
Formal Methods in Computer-Aided Design 2022

TBUDDY: A Proof-Generating BDD Package
Randal E. Bryant

Computer Science Department
Carnegie Mellon University, Pittsburgh, PA, United States

Email: Randy.Bryant@cs.cmu.edu

Abstract—The TBUDDY library enables the construction and
manipulation of reduced, ordered binary decision diagrams
(BDDs). It extends the capabilities of the BUDDY BDD pack-
age to support trusted BDDs, where the generated BDDs are
accompanied by proofs of their logical properties. These proofs
are expressed in a standard clausal framework, for which a
variety of proof checkers are available. Building on TBUDDY
via its application-program interface (API) enables developers to
implement automated reasoning tools that generate correctness
proofs for their outcomes. In some cases, BDDs serve as the
core reasoning mechanism for the tool, while in other cases they
provide a bridge from the core reasoner to proof generation.
A Boolean satisfiability (SAT) solver based on TBUDDY achieves
polynomial scaling when generating unsatisfiability proofs for a
number of problems that yield exponentially-sized proofs with
standard solvers. It performs particularly well for formulas
containing parity constraints, where it can employ Gaussian
elimination to systematically simplify the constraints.

I. INTRODUCTION

Proof generation has become a core requirement for
Boolean satisfiability (SAT) solvers when they encounter an
unsatisfiable problem. The SAT solver generates a detailed
proof in a standard proof format. An independent proof
checker can then affirm that the problem is indeed unsatis-
fiable, ruling out any false negative results due to a bug in
the SAT solver’s algorithms or implementation. Most modern
solvers are based on conflict-driven clause-learning (CDCL)
algorithms, and these can readily be extended to gener-
ate proofs in the Deletion Resolution Asymmetric Tautology
(DRAT) proof framework [1], [2]. Like resolution proofs [3],
a DRAT proof is a clausal proof consisting of a sequence
of clauses, each of which preserves the satisfiability of the
preceding clauses. An unsatisfiability proof starts with the
clauses of the input formula and ends with an empty clause,
indicating logical falsehood. The fact that this clause can be
derived from the original formula proves that the original
formula cannot be satisfied.

Although a number of SAT solvers based on Binary De-
cision Diagrams (BDDs) have been implemented over the
years [4]–[8], most of these predated the era when proof
generation became a priority. In 2006, Biere, Jussila, and Sinz
demonstrated that the underlying logic behind standard BDD
algorithms can be encoded as steps in an extended resolution
framework [9], [10]. Extended resolution [11], [12] augments
standard resolution by allowing proofs to introduce extension
variables, serving as abbreviations for Boolean formulas over
the input and other extension variables. This can yield proofs
that are exponentially more compact than standard resolution

proofs [13]. Biere, Jussila, and Sinz use this capability by in-
troducing an extension variable for each BDD node generated.
The logic for each recursive step of standard BDD operations,
based on the Apply algorithm [14], can then be expressed with
a short sequence of proof steps. TBUDDY builds on this work.

The DRAT framework also supports extension variables.
Our solver PGBDD [15], [16] (for “proof-generating BDD”)
demonstrated that a BDD-based SAT solver can generate
DRAT proofs of unsatisfiability by integrating proof gen-
eration into the BDD package. Our second solver PGPBS
(for “proof-generating pseudo-Boolean solver”) augments the
SAT solver with a pseudo-Boolean constraint solver, enabling
it to generate DRAT proofs of unsatisfiability for problems
where the input formula, described in conjunctive normal form
(CNF), encodes parity and cardinality constraints [17]. PGPBS
relies on the constraint solver to detect that the formula is
unsatisfiable. BDDs serve only as a mechanism to prove that
1) each of the extracted constraints is implied by the input
formula, and 2) each step of the solver preserves satisfiability.
These two solvers achieved polynomial scaling while gener-
ating unsatisfiability proofs for a number of challenging SAT
problems.

The prototype solvers PGBDD and PGPBS demonstrated
that BDDs can provide a useful framework for proof-
generating automated reasoning tools, but their performance,
in terms of both speed and capacity, was limited by their
Python implementations. In this work, we describe TBUDDY,
a high performance library for constructing and manipulating
trusted BDDs. TBUDDY builds on BUDDY, a BDD package
written by Jørn Lind-Nielsen while he was a PhD student at the
Technical University of Denmark in the late 1990s [18]. It has
subsequently been used and modified by a number of others,
although the current version (2.4) has been unchanged on
Sourceforge since 2014. BUDDY is written in C but has a C++
interface that provides more convenient memory management.
These features were carried over to the implementation of
TBUDDY.

Although there are a number of BDD packages available, we
chose to implement our proof-generating library by extending
BUDDY for several reasons:

• Multiple studies have shown that BUDDY generally per-
forms as well as other BDD packages [19]–[21].

• BUDDY references nodes as integer indices into an array,
rather than as pointers to a node data structure. As a
result, it can manage BDDs with up to two billion (231)

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-5024-6613
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_10
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_10
https://creativecommons.org/licenses/by/4.0/

nodes using four-byte references, rather than the eight-
byte pointers required for modern, 64-bit machines.

• BUDDY does not use complement pointers [22], [23]
to denote Boolean negation. Although these can reduce
BDD sizes and enable constant-time complementation,
they would greatly complicate adding proof generation.
Complement pointers rely on a symmetry between True
and False that is not present in clausal representations.

• The BUDDY code is clear and concise. The complete
package, prior to our modifications, consists of around
13,000 lines of code. By contrast, the core of the popular
CUDD package [24] has over 72,000 lines of code. CUDD
includes many features that are not relevant for this work
but would requiring updating as the core data structures
are changed.

• BUDDY supports dynamic variable ordering [25]. We do
not use that feature directly, since it would be challenging
to keep the proof information updated as variables are
swapped in the BDD. However, it enables maintaining
a distinction between the numbering of variables in the
input file and the ordering of those variables within the
BDD. We have found this capability vital for achieving
good performance on some benchmarks.

This paper describes the design and implementation of
TBUDDY, as well as TBSAT, a proof-generating SAT solver
implemented using TBUDDY. It presents experimental results
for several scalable benchmarks that are intractable for current
CDCL solvers. A complete version of the code is available at
https://github.com/rebryant/tbuddy-artifact.

II. PROOF GENERATION WITH BDDS

Our immediate goal is to support the operations of a BDD-
based SAT solver, generating one or more solutions when the
formula is satisfiable and an unsatisfiability proof when it is
not. Future uses of a proof-generating BDD package include a
variety of automated reasoning tasks that would benefit from
the assurances provided by checkable proofs of correctness.

A. Notation

Formulas are defined over a set of Boolean variables X =
{x1, x2, . . . , xn}. The symbols u, v and w also denote Boolean
variables, possibly with subscripts. The notation u denotes
complement of variable u. A literal ℓ is either a variable or
its complement. A clause C consists of a set of literals, and
a formula ϕ consists of a set of clauses. We denote a clause
as a disjunction of literals, enclosed in square brackets, e.g.,
[u ∨ v ∨ w]. A clause consisting of a single literal ℓ, denoted
[ℓ], is a unit clause.

An assignment α is a mapping from the input variables X
to the set {0, 1}, where 0 represents false, and 1 represents
true. Assignment α is said to satisfy clause C if there is some
literal ℓ ∈ C such that ℓ = x and α(x) = 1, or ℓ = x and
α(x) = 0. Assignment α satisfies formula ϕ if it satisfies every
clause in ϕ. A formula ϕ is said to be satisfiable if it has a
satisfying assignment and to be unsatisfiable if no satisfying

TABLE I
DEFINING CLAUSES FOR EXTENSION VARIABLE u REPRESENTING BDD

NODE u

Notation Formula Clausal Representation
Nonterm. child Child is 1 Child is 0

HD(u) x → (u → u1) [x ∨ u ∨ u1] 1 [x ∨ u]
LD(u) x → (u → u0) [x ∨ u ∨ u0] 1 [x ∨ u]
HU(u) x → (u1 → u) [x ∨ u1 ∨ u] [x ∨ u] 1
LU(u) x → (u0 → u) [x ∨ u0 ∨ u] [x ∨ u] 1

assignment exists. A formula containing the empty clause []
cannot be satisfied.

A clausal proof consists of a sequence of clauses
C1, C2, . . . , Cm, Cm+1, . . . , Ct where the first m clauses are
those of the input formula ϕ, while the subsequent clauses
have the property that they preserve the satisfiability of the
preceding clauses. That is, for all m ≤ i < t, if the formula
consisting of clauses {C1, . . . , Ci} is satisfiable, then so is the
formula {C1, . . . , Ci, Ci+1}. A proof of unsatisfiability has an
empty clause as its final clause. The fact that this clause can
be derived via a sequence of the steps from the input formula
proves that the formula is unsatisfiable.

B. BDD Extension Variables and Defining Clauses
The BDD package maintains a directed acyclic graph con-

sisting of a set of nodes, where each node u is either terminal
or nonterminal. There are just two terminal nodes: T0, repre-
senting false, and T1, representing true. Nonterminal node u
has an associated variable Var(u) ∈ X as well as child nodes
Low(u) and High(u). Each BDD node u represents a Boolean
function, denoted JuK. Terminal nodes represent constant func-
tions: JT0K = 0, and JT1K = 1. The function for nonterminal
node u is defined recursively using the ITE operator (short for
“if-then-else”), where ITE(u, v, w) = (u ∧ v) ∨ (¬u ∧ w):

JuK = ITE
(︃

Var(u), JHigh(u)K, JLow(u)K

)︃
(1)

The DRAT proof system supports an extension rule, similar
to that of extended resolution [11], [12]. That is, the proof can
define and reference extension variables serving as abbrevia-
tions for Boolean formulas over input variables and previous
extension variables. Extension variable u encoding Boolean
formula F is introduced by including a set of defining clauses
in the proof encoding the formula u ↔ F . This capability is
key to proof generation with BDDs, with an extension variable
defined for every nonterminal node in the BDD.

An assignment α over the input variables can be uniquely
extended to assign values to the extension variables. Extension
variable u is assigned the value resulting from applying its
defining formula F to the values assigned to the input and
previous extension variables. For assignment α and extension
variable u, we therefore have α(u) ∈ {1, 0}.

As with the approach of Biere, Sinz, and Jussila [9], [10],
each nonterminal BDD node has an associated extension vari-
able. Nodes are denoted by boldface letters, possibly with sub-
scripts, e.g., u, v, and v1, while their corresponding extension

50

https://github.com/rebryant/tbuddy-artifact

variables are denoted with a normal face, e.g., u, v, and v1.
The extension variables associated with the nonterminal nodes
of the BDD provide the proof with a semantic definition of
how BDDs encode Boolean functions according to Equation 1.
More precisely, for nonterminal node v, let Ex(v) = v be
the extension variable associated with the node. For the two
terminal nodes, define Ex(T0) = 0 and Ex(T1) = 1. For
nonterminal node u, let x = Var(u), u1 = Ex(High(u)), and
u0 = Ex(Low(u)). Then the defining clauses for u encode
the formula u ↔ ITE(x, u1, u0). These clauses are shown in
Table I. As can be seen, when both children are nonterminal,
there will be four clauses, each containing three literals. When
one or more children are terminal nodes, some of the formulas
for the defining clauses degenerate into tautologies (indicated
by table entry 1.) These are not included among the defining
clauses. Others have just two literals. For BDD node u, we
let Def(u) denote the set of defining clauses for all nodes in
the subgraph with root u.

Consider assignment α over the input variables extended
to assign values to the extension variables. We will say that
assignment α satisfies BDD root u with associated extension
variable u if α(u) = 1. This will occur precisely for those
assignments where JuK, the Boolean function associated with
u, evaluates to 1.

C. RUP Proof Steps

Each logical inference for the subset of the DRAT proof
system we use is based on an application of the reverse unit
propagation (RUP) rule [26], [27]. RUP provides an easily
checkable way to combine a linear sequence of resolution steps
with subsumption. Let C = [ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓp] be a clause to
be proved and let clauses D1, D2, . . . , Dk be a sequence of
supporting antecedent clauses occurring earlier in the proof.
The RUP step proves that

⋀︁
1≤i≤k Di → C by showing that

a combination of the antecedents plus the negation of C leads
to a contradiction. The negation of C is the formula ℓ1 ∧ ℓ2 ∧
· · ·∧ℓp having a CNF representation consisting of unit clauses
[ℓi] for 1 ≤ i ≤ p. A RUP check processes the clauses of the
antecedent in sequence, inferring additional unit clauses. In
processing clause Di, if all but one literal in the clause is the
negation of one of the accumulated unit clauses, then we can
add this literal to the accumulated set. The final step, with
clause Dk, must cause a contradiction, i.e., all of its literals
are falsified by the accumulated unit clauses.

D. The Trusted BDD API

The TBUDDY package supports the generation of trusted
BDDs (TBDDs). These are ones that have been formally
certified to be implied by the input formula. More precisely,
for a trusted BDD with root node u and associated extension
variable u, any assignment α to the input variables that satisfies
the input formula must also assign 1 to u. This can be written
as ϕ,Def(u) |= u. This property is proved by generating a
sequence of proof clauses leading to a proof of the validating
clause, consisting of unit clause [u]. We use the notation u̇ to
indicate that node u is trusted.

/* Generate TBDD from input clause */
tbdd tbdd_from_clause_id(int i);

/* Form conjunction of two TBDDs */
tbdd tbdd_and(tbdd u, tbdd v);

/* Upgrade BDD v to TBDD */
tbdd tbdd_validate(bdd v, tbdd u);

/* Generate proof of clause */
int tbdd_validate_clause(ilist lits, tbdd u);

Fig. 1. Trusted BDD API Function Prototypes

The TBUDDY API provides several procedures that enable
the generation of TBDDs. Their prototypes are shown in
Figure 1. In these, data types bdd and tbdd represent BDDs
and TBDDs, respectively, as is described in Section III-A. Data
type ilist is the API’s representation of integer lists.

The tbdd_from_clause_id operation generates the
BDD representation ui of input clause Ci, as well as a proof
of unit clause [ui]. The BDD representation of a clause is a
linear chain. The proof that Ci,Def(u) |= ui consists of a
single RUP step, with Ci plus a subset of the defining clauses
for the nodes in the chain as antecedents [10].

Given trusted BDDs u̇ and v̇, the tbdd_and operation
first generates the BDD representation w of their conjunction.
It also generates a proof that u ∧ v → w, given by the clause
[u ∨ v ∨ w]. It then uses a RUP step with this clause plus
unit clauses [u] and [v] to prove the unit clause [w], upgrading
node w to ẇ. As is described below, the BDD construction
and the proof generation are performed by a version of the
BDD APPLYAND operation that generates both a BDD node
and a sequence of proof steps [15], [16].

The standard version of the APPLYAND procedure recur-
sively traverses the nodes for the two arguments and generates
intermediate result nodes [14]. It maintains an operation table
of previously computed results to ensure polynomial complex-
ity. Given arguments u and v, it directly handles the cases
where one argument is a terminal node. Failing this, it looks
in the table with key ⟨u,v,And⟩ and returns any stored result.
Otherwise, a set of recursive calls is required. The program
chooses variable x as the least (in the BDD variable ordering)
among variables Var(u) and Var(v) and splits into two cases,
given by nodes u1 and v1, and nodes u0 and v0. It recursively
computes nodes w1 and w0 as the conjunctions of u1 and v1,
and of u0 and v0, respectively. When w1 = w0, this becomes
the returned result w. Otherwise node w is created having
Var(w) = x, High(w) = w1, and Low(w) = w0. Before
returning, an entry with key ⟨u,v,And⟩ and result w is added
to the table.

The modified version of APPLYAND operation follows this
recursive structure, such that a recursive call generating node
w as the conjunction for nodes u and v also generates a proof
of the clause [u ∨ v ∨ w], i.e., that u ∧ v → w. We refer
to this proof step as the justifying clause for the operation.
The recursive calls will have generated proofs of the clauses

51

[u1∨v1∨w1] and [u0∨v0∨w0]. In general, the desired result
can require two RUP steps. The first generates a proof of the
intermediate result x → (u∧v → w) given by clause [x∨u∨v∨
w] using as antecedents the defining clauses HD(u), HD(v),
and HU(w), as well as the recursive result [u1 ∨ v1 ∨ w1].
The second step proves the target clause using as antecedents
the intermediate result, defining clauses LD(u), LD(v), and
LU(w), and the recursive result [u0 ∨ v0 ∨ w0]. For special
cases, such as when some of the arguments are terminal nodes,
only a subset of these antecedents is required. In some cases,
the desired proof degenerates to a single proof step. The proof
generation code in TBUDDY attempts to generate a single-step
proof when one of the recursive results is a tautology. When
this fails, or for the more general case, it generates a two-step
proof. A built-in RUP checker determines which clauses to
use as antecedents and can detect whether the proof succeeds
or fails. The intermediate clause generated in a two-step proof
can be deleted immediately after the second clause is added,
and therefore there is a single justifying clause associated with
each recursive operation.

Observe that to reuse results from the operation table, the
program needs to reference its justifying clause. This requires
augmenting the table entry with a field to hold an identifier
for the justifying clause, as is discussed in Section III-A.

The tbdd_validate operation enables an ordinary BDD
with root v to be upgraded to trusted node v̇ based on trusted
node u̇. When called, the program first generates a proof
of the implication u → v, given by the clause [u ∨ v].
It then uses a RUP step with this clause plus unit clause
[u] to prove the unit clause [v]. The implication proof is
generated by PROVEIMPLICATION [15], an operation that
traverses the BDD and generates proof steps without adding
any nodes. At each step on arguments u′ and v′, it generates
a proof of the justifying clause [u′ ∨ v′], i.e., that u′ → v′,
using a simplified version of the proof structure used for the
conjunction operation.

Some applications of TBDDs combine BDD and
clausal reasoning, alternating between the two forms.
The tbdd_validate_clause operation transfers the
trust embodied in TBDD node u̇ to a clause C, generating a
proof of Def(u), u |= C: This function requires TBUDDY to
generate a sequence of proof steps, concluding with a RUP
step with the specified clause. In some cases, the step can
be performed directly by tracing a path in the BDD from u
down to node T0 and listing some of the defining clauses
along the way as antecedents. In cases where the path is not
unique, the prover must first generate a BDD representation
v of the clause, validate v, and then trace the path from v to
T0.

E. Proof File Format

There are several different file formats for encoding a DRAT
proof, representing different trade-offs between the level of
detail that must be supplied by the proof generator, versus
the effort required to check the validity of the proof. With
the LRAT format [28], each proof step must be accompanied

by a hint. For a RUP step, the hint specifies the sequence of
antecedent clauses. These proofs can be checked efficiently
by the program LRAT-CHECK. There are also several formally
verified checkers for LRAT proofs [28], [29]. By contrast, no
hints are given with the DRAT format [2]. For each RUP step,
the checker must identify a sequence of prior clauses that can
serve as the antecedent. This format is accepted by the widely
used DRAT-TRIM checker. Internally, DRAT-TRIM operates by
adding the hints and then invoking an LRAT checker. The
FRAT format [30] spans the two extremes of hints versus no
hints by making the hints optional. It also operates by adding
hints and invoking an LRAT checker. TBUDDY can generate
proofs in any of these formats. Here we describe properties of
the LRAT file format that influence how BUDDY encodes and
stores proof information. Generating proofs in other formats
requires storing additional information. For long executions,
the proofs can range up to one billion clauses. These would
be far too long for the DRAT-TRIM checker, due to the high cost
of generating hints. In practice, therefore, it is best to either
generate LRAT proofs or to generate FRAT proofs where the
steps involving BDD operations include hints.

Following the conventions of the DIMACS format for
encoding CNF formulas, the proof clauses for a formula with
n variables and m clauses are encoded using signed integers
to represent literals, where variable xi is represented as the
value i, and its complement as −i. Each clause in the proof
is assigned a numeric clause ID, with the first m of these
corresponding to the input clauses (which are not included in
the proof file). Clause IDs must be in ascending order, but they
need not be consecutive. Extension variables are represented
by integers with values greater than n. RUP proof steps are
encoded by giving the clause ID, the literals of the clause, and
a list of the antecedent clause IDs. LRAT also supports clause
deletion, where a list of clause IDs is provided, indicating
that the proof will no longer use these clauses as antecedents.
Deleting clauses whenever possible is critical for the proof
checker, since it must retain copies of all active clauses, i.e.,
those that have been added but not yet deleted.

III. IMPLEMENTATION

With this as background, we can now describe how the
BUDDY BDD package was modified to support proof gener-
ation. As we have seen, the key requirements are:

• Each time a new BDD node is created, it must be assigned
an extension variable and its defining clauses must be
added to the proof.

• For each input clause Ci, its BDD representation ui must
be generated, along with a proof of validating clause [ui].

• Every recursive step of the APPLYAND and
PROVEIMPLICATION operations must generate one
or two proof steps.

• The result nodes and proof steps generated by BDD
operations must be stored for later reuse.

• A RUP step is required to prove validating clause [u]
when BDD root u is generated by conjunction or impli-
cation testing.

52

(A) Node data

lvl, mk, rc

low

high

next

head

xvar

dclause

(B) Cache entry

op

arg1

arg2

arg3

res

jclause

(C) TBDD

root

vclause

rc_index

Fig. 2. Data structures for nodes (A) cache entries (B), and TBDDs (C).
Each rectangle represents four bytes. Proof generation requires adding the
fields shown in red.

• The defining clauses for the nodes and the clauses gen-
erated by RUP steps should be deleted when they are no
longer required for subsequent proof steps.

These capabilities can all be incorporated into the basic BDD
operations, as well as the supporting operations to manage the
data structures.

A. Data Structures

Figure 2(A) and (B) show the fields in the two major data
structures for BUDDY, with added fields (shown in red) to
support proof generation. It also shows the representation for
a TBDD (C). A BDD node in BUDDY is indicated by an
integer, providing an index into an array of node structures,
each having the fields shown in (A). Nodes T0 and T1 are
represented by indices 0 and 1, respectively. Each rectangle in
the figure represents four bytes. The node array integrates the
set of BDD nodes with the unique table, providing a mapping
from the children and variable for each node to the node itself.
In the node data structure (A), the fields indicated in gray
encode the node. Three values are packed into the first four-
byte word: lvl, encoding the position of the node variable in
the BDD variable ordering, rc, a reference count used to track
external references to the node, and mk, a single bit used to
support mark-sweep garbage collection. The indices for the
two children low and high occupy the second and third
words. The fields shown in blue encode the unique table, with
the next field forming a link in the linked list implementing
a hash table bucket, and the head field providing the head of
the linked list for all nodes that hash to this index.

As mentioned earlier, to support dynamic variable ordering,
BUDDY distinguishes between the level of a variable, giving
its position in the BDD variable ordering, and the integer rep-
resentation of the variable, with permutation vectors providing
the mapping between these two. We use this feature to allow
the BDD variable ordering to be independent of the numbering
of variables in the input file.

Supporting proof generation requires adding two fields to
the node data structure. The xvar field gives the associated
extension variable, encoded as an integer having a value
greater than the number of input variables n. When a node

is created, the next four clause IDs are assigned to its defining
clauses, even if only some subset of these is added to the proof.
The dclause field stores the first of these—the remaining
three can be computed as offsets from this field. In skipping
some possible clause IDs, we add some sparseness to the
ID space. Considering that we can only encode around two
billion (231 − 1) clause IDs, and proofs can routinely reach
one billion clauses, this might seem wasteful. However, only
a small fraction of the nodes in large BDDs will have terminal
nodes as children, and so the vast majority of nodes will
require the full complement of four defining clauses.

Like other BDD packages [22], BUDDY stores its table of
previously computed results as a direct-mapped cache indexed
by a hash of the operation and arguments.1 Before performing
the recursive steps of an APPLY operation, the table is first
referenced to see if a suitable result has already been gener-
ated. When a new result is added to the table, any previous
result that hashes to the same position is overwritten. The
entries in the cache are shown in Figure 2(B). The standard
entries (shown in gray) encode the operation, arguments (up
to three), and the result node, each given as a four-byte
integer. In the event the operation is either APPLYAND or
PROVEIMPLICATION, reusing the cached result also requires
the ID of the justifying clause. This is stored in the field
jclause.

The added fields enable TBUDDY to track the clause IDs
of the defining clauses for the active BDD nodes and the
justifying clauses of the cache entries. Significantly, TBUDDY
need not keep copies of the clauses themselves. When actual
clauses are required to support proof generation, they can be
recreated based on other information stored with the node or
the cache entry.

We can see that the node data structure expands from 20
bytes to 28 in order to support proof generation. Cache entries
require 24 bytes with or without proof generation, since an
eight-byte field is used to store results for operations that
return floating-point numbers. We configured the program to
maintain a cache size that has 1/8 the number of entries as
the node array. Therefore, adding proof generation required
growing these two data structures from combined total of 23
bytes per node to 31 bytes per node, an increase of 1.35×.
These are the only two data structures that grow in proportion
to the number of BDD nodes.

Figure 2(C) shows the representation of a TBDD. It consists
of three integers. The first identifies the root node and the
second gives the clause identifier for the validating clause. The
third field, labeled rc_index, supports reference counting
of TBDDs. This count is distinct from the reference count
for the root node, since there may be references to a BDD
node that are independent of its use in a TBDD. The reference
count for a TBDD tracks references to possible uses of the
validating clause in proof generation. Once the count drops
to zero, the clause can be deleted. Since TBDD structures

1The standard BUDDY package maintains seven separate caches to support
different operations. We combined these into a single, unified cache.

53

are passed by value, they cannot hold actual reference counts.
Instead, a separate table of reference counts is maintained,
with the rc_index field providing an index into this table.
In typical applications, fewer than 1% of the BDD nodes serve
as TBDD roots, and so the space required by this table is
negligible.

As can be seen, the modifications to support proof gen-
eration are fairly modest. In terms of code, the original
BUDDY package contains 13,186 lines of source code. The
TBUDDY package expands this to 18,030, with 1,061 lines
added to existing files, 2,715 lines in new files to support
proof generation and TBDDs, and 1,068 in new files to support
parity reasoning. As noted above, the memory used increases
by around 1.35×. The impact on runtime is more variable; we
show experimental results in Section V.

B. BDD Management

BUDDY represents all of the nodes as a single array. This
array starts with an initial allocation and is expanded as more
nodes are added. Each expansion requires allocating a larger
array, copying over existing nodes, and reconstructing the
unique table and free list. Before expanding, it attempts to free
existing nodes by performing garbage collection, reclaiming
nodes that cannot be reached by any reference external to the
data structure. Garbage collection is supported by 1) having
each node store a reference count indicating the number of
external references to the node, and 2) performing mark-sweep
garbage collection to determine which nodes are unreachable.
Nodes with nonzero reference counts provide the starting
points of the marking phase. Both resizing the node array and
performing garbage collection cause the entire cache to be
flushed, with all entries marked as invalid. Garbage collection
can occur at any point during the program operation, including
in the middle of a series of recursive calls. To support this
capability, a stack is maintained indicating intermediate nodes
that may be required at future points in the outstanding calls.
These nodes are also incorporated into the marking phase.

Garbage collection and cache flushing provide the means to
manage the active clauses in a proof. That is, when a node
is reclaimed during the sweep phase, its defining clauses are
deleted. When a cache entry is evicted, either because it is
overwritten or the cache is flushed, its justifying clause is
deleted. To support the ability to perform garbage collection in
the middle of a sequence of recursive calls, the deletion steps
are not added to the proof directly. Rather, they are added
to a list, which is cleared as the top-level of the recursion
completes. As mentioned earlier, the validating clauses for
TBDDs are managed via a separate set of reference counts.
The C++ interfaces to the package automatically handle the
reference counting for both BDDs and TBDDs.

IV. CAPABILITIES SUPPORTED BY TBUDDY

Building on the basic support for TBDDs, we have created
several additional libraries and a BDD-based SAT solver. We
describe these capabilities here and present some experimental
results in Section V.

A. Parity Reasoning

Parity constraints arise in a variety of contexts, but they are
not well handled by current CDCL solvers. A parity constraint
is an equation of the form:

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = p (2)

The variables in this constraint are a subset of the input
variables, and the phase p is 1 for odd parity and 0 for even.
Adding two parity constraints creates a new parity constraint.
Gaussian or Gauss-Jordan elimination systematically adds
constraints to yield a reduced set [31]. It can determine when
the set of constraints cannot be satisfied. When the constraints
are satisfiable, it can be used to derive a satisfying assignment.

Manipulating parity constraints is especially efficient for
BDDs. The BDD representation of a constraint with k vari-
ables contains 2k+1 nodes, independent of the BDD variable
ordering. As we have demonstrated [17], a set of parity
constraints encoded in CNF can be automatically extracted
from an input formula, and BDD-based proofs of unsatis-
fiability can be generated using Gaussian elimination. The
TBUDDY package provides the necessary support for the proof
generation portion of this task.

Our constraint library represents a parity constraint as a
list of integer variable IDs, a phase, and a TBDD giving the
BDD representation of the constraint as well as the ID of a
validating clause justifying that this constraint is implied by
the input formula. An input constraint is converted into this
representation by 1) forming the TBDD representations of the
input clauses that encode it, 2) conjuncting them, and 3) using
this TBDD to validate a BDD representation of the constraint.
Each time constraints having TBDD representations u̇ and v̇
are summed to form a constraint with BDD representation
t, we use the conjunction operation to generate TBDD ẇ
representing the conjunction of the constraints and validate
the sum by calling tbdd_validate(t, ẇ).

Applying Gaussian elimination requires first running a
preprocessor to identify how the clauses encode parity con-
straints [17]. The program creates a schedule listing equations
of the form of Equation 2 and identifying which clauses
encode each of these. It also provides a list of the internal
variables, i.e., those appearing only in parity constraints. Im-
plicitly, all other variables are external. Gaussian elimination
reduces the set of constraints to a smaller set over only the
external variables. If the reduced set contains a constraint of
the form 0 = 1, then the original set cannot be satisfied.
Otherwise, any solution of the reduced set can be expanded
into a solution of the original set. In either case, the reduced
constraints have TBDD representations and can therefore be
used in proof generation.

Our Gaussian elimination routine attempts to preserve the
sparseness found in typical parity constraint problems, where
the number of variables in the constraints is far less than the
total number of variables in the problem. Maintaining sparse-
ness requires a successful strategy for pivot selection. Consider
a set of parity constraints P1, P2, . . . , Pm, each of the form of

54

Equation 2. Let the notation xj ∈ Pi indicate that constraint Pi

contains variable xj . Each elimination step requires selecting
a pivot constraint Ps and a pivot variable xt ∈ Ps. It then
eliminates variable xt from all other constraints Pi for which
xt ∈ Pi by replacing Pi with the sum Pi⊕Ps. Our routine uses
a greedy pivot selection strategy attributed to Markowitz [32],
[33]: Let cs be the number of nonzero variables in constraint
Ps and rt be the number of constraints containing variable xt.
Then a constraint Ps and variable xt ∈ Ps are selected such
that the cost function (cs−1) ·(rt−1) is minimized. That cost
is an upper bound on the net number of variables that will be
added to the constraints when generating the sums Pi ⊕ Ps.

B. The TBSAT SAT Solver

The TBSAT solver builds on the TBUDDY library. It can gen-
erate multiple solutions for satisfiable formulas and proofs of
unsatisfiability for unsatisfiable formulas. It starts by reading
the input clauses and forming their TBDD representations. The
overall control flow is determined by the combination of an
optional input schedule file and bucket elimination, expanding
on the capabilities implemented in our prototype solvers
PGBDD [15] and PGPBS [17]. The schedule file can serve two
different roles. In one, it specifies a sequence of conjunction
and existential quantification operations using a stack-based
notation. This mode can be effective when the user has some
problem-dependent strategy for solving a particular problem.
In the other form, it identifies sets of clauses forming parity
constraints. These constraints are converted into TBDDs and
simplified using Gaussian elimination. In some cases, a TBDD
with root node T0 will be generated while processing the
schedule file. That indicates the formula is unsatisfiable and
the proof of unsatisfiability will be complete. Otherwise, the
TBDDs remaining, including those of unused input clauses,
are processed using bucket elimination. When no schedule file
is provided, all clauses are processed in this manner.

Bucket elimination [8], [9], [34] processes the TBDDs
according to some ordering of the variables. Our imple-
mentation makes the simplifying assumption that buckets
are ordered according to the BDD variable ordering, with
bucket i associated with input variable xi. Each TBDD is
stored in a list (the “bucket”) according to its root node
variable. Buckets are processed from the least to the greatest.
For bucket i, a conjunction of the TBDDs in the bucket is
computed to yield TBDD ui̇ . A new BDD is computed as
vi = Low(ui) ∨ High(ui), existentially quantifying xi from
ui. This BDD is validated using TBDD ui̇ , since any Boolean
function f and variable x satisfies f → ∃x f . The resulting
TBDD v̇i is then placed in the bucket corresponding to its
root node variable. This process continues until either 1) the
TBDD Ṫ 0 is generated, or 2) all buckets are processed with
the final step yielding vn = T1. In the former case, the formula
is unsatisfiable and the unsatisfiability proof is complete. In
the latter case, the formula is satisfiable and the next task is
to generate one or more solutions.

To generate a solution, the solver starts with an empty
assignment and works in reverse order, adding assignments

to variables xn through x1. Let αn+1 = ∅. For bucket i, it
can assume that αi+1 satisfies vi, and we must assign a value
to xi. Let u1 = High(ui) and u0 = Low(ui). Assignment α
must satisfy at least one of these. In the event that just u1 is
satisfied, assign 1 to xi. If just u0 is satisfied, then assign 0
to xi. Otherwise, xi can be assigned an arbitrary value. No
further BDD generation is required to find a solution.

To generate a solution where some of the variables have
been eliminated by Gaussian elimination, the solver first con-
tinues the elimination process to simplify the intermediate par-
ity constraints via Gauss-Jordan elimination [31]. It uses BDD
representations of these constraints to generate assignments for
the internal variables. To generate multiple solutions, a new
clause is created as the negation of the generated assignment,
and the buckets are reprocessed in forward order. If this
processing yields BDD node T0, then no further solutions
exist. Otherwise, the bottom-up generation of an assignment
will be guaranteed to find a new solution.

V. EXPERIMENTAL EVALUATION

As a general purpose SAT solver, TBSAT is no match for
state-of-the-art CDCL solvers. Among benchmarks used in
recent SAT competitions, it succeeds only on the TSEITIN-
GRID parity constraint problems [35]. On the other hand, it
handles classes of problems for which CDCL solvers fare
poorly. BDD-based approaches can best complement CDCL,
rather than compete with it.

Table II shows the performance of proof-generating SAT
solvers on several scalable, unsatisfiable challenge problems.
It compares different operating modes of TBSAT to KISSAT,
a state-of-the-art CDCL solver [36]. It shows a progression
of problem sizes, with the most difficult benchmark for
one approach becoming the starting point for the next. All
experiments were performed on a 3.2 GHz Apple M1 Max
processor with 64 GB of memory and running the OS X
operating system. The proofs were checked using DRAT-TRIM
for the proofs generated by KISSAT and LRAT-CHECK for
those generated by TBSAT. For LRAT proofs over 500 million
clauses, we used a modified version of LRAT-CHECK that
better exploits the sparseness in the proof structure that arises
when a large fraction of the clauses is deleted. The column
labeled “SAT Time” indicates the time (in seconds) taken by
the solver, and the column labeled “Check Time” indicates the
time taken by the checker. The column labeled “Proof Clauses”
indicates the number of clauses in the generated proof. Entries
marked “—” indicate a failure by the program to complete.
The following benchmark problems were evaluated:

• Mutilated chessboard: Tile an n × n chessboard with
dominos. Two opposite corners are removed from the
chessboard, making the task impossible [37]. The prob-
lem size, in terms of the number of variables and clauses,
scales as O(n2).

• Pigeonhole: Assign n+1 pigeons to n holes such that no
hole contains more than one pigeon [38]. The at-most-
one constraints are encoded using auxiliary variables [39].
The problem size scales as O(n2).

55

TABLE II
PERFORMANCE OF KISSAT AND TBSAT ON UNSATISFIABLE CHALLENGE PROBLEMS

Solver Method Problem Size Variables Clauses SAT Time Proof Clauses Check Time

Mutilated Chessboard
KISSAT CDCL 16 476 1,592 358.7 12,621,694 618.5
KISSAT CDCL 18 608 2,044 1314.9 38,083,824 1295.8
TBSAT Column scan 18 608 2,044 0.1 111,163 0.1
TBSAT Column scan 368 270,108 943,544 898.2 568,261,363 568.8

Pigeonhole
KISSAT CDCL 13 351 508 1116.1 66,263,560 2041.8
KISSAT CDCL 14 406 589 6077.2 331,858,919 —
TBSAT Column scan 14 406 589 0.1 92,687 0.1
TBSAT Column scan 254 129,286 193,549 898.5 898,819,648 993.5

Chew-Heule parity formulas
KISSAT CDCL 40 114 304 334.3 29,133,644 594.2
KISSAT CDCL 44 126 336 3103.6 227,489,490 8254.9
TBSAT Bucket elim. 44 126 336 0.1 24,492 0.1
TBSAT Bucket elim. 8,666 25,992 69,312 894.7 505,637,209 523.4
TBSAT Gauss. elim. 8,666 25,992 69,312 4.6 5,066,914 5.2
TBSAT Gauss. elim. 699,051 2,097,147 5,592,392 645.3 575,600,179 656.1

Urquhart-Li parity formulas
KISSAT CDCL 3 153 408 — — —
TBSAT Bucket elim. 3 153 408 0.1 38,598 0.1
TBSAT Bucket elim. 35 25,305 67,480 784.6 349,400,890 230.8
TBSAT Gauss. elim. 35 25,305 67,480 3.8 4,232,657 4.3
TBSAT Gauss. elim. 316 2,093,184 5,581,824 529.3 484,548,938 346.9

• Chew-Heule: Enforce both odd and even parity con-
straints on the n input variables. Each constraint is
encoded linearly using n − 1 auxilliary variables, with
the second constraint using a random permutation of the
variables [40]. The problem size scales as O(n).

• Urquhart-Li: A parity constraint problem devised by
Urquhart [41], defined over a bipartite graph with 2m2

nodes. The problem size scales as O(m2). We use the
benchmark generator implemented by Li [42].

The formulas were evaluated for different values of the scaling
parameter n or m. Runs of TBSAT were limited to 900
seconds—longer runs generally produced proofs that exceeded
the capacity of the proof checker. KISSAT was allowed to run
for up to 7200 seconds.

The limitations of CDCL solvers for these problems are
clearly indicated by the results for KISSAT. It can only
handle relatively small instances. We also found that allowing
longer run times does not have a significant effect, due to
the exponential scaling. For example, KISSAT completes the
mutilated chessboard problem for n = 16 in 360 seconds,
but once it reaches n = 20, the solver runs for over two
hours without completing. Similarly, KISSAT completes the
pigeonhole problem for n = 12 in just 42 seconds, but once
it reaches n = 14, it requires nearly 1.7 hours and generates
a proof that is too large for DRAT-TRIM to check. For the
Chew-Heule formulas, KISSAT can only complete n ≤ 44
within the 7200-second time limit. We ran KISSAT for over 16
hours on the smallest instance of the Urquhart-Li benchmark,
having m = 3, but it did not complete. It is remarkable that
a problem with just 153 variables and 408 clauses could be
so challenging for CDCL solvers.

By contrast, TBSAT achieves polynomial scaling for all
four benchmarks. In earlier work [15], we presented column
scanning to efficiently generate unsatisfiability proofs of the
mutilated chessboard and pigeonhole problems. This approach
performs a sequence of conjunction and quantification steps
to effectively sweep through the columns of the chessboard or
the pigeons in the pigeonhole problem in a manner inspired
by symbolic model checking. TBSAT can also apply column
scanning, easily handling the limiting instances for KISSAT. It
can scale to n = 368 for the mutilated chessboard problem
and to n = 254 for the pigeonhole problem within the 900-
second time limit. Even though the generated proofs are very
large, they can be verified by the modified version of LRAT-
CHECK. It remains to be seen whether column scanning can
be made more general and with automatic generation of the
schedule and variable order.

TBSAT can apply bucket elimination to the two parity
problems with good effect. It can easily handle the limit-
ing instances for KISSAT, and it scales to the Chew-Heule
benchmark for n ≤ 8666 and the Urquhart-Li benchmark for
m ≤ 35 within a 900-second time limit.

Perhaps the most striking results are those using Gaussian
elimination. By exploiting the sparse structure of the formulas,
TBSAT can solve very large instances of the Chew-Heule and
Urquhart benchmarks quickly. The limiting factor for both of
these problems is that BUDDY allocates only 21 bits for the
level field in each BDD node (Figure 2(A)), limiting it to
to a maximum of 221 − 1 (2,097,151) input variables. This
prevents it from going beyond n = 699,051 for Chew-Heule
and m = 316 for Urquhart, each having over two million input
variables and five million clauses. Obtaining these results

56

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0
T.O.

PGBDD, Bucket
PGPBS, Gauss
TBSAT, Bucket
TBSAT, Gauss
TBSAT, Bucket, No proof
TBSAT, Gauss, No proof

Fig. 3. Elapsed times (in seconds) for different solvers and solution methods on Chew-Heule parity formulas, as function of problem size n

requires no guidance for the user, and it is insensitive to the
BDD variable ordering.

Figure 3 presents more runtime data for the Chew-Heule
parity formula benchmark as a function of problem size n,
enabling us to compare the relative performance and scaling
of different solvers and solution methods. The red lines show
three different versions of solving via bucket elimination.
The top red line shows the performance of our prototype
solver PGBDD, while the middle line shows the times for
TBSAT. As can be seen, TBSAT consistently ran 10–12× faster.
This can be attributed to the advantage of compiled C/C++
code versus interpreted Python. The lower red line shows the
performance of TBSAT when proof generation is not required.
This mode performs only the conjunction and quantification
BDD operations, without generating proof clauses or writing
them to a file. For smaller values of n, the runtime can be up
to 33× faster, but this advantage drops to just a factor of 2×
for larger values. For large values of n, the cost of garbage
collection becomes a more dominant concern.

The data shown in green give results for three different
versions of solving via Gaussian elimination. The data points
at the top show the performance of our prototype pseudo-
Boolean solver PGPBS. We found that the runtimes and
generated proof sizes varied widely depending on the random
permutation of the second parity constraint, and so the plot
shows the raw data for five different random seeds for each
value of n, including timeouts. The variation depends on
whether or not the greedy pivot selections kept the constraints
sparse. The middle green line shows the performance of TBSAT
using Gaussian elimination. As noted before, it scales very
well, nearly reaching its upper limit of n = 699,051 within
the 600-second time limit. Compared to even the best data
points for PGPBS, we see that TBSAT achieves much better

scaling despite using very similar algorithms. However, like
PGPBS, its ability to maintain sparseness depends on both
the particular permutation of the second parity constraint, as
well as the random tie breaking done during pivot selection.
Consequently, some data points yielded timeouts. The lower
green line shows the performance of TBSAT using Gaussian
elimination, but without proof generation. In this mode, it
need not perform any BDD operations and hence can be very
fast, reaching a maximum of 15.3× faster for n = 3,000, but
dropping off to 6.2× as n approaches its limiting value.

Overall, these measurements show that 1) TBSAT greatly
outperforms the prototype implementations, 2) adding proof
generation can slow performance considerably, but the penalty
diminishes for larger benchmarks, 3) Gaussian elimination
greatly increases the speed and capacity of the solver for parity
constraint problems, and 4) careful pivot selection is required
to maintain sparseness during Gaussian elimination.

VI. CONCLUSIONS AND ACKNOWLEDGEMENTS

The TBUDDY library provides a powerful framework for
creating automated reasoning tools that generate proofs of
correctness. Building on an established BDD package, it can
generate clausal proofs justifying the correctness of each step
in its recursive algorithms. The TBSAT solver is especially
strong for handling problems with parity constraints. We
have also incorporated its proof-generation capability into a
CDCL solver that uses Gauss-Jordan elimination for parity
reasoning [43]. We anticipate implementing other automated
reasoning tools using TBUDDY.

Thanks to Marijn Heule for his continued advice and for
creating a high capacity version of LRAT-CHECK. This work
was supported by the U. S. National Science Foundation under
grant CCF-2108521.

57

REFERENCES

[1] M. J. H. Heule, W. A. Hunt, Jr., and N. D. Wetzler, “Verifying refutations
with extended resolution,” in Conference on Automated Deduction
(CADE), ser. LNCS, vol. 7898, 2013, pp. 345–359.

[2] N. D. Wetzler, M. J. H. Heule, and W. A. Hunt Jr., “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Theory and
Applications of Satisfiability Testing (SAT), ser. LNCS, vol. 8561, 2014,
pp. 422–429.

[3] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” J.ACM, vol. 12, no. 1, pp. 23–41, January 1965.

[4] R. Damiano and J. Kukula, “Checking satisfiability of a conjunction
of BDDs,” in Design Automation Conference (DAC), June 2003, pp.
818–923.

[5] J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield,
and W. M. Vanfleet, “SBSAT: a state-based, BDD-based satisfiability
solver,” in Theory and Applications of Satisfiability Testing (SAT), ser.
LNCS, vol. 2919, 2004, pp. 398–410.

[6] J. Huang and A. Darwiche, “Toward good elimination orders for sym-
bolic SAT solving,” in International Conference on Tools for Artificial
Intelligence (ICTAI), 2004, pp. 566–573.

[7] H. Jin and F. Somenzi, “CirCUs: A hybrid satisfiability solver,” in Theory
and Applications of Satisfiability Testing (SAT), ser. Lecture Notes in
Computer Science, vol. 3542, 2005, pp. 211–223.

[8] G. Pan and M. Y. Vardi, “Search vs. symbolic techniques in satisfiability
solving,” in Theory and Applications of Satisfiability Testing (SAT), ser.
LNCS, vol. 3542, 2005, pp. 235–250.

[9] T. Jussila, C. Sinz, and A. Biere, “Extended resolution proofs for
symbolic SAT solving with quantification,” in Theory and Applications
of Satisfiability Testing (SAT), ser. LNCS, vol. 4121, 2006, pp. 54–60.

[10] C. Sinz and A. Biere, “Extended resolution proofs for conjoining BDDs,”
in Computer Science Symposium in Russia (CSR), ser. LNCS, vol. 3967,
2006, pp. 600–611.

[11] O. Kullmann, “On a generalization of extended resolution,” Discrete
Applied Mathematics, vol. 96-97, pp. 149–176, 1999.

[12] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970. Springer, 1983, pp. 466–483.

[13] S. A. Cook, “A short proof of the pigeon hole principle using extended
resolution,” SIGACT News, vol. 8, no. 4, pp. 28–32, Oct. 1976.

[14] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[15] R. E. Bryant and M. J. H. Heule, “Generating extended resolution
proofs with a BDD-based SAT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Part I, ser. LNCS,
vol. 12651, 2021, pp. 76–93.

[16] ——, “Generating extended resolution proofs with a BDD-based SAT
solver,” CoRR, vol. abs/2105.00885, 2021.

[17] R. E. Bryant, A. Biere, and M. J. H. Heule, “Clausal proofs for pseudo-
Boolean reasoning,” in Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), ser. LNCS, 2022.

[18] J. Lind-Nielsen, BuDDy: a Binary Decision Diagram Package. De-
partment of Information Technology, Technical University of Denmark,
1996.

[19] R. M. Jensen, “A comparison study between the CUDD and BuDDy
OBDD package applied to AI-planning problems,” Carnegie Mellon
University, Tech. Rep. CMU-CS-02-173, September 2002.

[20] R. Pohl, K. Lauenroth, and K. Pohl, “A performance comparison of
contemporary algorithmic approaches for automated analysis operations
on feature models,” in International Conference on Automated Software
Engineering (ASE), 2011, pp. 313–322.

[21] T. van Dijk, E. M. Hahn, D. N. Jansen, Y. Li, T. Neele, M. Stoelinga,
A. Turrini, and L. Zhang, “A comparative study of BDD packages for
probabilistic symbolic model checking,” in International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications,
ser. LNCS, vol. 9409, 2015, pp. 35–51.

[22] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of
a BDD package,” in Design Automation Conference (DAC), June 1990,
pp. 40–45.

[23] S.-I. Minato, N. Ishiura, and S. Yajima, “Shared binary decision dia-
grams with attributed edges for efficient Boolean function manipulation,”
in Design Automation Conference (DAC), June 1990, pp. 52–57.

[24] F. Somenzi, “Efficient manipulation of decision diagrams,” International
Journal on Software Tools for Technology Transfer, vol. 3, no. 2, pp.
171–181, 2001.

[25] R. L. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in International Conference on Computer-Aided Design
(ICCAD), November 1993, pp. 139–144.

[26] E. I. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for CNF formulas,” in Design, Automation and Test in Europe (DATE),
2003, pp. 886–891.

[27] A. Van Gelder, “Producing and verifying extremely large propositional
refutations,” Annals of Mathematics and Artificial Intelligence, vol. 65,
no. 4, pp. 329–372, 2012.

[28] M. J. H. Heule, W. A. Hunt, M. Kaufmann, and N. D. Wetzler,
“Efficient, verified checking of propositional proofs,” in Interactive
Theorem Proving, ser. LNCS, vol. 10499, 2017, pp. 269–284.

[29] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake lpr: Verified
propagation redundancy checking in CakeML,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), Part II, ser.
LNCS, vol. 12652, 2021, pp. 223–241.

[30] S. Baek, M. Carneiro, and M. J. H. Heule, “A flexible proof format for
SAT solver-elaborator communication,” in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Part I, ser. LNCS, vol.
12651, 2021, pp. 59–75.

[31] T. Laitinen, T. Junttila, and I. Niemelä, “Extending clause learning SAT
solvers with complete parity reasoning,” in International Conference on
Tools with Artificial Intelligence, 2012, pp. 65–72.

[32] I. S. Duff and J. K. Reid, “A comparison of sparsity orderings for
obtaining a pivotal sequence in Gaussian elimination,” IMA Journal of
Applied Mathematics, vol. 14, no. 3, pp. 281–291, 1974.

[33] H. M. Markowitz, “The elimination form of the inverse and its appli-
cation to linear programming,” Management Science, vol. 3, no. 3, pp.
213–284, 1957.

[34] R. Dechter, “Bucket elimination: A unifying framework for reasoning,”
Artificial Intelligence, vol. 113, no. 1–2, pp. 41–85, 1999.

[35] J. Ellfers and J. Nordström, “Documentation of some combinatorial
benchmarks,” in Proceedings of the SAT Competition 2016, 2016.

[36] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020—Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[37] M. Alekhnovich, “Mutilated chessboard problem is exponentially hard
for resolution,” Theoretical Computer Science, vol. 310, no. 1-3, pp.
513–525, Jan. 2004.

[38] A. Haken, “The intractability of resolution,” Theoretical Computer
Science, vol. 39, pp. 297–308, 1985.

[39] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in Principles and Practice of Constraint Programming
(CP), ser. LNCS, vol. 3709, 2005, pp. 827–831.

[40] L. Chew and M. J. H. Heule, “Sorting parity encodings by reusing
variables,” in Theory and Applications of Satisfiability Testing (SAT),
ser. LNCS, vol. 12178, 2020, pp. 1–10.

[41] A. Urquhart, “Hard examples for resolution,” J.ACM, vol. 34, no. 1, pp.
209–219, 1987.

[42] C.-M. Li, “Equivalent literal propagation in the DLL procedure,” Dis-
crete Applied Mathematics, vol. 130, no. 2, pp. 251–276, 2003.

[43] R. E. Bryant and M. Soos, “Proof generation for CDCL solvers using
Gauss-Jordan elimination,” 2022.

58

	Introduction
	Proof Generation with BDDs
	Notation
	BDD Extension Variables and Defining Clauses
	RUP Proof Steps
	The Trusted BDD API
	Proof File Format

	Implementation
	Data Structures
	BDD Management

	Capabilities Supported by Tbuddy
	Parity Reasoning
	The Tbsat SAT Solver

	Experimental Evaluation
	Conclusions and Acknowledgements
	References

