
Formal Methods in Computer-Aided Design 2022

Verification-Aided Deep Ensemble Selection
Guy Amir, Tom Zelazny, Guy Katz and Michael Schapira
The Hebrew University of Jerusalem, Jerusalem, Israel

{guyam, tomz, guykatz, schapiram}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) have become the
technology of choice for realizing a variety of complex tasks.
However, as highlighted by many recent studies, even an im-
perceptible perturbation to a correctly classified input can lead
to misclassification by a DNN. This renders DNNs vulnerable
to strategic input manipulations by attackers, and also over-
sensitive to environmental noise. To mitigate this phenomenon,
practitioners apply joint classification by an ensemble of DNNs.
By aggregating the classification outputs of different individual
DNNs for the same input, ensemble-based classification reduces
the risk of misclassifications due to the specific realization of
the stochastic training process of any single DNN. However,
the effectiveness of a DNN ensemble is highly dependent on its
members not simultaneously erring on many different inputs. In
this case study, we harness recent advances in DNN verification
to devise a methodology for identifying ensemble compositions
that are less prone to simultaneous errors, even when the input
is adversarially perturbed — resulting in more robustly-accurate
ensemble-based classification. Our proposed framework uses a
DNN verifier as a backend, and includes heuristics that help
reduce the high complexity of directly verifying ensembles. More
broadly, our work puts forth a novel universal objective for
formal verification that can potentially improve the robustness
of real-world, deep-learning-based systems across a variety of
application domains.

I. INTRODUCTION

In recent years, deep learning [33] has emerged as the
state-of-the-art solution for a myriad of tasks. Through the
automated training of deep neural networks (DNNs), engineers
can create systems capable of correctly handling previously
unencountered inputs. DNNs excel at tasks ranging from
image recognition and natural language processing to game
playing and protein folding [2], [21], [38], [48], [74], [75],
and are expected to play a key role in various complex
systems [15], [44].

Despite their immense success, DNNs suffer from severe
vulnerabilities and weaknesses. A prominent example is the
sensitivity of DNNs to adversarial inputs [34], [49], [80], i.e.,
slight perturbations of correctly-classified inputs that result
in misclassifications. The susceptibility of DNNs to input
perturbations involves two risks that limit the applicability
of deep learning to mission-critical tasks: (1) falling victim
to strategic input manipulations by attackers, and (2) failing
to generalize well in the presence of environmental noise. In
light of the above, recent work has focused on enhancing the
robustness of DNN-based classification to adversarial inputs
while preserving accuracy [13], [29], [62], [82], [97]. Infor-
mally, a classifier is robustly accurate (aka astute [86]) with
respect to a given distribution over inputs, if it continues to
correctly classify inputs drawn from this distribution, with high

probability, even when these inputs are arbitrarily perturbed
(up to some maximally allowed perturbation).

We focus here on a classic technique for improving clas-
sification quality [9], [52]: combining the outputs of an
ensemble [28], [37], [81] of DNN-based classifiers on an
input to derive a joint classification decision for that input.
By incorporating the outputs of independently-trained DNNs,
ensembles mitigate the risk of misclassification of a single
DNN due to a specific realization of its stochastic training
process and the specifics of its training data traversal. For a
DNN ensemble to provide a meaningful improvement over
utilizing a single DNN, its members should not frequently
misclassify the same input. Consider, for instance, an extreme
example, where an ensemble with k = 10 members is
used, but for some part of the input space, the 10 DNNs
effectively behave identically, making mistakes on the exact
same inputs. In this scenario, the ensemble as a whole is no
more robust on this input subspace than each of its individual
members. Our objective is to demonstrate how recent advances
in DNN verification [40], [45] can be harnessed to provide
system designers and engineers with the means to avoid such
scenarios, by constructing adequately diverse ensembles.

Significant progress has recently been made on formal
verification techniques for DNNs [1], [8], [11], [12], [26],
[56], [67], [76], [90]. The basic DNN verification query is to
determine, given a DNN N , a precondition P , and a postcon-
dition Q, whether there exists an input x such that P (x) and
Q(N(x)) both hold. Recent verification work has focused on
identifying adversarial inputs to DNN-based classification, or
formally proving that no such inputs exist [30], [35], [58]. We
demonstrate the applicability of DNN verification to solving
a new kind of queries, pertaining to DNN ensembles, which
could significantly boost the robustness of these ensembles
(as opposed to just measuring the robustness of individual
DNNs). We note that despite great strides in recent years [47],
[58], [76], even state-of-the-art DNN verification tools face
severe scalability limitations. This renders solving verification
queries pertaining to ensembles extremely challenging, since
the complexity of this task grows exponentially with the
number of ensemble members (see Section III).

In this case-study paper, we propose and evaluate an effi-
cient and scalable approach for verifying that different ensem-
ble members do not tend to err simultaneously. Specifically,
our scheme considers small subsets of ensemble members,1

1While our technique is applicable to subsets of any size, we focused on
pairs in our evaluation, as we later elaborate.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 8 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_8
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_8
https://creativecommons.org/licenses/by/4.0/

and dispatches verification queries to seek perturbations of
inputs for which all members in the subset err simultaneously.
By identifying such inputs, we can assign a mutual error
score to each subset. Using these mutual error scores, we
compute, for each individual ensemble member, a uniqueness
score that signifies how often it errs simultaneously with other
ensemble members. This score can be used to detect the
“weakest” ensemble members, i.e. those most prone to erring
in parallel to others, and replace them with fresh DNNs —
thus enhancing the diversity among the ensemble members,
and improving the overall robust accuracy of the ensemble.

To evaluate our scheme, we implemented it as a proof-
of-concept tool, and used this tool to conduct extensive ex-
perimentation on DNN ensembles for classifying digits and
clothing items. Our results demonstrate that by identifying the
weakest ensemble members (using verification) and replac-
ing them, the robust accuracy of the ensemble as a whole
may be significantly improved. Additional experiments that
we conducted also demonstrate that our verification-driven
approach affords significant advantages when compared to
competing, non-verification-based, methods. Together, these
results showcase the potential of our approach. Our code and
benchmarks are publicly available online [6].

The rest of the paper is organized as follows. Section II con-
tains background on DNN ensembles and DNN verification.
In Section III we present our verification-based methodology
for ensemble selection, and then present our case study in
Section IV. Next, in Section V we compare our verification-
based approach to state-of-the-art, gradient-based, methods.
Related work is covered in Section VI, and we conclude and
discuss future work in Section VII.

II. BACKGROUND

Deep Neural Networks. A deep neural network (DNN) [33]
is a directed graph, comprised of layers of nodes (also known
as neurons). In feed-forward DNNs, data flows sequentially
from the first (input) layer, through a sequence of intermediate
(hidden) layers, and finally into an output layer. The network’s
output is evaluated by assigning values to the input layer’s
neurons and computing the value assignment for neurons in
each of the following layers, in order, until reaching the
output layer and returning its neuron values to the user. In
classification networks, which are our subject matter here, each
output neuron corresponds to an output class; and the output
neuron with the highest value represents the class, or label,
which the particular input is being classified as.

Fig. 1 depicts a toy DNN. It has an input layer with two
neurons, followed by a weighted sum layer, which computes
an affine transformation of values from its preceding layer. For
example, for input V1 = [1,−5]T , the second layer’s computed
values are V2 = [−8, 1]T . Next is a ReLU layer, which applies
the ReLU function ReLU(x) = max(0, x) to each individual
neuron, resulting in V3 = [0, 1]T . Finally, the network’s output
layer again computes an affine transformation, resulting in
the output V4 = [6, 3]T . Thus, input [1,−5]T is classified as

v11

v21

v12

v22

v13

v23

v14

v24

1

−3

2

−1

ReLU

ReLU

4

6

−1

3

+1

−1

Weighted
sum ReLUInput Output

Fig. 1: A toy DNN.

the label corresponding to neuron v14 . For additional details,
see [33].

Accuracy, Robustness, and Deep Ensembles. The weights
of a DNN are determined through its training process. In
supervised learning, we are provided a set of pairs (xi, li)
drawn according to some (unknown) distribution D, where xi

is an input point and li is a ground-truth label for that input.
The goal is to select weights for the DNN N that maximize
its accuracy, which is defined as: Pr(x,l)∼D(N(x) = l) (we
slightly abuse notation, and use N(x) to denote both the
network’s output vector, as well as the label it assigns x).

We restrict our attention to the classification setting, in
which labels are discrete. The training of a DNN-based classi-
fier is typically a stochastic process. This process is affected,
for example, by the initial assignment of weights to the DNN,
the order in which training data is traversed, and more. A
prominent method for avoiding misclassifications originating
from the stochastic training of a single DNN is employing
deep ensembles. A deep ensemble is a set E = {N1, . . . , Nk}
of k independently-trained DNNs. The ensemble classifies an
input by aggregating the individual classification outputs of
its members (see Fig. 2). The collective decision is typically
achieved by averaging over all members’ outputs. Ensembles
have been shown to often achieve better accuracy than their
individual members [9], [52], [57], [92].

A critical condition for the success of ensemble-based
classifiers is that the ensemble members’ misclassifications
are not strongly correlated [53], [63], [79]. This key property
is crucial in order to avoid a scenario where many different
members of the ensemble frequently make mistakes on the
same input, causing the ensemble as a whole to also err on
that input. Heuristics for achieving diversity across ensemble
members include, e.g., training the members simultaneously
with diversity-aware loss [43], [52], randomly initializing
different weights for the ensemble members [50], and other
methods [63], [73].

Since the discovery of adversarial inputs, practitioners have
become interested in DNNs that are not only accurate but
also robustly accurate. We say that a network N is ϵ-robust
around the point x if every input point that is at most ϵ away
from x receives the same classification as x: ∥x′ − x∥ ≤
ϵ ⇒ N(x) = N(x′), where N(x) is the label assigned to
x; and the definition of accuracy is generalized to ϵ-robust

28

Fig. 2: An ensemble comprising three DNNs. Each input
vector is independently classified by all three networks, and
the results are aggregated into a final classification.

accuracy as follows: Pr(x,l)∼D(∥x′ − x∥ ≤ ϵ ⇒ N(x′) = l).
While improvements in accuracy afforded by ensembles are
straightforward to measure, this is typically not the case for
robust accuracy, as we discuss in Section III.

DNN Verification. Given a DNN N , a verification query on
N specifies a precondition P on N ’s input vector x, and a
postcondition Q on N ’s output vector N(x). A DNN verifier
needs to determine whether there exists a concrete input x0

that satisfies P (x0) ∧ Q(N(x0)) (the SAT case), or not (the
UNSAT case). Typically, P and Q are expressed in the logic
of linear real arithmetic. For instance, the ϵ-robustness of a
DNN around a point x can be phrased as a DNN verification
query, and then dispatched using existing technology [30],
[45], [85]. The DNN verification problem is known to be NP-
complete [46].

III. IMPROVING ROBUST ACCURACY USING VERIFICATION

A. Directly Quantifying Robust Accuracy is Hard

In order to construct a robustly-accurate ensemble E with
k members, we train a set of n > k DNNs and then seek to
select a subset of k DNNs that provides high robust accuracy.
This method of training multiple models and then discarding a
subset thereof is known as ensemble pruning, and is a common
practice in deep-ensemble training [14], [98]. In our case, a
straightforward approach to do so would be to quantify the
robust accuracy for all possible k-sized DNN-subsets, and then
pick the best one. This, however, is computationally expensive,
and requires an accurate estimate of the robust accuracy of an
ensemble.

A natural approach for estimating the ϵ-robust accuracy of
a DNN is to verify, for many points in the test data, that the
DNN yields an accurate label not only on each data point
itself, but also on each and every input derived from that data
point via an ϵ-perturbation [30]. The fraction of tested points

for which this is indeed the case can be used to estimate the
accuracy of the classifier on the underlying distribution from
which the data is generated.

A similar process can be performed for an ensemble E =
{N1, . . . , Nk}, by first constructing a single, large DNN NE
that aggregates E’s joint classification, and then verifying its
robustness on a set of points from the test data (see the
extended version of this paper [7]). However, this approach
faces a significant scalability barrier: the DNN ensemble,
NE , comprised of all k member-DNNs is (roughly) k times
larger than any of the Ni’s, and since DNN verification
becomes exponentially harder as the DNN size increases,
NE ’s size might render efficient verification infeasible. As we
demonstrate later, this is the case even when the constituent
networks themselves are fairly small. Our proposed method-
ology circumvents this difficulty by only solving verification
queries pertaining to very small sets of DNNs.

B. Mutual Error Scores and Uniqueness Scores

In general, the less likely it is that members of an ensemble
err simultaneously with other members, the more accurate the
ensemble is. This motivates our definition of mutual error
scores below.

Definition 1 (Agreement Points): Given an ensemble E =
{N1, N2, . . . , Nk}, we say that an input point x0 is an
agreement point for E if there is some label y0 such that
Ni(x0) = y0 for all i ∈ [k]. We let E(x0) denote the label y0.

As we later discuss, the ϵ-neighborhoods of agreement
points are natural locations for detecting hidden tendencies
of ensemble members to err together.

Definition 2 (Mutual Errors): Let E be an ensemble, and
let x0 be an agreement point for E . Let Bx0,ϵ be the ϵ-ball
around x0, Bx0,ϵ = {x | ∥x−x0∥∞ ≤ ϵ}. We say that N1 and
N2 have a mutual error in B if there exists a point x ∈ Bx0,ϵ

such that N1(x) ̸= E(x0) and N2(x) ̸= E(x0).

Intuitively, if N1 and N2 have many mutual errors, incorpo-
rating both into an ensemble is a poor choice. This naturally
gives rise to the following definition:

Definition 3 (Mutual Error Scores): Let A be a finite set
of m agreement points in an ensemble E’s input space, and let
B1, B2, . . . , Bm denote the ϵ-balls surrounding the points in
A. Let N1, N2 denote two members of E . The mutual error
score of N1 and N2 with respect to E and A is denoted by
MEE,A(N1, N2), and defined as:

MEE,A(N1, N2) =

|{i | N1 and N2 have a mutual error in Bi}|
m

Observe that MEE,A(N1, N2) is always in the range [0, 1].
The closer it is to 1, the more mutual errors N1 and N2 have,
making it unwise to place them in the same ensemble.

29

Definition 4 (Uniqueness Scores): Given an ensemble E =
{N1, N2, . . . , Nn} and a set A of agreement points for E , we
define, for each ensemble member Ni, the uniqueness score
for Ni with respect to E and A, USE,A(Ni), as:

USE,A(Ni) = 1−
∑

j ̸=i MEE,A(Ni, Nj)

n− 1

The uniqueness score (US) of Ni is the complement of its
average mutual error score with the other ensemble members.
When this score is close to 0, Ni tends to err simultaneously
with other members of the ensemble on points in A. In
contrast, the closer the uniqueness score is to 1, the rarer it
is for Ni to misclassify the same inputs as other members of
the ensemble. Hence, ensemble members with low uniqueness
scores are, intuitively, good candidates for replacement.

We point out that our definitions above can naturally be
generalized to larger subsets of the ensemble members — thus
measuring robust accuracy more precisely, but rendering these
measurements more complex to perform in practice.

Computing Mutual Errors. The only computationally com-
plex step in determining the uniqueness scores of individual
ensemble members is computing the pairwise mutual errors
for the ensemble. To this end, we leverage DNN verification
technology. Specifically, given two ensemble members N1

and N2, an agreement point a for the ensemble with label
l, and ϵ > 0, an appropriate DNN verification query can
be formulated as follows. First, we construct from N1 and
N2 a single, larger DNN N , which captures N1 and N2

simultaneously processing a shared input vector, side-by-side.
This network N is then passed to a DNN verifier, with
the precondition that the input be restricted to B, an ϵ-ball
around a, and the postcondition that (1) among N ’s output
neurons that correspond to the outputs of N1, the neuron
representing l not be maximal, and (2) among N ’s output
neurons that correspond to the outputs of N2, the neuron
representing l not be maximal. Such queries are supported
by most available DNN verification engines. We note that this
encoding (depicted in Figure 3), where two networks and their
output constraints are combined into a single query, is crucial
for finding inputs on which both DNNs err simultaneously. For
additional details, see the extended version of this paper [7].

C. Ensemble Selection using Uniqueness Scores

An Iterative Scheme. Building on our verification-based
method for computing mutual error scores, we propose an
iterative scheme for constructing an ensemble. Our scheme
consists of the following steps:

1) independently train a set N of n DNNs, and identify a
set A of m agreement points that are correctly classified
by all n DNNs.2 This is done by sequentially checking
points from the validation dataset;

2) arbitrarily choose an initial candidate ensemble E of size
k < n;

2In our experiments, we arbitrarily chose k = 5, n = 10 and m = 200.

3) compute (using a verification engine backend) all mutual
error scores for the DNN members comprising E , with
respect to A;

4) compute the uniqueness score for each ensemble member,
and identify a DNN member Nl with a low score;

5) identify a fresh DNN Nf , not currently in E , that has a
higher uniqueness score than Nl, if one exists, and replace
Nl with Nf . Specifically, identify a DNN Nf ∈ N \
E , such that the uniqueness score of Nf with respect
to the ensemble E \ {Nl} ∪ {Nf} and the point set A,
namely USE\{Nl}∪{Nf},A(Nf), is maximal. If this score
is greater than USE,A(Nl), replace Nl with Nf , i.e. set
E := E \ {Nl} ∪ {Nf}; and

6) repeat Steps (3) through (5), until no Nf is found or until
the user-provided timeout or maximal iteration count are
exceeded.

Intuitively, after starting with an arbitrary ensemble, we run
multiple iterations, each time trying to improve the ensemble.
Specifically, we identify the “weakest” member of the current
ensemble, and replace it with a fresh DNN that obtains a
higher uniqueness score relevant to the remaining members
— thus ensuring that each change that we make improves the
overall robust accuracy on the fixed set of agreement points.

The greedy search procedure is repeated for the new can-
didate ensemble, and so on. The process terminates after a
predefined number of iterations is reached, when the process
converges (no further improvement is achievable on the fixed
set of agreement points), or when a predefined timeout value
is exceeded.
On the Importance of Agreement Points. Our iterative
scheme for constructing an ensemble starts with an arbi-
trary selection of k candidate members, and then computes
the uniqueness score for each member. As mentioned, the
uniqueness scores are computed with respect to a fixed set of
agreement points, pre-selected from the validation data (which
is labeled data, not used for training the DNNs).

We point out that agreement points are data points on which
there is overwhelming consensus among ensemble members,
despite the specific realization of the training process of each
member. As such, agreement points correspond to data points
that are “easy” to label correctly. Consequently, data points
in close proximity of an agreement point are rarely classified
differently than the agreement point by an individual ensemble
member, let alone by multiple members simultaneously. As
our objective is to expose implicit tendencies of ensemble
members to err together, the close neighborhood of agreement
points is a natural area for seeking joint deviations from
the consensual label (which are expected to be extremely
rare). In our evaluation, we computed uniqueness scores based
solely on correctly-classified agreement points and ignored any
incorrectly-classified agreement points.3

As we later demonstrate, a small set of correctly-classified
agreement points from the validation set can be used, in

3For example, in our MNIST experiments 99.7% of the agreement points
were correctly classified by all individual DNNs, and by the ensemble as a
whole.

30

practice, to identify ensemble members that tend to err simul-
taneously on other data points. We note that this is also the
case even when the chosen agreement points are all identically
labeled.

Monotonicity and Convergence. Using our approach, an
ensemble member is replaced with a fresh DNN only if
this replacement leads to strictly fewer joint errors with the
remaining members on the fixed set of agreement points.
Thus, the total number of joint errors decreases with every
replacement; and, as this number is trivially lower-bounded
by 0, this (“potential-function” style) argument establishes the
process’s monotonicity and convergence.

By iteratively reducing the number of joint errors across
all pairs of chosen ensemble members, our iterative process
improves the robust accuracy of the resulting ensemble on the
fixed set of agreement points. This, however, does not guar-
antee improved robust accuracy over the entire input domain.
Nonetheless, we show in Section IV that such an improvement
does typically occur in practice, even on randomly sampled
subsets of input points (which are not necessarily agreement
points).

IV. CASE STUDY: MNIST AND FASHION-MNIST

Below, we present the evaluation of our methodology
on two datasets: the MNIST dataset for handwritten digit
recognition [51], and the Fashion-MNIST dataset for clothing
classification [91]. Our results for both datasets demonstrate
that our technique facilitates choosing ensembles that provide
high robust accuracy via relatively few, efficient verification
queries.

The considered datasets are conducive for our purposes
since they allow attaining high accuracy using fairly small
DNNs, which enables us to directly quantify the robust accu-
racy of an entire ensemble, by dispatching verification queries
that would otherwise be intractable (see Section III-A). This
provides the ground truth required for assessing the benefits
of our approach. The scalability afforded by our approach is
crucial even for handling the relatively modest-sized DNNs
considered: on the MNIST data, for instance, mutual-error
verification queries for two ensemble members typically took
a few seconds, whereas verification queries involving the
full ensemble of five networks often timed out (35% of the
queries on the MNIST data timed out after 24 hours, versus
only roughly 1% of the pairwise mutual-error queries). As
constituent DNN sizes and ensemble sizes increase, this gap
in scalability is expected to become even more significant.

Our verification queries were dispatched using the Marabou
verification engine [47] (although other engines could also be
used). Additional details regarding the encoding of the verifi-
cation queries, as well as detailed experimental results, appear
in the extended version of this paper [7]. We have publicly
released our code, as well as all benchmarks and experimental
data, within an artifact accompanying this paper [6].

MNIST. For this part of our evaluation, we trained 10 inde-
pendent DNNs {N1, . . . , N10} over the MNIST dataset [51],

which includes 28×28 grayscale images of 10 handwritten
digits (from “0” to “9”). Each of these networks had the same
architecture: an input layer of 784 neurons, followed by a
fully-connected layer with 30 neurons, a ReLU layer, another
fully-connected layer with 10 neurons, and a final softmax
layer with 10 output neurons, corresponding to the 10 possible
digit labels.4 All networks achieved high accuracy rates of
96.29%− 96.57% (see Table I).

After training, we arbitrarily constructed two distinct en-
sembles with five DNN members each: E1 = {N1, . . . , N5}
and E2 = {N6, . . . , N10}, with an accuracy of 97.8% and
97.3%, respectively. Notice that the ensembles achieve a
higher accuracy over the test set than their individual members.

We then applied our method in an attempt to improve
the robust accuracy of E1. We began by searching the val-
idation set, and identifying 200 agreement points (the set
A),5 all correctly labeled as “0” by all 10 networks.6 Using
the 200 agreement points and 6 different perturbation sizes7

ϵ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}, we constructed 1200
ϵ-balls around the selected agreement points; and then, for
every ball B and for every pair Ni, Nj ∈ E1, we encoded
a verification query to check whether Ni and Nj have a
mutual error in B (see example in Fig. 3). This resulted in(
5
2

)
·200 ·6 = 12000 verification queries, which we dispatched

using the Marabou DNN verifier [47] (each query ran with a
2-hour timeout limit). Finally, we used the results to compute
the uniqueness score for each network in E1; these results,
which appear briefly in Table I (for ϵ = 0.02) and appear in
full in [7], clearly show that two of the members, N2 and
N5, are each relatively prone to erring simultaneously with
the remaining four members of E1.

Next, we began searching among the remaining networks,
N6, . . . , N10, for good replacements for N2 and N5. Specifi-
cally, we searched for networks that obtained higher US scores
than N2 and N5. To achieve this, we began modifying E1, each
time removing either N2 or N5, replacing them with one of the
remaining networks, and computing the uniqueness scores for
the new members (with respect to the four remaining original
networks). We observed that for both N2 and N5, network N9

was a good replacement, obtaining very high US values. For
additional details, see the extended version of our paper [7].

Finally, to evaluate the effect of our changes to
E1, we constructed the two new ensembles, E2→9

1 =
{N1, N9, N3, N4, N5} and E5→9

1 = {N1, N2, N3, N4, N9}.
Computing the new ensembles’ robust accuracy over the entire

4Although the DNNs all have the same size and architecture, common
ensemble training processes randomly initialize their weights, and also ran-
domly pick samples from the same training set (see [50]). This is the cause
for diversity among ensemble members, which our algorithm later detects.

5In our experiments, we empirically selected 200 agreement points in order
to balance between precision (a higher number of points) and verification
speed (a smaller number of points). This selection is based on a user’s
available computing power.

6The “0” label is the label with the highest accuracy among the trained
ensemble members, and thus “0”-labeled agreement points represent areas in
the input space with extremely high consensus.

7ϵ values which are too small, or too large, render the queries trivial. Thus,
we found it to be useful to use a varied selection of ϵ values.

31

TABLE I: Accuracy and uniqueness scores for the MNIST networks. Uniqueness scores are measured with respect to the
ensemble (either E1 or E2).

E1 E2
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Accuracy 96.42% 96.55% 96.40% 96.46% 96.29% 96.44% 96.48% 96.57% 96.51% 96.46%
US 90.75% 88.38% 90.63% 92.13% 88.63% 97.38% 96.75% 97.5% 98.88% 97.75%

±𝝐

Fig. 3: Checking whether two MNIST digit recognition net-
works have a mutual error around an agreement point labeled
“9”. In this case, the same perturbation causes one network to
output the incorrect label “2”, and the other network to output
the incorrect label “7”.

test set is computationally expensive, and thus we sampled 200
random points from the test set (these did not necessarily have
the same label, nor were they required to be agreement points
for the ensemble). For each sample, we created a verification
query to check the robust accuracy of the new ensembles
around the point, compared to the original ensemble. The
results are plotted in Fig. 4, and indicate that the new ensem-
bles demonstrated significantly higher robust accuracy on the
tested points. These results validate our claim that a scoring
metric based on agreement points is useful in improving the
ensemble’s robustness also on other, “harder”, input points.
Our analysis also indicates that the improved robustness results
originated not only from ϵ-balls around inputs labeled as “0”,
but from other labels as well. In fact, the gain in robustness
was not just in quantity, but also in quality: for almost all cases,
whenever E1 proved robust around an input, so did E2→9

1 and
E5→9
1 . This indicates that the improved robustness originated

from inputs on which E1 was prone to err.
Next, we turned our attention to E2, and computed the

uniqueness scores for each of its members (see Table I). This
time we conducted a “reverse” experiment: we identified the
two best members of E2, i.e. the two networks that had the
highest uniqueness scores, and were consequently the least
prone to err simultaneously. These turned out to be networks
N9 and N10. Next, we replaced each of these networks with
each of the networks {N1, . . . , N5}, in order to identify a net-
work that, when inserted into E2, achieved a lower score than
N9 and N10. N4 turned out to be such a network. We created
the two modified ensembles, E9→4

2 = {N6, N7, N8, N4, N10}

and E10→4
2 = {N6, N7, N8, N9, N4}, and compared their

robust accuracy to that of E2 on 200 random points from
the test set. The results, depicted in Fig. 4, indicate that
the ensemble’s robust accuracy decreased significantly, as
expected.

In both aforementioned experiments, we also computed
the accuracy (as opposed to robust accuracy) of the new
ensembles, by evaluating them over the test set. All new
ensembles had an accuracy that was on par with that of the
original ensembles — specifically, within a range of ±0.2%
from the original ensembles’ accuracy.

Fashion-MNIST. For the second part of our evaluation,
we trained 10 independent DNNs {N11, . . . , N20} over the
Fashion-MNIST dataset [91], which includes 28×28 grayscale
images of 10 clothing categories (“Coat”, “Dress”, etc.),
and is considered more complex than the MNIST dataset.
Each DNN had the same architecture as the MNIST-trained
DNNs, and achieved an accuracy of 87.05%–87.53% (see
Table II). We arbitrarily constructed two distinct ensembles,
E3 = {N11, . . . , N15} and E4 = {N16, . . . , N20}, with an
accuracy of 88.22% and 88.48%, respectively.

Next, we again computed the US values of each of the
networks. The results, which appear in full in [7], indicate a
high variance among the uniqueness scores of the members
of E4, as compared to the relatively similar scores of E3’s
members. We thus chose to focus on E4. Based on the
computed US values, we identified N20 as its least unique
DNN; and, by replacing N20 with each of the five networks
not currently in E4, identified that N15 is a good candidate
for replacing N20. Performing our validation step over E20→15

4

revealed that its robust accuracy has indeed increased. Running
the “reverse” experiment, in which E4’s most unique member
is replaced with a worse candidate, led us to consider the
ensemble E18→13

4 , which indeed demonstrated lower robust
accuracy than the original ensemble. For additional details,
see the extended version of our paper [7].

For the final step of our experiment, we used our approach
to iteratively switch two members of an ensemble. Specifically,
after creating E20→15

4 , which had higher robust accuracy than
E4, we re-computed the US scores of its members, and
identified again the least unique member — in this case, N16.
Per our computation, the best candidate for replacing it was
N12. The resulting ensemble, namely E20→15,16→12

4 , indeed
demonstrated higher robust accuracy than both its predeces-
sors. Performing another iteration of the “reverse” experiment
yielded ensemble E18→13,17→11

4 , with poorer robust accuracy.
The results appear in Fig. 5. We note that the only discrepancy,
namely the robust accuracy of E20→15

4 being lower than that

32

1 2 9
1

5 9
1

ensemble

0

20

40

60

ro
bu

st
ne

ss
 (%

)
=0.02
=0.03
=0.04
=0.05

2 9 4
2

10 4
2

ensemble

0

25

50

75

ro
bu

st
ne

ss
 (%

)

=0.02
=0.03
=0.04
=0.05

Fig. 4: The average robust accuracy scores for our original and modified ensembles. The results for ϵ = 0.01 and ϵ = 0.06 are
trivial (the ensembles achieve near-perfect or near-zero robustness), and are omitted to reduce clutter.

TABLE II: Accuracy and uniqueness scores for the Fashion-MNIST networks. Uniqueness scores are measured with respect
to the ensemble (either E3 or E4).

E3 E4
N11 N12 N13 N14 N15 N16 N17 N18 N19 N20

Accuracy 87.14% 87.13% 87.53% 87.34% 87.3% 87.05% 87.32% 87.35% 87.34% 87.11%
US 70.63% 71.5% 69.75% 70.88% 73.25% 67.38% 72.38% 80.13% 71.38% 66.75%

18 13, 17 11
4

18 13
4 4 20 15

4
20 15, 16 12
4

ensemble

0

10

20

30

40

50

ro
bu

st
ne

ss
 (%

)

=0.02
=0.03
=0.04
=0.05

Fig. 5: The original ensemble E4 (center), ensembles modified
to gain robust accuracy (right), and ensembles modified to
reduce robust accuracy (left).

of E4 for ϵ = 0.04, is due to timeouts.
Similarly to the MNIST case, the new ensembles in the

Fashion-MNIST experiments obtained an accuracy that was on
par with that of the original ensembles — specifically, within
a range of ±0.17% from the original ensemble’s accuracy.

V. COMPARISON TO GRADIENT-BASED ATTACKS

Current state-of-the-art approaches for assessing a network’s
robustness and robust accuracy rely on gradient-based attacks
— a popular class of algorithms that, like verification methods,
are capable of finding adversarial examples for a given neural
network. In this section we compare our verification-based
approach to these methods.

Gradient-based attacks generate adversarial examples by
optimizing (via various techniques) a loss metric over the
network’s output, relative to its input. This allows these
methods to effectively search the local surroundings of a

fixed input point for local optima, which often constitute
adversarial inputs. Gradient-based methods, such as the fast-
gradient sign method (FGSM) [39], projected gradient descent
(PGD) [60], and others [49], [59], are in widespread use due
to their scalability and relative ease of use. However, as we
demonstrate here, they are often unsuitable in our setting.

In order to evaluate the effectiveness of gradient-based
methods for measuring the robust accuracy of ensembles, we
modified the common FGSM [39] and I-FGSM [49] (“Iterative
FGSM”) methods, thus extending them into three novel attacks
aimed at finding adversarial examples that can fool multiple
ensemble members simultaneously. We refer to these attacks as
Gradient Attack (G.A.) 1, 2, and 3. For a thorough explanation
of these attacks, as well as information about their design and
implementation, see the extended version of our paper [7].

Next, we used our three attacks to search for mutual errors
of DNN pairs — i.e., adversarial examples that simultaneously
affect a pair of DNNs. Specifically, we applied the attacks on
both datasets (MNSIT and Fashion-MNIST), and searched for
adversarial examples within various ϵ-balls around the same
set of agreement points used in our previous experiments.
This allowed us to subsequently compute, via gradient attacks,
the mutual error scores of DNN pairs, and consequently,
the uniqueness scores of each constituent ensemble member.
The results of the total number of adversarial inputs found
(SAT queries) are summarized in Table III. Each gradient
attack typically took a few seconds to run. We also provide
further details regarding the uniqueness scores computed by
the three gradient-based methods in the extended version of
this paper [7], and in our accompanying artifact [6].

The results in Table III include a total of 108000 exper-
iments, on all ensemble pairs.8 In these experiments, our

8The 108000 experiments consist of
(10
2

)
pairs, times 200 agreement

points, times 6 perturbation sizes, times 2 datasets.

33

TABLE III: The number of SAT queries discovered when
searching for an adversarial attack, using the three gradient
attack methods (G.A. 1, 2 and 3), and our verification ap-
proach.

Experiment G.A. 1 G.A. 2 G.A. 3 verification

MNIST 1,333 3,886 5,574 16,826

Fashion-MNIST 17,190 21,245 22,129 33,152

Total 18,523 25,131 27,703 49,978

verification-based approach returned 49978 SAT results, while
the strongest gradient-based method (gradient attack number
3) returned only 27703 SAT results — a 44% decrease in
the number of counterexamples found. This discrepancy is on
par with previous research [89], which indicates that gradient-
based methods may err significantly when used for adversarial
robustness analysis. This phenomenon manifests strongly in
our setting, which involves many small and medium-sized per-
turbations that gradient-based approaches struggle with [24].

The reduced precision afforded by gradient-based ap-
proaches can, in some cases, lead to sub-optimal ensemble
selection choices when compared to our verification-based
approaches. Specifically, even if a gradient-based approach
produces a uniqueness score ranking that coincides with the
one produced using verification, the dramatic decrease in the
number of SAT queries leads to much smaller mutual error
scores, and consequently — to uniqueness score values that are
overly optimistic, and less capable of distinguishing between
poor and superior robust accuracy results.

For example, when observing the first two arbitrary ensem-
bles on the MNIST dataset, E1 and E2, the three gradient
approaches (G.A. 1, 2 and 3) respectively assign average
uniqueness scores of ⟨95.4%, 97.8%⟩, ⟨87.5%, 94.5%⟩ and
⟨83.1%, 92.5%⟩ to the two ensembles (when averaging the
US over all ensemble members and all perturbations). This
indicates that the robust accuracy of the two ensembles is
fairly similar (see appendices in [7]). In contrast, when using
the more sensitive, verification-based approach, we find a
substantially higher number of mutual errors (see Table III),
and consequently, detect a much larger gap between the
uniqueness scores of the two ensembles: 55% and 77%.

Another example that demonstrates the increased sensitivity
of our method, when compared to gradient-based approaches,
is obtained by observing the average uniqueness score of
E3 and E4 on the Fashion-MNIST dataset. The strongest
gradient attack that we used assigned almost identical average
uniqueness scores to both ensembles (up to a difference of
0.01%), while our approach was sensitive enough to find a
2% difference between the average US of the two ensembles.

Finally, we note that, unlike verification-based approaches,
gradient attacks are incomplete, and are consequently unable
to return UNSAT. This makes them less suitable for assessing
any additional uniqueness metrics based on robust ϵ-balls. We
thus argue that, although gradient-based methods are faster

and more scalable than verification, our results showcase the
benefits of using verification-based approaches for assessing
uniqueness scores and for ensemble selection.

VI. RELATED WORK

Due to its pervasiveness, the phenomenon of adversarial
inputs has received a significant amount of attention [27],
[34], [61], [65], [66], [80], [99]. More specifically, the ma-
chine learning community has put a great deal of effort into
measuring and improving the robustness of networks [18]–
[20], [29], [36], [54], [60], [68], [71], [72], [87], [94]. The
formal methods community has also been looking into the
problem, by devising scalable DNN verification, optimization
and monitoring techniques [1], [5], [8], [10]–[12], [16], [26],
[41], [42], [55], [56], [64], [67], [70], [76], [90], [96]. To the
best of our knowledge, ours is the first attempt to apply DNN
verification to the setting of DNN ensembles. We note that our
approach uses a DNN verifier strictly as a black-box backend,
and so its scalability will improve as DNN verifiers become
more scalable.

Obtaining DNN specifications to be verified is a difficult
problem. While some studies have successfully applied verifi-
cation to properties formulated by domain-specific experts [3],
[4], [22], [25], [45], [78], most research has been focusing on
universal properties, which pertain to every DNN-based sys-
tem; specifically, local adversarial robustness [17], [35], [58],
[76], fairness properties [83], network simplification [31] and
modification [23], [32], [69], [77], [84], [93], and watermark
resilience [32].

VII. CONCLUSION AND FUTURE WORK

In this case-study paper, we demonstrate a novel technique
for assessing a deep ensemble’s robust accuracy through the
use of DNN verification. To mitigate the difficulty inherent
to verifying large ensembles, our approach considers pairs of
networks, and computes for each ensemble member a score
that indicates its tendency to make the same errors as other en-
semble members. These scores allow us to iteratively improve
the robust accuracy of the ensemble, by replacing weaker
networks with stronger ones. Our empiric evaluation indicates
the high practical potential of our approach; and, more broadly,
we view this work as a part of the ongoing endeavor for
demonstrating the real-world usefulness of DNN verification,
by identifying additional, universal, DNN specifications.

Moving forward, we plan to tackle the natural open ques-
tions raised by our work; specifically, how our methodology
for selecting robustly accurate ensembles can be extended
beyond the current greedy search heuristic, as well as how
ensembles should be selected in the context of other per-
formance objectives, beyond robust accuracy. We also plan
on experimenting with multiple stopping conditions for the
ensemble member replacement process; as well as explore
potential synergies between our verification-based approach
and gradient-based approaches for computing mutual error
scores. In addition, we note that we are currently extending

34

our approach to regression learning ensembles and deep rein-
forcement learning ensembles. Finally, we are in the process of
optimizing our approach by using lighter-weight, incomplete
verification tools (e.g., [76], [88], [95]), which afford better
scalability, and also support parallelization. This will hope-
fully allow us to handle significantly larger DNNs and more
complex datasets.

Acknowledgements. We thank Haoze Wu for his contribution
to this project. The first three authors were partially supported
by the Israel Science Foundation (grant number 683/18). The
first author was partially supported by the Center for Inter-
disciplinary Data Science Research at The Hebrew University
of Jerusalem. The fourth author was partially supported by
funding from Huawei.

REFERENCES

[1] P. Alamdari, G. Avni, T. Henzinger, and A. Lukina. Formal Methods
with a Touch of Magic. In Proc. 20th Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 138–147, 2020.

[2] M. AlQuraishi. AlphaFold at CASP13. Bioinformatics, 35(22):4862–
4865, 2019.

[3] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems,
2022. Technical Report. https://arxiv.org/abs/2205.13536.

[4] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[5] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[6] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Supplementary Artifact,
2022. https://zenodo.org/record/6557083.

[7] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided Deep
Ensemble Selection, 2022. Technical Report. https://arxiv.org/abs/2202.
03898.

[8] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming
Languages Design and Implementations (PLDI), pages 731–744, 2019.

[9] O. Araque, I. Corcuera-Platas, J. Sánchez-Rada, and C. Iglesias. En-
hancing Deep Learning Sentiment Analysis with Ensemble Techniques
in Social Applications. Expert Systems with Applications, 77:236–246,
2017.

[10] P. Ashok, V. Hashemi, J. Kretinsky, and S. Mohr. DeepAbstract: Neural
Network Abstraction for Accelerating Verification. In Proc. 18th Int.
Symp. on Automated Technology for Verification and Analysis (ATVA),
pages 92–107, 2020.

[11] G. Avni, R. Bloem, K. Chatterjee, H. T., B. Konighofer, and S. Pranger.
Run-Time Optimization for Learned Controllers through Quantitative
Games. In Proc. 31st Int. Conf. on Computer Aided Verification (CAV),
pages 630–649, 2019.

[12] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks and its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[13] R. Bhattacharjee, S. Jha, and K. Chaudhuri. Sample Complexity of
Robust Linear Classification on Separated Data. In Proc. 38th Int. Conf.
on Machine Learning (ICML), pages 884–893, 2021.

[14] Y. Bian, Y. Wang, Y. Yao, and H. Chen. Ensemble Pruning Based on
Objection Maximization With a General Distributed Framework. IEEE
Transactions on Neural Networks and Learning Systems, 31(9):3766–
3774, 2019.

[15] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[16] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Proc.
32nd Conf. on Neural Information Processing Systems (NeurIPS), pages
4795–4804, 2018.

[17] N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-
Distorted Adversarial Examples, 2017. Technical Report. https://arxiv.
org/abs/1709.10207.

[18] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer
Aided Verification (CAV), 2022.

[19] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval
Networks: Improving Robustness to Adversarial Examples. In Proc. 34th
Int. Conf. on Machine Learning (ICML), pages 854–863, 2017.

[20] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified Adversarial Robustness
via Randomized Smoothing. In Proc. 36th Int. Conf. on Machine
Learning (ICML), pages 1310–1320, 2019.

[21] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. Journal
of Machine Learning Research (JMLR), 12:2493–2537, 2011.

[22] D. Corsi, R. Yerushalmi, G. Amir, A. Farinelli, D. Harel, and G. Katz.
Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming, 2022. Technical Report. https://arxiv.org/abs/2206.09603.

[23] G. Dong, J. Sun, J. Wang, X. Wang, and T. Dai. Towards Repairing
Neural Networks Correctly, 2020. Technical Report. http://arxiv.org/abs/
2012.01872.

[24] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting
Adversarial Attacks with Momentum. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 9185–9193, 2018.

[25] S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability Analysis for
Neural Feedback Systems using Regressive Polynomial Rule Inference.
In Proc. 22nd ACM Int. Conf. on Hybrid Systems: Computation and
Control (HSCC), 2019.

[26] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[27] H. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Adver-
sarial Attacks on Deep Neural Networks for Time Series Classification.
In Proc. Int. Joint Conf. on Neural Networks (IJCNN), pages 1–8, 2019.

[28] S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss
Landscape Perspective, 2019. Technical Report. http://arxiv.org/abs/
1912.02757.

[29] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky. Domain-Adversarial Training
of Neural Networks. Journal of Machine Learning Research (JMLR),
17(1):2096–2030, 2016.

[30] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[31] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[32] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[34] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

[35] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A
Data-driven Approach for Checking Adversarial Robustness in Neural
Networks. In Proc. 16th. Int. Symp. on on Automated Technology for
Verification and Analysis (ATVA), pages 3–19, 2018.

[36] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama. Co-teaching: Robust Training of Deep Neural Networks
with Extremely Noisy Labels, 2018. Technical Report. http://arxiv.org/
abs/1804.06872.

[37] L. Hansen and P. Salamon. Neural Network Ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(10):993–
1001, 1990.

35

https://arxiv.org/abs/2205.13536
https://zenodo.org/record/6557083
https://arxiv.org/abs/2202.03898
https://arxiv.org/abs/2202.03898
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/2206.09603
http://arxiv.org/abs/2012.01872
http://arxiv.org/abs/2012.01872
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872

[38] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared
Views of Four Research Groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[39] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Ad-
versarial Attacks on Neural Network Policies, 2017. Technical Report.
https://arxiv.org/abs/1702.02284.

[40] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[41] O. Isac, C. Barrett, M. Zhang, and G. Katz. Neural Network Verification
with Proof Production. In Proc. 22nd Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), 2022.

[42] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[43] S. Jain, G. Liu, J. Mueller, and D. Gifford. Maximizing Overall Diversity
for Improved Uncertainty Estimates in Deep Ensembles. In Proc. 34th
AAAI Conf. on Artificial Intelligence (AAAI), pages 4264–4271, 2020.

[44] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In Proc. 35th
Digital Avionics Systems Conf. (DASC), pages 1–10, 2016.

[45] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[46] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

[47] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[48] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[49] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Examples in the
Physical World, 2016. Technical Report. http://arxiv.org/abs/1607.02533.

[50] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles, 2016. Tech-
nical Report. https://arxiv.org/abs/1612.01474.

[51] Y. LeCun. The MNIST Database of Handwritten Digits, 1998. http:
//yann.lecun.com/exdb/mnist/.

[52] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra. Why
M Heads are Better than One: Training a Diverse Ensemble of Deep
Networks, 2015. Technical Report. https://arxiv.org/abs/1511.06314.

[53] S. Lee, S. Purushwalkam Shiva Prakash, M. Cogswell, V. Ranjan,
D. Crandall, and D. Batra. Stochastic Multiple Choice Learning for
Training Diverse Deep Ensembles. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2016.

[54] H. Liu, M. Long, J. Wang, and M. Jordan. Transferable Adversarial
Training: A General Approach to Adapting Deep Classifiers. In Proc.
36th Int. Conf. on Machine Learning (ICML), pages 4013–4022, 2019.

[55] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[56] A. Lukina, C. Schilling, and T. Henzinger. Into the Unknown: Active
Monitoring of Neural Networks. In Proc. 21st Int. Conf. on Runtime
Verification (RV), pages 42–61, 2021.

[57] Z. Lyu, N. Gutierrez, A. Rajguru, and W. Beksi. Probabilistic Object
Detection via Deep Ensembles. In Proc. European Conf. on Computer
Vision (ECCV), pages 67–75, 2020.

[58] Z. Lyu, C. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened
Crown: Tightened Neural Network Robustness Certificates. In Proc.
34th AAAI Conf. on Artificial Intelligence (AAAI), pages 5037–5044,
2020.

[59] J. Ma, S. Ding, and Q. Mei. Towards More Practical Adversarial Attacks
on Graph Neural Networks. In Proc. 34th Conf. on Neural Information
Processing Systems (NeurIPS), 2020.

[60] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks, 2017. Technical
Report. http://arxiv.org/abs/1706.06083.

[61] M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A Simple
and Accurate Method to Fool Deep Neural Networks. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[62] M. Moshkovitz, Y. Yang, and K. Chaudhuri. Connecting Interpretability
and Robustness in Decision Trees through Separation. In Proc. 38th Int.
Conf. on Machine Learning (ICML), pages 7839–7849, 2021.

[63] G. Nam, J. Yoon, Y. Lee, and J. Lee. Diversity Matters When Learning
From Ensembles. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[64] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement
Approach to Verifying Convolutional Neural Networks. In Proc. 20th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), 2022.

[65] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Celik, and A. Swami.
Practical Black-Box Attacks against Machine Learning. In Proc. ACM
on Asia Conf. on Computer and Communications Security (CCS, pages
506–519, 2017.

[66] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. Celik, and
A. Swami. The Limitations of Deep Learning in Adversarial Settings. In
IEEE European Symposium on Security and Privacy (EuroS&P), pages
372–387, 2016.

[67] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis
for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[68] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi,
S. De, R. Stanforth, and P. Kohli. Adversarial Robustness through Local
Linearization, 2019. Technical Report. http://arxiv.org/abs/1907.02610.

[69] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks. In Proc. 5th Workshop on Formal Methods for ML-
Enabled Autonomous Systems (FoMLAS), 2022.

[70] W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of
Deep Neural Networks with Provable Guarantees. In Proc. 27th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 2018.

[71] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. Davis, G. Taylor, and T. Goldstein. Adversarial Training for Free!,
2019. Technical Report. http://arxiv.org/abs/1904.12843.

[72] A. Shafahi, P. Saadatpanah, C. Zhu, A. Ghiasi, C. Studer, D. Jacobs, and
T. Goldstein. Adversarially Robust Transfer Learning, 2019. Technical
Report. http://arxiv.org/abs/1905.08232.

[73] C. Shui, A. Mozafari, J. Marek, I. Hedhli, and C. Gagné. Diversity
Regularization in Deep Ensembles, 2018. Technical Report. http://arxiv.
org/abs/1802.07881.

[74] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and
S. Dieleman. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature, 529(7587):484–489, 2016.

[75] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, 2014. Technical Report. http://arxiv.org/
abs/1409.1556.

[76] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[77] M. Sotoudeh and A. Thakur. Correcting Deep Neural Networks with
Small, Generalizing Patches. In Workshop on Safety and Robustness in
Decision Making, 2019.

[78] X. Sun, K. H., and Y. Shoukry. Formal Verification of Neural Network
Controlled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on
Hybrid Systems: Computation and Control (HSCC), 2019.

[79] M. Svensén and C. M. Bishop. Pattern Recognition and Machine
Learning. Springer Berlin/Heidelberg, Germany, 2007.

[80] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[81] S. Tao. Deep Neural Network Ensembles. In Int. Conf. on Machine
Learning, Optimization, and Data Science, pages 1–12, 2019.

[82] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel. Ensemble Adversarial Training: Attacks and Defenses,
2017. Technical Report. http://arxiv.org/abs/1705.07204.

[83] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly Parallel
Fairness Certification of Neural Networks. In Proc. ACM Int. Conf.
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 1–30, 2020.

36

https://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1612.01474
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2007.09527
https://arxiv.org/abs/2007.09527
http://arxiv.org/abs/1907.02610
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1905.08232
http://arxiv.org/abs/1802.07881
http://arxiv.org/abs/1802.07881
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1705.07204

[84] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. Pǎsǎreanu. NNrepair:
Constraint-based Repair of Neural Network Classifiers, 2021. Technical
Report. http://arxiv.org/abs/2103.12535.

[85] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals, 2018. Technical
Report. http://arxiv.org/abs/1804.10829.

[86] Y. Wang, S. Jha, and K. Chaudhuri. Analyzing the Robustness of Nearest
Neighbors to Adversarial Examples. In Proc. 35th Int. Conf. on Machine
Learning (ICML), pages 5120–5129, 2018.

[87] E. Wong, L. Rice, and Z. Kolter. Fast is Better than Free: Revisiting
Adversarial Training, 2020. Technical Report. http://arxiv.org/abs/2001.
03994.

[88] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[89] H. Wu, A. Zeljić, G. Katz, and C. Barrett. Efficient Neural Network
Analysis with Sum-of-Infeasibilities. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 143–163, 2022.

[90] W. Xiang, H. Tran, and T. Johnson. Output Reachable Set Estimation
and Verification for Multi-Layer Neural Networks. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), 2018.

[91] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNist: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, 2017. Tech-
nical Report. http://arxiv.org/abs/1708.07747.

[92] H. Xuan, R. Souvenir, and R. Pless. Deep Randomized Ensembles for
Metric Learning. In Proc. European Conf. on Computer Vision (ECCV),
2018.

[93] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. Johnson, and
D. Prokhorov. Neural Network Repair with Reachability Analysis, 2021.
Technical Report. https://arxiv.org/abs/2108.04214.

[94] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama. How does
Disagreement Help Generalization against Label Corruption? In Proc.
36th Int. Conf. on Machine Learning (ICML), pages 7164–7173, 2019.

[95] T. Zelazny, H. Wu, C. Barrett, and G. Katz. On Reducing Over-
Approximation Errors for Neural Network Verification. In Proc. 22nd
Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
2022.

[96] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th Conf. of European Conference
on Artificial Intelligence (ECAI), 2020.

[97] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan.
Theoretically Principled Trade-off between Robustness and Accuracy.
In Proc. 36th Int. Conf. on Machine Learning (ICML), pages 7472–
7482, 2019.

[98] Z. Zhou, J. Wu, and W. Tang. Ensembling Neural Networks: Many
Could Be Better Than All. Artificial Intelligence, 137(1-2):239–263,
2002.

[99] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial Attacks on
Neural Networks for Graph Data. In Proc. 24th ACM SIGKDD Int.
Conf. on Knowledge Discovery & Data Mining (KDD), pages 2847–
2856, 2018.

37

http://arxiv.org/abs/2103.12535
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/2001.03994
http://arxiv.org/abs/2001.03994
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2108.04214

	Introduction
	Background
	Improving Robust Accuracy using Verification
	Directly Quantifying Robust Accuracy is Hard
	Mutual Error Scores and Uniqueness Scores
	Ensemble Selection using Uniqueness Scores

	Case Study: MNIST and Fashion-MNIST
	Comparison to Gradient-Based Attacks
	Related Work
	Conclusion and Future Work
	References

