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Abstract—Satisfiability modulo theories (SMT) solvers are
widely used to prove security and safety properties of computer
systems. For these applications, it is crucial that the result
reported by an SMT solver be correct. Recently, there has been
a renewed focus on producing independently checkable proofs
in SMT solvers, partly with the aim of addressing this risk.
These proofs record the reasoning done by an SMT solver and
are ideally detailed enough to be easy to check. At the same
time, modern SMT solvers typically implement hundreds of
different term-rewriting rules in order to achieve state-of-the-art
performance. Generating detailed proofs for applications of these
rules is a challenge, because code implementing rewrite rules can
be large and complex. Instrumenting this code to additionally
produce proofs makes it even more complex and makes it harder
to add new rewrite rules. We propose an alternative approach to
the direct instrumentation of the rewriting module of an SMT
solver. The approach uses a domain-specific language (DSL) to
describe a set of rewrite rules declaratively and then reconstructs
detailed proofs for specific rewrite steps on demand based on
those declarative descriptions.

I. INTRODUCTION

Satisfiability modulo theories (SMT) solvers are widely
used to reason about the security and safety of critical sys-
tems [1, 2, 10, 13]. These applications require a high level
of trust in the correctness of the underlying solver. SMT
solvers, however, are complex pieces of software, in some
cases consisting of hundreds of thousands of lines of code.
As with any other large and complex software project, they
are not immune to bugs [17], which may, in the worst case,
cause incorrect results. Due to the size and complexity of
SMT solvers and the fact that most of them continue to be
in active development, their full verification is currently still
out of reach. As a consequence, the best one can do is to
check their individual answers based on evidence provided by
the solvers themselves.

For quantifier-free inputs reported to be satisfiable, SMT
solvers are typically capable of producing as evidence a
satisfying model, which can then be used to validate the claim.
Note that for quantified formulas, model validation for satis-
fiable queries is usually still possible although more complex.
For unsatisfiable inputs, there have been efforts in recent years
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towards producing independently checkable proofs, which
record the reasoning steps required to deduce unsatisfiability.
These steps can later be replayed and checked efficiently by
a proof checker. Proofs can also be used to automatically
discharge proof obligations in interactive theorem provers such
as Coq [25] and Isabelle [19]. For this use case, the SMT
solver acts as an automated tactic. The proof obligation is
encoded as an SMT problem and the proof generated by the
SMT solver is then used, in essence, to reconstruct a proof in
the proof assistant’s native proof representation.

Producing and checking proofs for unsatisfiable problems
requires considerably more effort than generating and validat-
ing models for satisfiable inputs. Additionally, proofs can be
produced in many different forms, each with its own trade-offs.
When it comes to the form of a proof, one characteristic of
interest is the proof’s granularity. Fine-grained proofs enable
efficient proof checking since the proofs are detailed enough
to not require any search during checking. Similarly, proof
reconstruction for interactive theorem provers requires detailed
proofs to minimize holes that must be proved manually. How-
ever, fine-grained proofs are generally more costly to produce.
Coarse-grained proofs, on the other hand, are cheaper to
produce but require more computation to check. Regardless of
the proof form, the traditional approach for generating proofs
is to instrument each component of the SMT solver to record
its reasoning steps, and then consolidate the relevant recorded
steps into a single proof.

Instrumentation can be particularly challenging and tedious
for the components of the solver that implement rewriting.
Modern SMT solvers implement hundreds of rewrite rules
for normalizing and simplifying terms to achieve state-of-the-
art performance. Because rewriting is an essential part of the
reasoning done by the solver, a proof must contain a record of
the rewriting steps performed. Previous work [6] has described
how to generate rewriting proofs whose only holes are atomic
rewrites, i.e., an application of a single rewrite step to a single
term. Such proofs use a single generic rule for all atomic
rewrites. This approach has two major drawbacks, however:
(i) the proof checker has to guess or search for the rule to
apply or trust that the rewriting was done correctly; and (ii) if
used in a proof assistant, each rewrite step becomes a proof
obligation that must be discharged by the user. On the other

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-8669-0011
https://orcid.org/0000-0003-0188-2300
https://orcid.org/0000-0003-2600-5283
https://orcid.org/0000-0002-7142-6258
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-6726-775X
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://creativecommons.org/licenses/by/4.0/


hand, if occurrences of atomic rewrites are proven using a
fixed set of specific rules, we can prove the correctness of the
rules in this set once and for all and then use those proofs
during proof checking or during replay in a proof assistant.

As mentioned above, instrumenting rewriting code for proof
generation is difficult and tedious. Additionally, since rewriting
is applied not only as a preprocessing step but also repeatedly
during the solving process, rewriting code (including any
instrumentation) must be efficient. In this work, we propose an
alternative approach that does not rely on instrumenting the
original rewriter. Instead, our approach treats the rewriter as a
black box and relies on a post-processing phase to expand
coarse-grained rewriting steps ocurring in proofs into fine-
grained proofs. We use a generic reconstruction algorithm that
consults a separate database of core rewrite rules in order
to produce the detailed proof using as input only the terms
before and after an atomic rewrite. The core rewrite rules
need not include every atomic rewrite. It is enough for every
atomic rewrite to be reconstructable using one or more of the
core rewrite rules. This simplifies the task of populating the
database, as the rules used can be fewer and simpler than
what is actually done in the solver. To specify the set of rules
in the database, we propose the use of a high-level, domain-
specific language (DSL) designed to succinctly express a set
of core rules to be used in proofs. We have used this approach
to reconstruct detailed proofs for the theory of strings in the
SMT solver CVC5 [4]. In our experience, this approach greatly
reduces the burden of proof production for rewriting code,
as it allows a solver developer to quickly and incrementally
define core rewrite rules to help fill holes in proofs. Also, note
that rewrite steps are typically equality-preserving. Because
we treat the rewriter as a black box (i.e., independently from
any specific solver or implementation), our approach is quite
general and could be used to produce or complete proofs for
any tool or situation where proofs of equivalence are needed.
By providing a DSL for specifying rewrites and an automatic
reconstruction algorithm for coarse-grained atomic rewrites,
we expect to greatly improve the flexibility and usability of
proofs from SMT solvers. Our contributions are as follows:

• We propose an SMT-LIB-like domain specific language
for defining rewrite rules.

• We describe an algorithm that can use such rules to
reconstruct detailed proofs for rewrites in an SMT solver.

• We implement our approach in CVC5 and report on a
case study reconstructing detailed proofs for rewrites in
the theory of strings.

• We evaluate our implementation and show that it has
reasonable performance in practice.

In the remainder of the paper, we provide an overview of our
approach (Section II) and then describe the language (Sec-
tion III) and the proof reconstruction algorithm (Section IV)
in more detail. We then present a case study of using the
approach to produce detailed proofs for the theory of strings
in CVC5 (Section V) and evaluate our approach (Section VI)
experimentally. Finally, we conclude with some future direc-

tions for the language and our approach (Section VII).

A. Related Work

Barbosa et al. [5] introduced a framework for modular-
izing the production of proofs for formula processing and
term rewriting, a long-standing challenge for SMT solvers.
A similar and more general framework for overall proof
production [6] was recently implemented in CVC5. However,
both frameworks produce proofs that are coarse-grained with
respect to atomic rewrites, i.e., each atomic rewriting step is
a single proof step without further justification.

In the integration between the veriT solver [11] and the
Isabelle/HOL proof assistant [23], which leverages the frame-
work from [5], the Sledgehammer tool [8] sends proof goals
to veriT and then reconstructs proofs from those emitted by
veriT in the Alethe proof format [22]. The reconstructed proofs
can then be used to prove the original Isabelle/HOL proof
goals. An initial version of this framework was similarly
coarse-grained: every atomic rewrite applied by the solver was
justified with a single Alethe proof rule. As shown by Schurr
et al. [23], this led to failures and performance issues in the
Isabelle/HOL reconstruction of Alethe proofs. One approach
to address this issue is to extend the Alethe format to contain
finer-grained rules for atomic rewrites, and to integrate each of
these rules into both veriT and Sledgehammer. This has been
shown to increase the success rate of proof reconstruction, but
the process is fully manual: every new rule added requires
updating the solver, the format, and the reconstruction.

Nötzli [20] proposed a language for rewrite rules in SMT
solvers with the goal of automatically generating executable
code that replaces parts of an existing rewriter. The DSL
presented in this work is an evolution of that language and
is focused on the needs of proof reconstruction. Our ded-
icated rewrite language bears some similarity to equational
specification languages such as Maude [12], ELAN [9], and
CafeOBJ [14]. In contrast to those more general-purpose
languages, the DSL presented in this work has a much more
narrow scope and includes specific features to support its use
in proof reconstruction.

B. Formal Preliminaries

We formalize our work within the setting of many-sorted
logic with equality (see e.g., [15, 26]). Let S be a set of sort
symbols. For every sort τ ∈ S, we assume an infinite set of
variables of that sort. A signature Σ consists of a set Σs⊆ S
of sort symbols and a set Σf of function symbols. Constants
are treated as 0-ary functions. We assume that Σ includes a
sort Bool, interpreted as the Boolean domain, and the Bool
constants ⊤ (true) and ⊥ (false). Signatures do not contain
separate predicate symbols and use instead function symbols
that return a Bool value. We further assume that for all sorts
τ ∈ S, Σ contains an equality symbol ≈: τ × τ → Bool,
interpreted as the identity relation. Finally, we assume the
usual definitions of well-sorted terms, literals, and formulas.

A Σ-interpretation I maps: each τ ∈ Σs to a distinct non-
empty set of values τ I (the domain of τ in I ); each variable
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Fig. 1: Overview of the components of our approach

x of sort τ to an element xI ∈ τ I ; and each fτ1···τnτ ∈ Σf

to a total function f I : τ I1 × . . . × τ In → τ I if n > 0,
and to an element in τ I if n = 0. We use the usual
notion of a satisfiability relation |= between Σ-interpretations
and Σ-formulas. A Σ-theory T is a non-empty class of Σ-
interpretations closed under variable reassignment (i.e., every
interpretation that only disagrees with an interpretation in T
on how it interprets variables is also in T ). A Σ-formula φ is
T -satisfiable (resp., T -unsatisfiable, T -valid) if it is satisfied
by some (resp., no, all) interpretations in T . We write |=T φ
when φ is T -valid. We say that φ1 T -entails φ2, and write
φ1 ⊨T φ2, when ⊨T φ1 ⇒ φ2.

II. OVERVIEW

In this paper, we assume a fixed theory T and consider only
rewrite rules that preserve equivalence in T . Formally, let t↓a
denote the result of performing atomic rewrite a on term t.
Then, we require that |=T t ≈ t↓a.

Figure 1 shows an overview of our proposed approach.
Modern SMT solvers implement a large number of theory-
specific rewrite rules. Conceptually, the implementation of
these theory-specific rewrite rules can be seen as theory
rewriter modules of the individual theory solvers. A rewriter
is a module that traverses a given term and invokes the
appropriate theory rewriter on each subterm. To determine
which theory rewriter to call, the rewriter looks at the top-most
symbol of the subterm and calls the theory whose signature
contains that symbol. The proof module, which manages
proofs, utilizes the rewrite proof reconstructor to fill in the
missing subproofs for rewrites. The rewrite proof reconstructor
bases its reconstruction on a set of rewrite rules, stored in the
rewrite rule database. This database is generated at compile-
time from a set of rewrite rules written in our DSL RARE
(described in Section III). These rewrite rules are stored in text
files, which are compiled to C++ code using the DSL compiler.
The compiled code populates a discrimination tree [16] which
is an index used for matching terms with applicable rewrite
rules during proof reconstruction. Assuming that the rewrite
rules in the rewrite rule database are correct, our reconstruction
is sound since only these rules are used to construct the proofs.

⟨rule⟩ ::= ( define-rule ⟨symbol⟩ ( ⟨par⟩∗ )
⟨expr⟩ ⟨expr⟩ )

| ( define-cond-rule ⟨symbol⟩ ( ⟨par⟩∗ )
⟨expr⟩ ⟨expr⟩ ⟨expr⟩ )

| ( define-rule* ⟨symbol⟩ ( ⟨par⟩∗ )
⟨expr⟩ ⟨expr⟩ [⟨expr⟩] )

⟨par⟩ ::= ⟨symbol⟩ ⟨sort⟩ ⟨attr⟩∗

⟨sort⟩ ::= ? | ⟨symbol⟩ | ( ⟨symbol⟩ ⟨sort⟩+ )
| ( _ ⟨symbol⟩ ⟨idx⟩+ )

⟨idx⟩ ::= ? | ⟨numeral⟩

⟨expr⟩ ::= ⟨const⟩ | ⟨id⟩ | ( ⟨id⟩ ⟨expr⟩+) | ⟨let⟩

⟨id⟩ ::= ⟨symbol⟩ | ( _ ⟨symbol⟩ ⟨idx⟩+ )

⟨let⟩ ::= ( let ( ⟨binding⟩+ ) ⟨expr⟩ )

⟨binding⟩ ::= ( ⟨symbol⟩ ⟨expr⟩ )

Fig. 2: Overview of the grammar of RARE.

The output of the proof module consists of the proof with the
subproofs for rewrites completed.

The rule database may also play a role in proof checking. In
particular, a stand-alone proof checker may use the database
to automatically generate code that can check whether a rule
in the database is used correctly. While the syntax is checked
in this scheme, the T -validity of the rules in the database
is trusted. Checking the rules for T -validity is another task
which can (and should) be done separately, perhaps using a
proof assistant. We do not address these issues in this paper,
but instead focus on the RARE language and the algorithm at
the core of the rewrite proof reconstructor.

III. THE LANGUAGE

In this section, we describe the scope, design goals, syntax,
and semantics of RARE, our domain-specific language for
rewrites, automatically reconstructed. To reduce the cost of in-
troducing such a new language into the development workflow
of an existing SMT solver, we identify several requirements:

Succinctness: Writing rewrite rules should be simple and
concise. Adding new rules should be far less costly than
instrumenting existing code.

Expressiveness: The language should be able to express the
majority of the rewrite rules used in a state-of-the-art
SMT solver.

Accessibility: The language should be easy to parse and
understand.

There is an inherent tension between making a DSL succinct
and making it expressive. We designed RARE to be as expres-
sive as possible without sacrificing succinctness. To aid with
accessibility, its syntax reuses the syntax of the SMT-LIB [7]
language standard whenever possible.
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As we discuss in Section V, we do not aim for full
generality, because certain rewrites, such as polynomial nor-
malization, are less amenable to our approach. Similarly, we
assume that constant folding is built into the reconstruction
algorithm and therefore does not have to be explicitly defined
with rewrite rules.

An input file for RARE consists of a list of rewrite rules
whose syntax is defined by the BNF grammar in Figure 2.
Rewrite rules are written as S-expressions. For symbols and
concrete constants (e.g., integer numbers, string literals),
RARE uses the same syntax as the SMT-LIB language. In
contrast to SMT-LIB, parameterized sorts such as arrays and
bit-vectors do not need to be concrete. Instead, RARE is
gradually typed and allows the parameters of such sorts to
remain abstract. This allows users to specify rewrites that are,
e.g., independent of the bit-width or the sorts of indices and
elements in arrays. In the following, we discuss all the different
constructs of the language in detail.

Basic Syntax. As indicated in Figure 2, ⟨rule⟩ defines three
different types of rewrite rules: basic rules (define-rule),
conditional rules (define-cond-rule), and fixed-point rules
(define-rule*). A basic rule consists of a name, a list
of match parameters, the match expression, and the target
expression. The name identifies the rewrite rule and is later
used to label steps in the rewrite proof; the list of parame-
ters ⟨par⟩∗ introduces the term variables that appear in the
rule, along with their sorts; the match expression defines the
syntactic shape of terms the rewrite rule applies to; and the
target expression defines how a matched term is rewritten.
Both the match expression and the target expression have the
same syntax as SMT-LIB terms. All the variables that appear
in a rewrite rule must either be declared as a parameter or
introduced locally with the let binder.

Basic rules define simple rewrite rules without precondi-
tions. The following example shows such a rule, which defines
the rewrite substr("",m, n) ⇝ "" from a term denoting the
substring from position m to position n of the empty string
to just the empty string, regardless of the value of m and n.

(define-rule substr-empty ((m Int) (n Int))
(str.substr "" m n) "")

In this example, the match expression specifies that the rule
applies to string terms of the form substr("", s, t) where
the first argument of substr is the empty string, the second
argument s is matched by m, and the third argument t is
matched by n. The compiler and the proof reconstruction
algorithm have built-in knowledge of theory symbols such as
substr as defined in the SMT-LIB standard.

Matching. If a variable x appears multiple times in a match
expression, the rewrite rule only applies if each occurrence
of x matches syntactically identical terms. For example, the
match expression (= (str.++ x1 x2) x2) with variables
x1 and x2 matches a ++ b ≈ b, but not a ++ b ≈ c. For a
rewrite rule to apply, a term matched by a declared variable
must be of the expected sort. We use ? to denote that a term

can be of any sort, or to match an arbitrary sort parameter.
The following example illustrates the use of multiple variable
occurrences and abstract sorts.

(define-rule eq-refl ((t ?)) (= t t) true)

This rule rewrites equalities of syntactically equivalent terms
to ⊤, regardless of the sort of the term matched by variable t.

Lists. Some operators defined in SMT-LIB, e.g., string
concatenation, can be applied to two or more terms. We
use variables declared with the :list attribute to match an
arbitrary number of arguments of an operator. The following
example shows a rule for flattening string concatenations.

(define-rule str-concat-flatten (
(xs String :list) (s String)
(ys String :list) (zs String :list))

(str.++ xs (str.++ s ys) zs) ; match
(str.++ xs s ys zs)) ; target

This rule applies to any string concatenation with another
string concatenation as a subterm. The prefix xs and the suffix
zs may be empty (although not at the same time in this case).

Conditional Rules. The previous rewrite rule examples rely
on purely syntactic matching. To make matching more expres-
sive, RARE supports the conditional matching of terms using
define-cond-rule. Such rules have an additional argument,
the precondition, before the match expression. That is either
a single condition, expressed by a literal, or a conjunction of
them capturing all conditions that must be met for the rule to
apply. When reconstructing a proof, these conditions introduce
new proof obligations. The following example illustrates the
use of conditional rules.

(define-cond-rule concat-clash (
(s1 String) (s2 String :list)
(t1 String) (t2 String :list))

(and (= (str.len s1) (str.len t1))
(not (= s1 t1)))

(= (str.++ s1 s2) (str.++ t1 t2))
false)

This rule rewrites a word equation s1 ++ s2 ≈ t1 ++ t2
to ⊥, provided that two conditions are met: the lengths
of the prefixes s1 and t1 are the same and the prefixes
are distinct in the theory T . For example, this rule applies
to the equality "abc" ++ x ≈ "def" ++ y since both
|"abc"| ≈ |"def"| ≈ 3 and "abc" ̸≈ "def" hold in
the theory of strings. Note that the precondition |s1| ≈ |t1|
does not require the evaluation of |s1| and |t1|. Instead, it just
requires some proof that they are equal. In practice, we prove
the precondition by applying additional rewrite rules. This
allows us to show that the precondition holds for equalities
such as |x++ y| ≈ |y ++ x|, for instance.

Fixed-Point Rules. As an optimization, RARE allows the
definition of fixed-point rules with define-rule*. These
rules are repeatedly applied until they no longer apply. They
are most useful for rewrite rules that effectively iterate over
arguments of n-ary operators, as we demonstrate in the exam-
ple below. Fixed-point rules take a match expression, a target
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rc(t ≈ s, d)

1: if d < 0 then return ⊥
2: if t ≈ s ∈ P then
3: if P[t ≈ s] = (fail, e) and d ≤ e then return ⊥
4: if P[t ≈ s] ̸= (fail, e) then return ⊤
5: if t↓e = s↓e then P[t ≈ s] := eval, return ⊤
6: if (t ≈ s)↓ = ⊥ then P[t ≈ s] := (fail,∞), return ⊥
7: P[t ≈ s] := (fail, d)
8: if (t, s) = (f(u⃗), f(v⃗)) and
9: rc(u ≈ v, d) for all u ≈ v ∈ u⃗ ≈ v⃗ then

10: P[t ≈ s] := cong return ⊤
11: if t = f(u⃗) and u⃗↓ = c⃗ and f(c⃗)↓e = s↓e and
12: rc(u⃗ ≈ c⃗, d) then
13: P[t ≈ s] := ceval return ⊤
14: foreach (r, p⃗ ≈ q⃗ ⇒ u ≈ v) ∈ R
15: s.t. t = σ(u) for some σ do
16: if rc(σ(v) ≈ s, d− 1) and
17: rc(σ(p ≈ q), d− 1) for all p ≈ q ∈ p⃗ ≈ q⃗ then
18: P[t ≈ s] := r, return ⊤
19: return ⊥
Fig. 3: The algorithm for reconstructing a proof sketch P from
rule database R. Calling rc(t ≈ s, d) returns true if the proof
of t ≈ s having depth at most d can be constructed.

expression, and, optionally, a context expression as arguments.
The target expression indicates the recursion step, i.e., the term
that should be rewritten next. The context expression indicates
how to use the result of the recursion step to construct the final
result. It is a term with a placeholder _ for the location of the
result of the recursion step. Omitting the context expression
is the same as providing a context of _, which indicates that
the result of the recursion step is also the final result. The
following example defines a rewrite rule that distributes the
string length operator over the elements in a concatenation:

(define-rule* str-len-concat-rec (
(s1 String) (s2 String)
(rest String :list))

(str.len (str.++ s1 s2 rest))
(str.len (str.++ s2 rest))
(+ (str.len s1) _))

This rule specifies that we rewrite |s1++s2++ . . . | to |s1|+ t,
where t is the result of recursively applying the rule to the
term |s2 ++ . . . | .

Annotating rules to be fixed-point rules reduces the search
space during reconstruction, because the reconstruction algo-
rithm always applies these rules until a fixed-point is reached,
without considering possible interleavings of other rules. This
improves efficiency at the cost of not considering some possi-
ble reconstructions. Thus, there is a trade-off, and this feature
must be used carefully.

IV. RECONSTRUCTING PROOFS

In this section, we describe our approach for constructing
proofs of rewrites t ≈ t↓a using rules from a rewrite rule

eval
t ≈ t↓e

trans
r ≈ s s ≈ t

r ≈ t

cong
s⃗ ≈ t⃗

f(s⃗) ≈ f (⃗t)
ceval

s⃗↓ ≈ t⃗↓
f(s⃗) ≈ (f (⃗t))↓e

Fig. 4: The basic proof rules; t↓e is the evaluated form of t.

database R obtained by compiling RARE rules. To simplify
the presentation, we do not consider fixed-point rules for
now, postponing the general case to later in this section. The
database R stores a set of labeled implications of the form
(r, p⃗ ≈ q⃗ ⇒ t ≈ s), where r is a rule identifier, p⃗ ≈ q⃗
is a conjunction of term equalities, and p⃗ ≈ q⃗ ⊨T t ≈ s.
Operationally, the rule specifies that a term t can be rewritten
to a term s when the premises p⃗ ≈ q⃗ hold. Note that using just
equalities in the premises is without loss of generality since
an arbitrary formula φ can be expressed as a premise of the
form φ ≈ ⊤. Unconditional rules are represented using the
single, valid premise ⊤ ≈ ⊤.

Our proof reconstruction for an equality t ≈ t↓a based on
the rule database R consists of two phases. In the first one,
captured by the algorithm in Figure 3, we search for a proof
sketch P, which is a map from term equalities to rules that
can be used to prove them in a final proof. In the second,
the discovered proof sketch, if any, is transformed into a full
proof, which may consist of the application of multiple rules
from R, as described later in this section.

A. Finding Proof Sketches

Figure 3 shows our algorithm rc for recursively finding
proof sketches for equalities t ≈ s. The inputs are the (ori-
ented) equality to prove and an integer d specifying an upper
bound on the depth of rc’s recursive calls. Some recursive
calls are generated by the algorithm’s attempt to justify the
use of a conditional rule from R to prove the input equality.
In that case, the algorithm attempts to prove the premises
of the conditional rule, but does so for a decreased depth.
The rationale behind the depth limit on the search is that
there is no guarantee that preconditions are simpler than the
current equality to be proved, and so there is no guarantee
of termination in general. The depth limit can be chosen by
the user at runtime to maximize the chances of successfully
reconstructing a proof for a rewrite while minimizing the
amount of work spent on unsuccessful parts of the search
space. Note that d is decremented only in recursive calls over
the premises of conditional rules. For other recursive calls,
which are over subterms of the input equality, termination is
ensured by the reduction in the size of the new input equality.

The algorithm returns ⊤ if it finds a proof sketch for t ≈
s within the given depth restriction d. During its search, it
updates a (global) proof sketch map P from term equalities to
rules r that can be used in the final proof, or to pairs (fail, e)
indicating that no proof for that equality can be found within
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depth e. We use the array-like notation P[t ≈ s] to refer to
the value that P associates with t ≈ s. A few of the rewrite
rules stored in P are built-in, the rest are from the database
R. The built-in rules are provided in Figure 4 in the style of
inference rules. Note that trans is actually not used for proof
sketches, but only for the construction of final proofs.

Going through the algorithm line by line, we see that it first
returns ⊥ if the given depth d is negative. Then, on line 2, it
checks if a proof sketch for t ≈ s has already been determined.
If so and the value was (fail, e), then no proof was found for
t ≈ s using depth e. If e is at least d, then it is impossible to
construct a proof with depth d, and ⊥ is returned to indicate
failure. On the other hand, if a proof already exists, then ⊤ is
returned, indicating success.

If none of these quick-return cases hold, the algorithm
tries to prove the equality using several techniques, which we
informally call proof tactics. First, the algorithm checks if the
equality can be quickly (dis)proven. Specifically, on line 5 the
simplest tactic checks whether the equality can be proven by
evaluation, and returns ⊤ if so. We write t↓e to denote the
evaluated form of t, typically a concrete constant c equivalent
to t, if one can be determined by recursively evaluating (i.e.,
constant-folding) subterms of t, or t itself otherwise. If the
evaluated form of t and s are the same, the algorithm stores
in P the information that t ≈ s can be proven by evaluation,
denoted by built-in rule eval. This case applies for instance
to simple equalities such as 1 + 3 ≈ 2 + 2. On line 6, the
global rewriter of an SMT solver (denoted as ↓) is used as an
oracle to check whether the current equality can be rewritten
to ⊥, which means that the search for a proof sketch is futile.
In this case, failure is stored as (fail,∞), indicating that a
proof for t ≈ s cannot exist because ⊨T t ̸≈ s. This is a
fast albeit incomplete check which is useful when the input
t ≈ s is a precondition of some other rule. If that check fails,
the search continues because the global rewriter is incomplete,
and thus a proof for t ≈ s may still exist. On line 7, t ≈ s
is tentatively marked in P as (fail, d), but then an attempt is
made to prove t ≈ s using the remaining proof tactics. The
equality is marked as a failure before running these tactics to
avoid infinite recursion when t ≈ s happens to be a premise
in some recursive call.

Line 9 gives our tactic for proving the given equality by
congruence, which we associate with a proof rule cong. If
t and s have the same top symbol f and our reconstruction
algorithm succeeds in proving equalities pairwise for each of
their arguments u⃗ ≈ v⃗, we mark t ≈ s as proven and return
⊤. Line 12 gives our tactic for congruence plus evaluation,
which we associate with a proof rule ceval. This tactic uses
the global rewriter again as an oracle to check whether all the
arguments u⃗ of t can be rewritten to some constant values
c⃗, i.e., whether u⃗↓ = c⃗. If additionally the evaluation of the
top symbol f on c⃗ is equal to the evaluation of s, then the
algorithm tries to construct a proof for equalities u⃗ ≈ c⃗ using
a recursive call. If it finds a proof, then t ≈ s is marked
proven and ⊤ is returned. Failing this, the algorithm applies
the main proof tactic, which checks whether there is a rule r

in rewrite rule database R whose conclusion’s left-hand side u
matches t under some substitution σ. In this case, it calls itself
recursively, attempting to prove that: (i) the right-hand side s
is equivalent to u; and (ii) each premise of that rule holds in
the theory under the same substitution. If both of these checks
succeed, t ≈ s is marked as proven by rule r. Note that the
matching does not automatically take into consideration the
commutativity of operators. Instead, the algorithm relies on
the commutativity of operators being expressed as additional
rewrite rules.

Database Implementation. The algorithm is implemented
by using a discrimination tree data structure to index the
conclusions of all rules in R. When a rule is added to R, it is
normalized so that its variables are taken from a global list and
assigned based on a left-to-right traversal of the conclusion.
For example, x+y ≈ y+x is normalized to x1+x2 ≈ x2+x1,
where the global list of integer variables is (x1, x2, . . .). We
enumerate matches for t ≈ s based on a single traversal of
the discrimination tree, which both constructs the matching
substitution and ends at the rewrite rule identifier.

Optimizations and Extensions. Our actual algorithm in-
cludes several optimizations and extensions not shown in
Figure 3. First, our tactics use a fast failure heuristic that
avoids making recursive calls for a set of equalities u⃗ ≈ v⃗
if a single ui ≈ vi can be shown to fail without recursion.
For example, our congruence tactic for f(u, 0) ≈ f(v, 1) fails
early since (0 ≈ 1)↓ = ⊥. Second, we extend our techniques
for evaluation of arithmetic equalities to incorporate polyno-
mial normalization, where, for example, the arithmetic term
y + x + x can be shown to be equal to 2 ∗ x + y. Third, we
use additional built-in tactics for Booleans, e.g., that prove
(t ≈ s) ≈ ⊤ if t ≈ s can be proven. Finally, we account
for fixed-point rules from R (as described in Section III)
by an extension to the tactic in line 15. In particular, when
considering a fixed point rule r with conclusion u ≈ v that
matches t ≈ s with substitution σ, we immediately check
if the subterm of σ(v) occurring at the placeholder position
denoted by r also produces a match using the rule r. If so, we
store the proof sketch for t ≈ σ(v) and continue this process
until we have proven the equality t ≈ v′ for some v′. We then
attempt to prove s ≈ v′ along with the required preconditions
for the application(s) we used to derive t ≈ v′.

B. From Proof Sketches to Proofs

We now return to the question of how to transform a proof
sketch into a final proof. A proof is built out of proof nodes. A
proof node is a triple (r, q⃗, t⃗), where r is a proof rule identifier,
q⃗ is a list of proof nodes, and t⃗ is a list of terms. A proof
checker for a proof rule r is a function taking a list of formulas
φ⃗ and a list of terms t⃗, and returning either a conclusion
formula ψ or failure. Intuitively, the proof checker returns ψ if
r concludes ψ from premises φ⃗ and a side condition depending
on terms t⃗. A well-formed proof in a proof system S is a
directed acyclic graph over proof nodes whose conclusions can
be assigned based on the proof checkers for the rules in S. In
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particular, a proof node (r, q⃗, t⃗) can be assigned a conclusion
ψ if the proof nodes in q⃗ are well-formed with conclusions φ⃗
and the proof checker for r on (φ⃗, t⃗) returns ψ.

Overall, the algorithm in Figure 3 maintains the invariant
that equalities t ≈ s map to a rule r by the proof sketch P
only if entries for the preconditions p⃗ of rule r also have been
successfully added to P, and moreover these dependencies are
acyclic. Thus, we can transform the proof sketch P into a
final proof by first recursively reconstructing the proofs of the
preconditions to the current rule. For equalities t ≈ s marked
with the eval rule, we construct a proof whose proof rule is
reflexivity or evaluation. For equalities f(u⃗) ≈ f(v⃗) marked
with the cong rule, we first construct proofs for each of u⃗ ≈ v⃗,
and then construct the proof of f(u⃗) ≈ f(v⃗) by congruence.
For equalities f(u⃗) ≈ s marked ceval, after reconstructing
the proofs of u⃗ ≈ c⃗, we prove f(u⃗) ≈ f(c⃗) by congruence,
f(c⃗) ≈ s by evaluation, and then f(u⃗) ≈ s by transitivity
of these two equalities using the trans rule from Figure 4.
For equalities t ≈ s marked with a rule r from our database
having conclusion u ≈ v, we reconstruct the substitution σ
such that t = σ(u) by matching. We prove t ≈ σ(v) by rule r,
which implies the existence of a proof of σ(v) ≈ s (due to
the recursive call on line 16), and we finally combine them to
a proof for t ≈ s by transitivity.

Example 1: Suppose we wish to prove the correctness of
the rewrite substr(substr("abc", 4, 1),m, n)⇝ "". Further-
more, assume our rewrite database R contains:

(define-cond-rule substr-empty-s (
(s String) (m Int) (n Int))

(= s "") (str.substr s m n) "")

We call the method rc from Figure 3 on the equal-
ity substr(substr("abc", 4, 1), j, k) ≈ "" with a cho-
sen depth d = 3. Assume that the proof sketch map P
is initially empty. For this input, none of the condi-
tions on lines 1-6 apply. On line 7, we provisionally set
P[substr(substr("abc", 4, 1), j, k) ≈ ""] to (fail, 3). The
conditions on lines 8 and 10 also do not apply. In the loop
on line 14, we find that the match term substr("", j, k) from
rule substr–empty–s matches the left-hand side of our equality
with substitution σ = {s 7→ substr(substr("abc", 4, 1),m 7→
j, n 7→ k}. On lines 16 and 17, we recursively call rc on
(σ("") ≈ "", 2) and on (σ(s ≈ ""), 2), respectively. Both
recursive calls succeed trivially on line 5, where the latter
equality is substr("abc", 4, 1) ≈ "". Thus, we successfully
prove the conditions for applying substr–empty–s to our input
equality. We denote this in P and return ⊤, where P is
the mapping {"" ≈ "" 7→ eval, substr("abc", 4, 1) ≈
"" 7→ eval, substr(substr("abc", 4, 1), j, k) ≈ "" 7→
substr–empty–s}. The proof of the original equality can then
be constructed trivially based on this mapping, where, overall,
the proof involves an application of substr–empty–s whose
premise is proven by eval.

V. IMPLEMENTATION

We implemented both a compiler for RARE and the re-
construction algorithm, and integrated them with CVC5 [4], a

state-of-the-art SMT solver, most of which is instrumented to
produce proofs [6]. Notably, the rewriter is not instrumented,
so proof reconstruction is an attractive option for CVC5. Our
initial implementation focuses on the theory of strings, both
because it is used in practical applications such as reasoning
about access policies in the cloud [2], and because it presents
a challenge due to the large number of complex rules in
the strings theory rewriter, which are required to achieve
good performance [21]. The theory of strings is frequently
combined with the theory of linear integer arithmetic to reason
about the length and indices of strings. Thus, reconstructing
rewrite proofs for string problems requires reasoning about
Boolean, linear integer arithmetic, and string terms. None
of these theories require parameterized sorts, so the current
implementation uses concrete types. Supporting rewrite rules
with partially specified types is left for future work.

In the following, we discuss the integration of our approach
in the existing proof infrastructure and our experience using
RARE to define a set of rewrite rules. We implemented our
reconstruction algorithm as a module in the existing proof
infrastructure of CVC5. At compile-time, our compiler for
RARE populates the rewrite rule database (referred to as R
in the previous section). As mentioned earlier, RARE aims at
being a compromise between succinctness and expressiveness.
The limited expressiveness of RARE means that some desirable
rewrite rules cannot be expressed in it. To overcome this
limitation, our reconstruction module supports mixing RARE
rules with rules implemented in C++. We use this feature, for
example, for certain integer arithmetic rewrites, as discussed
below. Reconstructing the proofs for rewrites happens during
post-processing of the overall proof. If a proof for a given
atomic rewrite cannot be reconstructed, a generic theory
rewrite proof rule is used instead.

The proof module of CVC5 supports the production of
proof certificates in different proof formats. One of the proof
formats that is well-supported is LFSC [24]. Proofs in LFSC
use the same language to define both the proof rules and the
proofs themselves. As part of our implementation, we extended
CVC5’s LFSC back end to automatically generate LFSC proof
rules for each rewrite that appears in a given proof.

The string theory rewriter in CVC5 is complex—its imple-
mentation, not including any of the helper functions, amounts
to over 3,000 lines of C++ code and distinguishes over 200
different rewrite rules. Moreover, not all of those rules can
be expressed as a single rewrite rule in RARE. In view of
these difficulties, we took a pragmatic approach to proof
reconstruction for the theory of strings: instead of trying to
implement all of the rewrite rules in RARE, we focused on
a set of challenging string benchmarks (see Section VI) of
practical interest, and then defined rules on demand to fill in
missing subproofs. We ended up with 40 RARE rules for the
theory of strings.

The structure of the CVC5 theory rewriter for arithmetic, on
the other hand, is quite different. Instead of a large number
of different rewrite rules, most of the rewriting boils down to
normalizing polynomials. Thus, for normalizing polynomials
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we implemented a single rule, which is complemented with
25 rules for arithmetic that do not concern this normalization.

Finally, the rewriter for Booleans is far simpler than rewrit-
ers for other theories—its implementation is less than 350
lines of C++ code. For reconstructing Boolean rewrite rules,
we took a similar approach to the one for string rewrites and
defined RARE rules on demand to fill in missing subproofs on
problems of interest. This led to 22 Boolean rules in RARE.

While using RARE is not possible or desirable for all rewrite
rules, it did enable us to iterate quickly to cover the majority
of missing subproofs for our target benchmarks.

VI. EVALUATION

Using our implementation in CVC5, we evaluated the fol-
lowing research questions:

• Can we generate fine-grained proofs for rewrites?
• What is the performance impact of generating fine-

grained proofs?
We considered two benchmark sets, both over the theory
of strings. The first consists of 25 unsatisfiable industrial
benchmarks that are representative of challenging queries in
a specific production environment. The second set consists of
26,626 unsatisfiable benchmarks from the logics QF_S and
QF_SLIA in the SMT-LIB benchmark library. To determine
the set of unsatisfiable benchmarks, we used the results from
an artifact [3] of an earlier evaluation of CVC5, which ran the
competition configuration of CVC5 for 1200s.

For the evaluation, we ran all benchmarks with three
configurations of CVC5: CVC5, which does not generate any
proofs; CVC5-C, which generates proofs with coarse-grained
steps for rewrites; and CVC5-F, which uses our approach
to generate fine-grained proofs for rewrites. For the proof
reconstruction, we set the depth d to 3. The configurations
involved in our evaluation are all variants of CVC5 since to the
best of our knowledge, no other SMT solvers generate proofs
for nontrivial theory rewrites. In particular, no other solver can
generate fine-grained proofs for the theory of strings.

We ran all experiments on a cluster equipped with Intel
Xeon E5-2620 v4 CPUs running Ubuntu 16.04. We allocated
one physical CPU core and 8GB of RAM for each solver-
benchmark pair and used a 900 seconds time limit.

To measure the effectiveness of our reconstruction, we
analyzed the generated proofs of benchmarks that were solved
by all configurations. The proofs for the industrial benchmarks
contain 43,819 rewrite steps, and the proofs for the SMT-LIB
benchmarks contain 2,806,761. For those steps, CVC5-F re-
constructed fine-grained proofs in terms of our current rewrite
rule database for 95% of the rewrite steps for the industrial
set, and for 92% of the rewrite steps for SMT-LIB. The lower
rate in SMT-LIB can be explained by our greater focus on the
rewrite steps from proofs of the industrial benchmarks. We
expect that the SMT-LIB rate can be improved to the level of
the industrial set without significant challenges, i.e., primarily
by adding more rules to the rewrite rule database. We also
note that for 20% (5 out of 25) benchmarks in the industrial
set, CVC5-F manages to produce fine-grained proofs for all

TABLE I: Number of solved benchmarks and cumulative
solving times in seconds on commonly solved benchmarks,
with the slowdown versus CVC5-C in parentheses.

Division CVC5 CVC5-C CVC5-F

Industrial (25) Solved 25 25 25
Time 238 715 779 (1.09×)

SMT-LIB (26,626) Solved 26,615 26,614 26,609
Time 34,028 35,932 114,330 (3.18×)

Total (26,651) Solved 26,640 26,639 26,634
Time 34,266 36,647 115,109 (3.14×)

rewrites, whereas for SMT-LIB, 22% of CVC5-F’s proofs with
rewrite steps (5,945 out of 26,418) are fully fine-grained.

Table I summarizes the overhead incurred by our approach
grouped by benchmark set. Figure 6 shows a cactus plot that
compares the performance of the different configurations. In
this experiment, we use CVC5 as a reference point to measure
the general overhead of proof production, and to compare
that overhead with the additional overhead of generating
fine-grained proofs. Table I shows that the overhead on the
industrial benchmarks for generating proofs is significant, but
the additional overhead of generating the fine-grained proofs
is negligible. For the benchmarks from SMT-LIB, the oppo-
site is the case: the overhead for generating coarse-grained
proofs is relatively small, but the overhead of generating fine-
grained proofs is significant. For a better understanding of
the origin of the overhead, we provide three scatter plots in
Figure 5. Figure 5a compares the performance of CVC5-C with
the performance of CVC5-F and shows that for benchmarks
that are solved quickly with CVC5-C, there are cases where
the overhead of the proof reconstruction is significant. For
longer running benchmarks, the overhead seems to be less
pronounced. In Figure 5b, we plot the solving time in rela-
tionship with the relative number of atomic rewrites in proofs
generated by CVC5-C. The plot shows that atomic rewrites
are featured more prominently in proofs of benchmarks that
are solved quickly. This may explain part of the overhead for
easy benchmarks: a larger portion of the proof is being post-
processed with the reconstruction algorithm. Finally, Figure 5c
shows the relationship between the difference in solving time
between CVC5-F and CVC5-C and the number of atomic
rewrites. The plot indicates two trends: more atomic rewrites
lead to more overhead and—more surprisingly—there seems
to be a large number of benchmarks with a relatively small
number of rewrites that have a significant amount of overhead.

Overall, we find that our approach does not significantly
affect the number of solved benchmarks. Additionally, it works
well for the industrial use case that we originally targeted with
our approach. Some of the SMT-LIB benchmarks, on the other
hand, make use of complex rewrites such as the ones described
in earlier work [21], which we have not explicitly optimized
our current implementation for.
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(a) Scatter plot that compares the perfor-
mance of CVC5-C and CVC5-F.
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(b) Scatter plot of the relationship between
solving time for CVC5-C and the number
of atomic rewrites.
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Fig. 5: Scatter plots that analyze the overhead of our rewrite proof reconstruction.
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Fig. 6: Cactus plot that shows the general performance impact
of generating proofs and the performance impact of generating
fine-grained proofs for rewrites.

VII. CONCLUSION

We presented a DSL-based approach for reconstructing
fine-grained proofs of rewrite rules. For the future, we plan
to expand our implementation to other theories in CVC5,
including theories with parameterized sorts, which will require
adding support for gradual typing. The DSL proposed in this
work is independent of the discussed use case and can be used
to express rewrite rules for SMT solvers in other contexts.

Another direction for future work is to expand the DSL
compiler to generate efficient code to replace parts of existing
theory rewriters, i.e., code that actually performs the rewrites.
This could make it much easier to explore different sets of
rewrite rules. It would also make the rewriting code easier
to understand and maintain. However, since the rewriter is
called frequently during solving, its performance is critical.
Therefore, integrating automatically generated code needs to
be done carefully. Our primary targets in that context are the

theories of fixed-size bit-vectors and floating-point arithmetic.
Another back end for the DSL could be used to generate

verification conditions for the T -validity of rewrite rules.
These conditions could be discharged using a third-party tool
such as a proof assistant or another SMT solver. An interesting
challenge here is that SMT solvers generally only support
reasoning about fixed-size bit-vectors, whereas rewrite rules
for the theory of bit-vectors are parameterized by the bit-width.
We plan to explore approaches for bit-width independent ver-
ification (e.g., [18]) to discharge these verification conditions.
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