_1h7~1) Q TO g T Q Baug(l‘o, hf) g Ballg(xg, hrnin) =: B.

In particular, we have
L.2.7 L.2.7
—2dyd — -1 d d
Op Pnin < (Oshp hy)® < meas(Br), meas(B) < AL,

Note that the balls {Br |T € T (xo)} are pairwise disjoint, because the supersets 7° D
T° D By are pairwise disjoint (cf. item 1). Putting everything together, we obtain

as—llidhglin#T(xO) N Z meas (Br) = meas( U BT> < meas(B) < hl, .
TGT(CIE()) TGT(IQ)

Dividing by h<,,, we obtain the desired bound #7 (zo) < C(d, ospp). This finishes the
case of a single point zo € R%.

Finally, let Ty € T. For every T' € T (1p), we know from D.2.60 that T and 7' share
at least one common node. Therefore, using the previously established bound for single
points,

#T(TO) < Z #T(N) < C(dv Ushp)'

NeN(Tp)
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2.9.3 The affine reference mappings

Many aspects of the finite element method are easier to handle on the simplex T C RY
from D.2.59. Since every mesh element T' € T is a simplex as well, it is not surprising that
we can find an affine transformation (cf. D.2.23) between 7" and T'.

Definition 2.65. For every mesh element T € T with nodes N(T) = {No,...,Nq}, we
define the affine transformation

{ R? — R4
FT : d
r +— Nop—+ Zi:l :Cl(NZ — No)

Note that Fp can also be interpreted as a function Fyp : T — T and we will frequently
do so in the sequel.

What D.2.65 tells us is that we can think of mesh elements T" € T having a particularly
“nice” form. Suppose, for example, that we want to prove some inequality on one of the
elements T" € 7. More often than not, there will be implicit constants C' > 0 involved,
which depend on the integration domain, i.e., the element T itself. Without any further
information about the shape of T', this could be problematic. In order to avoid this pitfall,
we can proceed in three steps: First, we use Fpr to transform the goal inequality to the
reference element 7'. Second, we prove the inequality on T and inherit a constant C (T) > 0,
which need not bother us. Third, we transform the inequality back to the mesh element T
itself. Note that transforming back and forth between Tand T poses no problem, because
the stability properties of Frr are controlled by the shape regularity constant ogpy, (cf. L.2.24
and L.2.43).

An instance of such an argument can be found in the next lemma, which states that the
behaviour of a polynomial of degree 1 is determined by its values on the element’s nodes.

Lemma 2.66. For all T € T and all v € P*(T), there hold the following bounds:

lolleiry < o) (miplo(a)] + hrlelnoeer ),

ey € Cldiowg) | max (M) = o(N)].

Proof. Denote by T C RY the reference element from D.2.59 and recall that its nodes are
given by N(T) ={0,e1,...,eq}, where ¢; € R? is the i-th Euclidean unit vector.

Consider a polynomial w € P'(T). Since |w(-)| is continuous on the compact set 7', we
can pick a point o € 1" such that |w(ig)| = min, _+ [w(Z)]. Then, using a Taylor expansion
of w around g, we get

4l < )] + ol g liana(F) S i 108)] + iy ey
T
On the other hand, a Taylor expansion around 0 tells us that 0,w = w(e;) —w(0), for all
i€ {l,...,d}. In particular,

w o = max |w(e;) —w(0)] < max w(M) — w(N)|.
wlyroecay = s, lo(e) —wO] < max  fo(3) —w(F)
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Now, denote by Fr : T —s T the affine transformation from D.2.65. Then, for all
v e PYT),

L.2.43
lole S o0 Frllm, Swinl(wo @) + 0o Frhyumqy
€T
L.243
S min|v(@)] + hrlvlpreer).
zeT

Furthermore, since Fp maps the nodes of T to the nodes of T,

L.2.43 N ~
hrlvlwiery S 00 Frlypceq < o ]IélaNX(T) |(vo Fr)(M) — (vo Fr)(N)|
S
= M) —v(N)|.
A [v(M) —v(N)|

This concludes the proof.
O

Lemma 2.67. Let k,l € Ny withl < k and p € Ng. For allT € T and allv € PP(T'), there
holds the inverse inequality

p_zkhljgﬂMHk(T) < C(d7k7Ushp)p_2lhl7“’U|Hl(T)'

Proof. Since T is bounded and convex, we know from L.2.54 that, for all w € PP (T), there
holds

— 9k _
p? ‘w’Hk(T) Sp 2l‘w’Hl(T)-

Denote by Fp : T — T the affine element transformation from D.2.65 and let v € PP(T).

A

Since v o Fp € PP(T'), we get

L.2.43 L.2.43
—2kpk —2kp d/2 -2y d/2 =201
PRy S R o Frl gy Sp Wyl o Frlgpy S 0 bhrlvlgr).

O

2.9.4 Mesh refinement

In D.2.60, we required that mesh elements sharing a common node have comparable di-
ameters, but we made no assumptions about the global distribution of element diameters.
In particular, heavily non-uniform meshes such as exponentially graded- or locally refined
ones are allowed (cf. D.6.15).

Remark 2.68. Given a polyhedron Q C R%, a shape regular, possibly non-uniform family
of meshes (T;)ien can be constructed from an arbitrary initial mesh Ty via a procedure called
adaptive mesh refinement. Assuming that T; is already defined, the construction of Tjy1 is
done in four steps:

1. For every element T € T;, a so-called error estimator ny € [0,00) is computed.
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2. From the error estimators (nr)reT;, a subset M; C T, of marked elements is deter-
mined. (Typically the elements with the largest error estimators.)

3. The marked elements T € M; are subdivided into smaller elements.

4. If needed, elements which are “close” to marked elements also get subdivided. (Might
be necessary to ensures the adjacency condition from D.2.60.)

The error estimators nr can be used to specify regions of 2 where the current mesh
T, is too coarse. The choice of a specific type of error estimator usually depends on the
application the user has in mind (e.g., [CFPP14] or [EG04, Chapter 10]). If the element
subdivision in step 3 is done via bisection ([Ste08]), then the mesh family (T;)en is indeed
shape reqular in the sense of D.2.60.

We close this short section with a rigorous proof of the seemingly trivial fact that, given
a number § > 0 and a mesh element T' € T, we can split T into a family of smaller simplices
of diameter =< 4.

Lemma 2.69. Let Q C R be a polyhedron, T C Pow(ﬁ) be a mesh and Cy > 1 be a given
constant. Let T € T and let 6 > 0 be such that § < Cohp. Then, there exists a family
S C Pow(R?) of simplices S C RY with the following properties:

1. There holds Jges S =T .
2. Every S € S is ognp-shape regular, where ognp, = C(d)oghp.
3. There hold the bounds hmax,s < 6 < C(d)Cohmin,s-

Proof. Denote by T C R the reference element from D.2.59 and by F : R? — R? the

A

affine element transformation from D.2.65 which maps F(T) = T. We know from L.2.24
that there exists a constant Cj := C(d) > 1, such that

Cy'hy < ||V F|l2 < Cihr, Crtht < |IV(F Y|z < Crogphy!.

Now, let M € N be aAfree parameter. Accordil}g to [EG00], the simplex T can be
subdivided into a family S C Pow(T) of simplices S € R? with the following properties
(for some Cy := C(d) > 1):

1. There holds USGSS =T.
2. Every SeSis (Cs-shape regular.
3. For every S e 5’, there hold the bounds 6'2_1]\/[_1 < hg < CoM~L.
We define the corresponding family of simplices on T

S:={F(9)| 5 € 8} C Pow(T).

Clearly, Jgcs S = T. Furthermore, for every S = F(S) € S, we know from L.2.24 that
S is o-shape regular, where

0= Col|[V(F ™) |2hshy! < Co| V(F )2l VFl2 < Co(Crosphs ') (Cihr) = CFCoogny.
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Finally, let us derive the bounds for hmaxs and hyins: L.2.24 tells us that hg <
he||VF|2 < Cahg, which readily implies

O Y02 hp Mt < hg < C1Cohp ML
Now, using the ceiling function [-], we choose
M := [C1Cohps™] € N.

Since we assumed 0 < Cyhp, we have

M = [0102hT(571—‘ > ClthTéfl,
M = [ClthT(S_l-‘ < ClcghT5_1+1 < (0102+C'0)hT5_1,
which leads us to the bounds
hmax,S = Iglaé(hs < ClCQhTMfl < (57
€
hming = minhs > Crr0y2he M~ > O7NOS%(C1Cy + Cp)le.

This concludes the proof.

2.9.5 Spline spaces

Next, we introduce the well-known spline spaces. To this end, we remind the reader of
D.2.25, D.2.37 and D.2.47, where we defined polynomial and Sobolev spaces.

Definition 2.70. Let Q C R? be a polyhedron and T C Pow(Q) be a mesh. For all p € N,
we define the spline spaces

SPUT) = {ve HY(Q)|VT € T :vo Fp € PP(T)},
SPHT) == {ve HYAQ)|VT € T :vo Fr € PP(T)}.

Similarly, for all p € Ny, we set
SPUTY) == {v e L2(Q) VT € T :vo Fr € PP(T)}.

Note that, trivially, S2"'(T) C SP1(T) € SPO(T). We will refer to functions v € SPO(T)
as being discrete.

Given a simplex 7' C R? and a polynomial v € PP (T'), the support of v can either be
empty or almost all of T'. Since there are no other possibilities in between, it makes sense
to introduce a slightly different notion of supports for discrete functions:

Definition 2.71. Let Q C R? be a polyhedron and T C Pow(Q) be a mesh. For all p € Ng
and v € SPY(T), we set
suppy(v) :={T € T |v|r # 0}.
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Note that supps(v) is a set of mesh elements, rather than a physical set. In particular,
we have suppy(v) € 7 and (Jsuppy(v) € RY (In comparison, the usual support is a
subset supp(v) C R9.)

One of the most widely used ansatz spaces in real world FEM applications is SU(7),
i.e., the lowest-order case p = 1. A natural choice for a set of basis functions is associated
with the mesh nodes N,

Lemma 2.72. Let Q C RY be a polyhedron and let T C Pow(Q) be a mesh with nodes N .
There exists a system of hat functions

{¥n [N e N} CSHY(T)
with the following properties:
1. {Yn | N € N'} is a basis of SYN(T) and {¢n | N € N\OQ} is a basis of Sy (T).
For all M, N € N, there holds (M) = dnas-
For all N € N, there holds supp(1hx) C T(N).
For all N € N, there holds 0 < ¢ < 1.

AR NI

There holds Y ycp N =1 on all of Q.

Proof. See, e.g., [EG04, Section 1.1.2] for the case d = 1 or [LB13, Section 3.2.2] for the
case d = 2.

O

2.9.6 Discrete cut-off functions

In Section 2.8.7, we already hinted that Caccioppoli type inequalities will play an important
role later on. During the proof of 1..2.55, we then used a smooth cut-off function k € C*°(2)
for the derivation of a Caccioppoli inequality in the continuous problem setting. This result
will serve as a blueprint for the proof of our main result, T.4.21. However, T.4.21 is derived
in a fully discrete setting (cf. A.4.19), meaning we only work with the solution of the
discrete problem, rather than the continuous one.

In Chapter 6, we then verify the assumption from A.4.19 and prove a discrete version
of the Caccioppoli in the context of a finite element discretization. Therefore, it is not
surprising that we also need a discrete version of the cut-off function k.

Let us quickly recapitulate the relevant properties of the function x from L.2.55: We had

k€ C™(Q), klaon = 1, supp (k) € QN B°,

where B% € B is a slightly inflated version of the box B € B (cf. D.2.8 and D.2.12). A first
attempt on a discrete counterpart would obviously be #’s nodal interpolant & € SH!(T).
The problem with this approach is that £ might have a prohibitively large support. At the
very least, the interpolation process adds one layer of mesh elements 1" to the support of
£ (which encompasses at least 2 N B). This is not problematic in the vicinity of elements
T € T with “small” diameters hr < 6. However, close to elements T € T with “large”
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diameters hr 2 9§, even a single layer of additional elements increases the support by hr,
which we cannot control in terms of §. In particular, even by tweaking ¢§, there is no hope of
achieving supp (%) € QN B°. Here, the reason for failure is that the initial cut-off function
# is coupled to the shape of the box B C R? instead of the (possibly highly irregular) set

{1 eT(B)|hr <6} CRY

In this section, we construct a discrete cut-off function # € SH!(7T) that addresses this
very problem (cf. L.2.77). First, we need a discrete analogue for the inflated boxes B® € B
from D.2.12. To this end, recall from D.2.63 that, for every mesh element 7' € T, we fixed
an incenter xp € T in the sense of D.2.16. Furthermore, recall that hg is the maximal
element diameter in a subset B C 7.

Definition 2.73. Let Q C R? be a polyhedron and T C Pow(Q) be a mesh. For all BC T
and all 6 > 0, we define the inflated cluster

B(S = {T S T’HT eB: HQZT —a:ng < (5}
Lemma 2.74. 1. For oll BC T and d > 0, there holds the bound

hgs < max{hg,20smpd}.

2. Let B € B be a box, BC T(B) and § > 0 with 3hg < §. Let € := (60gyp) 16 > 0.

Then, there holds the inclusion
s canp’

Proof. Ad item 1: Let T € B°. By definition of B, there exists an element T € B such
that ||op — 7[> < 0. In the case T' = T, we have hy = hs < hg. On the other hand, if
T # T, then L.2.64 implies T7° N T° = @ and we find that

L.2.17
hT S QUSthxT — .%',fHQ S QUshp(S.

Ad item 2: Consider an element T' € B°. Note that, using item 1, we have
Def.e
hr < max{hp,20gpe} = max{hp,d/3} =3/3.

Now, according to D.2.73, there exists an element T € B such that ||z7 — z7|l2 < e. Note
that h; < hp < 0/3, according to the assumption 3hs < 0. Since TeBC T(B), we can
pick a point 2 € TN B and find that, for all y € T,

ly — zll2 < ly — 272 + [l — 25l + |25 — zlla < hp +e+hy <8/34+8/34+8/3=0.

Due to L.2.13, this implies y € B°. Taking the union over all T € B° and y € T, the

desired result follows.
O
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Now we know how to inflate a set of mesh elements B C T by a prescribed amount § > 0.
Note that this inflation process is isotropic (uniform in all directions), does not care for the
number of added “element layers” and also ignores the shape of the underlying domain 2.
In fact, B® might include mesh elements 7' € T that lie on “the other side” of a gap /hole
in Q. The geodesic distance (i.e., the shortest path inside Q) between the elements T € B
and the elements 7' € B° might be much longer than the beeline §. The idea of geodesic
distances is the topic of the next definition.

Definition 2.75. Let Q C R? be a polyhedron and T C Pow(Q) be a mesh with nodes N

1. A set K ={Ny,...,Np} C N is called node chain, if, for every l € {1,...,L — 1},
there exists an element Ty € T such that

Ny, Nip1 € N(Th).

2. For every node chain K = {Ny,...,Np} CN with L =1, we set |[K|:=0. If L > 2,

then
L—1

Kl:= D 1N = N
=1
We refer to |K| as the length of the node chain.

3. Let N,M € N. If there exists a node chain K C N with N, M € K, then we define

disty (N, M) := min{|K| | K C N node chain with N,M € K}.

If no such node chain exists, then disty/(N, M) := co. For subsets M C N, we set

disty (N, M) = Migﬁ/{distj\/(N,M) (€ [0, 00]).

We call distps(-, ) the geodesic node distance.
We collect the relevant properties of node chains and the geodesic node distance.
Lemma 2.76. Let Q CRY be a polyhedron and T C Pow(Q) be a mesh with nodes N
1. The function distar(-,-) defines a metric on N (with values in [0, c0]).

2. For all T €T and all M C N, there holds

distpr (N1, M) — distar(No, M)| < ho-.
Nh]{ggj\([(T)| istpyr (N1, M) — disty (N, M) T

3. Denote by o1qy > 1 the constant from D.2.60 and let K = {Ny,...,N} C N be a
chain. Then, for all Tyart, Tena € T with N1 € N (Tstart) and Np € N(Tenq), there
holds the bound

hTend S Ulqu max{hTstart, 20’shpUC’}~
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2 Preliminary results

Proof. Ad item 1: We only prove the triangle inequality: Let Ny, No, N3 € A and assume
that dista/(N1, N2) and distpy/(Na, N3) are both finite (otherwise, the triangle inequality is
trivially fulfilled). Then we can find minimal node chains Ki2,K23 C N connecting Ny
with Ny and No with N3, respectively. We can then easily form a node chain from N; to
N3 by K13 := K12 U Ko3. Since N» is part of both node chains, we get

distar (N1, N3) < [Kis| < [Ka2| + [Kas| = distar (N1, Na) + distp (N2, N3).

Ad item 2: Let T € T and Ny, Ny € N(T). Since K := {Ny, Na} is a node chain with
N1, Ny € K, there holds

disty (N1, N2) < K| = || N2 — Nif]2 < hr.
In particular, for all M C N,
distnr (V. = inf disty (N1, M
istpr (N1, M) Jnf disty (N1, M)
< J\Jlng\/l diStN(Nl,NQ) + diStN’(NQ, M) < diStN’(NQ,M) + hp.
€

An analogous bound holds true for reversed roles of Ny and No. The asserted bound

then follows readily.
Ad item 3: In the case L = 1, we have N1 € N (Tyart) NN (Ttng), proving that this set
is not empty. Then, D.2.60 implies

hTend S alquhTstart'

In the remaining case L > 2, there exists an element 771 € T such that N;_1, Ny €
N(Tp—1). Tt follows that N, € N(T—1) NN (Tend), so that

D.2.60 L.2.58
hr,, < oquhr, , < 20smp0iqul|NL — Ni—1ll2 < 206hp0iqulK].

O

We close this section with the promised discrete cut-off function. The construction is
similar to [AFM21a, Lemma 3.18] and makes use of the geodesic node distance dista/(+,-).

Lemma 2.77. Let Q@ C R? be a polyhedron and T C Pow(Q) be a mesh. Denote by
Oshp, Olqu = 1 the constants from D.2.60. Let B C T and 6 > 0 be such that 6 > 4o1quhs-
Then, there exists a discrete cut-off function

K% € SH(T)
with the following properties:
1. There holds the inclusion suppT(/@‘;B) C B,
2. There holds K‘SB’B =1and0 < m% < 1.

3. For every l € {0,1}, there holds the stability bound

K5l wios () < C(d, Oghp, T1qu)d -
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2 Preliminary results

Proof. Denote by A the nodes of 7 and by {¥xn|N € N} C SH(T) the basis of hat
functions from L.2.72. We introduce a subset of nodes M C A and a parameter o > 0:

M = U N(T), o = (80shpTiqu) "+ > 0.
TeB

Now, let
kY = K = Z Uy € SYHT),
NeN

where the nodal values sy are defined as

KN = max{(),l _ dlStN(N’/\/l)} c [()7 1]_

ad

The idea is that the node values sy fall off with a constant slope 6! along the node
chains that make up the shortest connection between any given node N € N and the set
M.

Ad item 1: Let T' € suppy(k), i.e., k|lp # 0 (cf. D.2.71). Since the polynomial k|p €
PY(T) is unigely determined by the values {rkx|N € N(T)}, there must exist a node
N € N(T) with ky # 0, i.e., distyr(N, M) < ad. Since distpr(N, M) is the length of the
shortest chain from N to M = Uz g N (T ), we can find an element Ty, € B and a chain
K ={Ni,...,Np} such that

N EN( start) NL:NEN(T), |’C| :diStN(N,M) < ad.

Exploiting both the definition of the parameter a and the assumption § > 4014,h5, we
get the following bound for the Euclidean distance between the incenters z7,,.., € Tstart
and xp € T

17 7are — 272 < 127000 — Nill2 + Kl + [N — 27]l2 < A1y + K|+ By

L.2.76
< hTstart + ’IC‘ + Olqu max{hTStart, 20'shp|’C|} < 20’1quh3 + 40'Shp0'1quoz(5 < 5/2 + 5/2 =4.

According to D.2.73, this proves T € B’ and ultimately supps(x) C B°.

Ad item 2: Let T € B. For all N € N(T), there holds N € M, so that distar(N, M) =0
and ky = 1. For the remaining nodes N € N\N(T), the support properties of the hat
functions 1 guarantee x| = 0 (cf. 1.2.72). Thus,

slr PER N wn@nln) + Y an(nlr) = <Z¢N>

NeN(T) NeN\N(T ) NeN

L.2.72
= 1.

Furthermore, since 0 < ¢ <1 and ky € [0,1], we have

USZHNwN:R, H:ZKN¢NSZ¢N:1~

NeN Ne~N Ne~N
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2 Preliminary results

Ad item 3: The fact that 0 < x < 1 immediately gives ||k () < 1. In order to get a
bound for |k|y1.c(q), let T € T be given. Using the identity x(N) = y, for all N € N,
and the bound | max{0, ¢} — max{0,s}| < |t — s|, for all t,s € R, we compute

L.2.66

hrlklwieomr S . ]rvr;gff(T)lﬁNl—ﬂNgl
< (@6)™!  max |disty (N, M) — distar(Nog, M
> ( ) N1,N26N(T)| N( 1 ) N( 2 )|
L.2.76 1 Def.a "
< (aé)_ hr 5 0 “hr.

Dividing by hr and taking the maximum over all T € T, we obtain [k[y1.00) <
C(d, O’Shp,Ulqu)dfl.
O
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3 Hierarchical matrices

This chapter shall serve as an introduction to the theory of hierarchical matrices (H-
matrices in short) and contains everything the reader needs to know in preparation for
the main result of this thesis, T.4.21. Most importantly, we develop the block partition P?
that we need for the definition of H (P2, ), the class of H-matrices. For more introductory
material on H-matrices, we suggest the dissertation [Gra01] and the book [Hac09].

3.1 Motivation

Before we start with the rigorous construction of the block partition P?, we want to artic-
ulate the ideas presented in Section 1.2 in more detail. Denote by

A = (a(pn, @m))%,nzl e RVN
the Gram matrix from Section 1.1, i.e., a(+,-) is a bilinear form on some suitable Hilbert
space V, Viy C V is a finite-dimensional subspace and {¢1,...,¢on} C Vy is a basis. To be
more specific, assume that V is a function space on some computational domain  C R?
and that the sets

€y, := supp(ipn) C R

are small, e.g., tiny balls or mesh elements.

We consider two index sets I,.JJ C {1,..., N} (so-called clusters) and the corresponding
physical domains

Q= CRY, Q=9 CRrRY
il jeJ

Suppose that 27 and € ; are well separated in the following sense: There exist a constant
Oadm > 0 and boxes By, By € B (cf. D.2.8) such that Q; C By, Q; C By and such that the
following admissibility condition is satisfied:

max{diamg(By),diamy(By)} < caamdista(Br, By).

Clearly, the interaction between the groups {¢;|i € I} and {p;|j € J} is somehow
encoded in the matrix block A|rx; € RI*JIf the physical law behind the bilinear form
a(-,-) is governed by a “well-behaved” kernel function (e.g., asymptotically smooth as in
[Hac09, Section 4.2.4]), then it is safe to assume that the interdependence of the groups
{gi|i eI} and {p;|j € J} can be modeled using fewer bits of information than expected.

In a naive implementation, the memory requirements to store the (possibly fully popu-
lated) matrix block A|rx; € R amount to #I#.J. However, if its singular values decay
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3 Hierarchical matrices

rapidly, we can reduce the memory footprint considerably without losing too much infor-
mation. To this end, recall (e.g., [Str80, Section 6.3]) that any matrix B € R’*/ can be
written in the form of a singular values decomposition (SVD)

B=XYT e RI¥/,

where X € R/*” is the product of an orthogonal matrix U € R/*! with a diagonal matrix
> € R/ and where Y € R7*7 is an orthogonal matrix. The diagonal entries of 3 are
given by the singular values o1 > o9 > --- > 0 of the original matrix B. Then, given a
rank bound r € N with r < min{#I,#J}, we can assemble a truncated singular values

decomposition
B, = X, Yl e RI*/,

where X, € R/*" and Y, € R/*" only contain the first 7 columns of X and Y, respectively.
Note that B, has the same number of rows and columns as B, but the individual matrix
entries come from much shorter sums (J, only contains the first » members of J):

V(i,j) € I x J: Bij =Y XY, (Br)ij = > X ji.
keJ kedr

The matrices X, and Y, can be regarded as an efficient representation of B,., provided
that we store them as separate entities and refrain from carrying out the implied multi-
plication. While the matrix B, would need #I#J bits of memory, the cumulative cost of
storing X, and Y, as two separate matrices only amounts to r(#I + #J). The truncation
error between B and B, is given by (e.g., [TB97, Theorem 5.8.])

1B = Bells = or41,

which should quickly tend to zero (as  — oo) if the initial matrix B has a “low information
content”. In particular, we can choose a small value! for the rank bound 7, so that the
reduction in memory cost from #I#.J to r(#I + #J) is indeed significant.

Finally, we mention that the representation of B, via X, and Y, can even be used
to perform matrix-vector-multiplications efficiently: Given some input vector ¢ € R, we
first compute ¢ := Y,Tc and then X ,¢, which produces B,c = XrYzc. With this simple
two-step procedure, the total work load reduces to O(r(#1 + #.J)), which is again much
better than O(#I#.J) for the naive matrix-vector-product B,.c.

Figure 3.1 shall serve as a visualization of the difference between storing the matrix B,
explicitly versus storing its constituents X, and Y, separately. The left-hand matrix B, €
R!2X10 peeds 12 - 10 = 120 units of memory, whereas the right-hand matrices X, € R12*2
and Y, € R'9%2 only need 12 -2 + 10 - 2 = 44 units. Although B, is an almost fully
populated matrix here, its information content is less than 37%.

'Typical real world applications require r to be chosen on the order of O(In(N)) or even O(1).
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3 Hierarchical matrices

4 9 -6 -1 0 -6 8 -4 —6 2] [2 -1

8 —17 12 5 2 10 —-14 6 8 8 —4 1 2 07"

-6 10 -9 —-12 -7 -2 5 1 5 =17 3 2 4 -1

-4 10 -6 2 2 -8 10 -6 —-10 2 2 =2 -3 0

-6 15 -9 3 3 —-12 15 -9 —-15 3 3 -3 -2 -3

6 -9 9 15 9 o -3 -3 -9 21| |-3 -3 -1 =2

-4 7 -6 -7 -4 -2 4 0 2 -10| |2 1] |-2 2

2 -8 3 —-10 -7 10 —-11 9 17 —13 -1 4 3 =2

8 —-12 12 20 12 0 -4 -4 —-12 28 —4 —4 -1 2

2 -8 3 —-10 -7 10 —-11 9 17 —13 -1 4 -1 4

6 —-14 9 o -1 10 -13 7 11 1 -3 2 |—3 —4]

o -1 o -3 -2 2 -2 2 4 —4 0 1

Figure 3.1: Representing a (12 x 10)-matrix by a (12 x 2)- and a (10 X 2)-matrix.
Now let us return to the Gram matrix A = (a(pp, cpm))%7n21 from the beginning of this

section. Truncated SVDs promise good compression rates for blocks Al € R*7 whose

domains Q7,Q; € R? are well separated (i.e., included in admissible boxes). However,
there will also be matrix blocks A|7x.s, whose domains ; and Q; are not well-separated
(e.g., on the diagonal of A, where I N J # () and thus Q; N Qy # 0). In these cases, we
need to make sure that min{#1I, #J} is smaller than some predefined threshold ogna > 1.
Then, we can simply store the full matrix block A|;x; as is, which results in a memory
cost of

#I#J = min{#I, #J} - max{#I[, #J} < osman(#I + #J).
We are now left with the following task:

Problem 3.1. Construct a partition of the full matriz index set {1,...,N} x{1,...,N}
into blocks I x J, such that each block satisfies one or both of the following conditions:

1. There holds min{#I,#J} < ogman-
2. The physical sets Qr,Qy; C R are well separated.

In the remainder of this chapter, we will use the adaptive, geometrically balanced clus-
tering strategy from [GHLBO4] to construct such a partition. Before we proceed, a few
remarks are necessary.

Remark 3.2. In our discussion of truncated SVDs, we argued that the pair of matrices
(X,,Y,) can be seen as an efficient representation of B,. Continuing this theme, the
elements of the block partition P? will be pairs (I,J) of clusters I,J C {1,...,N}, as
opposed to cartesian products I x J. We hope that this slight misnomer is no cause for
confusion.

Remark 3.3. For the ease of presentation, the motivation was formulated in terms of
the Gram matrix A itself. However, the ultimate goal of this thesis is an approzimation
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3 Hierarchical matrices

result for its inverse A=Y, The heuristic still applies, though, because our assumptions on
the bilinear form a(-,-) and the basis functions @; in Chapter 4 will guarantee that A™' is
again a Gram matriz (cf. L.4.15).

Remark 3.4. A common compression technique for large matrices A € RNXN s exploiting
sparsity. If most entries of A are zero, then it might be cheaper to store the positions and
values of the non-zero-entries in three short lists and use these to represent A. We want
to emphasize, however, that the cost efficiency of H-matrices does not come from sparsity.
In fact, an H-matriz A might very well be fully populated. The only requirement for A to
be an H-matriz is that the “admissible” subblocks A|rxj must have a small rank, so that a
cheap representation via matrix pairs (X,,Y ) is possible.

3.2 The characteristic sets (2,
Definition 3.5. Let ognp, Oovip: Ospra => 1 and N € N. We consider a family of subsets
V,....0n8 CRY

with shape regqularity ogny, overlap oo, and spread ogprq (cf. D.2.16, D.2.18, D.2.21). The
sets €1, are called characteristic sets.

Definition 3.6. 1. A subset I C {1,...,N} is called cluster.

2. For all clusters I C{1,..., N}, we define

Q) = U 0, C R%.
nel

3. For every n € {1,...,N}, we fix an incenter x,, € Q, (cf. D.2.16). The points
x1,...,xN are called characteristic points.

4. Forallne{l,...,N} and I C{1,...,N}, we set (cf. D.2.14)

hn:=hq,, hr:=hmaxs:=maxh,, Apnr:=minh,, App:= min h,.
’ nel ’ nel ne{l,...,N}
The upcoming clustering algorithm mainly deals with the characteristic points x1,...,zn
and the quantities ognp,, Oovip, Ospra- The characteristic sets €1y,...,Qy only play a minor

role.

Definition 3.7. Denote by x1,...,xn € RY the characteristic points from D.3.6. For every
subset B C R?, we define the corresponding cluster

u(B):={ne{l,...,N} |z, € B}.
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3.3 The box tree T

In this section, we use a geometric clustering algorithm to construct a box tree T:
1. The nodes of T are axes-parallel boxes B € B (cf. D.2.8).
2. The root is a large box containing all of the characteristic points x1,...,xxy.

3. Using the splitting method sons(:) : B — Pow(B) from D.2.10, the initial box is
successively split into smaller boxes.

4. The splitting stops when the number of characteristic points x,, inside the current
box falls below a predefined threshold.

5. The boxes at the leaves of the tree form a partition of the root box. In particular,
they can be used to partition the points x1,..., 2y (and thus the abstract index set

{1,...,N}).

To get the clustering algorithm going, we need a box to start with. The assumption
about the family {Q1,...,Qy} having spread og,q allows us to utilize a previous result.

Definition 3.8. Denote by Bgiart € B the box from L.2.22.

Lemma 3.9. There hold the following properties:

Qla'--,QN C  Bstart, //(Bstart) = {17--'7N}7
diams (Bstart) = \/gasprd s meas (Bstart ) = ngrd .
Proof. See 1..2.22. O

Next, we introduce the threshold for the stopping criterion. We will refer to this number
as being a clustering parameter.

Definition 3.10. Denote by oo, > 1 the quantity from D.3.5. Let ogman > 1 be a number

that satisfies

Oovlp < Ogmall-

For a given system of characteristic sets 1, ..., Qu, it might be impossible to determine
the precise value of ooy1,. However, if the sets €2, are constructed algorithmically, a the-
oretical upper bound to oy, may be available (e.g., L.6.8). D.3.10 then says that ogman
must be chosen larger than this theorical bound.

We encode the stopping criterion of the algorithm in form of a subset By, C B. If a

branch of the tree T reaches B, it won’t grow any further.

Definition 3.11. Let ognan > 1 be the clustering parameter from D.3.10. A box B € B is
called small, if there holds
#L(B) < Ogmall-

We set
By, := {B € B| B is small} CB.

stop *

55



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Hierarchical matrices

The boxes B € B that have not yet reached the stopping set By, must contain more
than ogman characteristic points x,,. Since we assumed ogman > Oovip in D.3.10, such a box
B then also contains more than o4, characteristic points. According to L.2.19, this puts
an upper limit on the diameters h,, of the characteristic sets {2,:

Lemma 3.12. Denote by og,p > 1 the quantity from D.3.5. Then, for every box B €
B\B there holds the bound

stop’
h‘L(B) < ZUShpdiamg(B).

Proof. Since B ¢ B,,,, we know from D.3.11 and D.3.10 that #(B) > Osmall = Oovlp-
Then, using the fact that z,, € B, for all n € «(B) (cf. D.3.7), we get

D.36 L.2.19 _
hypy =" max hq, < 20q4p max |z, — x| < 204,diama(B).
neu(B) m,neu(B)

O

Now that we know how to start, split and stop, we can construct the individual levels of
the box tree T:

Definition 3.13. Let Byt € B be the box from D.3.8, let sons(-) : B — Pow(B) be the
splitting procedure defined in D.2.10 and denote by osman > 1 the clustering parameter from
D.3.10. Furthermore, let By, C B be defined as in D.3.11. We define a sequence (T;)ien
of subsets T, C B in a recursive manner:

Tl = {Bstart}a

VI>2: T, = {B|AeT,_,\B B € sons(A)}.

stop?

Remark 3.14. This recursive definition can easily be converted to an actual computer
program. Assuming the level T,_; € B has already been computed, we simply iterate over
all A € T, , and determine the corresponding index cluster «(A) C {1,...,N} through a
series of “point-in-boz” checks (cf. D.3.7). If the final score #.(A) exceeds ogman, then A
is split up and produces 2% sons on the next level T,.

The number of “point-in-box” checks can be reduced significantly, if the boxes A are stored
along with their associated clusters ((A). In this case, the tree nodes are the pairs (A, 1(A))
and we split A and o(A) simultaneously. The clusters «(B) of the children B € sons(A)
can then be determined from 1(A) and we don’t need to go through all N points z1,...,TN
afresh.

In fact, we could also work with an alternate definition of T where every node is a pair
(B,I) of a box B € B and a cluster I C {1,...,N}. However, the upcoming results really
only depend on the properties of the boxes B and not so much on the properties of the index
sets I. Therefore, we proceed with the original definition of T, which is far less cumbersome
anyways.

We summarize the most important properties of the sequence (T,);en:
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Lemma 3.1~5. 1. Letl € I\I For all B € T, tNhere holds B C Bgtart. Furthermore, for
all B, B € T, with B # B, there holds BN B = 0. In particular,

U B g Bstart'
BET,

2. For alll € N and all B € T;, there hold the following identities:
diamy(B) = Zﬂaspr(ﬁ_l, meas(B) = (QJSprd)dQ_dl.

3. For alll,k € N with | # k, there holds T, T, = 0.

Proof. Ad item 1: We only prove the statement about disjointness. Induction basis [ = 1:
Trivial, since T, only contains one element. Induction step [ — 1+ [: Let B, Be T, with
B # B be given. By definition of T,, there exist A4, A € T,_,\Bg,p, such that B € sons(A)
and B € sons(A). If A = A, then B, B € sons(A) and 1.2.11 yields BN B = §. On the
other hand, if A # A, then BN B C AN A = () by the induction hypothesis.

Ad item 2: Follows easily from L.2.11 and L.3.9 by induction on [.

Ad item 3: If T,NT, # 0, then we can find a box B with B € T, and B € T,. Then,

using item 2, we get
I = —logy(27!) = —logy((2Vdogpra) " Ldiamy(B)) = —logy(27%) = k.
O

Next, let us demonstrate that the sequence (T,);eny must halt at some point. The deter-
mining factors are the quantities ognp, Ogpra = 1 and Apyiy > 0 from D.3.5 and D.3.6.

Lemma 3.16. There exists an | € N such that T; C By ,,. The minimizer
L:=min{l € N|T, C By, }
has the following properties:
1. There holds T, #0 and T, =T, 5, =---=0.

2. There holds the bound
L < 10gy(8Vdognpospraht,)-
Proof. Ad item 1: If there existed a sequence (B;)ien such that B; € T,\By,,,, for alll € N,
then we would get the following contradiction:
L.3.12
0 < hin < hyp) < 20mpdiama(By) "2 4v/dogogma2 ! 5 0.

Now, denote by L € N the minimal value such that T, C Bg,. If L =1, then trivially
T, = {Bstart} # 0. If L > 2, then T; ;| € Bygtops due to the minimality assumption. It
follows that By, \T;_; # 0 and ultimately T, # (. As for the subsequent levels, the
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relation T, \B
l>L+1.

Ad item 2: In the case L > 2, the minimality of L tells us that there must exist a
B € T, _, with B ¢ Bg,,. Using the same estimates as in the previous step, we find
that hpin < 4\/Eashpasprd2_(L_1). This can easily be rearranged into the equivalent form
L <log, (Sﬂashpasprdh;ﬁln). In the remaining case L = 1, the bound

stop = 0 immediately implies T, ; = (). Then, inductively, T, = 0, for all

L.3.9
Rmin D36 hin diamg(Q,) < diama(Bstart) L39 \/gasprd < 4ﬂashpasprd
ne{l,...,.N}
readily yields L = logy(2) < logy(8Vdognposprali,) as well.
]

in)
min
steps. The non-trivial levels constitute the box tree T to be defined next. Keep in mind
that the levels T, are pairwise disjoint, i.e., a box B € B cannot occur on more than one

level (cf. L.3.15).

Definition 3.17. Let (T))en be the sequence from D.3.13 and L € N be the value from
L.3.16. We define the box tree

The previous lemma tells us that the sequence (T,);ey terminates after roughly In(h !

L
T:=JT,CB
=1
and set depth(T) := L. The sets T, are called levels of T. Furthermore, we say that T is

based on the clustering parameters Bggart, sons(:) and ogman (D.3.8, D.2.10, D.3.10).

For the remainder of this section, we are concerned with the computational complexity
of storing and assembling the box tree T.

Lemma 3.18. Let Bsart € B be the box from D.3.8. Furthermore, let f : Pow(RY) —
[0,00) be an additive function, i.e., for all M, M C RY with M N M = (), there holds

F(MUDM) = f(M)+ f(M).
Then, there holds the bound
>~ J(B) < depth(T) f (Buart).

BeT

Proof. Every non-negative, additive function is monotone, i.e., for all M .M C R? with
M C M, there holds

F(M) < f(M) + f(M\M) = f(M U(M\M)) = f(M).

Now, abbreviate L := depth(T). Recall from L.3.15 that, for each | € N, the boxes
B € T, are pairwise disjoint and that ) BeT, B C Bgtart- Therefore,

L L L
Z Z f(B) = Zf< U B> S Zf(Bstart) = Lf(Bstart)-
=1

BeT,

D.3.17

> f(B) <

BET I=1 BeT, 1=1
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L.3.18 allows us to find an upper bound for #T in terms of the quantity ogman > 1 from
D.3.10, the tree depth from D.3.17 and the number of characteristic points.

Lemma 3.19. There holds the bound

#T < C(d)o=  depth(T)N.

srnall

Proof. Abbreviating L := depth(T), we compute

L p.313 L
Z 5 Z # r]I‘l 1\Bst0p) (( U Tl 1> \Bstop> < #(T\Bstop)
=1 =2
= Z small Z #L smalldepth( )#L(Bstart) Lé Smaudepth( )
BET\]Bstop BeT

This concludes the proof.
O

Remark 3.20. In R.3.14, we argued that one should consider storing the pairs (B, t(B))
instead of just B. In this case, the total memory usage and assembly time of T amounts to
O(> et #1(B)). Looking at the proof of L.53.19 again, we actually showed that

> #4(B) < depth(T)N.

BeT

As for the memory usage alone, we can do even better: After splitting a node (A, (A))
into its sons (B,1(B)), we can relabel the characteristic points x1,...,zN in a way such
that 1(B) is a contiguous subset of N. Regardless of its cardinality, such a cluster can be
represented by 2 numbers alone, namely its minimum and its maximum. Then, the cost of
storing T is again on the order of O(#T).

3.4 The product box tree T?

The leaves of the box tree T can be used to partition the index set {1,..., N} into a family
of clusters I C {1,..., N}. Next, we introduce the product box tree T? that will allow us
to divide the set {1,..., N} x {1,..., N} into a block partition. One might be tempted to
use the tensor product tree T x T = {(By, By) | B1, Bo € T} for this task, but, according to
L.3.19, this structure contains up to #(T x T) = #T#T < Usmalldepth( )2N? members,
which is prohibitively large. Instead, we construct a substructure T?> C T x T that contains
just O(#T) elements.
The construction of the product box tree T? is very similar to the one of T:

1. The nodes of T? are pairs (By, By) of axes-parallel boxes By, By € B.
2. The root is just the pair (Bstart, Bstart)-

3. Splitting a pair (A1, As) € B? means splitting A; and A, individually (cf. D.2.10)
and forming all pairs (B, B2) of boxes B; € sons(A;) and By € sons(As).
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4. The splitting of a pair (B, B2) stops as soon as it is deemed small or admissible (cf.
D.3.22).

5. The leaves of the tree can be used to form a partition of {1,..., N} x {1,...,N}.

The stopping criterion is the biggest conceptual novelty, because it involves the spatial
distance between the boxes By and By that make up the pair (Bj, Bz). This kind of
coupling is the reason why T? contains significantly fewer elements than the full tensor
product T x T. We begin by laying out the playing field for the algorithm.

Definition 3.21. We denote the set of pairs of boxes by B? :== B x B.

We already know what the root of the tree T? will be and we also know how to split
pairs of boxes. It remains to define a rigorous stopping criterion.

Definition 3.22. Let ogman > 1 be the clustering parameter from D.3.10. Let Gaqm > 0 be
a another clustering parameter. A pair of boxes (By, By) € B? is called small, if

min{#:(B1), #¢(B2)} < osman.-
Similarly, the pair (Bi, Be) is called admissible, if
max{diamg(Bl), diamQ(Bg)} S &admdiStQ<B1, BQ)

We set

BZop i= {(B1, B2) € B*| (B1, Ba) is small or admissible}.

Note that a pair (Bj, Bg) is small, iff at least one of its components is small in the sense
of D.3.11. Furthermore, we emphasize that B is not the same as B xB see [..3.24

stop stop (
below).

stop

Remark 3.23. In the literature on H-matrices, the admissibility of a pair (B1, By) € B2
is sometimes phrased in terms of the minimum of the diameters, i.e., via the relation

min{diamQ(Bl), diamg(Bg)} S 5admdiSt2(Bl, BQ)

However, as we shall see later in L.3.26, if a pair (By, B2) is an element of the product
cluster tree T2, then its components B and By lie on the same level of the box tree T.
L.3.15 then implies that their diameters must coincide, so that, trivially,

min{diamy (B ), diamg(Bz)} = max{diamsy(B; ), diamy(B2)}.

Hence, in the case of geometrically balanced clustering, the two notions of admissibility
are equivalent.

Lemma 3.24. There hold the following inclusions:

N
&
[\e}

Beiop X Beiop € (B

stop stop =

stopXB)U(BXBstop)
{BeB|(B,B)cB,,} C B

stop = stop*

stop»
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Proof. We only prove the bottom line. Let B € B be such that (B, B) € BZ,,,. According
to D.3.22, the pair (B, B) is small or admissible. However, it cannot be admissible, since
otherwise

L.2.9
0 < diamg(B) = max{diamg(B),diamg(B)} < 5’admdist2(B, B) =0.

Therefore, (B, B) must be small, so that #¢(B) = min{#.(B), #t(B)} < 0sman. According

to D.3.11, this means B € B, O

The levels of the product box tree T? are again defined recursively:

Definition 3.25. Let Bgart € B be the box from D.3.8, let sons(-) : B — Pow(B) be
the splitting procedure from D.2.10 and denote by ogman > 1 and Ga.am > 0 the clustering
parameters from D.3.10 and D.3.22. Furthermore, let IB%gtop C B2 be defined as in D.3.22.
We define a sequence (']I‘IZ)ZGN of subsets ’]I‘l2 C B? in a recursive manner:

T% = {(Bstarta Bstart)}a
Vi>2: T? := {(B,By)]|(A1,42) € Tl{l\thop, By € sons(A1), By € sons(Az)}.

Once again, ’]Tl2 is not the same as T, x T,. The reason being that a pair (A, A3) € ']I‘lz_1
can be admissible without A; or Ay being small. Such a pair will not produce any sons in
’]I‘l2, whereas Ay and As do have sons in T;.

Lemma 3.26. 1. For alll € N, there hold the inclusions

{(B,B)|BeT,} € T7 C T, xT,.

2. For alll,k € N with | # k, there holds TlQ N ']I‘z = 0.

Proof. Ttem 1, left-hand inclusion: The case I = 1 is trivial. To see the induction step
l—1—1,let B €T, be given. According to the definition of T, (cf. D.3.13), there exists a
box A € T;_;\Bg,,, such that B € sons(A4). The induction hypothesis implies (4, 4) € T? |
and L.3.24 yields (A4, A) € T} ;\B%,,. Then, by D.3.25, (B, B) € T}.

Item 1, right-hand inclusion: The case [ = 1 is trivial. To see the induction step [—1 +> [,
let (B1,Bz) € T7. By definition of T7, there exists a pair (A1, A2) € T} ;\BZ,,, such that
By € sons(Ap) and By € sons(As). Using L.3.24 and the induction hypothesis, we have

(Al’ A2) € T%—I\Bgtop - (Tl—l X Tl—l)\(IB%stop X Bstop) = (Tl—l\Bstop) X (Tl—l\IBstop)v

so that Ay, Ay € Tl—l\Bstop' According to D.3.13, this implies (By, B2) € T, x T,.
Ad item 2: Let [,k € N with [ # k. Then, using item 1,

T?NT2 C (T, x T,) N (T, x T) = (T, NT,) x (T, NT,) “Z° 9 x 0 =0.

The next lemma establishes the fact that the trees T and T? have the same depth.
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Lemma 3.27. There exists an | € N such that T? C Bgtop. The minimizer

L:=min{l e N|T} C Bgtop}
has the following properties:
1. There holds T3 # 0 and T | =T% ., =--- = 0.
2. There holds L = depth(T), where depth(T) is defined as in D.3.17.
Proof. Abbreviate M := depth(T) = min{l € N|T; C By, }. The relation

L.324
x B C B

stop = stop

L.3.2

6
2
TM - P]I‘M X TM - IB3stop

proves that there exists an [ € N such that T? C IB%gtOp. Now, denote by L € N the minimal

value such that T% C Bgtop. The proof of item 1 is completely analogous to the one in

LL.3.16, so let us go straight to item 2: On one hand, the minimality of L immediately
yields L < M. On the other hand, if L < M were true, then T%\/[ = () by item 1. However,
since T, # () by L.3.16, we would end up with the following contradiction:
L.326
0#{(B,B)|BeTy} < Ty =0
O

As was the case in D.3.17, we are only interested in the non-trivial levels ']I‘IQ. Furthermore,
recall from 1..3.26 that they are pairwise disjoint, meaning that a box pair (Bj, B2) cannot
occur on more than one level.

Definition 3.28. Let (T?)en be the sequence from D.5.25 and L € N be the value from
L.3.27. We define the product box tree

L
T := T} € B
=1

and set depth(T?) := L. The sets le are called levels of T?. Furthermore, we say that T? is
based on the clustering parameters Bsgart, SOns(+), Ogman and dagm (D.3.8, D.2.10, D.3.10,
D.5.22).

In the remainder of this section, we will see why T? is indeed much smaller than T x T.

Definition 3.29. We define the sparsity constant
Tsparse(T?) := max { max #{(By, By) € T?| B, = B}, max #{(B1, By) € T? | By = B}}.

The next lemma shows that the value of asparse(']I‘Q) is indeed uniformly bounded.

Lemma 3.30. There holds the uniform bound

Usparse(Tz) < C(d)(2 + &;dlm)d'
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Proof. We focus on finding a bound for the left-hand maximum in D.3.29 and suggest
that the right-hand maximum can be treated analogously. First, recalling the inclusion
T? C T, x T, from L.3.26, we simplify?

max#{(Bl,Bg) €eT?|B, =B} = I}lé%\lxglax#{(Bl,Bg) € T?| B, = B}.
€ €T,

Now, for all [ € N and all B € T}, let us abbreviate
T?(B) := {(B1, B2) € T?| By = B} C T?.

Clearly, if we can find a constant C' > 1 such that #(T7(B)) < C, then also osparse(T?) < C.

Let us first have a look at the non-trivial case [ > 2: Given a pair (B, B2) € T7(B), we
know from D.3.25 that there exists a pair (4;, A2) € T7 1\Bstop such that B; € sons(A;)
and By € sons(As). First, according to L.2.11, we have B; C A; and By C As. Second,
since (A1, Ag) € ’]I'l{1 CT, ; xT, 4, we know from L.3.15 that

diamg(Al) = 4\/g0'5prd2_l, diamQ(Ag) = 4\/g0-sprd2_l-

And third, since (A1, A3) € IB%2\IB%St0p, we know from D.3.21 that the pair (A, A2) is neither
small nor admissible. In particular,

max{diams (A7), diamy(A2)} > Fagmdista (A7, A2).
Now, fix a point b € B and let a; € Ay, as € As be such that |las —ay]|s = dista(A41, As).
Then, since b € B = By C Ay,

sup [[b2 —bll2 < sup [|ba — azll2 + [Jaz — a1ll2 + |la1r — b2
ba€B> ba€B>

diamg (AQ) diStQ(Al, AQ) diam2 (Al)
diamy (As) + 6, max{diama (A1), diams(As)} + diama(A;)
4V d(2 —|—Uadm)asprd2 L

VANVAN

Abbreviating Cj := 4\/;1(2 + &;dm)asprd, we just proved that

U By C Bally(b, Cp271).
(B1,B2)€T}(B)

Furthermore, this union must be disjoint. To see this, consider two pairs (B, Bs),
(Bl, Bg) € T2(B) with (Bl, BQ) + (Bl, BQ) According to L.3.26, we have By, Bo, Bl, BQ €
T,. Now, since By = B = By, it must be the case that By # Bs. Then, L.3.15 already
1mp11es By N By = .

Next, we compute

C(d)cd2~ "2" meas(Bally(b, Cp2L)) > meas U Bg)
(Bl,Bg)GTQ(B)

— Z meas(B3) L3218 (205pra) 2" "4 (TH(B)).

(B1,B2)€T}(B)

2In other words, given a box B € T, it suffices to look for “partners” B, on the same tree level.
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Solving for #(T?(B)), we obtain the desired bound:

O(d)Cdo—d

otz = CDR T )"

T adm

#(T}(B)) <
This concludes the case [ > 2. Finally, in the case [ = 1, we have T = {Bstart }, S0 that

#(T%(Bstart)) = #{(Bstart7 Bstart)} =1< C(d)(2 + O'adlm)d,

The sparsity constant allows us to bound sums over T? by sums over T.

Lemma 3.31. Let fi, fo : B — [0,00) be given functions. Then, there holds the bound

Y ABY) A+ fa(Ba) € ogpanse(T?) Y f1(B) + fa(B).

(B1,B2)€T? BeT

Proof. Using the definition of the sparsity constant osparse(T?) from D.3.29, we compute

Z f1(31)+f2(32)§2< Z J1(By) + Z f2(32)>

(B1,B2)€T? BET ™ (By,B2)€T?: (B1,B2)€T?:
B1=B B>=B
= 3 (#{(B1B2) € T By = BYA(B) + #((B1, B2) € T | B = BY(B)
BeT

Sa—sparse Zfl +f2 )

BeT
O
As an immediate consequence, we get the following result:
Corollary 3.32. There holds the bound
#(T?) < Osparse(T*)#T.
Proof. We apply L.3.31 to the functions fi(B) := fo(B) := 1/2. Then,
#T) = Y 1< 0gpase(T?) D 1= 0parse(TH)#T.
(B1,B2)€T? BeT

O

Remark 3.33. The time needed to compute the product box tree T? is proportional to its
memory footprint. The recursion in D.3.25 requires us to go through all pairs (A1, Ag) €
T? | and check whether (A1, As) € Bstop According to D.3.22, we need two checks for
smallness in the sense of D.3.11 and one check for admissibility. The information about
smallness is already available in the box tree T (i.e., a trivial lookup) and admissibility of
bozes can easily be checked in O(1) time.
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3.5 The leaves T2

stop

Recall from R.3.2 that the goal of this chapter is to construct a family P? of cluster pairs
(1, J) such that (J; yyep2d x J = {1,...,N} x {1,...,N}. The product box tree T?
contains pairs of boxes that lie on top of each other, meaning that pairs of characteristic
points (x;,x;) will end up on more than one level of T?. To get a proper partition of
{1,...,N} x {1,..., N}, we may only take the box pairs from the leaves of T?.

Definition 3.34. We define the leaves of T? by

2 2 2
Tstop =T ﬁIB%stop

Lemma 3.35. In the sense of a disjoint union, there holds

U B1 X By = Bgtart X Bstart-
(B1,B2)€TZ,q,
Proof. First, we prove pairwise disjointness: Consider two pairs (B, By), (B, Bs) € TZop
with (Bi, Bs) # (Bi, Bz) and let [,] € N be such that (B, By) € T} and (By, Bs) € T?.
Let us check the case [ < [ first: Backtracking the predecessors of (By, Bs), we can find
a pair (Al,Ag) c ']I‘Z\IB%StOp such that B; € A; and By C A, (cf. L.2.11). Note that
Bi1,Bsy, Ay, Ay € T, by L.3.26. There must hold (By,Bs2) # (A]_,AQ) because (B, Bg) €
B2, whereas (Al, Ay) ¢ BL . If B; # Ay, then already B; N A; = 0, according to L.3.15.

stop stop*
Similarly, if By #£ Ag, then By N Ay = ). Either way, it follows that

(Bl X BQ) (Bl X Bg) (B1 X Bg) (Al X /12) = (B1 N Al) X (BQ N 1212) = 0.

This concludes the proof of pairwise disjointness in the case [ < [. Due to symmetry, the
case | > [ is completely analogous. Finally, in the case [ = [, the pair (Bl, BQ) itself plays
the role of (A, Ap).

It remains to show that the sets { By x By | (B1, Ba) € T2, } make up all of Bggart X Bstart.-
To this end, we introduce subsets M, Mj s1op C RY x RY 1 € {1,...,L}, L := depth(T?),
in the following way:

Ml = U Al X AQ, Ml,stop = U Al X AQ.

(Al,Az)ETlQ (A1,A2)€T ﬁBthp
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For all [ € N, [ > 2, we have the following recursion:

Ml—l = U A1 X AQ
(A1,A2)€T?

BRI a4y U | ( U B1>><< UAQ)BQ)

(A1,A2)€ (A1,A2)€  Bi€sons(Aj) Baesons(
T} 1 MBEop T2 \BZ,,

= U A1 X A2 U U U B1 X 32
(A1,A2)€ (A1,A2)€ Bji€sons(Ar),
T7_;NBZop T?_,\BZ,, B2€sons(Az)

D.3.25

= U Ay x Ay U U By x By
(A1,A2)€ (B1,B2)€T?
T%*lnﬁstop

= lel,stop U Ml~

Since T? = {(Bstart, Bstart) }, the first element of the recursion reads M7 = Bitart X Bstart-
On the other hand, the last element satisfies M7, stop, = M|, because in L.3.27 we defined

L such that T2 C Bgtop. Then,

Cr~=

Bgtart X Bstart = M1 = Ml,stop UMy =---= Ml,stop = U B1 x Ba,

1 (B1,B2)€T?

stop

l

which concludes the proof.

3.6 The block partition P?

We are finally in the position to define the block partition P?. Recall from D.3.7 that
u(B)={ne€{l,...,N} |z, € B} is the index cluster that belongs to a given physical set
B C R?. We mention that some of the box pairs (By, Bs) € Tgtop might be “empty” in the
sense that they contain none of the characteristic points x1,...,zxN.

Definition 3.36. Denote by ']T?top the leaves of the product box tree as defined in D.3.34.

We define the block partition
P2 = {(L(Bl), L(BQ)) ‘ (Bl, BQ) € Tgtop with L(Bl) ?é Q), L(BQ) 75 @}
Lemma 3.37. In the sense of a disjoint union, there holds

) hxL={1...,N}x{1,... N}
(11712)€P2

Proof. We start with pairwise disjointness: Let (I1, I5), (I, ) € P? with (I1, I,) # (11, I).
By definition of P?, there exist (B1, Bs), (B, Ba) € T4, such that (11, I) = («(By), t(Bz2))
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and (I1,I,) = (u(By), (~2)). Note that there must hold (By, By) # (Bi, Bs), because
otherwise (I, I2) and (I, I) would coincide. It then follows from L.3.35 that (B; x Bs) N
(B1 x Bg) = (). Therefore,

(I1 x I2) N (fl X 1:2) ={(m,n) | xy, € By,x, € Ba} N{(m,n) |z, € Bi,xp € BQ}
= {(m,n) | (&m,2n) € (B1 x By) N (B x By)} = .

Finally, we have

U L x I, = U {(m,n)]:ﬂmeBl,xnEBQ}:{(m,n) (T, Tn) € U B1XB2}

(I1,12) (B1,B2) (B1,B2)
6P2 ETstop ETstop
L.3.35 L. 3 9
=" {(m,n) | (xm,xn) € Bstart X Bstart } {1,...,N} x{1,...,N}.

This finishes the proof.
Ol

RNXN

The previous lemma tells us that any given matrix B € can be represented by a

family of matrix blocks, i.e.,
B < {Blnxpn |1, L) € P},

The clustering algorithm in D.3.13 generates a hierarchy of boxes B € B based on
the positions of the characteristic points z1,...,zy € R? from D.3.6 alone. But there is
no guarantee that the corresponding characteristic sets €,...,Qy C R? from D.3.5 are
fully contained in these boxes. We can inflate the boxes slightly (cf., D.2.12) to rectify
this inconvenience, but then the inflated box pairs do not satisfy the original admissibility
condition from D.3.22 any more. However, by tuning the clustering parameter 6,4, > 0
appropriately, we can regain admissibility with respect to a different admissibility parameter
Oadm > 0 (the one we actually care about).

Lemma 3.38. Denote by ogshp, Ospra = 1 and hyin > 0 the quantities from D. 3.5 and
D.3.6. Let oaqm > 0 be a given number (yet another clustering parameter). Suppose that
the product box tree T2 from D.3.28 is based on the clustering parameters Bsgart, sons(-),
Osmall and Gaam (D.3.8, D.2.10, D.3.10, D.3.22), where Gaqm is chosen as

Oadm = Fadm >0
(1 + 4Vdogp) (1 + Oadm)

Then, for every pair (I1, Is) € P2, there holds at least one of the following statements:

1. There holds
min{#h, #12} < Osmall-
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2. There exist boxes Ay, Ay € B such that’

Qr, Ay,
QIQ A27
Romin min{diams(A;), diamy(A2)},

Tadmdist2 (A1, Az),
\/ao-sprd-

max{diams(A;), diama(A2)}
diStQ (Al y AZ)

IAIA A TN N

Proof. Let (I1, I2) € P? be given. According to D.3.36, there exists a pair (By, By) € Tgtop =

T? N B, (cf. D.3.34) such that (I1,12) = (¢(B1),(Bz2)). In particular, by definition of
BZ.op (cf. D.3.22), at least one of the following conditions is satisfied:

min{#I1, #I2}
max{diamy (B ), diamy(B2)}

Osmall,

<
< Gadmdisty (B].7 BQ)-

If the first condition is satisfied, then we already have what we want. It remains to
check the case where the first condition is violated and the second one is valid. Using the
quantities hy, = maxper, hy, and by, from D.3.6, we define the inflated boxes (cf. D.2.12)

Ay := B"1 € B, Ay := Byl2 € B.

We will show that the boxes A1 and Ay have all of the desired properties. To this end, let
y € Q,. Then there exists an index n € I; such that y € ,,. Note that the characteristic
point z,, € €, (cf. D.3.6) satisfies x,, € By by definition of I} = «(By) (cf. D.3.7). Then,
since ||y — zy)|2 < diama(2y,) = hy, < hpy, L.2.13 tells us that y € Bi" = Ay, Using a
similar argument for Is, we obtain the inclusions

Qll g Ala QIQ g AQ-

Next, since we are currently in the case min{#1I;,#Il2} > ognan, we know from D.3.11
that By, By € B\B According to L.3.12, it follows that

stop*
hh = hL(Bl) < QUshpdiamg(Bl), h[2 < QUShpdiamg(Bg).
Then, abbreviating v := 1 + 4\/gashp, we compute

max{diamsg(By), diamy(Bs)}

< Gadmdist2(B1, B2)
L.213 . 3
< Gaamdista(Ay, A9) + VdGaam (b, + hi,)
< 5’admdist2(A1, AQ) + 2\/gashp&adm(diam2(31) + diamg(B2>)
< Gaamdista(A1, A2) + YFadm max{diamsy (B ), diama(B2)}.

3Lines 3 and 5 are merely a byproduct and we mention them only for easier reference later on. The reader
should focus his attention on lines 1, 2 and 4.
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3 Hierarchical matrices

Since Y0adm = Cadm/ (1 + Tadm) < 1, we can absorb the last term in the left-hand side of
the overall inequality. It follows that

L.2.13
max{diama(A;), diamg(A2)} < max{diams(B;) + 2\/&h[1 ,diamy(Bg) + 2\/&h1~2}
< ~vmax{diamy (B ), diamy(Bs)}
< D%dm Gigty(Ay, Ag)
1- YO0 adm
Defﬁadm

O'admdistg (A1 s Ag) .

The lower bound for the diameters of A; and Ay can be seen as follows:

D.3.6
hmin < min{hha hIQ}
L.213 N ) N o )
< min{diamy(B,""1), diamy(B1""1)} = min{diamy(A;), diams(As2)}.

It remains to prove the upper bound for the distance between A; and As. From D.3.34,
L.3.26 and L.3.15 we know that By, Bo C Bgtart- Therefore,

L.2.13
diStg(Al, AQ) = diStg(Blhll s Bzhl2) < diStQ(Bl, Bg) < diamg(Bstart) Lé'g \/gasprd-

This finishes the proof.
O

L.3.38 tells us that the cluster pairs (11, I3) € P? can be categorized into two different
groups.

Definition 3.39. We define
P2an i= {(I1, I2) € P? | min{#11, #1>} < ogman}, P2im = PP\PZan-

The next lemma will come in handy when we estimate the memory requirements for an
arbitrary H-matrix (cf. 1.3.44).

Lemma 3.40. There holds the bound

3" #L -+ #12 < 20sparse(T?)depth(T)N.

(Il,Ig)EIP’Q
Proof. We compute
D.3.36 D.3.34
Yoo #h+#L < Yo #UBY+H#UB) <D H#uUB) +#uUBy)
(Il,IQ)EPQ (B17B2)ET§top (B1,BQ)ET2
L.3.31 9 L.3.18 9
< 20’sparse(T ) Z #L(B) < 2Usparse(T )depth(T)#L(Bstart)
BeT
L.3.9

= 20gparse(T?)depth(T)N.
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3 Hierarchical matrices

Finally, we need to relate the operator norm of a full matrix B € RV*¥ to the norms of
its subblocks B, x1, as determined by P2

Lemma 3.41. For all B € RY*N | there holds the bound
Bl < oupare(T2)depth(T) | miss | Byl

1,12

Proof. Let & € RN and set y := Bz € RY. We compute

N

L.3.37
|Bzll5 = (y,Bx)y= > y;Byz; =" Y > yByz;
5,j=1 (I1,12)€P2 (3,5) €l x I2

> Wl Bloxnzln)eay < D lylea)|Bloxnlallzlea,)
(]1,12)61[”2 (]1,[2)6[?’2

((max HB|M2HQ) Sl el

I1,I>)eP?
Ll2) (I1,I2)€P?

1/2 1/2
2 2
<(11{r}3>ép2||3|11x12||2>( > ||y||12(11)> ( > ”leQ(IQ)) :

(I1,I2)€P? (I1,12)€P?

IN

IN

The term in the middle can be treated as follows:

D.3.36 D.3.34
Z ||y||z22(11) < Z ||y||122(L(Bl)) < Z ||yH122(L(Bl))

(I1,I2)€P? (B1,BQ)€'JT§t0p (B1,B2)€T?
L.3.31 L.3.18
= Usparse(Tz)Z||y||z22(L(B)) = Usparse(TZ)depth(T)Hy”l22(b(35mt))
BeT
L.3.9

Usparse(Tz)depth(T)||yH%'
With an analogous bound for >, 1) cpe ||:B||l22(]2), we get
18215 < oy depth() (|, Bl )l
(Il,IQ)EPQ

Finally, dividing by ||y||2 = ||Bz||2 and taking the supremum over all x € RY, the

alleged inequality follows.
O

This finishes our construction of the block partition P2. We collect all of our findings in
a corollary.

Corollary 3.42. Let ognp, Oovip: Osprd = 1 and N € N. Consider a family of subsets
V,....0n8 CRY

with shape regularity ognp, overlap ooy and spread ospeq (cf. D.2.16, D.2.18, D.2.21).
Denote by hpin > 0 the minimal element diameter as defined in D.3.6. Finally, let ogman >
1 be a number with ooyp < Tsman and let oaqm > 0. Then, there exist sets P?, Pgmall’ Pde
with the following properties:
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3 Hierarchical matrices

1. There holds P? = Pgmall U Pﬁdm.
2. The elements of P? are tuples (I,J) of clusters I,J C {1,...,N}.

3. There holds
) IxJ={1... N} x{1,...,N}.
(1,J)eP?

4. For every (I,.J) € P? there holds

small’

min{#], #J} < Ogmall-

5. For every (I,J) € IP? there exist axes-parallel boxes B, D € B with the following

propertiest: adm’
Qr C B,
Q; € D,
hmin < min{diams(B),diams(D)},
max{diamg(B), diamg(D)} < ouamdista(B, D),
dist2(B, D) < Vdogpa.

6. There holds the bound

Z HI+H#HJ < C(d, Oshp; Osprd Uadm) 1n(hr;}n)N
(I,J)eP?

7. For all B € RV*N | there holds the bound

max ”B’[XJHQ.

HBHQ < C(da Oshpy Osprd> Uadm) ln(h : L)eps

min) (

Proof. We obviously pick the systems from D.3.36 and D.3.39. Items 1, 2, 4 are trivial,
item 3 was proved in L.3.37 and item 5 follows from the dichotomy in L[..3.38. Finally, to
see items 6 and 7, recall that

L.3.38 Oadm
(1+ 4\/aashp)(1 + Oadm)

Oadm = C(d, Ushpagadm)a

so that
L.3.30

Jsparse(ﬂa) < C(d)(2 + 6a_dlm)d < C(d, Oshp> Uadm)'

Furthermore,

L.3.16 1 1
depth(T) < logy(8Vdogpospaht,) < C(d, Ouhp, Tepra) In(h 1L ).

min min

“Recall from D.3.6 that Qr := |, ., 2, C R?, for every cluster I C {1,..., N}.

nel
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3 Hierarchical matrices

We conclude that

L.3.40
Z #I+#J < 2Usparse(T2)depth(T)N < C(d7 Oshp) Usprd70'adm) ln(h_l )N

(I,J)eP?
and that
NxN L.341 2
VB eR : |Bll2 < 0Osparse(T7)depth(T) max || B|rxs2
(I,J)€P?
< C(d, Oshps Osprd» Uadm) ln(h;llln) (I{I}?SP’Q ”B|I><JH2-
This finishes the proof.
Ol
3.7 The class of hierarchical matrices H(P?, r)
ctmilce:s Sass -
§iF mmEN ] Lk
T i L
tH %—k —H‘ ] + xtﬁ urim }
=g Eiges o el
- T |
:FE‘ ."' ! Et 'F}_ i H F - -
= i N = - 2 H:F, E
H +7 L i
Segis = [ :E%:E?E
ik 7 = EEEac: T
FH I
I+ L A I I
ERiE \ e -
2 e 1 HETT
SElc: i sl ‘ ijiE

Figure 3.2: Two typical H-matrices.

Once the block partition P? = P?

small
chical matrices is easy to describe.

U }P’idm is available, the corresponding class of hierar-

Definition 3.43. Let P2, P2 Pgdm be defined as in C.3.42. Furthermore, let v € N be

small’
a given rank bound. We define the class® of H-matrices by

H(P?,r) == {B € RNN |Y(I,.J) € P2y, : rank(B]|rx ) < 7}

We end this chapter with a note on the memory requirements for an arbitrary H-matrix
B € H(P?,r). Since the rank of an admissible block B|;x is bounded by r, we know from

SNote that ’H(IP2, r) is not a vector space, because the sum of two matrices with rank » has rank 2r, in
general.
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3 Hierarchical matrices

Section 3.1 that there exist matrices X, € R’*" and Y, € R/*" such that B|;x; = XTY,:,F.
The pair (X,,Y,) then takes up r(#I + #J) units of memory. The small blocks B|;x.s,
on the other hand, can simply be stored in full. The total memory requirements for B then
add up to

ST #HIFEI+ D> r(HI+#T).

(I,J)eP? (I,J)eP?

small adm

This quantity can be bounded as follows:

Lemma 3.44. For all v € N, there holds the bound

Z #I1#J + Z T(#I + #J) < C(d7 Oshp» Osprd> Uadm)(asmall + 7') ln(h;uln)N
(1,J)eP? (I,J)eP?

small adm

Proof. For all (I,.J) € P? we know from C.3.42 that

small’
#I#J = min{#I, #J} max{#I[, #J} < osman(#I1 + #J).

Then, using item 6 from C.3.42,

STO#IHET+ D r#HI+HT) < (Oeman+r) Y H#I+ AT

(1,J)eP? (I,J)€P? (1,J)€p?

small adm

IN

C(d, Oshp; Osprd o-adm) (Usmall + T) hl(h;n}n)N

O
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4 The main results

This chapter contains the main results of this thesis. We present an abstract framework
for the approximation of inverse Gram matrices from the class of H-matrices discussed in
Chapter 3.

4.1 The discrete model problem

As usual, the first step of a rigorous analysis is to fix the functional analytic setting. Here,
we use the Sobolev space H*(€2) from D.2.37 as the ambient space.

Definition 4.1. Let d,k € N and let Q C R? be an H*-extension domain (cf. D.2.48). Let
vV C H*(Q)
be a closed subspace with the following property:
Ve € CPRY) Vv eV : (klo)v € V.
Recall from D.2.37 that the natural inner product and norm on H¥(f2) are given by
1/2
(v, W) ey = Z (D%, D%w) 120> 0]l e () = < Z HD%H%Z(Q)> :
|| <k o<k
Apart from (-, ) g (), We need another bilinear form on V', which need not be symmetric:

Definition 4.2. Let a(-,) : V. x V. — R be a continuous, coercive bilinear form, i.e.,
there exists a constant ococo > 1 such that, for all u,v € V,

|a(u, )| < Gcocol[ull e (e 1Vl 720 TeocollVl 7 () < alv,v).

Next, following Section 1.1, we introduce a discrete ansatz space.

Definition 4.3. Let N € N and let
Vv CV

be a finite-dimensional subspace with dim(Vy) = N. Furthermore, let
{o1,--,on} C VN
be a basis of this space. The corresponding coordinate mapping is denoted by

{ ]RN — VN
@ . N
c — > Chpn
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4 The main results

Note that ® must be bijective, because the functions ¢, form a basis of V.

We also need the dual space of Viy. Since Vyy is finite-dimensional, every linear functional
on Vy is already continuous (with respect to any norm) so that the algebraic- and the
topological dual space coincide.

Definition 4.4. We define the dual space
Vi = (Vn)" ={f: Vy — R| f linear}.
For all f € V3 and v € Viy, we set
(Fobei= @), lfll = sup 10
vevy 10l ar (o)
Our assumptions on the bilinear form a(-, -) ensure that P.1.2 is a well-posed problem.

Lemma 4.5. Let f € V3. Then, there exists a unique function u € Vy that satisfies the
following discrete variational problem:

Vv e Vi a(u,v) = (f,v).
Furthermore, there holds the stability bound

lullze ey < ool Fl-
Proof. See, e.g., [BS08, Theorem 2.7.7, Remark 2.7.11] (Lax-Milgram Lemma). O
Definition 4.6. The linear operator
Sy :Vy — VN

that maps a right-hand side f € V5 to the corresponding discrete solution Sy f :=u € Vi
is called discrete solution operator.

Remark 4.7. The continuous problem P.1.1 only serves as a reference. The upcoming
analysis is based solely on the properties of the discrete problem P.1.2.

Before we go to the next section, let us quickly lay out which applications we have in
mind:

1. In Chapter 6, we will look at a finite element discretization of a second-order elliptic
PDE with homogeneous Dirichlet boundary conditions. There, the ambient space is
V := H}(Q) and a(-, ) is the usual bilinear form for a second-order elliptic differential
operator. The discrete ansatz space Vy is the spline space Sg’l(’T) on a mesh 7 (cf.
D.2.60 and D.2.70).

2. In Chapter 7, we are interested in a radial basis function interpolation problem,
where a function of the form u := 22;1 cnp(- — xp,) is used to interpolate given
target values f € R on a set of predefined interpolation points zi,...,zxy € R%
The correct ambient space for this problem is V = H¥(R?), for some k > d/2, and
the bilinear form a(-,-) is a variant of the natural inner product on H¥(R?). The
ansatz space Vi is the span of the translates ¢(- — x,,).

75



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 The main results

4.2 The Gram matrix A

As discussed in Section 1.1, the discrete variational problem P.1.2 can be written as a linear
system of equations, which is governed by the following matrix:

Definition 4.8. We define the Gram matrix

A = (a(pn, me))%,nzl e RN,

The next lemma establishes a few basic properties of this matrix. Recall that ® : RN —
Vi is the coordinate mapping from D.4.3.

Lemma 4.9. 1. For all e,d € RN, there holds the identity

(Ac,d)y = a(Pc, Pd).

2. The matriz A is positive definite’, i.e.,

Ve € RV\{0} : (Ac,c)2 > 0.

3. The matriz A is invertible.

Proof. Ad item 1: For all ¢,d € RN, we have

N N N
(Ac,d) b4s Z a(en, om)cndm = a(Z Cnn, Z dmgpm> b3 a(®c, od).

m,n=1 n=1 m=1

Ad item 2: Let ¢ € RV\{0}. Using the identity from item 1 and exploiting the bijectivity
of the coordinate mapping ¢, we compute

D42 | 9
<AC, C>2 = a(q)C, (I)C) = Gcoco||q>c||Hk(Q) > 0.

Ad item 3: Since A is a square matrix, it suffices to show injectivity. In fact, for every
c € RY with ¢ # 0, the relation (Ac,c)s > 0 from item 2 already implies Ac # 0.
O

4.3 The dual basis \i,..., \y

Our main result, T.4.21, is a statement about the approximability of the inverse A™! €
RN*N from the class of hierarchical matrices. The proof is based on an explicit formula
for A~! in terms of the discrete solution operator Sy : Vi — Vi from D.4.6. If we want
to express the action of A~ on a given vector f € RV, we first need to convert f to a
linear functional f € Vy;, which can be plugged into Sy. Since Vy is finite-dimensional, we
have dim(Vy) = dim(Vy) = N (e.g., [AxI15, Lemma 3.95]) and we may pick a basis with
N elements:

!Note that A need not be symmetric, though.
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4 The main results

Definition 4.10. Denote by {¢1,...,on} C Vi the basis functions from D.4.3. We define
the dual basis {A1,...,An} C V3 via the following conditions:

Vn,me{l,...,N}: Ay ©m)s = Onm.

Note that the functionals )\, indeed form a basis of the dual space Vy;, so that the name
dual basis is justified. Furthermore, we mention that the dual basis is unique. The following
locality assumption is essential for the subsequent analysis.

Assumption 4.11. There exists a family of subsets
Q,..., O CQ
with the following properties:

1. There exist numbers ko € {0,...,k} and ogar, > 1 such that, for alln € {1,... N}
and allv € Vy,

[(Ans v)] < O'stabHU”Hko(Qn)'

2. There exist numbers Oghp, Oovip, Osprd => 1 such that the sets Qq,...,Q N have shape
reqularity oehp, overlap ooy, and spread ogpyq (D.2.16, D.2.18, D.2.21).

The second part of the assumption allows us to apply the results from Chapter 3. We
adopt the name characteristic sets from D.3.5 and also some notation from D.3.6:

Definition 4.12. For all I C{1,...,N} and alln € {1,...,N}, we define

Q= U Q, C RY, hg,, := diamg(2y,), hmin *== min  hq, .
nel ne{l,...,N}

The dual basis comes with its own set of coordinate mappings:

Definition 4.13. We define the operators

N

A:{RN — Vi AT:{VN — RY
v (s v))na

fo— XN

We summarize the essential properties of A and A” and their connection to the coordinate
mapping ® : RY — Vv from D.4.3.

Lemma 4.14. 1. The operators A and AT are transposed in the following sense:

VfeRY ;Yo € Vy: (AF,v)e = (F, ATv)s.

2. The operators ® and A are dual in the following sense:

Vf,cecRY: (Af, ®c)y = (f,C)a.

3. There holds AT = ®~1. In other words,

Ve e RV AT®e = ¢, Yo e Vi : ATy = .
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4 The main results

4. Denote by ko € {0,...,k} and ogab, Oovip > 1 the quantities from A.4.11. Then, for
all fFeRN, I C{l,...,N} and v € Vi, there hold the following relations®:

1/2
IAfle < osaboil I Fll2s
1/2
IATolley < ostabum 0l zkooy)-

Proof. Ad item 1: For all f € RY and v € Vi, we have

(Af,0). = <§:jlfA>

Ad item 2: For all f,c € RY, there holds

N
=D Fulnv)e = (F,AT0)s.
n=1

*

N N N b N
<Af,<1>c>*=<2mn,2cm¢m> = 3 Qnem)ifnem ES fren = (f. 0.
n=1 m=1 * n,m=1 n=1

Aditem 3: Let ¢ € RY. Then, abbreviating f := c—AT®c € R and using the identities
from items 1 and 2, we obtain

e — ATdc|3 = (f,c — ATde)s = (f, c)a — (f, ATDC)2 = (f,c)2 — (Af, Dc), = 0.

Next, let v € V. Since ® is bijective, we may introduce the coefficient vector ¢ :=
®~ 1y € RV, Using the previous identity, we get

DAy = (AT de) = De = .

Aditem 4: Let f € RV, To get an estimate for || A f||+, we compute, for arbitrary v € Vy,

N N
(A, o) = \<anxn,v> S Fulhr o).
n=1 * n=1

N

A.4.11 N
< Do fallOn ol < osan Y I allloll ko,

n=1 n=1

N ) 1/2 1, 990 12
ool fl( S Mol ) L oo L ool ko
n=1

C.s.
<

Since ko < k, we can plug in [|v]| yro () < |0]l gx (o) and obtain

D.4.4 Af,v 1/2
A4 o KAF )] OstabTmiy |1 £l2.
vevy vl ek (a)

Finally, for all I C {1,..., N} and v € Vy, we have

IAF ]«

A.4.11 L.2.20
T
A U|’122([):§ <>‘m”>z < Ugtab§ ””H?{ko(gn) < O—S2tab0—0V1pHv”§{k0(QI)'
nel nel

This concludes the proof.

2The norm | - ||« was defined in D.4.4 and the sets {; were introduced in D.4.12.
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4 The main results

4.4 The inverse matrix A~ !

Next, we derive the promised representation formula for the inverse Gram matrix A~! in
terms of the discrete solution operator Sy from D.4.6 and the coordinate mappings A, AT
from D.4.13. The mapping properties of these operators can be visualized as follows:

A S AT
RY = v 2% vy = RY.

As we shall see now, A~! is the matrix that represents the composition of these three
operators. Furthermore, we show that A~! is again a Gram matrix.

Lemma 4.15. Denote by A € RN*N the Gram matriz from D.4.8. Then, there holds the
following identity:
Vf e RV : A7 = ATSyAS.

In particular, we have
Vm,ne{l,...,N}: (A n = Oy SN AR«

Proof. Let f € RN, Setting v := SyAf € Vi, we know from L.4.14 that ®A”v = v. Then,
for all ¢ € RY, we compute

L.4.9

(AATv, )y "2 a(@ATv, @c) = a(v, c) = a(SxAF, c) "=° (Af, dc). “Z (f, ).
Since ¢ € RN was arbitrary, we get AATv = f and ultimately A~ f = ATv = ATSyAF.
Finally, for all m,n € {1,..., N}, using the Euclidean unit vectors e,, e, € RV,

(A_l)mn = <ema A_len>2 = <em;ATSNAen>2 L.él4 <Aem7 SNAen>* = <)\m7 SNAn>*

This finishes the proof.

4.5 The discrete Caccioppoli inequality

In L.2.55, we saw an example of a continuous variational problem whose solutions satisfy a
so-called Caccioppoli inequality, i.e., a bound of a strong norm on a small set by a weaker
norm on a slightly larger set. Here, we require a discrete version of such an inequality.

Definition 4.16. The support of a vector f € RN is defined by

supp(f) == {n € {1,...,N}[f, # 0}.
In analogy to D.3.7, we make the following definition:

Definition 4.17. For every subset D C R%, we define the corresponding cluster

u(D):={ne{l,...,N}|Q, C D}.
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4 The main results

Note that D.4.17 is slightly different from D.3.7, because, in order for an index n €
{1,..., N} to lie in ¢(D), the whole set €2, must be included in D. From this point onward,
we only need the mapping ¢ : B — Pow{1,..., N} as defined in D.4.17.

Definition 4.18. Denote by Sy : Vg — Vn and A : RN — Vy the operators from D.4.6
and D.4.13. For every subset D C R%, we define the subspace

Viol(D) == {SNAF| f € RN with supp(f) Cu(D)} C Vy.

In particular, every function u € V(D) can be written in the following form (for some

fn €R):
u:SN< > ann>.

neu(D)

Next, we remind the reader of D.2.8 and D.2.12, where we defined axes-parallel boxes
B € B and their inflated cousins B® € B. We make the following assumption:

Assumption 4.19. There exists a constant ocace > 1, such that, for all D € B and all

u € Vio1(D), the following statement is true: For all B € B and all radii 6 > 0 satisfying
BON D =0, there holds the discrete Caccioppoli inequality

k-1

(5k|u’Hk(QmB) < OCace Z 5Z‘U|HZ(QI’WB‘§)'
=0

Figure 4.1 shall serve as a visual guide for the situation in A.4.19.

Figure 4.1: An example of boxes B, D € B and § > 0 with B N D = 0.
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4 The main results

4.6

The main results

We are finally in the position to formulate the main results of this thesis. The bulk of the
work lies in the construction of an approximation operator Q' p, : Viol(D) — Vio1(D) for
functions w lying in the solution space V(D) from D.4.18. We only state the theorem
here (cf. T.4.20) and defer its proof to Chapter 5. Then, in T.4.21, we use this operator
Q"B7 p to construct approximations B ; € RI*7 of the admissible blocks A_1] 7xJ of the

inverse Gram matrix A~'. Stitching these matrix blocks B ; together then produces an

approximant B, ~ A~! in the class of H-matrices, H (P2, r).
We summarize the objects and assumptions that are relevant for the formulation of T'.4.20
and T.4.21:

1.

. P2 = P2

d,k € N, Q C R? is an H"-extension domain (cf. D.2.48) and V C H*(Q) is the
subspace from D.4.1.

a(-,-): VxV — R is the bilinear form from D.4.2. The constant o¢oco > 1 describes
both continuity and coercivity.

N € N and Vy C V is an N-dimensional subspace. The system {¢1,...,on} C Vn
constitutes a basis (cf. D.4.3).

A € RV*N ig the Gram matrix from D.4.8.

. B is the set of axes-parallel boxes in R? (cf. D.2.8).

. It is assumed that the dual basis {\1,...,Ax} € V3 is local in the sense of A.4.11.

The numbers kg € {0,...,k} and ogap > 1 govern the stability bound and the
quantities Oghp, Oovlps Ospra > 1 describe shape regularity, overlap and spread of the
characteristic sets Q1,...,Qx C R? (cf. D.2.16, D.2.18, D.2.21).

. It is assumed that there holds a discrete Caccioppoli inequality on the subspaces

Viol(D) € Vi from D.4.18, where D € B. The respective constant is called ocaec > 0
(cf. A.4.19).

“mall Y Pzdm is the block partition from C.3.42, based on the characteristic sets
Q, C R from A.4.11. The quantity hmyin > 0 is the minimal diameter of the sets €,
(cf. D.3.6) and the numbers ogyna1 > 1 and 0,41, > 0 are the clustering parameters
from C.3.42 (recall that ogman > ooylp was required). The symbol H (P2, r) C RV*N
denotes the class of hierarchical matrices based on the block partition P? and the
rank bound r € N (cf. D.3.43).

Now let us start with our first main result:

Theorem 4.20. Consider two boxes B, D € B that satisfy the following bounds:

hmin < diamQ (B) < UadmdiSt2 (37 D) < Cadm \/go-sprd .

Then, for every r € N, there exists a linear operator

Q}qiD : ‘/sol(D) — Veol(D)

with the following properties:
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4 The main results

1. There holds the rank bound
rank(Qp p) <7

2. There exist numbers Cy > 1 and oexp > 0 of the form
Co = C(d, k, €1, Osprd Uadm), Oexp = C(d, k, €, Osprd Uadm)_lgaicca

such that, for all m € {0,...,k} and u € Vi (D), the following error bound is
satisfied:

lu — Q5 pull irm (np) < Coolacchmp exp(—Texpr™ ) [l i -

Proof. The proof will be given in the next chapter.
O

T.4.20 tells us that the number of degrees of freedom to describe a function u € Vi, (D)
can be greatly reduced without losing too much information. In our second main result,
we use this property to construct an H-matrix approximation of the inverse Gram matrix.

Theorem 4.21. For every r € N, there exists an H-matriz
B, € H(P?,r)
with the following properties:

1. The memory requirements to store B, can be bounded by

C(d7 Oshps Osprd» Uadm) (Usmall + T) ln(h;nln)N

2. There exist numbers Coy > 1 and oexp > 0 of the form

-1 -1
Co = C(d7 k‘, Q’ Ococos Oshps Osprd, Uadm)a Oexp = C(d7 k, Q’ Osprd Uadm) 0 Cace

such that the following error bound is satisfied:

HA_l — B[]z < Coo—sztabO—OVIPUéoacc ln(h_l )h_ko eXp(_UeXprl/(dH))-

min/’“min

Proof. Let r € N. We construct the matrix B, in a block-wise manner. For all (I,J) €
IP)2

mal> We simply use the matrix A~ itself:

By = A 1.
Now let (I,.J) € P2, . According to C.3.42, we can find boxes B, D € B such that
QI - B, QJ C Dv hmin < dlamQ(B) < UadmdiStQ(Bu D) < Uadm\/go'sprd’

where Q; = U,,c; 0 € Qand Q5 = J,,c; U € Q (cf. D.4.12). Denote by E; : R — RY
the trivial extension by zeros and by R; : RV — R/ the restriction of a vector ¢ € RV
to the entries (¢;)ic;. Furthermore, denote by Sy : V3 — Vi, A : RV — Vx and
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4 The main results

AT : Vy — RY the operators from D.4.6 and D.4.13, respectively. Then, using the
representation formula from 1.4.15, we have the following identity:

Vf € R : A_1|[><Jf = R[ATSNAEJf.

Note that supp(Esf) € J C (D) (cf. D.4.17) so that SNAE;f € Vi (D), according
to D.4.18. In particular, we may plug this function into the operator Q%’D : Vead(D) —
Vio1(D) from T'4.20. Now, let B}, € R’*7 be the matrix that represents the linear operator
R[ATngDSNAEJ, i.e.,

VfeR’: 7.0f = RIANTQE pSNAE, f.

Clearly,
T.4.20
rank(B7 ;) <rank(Qp p) < 7

As for the error bound, we get, for every f € R”:

lA s f = By flleay = IAT(d — Q p)SNAE; flli2 (1)

- 2 Gd — Q. p)SnA

~ Ustabgovlp”(l _QB,D) N EJfHHko(QI)
T'iQO 1/2 ko p—ko _ @+ | SvAE

~ JStabaovlpUCacc min eXp( Oexp” )H N JfHHk(Q)
Léﬁ 1/2 ko B ko _ YA+ IAE

~ UStabaovlpUCacc min exp( OexpT )H J-fH*
L.4.14

k —k
= O-SZtabo-Oleo-C%cchmir? eXP(—Uexprl/(dH))Hle?(J)'

Now, set
B;|rxj = B] ;.

Then the definition of the matrix B, € RV*V is complete. Since the ranks of the
admissible blocks of B, are bounded by r, it is clear that B, € H(P?,r) (cf. D.3.43). The
global error bound can be seen as follows:

C.3.42
AT =B, |, < In(h;l) oo A= rxs = B sll2

adm

2 ko 1 \1—ko 1/(d+1
S OhabOovipTonee (A )i exp(—0Oexpr /( )).

This completes the proof of item 2. Item 1 is taken from L.3.44.
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5 Construction of the operator (; ,

5.1 Overview

In this chapter, we provide the proof of T.4.20, i.e., we construct the operator Q’]"i D
Viol(D) — Vioi(D). First, let us give a rough overview:

1. Let B,D € B be admissible boxes, let r € N and let u € V(D). Our goal is to
construct a “low-dimensional” function @ € Vi1 (D) such that the error [|u—a|| gr(onp)
is small.

2. Since B is “far away” from D, we can inflate it L € N times by a tiny amount § > 0
before hitting D (cf. Figure 5.1). This procedure generates a sequence of nested

boxes:
B:BéhogBé‘l C... gB(Sl C... gB(SLng\D

3. The hardest part of the proof is to construct a so-called! single-step coarsening oper-
ator Q‘SB D' Viol(D) — Vi (D), where B is any one of the boxes B°. This operator

has rank O(L?) and satisfies an error bound of the form

1
1)
”u o QB,DUHQQBJ{,H < 5”“”9(736’]@,[_[,

where H = O(0) and where [ - |5 5 is a certain H-weighted H*-norm. We then
combine L instances of this operator (one for each box) into a multi-step coarsening
operator Q%LD : Viol(D) — Vio1(D). This operator has rank O(L4*!) and the error
recursion reduces roughly to

5L L
lu = QB pullarnp) < 27 "llullgr@)-
4. Finally, the operator Q7 p, is just QaB’yLD for a certain choice of the parameters § and
L, where, roughly,
L~ pt/d+h), § =~ disto(B, D)L~

Let us fill in a few more details regarding the single-step coarsening operator, since its
design is quite complicated.

1. Let B,D € B and § > 0 be such that BN D = . Given u € Vharm (D), we want
to find a “low-dimensional” function @ € Vio (D) such that |lu — Q% pullonsku is
small.

!The name shall reflect the fact that a comparatively coarse mesh-like structure is used for approximation.
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5 Construction of the operator Qg

. Since we know almost nothing about the shape of the set 2N B, it might be difficult to

find a good approximant using standard approximation techniques with polynomials.
We circumvent this problem by first extending u to a global function Fqu € H*(R?)
and then looking for an approximant @ € H*(R?) such that || Equ — i g is small.
The extension of u is possible due to the assumption of € being an HP"-extension
domain (cf. D.4.1).

. The approximation step itself is done by a low-rank approzimation operator JH :

H¥(RY) — H*RY). We use a partition of unity method, i.e., we subdivide R? into
a family of congruent, overlapping boxes T' € B of side length O(H), where H > 0 is
a free parameter. Along with the boxes T' comes a family (g7)r € C5°(R%) of bump
functions which sum to 1 at every point € R%. Given v € H*(R?), we pick, for each
box T, a polynomial v € P*~1(R?) such that Zf:o H'|v —ur|gepy is small. We then
set JHy = > rvrgr and derive a global error bound on R? in terms of H.

. Then, we restrict the output of J¥ Equ from R? to Q. We obtain an object in H*(Q),

which in turn needs to be mapped to the subspace Vi, (D).

. Now comes the part where things get complicated. Recall that our goal is to achieve

an error bound of the form
5 1
= @llonzn < 5 lulanss

i.e., the integration domain on the right-hand side must not exceed QN B?. Since JH
is a global operator acting on the full space R%, we need to squeeze in two smooth
cut-off functions x € C3°(R?) (with x|z = 1 and supp(x) € B%?) in the right places?:

a) The first x is applied even before the extension from 2 to R? is done. One of the

last steps of the error estimation is the stability bound || Equ|| g gay S [[v] m5(0)
and we need the cut-off function to reduce the remainder to |[v[| yx(nps/2)-

b) The second & is applied right after the extension from Q to R?. The problem is
that the extension operator Egq is not local, meaning that supp(Eq(ku)) C R?
might be much larger than supp(ku) C€ QN B%2. As a remedy, we simply
multiply Eq(ku) with s again.

. At this point, our approximant looks like

o= (JkEq(ku))|q € H*(Q)

and we have to find a way to turn @ into an element of V(D) again. It is tempting
to use the orthogonal projection P : H*(Q2) — Vio1(D) for this purpose, but this ap-
proach interferes with the cut-off functions k. The problem is that (kEq(ku))|q need
not lie in the space V(D) again and we would have to balance the approximation
properties of the operators J¥ and P (which seems impossible).

The trick is to introduce a slightly larger space Vi (B, D) 2 V(D) that is closed
under multiplication with the cut-off function x. Then, we can use the orthogonal

2Strictly speaking, we have x € C°°(Q) in the first instance and x € C§°(R?) in the second instance.
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5 Construction of the operator Qg

projection P]é{,D . H*(Q) — Vio(B, D) (with respect to a certain H-weighted H*-
norm) and we don’t get irreconcilable error terms. The last step is to use a “minimum
norm extension” operator Ep p : Vio(B, D) — Vi1 (D), so that the final output of
the single-step coarsening operator Q‘SB’ p indeed lies in Vo (D).

7. Using the error bound of the operator J and the stability bounds of all the other
operators, we then end up with the following estimate:

k
lw = @ pullonpm < (H/0)* Y 6 ulyionpee)-
1=0

At this point, the discrete Caccioppoli inequality from A.4.19 enters the picture and
we can kill the k-th summand in the right-hand sum (in exchange for a slightly larger
intergration domain). Finally, choosing H = O(d) correctly, we can produce the
promised prefactor 1/2 for the error bound in the H-weighted norms.

5.2 Weighted Sobolev norms

In D.2.37, we introduced the Sobolev spaces H*() along with the following quantities:

1/2
(0, W) gy = > (D0, DW) 2y, [0lmg) = <Z HD%H%%Q)) ;

jal<k jal=t
k 1/2
ok = (erﬁﬂ(m) -
=0

In this chapter, we frequently use weighted variants thereof.

Definition 5.1. Let Q C R? be open, k € Ny and € > 0. For all v,w € H*(Q), we set

k
(v, W) ke == Ze2l Z (D%, D*w) 2, V| ke == 5k|v]Hz(Q),
=0

|ar|=l

k 1/2
l
ol = (e ofey )
=0

Lemma 5.2. Let Q C R? be open, k € Ny and £,6 > 0. For all v € H*(Q), there hold the
following inequalities:

k k
2 oty < ollase < 2 elvliug
min{l, e} (vl gr) < olloge < max{le}*|lv] grq),
min{l,e/0} [vlloks < lvlare < max{le/d}|[v]ane.
In particular, the norms || - || grq) and || - |lak,e are equivalent.
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5 Construction of the operator Qg

Proof. The first line follows from the norm equivalence k=2|| - || < || - |2 < || - |1 on R”.
As for the second and third line, we only show the right-hand inequality:

k
l l k
IolBe = 3 oy < (s, & ) olBysey = max{L. e olFys oy
=0

{0,....k}
Similarly,
! k
[ollgpe = 252%‘?{1(9) = 2(5/5)2152”“\?{1(9) < max{1,e/6}%(|v]|34.5-
1=0 1=0

5.3 The cut-off operator K ;

In this short section, we introduce the cut-off operator Kg,B . H*(w) — H¥(w), which
multiplies any given input v € H¥(w) with a fixed, smooth cut-off function /{% € Cy° (RY).
The subscript w is necessary, because we will need two separate instances of this operator,
one on the H"-extension domain w = Q from D.4.1 and one on the full space w = R (cf.
Section 5.1).

We remind the reader of D.2.8 and D.2.12, where we defined axes-parallel boxes B € B
and their inflated relatives B% € B.

Lemma 5.3. Let B € B and 6 > 0. Then, there exists a smooth cut-off function
K% € C3°(RY)
with the following properties:
1. There holds the inclusion supp(r%) C B,
2. There holds /’163|B =1and0< Ii(SB <1.
3. For every | € Ny, there holds the stability bound \/ﬁ;%]wz,oo(Rd) < C(d, )6~

Proof. See [H6r90, Theorem 1.4.1.]
O

It is convenient to wrap the action of multiplying a given function with this cut-off
function into an operator.

Definition 5.4. Let w C R? be open, B € B and § > 0. Denote by /@% € C§°(RY) the
smooth cut-off function from L.5.3. We define the cut-off operator?

wi ) s Hw)
w,B - v —s k%o
B

3More precisely, we should write (k% |, )v instead of x%v.
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5 Construction of the operator Qg

Let us quickly summarize the defining properties of this operator:

Lemma 5.5. 1. For allv € H*(w), there holds supp (K’ BY) Cwn B°.
2. For all v € H*(w), there holds (K BU)|me = V|unB-
3. For allv € H*(w), there holds the stability bound (cf. D.5.1)

(d, )|l wnps k.5

Proof. Ttems 1 and 2 follow immediately from L.5.3. To see item 3, we compute

§
I1KS,

k k
5
HKw,BUHw,H > Z wBU\Hl (w) *25 \’fB’U|Hl(me(5)
1=0 1=0
L.2 42 k L k L.52
Z Z|’€B\Wl JOORd)\U’HJ (wNB?) Z \U|Hj(wm35 < ”U||wﬂB5,k,6'
=0 j=0 §=0

5.4 The low-rank approximation operator J

This operator is based on a partition of unity method, which is a well-known concept in
general approximation theory (see, e.g., [H6r90, Section 1.4.] or [BM97]). The basic idea
is to construct a family T of overlapping boxes T € B that covers the full space R%.
Furthermore, we need a corresponding family of bump functions g7 € C§°(R?) that sums
to 1 at each individual point z € R%.

Remark 5.6. In this section, we use much the same notation as for simplicial meshes in
Section 2.9, because the concepts are so similar. However, we emphasize that the symbol T
now denotes a family of overlapping, axes-parallel bozes rather than a simplicialt mesh in
the sense of D.2.60. To make the distinction clearer, we will call the members T € T cells
(as opposed to elements ).

Definition 5.7. Let H > 0.

1. We define the reference cell

T :=[-1/4,5/4)¢

2. We define the family )
T :={H(T +m)|m € Z%}.

3. For every T = H(T +m) € T, we define the following affine transformation (cf.
D.2.23):
Vo € RY: Fr(z) == H(z +m).
41f anything, 7 would be a tensor product mesh, but the fact that the “elements” are overlapping prevent
it from being an actual tensor product mesh.
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5 Construction of the operator Qg

4. For every physical subset B C R, we define its patch
T(B):={TeT|TNnB=#0)}.

Note that the elements T' € T are overlapping and that the transformations Fp are set

up such that Fr(T) =T.
Lemma 5.8. 1. For every B € B, there holds the bound

#T(B) < C(d)(1 + diamy(B)/H)".
2. For all S C T, alll €{0,...,k} and all v € H¥(R?), there hold the bounds

[Wlinys) < 2 1ol < C@lings):
Ses

Proof. Ad item 1: For every T € T (B), we can pick a point x € TN B. Then, forally € T,
we have ||y — z||2 < diamy(T) = (3v/d/2)H and L.2.13 implies

U T C B(3\/3/2)H’
TeT(B)

where the right-hand side is an inflated box (cf. D.2.12). On the other hand, since the
subsets {Fr([0,1)%) | T € T(B)} are pairwise disjoint, we have

He #T(B) = Z meas(Fr([0,1)%)) = meas( U Fr(]0, 1)d)> < meas< U T>
TeT(B) TeT(B) TET(B)

L.2.13
(BBVADHY < diamy(BOVA/DH) "7 0(q)(diama(B) + H)%

< meas

Ad item 2: This can be proved in the same way as 1.2.20. Here, according to item 1,
the “overlap factor” is bounded by a constant C(d) > 0.
O

Next, we construct the bump functions that correspond to the individual cells T' € T.
Lemma 5.9. There exists a system of functions
{or|T € T} C C(RY)
with the following properties:
1. For all'T € T, there holds supp(gr) C T
2. For allT € T and l € Ny, there holds |gr|y1,00(ray < C(d, NH
3. There holds the following identity:

Ve e R?: Z gr(x) = 1.
TeT
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5 Construction of the operator Qg

Proof. Applying L.5.3 to the situation @ = R? B = [0,1)? € B and § = 1/4, we may
pick a function x € C§°(R%) with supp(x) C T, Kl1)e = 1 and 0 < x < 1. The function
fii= ez (- —m) then satisfies & € C°°(R?), because the sum only ranges over a finite
number of terms on each bounded subset of R? (cf. L.5.8). Furthermore, there holds & > 1,
because for every 2 € R, there exists at least one m(z) € Z¢ such that 2 —m(z) € [0,1)%.
Now it is not difficult to see that the function g := k/k has the following properties:

supp(9) C T, §>0, vreR: Y gla—m)=1.
mezZd

Next, for every T € T, we use the affine transformation Fr : R — RY from D.5.7 to
define the function
gr:=goFp L
Clearly, g7 € C3°(R?) with supp(gr) € T. Furthermore, for all I € Ny, we have the
stability bound

L.2.43
S hrlg

l —1
T |g|Wl,oo(T) SH.

|97 |wioe ey = 1§ © Fr lwioe(r)

Finally, for all z € R%, we compute

S gr(@)= Y §(z/H —m) =1.

TeT meZd

This concludes the proof.
O

Now we have everything we need to build the operator JH. The basic idea was already
presented in Section 5.1.

Lemma 5.10. Let H > 0. Then, there exists a low-rank approximation operator
JH . HMNRY) — HF(RY)
with the following properties:
1. For every box B € B, there holds the following local rank bound:
dim {J7v|v € H*(R?) with supp(v) C€ B} < C(d, k)(1 4 diamy(B)/H)%.
2. For all v € H*(R?), there holds the following global error bound:

H
v — T v|lga g g < C(d, k)|v|gd g p-

Proof. Let T C R% T C Pow(R%) and Fr : R — R? be defined as in D.5.7. Denote
by {gr|T € T} the corresponding smooth partition of unity from L.5.9. Furthermore, let
J: Hk( ) — P*=1(T") be the orthogonal projection onto the closed subspace PF~ 1(T) C
H*(T).
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5 Construction of the operator Qg

Now, given a function v € H¥(RY), we introduce an approximating polynomial via
vp :=J(vo Fr)o Fy! € PML(RY).

(Note that we implicitly restricted v o Frp from R? to 7' and extended the polynomial
J(vo Fr) from T to R%.) The asserted linear operator is defined as follows:

o { IO )
. v > Y e VUTYT

We mention that, in a neighbourhood around any given point z € R%, the number of
non-zero summands is finite, so that Jv is indeed a smooth function.
In order to derive the asserted rank bound, let B € B be a given box. For every function
v € H*(R?) with supp(v) C B and every T' € T\T(B), there holds (v o Fr)|z = 0, so that
vy = 0. Therefore,
dim {Jv |v € H*(R?), supp(v) C B} = dim{ Z vrgr |v € HF(R?), supp(v) C B}
TeT(B)

wr € ]P’k_l(Rd)} < dim(PF1(RY)#T(B) L',<i'8 (1 + diamy(B)/H)%.

< dim{ Z wrgr

TeT(B)

Finally, in order to prove the error bound, let v € H*(R?) be given. For every element
T € T, the scaling argument 1.2.43 and the Deny-Lions lemma® C.2.56 yield

k
Y H'lv —vrlgyry S H?|lv o Fr — J(vo Fr)ll gy S HY?lv o Frl gy S H vl e
=0

Since the functions gg sum to one (L.5.9), we have v = ) ¢.rvgs. Then, for every
T € T, we obtain the following error bound:

k k
S Ho = T 0y =Y _H'| > (v—vs)gs
1=0 1=0 SeT(T) HY(T)
k l L.242 F l !
<Y CH DY Nw=vs)gslurnsy S D HY D D o= vslgi(s)lgslwi-se @y
=0 SeT(T) =0 SeT(T)j=0

L.5.9 ko
< Z ZH]\U—US|HJ(S) < H” Z V] k(-
SET(T) j=0 SET(T)

Summing the squares over all T € T and applying the bounds from L.5.8, the global
error bound follows. In particular, using a simple triangle inequality, we also get the
global stability bound ”JHUHHk(Rd) < C(d, H)||v|| grray < oo, which proves that JH
HFE(RY) — H*(R?). This finishes the proof.

O

Note that 7° = (—1/4,5/4)% is open, bounded, connected and has a Lipschitz boundary.
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5 Construction of the operator Qg

5.5 The orthogonal projection Py,
We remind the reader of the spaces from D.4.18:
Veol(D) = {SnAf | f € RY with supp(f) € ¢(D)} C V.

As mentioned in Section 5.1, these spaces have the following drawback: Let u € Vi, (D)
and let B € B be a second box. If we modify u outside of B, the result need not lie
in Vio1(D) again. For example, if we multiply u with a cut-off function x that satisfies
k|p = 1, then rku ¢ Vi1 (D), in general. To rectify this problem, we introduce a superspace
Viol(B, D) 2 Vgo1(D), where this is indeed the case.

Definition 5.11. Let B, D € B be given bozes. We set
Viol(B, D) :=={u € V| 3Ju € Viqi(D) such that i|lonp = u|lons}-

Note that Vi, (B, D) consists of global functions u :  — R that merely happen to have
a special structure on the subset 2 N B. On the remaining part 2\ B, nothing is assumed
about u.

Lemma 5.12. Let B,D € B.
1. There hold the inclusions Vi (D) C Vioi(B, D) CV C H* ().
2. For every § > 0, there holds Vsol(B‘S, D) C Vie(B, D).
3. Let u € Vyo1(B, D). For every v € V with v|lonp = u|anp, there holds v € Vi) (B, D).
4. The subspace Vo) (B, D) C H*(Q) is closed.

Proof. We only prove the statement about closedness: Consider the subspace
Z = {iilonp | i € Veia(D)} € H*(QN B).

Since dim(Z) < dim(Vy) = N < oo, we know that Z is a closed subspace of H*(QN B).
Note that, for any given function u € H*(Q), there holds the following equivalence:

v € Vio1(B, D) & (ueV A ulonp € Z2).

Now, let (tn)nen C Viol(B, D) and v € H¥(Q) with ||u — Un|| k(o) 2 0. In particular,
for every n € N, we know that u, € V and that u,|onp € Z. Since V. C H*(Q) is closed
(cf. D.4.1), we infer u € V. On the other hand, the trivial bound |lu — un| gr@np)y <

lw —un || g ) = 0 and the closedness of Z yield u|onp € Z. According to the equivalence
above, this means u € V., (B, D).
O

We finish this section with a projection from H*(Q) to the subspace Vio1(B, D) C H*(Q).
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5 Construction of the operator Qg

Lemma 5.13. Let B, D € B be given boxes and H > 0 be a given parameter. There exists

a linear operator
P H(Q) — Viol(B, D)

with the following properties:

1. Projection: For every u € Vyo)(B, D), there holds PgDu = u.

2. Stability: For all u € H*(Q), there holds the stability bound
1PE pullasm < lulla.m-

Proof. From L.5.2, we know that the norms [ - || gx(q) and || - [|ox,#n are equivalent (with
constants depending on H). Furthermore, L.5.12 tells us that Vi, (B, D) C H*(Q) is a
closed subspace with respect to || - ||y and thus also with respect to || - [[ok . In
particular, the orthogonal projection PgD . H*(Q) — Viy(B, D) with respect to the
H-weighted inner product (-,-)q g from D.5.1 is well-defined. Item 1 is self-explanatory

and item 2 follows easily from the fact that Pg p is the orthogonal projection.
O

5.6 The minimum-norm extension operator Ep p

Let B,D € B be given boxes and consider an element u € Vi, (B, D) (cf. D.5.11). By
definition of this space, there exists at least one function @ € Vi, (D) such that a|onp =
u|onp. However, such an extension® @ need not be unique. In fact, for every g € Vio1(D)
with dglonp = 0, the sum @41 is a viable extension of u as well. Immediately, the question
arises of how to make a meaningful choice from this affine subspace. For our purposes, the
minimum-norm extension is sufficient”:

Lemma 5.14. Let B, D € B be given boxes. There exists a linear operator
EB,D : ‘/éol(BaD) — ‘/Sol(D)
with the following properties:

1. For all u € Vio1(B, D), there holds (Ep pu)|ons = u|onB-

2. For all u € Vi (B, D), there holds the bound

E < inf U .
| B,DuHHk(Q)_ e 1:31(13): HUHHk(Q)

ﬂ|QﬂB:u|QmB

SUsually, an extension of a function f : M — R is a function f : M —> R which is defined on a larger
set M D M and which satisfies f |a = f. Here, we somewhat abuse the term extension, because u and
4 are already defined on the same set (namely Q).

"In fact, we only need the process of choosing an extension to be a linear operator. We state the stability
bound for the sake of completeness, but we won’t actually need it later on.
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5 Construction of the operator Qg

Proof. Consider the subspace
Z = {u € Vi((D) | ulons = 0} C HY(Q).

Then Z is finite-dimensional and thus a closed subspace of H*((2). In particular, we may
introduce the orthogonal projection P : H¥(Q) — Z. Recall that, for every @ € H*((),
the image Pu € Z is characterized by the following variational equation:

Vze Z: <P’L~L, Z)Hk(Q) = <I~L, Z>Hk(Q)

Now, for every given u € V1 (B, D), we pick a function @ € Vo (D) with @|lonp = u|ons

and set
EBJ)U =u— Pue Vvsol(D).

First, let us check that this definition is independent of the choice of @. In fact, if
u € V(D) is another function with @|onp = ulonp, then the error @ — @ lies in Z. Since
P is a projection onto Z, we get P(u — 1) = u — . It follows that @ and @ indeed produce
the same result:

U— Pu=(u—1)— Pu—u)+ (i — Pi) = @ — Pi.

Now that the mapping Fp p is well-defined, let us derive its main properties: Its linearity
follows from Vg, (D) being a vector space and the linearity of P. To see item 1, let u €
Viol(B, D) and pick @ € Vio1(D) with d|lonp = u|onp. Since Pu € Z vanishes on Q2N B, we
find that

(EB,pu)|lons = tlons — (P)|ons = @lone = ulons-

Finally, to see the stability bound, let u € Vi (B, D) and u € V(D) with T|onp =

u|onp. Since P is an orthogonal projection, we obtain

|EB,pullgr) = [[u— Pullgrq) = 2125 1@ — 2| g0
= inf m = inf U .
I %l g () s @l g )

U|lonB=UlonB ilonB=ulonB

This concludes the proof.

5.7 The single-step coarsening operator Q‘SB,D

This section contains the most complicated part in the derivation of our main result, T.4.21.
We combine all of the operators from the previous sections in this chapter (and the extension
operator from D.2.48) and construct the single-step coarsening operator.

Let B,D € B be given boxes and 6 > 0 be a free parameter with 6 < ogprq and B°ND=19.
Then, there exists a linear single-step coarsening operator

Theorem 5.15. Denote by ogpra > 0 and ocace > 1 the constants from A.4.11 and A.4.19.

Q%,D : ‘/sol(D) — ‘/SOI(D)

with the following properties:
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5 Construction of the operator Qg

1. There holds the rank bound

rank(Q% p) < C(d, k, Q, Ogpra) 0 e (1 + diama(B) /5)°.

2. There exists a number H > 0 of the form

o

H —
C(d, k, Q7 Usprd)UCacc

such that, for all u € Vo (D), there holds®

1
5
|u — QB pullons ko < 5 llullonss ju-

Proof. The alleged operator Q‘SB, p is composed of seven other operators:

1. Denote by Kg% s HF(Q) — H*(Q) the cut-off operator from D.5.4, applied to the

set €2, the box B and the parameter /2. Similarly, let Kﬂi{fB . HF(RY) — HF(RY)

be the cut-off operator corresponding to the set R?, the box B and the parameter
0/2.

. Denote by Eq : H*¥(Q) — H¥(R?) the Sobolev extension operator from D.2.48

(recall from D.4.1 that Q C R? is assumed to be an H*-extension domain).

. Let H > 0 and denote by J7 : H¥(R?) — H¥(R?) the low-rank approximation

operator from L.5.10. The precise value of H will be chosen during the proof.

. Let Rq : H*(RY) — H¥(Q) be the restriction operator, i.e., Rov := v|q.

. Denote by PgD . H*(Q) — Vio1(B, D) the projection from L.5.13 with respect to

the parameter H > 0 from before.

. Let Epp : Vio(B,D) — Vii(D) be the minimum-norm extension operator from

L.5.14.

The mapping properties of these operators are summarized in the following schematic:

6/2
D.418  D.4.1 22 o

K. K
V(D) C VT HFQ) -2 gRQ) B ghwY) L2 gERY .

H pi E
L mHRRY B2y gh Q) 22 v0(B, D) 222 Vi (D).
Now, define
) )
Qb.p = Ep.p P p Ra J" K2y Bo K« Vil(D) — Val(D).

81n fact, we may even write k — 1 instead of k on the right-hand side.
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5 Construction of the operator Qg

We begin our analysis with the error bound, since it tells us how to choose the free
parameter H > 0. To this end, let u € V(D) be given. In order to bound the error
u— Q%Du on QN B, we first have to find similar expressions for u|onp and (Q%Du)mmg.

On one hand, using the definition of Q5B ps We have

6/2 6/2

(Q%D“”QWB = (EBp PgD Ro JT K, ]R{i B Eq KQ/,B u)lons
L.5.14 /2 5/2

= (PE p Ro J" K, RQBEQKQ/,BUNQHB'

On the other hand, dropping the operators Pg pand J H from the remaining expression,
let us introduce the auxiliary function

59/2
R4, B

5/2

vi=Ro Ky pEa Kipu € HMQ).

Recall from D.5.4 that the cut-off operators KRQQB and K o/2 O.B realize the multiplication
with the smooth cut-off function x := néB/Q € C5°(RY) from L.5.3. In particular, we can
write v in the following way:

v = Rq KH‘ZQQB Eq Ko/ 3 u= (Rar) - (RaEaKg ju) P2 (+%a)u.

From this representation, it follows that v € V, because u € Vi, (D) C Viqi(B,D) C V
and V is closed under multiplication with test functions (cf. D.4.1). In fact, L.5.12 and the
identity

L.5.3
vlans = (K°|ons) (ulans) "= ulons
even yield v € V1(B, D). It follows that PgDv = v, because PgD is a projection onto the
space Vio1(B, D). We obtain the following representation of u on QN B:

6 2 6/2
ulans = vlans = (P pv)lans = (PHp Ro Kyl Bo Ko u)lons.

Note that the expressions for u|onp and (Q‘; pt)|onp only differ by J. In particular, in
order to estimate (u — Q‘f& pt)lans, it suffices to have an error bound for J and stability
bounds for all the remaining operators. As for the extension operator Fq, we will need
the following bound, which holds true for all v € H¥(Q) and makes use of the assumption
0 < Osprd-

k k k
L.5.2 D.2.48 2
l l
HEQU”]Rd,k,é < E 5|EQU|Hl(Q) S E 5||U||Hl E 5|U|HZ(Q) S vlleks:
=0 =0

=0

Furthermore, the assumption B® N D = § allows us to apply the discrete Caccioppoli
inequality from A.4.19 to the function u € Vio1(D), the box B%? and the parameter &/2.
Expressed in terms of the weighted norms from D.5.1, we get

HUHQQBW?,I@,& < C(k)UCacc”uHQmB5,k—1,5‘

Finally, we have everything we need to bound the error (u — Q‘f& pw)lons. We start
with the H-weighted norm (= natural choice for J), switch to the §-weighted norm in
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5 Construction of the operator Qg

between (= natural choice for cut-off operators and Caccioppoli inequality) and finish with

the H-weighted norm again:

6/2 6/2

KR{i,B Eq KQ{g“HQﬂB,k,H
5/2

KRd,B
5/2

K]Rd,B

5/ 52
Kga g Ea Ko pullga ., n

JH
JH

id

id

lu = Qp pullonsrn = |IPEpRo
1PE p R

(

(
3

(

(

6/2
Eq KQ/,BUIIQ,k,H

~
—

JH
JH

| Ra (id
II(id

5/2
- Eq KQ/,BuHﬂ,kﬂ

)
)
)
)

~
—_
)

5/2
e

6/2 /2
(H/0)H Kl Bo K¢ fulga s

5/2
Eq KQ,Bu’Rd,k,H

)

ANGRARNGRA Ao 15 A A A A

~
ot

(H/0) || Eq K32 ullga .5
(H/8)M| K Fullors
(H/5)k||u||mBé/2,k,5
0Cace(H/0)*||ullgnps k1.5
(0Cace/2)(H/8)* max{1, 6/ HY " |lullgnps s_1.4-

Now, denote by Co := C(d, k,Q, 0gprqa) > 1 the implicit cumulative constant. Then, the
choice

~
ot

~

)
H=———>0
COUCaCC
guarantees that
CO(UC&CC/2)(H/5)k max{1 5/H}k71 = _CuoCace max{1 COUCacc}kil = L
7 2(COUCacc)k ’ 2

and the asserted error bound follows:

1 1
5
v — Qp pullanBru < §HU||QQB6,/¢71,H < §||U||QmBé,k,H-

Finally, we turn our attention to the rank bound. We compute

. 6 6
rank(Q},p) = dim {Ep p P p R J™ K2y Bo K/ u|u € Via(D)}

L.55 L.5.10
< dim {J"v|v € H*(RY) with supp(v) € BY?} < (1 + diamy(B%?)/H)?

L.2.13 Def.H

< (1 +diamg(B)/H +6/H)4 ol o (1 4 diamy(B)/8)%.

~ ~

This concludes the proof.

5.8 The multi-step coarsening operator Q%LD

The hardest part now lies behind us and we can proceed with the plan from Section 5.1.
The next step is to combine L € N instances of the single-step coarsening operator Q%y D

to a multi-step coarsening operator Q%’LD'
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5 Construction of the operator Qg

SL

Figure 5.1: A nested sequence of inflated boxes, B C B*C...C B%.

Theorem 5.16. Denote by ogprq > 0 and 0cace > 1 the constants from A.4.11 and A.4.19,
respectively. Let B, D € B be given boxes and let 6 > 0, L € N be free parameters with
d < ogpra and BOL' N D = (). Then, there exists a linear multi-step coarsening operator

% Viel(D) — Vial(D)
with the following properties:
1. There holds the rank bound

rank(Q}") < C(d, k. Q, 0ypra)0bee (L + diamy(B) /8) 4.
2. For allm € {0,...,k} and all u € Vi (D), there holds the error bound
lu— Qpullm©nm) < Cld,k, Q, 05pra) (0Cace/0)™ 2 Ilull nanpor)-
Proof. Consider the following sequence of nested, inflated boxes (cf. Figure 5.1):
B=p0cpilc..cplc..cpl,

Clearly, for each I € {0,...,L—1}, there holds (B*)°nD = BS4YnD C B'nD = .
In particular, we may apply T.5.15 to the boxes B%, D and the parameter §. For the
corresponding single-step coarsening operators, we abbreviate

Q= Qs p : Veal(D) — Viar(D).
The definition of Q%LD is such that the subsequent error analysis becomes very simple:

Vu € Vioi(D) - Q%’LDU =u—(id—Qp)o--o(id —Qr_1)(u) € V(D).
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5 Construction of the operator Qg

Denote by = C(dy ka Q7 Usprd)ila(_]alccd the number from the et bound ln T515
Then,
5 ' i
|lu — Qé,LDUHQmB,k,H = [[(id = Qo) oo (id = Qr-1)(u)llonps-o k1
< 2—1”(id_Q1)o---o(id—QL—l)(u)HQﬁB‘;'l,k‘,H
< 272”(id_Q2)o.--o(id—QL—l)(U)||QmB‘5'2,k,H
< 27 M|ullgnpst kb

Using the norm equivalences from L.5.2, we also get an estimate in the standard H™-
norms, m € {0,...,k}:

5L max{1, H}* |
[|lu — QB,DUHH’”(QOB) < WQ HUHH’“(QOBM)'

Since H < § < ogprg, we can plug in max{1l, H} < ogpq and min{l, H} > H/ogpd, S0
that

Def. H
5L —e— _
[|u — QB,D“HHM(QOB) < Uf;;zlnH "2 LHUHH’“(QOB“) S (0cace/6)™2 LHUHHk(mB&L)-

Finally, let us derive the rank bound. By induction on L, one can easily derive the
) ) . 5,L
following alternative representation of the operator Q)5 :

-1
Bpt =Y Qiid = Qua)o- o (id = Qrpu.
1=0

(Note that the (L — 1)-th summand is just Qr—ju.) From this identity, we get

L-1 T.5.15 L1
rank(Qy7,) < rank(Q) < 0bace D (1+ diamy(B)/5)?
=0 =0
L.2.13 L-1
S 0l Y (1+diamy(B)/6 + 1) < 08, (L + diamy(B)/5)" .

=0

This concludes the proof.

5.9 The approximation operator Q)

In this section, we complete the proof of T.4.20. We remind the reader of the relevant
objects from the statement of T.4.20:

1. Denote by ogprq > 1 and ocace > 1 the constants from A.4.11 and A 4.19, respectively.
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5 Construction of the operator Qg

2. Let huyin > 0 and 0agm > 0 be given numbers®.
3. Let B, D € B be given boxes that satisfy the following bounds:

hmin < dlamQ(B) < UadmdiStQ(Ba D) < O—adm\/ga—sprd-

4. Let r € N.

Proof of T.4.20. We employ the operator Q%’LD from T.5.16 for specific values of § > 0 and
L € N. We leave L unspecified for the moment and fix § in relation to L:

_ dista(B, D)
2V/dL

The asserted bounds on B and D guarantee that

_ dlStQ(B,D) S \/ﬁosprd S O‘Sprd
2v/dL 2v/dL

and also the disjointness of BL and D:

0 > 0.

J

dista(B*F, D) 2" dista(B, D) — VAL "L dista(B, D)/2 > huin/(20aam) > 0.
Therefore, the assumptions of T.5.16 are fulfilled and we may use the operator
Qb = Qip V(D) — Via(D).
As for the rank, we have
k(@ p) |2 ol dima(B)/0) P (14 BB )
S 0lace((1 4 0aam) L)™' < (0Cace(1 + Tadm) L)

Now, denote the implicit cumulative constant by Cy := C(d, k,Q, 0gpra) > 1. Then, the
choice (|-] is the floor function)

1/(d+1)
L= \‘ (r/Co) J eN
UCacc(l + Uadm)

leads to the desired rank bound:

K(O" DeiCo di1 De<f.L
rank(Qp p) < Co(ocace(l + Tadm)L) < r

Finally, let us derive the error bound. Let m € {0,...,k} and u € V(D). Using the
assumptions on B and D once again, we get

) T.5.16 e Def.s [ TCacc2VAL\™
||U—QB,DU||Hm(QmB) N (0Cace/6)"2 L||UHH'€(Q) = (dlStQ(Bl)) 2 L||U”Hk(9)

S (UCaceUadm/hmin)mLk2iL||UHH’€(Q)'

9In the statement of T.4.20, these numbers have a specific meaning. Here, we only need them to be
positive.
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5 Construction of the operator Qg

Sacrificing a small fraction of 27%, we can get rid of the distracting factor L¥. We use
the following elementary relations:

(&9

k K 1/(d+1)
e:=1n(2) — 1/2~ 0.19, sup t_t _ <k> <1 I (r/Co) '
t€[0,00) € 20Cace(l + Tadm)

Then,

Ik Ik (r/Co)"/ (D
L —L/2) < —-L/2) < - '
oL = er XP(=L/2) S exp(~L/2) < exp ( 40 Cace(1 + aadm)>

Finally, by setting
Oexp ‘= (40Cacc(1 + Uadm)Cé/(dH))*l > 0,
we obtain the overall bound

/(d+1)y

lu — QB pull gm(np) S (0CaccTadm/Pmin)™ exp(—0Texpr wll v ()

This finishes the proof.
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6 An application in a FEM setting

The finite element method (FEM) is a well-established (e.g., [Cia78], [EG04], [BSO08],
[Bral3], [LB13]) approximation scheme for partial differential equations. Among the nu-
merous advantages over other numerical schemes (e.g., finite differences method) is the
fact that it allows for a rigourous mathematical analysis. Here, we look at the analyst’s
favourite example of a second order elliptic PDE with homogeneous Dirichlet boundary
conditions. We apply our main result, T.4.21, to the inverse stiffness matrix A~

For the reader’s convenience, we summarize the necessary steps:

1. Choose the space V from D.4.1 and the bilinear form a(-,-) from D.4.2. Find an
upper bound for the quantity oe¢oco > 1.

2. Choose the ansatz space Vy C V and the basis {¢1,...,¢on} C Vy from D.4.3.

3. Prove that the dual basis {A\i,...,Ax} € V5 satisfies a local stability bound as
required by A.4.11 and determine the corresponding values of ky € {0,...,k} and
Ostab > 0. Determine the shape-regularity-, overlap- and spread factors ognp, Tovips
Ospra Of the characteristic sets €1y,...,Qn C Q. Furthermore, estimate the number
Amin > 0 from D.4.12.

4. Choose the clustering parameter ogpn.n > 1 from C.3.42 large enough to ensure

Oovlp < Osmall-

5. Prove the discrete Caccioppoli inequality from A.4.19.

6.1 An elliptic PDE

Let d € {1,2,3} and Q C R? be a polyhedron (cf. D.2.62). Furthermore, let a; €
L2(Q,RXD) gy € L2(Q,RY) and a3 € L=(Q,R) be given coefficient functions and fq €
L%(Q) be a given right-hand side. We seek a weak solution u € H}(f2) to the following
elliptic PDE!:
—div(a1Vu) +az-Vu+asu = fq in
u = 0 on 0.

We assume that a; is pointwise symmetric and that there exist constants a; > 0 and
g, a3 > 0 such that, for all 2 € Q and y € R?, the following relations are satisfied:

a3 < (ar(2)y,y)e, lar(z)ll2 < o,
laz(z)ll2 < ag, las(x)| < as,
20123011(042 +a3) < 1,

!Note that a; Vu is a matrix-vector product, az - Vu is a dot product and asu is just a multiplication.
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6 An application in a FEM setting

Here, Cp := C(d, ) > 0 is the constant in the Poincaré inequality |- || g1 () < Cp|-|g1 ()
on H}(Q) (cf. C.2.53).

6.2 The space V

First, we fix the functional analytic setting for this problem.

Definition 6.1. Let k :=1 and
V= H}(Q).

For all u,v € V, set?
a(u,v) = (a1Vu, Vo) 2qy + (a2 - Vu,v) r2(q) + (asu, v) 2(q)-

Lemma 6.2. 1. The set Q is an H'-extension domain and the space V satisfies the
requirements from D.j.1.

2. The bilinear form a(-,-) is continuous and coercive in the sense of D. 4.2 with a
constant
Ococo = C(d, Q: aq, 2, 043)-

Proof. Ttem 1: According to D.2.62 and L.2.49, the polyhedron € is a H'-extension domain.
Furthermore, V is a closed subspace of H'(Q) and, for all x € C$°(R?) and v € V, there
holds (k|g)v € V.

Item 2: For all u,v € V, we have

la(u,v)| < / [{a1Vu, Vo)o| + |(a2 - Vu)v| + |aguv| dz
)

IN

/a1IIVUII2IIVvH2 + g Vaulla|o] + aslul|v[ de < lullgr o) l[oll g )-
Q

On the other hand, using the Cauchy-Schwarz- and the Poincaré inequality,

041_1|u|%11(9) < /<a1Vu,Vu)2 dz = a(u,u) — /(ag,Vu)gu + azu? dz
Q Q
< a(u,u) + /062\|Vu||2|ul +azu’ dr < alu,w) + azlul i ollull L2 () + asllullfzq)
Q
< a(u,u) + Cp(az + az)lulfp ) < alu,u) + (201) 7 |ulfp o)

If we subtract the last term from both sides (and apply the Poincaré inequality again)
we end up with the asserted coercivity bound:

(203a1) ul}1 gy < (200) "l < alu ).

O

2In this chapter, we use the abbreviation (F,G) r2(q) = [o(F,G)2dx for vector-valued functions F, G :
Q — R

103



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6 An application in a FEM setting

6.3 The space Vy

Next, we fix the discrete ansatz space Vy and the basis functions ,,. For this purpose,
we use the spline spaces Sg’l(’T) from D.2.70. Our assumptions on the basis functions
{¢1,...,pn} reflect a common pattern in the construction of finite element bases: First, a
polynomial basis {¢1, ..., ¢} on the reference element 7 is chosen (the shape functions).
Then, these polynomials are transferred to the individual mesh elements 7' € T via the
affine transformations Fp : T — T (cf. D.2.65). Finally, these element shape functions
are glued together along the element interfaces to construct the global basis functions ,,.
We mention that the classic hat functions from L.2.72 (p = 1) fall into this category along
with the more general Lagrange elements (p > 1).

Definition 6.3. Let T C Pow(R?) be a mesh (cf. D.2.60) on the polyhedron ). Fur-
thermore, let p € N, L := (pzd) and let {¢1,...,¢or} C PP(T) be a basis. We set
N = dim(Sg’l(T)) and consider the ansatz space

Vi =St (T) C V.

A basis
{1, on} CSENT)

is called FEM basis, if the following conditions are satisfied:

1. Local supports: For everyn € {1,..., N}, there erists a characteristic element T, €
T such that’
T, € Supp?’(‘ﬁn) - T(Tn)

2. Simple structure: For every n € {1,...,N} and every T' € suppy(py), there exists
an index l(n,T) € {1,..., L} such that

enlT = Gin,r) © Fi

3. Local distinctness: For all m,n € {1,...,N} with m # n and all T € supps(¢n) N

suppr(pm), there holds
I(n,T) # l(m,T).

4. Stability: There exists a constant v > 0, such that, for all ¢ € RE, there holds the

bound
L
> ag
=1

Example 6.4. See [FMPR15, Lemma 4.4.] for an example of shape functions {¢1,...,¢r}
in d =2 space dimensions with v = 3.

lells < C(d)p?

21

In the sequel, we assume that a FEM basis {¢1, ..., ¢n} € SP!(T) is given and that the
characteristic elements T;, € T from item 1 are kept fixed.

*Recall that supp,(v) C T is the discrete support of a discrete function v € S*°(7) (cf. D.2.71) and that
T(T) denotes the elements touching 7T;, (cf. D.2.63).
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6 An application in a FEM setting

6.4 A weak formulation

As usual, a weak formulation of the model problem from Section 6.1 is derived by multi-
plication with v € Vi and integration over €. Using the bilinear form af(-,-) from D.6.1,
the left-hand side of the equation can be expressed as a(u,v). The right-hand side can be
written in the form of a linear functional f € Vy:

Vv e Vy: (f, U)* = <vav>L2(Q)'

In particular, the model problem from Section 6.1 falls into the problem class described
in P.1.2 and L.4.5: Find u € Vi such that

YveVy: a(u,v) = (f,v).

6.5 The dual basis \{,..., \y

In this section, we derive a local stability bound for the dual basis Aq,...,Ax € Vy; from
D.4.10. Furthermore, we determine the values of the quantities ognp, Oovlp and ogprq from
A4.11.

Definition 6.5. Denote by T1,...,Tn € T the characteristic mesh elements from D.6.3.
Foralln € {1,...,N}, we set
Q,, =1T,.

Lemma 6.6. Denote by hmin,7 > 0 and hyin > 0 the quantities from D.2.63 and D.4.12,
respectively. There holds the relationship

hmin > hmin,T‘
Proof. We compute
D.4.12 . . . D.2.63
Amin =~ = min  hg, = min A, >minhr =" ApinT.
ne{l,...,N} ne{l,...,N} TeT ’

O

Next, we derive the local stability bound. The trick is to find a representation of the
n-th dual functional \,, € V¥ in terms of a “density” u, € L*(Q).

Lemma 6.7. Denote by ognp > 1 the shape regularity constant of the mesh T (cf. D.2.60)
and let v > 0 be defined as in D.6.3. Denote by {\1,...,An} C VX the dual basis (cf.
D.4.10). Then, for all v € Vi, there holds the following local stability bound:

—d/2
[y 0] < Cd, o5ip)p P 10 2260, -

Proof. Denote by Frp : T —» T the affine transformations from D.2.65. Furthermore,

denote by L € N, {¢1,...,¢} CPP(T), T,, € T and I(n,T) € {1,..., L} the objects from
D.6.3.
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6 An application in a FEM setting

Let {ji1,...,fir} C PP(T) be the basis of dual polynomials which is uniquely determined
by the following conditions:

Vk,l € {1, .. .,L} : <ﬂk7¢l>L2(T) = 0.

Now, for each n € {1,..., N}, we define a (discontinuous) function j, € SP°(T) in a
piecewise manner: For every T € T\{T,}, we set p,|r := 0, whereas

finlz, = |det(VFp)| ™" - (fynr,) © Fr).

We use the function p, as a density to define a linear functional A € Vy:
Vv e Vi (An, V) == (1ns V) £2(0) -

If we can show that <5\n,<pm)* = Opm, for all n,m € {1,..., N}, then already A = A\
by the uniqueness of the dual basis (cf. D.4.10). To this end, let n,m € {1,..., N}. First,
consider the case where T}, ¢ supps(¢m). Then, the fact that T, € supps(py) from D.6.3
implies that there must hold m # n. It follows that d,,, = 0 and thus

<)‘TL7 (pm>* = <:UJ7L) Som>L2(Tnﬂsupp(4pm)) = 0= 0nm-

In the remaining case T}, € supps(¢pm), it follows from the structure assumption in D.6.3

that there exists an index I(m,T,) € {1,..., L} such that
G|, = Pum,r) © Fr -

We argue that there holds the identity 0y, 7,)i(m,1,) = Onm: If n = m, then both sides
yield the value 1. On the other hand, if n # m, then the fact that T;, € suppsr(¢n) N
supp7(¢m) and the asserted local distinctness from D.6.3 yield [(n, T},) # I(m,T},), so that
both sides of the equation become 0. Now, using the definition of u,,, we obtain

Ans@m)s = {bns Om) r2(7,) = 1det(VEL) | () © ' Gromra) © Fr )V r2(r)

= <Ml(n,Tn),<P1(m,Tn)>L2(T) = 5l(n,Tn)l(m,Tn) = Onm-
It follows that, indeed S\n = An. Then, for all v € Vy, we get
[ 0}l = [ 004l = (s 0) 2| < Nlptmll 2y 0l 222,

It remains to bound the norm of u,. To this end, we first need a bound for the dual
polynomials fi1,...,/ir. Expanding the k-th polynomial in the form i = Zlel crpp (for
some ¢ € RF), we get

L L D.6.3
Hﬂk||iz(f)=<ﬂk,§jcm> = alive: @) oy = ok < llella S Pkl oy
=1 =1
Then,

lnllr2er,y = 1det(VEL) I i) © Frt iz

1.2.33 _ ) L224 a/2 d/2
251 4et(V P )| 2 oy S 0 R < bl

~

This concludes the proof.
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6 An application in a FEM setting

In the last part of this section, we determine the values of the quantities ognp, Oovip, Osprd
as required by A.4.11. For the definition of these numbers, see D.2.16, D.2.18 and D.2.21.

Lemma 6.8. Denote by o, > 1 the shape-regularity constant of the mesh T (cf. D.2.60).
The characteristic sets {2y, ..., Qn C Q from D.6.5 have shape-reqularity og.y,, overlap ooyip
and spread ogped, where

d+
O-OVIp — ( d p>7 Usprd = C(Q)

Proof. Since the sets €1, are mesh elements, they are clearly shape-regular with respect
to the shape factor og,p of the mesh 7. The fact that the polyhedron 2 is by definition
bounded (cf. D.2.62) immediately yields a uniformly bounded spread factor ogpq:

diamg( LNJ Qn> C diam2< U T) = diams () < 0.

n=1 TeT

The overlap factor ogyp requires a bit more work: According to D.2.18, we need to find
an upper bound for the quantity

max #{m e {l,...,N}|Qy NQ, #0}.
ne{l,...,N}
To this end, recall from L.2.64 that distinct mesh elements can only intersect at their

boundaries. In particular, the condition Qf, N QP # () is satisfied, if and only if T}, = T),.
Therefore, it suffices to determine a bound for the quantity maxper #ms(T), where

ms(T):={me{l,...,.N}|T,, =T}.

Recall from the proof of L.6.7 that the dual functionals A1,...,Ax € V3 can be repre-
sented by densities 1, ..., uy € SPY(T). Since the functionals ), are linearly independent,
it is not difficult to see that the densities pu, are linearly independent as well (as functions
on all of ). Then, given an arbitrary element 7' € T, the restrictions

{pmlr |m € ms(T)} € PP(T)

are again linearly independent (as functions on 7'). To see this, consider coefficients
(¢m)mems(r) € R such that }°, ) cm(pm|r) = 0 on T. Since supp(pim) = Tm =T,
for all m € ms(T'), we also have }-, ... cmptm = 0 on Q\T'. Combining both, we get
> mems(T) Cmim = 0 on all of £, so that necessarily ¢, = 0, for all m € ms(T). Now that
the linear independence of the polynomials {j,|7 |m € ms(T)} is settled, we obtain

#ms(T) = dim(span {jimr | m € ms(T)}) < dim(BP(T)) = (djl‘p).

This finishes the proof.
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6 An application in a FEM setting

6.6 The discrete Caccioppoli inequality

Now we come to the hardest part of this chapter. In this section, we show that the discrete
Caccioppoli inequality from A.4.19 is satisfied for some constant

OCacc = C(d7 Oshp> Ulqu)p(gid)ﬂ’

where oy, 01qu > 1 are the quantities from D.2.60. Let us quickly give an outline of the
proof:

1. Let D € B be an axes-parallel box (cf. D.2.8) and consider a function u € V(D).
Furthermore, let B € B and § > 0 be such that B® N D = (), where B’ € B is the
inflated box (cf. D.2.12). Our goal is to show that there exists a number ocaec > 1
such that

5|“’H1(QQB) < UCaccHUHH(QmBé)-

2. To this end, we split the patch elements T(B) = {T' € T|T N B # (0} (cf. D.2.63)
into two groups, based on the relative size of the element diameter h7 and the value

of ¢:
Bsman = {T € T(B)| 24Ushp01quhT <6},
B]arge = {T S T(B) ’ 24JshpalquhT > (5}
Clearly,
52|u’%{1(QmB) = ¢ Z |u’%{1(TﬁB) = ¢ Z ‘u’%ﬂ(TmB) + 067 Z ‘u|12LI1(TﬂB)7
TET(B) T€Bsmall TeBlarge

and we need to find bounds for both sums.

3. The large elements T' € Bjarge wWith T' C B9 are easy to handle, because § < hp, and
the inverse inequality from L.2.54 already gives us
L.2.54
Slulmirnpy < dlulmiry S hrlulgyry S llullzeery = wllp2nss)-
However, there might be large elements 1" € Bjarge Which are not fully contained in
the inflated box B?. As a remedy, we first break T into smaller pieces S C T (cf.
L.2.69). Then, we apply the previous argument only to those pieces S which cover
T N B and lie inside of T'N BY.

4. While the large elements can be treated individually, the small elements Bgy,an need
to be treated as a group. The proof is a fully discrete version of the continuous
Caccioppoli inequality from L.2.55. There, we used a suitable smooth cut-off function
k € C*®(Q) and exploited the orthogonality a(u,x?u) = 0, which relies on the fact
that x?u € H}(Q2) may be plugged into the variational equation that defines the
function u € HE(Q).

Here, in the discrete setting, the fact that max{hp|T € Bsnan} < 9 allows us to
employ a suitable discrete cut-off function x € SH1(T) (cf. L.2.77), which lives inside
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6 An application in a FEM setting

a small neighbourhood of Bgpai. However, the product x?u € S€+2’1(T) is not an
element of the FEM space Vy = Sg’l(T) and we cannot use it as a test function
directly. Therefore, we take an interpolation operator

JE L H2(T) N HG(Q) — SEH(T)

and use JY(k%u) € Sg’l(T) instead. As it turns out, the induced error x?u — J4(k*u)
does not pose a problem for the validity of the discrete Caccioppoli inequality.

We start with the large elements Biarge:

Lemma 6.9. Let u € SP°(T), B € B and § > 0. Then, for all T € T(B) with
2404,p01quhT > 0, there holds the inequality

5|“’H1(TQB) < C(d, UShp7Ulqu)p2”UHL2(TﬂB§)'

Proof. Let T € T(B) with 240s,,01quhr > 6. According to L.2.69, we can find a family
S C Pow(R?) of simplices S C R? with the following properties:

1. There holds (Jgcg S = T.
2. Every S € T is ognp-shape regular, where og,p, = C(d)0ghp-
3. There hold the bounds hmax,s < 0 < C(d, Oghp, Olqu) Pmin,s-
We only need the subsimplices that touch the set B,
S(B):={SeS8|SNB#0}.
First, note that
TNB= ( U s)uB_ Usne= | (snByc |J s
Ses Ses SeS(B) SeS(B)

On the other hand, for every S € S(B), we may pick a point xyp € SN B and find the
following relation:

Ve e S |z — zoll2 < diama(S) = hs < hmax,s < 0.
Due to L.2.13, this implies S C B?. In summary, we have
TnB < |J ScTnB.
Ses(B)
Finally, using the inverse inequality from L.2.67, we compute
52‘“@11@03) S h?nin,SW‘%ﬂ(TﬁB) < Z h%|u‘%{1(5)
Ses(B)
L.2.67

S Z P4||U||%2(S) §p4”u”%2(TﬂB5)'
SeS(B)

Note that the constant from the inverse inequality depends on ogpp,, which is bounded

by C(d)ognp. This concludes the proof.
O
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6 An application in a FEM setting

Now that the large elements are taken care of, we turn our attention to the small elements
Bsman- To this end, we introduce the interpolation operator Jg- that was already mentioned
in the overview paragraph at the beginning of this section.

Lemma 6.10. Suppose d € {1,2,3}. There exists a linear operator?
JE HgW(T) — SPY(T)
with the following properties:
1. For allv € H2 (T) N Hg (), there holds Jhv € Sg’l(T).
2. For all g € Ny and all v € S¥O(T), there holds®

suppy(J7v) C suppr(v).

3. For allve H2 (T) and all T € T, there holds the error bound
2

1

> " hlplv = JEv|iery < C(d, ogp)pt D/ i}g@ > Birplo — wl gy,
we

=0 =0

Proof. Denote by T C R? the reference element (cf. D.2.59). In [MR20], under the
assumption d € {1,2,3}, an operator

JP: HOD/2(Ty — pP(T)
with the following properties was constructed:

1. For every v € H@D/2(T) every k € {0,...,d—1} and every k-simplex I' C R with

N(f) C N(T) (cf. D.2.57), the value of (jpv) i is uniquely determined by v

f\-
2. For every v € H@TD/2(T), there holds the error bound

_ g ) (1-d)/2 - R
lo—J UHH1(T) < C(d)p welﬁif(T)HU w||H(d+1)/2(T)-

Now, for every v € H2 (T), the image J7v € SP(T) is defined in a piecewise manner
via the element transformations Fy : T —s T from D.2.65:

(J7o)|r == JP(vo Fr)o Fyt.

The preservation of global continuity and homogeneous boundary values follows from
the first property of JP. The preservation of discrete supports is clear from the piecewise

“The space HE, (T) consists of all functions v € L?(Q) with v|r € H*(T), for all T € T
®Discrete supports supp(-) were defined in D.2.71.
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6 An application in a FEM setting

definition of J. Finally, let us derive the error bound. Let v € Hj (T) and T € T.
Denote by ¢ :=vo Fp € H? (T) the corresponding pull-back. Then,

1 L.2.43

/21~ tpe _ /2 . S
E th — J?v\HZ(T) < hT/ lo — Jpv||H1(T) < p(l d)/QhT/ ) inf |0 — w||H2(T)
—0 wePP(T)

L.2.4
< p=d/2inf Zhd/z\v w|Hl(T < p(ld inf ZhT\v—w|Hz

wEIPP( wePP(T

This concludes the proof.
O

At this point, we remind the reader of D.2.63 and D.2.73, where we defined the maximal
element diameter hp of a mesh cluster B C 7 and also the inflated mesh cluster B°, § > 0.
Now we have everything we need to treat the small elements Bgp.1. The following result
can be seen as a discrete version of L.2.55.

Theorem 6.11. Let B C T and § > 0 be such that 4oiquhg < 6 S 1. Let u € Sg’l(T) be
such that, for all v € Sg’l(T) with® suppr(v) C B?, there holds

a(u,v) = 0.

Then, there holds the inequality

(9—d)/2

Sl s) < C(d; Tunp, O1) P2 [l 255

Proof. Since we assumed 6 > 401q,hp, we know from L.2.77 that there exists a discrete
cut-off function & := k% € SH(T) with the following properties:

suppy(r) C B, klp=1, 0<k<1, VIie{0,1}:  |Klwreo(a) S 6t

Denote by J% : H3 (T) — SPO(T) the approximation operator from L.6.10. Since the
product 2u lies in SET>(T), we know that

v = JP (k%) € 88’1(7').

Furthermore, we have

L.6.10
suppy(v) = suppy(Jo(k%u)) € suppy(k*u) C suppy(k) C B°.

In particular, the assumption on u tells us that a(u,v) = 0. Then, using an element-wise
stability bound of a(-,-) (similar to L.6.2), we compute

a(u, k%) = a(u, s*u — v) = a(u, (id — J2)(K*w) $ D lullgn1Gd = T5) (520 || 2 o)
TeBs

SFor the definition of B°, see D.2.73.
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6 An application in a FEM setting

In order to bound the error term, we choose a point z¢o € T such that |k(z¢)| =
minger |k(z)]. Since k & k(o) € PY(T), L.2.66 provides us with the following bounds:

I+ k(@) |y S min|a(e) + r(zo)| + hrlr + x(@o)lwieqry S k(o)) +hro,

~  zeT i
Ik = K(@o)llzoe(r) S min|r(z) — rlzo)| + hrls — K(zo)lwreo(r) < hrd™.
Therefore,
. , A
I(Gd — J2) (s Wl < ho welﬂg}ﬁfT)ZhT|H u—w’Hz
L.2.67
S W
< PRI = k(o) ul L2y
< POk + w0l ooyl = (@) ey 1l 2
< pO= D257V (|k(zo)| + hrd ™ )||U||L2(T)

Recall that the element-wise stability bound for a(u, x*u) requires us to multiply both

sides with [[u[| g7y = ||ullz2() + [ulg1 (7). On the right-hand side, the following two terms
emerge:

(I6(zo)l + hrd Dllulfory < 0 HulFaey),
L.2.67
(@)l + hrd ™ Dlulgrryllull 2y < I6Vullpeer el pzery + 9?0 Hlul 7.
We summarize our findings:

a(u, ) S Yl nll(d = J5) (5%) |y

TeBs
S PN (k@) + b (fulla ) + lelg el z2ery)
TeBs
< plo=d/2s—1 Z p25’1||u|!%2(T) + |&Vull g2 lull 27
TeBs
C.s.

< p(13*d)/25’2||uH%2(85) +p O D25 kY | 2oy el 25y

On the other hand, we can use the definition of a(-,-) from D.6.1 to expand the term
a(u, k%u) explicitly. One of the summands is amenable to the coercivity of the PDE co-
efficient a;. In particular, using Holder’s inequality and Young’s inequality with a free
parameter € > 0, we get

I5VulZaq) S (@1sVu, £V 2
= a(u,x*u) — 2(a16Vu, uV k) 2q) — (az-Vu, ﬁ2u>L2(Q) — (asu, /<c2u>L2(Q)
P2 w5 g5 + POV 26T [V | 2ol 2 o)

Eflpgfd(sf

AN AN

2llullZ2 sy +elleVulF2q)
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6 An application in a FEM setting

Since the Young parameter € can be chosen arbitrarily small, we may absorb the last
summand in the left-hand side of the overall inequality. Finally,

Slul sy = 0|V ull 25y < 16V ullL2@) S P2 |ull L2 (5.

This concludes the proof.
O

Remark 6.12. During the proof of T.6.11, the interpolation operator Jg : HgW(T) —
SPO(T) from L.6.10 was used to turn the function k?u into an element of the ansatz space
Vn = 88’1(7'). However, since k*u lies in the discrete space SgH’l(T) anyways, we could
achieve the same result with a similar operator Jb- : SPT29(T) — SPO(T), which we
constructed in an earlier work (cf. [AFM22, Lemma 3.9.]). The advantage of J5 over J¥
is that its proof was carried out in an arbitrary space dimension d € N, whereas [MR20]
assumed d € {1,2,3}. In compensation, j%l would produce worse powers of p, because
[AFM22, Lemma 3.9.] was derived in the “wrong” norms. L.6.10 is the only reason why
this chapter is limited to space dimensions d € {1,2,3}.

We finish this section with the complete proof of the discrete Caccioppoli inequality
from A.4.19. As discussed in the overview paragraph of this section, the trick is to consider
“small” and “large” elements separately.

Corollary 6.13. Denote by ognp, 01qu > 1 the mesh related quantities from D.2.60. Then,
A.4.19 is satisfied with a constant

OCacc = C(da Oshp> Ulqu)p(g_d)/2-

Proof. Let B,D € B and § > 0 be such that B° N D = ). Furthermore, let u € Vo (D).
We divide the patch
T(B)={T eT|TNB# 0}

into the groups
Bsman = {1 €T(B)] 24UshpalquhT <6},
Biawge = A{T € T(B)|240snpoiquhr > 0}

and start estimating:
2), 12 2 2 21,12 21,12
Plulipngy =0 D [uliniros) < Cluling. + D Flulingns)
TGT(B) TeBlarge
First, we treat the individual large elements with L.6.9:
21,12 L.g9 4101112 491,112 410,112
Z 0 |u’H1(TmB) < Z p ||U”L2(TQBS) < Zp ||u||L2(TmBé) =P ||u”L2(Qr‘|B5)'
TGB]arge TeBlarge TeT

It remains to take care of the small elements, which we now abbreviate by B := Bgpan.
We want to apply T.6.11 to the set B, the parameter ¢ := (6ashp)_15 > (0 and the function
u. First, we check that ¢ is indeed a viable choice:

401qu0

40’1 h[g < ———==¢.
qu >
24Oshpolqu
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6 An application in a FEM setting

Next, we need to verify the assumption on the function u. To this end, consider a test
function v € Sg’l(T) with supps(v) C B®. Since B C T (B) and since 3hg < 2404mp01quhs <
4, we have

L.2.74
supp(v) C UsuppT(v) - UBE c QnB.
In particular, for all n € «(D) (cf. D.4.17), there holds’

euD

L.6.7 new( BSAD=0
A, 0)il S vllez,) = Ivllizpy =

0.

According to D.4.18, we can write u in the form® v = SyAf (for some f € RY with
supp(f) C «(D)), so that

N
a(u,v) = a(SxAf,v) P20 (AF,v). D'é13<2fnkmv> = > Fuldnvh =0,
n=1

*  neuD)

We may then apply T.6.11 and obtain the following bound:

T.6.11
_ —d —d
52|U‘§{1(Bsmn) ~ 52|U’12L11(3) SN ||U”%2(Bs) <p’ HUH%Q(QQB(S)‘

Note that p?~¢ > p*, because d € {1,2,3}. Finally, we combine the estimates for both
groups:
2] 12 9—d | .4 2 9—dy, (12
0" |ulfonm) S (077 + ) lullizonpey S P70 MlullTzonps-

This concludes the proof.

6.7 A corollary

Now that we completed all the necessary steps for the application of T.4.21, we summarize
our findings in a corollary:

Corollary 6.14. Let p € N. Denote by A € RN*N the Gram matriz that corresponds
to the bilinear form a(-,-) from D.6.1 and the FEM basis {¢1,...,on} C SS’I(T) from

D.6.3. Assume that the block partition P? from C.3.42 is constructed using the parameter

Osmall := (dzp). Then, for every r € N, there exists an H-matrizc

B, € #(P%,r)
with the following properties:
1. The memory requirements to store B, can be bounded by

C(d, 2, oghp, aadm)(pd +7) ln(h_1 )N.

min, T

"The implicit constant is of the form C(d, Oshps Dy Vs Bmin, 7).
8The operators Sy : Vi — Vv and A : R? — V¥ were defined in D.4.6 and D.4.13, respectively.
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6 An application in a FEM setting

2. There exist numbers Co > 1 and oexp > 0 of the form?

Co = C(dvQvalva2va3vashpa0'1qu70'adm)a
Oexp — C(d, Qa Oshp; Olqu> o-adm)_lp_(g_d)/2
such that the following error bound is satisﬁed:

|A™ = B, |2 < Cop™ ™ In(h}, )bt 7 exp(—0ex pr /@)y,

Proof. Over the course of 1..6.2, L..6.6, 1..6.7, L..6.8 and C.6.13, we derived the following
relations:

Ococo = C(d) Q> ap, a, 043), k(] = Oa Ostab — C(d JShP)p hmflI{?T’

d+ B
Oovlp = ( d p): Osprd = C(Q), hmin 2 Pmin, 75 OCacc = C(d7 Oshp, Ulqu>p(9 4/2,
Ad item 1: The bound on the storage complexity from T.4.21 now reads

O(d, Oshpy Osprd> Uadm)(gsmall + T) ln(hmm)N < C(d Q » Oshps Uadm)(p + T) hl(hmm T)N

Ad item 2: The numbers Cy and oeyp from T.4.21 become

T.4.21

Co C(da k, €, 0coco, Oshpy Osprd> Uadm) = C(da 0, a1, az, as, Oshp) Uadm)

and

T.4.21 -1 -1 —1, —(9—d)/2
Oexp — C(d, k, Q, Osprd; Uadm) OCacc — C(d7 Q7 Oshps Olqus Uadrn) p ( )/ .

Finally, the prefactor in the error bound from T.4.21 turns into

gtabUOleUCacc ln(hmln)hmﬁ? 5 ( A/hr:;lr{?'l') 1n(hmm T)
= der?Y 111( min T) hmm T
]

Note that C.6.14 holds true for any simplicial mesh T as defined in D.2.60. However,
in order to get a useful complexity bound, we need to make an assumption about the
relationship between hp,in 7 and N. In fact, in the extreme case hmin7 ~ e N, the com-
plexity bound reads O(N?) and the result becomes useless. For a large class of meshes, the
dependence of hyin on N is of algebraic nature and we get satisfactory results.

Definition 6.15. Let Q C RY be a polyhedron (D.2.62) and let T C Pow(Q) be a mesh. Let
I' C Q be a set with!? T°NT = 0, for all T € T. Furthermore, let H > 0 and Tgrade € [1,00].
We say that T has grading ograde, if there exists a constant C := C(d,,T') > 1, such that
the following relation is satisfied:

VI eT: C 'y < disty (g, T) =Y H < Chyp.

The case Ograde = 1 is called uniform grading, the case ograde € (1,00) is an algebraic
grading and the case 0grade = 00 1s an exponential grading.

9The constants on, a2, az were introduced in the initial problem statement, Section 6.1.
10T other words, I' is a subset of the mesh’s skeleton.
"Recall from D.2.63 that, for every mesh element T' € T, we fixed an incenter zr € T.
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6 An application in a FEM setting

We mention that the notion of “gradedness” can easily be formulated for general points
clouds z1,...,zy € R? as well. Later, in Section 7.10, we will look at several examples of
graded point clouds.

Lemma 6.16. Denote by I' CQ, H > 0 and ograde € [1,0] the quantities from D.6.15. If
Ograde € [1,00), then there exist constants C(d, ), oghp, L', Ograde) > 1 such that

(#T)—O'grade/d 5 H Psrade S hmjn"]— S h’T S.z H.

Proof. Since 1 — 1/0grade > 0, we can estimate

D.6.15
hy =maxhp < maxdisty(zp, [)1~1/%eede [ < diamy(Q)' Y/ 7erade g < H.
TeT TeT

On the other hand, for every T' € T, we have

Ball?(xTa (2Ushp) hT) Nnr C To nr g 5 @
This implies disto(z7,I") > (2ashp)*1hT and we get

D.6.15 : 171/0‘ 1_1/0— rade
hp Z disto (.TT,P) grade JT Z hT srace H.

Since it was assumed that ograqe < 00, We can easily solve for hp and obtain the relation
hr 2, H7sade. Taking the minimum over all 7' € T, it follows that hyin 7 2 H%srade,
Finally, we estimate

1 < meas(Q) = Z meas(T) b 2 17 Z hT (#T) hd S (#T)H

TeT TeT

and deduce (#7)"'/¢ < H.

Uniformly- or algebraically graded meshes indeed yield good complexity bounds.

Corollary 6.17. If T is a mesh with grading ograde € [1,00), then C.6.14 holds verbatim
with a complexity bound of the form

O((p® + r) In(N)N).

Proof. Follows immediately from 1..6.16 and the crude bound

D.6.3

#T < p'#T = dim(S5'(T)) N.
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6 An application in a FEM setting

If T is exponentially graded, i.e., 0grade = 00, then we cannot say anything about the
relationship between hpyi, and N. In Figure 6.1 (third image from the left), we show an
example of exponential grading towards an edge of the unit square in R?. In this case, the
relationship is of the form Apin7 =~ N ~—1. However, in the fourth image, the exponential
grading steers towards a corner and the relationship reads Amin,7 ~ 2N,

Figure 6.1: From left to right: Uniform, algebraically graded towards edge, exponentially
graded towards edge, exponentially graded towards corner. The complexity
bound from C.6.17 is satisfied in the first, second and third case, but not in the
last one.

We close this section with a remark on exponentially graded meshes.

Remark 6.18. One possible application of exponentially graded meshes can be found in the
context of the boundary concentrated FEM, e.g., [KM02] and [KMO03]. This method is sim-
ilar to the boundary element method (BEM), in that most mesh element lie on the boundary
of Q. However, we mention that C.6.14 is not directly applicable to this method, because
[KMO03] replaces the (constant-degree) spline spaces Sg’l(T) from D.2.70 with varying-degree
spline spaces S (T), p={pr|T € T}.

6.8 Numerical examples

In this subsection, we illustrate the validity of C.6.14 by means of several numerical exam-
ples. The examples are taken from [AFM21a, Section 4] and [AFM22, Section 5].

6.8.1 Algebraic grading

For the geometry we choose the L-shape Q := ((0,1) x (0,1))\([1/2,1] x [1/2,1]) C R?
in two space dimensions. The PDE coefficients for the model problem from Section 6.1
are given by ai(z) = (19 '), az(z) == ('%2) and ag(z) := 1. The mesh T has grading
Ograde = O towards I' := {(1/2,1/2)} and the coarse mesh width is given by H := 0.0095.
We use the lowest-order spline space S(l]’l(T) from D.2.70 and the basis of hat-functions
{¢1,.--,oN} C S(l)’l(’T) (cf. L.2.72). The block partition P? is then constructed using the
clustering strategy from Chapter 3 and the clustering parameters are set to gaqm := 2 and

Ogsmall -— 25 (Cf. C.3.42).
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6 An application in a FEM setting

Since the approximant B, € H(P2,r) from C.6.14 is of theoretical nature, we revert to
the truncated SVDs from Section 3.1. First, we compute the exact inverse A~ € RV*N
explicitly. Then, for every admissible block A™!|7 7, we compute the first » € {1,...,50}
singular values and end up with the following computable error bound:

C.3.42
|[A™' =B, < ln(hl;iln)uggp?g or1 (A7 1)
) adm

The numerical example is implemented in MATLAB ([MAT]). For the inversion of the full
matrix A € RV*N we use MATLAB’s built-in procedure inv(...). For the SVDs we use
svds(...). Recall that an exact matrix inversion needs O(N?) memory and O(N?) time
to compute, which effectively restricts the maximal feasible problem size to N & 70.000 on
our machine.

Tk

| | B——
il

iy

Figure 6.2: The mesh T, the box tree T (cf. D.3.17) and the block partition P? (cf. C.3.42)
for N = 2.000 degrees of freedom.

In Figure 6.2, we choose N =~ 2.000 degrees of freedom. The elements are graded towards
the reentrant corner with a grading exponent ograqe = 5. The cluster tree T is clearly deeper
near the grading center. The block partition P? uses sorted indices internally. Only a few
admissible blocks are far away from the diagonal, lots of small blocks agglomerate along
the diagonal. The sparsity pattern becomes more pronounced as N — oo.
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Allocated memory

——Allocated memory
----Reference: 103.57r

Approximation error

10°7 6000

—e—Computable error bound
---- Reference: 107"

5000 -

4000 -

3000 -

[MByte]

2000 -

1000}

r r

Figure 6.3: Approximation error and memory allocation for V ~ 72.000 degrees of freedom.

In Figure 6.3, we choose N = 72.000 degrees of freedom. The computable error bound
from above (for r € {1,...,50}) is depicted on a linear abscissa and a logarithmic ordinate.
The values are below a straight line with slope —0.37 indicating an exponential decay
error(r) < 107937, This is even better than the theoretical bound from C.6.14 and might
be attributable to the fact that block-wise truncated SVDs produce the best possible H-
matrix approximant, whereas C.6.14 produces some H-matrix approximant. The allocated
memory in MBytes is plotted on a linear abscissa and a linear ordinate. The values are
below a straight line with slope 103.57 indicating a polynomial growth memory(r) < r.
Choosing a rank bound r = 37, for example, gives an approximation error ~ 10714 and
uses ~ 4.2 GByte memory. In comparison, the full matrix A~ takes ~ 41.4 GByte memory.

Approximation error

0

10 —e—a=1

——a=2

w=3

—a=d

10-5 ——a =75

10*10 7
10718 ]
0 40 45 50

Figure 6.4: Comparison of approximation errors for different grading parameters, ograde €
{1,2,3,4,5}. The number of degrees of freedom is kept constant at roughly
N = 17.500 throughout all five runs.

Finally, in Figure 6.4, we choose N = 17.500 degrees of freedom and multiple grading
exponents in the range {1,2,3,4,5}. The case ogradge = 1 corresponds to a uniform mesh,
whereas 0grade = 5 is “heavily” graded. Again, the computable error bound from above is
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6 An application in a FEM setting

shown on a linear abscissa and a logarithmic ordinate. The convergence speed seems to be
largely independent of the grading exponent ograde-

6.8.2 Exponential grading

Next, we take a look at an example on the unit square  := (0,1) x (0,1) € R?. The mesh
T is exponentially graded towards the left edge (I' := {0} x [0,1], H := 0.25, 0grade = 00
in D.6.15). To get a computable error bound, we proceed as in Section 6.8.1, i.e., Al is
computed exactly and we use block-wise truncated SVDs.

Approximation error

10%
0| i — 30702

*I* - ‘--‘wanr(-nztc':)oxp(—'zﬁr)
-2
EE. N %
TR o
- : 109}
i i o
- 1029|
111 i
1022
|
141
w0,

r

Figure 6.5: Left: The mesh 7. Center: The block partition P. Right: Empirical approxi-
mation errors.

The right-hand image in Figure 6.5 depicts a comparison between three different problem
sizes of roughly N =~ 15.000, N ~ 21.500 and N = 31.000 degrees of freedom. The error
appears to decline at a rate of exp(—2.5r), which is again much better than our theoretical
prediction exp(—oexpr'/?) from C.6.14.

6.8.3 Some 7-arithmetic!?

In this final example, we use the same mesh 7 as in Section 6.8.2, but we increase the
polynomial degree to p € {5,6}. We employ a combination of the finite element code
NGSolve from [NGS] (which is capable of higher order polynomials) and the H-matrix
library H2Lib from [H2L]. Both libraries are coupled using a code which was previously
used in [EMM™'21]. We use the polynomial degrees p = 5 and p = 6, which lead to problem
sizes of N & 5.800 and N = 17.000, respectively. This time, an H-matrix approximant
B, is computed via an H-Cholesky decomposition A =~ LHL%Q and a subsequent inversion
thereof. We then use the error measure

AT — (L L3) " "[l2
A7

< |II = (LuL3,) " All2,

12 This experiment was performed by Dr. Markus Faustmann, a co-author of [AFM22].
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6 An application in a FEM setting

which does not involve an explicit inversion of A~!. Figure 6.6 shows exponential conver-
gence of this error measure.

Figure 6.6: Exponential convergence of H-matrix approximations for p € {5,6}.
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7 An application in an RBF setting

A major drawback of mesh-based approximation schemes (such as the finite element method
from the previous chapter) is the necessity for good mesh-generation algorithms. To allevi-
ate this problem, a variety of so-called mesh-less methods has been developed over a period
of more than four decades. In this chapter, we take a look at a radial basis function (RBF)
interpolation problem and show how this seemingly unrelated problem can be expressed in
the framework of our main result, T.4.21.

Inspiration for this part of the thesis was mainly taken from the book [Wen05], which
provides a comprehensive introduction to the theory of radial basis functions. However, we
mention that [Wen05] uses mostly Fourier transformation techniques, whereas the present
text focuses more on the variational aspects of the theory. For an overview of general
meshless methods, we refer to [DO95] and also [WQ19, Chapter 1].

The structure of this chapter is identical to the one of Chapter 6. We formulate the basic
model problem, find the appropriate functional analytic setting, verify the assumptions
from Section 4.6 and develop bounds for the quantities ococo, k0, Ostabs Tshps Tovips Tsprd
and hpin. Finally, we summarize our findings in a corollary of T.4.21.

7.1 An interpolation problem

Figure 7.1: An interpolation problem in 1D.

Let d € Nand N € N. We consider a family of functions {¢1,...,on} € C°(RY) of the
form

On = (- — Tn),

where ¢ € CO(R?) is fixed and where x1,...,2x € R? are given (pairwise distinct) inter-
polation points. Furthermore, let f € RY be a given vector of target values. We seek a
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7 An application in an RBF setting

solution u € span {1, ...,on} of the following interpolation problem:

Ym e {l,...,N}: w(Tm) = Fp-

7.2 The radial basis function ¢

If we want to apply the results from Chapter 4, we first have to find a weak formulation
of the interpolation problem. To this end, we need to express the point evaluations of u
as integrals. This can be achieved via Fourier transformation techniques. Here, we use the
following definition of Fourier transforms: For all f € L'(R?) and all y € RY,

o~

fly) = (2m) =" / fla)e 2 da, fly) = (2m)~ 2 / Fl2)e ™2 4y
R4 Rd

We also use the symbols Ff := f and F~'f := f. For basic properties of Fourier
transforms, we refer the reader to, e.g., [Yos80, Chapter 6] or [Eval0, Section 4.3.].

Definition 7.1. Let k € N with k > d/2 and let b € (0,00). We consider the following
radial basis function’

o

~d/2
Ve e RY: o(x) = % /tk_d/2_1€_b2t6_”xg/(4t) dt.

Note that ¢ is indeed a radial function, i.e., ¢(z) only depends on ||z||2. We mention
that ¢ can also be written in the form

- —d/2 7 k—d/2
p(r) = M(Hlﬂ) Ki_aso(bl|z]]),

which goes by the name of Matérn function, Sobolev spline or Bessel potential in the
literature (e.g., [AS61]). Here,

KV<7”) = /eTCOSh(S) COSh(VS) ds = / 677‘(65+3*s)/2eys/2 ds
0 —0o0

is the well-known modified Bessel function of the second kind. The formula for ¢(x) can be
derived by plugging in v = k — d/2 and r = b||z|| and then substituting s = In(2bt/||z||).
Furthermore, in the case where d € {1,3,5,...}, there holds the explicit representation

(4m)1=D/2 L (ap — 1)

#() = D@t &g 2lele T Limkod/2 =12 €N,

"Here, I'(k) := [;°t*'e~"dt is the Gamma function.
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7 An application in an RBF setting

This follows easily from the known identity

L 1/2 L—i—l) e T
Z (2r)+1/2

K 1)2(r)
1=

which can be found, e.g., in [GR07, Page 925].
The relevant properties of the function ¢ are summarized in the next lemma, which is
taken from [AFM21b, Lemma 2.10.]:

Lemma 7.2. 1. For all xg € RY, there holds o(- — xo) € H¥(R?). In particular, p €
HF(RY).
2. The function ¢ is a fundamental solution of the differential operator

k

D2k .— (b2 o A)k _ Z <];7> bg(k_l)(—A)l.

1=0
More precisely, there holds the following identity:
Voo € RY: Yo € C°(RY) /(p(a: — 20)(D?*v)(2) dz = v(xo).
Rd

Proof. Ad item 1: Using the substitution ¢ = s/b? and the assumption k¥ > d/2, we can
check that the integral defining () is indeed well-defined:

/|tkd/2leb2t€||x2/(4t)|dt < /tkd/21€b2tdt
0
ok [hdpt e, D(k—dj2)
d—2k [ k—d/2—1 —s
= b /S / e dS = W
0

In fact, using Fubini’s Theorem for non-negative integrands and the transformations
r =+/ty and t = s/b%, we find that ¢ € L' (R9):

Il =~ / ph=d/2-1,—t%t / e~ lel?/(40) gz
0 Rd

= () ([ emenay) - SO0 o
0 R4

Next, we compute the Fourier transform of . Recall (e.g., [Yos80, Chapter 6]) that the
GauB kernel e~ I°/2 is a fixpoint of the Fourier transform and that there holds the relation
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7 An application in an RBF setting

Fe /60y () = (26)42e~I” for all ¢ > 0 and y € R%. Substituting t = s/(b2 + ||y||2),
we obtain the following expression:

o
. 4qr) /2 —d/o—1 — .
s = U [P ) ai
0
_ W/tk—le—(b2+||y|2>tdt: _(@m)
I'(k) (0% + [lylI)*

Using polar coordinates, a straightforward computation shows that @ € L'(R%) N L?(RY)
and we know from theory that then also ¢ € L?(R?) (e.g., [Eval0, Section 4.3.1.]). A similar
computation reveals (1 + || - ||2)*/2¢ € L*(RY) and it follows that even ¢ € H*(RY) (e.g.,
[Eval0, Section 5.8.5.]). Finally, a simple integral transformation also yields (- — xg) €
HFE(RY), for all 29 € R?.

Ad item 2: Let 79 € R? and v € C§°(RY). Using standard Fourier manipulation rules
and the explicit formula for @, we compute

/ o — 20)(D%0)(z) dz = / (@ — 20 F((0% + || 11P)*0) (x) da

Rd R4
= /@(y)e_“my> O + [yl o (y) dy = (27r)_d/2/?7(y)€_i<x°’y> dy = v(zo).
R4 Rd

This concludes the proof.

7.3 The space V

L.7.2 provides a hint about the “correct” function space setting for the interpolation prob-
lem from Section 7.1.

Definition 7.3. Denote by k € N and b € (0,00) the parameters from D.7.1. Let Q := R,
We consider the native space
V = H*(R?)

and equip it with the following bilinear form:

k
kN o no
Vu,veV: a(u,v) := Z <l>b2(k 2 Z J(D u, D) 2 (gay.

1=0 la|=1

Note that V' also carries its natural inner product and norm from D.2.37, (-, -) k) and
- ere ey

Lemma 7.4. 1. The space V satisfies the requirements from D.4.1.
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7 An application in an RBF setting

. The bilinear form a(-,-) defines an inner product on V and the induced norm || - |4
is equivalent to the natural norm || - || g gay
VoeV:  O(dk,b) " vl g < llvlla < C(d, k. b)l[v] x(ga-

In particular, a(-,-) is continuous and coercive in the sense of D.4.2 with a constant
Ococo = C(d, k,b).
Additionally, for all u,v € V', there holds the local stability bound

|CL(U, ’U)| < C(dv k, b)HuHH’“(supp(v))HUHH’V(supp(u))'

. There holds the inclusion V C C°(R?) along with the following stability bound:

YoeV: ||UHCO(Rd) < C(d, k)HvHH’“(Rd)'

In particular, every v € V has well-defined point values.

. The subspace CS°(R?) C V is dense with respect to || - | e (ray (and also with respect

to || - la)-

. Denote by ¢ the radial basis function from D.7.1. Then, for all xo € R?, there holds

o(- —xo) € V. In particular, ¢ € V.

. There holds the following reproducing kernel formula?®

Yo eV :VryeRY: a(v, (- — x9)) = v(xo).

Proof. Ttem 1 is trivial and items 3, 4 and 5 follows from T.2.50, T.2.41 and L.7.2, respec-
tively.

Ad item 2: The norm equivalence | - || g7rga) = [| - [|o follows immediately from the defini-
tion of the natural inner product (-, -) g (gre) in D.2.37 and the fact that (];) L2011 /ol < 1.
In particular, a(-,-) is strictly positive definite and defines an inner product on V. To see
the local stability bound, we compute, for all u,v € V,

|a(u,v)| 5 Z |<Dau’Dav>L2(Q)| S Hu”Hk(supp(v))H’UHH’“(supp(u))'
|| <K

Ad item 6: Let v € C5°(9), 29 € R? and bbreviate ¢g := ¢(- —x0) € V. Using successive

2In particular, the triple (V;a(-,-),¢(- — -)) constitutes a so-called reproducing kernel Hilbert space. See,
e.g., [Wen05, Section 10.1] for more details on this matter.

126



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

7 An application in an RBF setting

partial integrations, we have,

k
K\ o noo
o) = 3 ()50 Y 00, D% e

1=0 la|=1
. k I
— Z(_l)l< )b2(kl)< Z ;D2av’ SOO>
1=0 l la|=l o L2(R)
Mk L.7.2
= > <l>b2(k_1)<(_A)lva900>L2(Rd) = (D, o) 12 (ra)
1=0

— [ 0@l - a0 do " v(ay).
Rd
Now, consider a general v € V. Since C§°(R?) C V is dense (see item 3), we can find
a sequence (vn)nen C C5°(RY) with [jv — vy || HF (RY) 2 0. In particular, by the previous
argument, a(v,, ©(- — zg)) = v, (x0), so that
la(v,00) —v(@o)l < fa(v, o) = a(vn, o)| + |vn(zo) — v(0)]
< v =onllallpolla + llon = vllcoa

Items 1,2 n
S (leolla +Dllv = onll gegay = 0.

The proof is then complete.

7.4 The space Vy

Next, we need to fix the discrete ansatz space Vy C V from D.4.3 along with a basis
{¢1,...,on} C Vy. This time, in contrast with the FEM setting (cf. D.6.3), we pick the
basis functions ¢,, first and the space Viy last.

Definition 7.5. Let ¢ € V be defined as in D.7.1. Let N € N and denote by x1,...,xN €
R? the interpolation points from Section 7.1. For alln € {1,...,N}, we set

on = —x) EV.

Furthermore, let
Vn :=span{e1,...,on} C V.

Lemma 7.6. The system {¢1,...,on} C V is linearly independent. In particular, there
holds dim(Vy) = N.

Proof. In the upcoming L.7.12, we will construct a family of linear functionals M,..., v €
V3 with (M, ©m)« = dpm. In particular, if ¢ € R is such that Z%Zl Cmpm = 0, then, for
alln e {1,...,N},

N N
0= <5‘"70>* = <5\n7 Z cm90m> = Z Cm<5‘n7‘pm>* = Cp.
m=1 * m=1
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7 An application in an RBF setting

7.5 A weak formulation

The reproducing kernel formula from L.7.4 allows us to write the interpolation problem
from Section 7.1 in weak form. Recall that, given target values f € R, we want to find a
function w € span{¢1,...,¢on} = Vi such that u(z,,) = f,,, for all m € {1,...,N}. The
point values of u can be expressed in the form u(x,,) = a(u, ¢, ). To encode the right-hand
side in a linear functional f € V5, we use the dual basis A1,..., Ay € Vy; from D.4.10 and
the coordinate mapping A : RY — V3 from D.4.13:

N
F=Af =) Fun€Vi

n=1

Indeed, for all m € {1,..., N}, we have

N
(fs om)x = Z PO om)s = Fn-

n=1

In particular, the interpolation problem from Section 7.1 fits into the setting from P.1.2
and L.4.5: Find u € Vi such that

YveVy: a(u,v) = (f,v).

However, note that there is no “continuous” equivalent on the full space V' (comparable
to P.1.1), because the original interpolation problem from Section 7.1 already has a discrete
character.

7.6 The dual basis \{,..., \y

Following the same steps as in Chapter 6, our next goal is to find a local stability bound
for the dual basis {A1,...,An} C Vy.

Definition 7.7. Denote by z1,...,xn € R% the interpolation points from Section 7.1. We
define the separation distance

heep :=  min _|lzy — xp[l2 > 0.
mmne{l,...,N}
m#n

Definition 7.8. For alln € {1,...,N}, we set
Q,, = Bally(z,, hsep/2).
The value of hgep is chosen such that these balls are essentially pairwise disjoint.
Lemma 7.9. 1. For allm,n € {1,..., N} with m # n, there holds
Q0. NQ =0.
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7 An application in an RBF setting

2. The quantity hmin from D.4.12 satisfies
hmin = hsep-

Proof. Ad item 1: Follows from L.2.7 and the fact that, for all m,n € {1,..., N} with
m # n, there holds

D.7.7

hsep/2 + hgep/2 = h = min Trn — Trallo < zn — Zmll2.
sep/ sep/ sep el N} || n m||2 > || n m||2
AR
Ad item 2: We compute
hoin =% min hg, = min _ diamy(Bally(wn, hsep/2)) = haep.
ne{l,..,N} "  ne{l,.,N}
O
Up until this point, we have not made any assumptions about the interpolation points
x1,...,oN that would allows us to make an inference about the spread factor ogpq from
D.2.21.

Assumption 7.10. We assume that there exists a number ogyq > 1, independent of N,
such that
2. max Ty — & < Ogprd-
m,ne{l,...,N}H " n||2 = Usprd
The name “ogpq” for the constant in A.7.10 is not a coincidence.

Lemma 7.11. Denote by ogpra > 1 the constant from A.7.10. The characteristic sets
Q1,....08 C R? from D.7.8 have shape-regularity og.p,, overlap ooy and spread Ogpid,
where

Oshp = Oovlp = 1.

Proof. Since the sets €, = Bally(zp, hsep/2) are balls with pairwise disjoint interiors (cf.
L.7.9), it is clear that oghp, = oovip = 1. To compute the spread, let m,n € {1,..., N},
x €y, and y € ,,. Then,

ly =zl < lly—anllz+ [|on — zmllz + 2w — zll2 < heep/2 + |20 — Tmll2 + hep/2
. ' A.7.10
Hxn_me2+ __Inin Hxﬁ_xﬁ’LHQ < 2Hxn_me2 < Osprd
m,nef{l,...,.N}
Tt

D.

b

and ultimately.

N
diam2< U Qn> < sup sup ||y — zl|2 < ospra-
m,ne{l,..,N} xG%m
ye

n

n=1

According to D.2.21, this implies the sets €2y, ...,Qx having spread ogprq.
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7 An application in an RBF setting

It remains to derive a local stability bound for the dual functionals A,. Analogous to
L.6.7, the trick is to express A\, in terms of a suitable density function p, : Q@ — R.

Lemma 7.12. Denote by heep, and ogpea the quantities from D.7.7 and A.7.10. Furthermore,
denote by {\1,...,An} C V5 the dual basis (cf. D.4.10). Then, for allv € Vi, there holds
the local stability bound

(A 0)s| < Cd, kb, ogpra)hly ™ 0] -
Proof. Consider the following bump function:

Vx|l < 1: u(x) = eexp(—m),
Vxl2 > 1: w(x) = 0.

It is well known (e.g., [AF03, Lemma 2.28]), that
peCERY,  supp(p) =Ballb(0,1),  p(0)=1, 0<p<L
Then, for every n € {1,..., N}, we use the function
fin = H2hih(- — 7)) € CE(RY C V
as a density to define a linear functional \,, € Ve
Vv e Vy: Ay Vs := a(pin,v).

Now, if we can show that (S\n, ©m)x = Onm, then already A = An by the uniqueness of
the dual basis (cf. D.4.10). To this end, let m € {1,..., N}. If m = n, then we have

N N L.7.4
<)\n790m>* = <)\n790n>* = a(HmSOn) = ,un(xn) = N(O) =1="0pm-

On the other hand, if m # n, then L.7.9 tells us that x,, ¢ Q, = supp(un), so that

N L.7.4
(Ans m)x = a(ftn, 0m) = pn(Tm) = 0 = dpm.

It follows that, indeed, A,, = \,. In particular, for all v € Vi, we have

- L.7.4
[(Ans V)| = [, )il = lalpn, V)] S Npnl rx ey 101 e (02,)-

Finally, using the trivial relation heep < 0gprd/2, the norm of j, can be bounded as
follows:

k
ety = > 110(2hgeh (- = @n)) g Rd>NZhsep |l ey S hUEH.
(=0

The proof is now complete.
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7 An application in an RBF setting

7.7 The discrete Caccioppoli inequality

In this section, we prove the discrete Caccioppoli inequality from A.4.19. Once again, the
derivation is based on a suitable cut-off function.

Lemma 7.13. Denote by b € (0,00) the parameter from D.7.1. Then, A.4.19 is satisfied
with a constant
0Cace = C(d, k,b).

Proof. Let D € B and u € Vi, (D) (D.4.18). Furthermore, let B € B and § > 0 be such
that B® N D = (), where B € B is the inflated box (cf. D.2.12). Our goal is to show that
there exists a constant ocace > 1 such that
k-1
(5k’u’Hk(B) S O Cacc Z 5Z‘U‘HZ(BJ).
1=0

To this end, we use the smooth cut-off function x := K’Rd BE C3°(RY) from L.5.3:
supp(x) C B°, klp =1, 0<k<1, VI € No : [Klptoomey S <67t

Clearly, for all m € {1,..., N} with z,, ¢ B’, we have x(z,,) = 0. On the other hand,
consider an index m € {1,..., N} with 2, € B°. Then there must hold m ¢ «(D) (cf.
D.4.17), because otherwise we would get the contradiction z,, € B'NQ,, C B NnD=4.
According to D.4.18, we can write u in the form?® u = SyAf (for some f € RV with

supp(f) C «(D)), so that

w(em) P alu,om) = a(SNAL,om) P2 (AL o D‘“‘°’<an n,wm>

N N

D.4.10 ¢u(D)
= Z.fn(Am‘Pm>* = anénm: Z fn‘snmm; 0
n=1 n=1 neu(D)
In other words, the product x?u € V vanishes at all interpolation points z1,...,zy.

Now, since u € V(D) C Vy, we can expand it in the form u = 27]:/:1 Cppn With certain
coefficients ¢,, € R. It follows that

N N
a(ngu,u) = a(nQu, Z cngan> = Z cna(/eQu, ©n) L4 Z Cnk a:n xn) = 0.
n=1

n=1

On the other hand, using the definition of a(-,-) from D.7.3 as well as Leibniz’ product

rule, we can expand the term a(x?u,u) explicitly (with ¢, := ( )bQ(k hE “ ;> 0and cop:=
Ca (g) > 0):
0 = a(k’u,u) = Z co(DY(K*u), D% )L2(R) = Z Z Cas(D*H( )Dﬁu,DO‘u>Lz(Rd).
ool <k || <k B<ox

3The operators Sy : Vi — Vv and A : RN — V3 were defined in D.4.6 and D.4.13, respectively.
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7 An application in an RBF setting

We transfer the summands with § < « to the other side of the equality and obtain the
following expression:

D DUl o ey S D calltDulliagay = = Y Y cas(D* P (K*)DPu, D) 2y

|| <K |a|<k |a| <k B<a
d
<> [Z\(@i(RQ)Da6iu,D°‘u>Lz(Rd)|+ > D (k%) DPu, D) o gy |
la|<k -i=1 B<a,
1B <]al—2

For the summands in the first sum, we use Young’s inequality (with variable ¢ > 0):

1(0; (k%) DY ¢, D) poray| = 2[{(0;5)D*“u, kD) 12(psy |
S N0l Lo ma) D ul| p2(ps) [ kD" ul| L2 (ra)
S 5_1’u|Hla\*1(B5)H’iDauHLQ(Rd)
5 571572|U’?¥|a‘,1(35) + €||K/DQUH%Q(Rd).
Note that, by choosing e sufficiently small, we can absorb the O(g)-term in the left-hand
side of the overall inequality.

For the summands in the second sum, we can pick an index i € {1,...,d} with a; > 1
(in the case a = 0, the sum is empty anyways). Then, we perform partial integration with
respect to the i-th coordinate:

(D P (5)Du, D¥u) 12 g

= (DO (62)DP 4 DO (62D, DO ) o |
< (HD%BHZ’(HQ)”LOO(W)HD'BUHLQ(Bé)
+HDQ_B(’€2)HLOO(R(1)\’D’BJreiu\’L?(Bé))HDa_eiUHm(Bé)

N

@1 ] i1 sy + 571 ] g1 oy g1t oy

= 5_2|a|(5|6|‘u|mﬂl(36) + (5|B|+1‘U|H\5I+1(B5))(5|a‘_l|u’H|a\—1(B5))
|a]—1

-2 2i), 12
5 ) | Z 5 z|u‘Hi(B5)'
Finally, exploiting k|p = 1, we put everything together:

laj-1

k—1
52k|u’%{k(B) < g2 Z HHDauH%Q(Rd Z §2k=lal) Z 52’!1&\,{1 ) S Z(Sm’“’m -
=0

|a|<k |a|<k

This concludes the proof.
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7 An application in an RBF setting

7.8 A corollary

All of the prerequisites for T.4.21 have now been checked and we may collect the fruits of
our labour.

Corollary 7.14. Denote by A € RVN*N the Gram matriz that corresponds to the bilin-
ear form a(-,-) from D.7.3 and the radial basis functions {¢1,...,on} €V from D.7.5.
Furthermore, denote by hsep > 0 and ogprq > 1 the quantities from D.7.7 and A.7.10,
respectively. Then, for every r € N, there exists an H-matrix

B, € H(P%,r)
with the following properties:

1. The memory requirements to store B, can be bounded by

C(d7 Osprd Uadm)(gsmall + T) 1n(hs_e%))N

2. There exist numbers Co > 1 and oexp > 0 of the form
Co = C(d7 k,b, Osprd; Uadm)a Oexp — C(d, k,b, Osprd; Uadm)ila
such that the following error bound is satisfied:

|A™Y — B, ||la < Coln(hzl)hdz3* exp(—oexpr/ D).

sep)sep
Proof. We collect the relations from L.7.4, [.7.9, L.7.12, ..7.11 and L.7.13:
Ococo = C(d, k,b), ko =k, o = C(d,k, b, opra) RO F,
Oshp = 1, Oovlp = 1, hmin = hsep, 0Cace = C(d, k,b).
Ad item 1: The bound on the memory complexity from T.4.21 becomes
C(d, Oshps Osprd, Tadm) (Tsman + ) In(h i )N = C(d, Ospra, Tadm ) (Tsman + 1) In(hgeh )N
Ad item 2: The numbers Cy and ey, from T.4.21 read

T.4.21
CO = C(d> k, Qa Ococos Oshps Osprd Uadm) = C(d’ k; b’ Osprd» Uadm)

and
T.4.21 o .
Oexp = C(d7 k, €, Osprd) Uadm) OCace = C(d, k,b, Osprd; Uadm) .

Finally, the prefactor of the error bound from T.4.21 turns out as

2 k —1 —k d/2—k\2 —1\13,—k —1\3,d—-3k
O-stabo-OVIPUC%cc ln(hmin)hmjr? fs (hse/p ) ln(hsep)hsep = 1n(hsep)hsep .

O

Note that C.7.14 holds true for any distribution of interpolation points z1,...,zy € R?
(as long as the points are pairwise distinct). Using a similar notion of “gradedness” as in
D.6.15, we can easily achieve the bound from C.6.17 again.
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7 An application in an RBF setting

7.9 The case of a semi-definite bilinear form

The radial basis function ¢ from D.7.1 is very special in that its native space V (cf. D.7.3)
is a Sobolev space with a proper norm || - ||. In a previous work ([AFM21b]), we also
looked at the case of thin-plate splines, in which the bilinear form a(-,-) is merely positive
semi-definite. The final approximability result is very similar to T.4.21, but we had to
take a few sidesteps to get there. The functional analytic setting from [AFM21b] is quite
different to the one from Chapter 4, the most important difference being that the basis
functions ¢,, do not lie in the space V individually. However, for certain coefficient vectors
c € RV, the linear combinations Zi:/:l Ccnyn do lie in V. This quirk leads to the surprising
non-identity

N N
o0 cen) # L cnalwpn). veV,
n=1 n=1

because the right-hand side is not even well-defined. In this section, we merely present the
challenges of the thin-plate spline case and highlight the differences between both theories.
As for proofs, we refer the interested reader to the original work [AFM21b].

For the interpolation with thin-plate splines we need a different native space:

Definition 7.15. Let k € N with k > d/2. We define the Beppo-Levi space#

V := BL*(RY) := {v € L (RY) |V|a| = k : D € L*(RY)}.

For all u,v € V', we set
El o
a(u,v) := Z a(D u, D) 12(Ray, [v|q := Va(v,v).
|a|=k
Furthermore, we define the space
P =PI RY) C V.

The function a(-,-) defines a symmetric, positive semi-definite bilinear form on V' and
| - |o defines a seminorm with kernel P. Furthermore, for every v € V and every open,
bounded set w C R?, there holds v € H*(w) C C%(w).

Definition 7.16. Denote by x1,...,xx € RY the interpolation points from Section 7.1.
We define the corresponding evaluation operator

[ CORY — RY
EN'{ v (),

The operator Ey is a convenient way to describe interpolation conditions:

(Vm e {1,...,N} : u(xm) = f(zm)) = Enu= ENf.

4A common alternative name is homogeneous Sobolev space. For more details on theses spaces, see, e.g.,
[DL95], [SSN98] or [Wen05, Section 10.5].
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7 An application in an RBF setting

In Section 7.5, the initial interpolation problem from Section 7.1 was rephrased as a
variational problem over the discrete space Vy = span{¢1,...,on}. This change of per-
spective was crucial, because it put us right into the framework of Chapter 4 (see L.4.5). In
the case of thin-plate splines, the underlying variational problem looks somewhat different.
Most importantly, we are now dealing with the infinite-dimensional space

Vo :={veV|Enxv=0}
instead of the N-dimensional space Vy.

Problem 7.17. Let f € V. Find u € V, such that
Enu= Enf, MveVp: a(v,u) =0).

We mention that the orthogonality side conditions ensure that the solution « minimizes
the seminorm | - |, over the affine space {& € V| Exu = Enf}. Furthermore, looking at
the proof of L..7.13 again, we can see that these orthogonality conditions are precisely what
we need to derive the discrete Caccioppoli inequality (note that x?u € Vp). P.7.17 is indeed
uniquely solvable and we can express u in the form v = ug + f, where ug € V solves
(Vv € Vg = a(v,ug) = —a(v, f)).

At first glance, the solution u looks like an infinite-dimensional object. However, it can
be shown that u has the form

N L
U= Z Cnipn + Zdﬂfh
n=1 =1

for certain ¢,,d; € R, ¢, € C°(RY) and basis polynomials 7y,...,7; € P. This is the
point where the thin-plate splines enter the stage.

Definition 7.18. We define the thin-plate spline

(d€{1,3,5,...}) @(x) = Cifla|**,
(d€{2,4,6,...}) @) = Coflz* *In]z],

where
(_1)k+(d—2)/2

T 92k 1nd/2(f — 1)k — d/2)!

o . _L2—k
VT gkgd2 (g — 1)1

Furthermore, for alln € {1,..., N}, we set

Cy -

on = (- — xp).

We already hinted at the beginning of this section that ¢ ¢ V', in general. In fact, in the
simplest case d = k = 1, we have ' = | - |' = sgn ¢ L?(R).

Definition 7.19. We define the following set of coefficient vectors’:

C:={ccRY|Vpec P:(c,Exnp)s =0}.

SUp until this point, we used boldface letters only for matrices and vectors. Here, we use C for a set of
vectors.
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7 An application in an RBF setting

The relevance of the set C should become clear in the next lemmas

Lemma 7.20. 1. For all g € RY, there holds o(- — o) € CO(RY). In particular,
@ € CORY).

2. The function ¢ is a fundamental solution of the differential operator (cf. L.7.2)
D .= (—A)k.

3. For all c € C, there holds
N
Z chion € V.
n=1

Proof. See [AFM21b, Lemma 2.11.]. O

Now, in order to get the representation of the solution u of P.7.17 in terms of the translates
wn and the polynomials 7;, we introduce the following matrices:

Definition 7.21. We define
A= (Son(mm))%’nzl € RNXN? B := (ﬂ-l($n))lL:7]1V7n:1 S RLXN.

Note that A is not a Gram matrix in the sense of D.4.8, because there is no bilinear form
involved. The connection between the matrices A and B and the solution w of P.7.17 is
described in the following lemma:

Lemma 7.22. Let f € V and denote by (c,d) € RY x RY the unique solution of the
following saddle point system:

(5 %) () (%)

Then, the solution w € V of P.7.17 is given by

N L
u= chgon—l-Zdlm eV
n=1 =1

Proof. See [AFM21b, Lemma 3.12.]. O

Note that the first line of the system encodes the interpolation conditions Exu = En f.
In fact, the matrices A and BT can be written in the form A = (Eni|...|Enxepn) and
BT = (EN7T1| - |EN7TL), so that

N L N L
Ac+B"d =) c,Exgn+ Y diEym =Ey ( > enpnt Y dm) = Eyu.
n=1 =1 n=1 =1

The second line of the system reads B¢ = 0, which is equivalent to the condition ¢ € C.
The final approximation result concerns only the upper-left block of the inverse system
matrix.
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7 An application in an RBF setting

Theorem 7.23. Write the inverse of the system matrixz from L.7.22 in the form

A BT\ _ (S Si
B 0 S21 S22/’
where S11 € RVXN | So1 € REXN | 815 € RVXL and Sog € REXL. Then, for every r € N,

there exists an H-matriz

S, € H(P?,r)
with the following properties:

1. The memory requirements to store S, can be bounded by

C(d7 Osprd; Uadm)(asmall + 7”‘) ln(hs:ai))N

2. There exist numbers Cy > 1 and oexp > 0 of the form
C'0 - C(d7 k7 b7 Osprd) Uadm)a Oexp — C(d, k; b7 Osprd; Uadm)ila
such that the following error bound is satisfied:

IIS11 — Srll2 < Co ln(h;e}))hg(;)?’k exp(—aexprl/(dﬂ)).
Proof. The complexity bound is the same as in C.7.14. The error bound is essentially taken
from [AFM21b, Theorem 2.18.], but without plugging in the assumption 1 < CN Ucafdhgep
from [AFM21b, Definition 2.2.]. O

7.10 Numerical examples

In this section, which is taken from [AFM21b, Section 4], we present some numerical exam-
ples to demonstrate the plausibility of C.7.14 and T.7.23. The experiments are performed
in MATLAB ([MAT]) and H2Lib ([H2L)).

7.10.1 TU Wien logo

In our first example, the domain of interest is the TU Wien logo, which consists of the
unit square in R? and a series of holes in the shape of letters. We place roughly N ~
30.000 interpolation points inside the logo and perform some algebraic grading (cf. D.6.15,
Ograde = 2) at the convex corners. As for the radial basis function, we use the thin-plate
spline p(z) = ||z||? In ||z| from D.7.18 with k = 2.
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7 An application in an RBF setting

Figure 7.2: Interpolation of smooth data on a non-uniform point distribution.

The left image in Figure 7.2 shows the positions x,, of the interpolation points and the
one in the middle depicts the pairs (z,, f,,). Here, the target values f, come from a
smooth indicator function of the letters. On the right-hand side, the solution u € Vi of
the interpolation problem P.7.17 is rendered.

7.10.2 A uniform grid in 2D

Approximation error
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Figure 7.3: A typical hierarchical block partition and a typical error plot in 2D.

Figure 7.3 shows the results of a problem in space dimension d = 2. The N = 900
interpolation points x,, produce a regular 30 x 30 grid in the unit square [0, 1] x [0, 1] C R?
(i-e., the case ograde = 1 in D.6.15). Once again, the thin plate-spline ¢(z) = ||z[|3In ||z||
with k = 2 is employed. In the left image, we can see a typical block partition P? in the sense
of C.3.42. The somewhat fractal pattern of small and admissible cluster blocks arises from
the fact that we order the interpolation points in a row-wise fashion, i.e., 21 = (0,0/29),
xz31 = (0,1/29), x61 = (0,2/29), et cetera.

The right-hand image is empirical evidence that the error bound in T.7.23 is correct.
To generate this plot, we use the same strategy as in Section 6.8.1, i.e., the interpolation
matrix (4 B:)T ) is inverted exactly and we compute block-wise truncated SVDs for the main
block S11 (cf. T.7.23). The semi-logarithmic error plot depicts the computable error bound
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7 An application in an RBF setting

from Section 6.8.1 along with a dashed reference line. The apparent similarity suggests a
relation of the form ||S11 — S|z S C(N)exp(—0oexpr), which is again better than our
theoretical prediction C(N) exp(—0expr/?).

On a side note, we mention that the standard 16-digit precision arithmetic in MATLAB is
not enough to generate a conclusive error plot. As is well-established in the literature (e.g.,
[Wen05, Chapter 12]), the condition number of the interpolation matrix (4 E'E)T) scales
very poorly with respect to the separation distance hgep, introduced in D.7.7. To overcome
this fundamental problem, we use MATLAB’s variable-precision arithmetic vpa(...) with
32 digits. This brute-force approach allows us to carry out the explicit matrix inversion

with sufficient accuracy.

7.10.3 A uniform grid in 3D

) Approximation error

E o N = 10648, cond = 5.92e+05|
10°8 —N = 15625, cond = 9.92e+05|
F —N = 19683, cond = 1,36e+06|

- - Reference: 10° exp(-13 r”“) |

106t

10-8',

107100

Figure 7.4: A comparison of different problem sizes N for a uniform 3D grid.

The next example, Figure 7.4, covers the case d = 3 and a uniform point distribution in
the unit cube [0, 1] x [0,1] x [0, 1] C R3, visualized in the left image. This time, we use the
Bessel potential p(z) = e I#12 from D.7.1 as the basis function (with k = 2 and b = 1).
The error plot shows a comparison between N =~ 10.000, N =~ 15.000 and N =~ 20.000
interpolation points, as well as a reference curve of the form r — Cexp(—aexprl/ 4. In
accordance with C.7.14, the empirical decay rate seems to be independent of the problem
size N.

7.10.4 An algebraically graded grid in 3D

In Figure 7.5, we investigate the influence of the grading parameter ogade from D.6.15 on
the error decay rate in d = 3 space dimensions. Once again, we use the Bessel potential
o(z) = e~ lI#l2 as the basis function (D.7.1, k = 2, b = 1). The error plot compares the
cases Ocard € {1,2,3}, where o¢aprqg = 1 is a uniform grid and oc,q = 3 is “strongly “ graded
towards the origin 0 € R3. The problem size N ~ 10.000 is held constant throughout all
three runs. The plot suggests that the constant oey, from the error bound in C.7.14 is
independent of the grading parameter ocarq.
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Figure 7.5: Experimenting with an algebraically graded grid in 3D.

7.10.5 Some #-arithmetic®

Previous numerical results have established that H-matrix arithmetic is a viable tool for
solving RBF interpolation problems (e.g., [LM17], [LBW19], [LBW20]). In the following,
we use the library H2Lib ([H2L]) for this purpose.

Here, we look at the thin-plate splines p(x) = ||z[|%In ||2||2 in 2D and the Bessel potential
o(z) = e~ II7l2 in 3D. The bessel potentials are treated as in Section 6.8.3, i.e., we compute
an H-Cholesky factorization A ~ Ay ~ LHL£ and invert it. (The intermediate matrix
Ay, is necessary, because A is fully populated.) The H-Cholesky factorization is discussed,
e.g., in [Beb07].

In the case of the thin-plate splines, the saddle point structure of the interpolation matrix
makes this approach infeasible. Instead, we follow the approach from [BLB12] and [LBW19]
and employ the augmented Lagrangian A + BT B (y > 0), which is SPD and therefore
amenable to an H-matrix inversion.

5This experiment was performed by Dr. Markus Faustmann, a co-author of [AFM21b].
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Approximation error - H-Arithmetics (2D) Approximation error - H-Arithmetics (3D)
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Figure 7.6: Experiment using H-arithmetics to approximate the inverse system matrix.
Left: 2D thin-plate splines. Right: 3D Bessel potential.

In Figure 7.6, we plot the error measure from Section 6.8.3 for the relative error. In the
2D case, we work with N = 10.000 interpolation points on the unit square in a uniform grid
(i.e. Ograde = 1 in D.6.15). The parameter in the definition of the augmented Lagrangian
is set to v := 1. In the 3D case, we take N ~ 4.100 uniformly distributed points in the
unit cube. Once again, we observe exponential convergence as predicted by C.7.14 and
T.7.23. However, we mention that the error flattens out before we arrive at the level of
machine precision, which is most likely attributable to the initial approximation A ~ Ay
by interpolation.

141



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[AF03]

[AFM21a]

[AFM21b]

[AFM22]

[AS61]

[Atk89)

[Ax115]

[Beb06]

[Beb07]

[BHO3]

[BHT71]

[BLB12]

[BM97]

Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure
and Applied Mathematics (Amsterdam). Elsevier / Academic Press, Amsterdam,
second edition, 2003.

N. Angleitner, M. Faustmann, and J.M. Melenk. Approximating inverse FEM
matrices on non-uniform meshes with H-matrices. Calcolo, 58(3):Paper No. 31,
36, 2021.

N. Angleitner, M. Faustmann, and J.M. Melenk. #H-inverses for RBF interpo-
lation. https://arxiv.org/abs/2109.05763. 2021.

N. Angleitner, M. Faustmann, and J.M. Melenk. Exponential meshes and H-
matrices. https://arxiv.org/abs/2203.09925. 2022.

N. Aronszajn and K.T. Smith. Theory of Bessel potentials. I. Ann. Inst.
Fourier (Grenoble), 11:385-475, 1961.

Kendall E. Atkinson. An introduction to numerical analysis. John Wiley &
Sons, Inc., New York, second edition, 1989.

Sheldon Axler. Linear algebra done right. Undergraduate Texts in Mathemat-
ics. Springer, Cham, third edition, 2015.

Mario Bebendorf. Approximate inverse preconditioning of finite element dis-
cretizations of elliptic operators with nonsmooth coefficients. SIAM J. Matrix
Anal. Appl., 27(4):909-929, 2006.

Mario Bebendorf. Why finite element discretizations can be factored by trian-
gular hierarchical matrices. STAM J. Numer. Anal., 45(4):1472-1494, 2007.

Mario Bebendorf and Wolfgang Hackbusch. Existence of H-matrix approxi-
mants to the inverse FE-matrix of elliptic operators with L°-coefficients. Nu-
mer. Math., 95(1):1-28, 2003.

J. H. Bramble and S. R. Hilbert. Bounds for a class of linear functionals with
applications to Hermite interpolation. Numer. Math., 16:362-369, 1970/71.

Steffen Bérm and Sabine Le Borne. H-LU factorization in preconditioners for
augmented Lagrangian and grad-div stabilized saddle point systems. Internat.
J. Numer. Methods Fluids, 68(1):83-98, 2012.

I. Babuska and J. M. Melenk. The partition of unity method. Internat. J.
Numer. Methods Engrg., 40(4):727-758, 1997.

142



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[Bor10]

[Bral3]

[Brell]

[BS08]

[CFPP14]

[Cia78)

[CS96]

[DER17]

[Dit92]

[DL95)

[DOY5)

[DSO0]

[EGO0]

[EGO04]

Steffen Bérm. Approximation of solution operators of elliptic partial differential
equations by H- and H2-matrices. Numer. Math., 115(2):165-193, 2010.

Dietrich Braess. Finite Elemente : Theorie, schnelle Loser und Anwendun-
gen in der Elastizitdtstheorie. Springer-Lehrbuch Masterclass. Springer Berlin
Heidelberg, Berlin, Heidelberg, 5. aufl. 2013. edition, 2013.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equa-
tions. Universitext. Springer, New York, 2011.

Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite
element methods, volume 15 of Texts in Applied Mathematics. Springer, New
York, third edition, 2008.

C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity.
Comput. Math. Appl., 67(6):1195-1253, 2014.

P.G. Ciarlet. The finite element method for elliptic problems. North-Holland
Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics
and its Applications, Vol. 4.

G. M. Constantine and T. H. Savits. A multivariate Faa di Bruno formula with
applications. Trans. Amer. Math. Soc., 348(2):503-520, 1996.

1. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices.
Numerical Mathematics and Scientific Computation. Oxford University Press,
New York, second edition, 2017.

Z. Ditzian. Multivariate Bernstein and Markov inequalities. J. Approx. Theory,
70(3):273-283, 1992.

J. Deny and J.L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier
(Grenoble), 5:305-370 (1955), 195.

C Armando Duarte and JT Oden. A review of some meshless methods to solve
partial differential equations. Texas Institute for Computational and Applied
Mathematics Austin, TX, 1995.

J. Dongarra and F. Sullivan. Guest editors introduction to the top 10 algo-
rithms. Computing in Science and Engineering, 2(1):22-23, 2000.

H. Edelsbrunner and D. R. Grayson. Edgewise subdivision of a simplex. vol-
ume 24, pages 707-719. 2000. ACM Symposium on Computational Geometry
(Miami, FL, 1999).

Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements,
volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York,
2004.

143



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[EGO6]

[EMM*21]

[Epp13]

[Eval0]

[Fauls]

[Fle77]

[FMPR15]

[Fol02]

[GHO6]

[GHLB04]

[Gia83)

[GRST]

[GRO7]

Alexandre Ern and Jean-Luc Guermond. Evaluation of the condition number
in linear systems arising in finite element approximations. M2AN Math. Model.
Numer. Anal., 40(1):29-48, 2006.

Christoph Erath, Lorenzo Mascotto, Jens Markus Melenk, Ilaria Perugia, and
Alexander Rieder. Mortar coupling of hAp-discontinuous galerkin and boundary
element methods for the helmholtz equation, 2021.

James F. Epperson. An introduction to numerical methods and analysis. John
Wiley & Sons, Inc., Hoboken, NJ, second edition, 2013.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, second
edition, 2010.

Markus Faustmann. Approzimation inverser Finite Elemente- und Randele-
mentematrizen mittels hierarchischen Matrizen. PhD thesis, Technische Uni-
versitat Wien, 2015.

Wendell Fleming. Functions of several variables. Undergraduate Texts in Math-
ematics. Springer-Verlag, New York-Heidelberg, second edition, 1977.

T. Fiihrer, J. M. Melenk, D. Praetorius, and A. Rieder. Optimal additive
Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D
on locally refined meshes. Comput. Math. Appl., 70(7):1583-1605, 2015.

G.B. Folland. Advanced Calculus. Featured Titles for Advanced Calculus Series.
Prentice Hall, 2002.

Mariano Giaquinta and Stefan Hildebrandt. Calculus of variations. II, volume
311 of Grundlehren der mathematischen Wissenschaften [Fundamental Princi-
ples of Mathematical Sciences]. Springer-Verlag, Berlin, 1996. The Hamiltonian
formalism.

L. Grasedyck, W. Hackbusch, and S. Le Borne. Adaptive geometrically bal-
anced clustering of H-matrices. Computing, 73(1):1-23, 2004.

Mariano Giaquinta. Multiple integrals in the calculus of variations and nonlin-
ear elliptic systems, volume 105 of Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 1983.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. .J.
Comput. Phys., 73(2):325-348, 1987.

1.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products.
Elsevier/Academic Press, Amsterdam, seventh edition, 2007. Translated from
the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel
Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX).

144



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[Gra01]

[Gre97]

[Gri85)

[GTO1]

[GVL13]

[H2L]
[Hac99]
[Hac09]

[HI13]

[HKO00a]

[HKOOb]

[HN8Y]

[Hor90]

[KMO02]

Lars Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. PhD
thesis, Christian-Albrechts-Universitat zu Kiel, 2001.

Anne Greenbaum. [terative methods for solving linear systems, volume 17 of
Frontiers in Applied Mathematics. Society for Industrial and Applied Mathe-
matics (STAM), Philadelphia, PA, 1997.

P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs
and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston,
MA, 1985.

David Gilbarg and Neil S. Trudinger. FElliptic partial differential equations of
second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint
of the 1998 edition.

Gene H. Golub and Charles F. Van Loan. Matrixz computations. Johns Hop-
kins Studies in the Mathematical Sciences. Johns Hopkins University Press,
Baltimore, MD, fourth edition, 2013.

H2Lib. Available at http://www.h2lib.org/.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction
to H-matrices. Computing, 62(2):89-108, 1999.

Wolfgang Hackbusch. Hierarchische Matrizen: Algorithmen und Analysis.
Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2009.

Roger A. Horn and Charles R. Johnson. Matriz analysis. Cambridge University
Press, Cambridge, second edition, 2013.

W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic: general
complexity estimates. volume 125, pages 479-501. 2000. Numerical analysis
2000, Vol. VI, Ordinary differential equations and integral equations.

W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. II. Ap-
plication to multi-dimensional problems. Computing, 64(1):21-47, 2000.

W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the
boundary element method by panel clustering. Numer. Math., 54(4):463-491,
1989.

Lars Hormander. The analysis of linear partial differential operators. I, volume
256 of Grundlehren der mathematischen Wissenschaften [Fundamental Princi-
ples of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1990.
Distribution theory and Fourier analysis.

B. N. Khoromskij and J. M. Melenk. An efficient direct solver for the boundary
concentrated FEM in 2D. Computing, 69(2):91-117, 2002.

145



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[KMO3]

[LB13]

[LBW19]

[LBW20]

[LeolT]

[LM17]

[MAT]

[Maz85]

[McLO0]

[MR20]

[MS64]

[MvO8]

[Nec12]

INGS]

B. N. Khoromskij and J. M. Melenk. Boundary concentrated finite element
methods. SIAM J. Numer. Anal., 41(1):1-36, 2003.

Mats G. Larson and Fredrik Bengzon. The finite element method: theory,
implementation, and applications, volume 10 of Texts in Computational Science
and Engineering. Springer, Heidelberg, 2013.

Sabine Le Borne and Michael Wende. Iterative solution of saddle-point sys-
tems from radial basis function (RBF) interpolation. SIAM J. Sci. Comput.,
41(3):A1706-A1732, 2019.

Sabine Le Borne and Michael Wende. Multilevel interpolation of scattered data
using H-matrices. Numer. Algorithms, 85(4):1175-1193, 2020.

Giovanni Leoni. A first course in Sobolev spaces, volume 181 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, second
edition, 2017.

M. Lohndorf and J. M. Melenk. On thin plate spline interpolation. In Spectral
and high order methods for partial differential equations—ICOSAHOM 2016,
volume 119 of Lect. Notes Comput. Sci. Eng., pages 451-466. Springer, Cham,
2017.

MATLAB. Available at https://mathworks.com/.

Vladimir G. Maz’ja. Sobolev spaces. Springer Series in Soviet Mathematics.
Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposh-
nikova.

William McLean. Strongly elliptic systems and boundary integral equations.
Cambridge University Press, Cambridge, 2000.

J. M. Melenk and C. Rojik. On commuting p-version projection-based inter-
polation on tetrahedra. Math. Comp., 89(321):45-87, 2020.

Norman G. Meyers and James Serrin. H = W. Proc. Nat. Acad. Sci. U.S.A.,
51:1055-1056, 1964.

Dragisa Mitrovié¢ and Darko Zubrinié¢. Fundamentals of applied functional anal-
ysis, volume 91 of Pitman Monographs and Surveys in Pure and Applied Math-
ematics. Longman, Harlow, 1998. Distributions—Sobolev spaces—mnonlinear
elliptic equations.

Jindfich Necas. Direct methods in the theory of elliptic equations. Springer
Monographs in Mathematics. Springer, Heidelberg, 2012. Translated from the
1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination
and preface by Sérka Necasovd and a contribution by Christian G. Simader.

NGSolve. Available at https://ngsolve.org/.

146



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Bibliography

[Ruds7]

[SSNOS]

[Ste70]

[Ste08]

[Str80]

[TB97]

[Wen05]

[WQL9]

[Yos80]

Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York,
third edition, 1987.

H. Sohr and M. Specovius-Neugebauer. The Stokes problem for exterior do-
mains in homogeneous Sobolev spaces. In Theory of the Navier-Stokes equa-
tions, volume 47 of Ser. Adv. Math. Appl. Sci., pages 185-205. World Sci. Publ.,
River Edge, NJ, 1998.

Elias M. Stein. Singular integrals and differentiability properties of functions.
Princeton Mathematical Series, No. 30. Princeton University Press, Princeton,
N.J., 1970.

Rob Stevenson. The completion of locally refined simplicial partitions created
by bisection. Math. Comp., 77(261):227-241, 2008.

Gilbert Strang. Linear algebra and its applications. Academic Press [Harcourt
Brace Jovanovich, Publishers], New York-London, second edition, 1980.

Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for
Industrial and Applied Mathematics (STAM), Philadelphia, PA, 1997.

Holger Wendland. Scattered data approximation, volume 17 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge Univer-
sity Press, Cambridge, 2005.

Hui Wang and Qing-Hua Qin. Methods of fundamental solutions in solid me-
chanics. Elsevier, 2019.

K. Yoshida. Functional Analysis. Classics in mathematics / Springer. World
Publishing Company, 1980.

147



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Lebenslauf

Personliche Daten

Name: Niklas Angleitner
Geburtsdatum: |
Geburtsort: [
Nationalitéit: ||
Email: niklas.angleitner@tuwien.ac.at
Ausbildung

12.2015 - 02.2022:
01.2013 - 11.2015:
03.2009 - 01.2013:
09.2008 - 02.2009:
06.2008:

2000 - 2008:

Doktoratsstudium, Technische Mathematik, TU Wien.
Masterstudium, Technische Mathematik, TU Wien.
Bachelorstudium, Technische Mathematik, TU Wien.
Grundwehrdienst, Horsching.

Matura in Deutsch, Englisch, Mathematik und Biologie.
Schule, BG/BRG Anton-Bruckner-Strafie, Wels.

Wissenschaftliche Publikationen

1. N. Angleitner, M. Faustmann, and J.M. Melenk: Approzimating inverse FEM matri-
ces on non-uniform meshes with H-matrices, Calcolo 58, 2021.

2. N. Angleitner, M. Faustmann, and J.M. Melenk: H-inverses for RBF interpolation,
https://arxiv.org/abs/2109.05763, 2021.

3. N. Angleitner, M. Faustmann, and J.M. Melenk: Ezponential meshes and H-matrices,
https://arxiv.org/abs/2203.09925, 2022.

Wien, am 25. Mai 2022





