
D I P L O M A R B E I T

Adaptive Image Processing

ausgeführt am

Institut für

Analysis und Scientific Computing

TU Wien

zur Erlangung des Titels Master of Science (MSc) unter der Anleitung von

Prof. Dr. Michael Feischl

eingereicht an der Technischen Universität Wien
Fakultät für Mathematik und Geoinformation

von

Hubert Hackl, BSc

Wien, am September 12, 2022
Hubert Hackl Michael Feischl

Kurzfassung

Seit Jahrzehnten ist der Standard zur Speicherung von Bildern das .jpg Format. Der JPEG
Algorithmus zerlegt dabei das Bild in ein Gitter bestehend aus 8×8 Pixel. Auf jedem dieser
Blöcke wird das Bild, dann effizient gespeichert (siehe [Wik21] für Details). Ziel dieser Ar-
beit ist es ein gröberes Gitter adaptiv zu generieren um noch mehr Speicherplatz zu sparen
bei nahezu unveränderter Bildqualität. Neben der Formulierung des Algorithmus wird auch
ein Quasi-Optimalitätsresultat von Binev P. und DeVore R. für den Algorithmus formuliert
(siehe [BD04]). Abschließend wird der Algorithmus anhand einiger Beispielbilder getestet,
was zeigt, dass der Algorithmus bei einigen Bildern deutlich bessere Kompressionsraten
aufweist als JPEG.

B

Abstract

Since decades the standard for storing images is the .jpg format. The JPEG algorithm
decomposes the image into a mesh consisting of 8 × 8 pixel blocks. On each such block,
the image is stored efficiently (see [Wik21] for details). The goal of this work is to obtain a
coarses mesh adaptively to save even more storage space while also maintaining the image
quality. Besides the formulation of such an algorithm, there is also a near-optimality result
given by Binev P. and DeVore R. for the algorithm (siehe [BD04]). Finally, the algorithm
is tested on some test images, which shows that the algorithm has a significantly better
compression rate than the JPEG algorithm for many images.

C

Acknowledgments

Many people were involved in making this work possible.
First, I would like to thank my supervisor Michael Feischl for coming up with various inter-
esting problems to choose from for the topic of this work, his patience and extraordinarily
good guidance. I could not have thought of a better supervisor.
Next, I would like to thank my family for both their mental and financial support. Thanks
to them, I did not need to work some boring student job in contrast to many less fortunate
study colleagues.
I also thank all my study colleagues for all their help in study related and unrelated prob-
lems and the fun after work.
Finally, I would like to give my thanks to all friends that do not happen to also be study
colleagues. Especially after the 4th semester they helped greatly in reinstalling some work
life balance by spending a lot of recreational time together.

D

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am September 12, 2022
Hubert Hackl

Contents

1 Introduction 1

2 Setting 2
2.1 Images . 2
2.2 Meshes and approximate Images . 3
2.3 Refining rectangles . 3
2.4 Estimators and near-optimality . 5

3 Iapp with mean and ∞-norm 7
3.1 Algorithm 1 . 7

4 Iapp with JPEG and L2-norm 9
4.1 Basics of the JPEG algorithm . 9
4.2 L2 estimation for adaptive JPEG . 10

4.2.1 L2 estimators for adaptive JPEG . 10
4.2.2 The refinement property . 11
4.2.3 A modified estimator . 14
4.2.4 Algorithm 2 . 15
4.2.5 Basics of adaptive tree refinement 15
4.2.6 Near-optimality of Algorithm 2 . 17

4.3 An algorithm with prescribed global error threshold 22
4.3.1 Another modification of the error functional 22
4.3.2 Algorithm 3 . 23
4.3.3 Algorithm 4 . 26

5 Iapp with JPEG and BV -norm 28
5.1 Algorithm 5 . 28

6 Efficient storage of Iapp 30
6.1 Data structures . 30
6.2 Compression of Iapp . 30
6.3 Decompression of Iapp . 32

7 The performance of the algorithms 35
7.1 Computation time with respect to the threshold parameter 36
7.2 Computation time with respect to the image size 37
7.3 Comparison of storage space needed with JPEG 38

Bibliography 41

i

1 Introduction

The JPEG algorithm has been the standard image compressing algorithm for decades. It
decomposes any given image into a fixed mesh of 8 × 8 pixel blocks. On these blocks the
image is transformed via 2D cosine transform. By means of a quantization matrix Q and a
rounding step, most higher frequencies are then omitted resulting in a decent compression
rate, i.e. significant less storage space needed when compared to saving each frequency (see
[Wik21]). The goal of this work is to generate a mesh adaptively instead of using a fixed
block size of 8× 8 in order to get an even better compression rate.
In the next chapter, the basic notation is introduced and the notion of near-optimality is
defined.
In chapter 3 the first algorithm is formulated with the supremumsnorm as driving func-
tional. This means, if a pixel of the approximate image differs more than a prescribed
tolerance from the original image, the element of the current mesh, in which that pixel is
part of, gets refined.
In chapter 4, the basics of the JPEG algorithm are presented and an algorithm based upon
the L2−Norm is formulated. The algorithm driving functional is furthermore modified,
such that there can a near-optimality result be shown (see [BD04]).
In chapter 5, the norm is switched once again. This time for the norm of bounded variation.
This norm should conserve sharp edges in images better, but the resulting output does not
differ noticeably from the last algorithm, if the tolerances are chosen accordingly.
In chapter 6, the details of the implementation of the last two algorithms are given.
In chapter 7, the last two algorithms are tested with eight test images, which shows that the
algorithms can save a lot storage space compared to JPEG, while preserving the quality.
The improved compression rate varies for different images. The difference is most notice-
able for monotone or blurry images. Since many images have this property (backgrounds
like the sky, a wall, simple furniture,...) the algorithms can often improve the compression
rate of the JPEG algorithm substantially.

1

2 Setting

2.1 Images

Let an image with h (height) times w (width) pixels be given by a function:

I : {1, ..., h} × {1, ..., w} → R3,

where I(i, j) corresponds to the normalized RGB-values of the pixel (i, j), i.e.
I(i, j) ∈ [0, 1]3.
The coordinates of the pixels are chosen such that the pixel (1, 1) is the top left pixel and
(h,w) is the bottom right pixel of the image, hence we can think of the image as a Matrix
of size h× w with values in R3 (see Figure 2.1).

Our goal is to come up with two algorithms with some properties: The first one (encoding
algorithm) takes an image I as input and returns a vector S. The second one (decoding
algorithm) takes S as input and returns some approximate image Iapp.
They should satisfy the following properties:

Property 1: Iapp is an approximation of I, i.e. there holds

I − Iapp
 < τ

for a certain norm and a preset tolerance τ .

Property 2: The necessary storage space for S is (near-)minimal.

Property 3: The runtime for both the encoding and decoding algorithm is
(near-)optimal.

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Figure 2.1: Similarity between coordinates of the pixels and the entries of a matrix.

2

2 Setting

refined to

Figure 2.2: How rectangles are refined

Property 1 has to be satisfied in any case since the quality loss (w.r.t. the chosen norm)
of the initial image being too large (i.e., greater than the tolerance τ) is unacceptable.

2.2 Meshes and approximate Images

The principal idea for obtaining an approximate image Iapp is to divide the image into
smaller rectangles and approximate the image on those.

Definition 2.2.1. For a given image I we define:

• A rectangle R is a subset of pixels in I which is given by a tripel (fpy, fpx, width) ∈
{1, ..., h}×{1, ..., w}×N, such that (fpy, fpx) is the position in I of the top left pixel
of R and width is the width of R expressed in number of pixels. We also assume that
the shape of R is similar to the shape of I, i.e. the ratio height/width is the same.

• A mesh T is a set of rectangles, such that every pixel of the image is contained in
exactly one rectangle.

• An approximate image Iapp is an image that can be computed given only the image
I and a mesh T . While we hide the dependency upon I, we are often interested in
which mesh was used to compute an approximate image and therefore usually denote
it by Iapp,T . We also assume that for R ∈ T the restricted approximate image Iapp,T |R
only depends on I|R and R.

Remark 1. The similarity assumption for rectangles implies, that if the size of I is h × w
then the height of a rectangle R is given by (h/w)width.

2.3 Refining rectangles

Definition 2.3.1. Let I be an image. We define the initial mesh

T0 := {R0}

with R0 := (1, 1, width(I)), i.e., R0 is the rectangle which covers the entire image.

3

2 Setting

We want to generate a new mesh T
 from a given mesh T by refining a rectangle in
T . When we refine a rectangle R ∈ T we apply a refinement rule to substitute R in T
with some new rectangles Ri, i = 1, ...,m(R) such that this new set of rectangles is a mesh
again, i.e., the set

T
 := T \{R} ∪ {Ri|i = 1, ...,m(R)}
is a mesh. The refinement rule we are using creates new rectangles by bisecting both sides
of the refined rectangle (see Figure 2.2). Hence m(R) = 4 for any rectangle R and the new
rectangles are similar to the old one. Therefore they are also similar to R0 if we started
with the mesh T0.
We use the following terms:

• Refinement denotes the application of the refinement rule to one single rectangle.

• Refinement step denotes the refinement of each rectangle of a certain subset M ⊂ T
of a mesh T .

Definition 2.3.2. A mesh T is called coarser than a mesh T
 if the mesh T
 can be
obtained by applying refinement steps on T . In this case we also say T
 is finer than T
and write T < T
 or T
 > T .
With this notion we further define the sets

refine(T0) := {T |T0 < T }

and

Tn := {T ∈ refine(T0)| exactly n refinements were done starting from T0 to obtain T }.

The relation ”<” defined in Definition 2.3.2 is a semi-order on the set of meshes correspond-
ing to image size h×w for any h,w ∈ N. While two meshes might not be comparable, the
refinement rule of our choice still gives local nestedness :

Lemma 2.3.3. Let I be an image and S, T ∈ refine(T0) two meshes. Then for any R ∈ T
there holds

{R} ⊂ S|R := {T ∈ S|T is a subset of R} (1.a)

or
∃T ∈ S : {T} ⊂ T |T . (1.b)

Proof. Let R ∈ T be a rectangle. The assumption that S, T ∈ refine(T0) implies that if R
has to be refined for obtaining S, then (1.a) holds. On the other hand if R doesn’t have
to be refined to obtain S, then either R ∈ S (both, (1.a) and (1.b) are true) or we had to
refine some T ∈ S to obtain R, which means (1.b) holds.

Note that (1.a) in Lemma 2.3.3 just means that if we restrict the meshes on R ∈ T , the
obtained mesh coming from T is coarser than the one obtained from S. For (1.b) it is the
other way around.
We have to decide before each refinement step for each rectangle in the mesh whether to

refine it or not. For this we estimate the local error on each rectangle.

4

2 Setting

2.4 Estimators and near-optimality

Definition 2.4.1. Let
.
 be a norm of our choice on the space of images of size h×w, I
an image of size h× w and T a mesh. We define:

(i) The local error estimator:

η(R) :=
(I − Iapp,T)|R
 =
(I − Iapp,T)1R
 ∀R ∈ T

(ii) The global error estimator

E(T) :=
(I − Iapp,T)

(iii) The best approximation error after refining n rectangles:

En := min
T ∈Tn

E(T).

Let a norm
.
 on the space of images of arbitrary size be fixed. The algorithms below
are all based on the following procedure to generate adaptive meshes:

Input: Image I, tolerance τ > 0
(1) Set T = T0
(2) Compute Iapp,T and η(R) for all R ∈ T
(3) Mark all R ∈ T which satisfy η(R) > τ
(4) Obtain the mesh T
 by doing a refinement step on the marked rectangles in T
(5) Set T = T
 and go to (2)
Output: Sequence of meshes (which are obtained in step (4) in each iteration)

We will later add an additional step between the steps (4) and (5) to check if the global error
E(T) is smaller than some prescribed threshold parameter µ > 0 to make an algorithm
based on this procedure terminate at some point. Instead of the local error η in step (3)
one can also use another algorithm driving functional �η which might include other factors
than just the local error. An algorithm based on this procedure has the important property,
that after each iteration, the newly obtained mesh is finer than the old one.

Lemma 2.4.2. Let I be an image, T ∈ refine(T0) be a mesh. Then steps (ii) to (v) of the
procedure described above produce a mesh T
 which satisfies

T < T
.

Proof. Let M ⊂ T denote the set of marked rectangles in step (iii) of the procedure.
Then the mesh T
 is obtained by refining the elements of M . This already implies that
T < T
.

We now introduce the notion of near-optimality:

5

2 Setting

Definition 2.4.3. Let an Algorithm compute an approximation of a given image I on
some (adaptively refined) mesh TI . We call the algorithm near-optimal (w.r.t. the number
of refinements) if there exist positive constants C1, C2 and n ∈ N such that TI ∈ Tk for a
k ∈ N with 0 ≤ k ≤ C1n and

E(TI) ≤ C2En.

The constants are universal, i.e., they do not depend on the image I.

6

3 Iapp with mean and ∞-norm

For our first approach, we set S = Iapp which makes the decoding algorithm redundant.
This means for the moment, we focus on generating Iapp and postpone the efficient storage
of Iapp to a later point.
In order to obtain the approximate picture Iapp, we compute a sequence of meshes consisting
of rectangles which are similar to the original picture I.
For a given mesh T we compute the approximate image Iapp,T by taking the mean value
on rectangles:

Iapp,T
���
R
(i, j) :=

1

|R|
�

(l,m)∈R
I(l,m) ∀(i, j) ∈ R ∀R ∈ T .

We choose the L∞ norm for adaptive refinement. The local estimator then can be written
as

η(R) =
(I − Iapp,T)
���
R

∞ = max(i,j)∈R|I(i, j)− Iapp,T (i, j)|.

The global error estimator is then given by

η(T) = maxR∈T η(R).

Based on the procedure in the last section this leads to:

3.1 Algorithm 1

Algorithm 1 L∞-threshold with mean value approximation

Input: Original picture I, tolerance τ > 0
(1) Set T = T0
(2) Compute Iapp,T
(3) Compute local error η(R) for all R ∈ T
(4) Mark R if η(R) > τ for all R ∈ T
(5) If at least one rectangle is marked → refine marked elements, set T to the obtained
mesh and go to (2)
(6) Else → return Iapp := Iapp,T

The following theorem explains why it is convenient to choose the maximum norm in
both the estimator and in Property 1.

7

3 Iapp with mean and ∞-norm

Theorem 3.1.1. Consider the last mesh T before termination of Algorithm 1. Let
S ∈ refine(T0) and assume S has Property 1 (i.e., Iapp,S has Property 1). Then there
holds:

#T ≤ #S,
i.e., the generated mesh by Algorithm 1 is optimal with respect to the number of elements.

Proof. We prove the statement by contradiction. Assume that

|T | > |S|. (3.1)

Lemma 2.3.3 and inequality (3.1) imply that there exists a rectangle R
 ∈ S with R
 /∈ T
such that R
 has been refined while generating the mesh T . The condition for marking and
therefore refining an element R in Algorithm 1 is:

mark if η(R) > τ.

This implies
maxR∈Sη(R) > τ.

Therefore S doesn’t have Property 1 which contradicts the assumptions.

We see experimentally that a constant mean value approximation on the rectangles is
not well suited for practical purposes since the structure of the mesh always remains clearly
visible unless for

”
very small“ tolerances τ which usually result in very fine meshes (many

rectangles which only consist of one pixel!) leading to a very weak Property 2 and a very
weak Property 3.

8

4 Iapp with JPEG and L2-norm

This chapter is based on [BD04] and [Wik21].
We begin by trading the approximation by mean-value on a rectangle from the previous
chapter for an approximation using the discrete cosine transform of the image. We will do
this again locally on each rectangle of the mesh separately and omit higher frequencies if
their coefficient is small enough.
Additionally we convert the function values of the image, which are given in the RGB color
basis, to the YCbCr color basis. The motivation for this is the observation that the human
eye is more sensitive towards brightness (the Y component) than towards chromatic com-
ponents (Cb/Cr components) according to [Wik21]. We sample the Cb and Cr components
down to half the image height and width by taking the mean values of four neighbouring
pixels. Then we use the algorithm we come up with for the brightness component Y on
these smaller components of the image and after the compression we double the height and
width again by splitting each pixel into 4 like in the refinement rule to obtain the original
size again. This leads to chromatic components being constant on certain blocks of 2 × 2
pixels which does not lead to a noticeable quality loss (see [HC92] for a study on noticeable
quality losses using JPEG).

4.1 Basics of the JPEG algorithm

The JPEG algorithm realizes the above ideas but without generating an adaptive mesh, i.e.,
the domain of the picturefunction is split into 8×8 pixelblocks on which the discrete cosine
transform is applied for each component of the YCbCr basis. Then the resulting three
8×8 matrices are divided entrywise by a so called quantization matrix Q of the same size.
The entries of the obtained matrix are then rounded to the nearest integer, which usually
gives a matrix with many zeros towards the bottom right. This can be stored efficiently
and concludes the compression algorithm for JPEG files (see [HLN+18] for further details
about the advantages of JPEG).
The decoding algorithm multiplies entrywise the stored coefficientmatrix of a component
on an 8×8 rectangle by the quantization matrix Q, performs the inverse discrete cosine
transform and converts the resulting YCbCr values back to the RGB colorbasis to generate
the picture.
The only loss comes from the rounding step in the encoding algorithm, which by choice of
a suitable quantization matrix Q, mainly affects higher frequencies, which the human eye
is less sensitive to anyway.
In the next sections we want to come up with a suitable error estimator for generating an
adaptive mesh on which we proceed similar to the JPEG algorithm.

9

4 Iapp with JPEG and L2-norm

4.2 L2 estimation for adaptive JPEG

In this section we change the estimators from Algorithm 1, where we used the maximum
norm, to estimators based on the euclidean norm. As in the JPEG algorithm we limit the
minimal size of rectangles obtained to be at least 8 pixels in each dimension. It remains
to come up with a good marking strategy compared to the one we had in Algorithm 1.
This is actually not trivial, since there is no obvious optimality result like for the marking
strategy in Algorithm 1 (Theorem 3.1.1). However, before we come to that, we clarify
what estimators we are using:

4.2.1 L2 estimators for adaptive JPEG

The estimators we are using are now based on the euclidean norm: The approximate image
on a given mesh is given similarily to the JPEG algorithm, i.e., we use the discrete cosine
transform (DCT) and a quantization Matrix Q. The quantization matrix we are using is
the same as in [Wik21]:

Q :=

����������

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

����������
We now define some operators:

Definition 4.2.1. Let R be a rectangle of size h× w.

TLR :Rh×w → R8×8

(aij)1≤i≤h,1≤j≤w �→ (aij)1≤i,j≤8

EMBR :R8×8 → Rh×w

(aij)1≤i,j≤8 �→ (bij)1≤i≤h,1≤j≤w,

where bij = aij if i ≤ 8 ∧ j ≤ 8 and bij = 0 if i > 8 ∨ j > 8. Let further DCTR denote the
2D discrete cosine transform on Rh×w and IDCTR its inverse.

Remark 2. Note that these operators solely depend on the size of R. The operator TLR

projects matrices of the size of R onto their top left 8 × 8 submatrix, while the operator
EMBR embeds an 8× 8 matrices into Rh×w by adding zeros to the right and bottom. We
will later ensure, that no rectangles R with h < 8 or w < 8 will occur. Consequently, the
operators above are well defined.

Let the symbols
 and ./ denote pointwise multiplication and division.

10

4 Iapp with JPEG and L2-norm

Definition 4.2.2. For a given image I and a mesh T we compute an approximate image
Iapp,T via

Iapp,T |R = IDCTR(EMBR(Q
 round(TLR(DCTR(I|R))./Q))) ∀R ∈ T . (4.1)

However, for the adaptive procedure we will ignore the quantization and therefore only
compute the approximate image for the final mesh this way. For a mesh T
 � T , which
occurs during the algorithm, we compute an approximate image Iapp,T � by

Iapp,T � |R = IDCTR(EMBR(TLR(DCT(I|R)))) ∀R ∈ T
. (4.2)

In the next sections we will only need (4.2). Only later, when our goal is to efficiently store
and reconstruct the approximate image, we will go back to using (4.1) for the final mesh
and approximate image.

Definition 4.2.3. The estimators with respect to the euclidean norm for a given image I
of size h× w, a mesh T and a given rectangle R ∈ T are given by:

(i) The local error estimator:

η(R)2 :=
1

hw

�
(i,j)∈R

(Iapp,T (i, j)− I(i, j))2

(ii) The global error estimator

E(T)2 :=
�
R�∈T

η(R
)2 =
1

hw

�
(i,j)∈I

(Iapp,T (i, j)− I(i, j))2

(iii) The best approximation error after n refinements:

En := min
T ∈Tn

E(T),

Note that this global error estimator is also called the mean squared error (MSE). The
quantity En usually is not explicitly known or computed and neither is a mesh T on which
this minimum is attained.

4.2.2 The refinement property

The principal idea is again to calculate local errors using a local estimator and refine those
rectangles which exceed the preset tolerance τ . However, unlike in Algorithm 1, we have
no guarantee that refining a rectangle actually decreases the global error with respect to
the L2 norm. Therefore we will need the refinement property :

4�
i=1

η(Ri)
2 ≤ C0η(R)2 with R1, .., R4 children of R ∀R ∈ T ∀T ∈ refine(T0), (4.3)

11

4 Iapp with JPEG and L2-norm

for some constant C0 > 0. While we do not know if refining leads to a smaller global
error, we do know that it at least does not lead to a worse error if C0 ≤ 1. Unfortunately
(4.3) does not hold for every image. However, we can still come up with a result that
will prove to be sufficient for the results to follow. To this end, let I be an image and R
the rectangle covering it, i.e. size(I)=size(R)=(h,w). Recall that the operators defined in
Definition 4.2.1 only depend on the size of R. Therefore, we set

TLR/2 := TL �R, with �R being any rectangle of size h/2× w/2 (4.4)

and likewise define EMBR/2, DCTR/2 and IDCTR/2. For i ∈ {1, .., 4}, we consider the
operators

Ai : Rh×w → Rh/2×w/2

Ai := (Id− EMBR/2TLR/2)(DCTR/2(Ph
2
×w

2
,i(IDCTR(EMBR(TLR(DCTR)))))),

where Ph
2
×w

2
,i denotes the restriction to the i-th subimage of size h/2 × w/2. The subim-

ages are: 1.Top-Left, 2.Top-Right, 3.Bottom-Left, 4.Bottom-Right. Hence, the operator Ai

is a composition of first mapping an image I to the approximate image on the size of I,
then to the i-th subimage and finally subtracting the approximate image on the size of the
subimage. These operators are continuous, because they are a composition of orthogonal
projections, embeddings and (inverse) discrete cosine transforms. For further use, we com-
pute the continuity constant exactly by rearranging the input image into a vector of size
hw and representing the (inverse) discrete cosine transforms and projections/embeddings
as matrices accordingly. The norm of the resulting operator, represented by a matrix, can
be computed for instance in Matlab with the command ’norm’. This leads to

Ai
 = 0.08 =: δ ∀i ∈ {1, .., 4}
for h = w = 8 and even smaller for bigger h and w. Since we are aiming for an upper bound
and we will not refine rectangles which are smaller than eight pixels in one dimension, we
stick to this value. We aim to argue that the refinement property (4.3) is satisfied for
most images. To that end we assume a small noise on the frequencies given by a term εξi,
where the amplitude ε > 0 is small and ξi is a normally distributed random variable for
each pixel i. Let �I be an image we get from an image I of size h × w by adding such a
noise, i.e., given as a vector I = (αi)

hw
i=1 and hence �I = (αi + εξi)

hw
i=1. With the additional

noise, there might be pixels which have a value which is not within the permissible interval
of the color component. However, for the calculations to follow, this is not a problem.�I is a random variable and its L2 norm is a non-central chi-squared distributed random
variable. The local error η(Ri) can be described by restricting the image to the subimage
on Ri, subtracting the approximate image on Ri and then taking the norm. Therefore, we
compute for i ∈ {1, ..4}:

η(Ri) =
(Id− EMBR/2TLR/2)DCTR/2Ph
2
×w

2
,i(

�I)
2
≤
(Id− EMBR/2TLR/2)DCTR/2Ph

2
×w

2
,iIDCTR(Id− EMBRTLR)DCTR(�I)
2

+
Ai(�I)
2
≤
(Id− EMBRTLR)DCTR(�I)
2 + δ
�I
2.

12

4 Iapp with JPEG and L2-norm

For the first inequality we used the triangular inequality for the identity represented as

Id = IDCTR(Id− EMBRTLR)DCTR + IDCTR(EMBRTLR(DCTR)).

Next, we show that
δ
�I
2 ≤
(Id− EMBRTLR)DCTR(�I)
2 (4.5)

holds with high probability for a suitably chosen amplitude ε. To show this, we first note,
that we can w.l.o.g. assume that
�I
 = 1 by linearity of the operators. The upper bound
is a random variable, hence we start by computing a lower bound for the amplitude ε such
that the inequality (4.5) is true for the expected value

δ2 ≤ E(
(Id− EMBRTLR)DCTR(�I)
22) = E(ε2
256�
i=65

(
αi

�
+ ξi)

2) = ε2(192 +
256�
i=65

α2
i

ε2
).

By estimating the last sum from below with 0, this leads to

ε ≥
�
(δ2/192) = 0.0058.

In this computation we used, that there is a noise in at least 192 frequencies, which occurs
when we are refining a rectangle of size 16×16 or larger. The computation for the expected
value shows, that for larger rectangles we get milder conditions on ε, i.e., a smaller ampli-
tude ε is sufficient. However, we not only want the equality to be true for the expected
value but to be true with high probability. For this, we use the distribution function for
the chi-squared distribution for an even amount of degrees of freedom

F192(x) = 1− e−
x
2

n/2−1�
k=0

1

Γ(k + 1)

�x
2

k
,

with which we compute

P(
256�
i=65

ξ2i ≥ δ2

ε2
) = 1− F192(

δ2

ε2
) =

�
0.5221 ε = 0.0058,
0.9999 ε = 0.0071.

We omitted the terms αi/� in the sum, since non-central chi-squared random variables have
a distribution function which lies above the one for the central chi-squared distribution. A
probability of 52.21% is a bit low since the inequality should hold in most cases. Changing
our amplitude ε to 0.0071 we obtain a probability of 99.99% to satisfy the inequality, which
we shall consider good enough in view of the discussion below. Finally, we can show a
(stochastic) refinement property for our estimators:

4�
i=1

η(Ri)
2 =

4�
i=1

(Id− EMBR/2TLR/2)DCTR/2Ph
2
×w

2
,i(

�I)
22
≤

4�
i=1

(2
(Id− EMBRTLR)DCTR(�I)
2)2
≤16
(Id− EMBRTLR)DCTR(�I)
22 = 16η(R)2,

13

4 Iapp with JPEG and L2-norm

where the inequalites hold with a probability of 99.99%. We also want to note that a noise
with an amplitude of 0.0071 on high frequencies is not noticeable to the human eye as
demonstrated in Figure 4.1 even for an amplitude of 0.015. This means that images which
do not satisfy (4.3) are the rare exception.

Figure 4.1: Left: The original image. Right: The original image with an additional noise
of amplitude 0.015.

4.2.3 A modified estimator

In order to optimally decide which rectangles to refine, we modify the estimator by intro-
ducing some parameters:
Let R ∈ T be given and let S(R) denote the set of its siblings (i.e., all R
 ∈ T which

are created from the same parent R). Our refinement rule leads to #(S(R)) = 4 for any
rectangle R. We define the quantity

λ(R) :=
η(R)2�

R�∈S(R) η(R

)2

(4.6)

in case the denominator is positive. It is the portion of the error on S(R) that is caused
by the approximation on R.

Let τ > 0 be a preset threshold parameter, R ∈ T , T ∈ refine(T0) and R1, .., R4 the
children of R. We define

σ(R) :=

4�
i=1

η(Ri)
2

d(R) :=η(R)2 − σ(R) (4.7)

δ(R) :=max{τ − d(R), 0}. (4.8)

14

4 Iapp with JPEG and L2-norm

We further define α(R0) = 0 for R0 being the rectangle which corresponds to the entire
picture (i.e., R0 is the single element of the initial mesh T0). For any other rectangle R we
define

α(R) := λ(R) (α(Rp) + δ(Rp)) (4.9)

with Rp being the parent rectangle of R, i.e., R is obtained by applying the refinement rule
to Rp. The first term in (4.9) corresponds to the error reduction on the way to creating R
and the second term corresponds to the new error reduction caused by refining R.
We now define the modified estimator

�η(R)2 := η(R)2 − α(R). (4.10)

In case the denominator in the definition of λ(R) is zero, we simply set �η(R) to zero.
We can rewrite the modified estimator:

�η(R)2 = η(R)2 − α(R) = η(R)

	
1− α(Rp) + δ(Rp)

σ(Rp)

�
.

Remark 3. Since the terms in the big bracket only depend on the parent Rp of R and
η(R) ≥ 0 for any rectangle R, we can deduce that if �η(R) > 0 then all the siblings R
 of R
will satisfy �η(R
) ≥ 0.

4.2.4 Algorithm 2

Before we state the algorithm, we split the approximate image Iapp into its components
IY(app) := π1(I(app)), I

Cb
(app)

:= π2(I(app)) and ICr
(app)

:= π3(I(app)). This will allow the underly-
ing meshes for each of these functions to vary. Together with the modified estimator this
leads to the following encoding algorithm:

Algorithm 2 Modified L2-threshold with DCT approximation

Let X ∈ {Y,Cb, Cr}
Input: image component IX , tolerance τ > 0
(1) Set initial mesh T = T0
(2) Compute IXapp,T
(3) Compute modified error �η(R)2 for all R ∈ T
(4) Mark R if �η(R)2 > τ for all R ∈ T
(5) If at least one rectangle is marked → refine marked elements, set T to the obtained
mesh and go back to (2)
(6) Else → set IXapp = IXapp,T
(7) Return IXapp

4.2.5 Basics of adaptive tree refinement

Our next goal is to prove a near optimality result in the spirit of Definition 2.4.3 for
Algorithm 2. However, before we can analyse Algorithm 2 we have to introduce the
concept of adaptive tree refinement:

15

4 Iapp with JPEG and L2-norm

Definition 4.2.4. We call a tupel (Nodes,Edges), with

Edges ⊂ (Nodes×Nodes) \{(e, e)|e ∈ Nodes}
a tree if

(i) There is a ”connection” between any two nodes, i.e.,

∀e, g ∈ Nodes e �= g :

(1) (e, g) ∈ Nodes ∨
(2) (g, e) ∈ Nodes ∨
(3) ∃n ∈ N : ∃f1, ..., fn ∈ Nodes : {(e, f1), (f1, f2), ..., (fn−1, fn), (fn, g)} ⊂ Edges ∨
(4) ∃n ∈ N : ∃f1, ..., fn ∈ Nodes : {(g, f1), (f1, f2), ..., (fn−1, fn), (fn, e)} ⊂ Edges ∨
(5) ∃h ∈ Nodes : ∃m,n ∈ N : ∃f1, ..., fm, k1, ..., kn ∈ Nodes :

({(h, f1), (f1, f2), ..., (fm−1, fm), (fm, g)} ⊂ Edges ∨ (h, g) ∈ Edges) ∧
({(h, k1), (k1, k2), ..., (kn−1, kn), (kn, e)} ⊂ Edges ∨ (h, e) ∈ Edges) .

If (1) or (3) is true, we say that g is a descendant of e and that e is a predecessor of
g. Therefore, if (2) or (4) is true, e is a descendant of g and g is a predecessor of e.

(ii) These connections are unique, i.e.,

There is no node which is its own descendant. ∧
∀e, g ∈ Nodes e �= g, e is not a descendant of g, g is not a descendant of e :

�f ∈ Nodes : f is a descendant of both e and g.

Note that property (ii) of trees guarantees that no node can be both predecessor and
descendant of another node. Case (5) of property (i) of trees just means that the two nodes
have a common predecessor. It can be shown, that a tree always has a unique node, which
is a predecessor of every other node. This node is called the root of the tree. We do not
prove that here, because the trees we will consider all have such a node by construction.
Let an algorithm generate a mesh T ∈ refine(T0), where T0 is our usual single element

initial mesh. We consider an infinite master tree B∗ with nodes corresponding to all
rectangles that can be obtained by a finite amount of refinement steps on the initial mesh
T0. The edges connect parents with their children. Since there are no coarsening steps
in Algorithm 2 we obtain for any possible output a corresponding tree B ⊂ B∗ , which
represents all refinements of Algorithm 2 in order to generate T . We introduce some
notation:

Definition 4.2.5. Let B be the corresponding tree to an algorithm which generates a
mesh. Then, we consider the sets

N(B) := {R ∈ Nodes(B∗)|R and all its children are in B}
L(B) := Nodes(B) \N(B).

We will also consider the cardinality of a tree which corresponds to the number of nodes
in the tree. Therefore

#B := |Nodes(B)|.

16

4 Iapp with JPEG and L2-norm

R0

R1

R11 R12 R13 R14

R2 R3

R31 R32 R33 R34

R4

Figure 4.2: A tree with interior nodes R0, R1 and R3. The other nodes are leaves.

We note that

Nodes(B) = N(B) ∪ L(B) and

L(B) corresponds to T ,

where the union is disjoint and T is the mesh generated by the underlying algorithm. The
set N(B) is called the set of interior nodes of B, which also corresponds to the number
of refinements done. The set L(B) is called the set of leaves of B. A mesh T defines a
corresponding tree B(T) by adding all predecessors of nodes in T within B∗ to the tree in
addition to the nodes corresponding to the rectangles in T .

4.2.6 Near-optimality of Algorithm 2

The goal in this section is to show the following (near-)optimality result for Algorithm 2:

Theorem 4.2.6. Let τ > 0 be any threshold parameter for which Algorithm 2 gives a
final mesh T and corresponding tree B := B(T), i.e., Step (6) of the algorithm is reached.
Then

E(T) ≤ 10Em (4.11)

where m = |N(B)|/2. The algorithm uses #B = 1 + 4|N(B)| computations of η in gener-
ating T .

For the proof we will need three lemmas. Unfortunately the given proof for one of these
lemmas and consequently also for the proof of the theorem requires that the constant in
the refinement property is (less or) equal to 1. This leads to d ≥ 0 and hence δ ≤ t, which
will be used towards the end of the respective lemmas proof.

Lemma 4.2.7. Let τ > 0 and let the tree B correspond to the output of Algorithm 2. If
R is a node in N(B) and BR the subtree consisting of R and all R
 ∈ B, such that R
 is a
descendant of R then

τ
#BR

5
≤ τ |N(BR)| ≤ �η(R)2 ≤ η(R)2. (4.12)

Proof. We begin with the first inequality in (4.12). Since τ > 0 and #BR = |N(BR)| +
|L(BR)|, this inequality is equivalent to

L(BR) ≤ 4|N(BR)|.

17

4 Iapp with JPEG and L2-norm

This is clearly true as the leaves are obtained by refining a subset of N(BR) which leads to
a number of children bounded by 4 times the cardinality of the subset.
The last inequality in (4.12) is trivial by definition of �η and the fact that α ≥ 0 for any
rectangle.

It remains to show the second inequality of (4.12). For a rectangle respectively a node
R
 ∈ B∗ with children R1, .., R4 ∈ B∗, we obtain by (4.9) and (4.10)

�η(Ri)
2 = η(Ri)

2 − λ(Ri)
�
α(R
) + δ(R
)

� ∀i ∈ {1, ..4}.

Summing up over all children of R
 gives

4�
i=1

�η(Ri)
2 =

4�
i=1

η(Ri)
2 − �

α(R
) + δ(R
)
� 4�
i=1

λ(Ri).

Considering the definition of λ in (4.6), we immediately see that the last sum is equal to
1. This leads to

4�
i=1

�η(Ri)
2 =

4�
i=1

η(Ri)
2 − α(R
)− δ(R
).

The definition of d in (4.7) and the last identity lead to

�η(R
)2 −
4�

i=1

�η(Ri)
2 = η(R
)2 − α(R
)−

4�
i=1

η(Ri)
2 + α(R
) + δ(R
)

= η(R
)2 −
4�

i=1

η(Ri)
2 + δ(R
)

= d(R
) + δ(R
).

The definition of δ in (4.8) implies that d(R
) + δ(R
) ≥ τ from which we obtain

τ ≤ �η(R
)2 −
4�

i=1

�η(Ri)
2

and therefore
4�

i=1

�η(Ri)
2 ≤ �η(R
)2 − τ. (4.13)

This equation shows that each subdivision reduces the error �η2 by at least τ .
We define B0 to be the subtree of BR obtained by removing all leaves R
 ∈ L(BR) from BR

for which all its siblings are also elements of L(BR) (see Figure 4.3).
Below, we apply the estimate (4.13) to the bottom (i.e., nodes with the largest distance to
the root which is a subset of L(B0)) of B0 and repeat inductively until we have an estimate
for the root R: �

R�∈L(B0)

�η(R
)2 + τ |N(B0)| ≤ �η(R)2. (4.14)

18

4 Iapp with JPEG and L2-norm

R

R1

R11 R12 R13 R14

R2 R3

R31 R32 R33 R34

R4

R311 R312 R313 R314

Figure 4.3: Here the subtree B0 is the tree without the blue and green nodes. Note that
R2, R4, R32, R33 and R34 are also leaves but they have a sibling which is not
a leaf (red nodes are the interior nodes). The green nodes are the

”
bottom“ of

the tree.

We prove (4.14) by induction over the distance dist from the root node to the bottom. If
dist = 1 the statement is simply already given by (4.13). For the induction step we assume
(4.14) holds for dist = k and show it for dist = k + 1. Define B00 as the subtree obtained
from B0 by removing all nodes which have the largest distance to the root R which by
our assumption is k + 1. This means the tree B00 has only nodes which have at most
distance k to the root. Therefore (4.14) holds true for B00. Applying (4.13) to all nodes in
L(B00) ∩N(B0) leads to

�η(R)2 ≥
�

R�∈L(B00)

�η(R
)2 + τ |N(B00)|

=
�

R�∈L(B00)∩N(B0)

�η(R
)2 +
�

R�∈L(B00)\N(B0)

�η(R
)2 + τ |N(B00)|

≥
�

R�∈L(B0)\L(B00)

�η(R
)2 +
�

R�∈L(B00)\N(B0)

�η(R
)2 + τ |N(B00)|+ τ |L(B00) ∩N(B0)|

=
�

R�∈L(B0)

�η(R
)2 + τ |N(B0)|.

In the last equality we used L(B0) = (L(B0)\L(B00)) ∪ (L(B00)\N(B0)) and |N(B0)| =
|N(B00)|+ |L(B00) ∩N(B0)|. This concludes the induction for showing inequality (4.14).
We aim for a lower bound on the sum on the left-hand side of (4.14). Note that there are

two types of nodes in the index set of the sum. The first type are those nodes which are
interior nodes in BR (R1 and R3 in Figure 4.3). A node R
 of this type is further refined
by the algorithm and hence satisfies �η(R
)2 ≥ τ . The tree B0 is obtained from the tree BR

by removing leaves, which implies N(BR) ⊂ Nodes(B0). Since interior nodes of B0 are also
interior nodes in BR there are exactly |N(BR)| − |N(B0)| many nodes of this type. A leaf
R
 of the second type satisfies �η(R
)2 ≥ 0 because of Remark 3. Note that all nodes of the
second type have a sibling of the first type as they would have otherwise been removed in
the construction of B0.

19

4 Iapp with JPEG and L2-norm

This leads to
τ (|N(BR)| − |N(B0)|) ≤

�
R�∈L(B0)

�η(R
)2.

Finally, we get a lower estimate for the left-hand side in (4.14),

τ |N(BR)| = τ (|N(BR)| − |N(B0)|) + τ |N(B0)| ≤
�

R�∈L(B0)

�η(R
)2 + τ |N(B0)| ≤ �η(R)2,

which is the inequality we wanted to prove.

Lemma 4.2.8. Let τ > 0 and let the tree B correspond to the output of Algorithm 2
with root node R0. If B
 is a subtree of B with root node R0 then�

R�∈L(B�)

η(R
)2 ≤
�

R�∈L(B�)

�η(R
)2 + τ |N(B
)|. (4.15)

Proof. If |N(B
)| = 0, then Nodes(B
) = {R0} and (4.15) is clear because α = 0 for the root
and hence η(R0)

2 = �η(R0)
2. Therefore we only need to consider the case with |N(B
)| ≥ 1.

The definition of �η in (4.10) leads to�
R�∈L(B�)

η(R
)2 =
�

R�∈L(B�)

�η(R
)2 +
�

R�∈L(B�)

α(R
).

We complete the proof by showing that�
R�∈L(B�)

α(R
) ≤ τ |N(B
)| (4.16)

via induction on |N(B
)|. For |N(B
)| = 1, the tree B
 only consists of R0 and its children,
with each child being a leaf of the tree. By definition of δ in (4.8), we get δ(R) ≤ τ for
any node R. Together with α(R0) = 0 and the definition of α in (4.9), we obtain for the
children R

α(R
) = λ(R
)(α(R0) + δ(R0)) = λ(R
)δ(R0) ≤ τλ(R
). (4.17)

Summing up over all children and recalling that the sum of the λ over all children of a
node is equal to 1 gives (4.16). Let us assume that (4.16) holds for any tree B
 with
|N(B
)| = k and root node R0. We consider a tree B
 with |N(B
)| = k + 1 and root node
R0. Let R ∈ Nodes(B
) with children R1, .., R4 being leaves of B
. The tree B

 obtained
by removing the children of R in B
, and hence turning the interior node R into a leaf,
satisfies |N(B

R0
)| = k and therefore (4.16) by assumption. We compare (4.16) for B

 and

for B

�
R�∈L(B�)

α(R
) =
�

R�∈L(B��)

α(R
)− α(R) +

4�
i=1

α(Ri)

≤τ |N(B

)| − α(R) +

4�
i=1

α(Ri)

=τ(|N(B
)| − 1)− α(R) +
4�

i=1

α(Ri).

20

4 Iapp with JPEG and L2-norm

Therefore it suffices to show that

4�
i=1

α(Ri) ≤ α(R) + τ. (4.18)

Again, simply by using the definition of α and δ(R) ≤ τ , we get

α(Ri) = λ(Ri)(α(R) + δ(R))

≤ λ(Ri)(α(R) + τ)

for all i ∈ {1, .., 4}. Summing up over the children and using once again that
�4

i=1 λ(Ri) = 1
shows (4.18) which concludes the proof.

Lemma 4.2.9. Let B, B
 ∈ refine(T0) be two trees and for R ∈ L(B
) let BR be the subtree
of B which consists of R and all its descendants. Then there holds�

R∈L(B�)

|N(BR)| ≥ |N(B)| − |N(B
)|. (4.19)

Proof. We consider 3 cases that can occur for an interior node of the two trees:

Case 1: R ∈ N(B) ∧ R /∈ N(B
). In this case there has to be a leaf R
 of B
 such that
either R
 = R or R is a descendant of R
 in B. Either way, there holds R ∈ BR� .

Case 2: R ∈ N(B)∧R ∈ N(B
). In this case R is a predecessor of a leaf in B
, i.e. there
exists a leaf R∗ ∈ B
, such that R∗ is a descendant of R. That implies that for any R
 ∈ B

the node R is not in BR� .

Case 3: R /∈ N(B). Without loss of generality we can assume that this case doesn’t
occur, because it would only lower the right-hand side of estimate (4.19).
Altogether we see that any node which increases the right-hand side of (4.19) by 1 also

increases the left-hand side by 1 which concludes the proof.

Now we can prove Theorem 4.2.6.

Proof of Theorem 4.2.6. The statement about the number of calculations for η is clear as it
has to be calculated for each node of B which is equal to one (the root node) plus 4|N(B)|
as each interior node gets refined into 4 children, leading to 4 new nodes to compute η for.
Since the final mesh T = T (B) corresponds to the leaves of B the global error can be

written as
E(T) =

�
R∈L(B)

η(R)2. (4.20)

We use Lemma 4.2.8 to see

E(T) ≤
�

R∈L(B)

�η(R)2 + τ |N(B)| ≤ 5τ |N(B)|. (4.21)

The second estimate above follows from �η(R)2 ≤ τ for each rectangle R ∈ T in the final
mesh T of Algorithm 2 and |L(B)| ≤ 4|N(B)| because every leaf is the child of an interior
node.

21

4 Iapp with JPEG and L2-norm

Let B
 be a tree obtained by at most m refinements and T
 be the mesh corresponding
to the leaves of B
 such that E(T
) = Em is satisfied. Denote by BR the subtree of B
consisting of R and all its descendants. (BR is empty if R /∈ B.) We apply Lemma 4.2.7
to each such BR and obtain

Em =
�

R∈L(B�)

η(R)2 ≥ τ
�

R∈L(B�)

|N(BR)|. (4.22)

Lemma 4.2.9 shows that the sum on the right is at least |N(B)| − |N(B
)|. Since the
number of refinements is equal to the number of interior nodes, the definition of m implies
|N(B
)| ≤ |N(B)|/2 = m leading to −|N(B
)| ≥ −|N(B)|/2. Using this to further estimate
the right-hand side in (4.22) we get

Em ≥ τ(|N(B)| − |N(B
)|) ≥ τ |N(B)|/2.
Multiplying this equation with 10 and combining it with (4.21) leads to

E(B) ≤ 5τ |N(B)| ≤ 10Em,

which concludes the proof.

Note that with Theorem 4.2.6 we have obtained a near-optimality result in terms of
number of refinements done in Algorithm 2 but unfortunately we cannot guarantee that
at least a certain amount of refinements are done. Inequality (4.13) shows that refining a
rectangle leads to a reduction of the modified error �η by at least τ . However, this strategy
leads to little control over the global error E. Since we are interested in producing a mesh on
which the approximate image has a smaller global error E than some prescribed tolerance
we need to come up with another algorithm. Furthermore, we also want an algorithm for
which we can prove a near-optimality result without the constraint that the constant of
the refinement property (4.3) is (less or equal to) 1, because we have established (4.3) only
for the constant equal to 16.

4.3 An algorithm with prescribed global error threshold

In this section we propose an algorithm which approximates a given image up to a given tol-
erance with near-optimal complexity in the sense of Definition 2.4.3. For our new algorithm
we start again by modifying the error functional which drives the algorithm.

4.3.1 Another modification of the error functional

We once again denote the modified error functional with �η and set �η(R0) = η(R0) for the
initial rectangle R0. With �η(R) already defined for some R ∈ B∗ we set for the the children
Ri, i = 1, .., 4 of R �η(Ri)

2 := q(R),

where

q(R) :=

�4
i=1 η(Ri)

2

η(R)2 + �η(R)2
�η(R)2.

22

4 Iapp with JPEG and L2-norm

This means �η is constant among siblings. We define penalty terms

p(Ri) :=
η(Ri)

2�η(Ri)2
=

η(Ri)
2

q(R)

which describe how �η2 differs from η2. We calculate

4�
i=1

p(Ri) =

�4
i=1 η(Ri)

2

q(R)
=

4�
i=1

η(Ri)
2 η(R)2 + �η(R)2

(
�4

i=1 η(Ri)2)�η(R)2
= p(R) + 1, (4.23)

which is the main property we will need from �η.
Lemma 4.3.1. Let BR� ⊂ B∗ be a tree with root node R
 and T = T (B) be the mesh
corresponding to B. Then there holds�

R∈L(BR�)

p(R) = p(R
) + |N(BR�)|. (4.24)

In the special case R
 = R0 there holds�
R∈L(BR0

)

p(R) = 1 + |N(BR0)|. (4.25)

Proof. We show (4.24) by induction on the number of interior nodes. If |N(BR�)| = 1,
then the tree BR� only consists of R
 and its children. Therefore, the statement is just the
identity (4.23). We now assume that the statement holds for |N(BR�)| = k and deduce
that it also holds for |N(BR�)| = k + 1.
Let a tree BR� ⊂ B∗ be given with |N(BR�)| = k + 1. Let R∗ be an interior node, such

that all its children R1, .., R4 are leaves. We now consider the subtree B0 ⊂ BR� obtained
by removing the children of R∗, which makes R∗ a leaf of B0. Therefore the number of
interior nodes in B0 is k. With (4.23), we obtain

�
R∈L(B0)

p(R) =
�

R∈L(BR�)

p(R) + p(R∗)−
4�

i=1

p(Ri) =
�

R∈L(BR�)

p(R)− 1.

By assumption B0 satisfies (4.24) leading to�
R∈L(BR�)

p(R) =
�

R∈L(B0)

p(R) + 1 = p(R
) + |N(B0)|+ 1

= p(R
) + |N(BR�)|,
which concludes the induction. The identity (4.25) follows immediately from (4.24), because
for the root node R0 of the master tree, there holds �η(R0) = η(R0) and hence p(R0) = 1.

4.3.2 Algorithm 3

The new error functional �η induces an algorithm which creates a sequence of trees Bj , j =
1, 2, .. (more precisely: the algorithm creates meshes corresponding to a sequence of trees)
as follows:

23

4 Iapp with JPEG and L2-norm

Algorithm 3 Another modified L2 error functional with DCT approximation

Input: image component IY

(1) Set initial mesh T = T0
For i=1,2,..
(2) Compute IYapp,T
(3) Compute modified error �η(R)2 for all R ∈ T
(4) Set ρ := maxR�∈T �η(R
)2

(5) Mark R if �η(R)2 = ρ for all R ∈ T
(6) Refine marked elements, set Ti and T to the obtained mesh
End (of for-loop)
(7) return sequence T0, T1, T2, ..

Note that in order for the algorithm to terminate at some point, we will need some thresh-
old parameter. However, before we do that, we analyze the performance of Algorithm 3
by showing the following theorem, which is similar to Theorem 4.2.6.

Theorem 4.3.2. There is a universal constant C > 0 such that for each i = 0, 1, .. the
mesh T = Ti given by Algorithm 3 satisfies

E(T) ≤ CEm (4.26)

whenever m ≤ n/10 with n := |N(B(T))|. To create T the algorithm uses at most C(n+1)
arithmetic operations and computations of η.

Proof. We split the proof into five steps:

Step 1. We consider any j = 0, 1, ... such that T = Tj satisfies |N(B(T))| =: n ≥ 10 and
the best mesh T ∗ with |N(B(T ∗))| ≤ n/10, i.e.,

E(T ∗) = min
B⊂B∗

|N(B)|≤n/10

E(T (B)).

We set t := minR∈N(B(T))�η(R)2. Let Λ :=
�
R ∈ N(B(T)) : �η(R)2 = t

�
be the collection

of interior nodes where �η2 attains the minimal value t. We will derive an upper bound
for E(T) by splitting B(T) into B(T) = Γ0 ∪ Γ1 where Γ1 := ∪R∈ΛBR with BR ⊂ B(T)
being the subtree consisting of R and all its descendants. The tree Γ0 ⊂ B(T) is obtained
by deleting all the proper descendants of all R ∈ Λ. For a leaf R of B(T), there are
two possibilities: 1)R ∈ Λ or R has a predecessor R
 ∈ Λ and 2)Neither R nor any of its
predecessors are an element of Λ. In the first case there holds R ∈ L(Γ1) := ∪R∈ΛL(BR),
in the second there holds R ∈ L(Γ0)\Λ. Therefore, we obtain that L(T) = L0 ∪ L1 where
L1 = L(Γ1) and L0 = L(Γ0)\Λ. We obtain

E(T) =
�
R∈L0

η(R)2 +
�
R∈L1

η(R)2 =: Σ0 +Σ1.

We bound each of the sums on the right-hand side separately. First we note that from the
refinement property (4.3), it follows that for every R ∈ Λ, we have�

R�∈L(BR)

η(R
)2 ≤ C0η(R)2 = C0�η(R)2p(R).

24

4 Iapp with JPEG and L2-norm

This gives

Σ1 =
�
R∈Λ

�
R�∈L(BR)

η(R
)2 ≤ C0

�
R∈Λ

�η(R)2p(R).

Together with Σ0 =
�

R∈L0
�η(R)2p(R) this leads to

Σ0 +Σ1 ≤ C0

�
R∈L(Γ0)

�η(R)2p(R). (4.27)

Step 2. Next we show that

�η(R)2 ≤ t, ∀R ∈ L(Γ0). (4.28)

For R ∈ Λ, there holds equality by the definition of Λ. For R ∈ L(Γ0)\Λ we consider the
parent Rp of R. The parent of any node in a tree is obviously an interior node. Note that
Rp /∈ Λ, since there would hold R ∈ L(Γ1) otherwise. By definition of t, we obtain

�η(Rp)
2 > �η(R
)2 = t

for any R
 ∈ Λ. This means Rp gets refined before the elements of Λ do. Consequently,
when the elements of Λ get refined (which eventually happens since Λ is a subset of interior
nodes) R is already part of the tree. The marking strategy in the algorithm then implies
that �η(R
)2 = t > �η(R)2

for any R
 ∈ Λ, which shows (4.28). Using (4.28) in (4.27) together with (4.25) we obtain

E(T) = Σ0+Σ1 ≤ C0

�
R∈L(Γ0)

�η(R)2p(R) ≤ C0t(1+ |N(Γ0)|) ≤ C0t(1+ |N(B(T))|). (4.29)

Step 3. We now show that t(1+N(B(T))) ≤ CEm. To that end, recall the best approx-
imating mesh T ∗ from the beginning of the proof. Let L∗ be the collection of all leaves
R∗ ∈ L(T ∗) which are interior nodes of T and for each of these R∗ let BR∗ be the tree
consisting of all R ∈ B(T)\L(B(T)) such that R is a descendant of R∗. For every leaf
R ∈ L(BR∗), we have that R is in the interior of B(T) and consequently �η(R)2 ≥ t by
definition of t. We apply (4.3) to obtain

t
�

R∈L(BR∗))

p(R) ≤
�

R∈L(BR∗))

p(R)�η(R)2 =
�

R∈L(BR∗))

η(R)2 ≤ C0η(R
∗)2. (4.30)

Summing up (4.30) over all R∗ ∈ L∗ and using (4.24) leads to

tM ≤ t
�

R∗∈L∗

�
R∈L(BR∗)

p(R) ≤ C0

�
R∗∈L∗

η(R∗)2 ≤ C0Em, (4.31)

where
M :=

�
R∗∈L∗

|N(BR∗)|. (4.32)

25

4 Iapp with JPEG and L2-norm

Step 4. To conclude the proof, we shall show that

1 + |N(B(T))| ≤ 12M. (4.33)

We let B
 be the tree obtained from B(T) by removing all of the leaves of B(T). Con-
sequently B
 contains BR∗ for all R∗ ∈ L∗. Since each subdivision results in four new
rectangles and hence #B
 ≤ 1 + 4|N(B
)| we get

1 + |N(B(T))| ≤ 1 + #B
 ≤ 2 + 4|N(B
)| ≤ 6|N(B
)|. (4.34)

It remains to show that
|N(B
)| ≤ 2M. (4.35)

First we note that the only interior nodes in B
 that are not interior nodes in one of the BR∗

are those which are interior nodes in B(T ∗). Therefore, there are at most |N(B(T ∗))| ≤ m
of them. With our refinement rule and |N(B(T))| = n ≥ 10m we obtain

|N(B
)| ≤ M +m ≤ M +
|N(B(T))|

10
≤ M +

1 + 4|N(B
)|
10

≤ M + |N(B
)|/2.

Subtracting the right term and multiplying the inequality by 2 shows (4.35) which concludes
the proof of (4.33) and hence (4.26) is shown. The statement regarding the amount of
computations of η follows immediately.

4.3.3 Algorithm 4

Based on Algorithm 3 we can formulate an Algorithm which terminates after the global
error is smaller than some prescribed tolerance µ. For this we simply do a check after each
iteration.

Algorithm 4 Algorithm 3 with thresholding parameter

Input: image component IY , Tolerance µ > 0
(1) Compute η(R0)

2 = �η(R0)
2, R0 ∈ T0. Set T = T0

(2) If E(T) ≤ µ, then set Tµ := T and return Tµ.
(3) Compute ρ := maxR�∈T �η(R
)2 and refine all rectangles R with �η(R)2 = ρ. This gener-
ates a new mesh T
. Set T = T
 and go to step (2).
Output: Mesh Tµ with E(Tµ) ≤ µ.

Note that in step (3) of Algorithm 4 the computing of ρ implies that an approximate
image IYapp has to be computed on the current mesh and the local errors η and modified
estimators �η on each rectangle afterwards.

Corollary 4.3.3. There are absolute constants C1, c1 > 0 such that for any error tolerance
µ > 0, the mesh Tµ produced by Algorithm 4 has the properties:

(i) If �B ⊂ B∗ is any tree satisfying E(�B) ≤ c1µ then

|N(B(Tµ))| ≤ C1|N(�B)|. (4.36)

26

4 Iapp with JPEG and L2-norm

(ii) The number of evaluations of η and the number of arithmetic operations in producing
Tµ is lower than C1(1 + |N(B(Tµ))|).

Proof. Statement (ii) is clear, because we only have to compute η once for each occurring
rectangle (i.e. every node in B(Tµ) once, which takes a uniformly bounded amount of
arithmetic operations on the various rectangles and the amount of rectangles is equal to
1 + 4|N(B(Tµ))|.
To prove (i), we set c1 = λ(C + 1)−1 where C is the constant from Theorem 4.3.2 and
λ ∈ (0, 1/4) is a constant which will be specified later. We further define T
 to be the
mesh before the last refinement step in Algorithm 3, i.e. immediately before T := Tµ
is obtained. Consequently, there holds E(T
) > µ. Finally, we set T ∗ to be a mesh with
minimal global error after m := |N(B(�T))| = |N(B(T ∗))| refinements. We distinguish
between three cases:

Case 1 E(T) ≥ λµ. We use Theorem 4.3.2 for T . We have

Em = E(T ∗) ≤ E(�T) ≤ c1µ ≤ (C + 1)−1E(T).

Therefore the theorem gives m > |N(B(T))|/10 which is (i) in this case with C1 = 10.

Case 2 |N(B(T
))| ≥ λ|N(B(T))|. Now we start with the inequality

E(T ∗) ≤ E(�T) ≤ c1µ ≤ c1E(T
) ≤ (C + 1)−1E(T
).

Applying Theorem 4.3.2 for T
 gives m > |N(B(T
))|/10 ≥ λ|N(B(T))|/10 which proves
(i) in this case with C1 = 10λ−1.

Case 3 (E(T) < λµ) and (|N(B(T
))| < λ|N(B(T))|). For always refining into 4 new
rectangles and λ < 1/4 the second inequality of this case is never true, because the number
of interior nodes of a tree increases at most by the number of leaves which is equal to
1+4|N(B(T
))|− |N(B(T
))| = 1+3|N(B(T
))|. Therefore we can choose for a given m a
parameter λ > 0 small enough such that for all m
 ≥ m this case never occurs with λ → 1/4
as m → ∞. We get finitely many smaller thresholds for λ when we consider m
 < m where
we simply choose the smallest to guarantee that for every m this case doesn’t occur. That
the smallest threshold for λ is strictly greater than 0, we have to assume that the mesh T

doesn’t only consist of the root node. But in this case the statement of the Corollary is
trivial anyway.

Remark 4. In the proof of Corollary 4.3.3 we essentially showed that Case 2 always occurs,
which makes distinguishing between the cases redundant. The reason the proof is presented
this way is that a more general version, i.e., instead of always refining into 4 new elements
the number of new elements is merely bounded by some arbitrary K ∈ N and there may be
more than one root node, can be proven this way with a more complicated Case 3 (which
can actually occur then). See [BD04] Chapter 5 for details.

27

5 Iapp with JPEG and BV -norm

5.1 Algorithm 5

In this chapter we substitute the L2-norm with the norm of bounded variations or short
BV -norm. The idea for doing this is to refine areas of the image where the error oscillates,
e.g. a boundary between two different colors in the image, where it is likely to approximate
at least one color rather badly if the mesh is still coarse around this boundary. The BV -
norm for a function u ∈ BV ⊂ L1((0, h] × (0, w]), i.e., u ∈ L1((0, h] × (0, w]) and u has
finite total variation, is defined by

u
BV :=
u
1 + V (u), (5.1)

where

V (u) := sup

��
(0,h]×(0,w]

u(x)div(φ(x))dx : φ ∈ C1
c ((0, h]× (0, w],Rn),
φ
∞ ≤ 1

�

denotes the total variation of u. For weakly differentiable functions w ∈ L1, i.e., w ∈ W 2,1

the BV norm of w is given by

w
BV =
w
1 +
∇w
1.

However, the functions I, Iapp we consider are only piecewise constant when we consider
their extensions on the domain (0, h]× (0, w], which for simplicity we denote the same way.
The extensions are given by

I(app),ext.(x, y) = I(app)(ceil(x), ceil(y)).

For these functions the second term on the right-hand side of (5.1) turns into a sum over
all jumps of I(app). Therefore this sum can be indexed by the interior edges E◦ of the pixels
in I and thus the BV norm of the approximation error (I − Iapp) can be written as

I − Iapp
BV =
I − Iapp
1 + 1

2

�
e∈E◦

|(I − Iapp)(pe,1)− (I − Iapp)(pe,2)|,

where pe,1 and pe,2 denote the two neighbouring pixels of the interior edge e ∈ E◦. The
symmetry of the expression in the sum implies that it does not matter which neighbouring
pixel is pe,1 and which is the other. The factor 1/2 arises from weighting a jump with the
area of the picture it corresponds to, which is half the size of a pixel.

28

5 Iapp with JPEG and BV -norm

The estimators we use now are

η2(R) =
(I − Iapp)
BV (5.2)

E(T) =
�
R∈T

η2(R). (5.3)

These estimators can be used to drive Algorithm 4:

Definition 5.1.1. Algorithm 5 denotes the algorithm obtained by considering Algo-
rithm 4 but with the estimators defined in (4.2.3) being replaced by the estimators defined
in (5.2) and in (5.3).

29

6 Efficient storage of Iapp

In this chapter, we try to optimize the necessary storage space for Iapp or in other words
our goal is that the algorithms we come up with satisfy Property 2. Furthermore, we do
not only want to find a good way to store Iapp but also want to be able to reconstruct Iapp
fast from the stored data.

6.1 Data structures

We summarize which data structures are used to implement the objects occuring in the
algorithms:

• An image I...
... is stored by a tensor of size h × w × 3, with h the height and w the width of the
image. The matrix (h,w, 1) corresponds to the Y component, the matrix (h,w, 2) to
the Cb component and the matrix (h,w, 3) to the Cr component of the image.

• A rectangle R...
... is stored as a vector (fpy, fpx,w) with (fpy, fpx) being the coordinates of the
top left pixel within an image and w the width of the rectangle.

• A mesh T ...
... is stored as a matrix of size |T | × 3, where each row corresponds to a rectangle of
the mesh.

• The local parameters α, δ, η2, �η2, d, λ on rectangles...
... are stored in a matrix M of size |T |× 6, where each row corresponds to the values
of a rectangle.

• The parent relations of rectangles and the position (i.e., row index) of rectangles
within M...
... are stored in a matrix of size |T | × 2, where (i, 1) is the position (i.e., row index)
within M of the rectangle corresponding to the i−th row of T and (i, 2) is the position
of its parent within M .

6.2 Compression of Iapp

After computing an approximate image Iapp for some image I of size h× w by any of the
algorithms in the previous chapters, Iapp is given by three matrices of size h × w (one for
each of the three color components of the Y CbCr basis). If we store Iapp naively then we
would have to store at least 3hw integers. Recall that there is a mesh T X which corresponds

30

6 Efficient storage of Iapp

1 3 6 10 15 21 28 36

2 5 9 14 20 27 35 43

4 8 13 19 26 34 42 49

7 12 18 25 33 41 48 54

11 17 24 32 40 47 53 58

16 23 31 39 46 52 57 61

22 30 38 45 51 56 60 63

29 37 44 50 55 59 62 64

Figure 6.1: Visualizing the enumeration N of the matrix entries

to IXapp for each component X ∈ {Y,Cb, Cr}. We enumerate the entries of a matrix of size
8× 8 by a bijection N onto {1, .., 64} by considering the diagonals from the bottom left to
the top right. We set N(1, 1) = 1 and continue inductively:

Let N(k, l) = m be already defined. Then we set

N(k − 1, l + 1) = m+ 1 if k �= 1 ∧ l �= 8

N(l + 1, 1) = m+ 1 if k = 1 ∧ l �= 8

N(8, k + 1) = m+ 1 if l = 8.

The enumeration N of the matrix entries is visualized by Figure 6.2.
Compressing the Y component IYapp of Iapp into some data that can be stored more

efficiently is done by the procedure

• Compute F Y (R) := round(TLR(DCTR(I
Y |R))./Q) for all R ∈ T

• Store entries from F Y (R) in order of N in a vector SI until the last non-zero entry
∀R ∈ T .

Note that the discrete cosine transform returns a matrix of coefficients of basis functions,
where the coefficients towards bottom and right correspond to basis functions of higher
frequency. Typical images usually have small coefficients corresponding to basis functions
of high frequency, which means that after rounding they become zero. This leads to a
significant rate of compression of the image, i.e., storing F Y requires significantly less
storage space than just storing IYapp. Compressing the other components is done analogue.
We realize that in order to reconstruct Iapp from S, we also need to store the width w

of Iapp, the ratio h/w of Iapp with h being the height and the widths of the rectangles
R ∈ T X , X ∈ {Y,Cb, Cr}. Furthermore, we need some entries a, b to know when to
proceed to the next rectangle or color component and the location of the rectangles within
the image. In order to solve the last issue, we introduce a total order on the rectangles R
within a mesh T . Recall that a rectangle R is given by the position of its top-left pixel and
its width. Therefore we can simply order the top-left pixels of the rectangles.

31

6 Efficient storage of Iapp

Let T be a mesh and R,R
 rectangles in T . Denote by (fpyR, fpxR) and (fpyR� , fpxR�)
the position of the first pixels of R and R
. We define a total-order ≤ by

R < R
 : ⇐⇒ (fpyR < fpyR�) ∨ ((fpyR = fpyR�) ∧ (fpxR < fpxR�)) .

We then order the rectangles in the mesh according to this total-order from lowest to
highest, i.e. Ri < Rj if and only if i < j, with i, j ∈ {1, .., |T |}.

We consider the vector SI for an approximate image Iapp with corresponding meshes T X

consisting of rectangles RX
i . i = 1, .., nX with X ∈ {Y,Cb, Cr}. Let us denote the number

of coefficients to store for RX
i by ki,X . Then the vector SI has the form

SI =

�������������������������������������

h/w
w
width(RY

1)
F Y (RY

1)(1)
...
F Y (RY

1)(k1,Y)
a
width(RY

2)
...
...
F Y (RY

nY
)(knY ,Y)

b

width(RCb
1)

FCb(RCb
1)(1)

...

...

...
FCr(RCr

nCr
)(knCr ,Cr)

�������������������������������������
The entries a are used to indicate that a new rectangle starts and the entries b are used to
indicate that a new color component starts. Any integers that cannot occur for coefficients
or widths of rectangles is suitable for either a or b. The absolute values of the coefficients
are bound by
Q
 and widths are always positive, hence a = −4096 and b = −8192 will
do.

6.3 Decompression of Iapp

In this section we formulate a procedure to reconstruct the approximate image Iapp from a
corresponding vector SI . For this we reconstruct each color component individually. For a
rectangle R ∈ T X , X ∈ {Y,Cb, Cr} we can compute IXapp|R simply by

IXapp|R = IDCTR(EMBR(Q
 FX(R))),

32

6 Efficient storage of Iapp

where
 denotes pointwise multiplication. Note that width(R) is stored in SI and height(R) =
width(R)h/w = width(R)SI(1) can be computed by entries of SI .
The order of the rectangles introduced in the last section implies that the first pixel

of the next rectangle to reconstruct is the top left pixel of the subimage consisting of the
pixels which are not within already reconstructed rectangles. In order to not have to search
the entire image for this pixel, we introduce a list L of candidates for this pixel which gets
updated after reconstructing a rectangle. After the rectangle Ri ∈ T X is reconstructed,
we add the pixel pi below the bottom left pixel of the rectangle and the pixel to the right
of the top right pixel of the rectangle to L if they are not already part of a reconstructed
rectangle and within the image. We then search L for the next first pixel, reconstruct Ri+1

and delete the corresponding element from L. We can repeat this process until we have
reconstructed the entire image. The described procedure to reconstruct Iapp from S then
looks like this:

• set ratio = S(1) and width w = S(2)

• reconstruct IYapp:

– set L = {(1, 1)}, k = 3 and F = zero(8, 8)

– while S(k) �= b do
set c = 0, width = S(k), height = width ratio
while S(k + c+ 1) �= a ∧ S(k + c+ 1) �= b

set F (N−1(c+ 1)) = S(k + c+ 1)
set c = c+ 1

end while
(denote with R a rectangle of size height× width)
set M = IDCTR(EMBR(Q
 F))
find the first pixel (fpy, fpx) of the current rectangle within L
set IYapp(fpy : fpy + height, fpx : fpx+ width) = M
delete (fpy, fpx) from L and add up to two new candidates to L
set k = k + c+ 1
set F = zero(8, 8)

end while

• reconstruct ICb
app, I

Cr
app the same way.

The function N−1 denotes the inverse of the enumeration of the previous section.

33

6 Efficient storage of Iapp

Figure 6.2: Visualizing the list L of candidates of first pixels for the next rectangle to
reconstruct. The arrow points towards the next first pixel.

34

7 The performance of the algorithms

In this chapter we test the algorithms we came up with. Algorithm 1 is not well suited
for our purpose for reasons explained already earlier, Algorithm 2 does not allow us to
control the global error and Algorithm 3 is just Algorithm 4 without the threshold
parameter introduced yet. Therefore, we only consider Algorithm 4 and Algorithm 5
in this chapter. We test these algorithms with the following test images:

Figure 7.1: (1)Ship, (2)Harbor, (3)Leaf, (4)Fox, (5)Hamster, (6)Dog, (7)Tiger, (8)Forest
(left to right, top to bottom)

35

7 The performance of the algorithms

7.1 Computation time with respect to the threshold parameter

In this section we track the computation time needed for certain values of the threshold
parameter µ. For this we use images (or more precisely part of images) which are of size
1024 × 1024. Since the other test images are too small, we can only test the algorithms
this way for test image (1), (3) and (4). (see Fig. 7.1).

10 -2 10 -1 10 0

Thresholdparameter

10 -1

10 0

10 1

10 2

10 3

10 4

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

Algorithm 4: Computation time w.r.t. the threshold parameter

T
(1)

T
(3)

T
(4)

O(1/)

O(1/
2

)

10 -1 10 0

Thresholdparameter

10 -1

10 0

10 1

10 2

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

Algorithm 5: Computation time w.r.t. the threshold parameter

T
(1)

T
(3)

T
(4)

O(1/)

O(1/
2

)

While the computation time tends to grow fast once the threshold parameter µ is small
enough such that refining the initial rectangle becomes necessary, there seems to be a
flattening later on. This can be explained by the restriction, that we do not refine rectangles
which are already of size 8× 8, leaving less eligible rectangles to be refined for decreasing
µ.

36

7 The performance of the algorithms

7.2 Computation time with respect to the image size

Before we test the algorithms for different image sizes, we want to find a value for the
threshold parameter µ such that the human eye cannot distinguish between the original
image and the approximate image given by an algorithm. On the other hand we do not
want to choose µ smaller than necessary for this, since we want to optimize computation
time and storage space needed. Our choice of µ does not need to be the same for both
algorithms.
We obtain a good choice for µ empirically by trying some values out and comparing the

resulting approximate images to the original ones. For Algorithm 4 a suitable choice of
µ is given by µ = 0.005. For Algorithm 5 a suitable choice of µ is given by µ = 0.035.

10 1 10 2 10 3

Imagesize n (i.e. image has size n x n)

10 -4

10 -2

10 0

10 2

10 4

10 6

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

Algorithm 4: Computation time w.r.t. the image size

T

O(n)

O(n
2

)

O(n
3

)

10 1 10 2 10 3

Imagesize n (i.e. image has size n x n)

10 -4

10 -2

10 0

10 2

10 4

10 6

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

Algorithm 5: Computation time w.r.t. the image size

T

O(n)

O(n
2

)

O(n
3

)

37

7 The performance of the algorithms

7.3 Comparison of storage space needed with JPEG

Before we make a comparison with the JPEG algorithm, we decrease the storage space our
algorithms need further by compromising the vector S from Section 6.2. To this end, we use
the compression method in [Hop22] to directly compress the resulting Matlab workspace
variables we obtain as output from Algorithm 4 and Algorithm 5. This method uses
java gzip functions, which compresses the image size further by about 18-20%.
We test our algorithms with the same values of µ as in the last section.

1 2 3 4 5 6 7 8

Test image (see Fig. 7.1)

0

100

200

300

400

500

600

700

800

900

1000

S
to

ra
g

e
 s

p
a

c
e

 r
e

q
u

ir
e

d
[k

B
]

Storage space comparison between JPEG and Algorithm 4

Alg4

JPEG

38

7 The performance of the algorithms

1 2 3 4 5 6 7 8

Test image (see Fig. 7.1)

0

100

200

300

400

500

600

700

800

900

1000

S
to

ra
g

e
 s

p
a

c
e

 r
e

q
u

ir
e

d
[k

B
]

Storage space comparison between JPEG and Algorithm 5

Alg5

JPEG

We see that usually we can improve better upon larger JPEG Files than for smaller.
Obviously, saving on storage space does not help much if the quality of the image is not (at
least almost) preserved. Fig. 7.3 compares the outputs of the algorithms with the original
test image 4 and shows that the quality loss is indeed very small (i.e., unnoticeable by the
human eye).

39

7 The performance of the algorithms

Figure 7.2: Comparison of the original image with the approximate images: Output of
Algorithm 5(left), Original image (middle), Output of Algorithm 4(right). Even
in close detail, there is barely any difference.

40

Bibliography

[BD04] Peter Binev and Ronald DeVore. Fast computation in adaptive tree approxima-
tion. Numer. Math., 97(2):193–217, 2004.

[HC92] Richard F. Haines and Sherry L. Chuang. The effects of video compression on
acceptability of images for monitoring life sciences experiments, 1992.

[HLN+18] Graham Hudson, Alain Léger, Birger Niss, István Sebestyén, and Jørgen
Vaaben. JPEG-1 standard 25 years: past, present, and future reasons for a
success. Journal of Electronic Imaging, 27(4):1 – 19, 2018.

[Hop22] Hopkins, Jesse. Compression routines. https://www.mathworks.com/

matlabcentral/fileexchange/25656-compression-routines, 2022. [MAT-
LAB Central File Exchange; Retrieved May 31, 2022].

[Wik21] Wikipedia contributors. Jpeg —Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=JPEG&oldid=1040651992, 2021. [Online;
accessed 8-September-2021].

41

https://www.mathworks.com/matlabcentral/fileexchange/25656-compression-routines
https://www.mathworks.com/matlabcentral/fileexchange/25656-compression-routines
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=1040651992
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=1040651992

	Introduction
	Setting
	Images
	Meshes and approximate Images
	Refining rectangles
	Estimators and near-optimality

	Iapp with mean and -norm
	Algorithm 1

	Iapp with JPEG and L2-norm
	Basics of the JPEG algorithm
	L2 estimation for adaptive JPEG
	L2 estimators for adaptive JPEG
	The refinement property
	A modified estimator
	Algorithm 2
	Basics of adaptive tree refinement
	Near-optimality of Algorithm 2

	An algorithm with prescribed global error threshold
	Another modification of the error functional
	Algorithm 3
	Algorithm 4

	Iapp with JPEG and BV-norm
	Algorithm 5

	Efficient storage of Iapp
	Data structures
	Compression of Iapp
	Decompression of Iapp

	The performance of the algorithms
	Computation time with respect to the threshold parameter
	Computation time with respect to the image size
	Comparison of storage space needed with JPEG

	Bibliography

