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Abstract—Symbolic circuit simulation has been the main
vehicle for formal verification of Intel Core processor execution
engines for over twenty years. It extends traditional simulation by
allowing symbolic variables in the stimulus, covering the circuit
behavior for all possible values simultaneously. A distinguishing
feature of symbolic simulation is that it gives the human verifier
clear visibility into the progress of the computation during the
verification of an individual operation, and fine-grained control
over the simulation to focus only on the datapath for that
operation while abstracting away the rest of the circuit behavior.

In this paper we describe an automated simulation complexity
reduction method called timed causal fanin analysis that can be
used to carve out the minimal circuit logic needed for verification
of an operation on a cycle-by-cycle basis. The method has been a
key component of Intel’s large-scale execution engine verification
efforts, enabling closed-box verification of most operations in the
interface level.

As a specific application, we discuss the formal verification of
Intel’s new half-precision floating-point FP16 micro-instruction
set. Thanks to the ability of the timed causal fanin analysis to
separate the half-precision datapaths from full-width ones, we
were able to verify all these instructions closed box, including
the most complex ones like fused multiply-add and division. This
led to early detection of several deep datapath bugs.

Index Terms—Formal Verification, Symbolic Simulation, Com-
plexity Reduction

I. INTRODUCTION

Comprehensive formal verification of execution engines
has been standard practice in virtually all Intel® Core™ and
Intel Atom® processor development projects in the last two
decades, and extensive infrastructure has been built to support
these efforts. Formal verification of Intel processor execution
engines is primarily based on symbolic circuit simulation,
a technology extending usual digital circuit simulation with
symbolic values, representing sets of concrete values in a
single simulation [1], [2], [3], [4], [5].

Full correctness of processor execution engines is indispens-
able for product quality, as errata in basic execution datapaths
tend to be both customer visible and un-patchable. Due to the
size of the data space and the difficulty of identifying and
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covering all internal corner cases with either pre-silicon or
post-silicon testing, formal verification is the only approach
that can ensure sufficient quality, especially for complex
floating point datapaths.

Execution engines in industrial processor designs typically
combine a set of different pipelined datapaths into a single
design component. To minimize circuit size, each individual
datapath multiplexes logic for a family of related operations,
controlled by operation-specific control signals. The datapaths
may support different latencies, with simpler operations ex-
ecuting in fewer pipestages than complex ones. Many data-
paths are implemented as straight pipelines, however certain
operations may use iterative algorithms with feedback loops.
Designs also usually contain bypass networks that route data
from the datapath outputs directly back to the inputs, avoiding
the delay of going through a register file. The execution engine
in a contemporary Intel processor has several million logic
gates and hundreds of thousands of flip-flops, and the source
code for it consists of hundreds of thousands of lines of code
in a hardware description language.

Focusing on the verification of an individual operation
implemented in an execution engine, we can conceptually
distinguish two different sources of verification complexity:

1) the inherent complexity of the plain datapath for the op-
eration, ignoring all other functionality of the execution
engine, and

2) the complexity caused by the presence of the rest of
the execution engine, and its possible effects on and
interferences with the datapath of the operation.

As an example of the first, any datapath involving multi-
plication can be expected to pose a verification challenge,
irrespective of any surrounding logic. For the second, the
isolation of the result of an operation in a shared result bus
depends on the control logic of all the datapaths sharing the
bus. In a practical verification task, the verification engineer
faces these two dimensions simultaneously, and the complexity
caused by the surrounding logic may make the verification
of even inherently trivial datapaths, such as bitwise OR,
challenging or infeasible.

Considering the inherent datapath complexity, without sur-
rounding environment, the large majority of operations im-
plemented on an execution engine can be directly verified
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by symbolic simulation in a closed-box fashion. This is the
ideal scenario due to the many advantages of closed-box
verification: a well-defined specification, no need of insight
into implementation details, and low sensitivity to internal
design changes. For the most complex operations, especially
complex floating-point arithmetic such as multipliers, fused
multiply-adders and dividers, this straightforward approach is
computationally infeasible, and verification is done by means
of decomposed reference models, requiring time and both
design and verification expertise.

If the plain datapath for an individual operation were to
be isolated from the surrounding logic, for most operations
it would be amenable to verification by a variety of tech-
niques besides symbolic simulation. However, in practice, the
datapath is tightly enmeshed with the rest of the execution
engine, and there is no straightforward way to isolate it. In
this respect, symbolic simulation has a unique advantage over
many competing verification approaches, such as formal equiv-
alence verification or traditional model checking: it allows the
verification engineer to understand the computational progress
of an operation in the circuit in very concrete terms, to carve
out a minimal amount of logic that needs to be simulated
for the datapath of that specific operation, and to efficiently
abstract away the rest. In other words, symbolic simulation
provides an effective way to separate the two sources of ver-
ification complexity. The main technical ingredients enabling
this ability are discussed in Section II.

Nevertheless, as execution engines typically implement
thousands of individual operations, and for each operation the
datapath controls are wired differently, the cost of the human
effort to analyze and isolate each datapath becomes a limiting
factor.

In this paper we describe an algorithmic technique
called timed causal fanin analysis to derive a tight over-
approximation of the circuit logic relevant for the simulation
of the datapath of an individual operation (Section III). This
method effectively automates the human process of deter-
mining the minimal circuit logic for a specific datapath. It
is based on the use of information from an earlier, more
abstract and less accurate symbolic simulation run to reduce
the fanin cone of the logic of interest on a cycle-by-cycle basis.
The method enables fully automated closed-box verification
of most operations in an execution engine, not just for an
isolated datapath, but in the context of the full design unit. It
is meaningful only in the context of verification by symbolic
simulation. The method has been a key technical enabler in
Intel’s large-scale verification initiatives over the span of many
years [3], [6]. However, the current paper is the first detailed
exposition of the method in the public domain.

For a recent example illustrating the effects of timed causal
fanin analysis, in Section V we discuss the verification of
the new FP16 floating-point instruction set on a recent Intel
Core processor design. Since the Intel 8087 floating-point
co-processor was introduced in 1980, Intel processors have
supported single, double, and extended precision floating point
formats. The formal verification of complex operations such

as multiplication, division, etc., on these formats has always
required decomposition, making such verification a time-
consuming expert task. Recent Intel Core processor designs
have added a new shorter half-precision floating-point format,
also known as FP16 [7]. Because of the lower datapath width,
the inherent verification complexity of FP16 datapaths is also
lower, bringing them closer to the set of designs that one could
hope to verify without decompositions.

As a practical result, we found out that all FP16 micro-
operations could be verified closed box, including the complex
multiplication, fused multiply-add, division and square root
operations. This led to fast verification convergence and early
detection of several high complexity datapath bugs. The timed
causal fanin analysis technique was particularly crucial for
datapaths shared between FP16 and higher precision opera-
tions. It allowed us to avoid simulating the higher-precision
logic, the complexity of which would have otherwise made
verification impossible.

II. SYMBOLIC CIRCUIT SIMULATION

Symbolic simulation extends traditional digital circuit sim-
ulation by allowing the input stimulus to contain symbolic
variables in addition to the concrete values 0, 1 or X [1]. These
symbolic variables are effectively names of values, denoting
sets of possible actual concrete values. In the simulation, these
symbolic values propagate alongside the concrete values, and
in each logic gate, they may be combined with each other
or one of the concrete values to result in either a concrete
value or a logical expression on the symbolic variables,
represented by an expression graph. In this paper, as in most
of symbolic circuit simulation verification practice, we use the
binary decision diagram (BDD) representation for symbolic
expressions [8]. See Figure 1 for an example.

In a bit level symbolic simulator, a single symbolic variable
a corresponds to the set of boolean values containing both
0 and 1. If stimulus to a symbolic simulation refers to the
variables a, b and c, the internal signals might carry values like
a∧b or a∨ (b∧¬c). Usual logic rules apply: if the inputs to
an AND-gate are a and 1, the output will be a, if the inputs to
an AND-gate are a and b, the output is the logical expression
a∧ b, and if the input to a NOT-gate is b, the output will
be ¬b. In symbolic simulation, a specific symbolic variable
is associated with a specific signal and time in the stimulus.
This does not fix the value, but instead gives a name that can
be used to refer to the value.

The special value X is used in symbolic simulation to denote
a universal undefined or unknown value, which propagates
according to rules such as in Figure 2. The value X denotes
lack of information: we do not know whether the value is 0
or 1. The propagation rules reflect this intuition. Symbolic
simulation uses X’s as an abstraction mechanism: unlike
symbolic variables, X’s are an over-approximation of Boolean
circuit behavior. Both symbolic variables and X’s allow us to
verify a property over a single symbolic trace, and conclude
that it is valid over every possible trace instantiating the X’s
and the symbolic variables with 0’s or 1’s. This ability of a
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Fig. 4. Symbolic trace

single symbolic trace to cover all behaviors of a circuit allows
us to use symbolic simulation as a formal verification method.

Figure 3 depicts a simplified pipelined ALU circuit with
a 16-bit wide two-cycle datapath from inputs to outputs, and
Figure 4 depicts a typical symbolic trace that might be used
in the verification of this ALU, focusing on a single instance
of an eight-bit wide bitwise OR operation. In the stimulus, the
control signals are driven with concrete values corresponding
to the operation, and the input data is driven with symbolic
variables a[15], . . . ,a[0] and b[15], . . . ,b[0] in the one cycle in
which the operation is issued. In all other cycles these signals
have the undefined value X (gray waveform). In the simulation,
the values of the output data and zero flag two cycles later are
then expressions on the symbolic variables associated with the

input data, and in all other cycles they are X’s.
The practice of verification by symbolic simulation has

similarities to bounded model checking (BMC), however with
two important differences. First, BMC considers instances of
a property in a time window up to a given bound, whereas
symbolic simulation focuses on one fixed instance of a prop-
erty, and second, BMC starts from a properly initialized state
of a system, and symbolic simulation from an unconstrained
state. The focus on one fixed instance of a property can be
seen as a distinguishing aspect of symbolic simulation.

The size of the symbolic expressions flowing in the signals
of the circuit during the simulation is the most crucial com-
plexity metric and the limiting factor determining what can
and cannot be computed. We strive to minimize this symbolic
complexity in several ways:

1) by choosing the properties to be verified so that they
are as narrowly targeted as possible and by restricting
the circuit simulation to only those scenarios that are
relevant for the property under verification,

2) by limiting the number of symbolic variables and con-
crete 0/1 values used in the simulation stimulus to
maximize the use of the default undefined value X,

3) by limiting the set of signals for which simulation values
are computed, the times for which those values are
computed, and the values that are computed, and

4) by choosing concise representations for the computed
symbolic expressions.

For example, in execution engine verification we (1) focus on
one operation instance at a time, (2) drive symbolic values
on inputs only when the operation instance under verification
samples them, (3) simulate only signals that are needed for
the datapath of the operation and only at times relevant to
the progression of its pipeline, and (4) use a BDD variable
ordering that is a good match for the operation.

Symbolic simulation works best with targeted properties of
fixed length pipelines, typically of the transactional form

trigger A at time t is followed by response B at time t +n

To restrict circuit behaviors to cover only cases where the
trigger of the property under verification is true, we use the
technique of parametric substitutions [9], [10]. The basic setup
for the parametric substitution algorithm is that we want to
verify an implication C(v̄) ⇒ D(v̄) between two symbolic
expressions C and D over a set of symbolic variables v̄, and the
assumption C in some fashion makes it easier to compute the
goal D. The algorithm creates a mapping v̄ 7→ p̄ from variables
v̄ to symbolic expressions p̄ such that when the symbolic
variables in p̄ range over all possible values, the values of the
symbolic vector p̄ range exactly over the set of assignments
to v̄ for which the condition C is true. Then, the implication
can be verified by checking whether D(p̄) holds.

In the context of symbolic simulation, the aim is to check
an implication between the trigger and the goal of the property
being verified over the traces of the circuit. This is done by
computing a parametric substitution from the trigger, carrying
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out the symbolic simulation with the parametrized expressions
p̄ instead of the original variables v̄ in the stimulus, and by
checking that the verification goal is true in the resulting trace.
For a concrete example of parametric substitution for symbolic
simulation triggers, please see Section III below, especially
Figure 6 and the related discussion.

The techniques for limiting the sets of signals, times or
values for which simulation is done are collectively called
weakening. In weakening the user instructs the simulator to
replace a value that would otherwise be computed with the
undefined value X. We distinguish three kinds of weakening:

• Universal weakening, where the user instructs the simu-
lator to replace the values of certain signals with X’s at
all times in the simulation. It is equivalent to the concepts
of ‘free’ or ‘stop-at’ present in many model checkers.

• Cycle specific weakening, where the user instructs the
simulator to replace the values of certain signals with
X’s, but only at specified times. This technique is unique
to symbolic simulation, and the fact that it is even
meaningful to talk about signals at specific times in
the verification task is directly related to the fact that
symbolic simulation focuses on just one fixed instance
of the verification goal. Cycle specific weakening is an
extremely versatile technique that allows users to apply
their intuition about the usage of signals at times relative
to the progress of the operation under verification in order
to reduce the simulation cost.

• Dynamic weakening, where the user instructs the simula-
tor to replace any symbolic value with X, if the size of
the expression for the value would exceed a user-given
threshold. Dynamic weakening is a robust technique that
allows users to quickly resolve many symbolic com-
plexity issues caused by the computation of unnecessary
expressions in the simulation without detailed analysis.

Weakening is a safe complexity reduction technique: if we
verify a property over a symbolic simulation trace with weak-
ening, the same property also holds over a trace with the same
stimulus and no weakening.

The computations in symbolic simulation are conceptually
simple and concrete. Further, they can be naturally related
to the progress of the operation under verification through
its pipeline. This gives the verification engineer fine-grained
visibility into the computations on the level of individual sig-
nals, enabling precise analysis and mitigation of computational
complexity bottlenecks through weakening. In the context of
execution engine verification, this visibility allows the verifier
to identify the datapath of an individual operation and weaken
the surrounding circuit logic. However, when pipelines for
different operations are tightly enmeshed in a circuit, it is often
time-consuming to determine which signals and simulation
times are really needed for a specific operation.

III. TIMED CAUSAL FANIN ANALYSIS

As discussed above, the size of the symbolic expressions is
the primary capacity barrier in a simulation, and consequently
it is very important that we avoid the computation of symbolic

values unnecessarily, in contexts where they do not contribute
meaningfully to the verification goal. In a forward simulator
this is not trivial. When simulating a certain cycle, we do
not know yet which signals in that cycle will matter to the
verification goal in a later cycle.

One straightforward technique for reducing the set of signals
for which simulation needs to compute values is the standard
cone of influence (COI) reduction. The validity of a verifica-
tion goal can only depend on the transitive fanin of signals
referenced in it, and therefore signals outside of this set do
not need to be simulated. However, for execution engines that
contain bypass networks, the circuit forms in practice a nearly
strongly connected graph, i.e. almost every signal is in the
transitive fanin of almost every other signal, and the cone of
influence reduction offers little help.

Another source of reduction comes from the simplifying
effect of any global constants in the design. For example, an
AND-gate with one input a constant zero does not actually
depend on the value of its other input, and that other input
can be removed from the fanin of the gate without changing
the behavior of the circuit. As designers do not intentionally
include dead logic in their designs, such global constants
usually reflect circuit functionality, such as test or scan modes,
that can be completely disabled for verification purposes. They
usually offer only marginal help in reducing simulation scope
around the main functionality of a design.

The timed causal fanin analysis algorithm is based on the
idea of using constants to reduce the fanin cone of interest.
However, this is done on a cycle-specific basis, relative to
the cycle times in a fixed symbolic simulation, using the
concrete 0/1 values present in that cycle only. As with cycle-
specific weakening, the fact that we can meaningfully refer to
a particular cycle relative to a verification task is specific to
symbolic simulation. The three main steps of the method are:

1) Perform a preliminary symbolic simulation to determine
cycle-specific concrete 0/1 values in the simulation.

2) Compute the transitive cone of influence of nodes and
cycles in the verification goal per cycle, using the
concrete 0/1 values from step 1 to reduce the fanins
in each cycle.

3) Compute a cycle-specific weakening list, per cycle, that
weakens every signal of the circuit except the signals
in the transitive cone of influence for that cycle, as
computed in step 2.

Step 1 consists of a symbolic simulation run for the circuit
with the same stimulus that is used for the main verification
run. However, for this initial simulation, the dynamic weaken-
ing threshold is low. As described in Section II, this means that
any symbolic expressions above the threshold are discarded
and replaced with X’s in the simulation. The size threshold
is specified by the user. All relevant cycles of the resulting
stimulation trace are then scoured for all concrete 0/1 values.

It is important to note that this preliminary simulation is
much more than just timed constant propagation. First, the
trigger of the property has already been factored into the
stimulus with parametric substitution, and any concrete 0/1
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values implied by the trigger are present in the trace, especially
in the pipelined datapath control signals. Second, in addition
to the concrete values that the trigger forces directly in the
stimulus, also the concrete values that are implied indirectly
by circuit logic together with the trigger restrictions are present
in the trace, due to the canonicity of the BDD representations
and the automatic simplification in BDD operations.

Step 2 consists of a backwards traversal over relevant
simulation cycles, starting from the last cycle of interest and
proceeding back in time. For each cycle, we compute the
causal fanin at that cycle using the concrete 0/1 values present
at the cycle to reduce the causal fanin cone.

For a combinational gate s of the circuit, we define the
combinational causal fanin set of s at simulation time t to be
the set of signals sin such that sin is an immediate fanin of s
and either

• sin has a concrete 0/1 value in cycle t in the simulation
in Step 1, or

• the value of sin may affect the value of s, given all the
concrete 0/1 values in the fanins of s in cycle t in the
simulation in Step 1.

In short, for each cycle the concrete 0/1 values computed in
Step 1 for that cycle are used to reduce the fanin cone of
combinational gates. For example, if selectors to a mux have
concrete 0/1 values in a certain cycle, only the single mux
input that is selected by those selectors is in the timed causal
fanin in that cycle.

For a flip-flop (state element) sff of the circuit, with input
sin and clock c, we define the flip-flop causal fanin set of sff

at simulation time t by the rules:
• If the clock c toggles in cycle t in the simulation in Step

1, then sin belongs to the set.
• If the clock c does not toggle in cycle t in the simulation

in Step 1, then sff belongs to the set.
• If the clock c is X in cycle t in the simulation in Step 1,

then both sin and sff belong to the set.
Conceptually, if we do not know whether the clock toggles or
not, both the input and the held value of the flip-flop matter.

For each cycle t, we then define the timed causal fanin
set cfan(t) as the minimal set of circuit signals satisfying the
following rules:

1) If the verification goal directly refers to signal s in cycle
t on the simulation, then s ∈ cfan(t).

2) If signal s is in the flip-flop causal fanin set of a flip-flop
sff at simulation time (t +1), and sff ∈ cfan(t +1), then
s ∈ cfan(t).

3) If signal s is in the combinational causal fanin set of a
combinational gate sout at time t, and sout ∈ cfan(t), then
s ∈ cfan(t).

For each cycle t, we compute cfan(t) by starting from the set of
signals determined by the rules (1) and (2) and by constructing
the transitive closure of the set under rule (3), stopping at the
flip-flop boundary.

Step 3 finally constructs a weakening list that for every
cycle t replaces the value of every signal not in cfan(t) with X.

This weakening list is then used in a full symbolic simulation
for the original verification goal. As the computation of the
timed causal fanin in Step 2 includes all signals and times
that may affect the signal-time references in the property
under verification, the weakening list never abstracts with
X any values that could contribute to the property. As an
optimization, we can alternatively weaken only the barrier of
signals whose fanin intersects with cfan(t) but which are not
in cfan(t) themselves.

As a point of comparison, consider the same verification
task posed as a bounded model checking problem. If we look
at just the timed constant propagation aspect of the preliminary
simulation, and the concrete 0/1 values directly forced by
the trigger, an analogous constant propagation process would
take place at an early point inside the SAT call for the BMC
problem, resulting in expression simplification similar to the
fanin reduction above. As for the concrete 0/1 values indirectly
implied by the trigger and the circuit logic, sooner or later they
either might or might not be noticed and propagated by the
SAT engine, depending on how hard the engine tries to de-
termine constants. However, this whole process is completely
hidden from the user, inside a SAT engine. In particular, if
a potentially helpful simplification does not happen, either
because the engine misses it or because the trigger does not
capture the user intent accurately, the issue manifests to the
user only through increased run time or the inability of the tool
to resolve the verification goal, without actionable feedback
that would enable the user to assist the tool.

However, when we use timed causal fanin analysis in
the symbolic simulation flow, the results of the preliminary
simulation and the concrete 0/1 values that are or are not
present are visible and accessible to the user. The values can be
queried, viewed as waveforms and root-caused through circuit
gates. The user can understand what happens in the simulation
and compare that to their intuition and expectations about what
should happen. The concept of the timed causal fanin cone
itself is based on a clear operational intuition, allowing the user
to understand the computation in terms of circuit functionality.
A commonly asked debug question is: “why is signal s in
cycle t in the timed causal fanin cone of my property, when
conceptually it should not matter, for example because it is
in a different unit/datapath/pipestage?” This question can be
concretely answered by showing a path of dependencies from
the given signal and time through fanin relations to some signal
and time relevant to the property being verified.

As an example, consider the simplified ALU circuit in
Figure 5 with a one-cycle adder unit and a two-cycle multiplier
unit. At the interface, the signal vld marks a valid operation
and mul chooses between addition and multiplication. Further,
suppose that we are focusing on adder correctness as expressed
in the following property, where N and P are the next-time and
previous-time temporal operators, respectively:

(vld ∧¬mul)︸ ︷︷ ︸
ADD
time t

∧P¬(vld ∧mul)︸ ︷︷ ︸
NOT MUL
time (t −1)

⇒ N(is ok(res))︸ ︷︷ ︸
RESULT OK
time (t +1)
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Conceptually this property says that if an addition operation is
issued, and there is no pipeline hazard from a multiplication
operation a cycle ago, then the circuit will produce functionally
correct output in the next cycle (where we have omitted the
details of ‘functionally correct output’ and its dependency on
the data input signals).

Figure 6 depicts a stimulus and trace for the Step 1 prelimi-
nary simulation on the circuit, with an instance of the property
above with time t = 1, starting in cycle 1 and producing output
in cycle 2. The stimulus values for the control signals vld
and mul in cycles 1 and 0 have been generated by parametric
substitution from the triggers of the property:

• In cycle 1, the stimulus associates the concrete value 1
with the signal vld and the concrete value 0 with the
signal mul, since this is the only possible assignment
satisfying the trigger ‘ADD in cycle 1’, i.e. vld ∧¬mul.

• In cycle 0, the stimulus associates a symbolic variable v
with the signal vld and the symbolic expression ¬v∧m
with the signal mul, reflecting the trigger ‘NOT MUL
in cycle 0’. Note that the possible values of these two
symbolic expressions range exactly over the set of assign-
ments to vld and mul that make the trigger ¬(vld∧mul)
true in cycle 0, a guarantee of parametric substitution.
Note also that no concrete 0/1 assignment would capture
the trigger fully, since there are three possible concrete
value pairs satisfying the trigger.

Simplification on internal control signals, as depicted in Figure
7, then leads to the trace of Figure 6. Using the cycle-specific
concrete 0/1 values from this trace, Step 2 of the timed causal
fanin analysis method proceeds as in Figure 8. In Step 3, all
signals and times outside the timed causal fanin of Figure 8
are weakened in the main simulation. Note, in particular, that
all multiplier datapath logic is automatically weakened by the
timed causal fanin algorithm.

From the perspective of the user applying the timed causal
fanin method, the practical workflow can be divided into two
stages. First, there is the computation of the causal fanin cone
in Steps 1 and 2. In this stage the user may need to adjust
a default dynamic weakening threshold for the preliminary
simulation in Step 1 or the default depth of the fanin cone
traversal in Step 2 to balance two needs. On the one hand,
the threshold and the depth of the fanin cone need to be low
enough that the steps can be computed in a reasonable time.
On the other, the threshold and depth need to be high enough
that as many concrete internal values as possible are computed
to reduce the causal fanin cone. In this first stage of the work
the user also may find out that the verification triggers are not
strong enough to guarantee the satisfaction of the verification
goals, by simply looking at the causal fanin cone and noticing
unexpected causal dependencies. These may either reflect a
design bug, or a need to strengthen the triggers to properly
capture the intent of the property under verification.

In the second stage of the work the user then applies the
weakening list computed in Step 3 in the main simulation,
debugs any failures, and repeats the main simulation if neces-
sary. In many instances the main simulation is less resource
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intensive than the preliminary one, since although the symbolic
expressions that need to be computed are larger, the number of
signals for which they actually need to be computed is much
lower, thanks to the timed causal fanin weakening list.

The timed causal fanin algorithm is helpful in most sym-
bolic simulation verification tasks, and we use it as a routine
step in our verification flow. Already on its own, symbolic
simulation is at its strongest for narrowly targeted properties,
and the timed causal fanin method accentuates this strength.
When comparing the automated weakening provided by the
method to manually crafted weakening lists, in our experi-
ence the automatically produced weakening is almost always
superior, as user time and patience for fine-grained analysis of
the design is often limited. As a weak point, the presence of
data-qualified clocks in a design tends to reduce the efficacy
of the method, as then the timed causal fanin cone will include
same combinational logic over multiple cycles.

Two major building blocks underlying the timed causal
fanin method are fundamentally BDD-based: first the para-
metric substitution algorithm, and secondly the automated
simplification of symbolic expressions in the internal wires
of the circuit, which results in the concrete 0/1 values that are
used to contain the fanin cone. If we want to avoid BDD’s and
simulate with non-canonical expressions and use SAT instead,
the same crucial process of identifying simplifying internal
concrete 0/1 values could be achieved by speculative SAT
queries checking for constants in the preliminary simulation
under the trigger assumptions. The sheer number of internal
signals in many circuits is a challenge in this approach, though.
What works better in practice is a hybrid approach, where
the preliminary simulation uses BDD’s, with the resulting
automated simplification, but the main simulation used for
the verification of the goals in carried out with non-canonical
expressions and SAT.

IV. EXECUTION ENGINE FORMAL VERIFICATION

At high level, a single Intel Core consists of a set of
major design components called clusters. The front-end cluster
fetches and decodes architectural instructions and translates
them to micro-operations (abbreviated as uops), which the out-
of-order cluster then schedules for execution. The execution
engine, residing in the EXE cluster, carries out data compu-
tations for all micro-operations. The memory cluster handles
memory accesses and may contain first level caches. Outside
of an individual core is a system-on-chip layer including, for
example, a graphics processing unit and a memory controller.

The execution engine for a typical Intel Core processor
design implements over 5000 distinct uops in several different
units: the integer execution unit (IEU) contains logic for plain
integer and miscellaneous other operations, the single instruc-
tion multiple data (SIMD) integer unit (SIU) contains logic
for packed integer operations, the floating-point unit (FPU)
implements plain and packed floating-point operations such as
FADD, FMUL, FDIV, etc., the address generation unit (AGU)
performs address calculations and access checks for memory
accesses, the jump execution unit (JEU) implements jump

operations and determines and signals branch mispredictions,
and the memory interface unit (MIU) receives load data from
and passes store data to memory cluster.

Formal verification of execution datapaths, especially for
floating-point and other arithmetic operations has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994. The
primary vehicle for this work is symbolic simulation, incor-
porated in Intel’s in-house Forte/reFLect verification toolset
under the name of Symbolic Trajectory Evaluation (STE) [2].
All Intel Core processor execution engine data-paths since
2005, as well as most Intel Atom processor and Gen Graphics
arithmetic engines have been formally verified using symbolic
simulation [3], [6].

In formal verification, every uop corresponds to a separate
symbolic simulation task. In the verification setup for a single
uop the control signals are set to fix the data-path controls to
match a single instance of that uop, and symbolic variables
on the data are used to exhaustively simulate the data-path
instance. The simulation is connected to an abstract functional
reference model for the uop through source and write-back
mappings, and the output of the design and the reference
model compared. These design-dependent mappings extract
the intended source and result values for the uop at the relevant
times relative to the instance we are verifying.

Formal verification of complex designs would ideally be
done by closed-box verification for its many advantages: a
well-defined specification, no need of insight into implemen-
tation details, and low sensitivity to internal design changes.
For a large majority of uops in the execution engine, the data-
path can be exhaustively symbolically simulated in one pass
at the full cluster level.

However, for complex floating-point arithmetic, such as
multipliers, fused multiply-adders and dividers, the compu-
tation of symbolic expressions for the datapaths is fundamen-
tally technically infeasible. Instead, the verification of these
complex uops is done through a decomposed reference model
that splits an operation to several sequential stages, where
each stage of the reference model is separately related to a
stage of the implementation. With such decomposition cut-
points, we reduce symbolic simulation complexity, as each
stage on its own produces smaller symbolic expressions than
a full input-to-output closed-box simulation. For years, this
has been the technique used for all the floating-point types
traditionally implemented on Intel designs, i.e., single, double,
and extended precision floats.

Decomposed verification is technically much harder than
closed-box verification, requiring both special verification ex-
pertise and detailed insight into implementation details to map
the decomposition stage boundaries to the design. It is also
much more sensitive to even small design changes, making
the maintenance cost high. Generally, the more stages the
decomposition has, the harder the verification task is. The
hardest datapath verification tasks on current Intel processor
designs are the dividers, which need a series of decomposition
stages and advanced complexity management strategies in
each individual stage.
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V. HALF-PRECISION FLOATING-POINT ARITHMETIC

Floating-point numbers are a binary representation for a
subset of real numbers as triples (s,e,m), where the sign
s is a single bit, and the exponent e and mantissa m are
unsigned bit vectors of some fixed lengths. The IEEE standards
on floating-point numbers define several different formats
differing on details, as well as special encodings for zeros,
infinities, denormal numbers (very small numbers that are
below the main range of values representable in a format),
and other exceptional values [11]. Since only a subset of
the reals is representable as floating-point numbers, not all
results of arithmetic operations on floating-point numbers can
be expressed precisely as floating-point numbers themselves.
Therefore, the IEEE standards define the concept of rounding,
determining which sufficiently close representable number
should be used, if the accurate result is not representable.

Intel designs have traditionally supported three formats of
floating-point numbers: single, double, and extended precision.
Recently, as a part of the AVX-512 extension set in the latest
Intel Core processor designs, support was added for a new
shorter floating-point format, the so-called half-precision or
FP16, consisting of one sign bit, five exponent bits and ten
mantissa bits [7]. While the new format offers a narrower range
and less precision, it allows twice as many values to be packed
into a vector than with single-precision floats, doubling the
effective performance of vectorized algorithms for applications
that do not need higher precision arithmetic.

The architectural and micro-architectural instruction sets of
the latest Intel Core processor designs support most com-
mon arithmetic half-precision operations natively. Some half-
precision uops are implemented in dedicated design units,
some others in units shared with higher precision arithmetic.
Half-precision division and square root uops are implemented
by an iterative design shared with the similar higher precision
uops. In contrast to some higher precision operations, denor-
mal input and output values are handled natively for half-
precision arithmetic, without microcode assistance.

As the basic datapath for a half-precision uop has only
half as many input data bits than the corresponding single-
precision uop, we know that the size of symbolic expressions
in its simulation is always lower than for single precision.
Without experimentation we do not know how much lower,
as the symbolic expression sizes can be at best linear and
at worst exponential in the number of input bits, depending
on the operation. What we do know is that any verification
recipes that work for single precision should easily work
for half precision. Also, we can realistically hope that the
reduction in size might be large enough to obviate the
need for decomposition for some of the complex operations,
pushing them to the domain of closed-box verification, or
at least reduce the decomposition needed. On the negative
side, experience shows that native denormal handling tends to
materially increase symbolic complexity, as denormals break
the separation of exponent and mantissa datapaths. Also, we
know that special care will be needed for uops implemented

in units shared between half precision and higher precisions
to avoid the prohibitive cost of simulating also the higher
precision behavior.

From this starting point, we carried out verification of
all half-precision arithmetic uops on an Intel Core processor
design. The technical learnings from the initiative can be
summarized as follows:

• Simple floating-point uops such as comparisons, conver-
sions to and from integers, reciprocals, etc., that allow
closed-box verification for higher precisions, were easily
verifiable for half precision. As anticipated, floating-
point addition (FADD) could also be directly verified,
in contrast with higher precisions, where FADD needs an
exponent difference-based case split. Timed causal fanin
analysis was essential in the separation of the simple uop
and FADD datapaths from the complex ones implemented
in the same design units.

• As the first result for known high complexity uops, we
were able to verify floating-point multiplication (FMUL)
directly without a decomposition. This is in marked
contrast with higher precisions where decomposition is
unavoidable, as the symbolic expression sizes for mul-
tiplication are known to be exponential. However, the
lower number of mantissa bits for half precision means
that we are not too far up the exponential curve yet
in the basic datapath for the operation. For FMUL, the
datapath is shared with the more complex fused multiply-
add (FMA) operation. Timed causal fanin analysis helps
FMUL verification by removing FMA-specific parts of
the shared datapath, in particular in the rounding logic
where FMUL exhibits only a narrow range of possible
behaviors compared to FMA.

• Somewhat surprisingly, we were also able to verify half-
precision fused multiply-add (FMA) uops without decom-
position. This required careful complexity management,
and a large case split on addend mantissa values to reduce
the symbolic complexity of the basic datapath, with a high
total run time. As FMA is the most complex operation
on its shared datapath, there is no circuit logic that timed
causal fanin analysis could just directly cut out. However,
for each case in the case split, the simulation of the basic
datapath alone approaches the capacity limits of the tool.
How timed causal fanin analysis helps is by removing
logic that is on the basic datapath, but is not relevant to
the specific case.

• Finally, with heavy use of simplifying case splits and
timed causal fanin analysis, we were able to carry out
closed-box verification for half-precision division (FDIV)
and square root (FSQRT) operations, as well. For divi-
sion and square root, timed causal fanin analysis was
indispensable, as the datapaths are mixed with the higher
precision ones, and the long-latency uops have ample
potential for uncontrolled symbolic expression growth.

The most complex arithmetic datapath proofs showed that for
FP16, verification of all uops can be done closed box. In most

106



of these tasks and all high complexity ones, the contribution of
timed causal fanin analysis cannot be quantified by the compu-
tation time or memory usage with the method vs without, since
without either automated or manual weakening the closed-box
verification tasks are computationally infeasible. In our view,
the best metric is the human effort required for the effort.

The largest positive impact was observed on the operations
that are traditionally the most complicated and heavy to
verify. For FMUL, the first higher-complexity operation, we
implemented a new verification strategy that did not include
the decomposition that the higher-precision proof requires.
Note that FMUL is in fact FMA without an addend, which
makes it a lighter task for verification, however any bug we
would catch on FMUL, also exists on FMA. We continued
with a new verification strategy for the FMA operations:
closed-box input-to-output verification with a case-split on
addend mantissa value. The effort of FMA verification bring-
up was reduced from several quarters for a higher-precision
‘big-FMA’ in a standard Intel Core processor development
project, to a couple of weeks.

For FDIV and FSQRT the effort reduction was also sub-
stantial. The proof was dramatically simplified, compared to
the traditional multi-stage decomposed higher-precision proof.
The FDIV and FSQRT proofs were completed in 6-8 weeks
and provided confidence in design quality and arithmetic
correctness. Like the FMA, effort for these verification tasks
is usually measured in quarters of work.

Comparing then automated vs manual generation of weak-
ening lists, the simple uop and FADD verification likely could
have been carried out with manual analysis, as these tasks are
not computationally challenging and a coarse analysis would
suffice. On the other hand, a manual separation of the FMUL
logic from the FMA, or the logic used vs not used by the
different FMA cases, and especially the separation of the
FP16 FDIV and FSQRT datapaths from the higher precision
ones would likely have required an extraordinary human effort
focusing on design minutiae.

The main advantages of the closed-box verification that
enabled quick results were clear specification, ease of failure
reproduction in dynamic validation with concrete source val-
ues, and the absence of any need to locate cut-points and define
complicated side conditions. The first corner-case datapath bug
was found in less than a week of work. Altogether, the FP16
verification initiative caught several extreme complexity bugs
in just a few weeks of works at an early stage of the design
project. This reduced the design cost of fixing the issues, and
most importantly prevented them from escaping to the silicon
implementation. Here are two examples:

1) An FMA16 uop multiplies two small positive normal
numbers, produces a very small intermediate value,
and adds the addend – the smallest normal negative.
The mathematically accurate result is tiny, between the
smallest normal negative and zero. Since Flush-To-Zero
(FTZ) mode was set, the result ought to be zero, but the
design returned the smallest normal negative.

2) FMA received three very specific normal numbers as
inputs, and FTZ was set. We expected to produce the
smallest normal number after rounding to nearest, but
the result was flushed to zero. The specific inputs were:
a: s = 0 ; e = 00010 ; m = 1.0110000000
b: s = 0 ; e = 01111 ; m = 1.0001011011
c: s = 1 ; e = 00010 ; m = 1.1111111101
The intermediate result of the operation after it was
normalized was: s = 1 ; e = 0 ; m = 1.11111111111 –
one extra bit after the mantissa length, which is exactly
at half-point for rounding, and therefore needs to round
up. After rounding and normalizing we got a normal
(non-tiny) number: s = 1 ; e = 1 ; m = 1.0000000000,
that should not have been flushed to zero.

VI. SUMMARY

Empirical experience has consistently shown that the timed
causal fanin reduction algorithm is a key complexity reduction
technique for practical symbolic simulation. It has also proven
to be robust in face of design changes and over different design
styles.

Timed causal fanin analysis was the primary enabler allow-
ing us to verify all FP16 uops, including the most complex
arithmetic operations, without decompositions. Closed-box
verification greatly reduced the development effort of complex
proofs, leading to fast detection of deep corner-case bugs in
early stages of the project. Avoiding the use of decomposition
has lowered the sensitivity to design implementation and made
the verification collateral easily reusable for future projects.
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