
Formal Methods in Computer-Aided Design 2022

Formally Verified Isolation of DMA
Jonas Haglund

dept. TCS
KTH Royal Institute of Technology

Stockholm, Sweden
jhagl@kth.se

Roberto Guanciale
dept. TCS

KTH Royal Institute of Technology
Stockholm, Sweden

robertog@kth.se

Abstract—Every computer having a network, USB or disk
controller has a Direct Memory Access Controller (DMAC) which
is configured by a driver to transfer data between the device and
main memory. The DMAC, if wrongly configured, can therefore
potentially leak sensitive data and overwrite critical memory to
overtake the system. Since DMAC drivers tend to be buggy (due
to their complexity), these attacks are a serious threat.

This paper presents a general formal framework for modeling
DMACs and verifying under which conditions they are isolated.
These conditions can be used as a specification for guaranteeing
that a driver configures the DMAC correctly. The framework
provides general isolation theorems that are common to all
DMACs, leaving to the user only the task of verifying proof
obligations that are DMAC specific. This provides a reusable
verification infrastructure that reduces the verification effort of
DMACs. Models and proofs have been developed in the HOL4
interactive theorem prover. To demonstrate the usefulness of the
framework, we instantiate it with a DMAC of a USB.

Index Terms—formal verification, interactive theorem proving,
DMA, I/O security, memory isolation

I. INTRODUCTION

Direct memory access controllers (DMACs) are hardware
components transferring data between memory and I/O de-
vices (e.g. memory-to-memory copies, and data transfers to
and from network interface cards, USB, disks, and graphics
accelerators). Without a DMAC, the CPU must perform these
data transfers, spending time on data transfers rather than
on applications, decreasing performance significantly [1]–[3],
[44]. DMACs can also reduce power consumption since a CPU
is more power demanding than a DMAC [4], [5], [44].

Since DMACs can access memory, where critical data and
code are located, they can be used by attackers to overtake or
crash the system. Examples include abusing a GPU DMAC to
gain privilege escalation [9] and a network interface DMAC to
crash Linux [10]. To prevent DMAC attacks, many formally
verified high-security hypervisors and operating systems [23]–
[30] either disable DMACs or rely on IOMMUs (mem-
ory management units [15]–[17] placed between the DMAC
and memory). The use of IOMMUs have three significant
disadvantages: not all hardware platforms have IOMMUs;
it negatively impacts performance and further reduces time
predictability (due to additional translation table walks [18],
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[19]); and it requires additional non-trivial (potentially buggy
[20]–[22]) software for configuring and protecting page tables
and associated data structures.

Verifying memory safety in presence of DMACs and ab-
sence of IOMMUs require formal models of the DMAC
hardware including the interface between DMAC, software
and memory. Such models allow reasoning about the effects
of software accessing DMAC registers, of DMAC memory
accesses, and the interaction between of software and DMAC
which share data structures in memory.

We present a general framework for modeling DMACs
(Section III). The framework is implemented in the HOL4
interactive theorem prover [31] and includes a general DMAC
model which can be instantiated to a given DMAC by defining
14 DMAC specific functions (the most significant ones are
listed in Table II). This generalization allows us to identify
and verify sufficient conditions to confine DMAC memory
accesses to certain memory regions.

To achieve this general verification result, in Section IV
we establish a refinement between an abstract DMAC model,
which is easier to analyze, and identify sufficient conditions to
preserve the refinement that must be satisfied by the DMAC
instantiation and the DMAC driver. This strategy has three
main benefits: (1) the refinement theorem can be reused to
verify functional correctness of drivers using the abstract
model; (2) the verification of the instantiation deals only with
the identified sufficient conditions and do not have to deal with
the entire transition system of the DMAC model; and (3) the
software conditions can be verified using the abstract model.

In order for the framework to be as general as possible, we
have reviewed numerous DMACs (Table I). In Section V we
demonstrate our approach by instantiating the framework with
the USB DMAC in an SoC from Texas Instruments [32]. We
use our result to identify the conditions that must be satisfied
by a driver or a security monitor. The use of the framework
has largely reduced the time for analyzing the USB DMAC.

Finally, in Section VI we discuss the HOL4 implementation
and the security analysis of the Linux USB DMAC driver.

II. BACKGROUND

DMACs perform memory accesses by operating on a queue
of buffer descriptors (BDs), illustrated in Fig. 1, which are
initialized by the driver. Each BD contains information about
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Fig. 1. DMAC

a memory transfer and the status of that transfer. The queue
can be stored either in internal DMAC memory or in external
main memory, either as a linked list (potentially cyclic), a ring,
or as an array. Once the driver has initialized the BDs, the
driver signals the DMAC to start operating on the BDs in the
queue, which is done by a pipeline consisting of four stages.
(1) Fetch: The DMAC fetches the BD into internal CPU-
inaccessible memory. (2) Update: If the BD is operated on
in multiple rounds, then the DMAC updates the BD to reflect
the remaining transfers to perform for subsequent rounds. (3)
Process: The DMAC performs the direct memory accesses
(DMA transfers) to the buffers in main memory as specified
by the BD. (4) Write back: If all memory accesses specified
by the BD have been performed, the DMAC writes back the
BD to signal the driver that the BD has been processed and
can be reused for new transfers.

In the following we use O = {f, u, p, w} to refer to
these four operations. The DMAC may also perform memory
accesses due to maintenance operations, for example to store
statistics or management data in memory. These operations
are not atomic and may require multiple memory accesses.
Furthermore, DMACs may be able to work on multiple queues
of BDs concurrently, where each queue constitutes one DMA
channel, and each channel may have more than one BD in
each of its pipeline stages.

Both the driver and the DMAC can read and modify the
queues: The driver reads the status of existing BDs and
appends new BDs; the DMAC reads and updates BDs. For
this reason verifying properties of this kind of system is
challenging and similar to verifying concurrent threads sharing
memory. In order to control the complexity caused by the
interleaving of these the CPU/driver and the DMAC, the
verification must exploit some sort of rely/guarantee [6], that
enables verification of each component in isolation while
assuming properties of the other component. Our verification
approach follows this strategy, showing that there are sufficient
conditions (rely) that if met by the driver allow to restrict
(guarantee) the memory accesses of the DMAC.

A. DMAC Characteristics

In order to support a wide range of DMACs, our general
model must accurately describe the memory accesses that may
be performed by an arbitrary DMAC. To identify the common
features of DMACs, we studied eight stand-alone DMACs, six
embedded in USB controllers, and five embedded in Ethernet
controllers, and the DMAC of IBM Cell, some characteristics
of which are listed in Table I. The main difference among the

Stand-alone DMACs
Chip BD Organization BD Location
Texas Instruments AM335x Linked list Internal memory
Microchip PIC32 Family Linked list Internal memory
Xilinx AXI DMA v7.1 Linked list Main memory
NXP MPC5675/KMPC57xx Linked list Internal memory
Infineon GPDMA Linked list Main memory
Broadcom BCM2835 Linked list Main memory
ST Microelectronics STR91xFA Linked list Main memory
Texas Instruments TMS320C5515 Linked list Main memory
IBM Cell BE Array/Ring Main memory

USB DMACs
Chip BD Organization BD Location
Cypress EZ-USB FX3 Linked list Main memory
Xilinx Zyng-7000 Linked list Main memory
Texas Instruments AM335x Linked list Main memory
NXP SAF1761 USB OTG One BD Internal memory
STM32F72xxx/STM32F73xxx One BD per channel Internal memory
Microchip PIC32 Family Ring Main memory

NIC DMACs
Chip/Board BD Organization BD Location
Texas Instruments AM335x Linked list Internal memory
Broadcom NetXtreme/Netlink Ring Main memory
Realtek Ethernet RTL8100 Ring Internal memory
3Com 3C90x/B Linked list Main memory
Intel e1000/e, X550, I350, I210 Ring Main memory

TABLE I
STUDIED DMACS.

DMACs is the mechanism used to organize BD queues: 13
DMACs use linked lists; five use ring buffers; and two use
queues of one single BD. Moreover, seven DMACs store the
queues in internal memory and 13 store the queues in main
memory; Furthermore, DMACs have different: internal states
(e.g., address pointers, counters, and state machines); number
of DMA channels; reactions to register accesses made by the
CPU; scheduling of channels; BD format (e.g. fields for buffer
start address and size); and behavior of the four pipeline stages
(fetch, update, process, and write back).

B. Security Threat from DMACs

Without an IOMMU, a DMAC can access memory without
restrictions. For instance, consider a microkernel (or a hy-
pervisor), where a user-mode driver (or a guest) should not
be able to directly access kernel memory. If the driver can
directly configure a DMAC that can perform memory-memory
transfers, then the driver could store a malicious program in its
own memory, and configure the DMAC to transfer this buffer
to the exception handling table of the kernel. This results
in code injection, bypassing the normal protection provided
by the MMU that prevents direct tampering from the driver.
Similarly, the driver of an Ethernet controller may overwrite
kernel data structures with an incoming network packet or to
leak data in kernel memory.

In order to isolate a DMAC, its configuration must meet
three sufficient conditions, which are all violated by the
example of Fig. 2:

1) BDs specify DMA reads and writes to buffers that are
considered “readable” and “writable”: BD1 can instruct
the DMAC to violate isolation since part of the buffer
is outside the allowed memory region.
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Fig. 2. DMAC isolation violations. Readable and writable region is colored
in gray.

2) If BDs are stored in main memory, then the BDs must
be located in “readable” and “writable” memory and
must not specify DMA writes to BDs: The DMAC will
violate memory isolation when fetching, updating and
writing back BD1. Also, the DMAC can modify BD3
while processing BD1, since BD3 overlaps the buffer
addressed by BD1.

Basically, these conditions guarantee that the BDs “instruct”
the DMAC to access only “readable” and “writable” memory,
and that the DMAC cannot change such BD “instructions”.

III. GENERAL DMAC MODEL

We assume a computer system to be the composition c|m|d,
where each component represents the state of a CPU, a mem-
ory and a DMAC respectively. We use standard synchronous
composition of the transition systems of the components
(assuming that parallel composition is associative, symmetric,
and commutative):

x
τ−→ x′

x|y τ−→ x′|y
x

l−→ x′ y
l−→ y′

x|y τ−→ x′|y′

The labels of these transition systems are τ for internal
operations, and rd(as, bs)/wt(as, bs) for reading/writing the
bytes bs at/to the locations with addresses as, where the latter
two have co-labels rd(as, bs) and wt(as, bs).

We do not explicitly define the CPU model. This model
could for instance be the formalization of an Instruction Set
Architecture (ISA) or a more abstract model of a device
driver. Memory is an array of bytes, where M represents the
addresses of the main memory:

as ⊆ M

m
rd(as,m[as])−−−−−−−−→ m

as ⊆ M

m
wt(as,bs)−−−−−−→ m[as 7→ bs]

Notice that we use early semantics: the memory is always
ready to receive a memory update non-deterministically se-
lecting all possible bytes bs. This non-determinism is resolved
when the the memory transitions system is composed with
another transition system that performs a write.

A. DMAC Transition System

The DMAC state consists of three components, d = (s, b, c):
An internal state s, whose type depends on the specific DMAC;
a messsage box b containing memory requests and replies; and
a DMA channel c (the model supports multiple channels, but

Fig. 3. DMAC model.

we omit them for simplicity). We will use Fig. 3 to illustrate
the model, where a queue of five BDs has been configured in
main memory and each BD points to a buffer.

The message box b allows the DMAC to operate asyn-
chronously w.r.t. the memory. This box is a set of memory
read and write requests and replies: ropt [as], wop

t [as, bs] and
pop
t [bs], where op, t, as and bs denote: The DMAC pipeline

or mainteinance operation O ∪ {m} that issued the memory
request or that shall have the reply; a memory request-reply
identifier tag; addresses to read/write; and bytes read/written.

The component c : O \ {f} ↪→ B models the DMAC
pipeline. In the following we use c.op to denote c(op). Hence,
c.u = [bd1, ..., bdn] denotes the queue of BDs in the update
stage, with n arbitrary and n = 0 denoting an empty queue;
and similarly for p and w. We call these abstract BDs, since
they are records whose type depends of the specific DMAC
and contain the same information that is stored by the BDs
in main memory. Independently of the DMAC instantiation,
a BD bd always contains four mandatory fields specifying
the addresses of the locations: where it is stored bd.ra, that
are updated when it is written back bd.wa (e.g., the address
of its completion flag), and of the buffer that must be read
and written via DMA, bd.dra and bd.dwa. The BDs in c are
the ones that have been fetched with each BD being in some
DMAC pipeline stage. For instance, in Fig. 3 three BDs have
been fetched and are therefore in the DMAC pipeline (bd2 and
bd3 are being processed and bd1 is currently written back). We
use “pending” BDs to refer to the BDs in the queue that are
left to fetch (e.g. BD4 and BD5). Normally, the concatenation
of the queues in c represents a sliding window of the queue
in memory.

To account for the DMAC specifics the rules describing
DMAC transitions are defined in terms of two records. The
record ∆ contains behavioral functions that model the spe-
cific actions of a DMAC. The record Π contains projection
functions that extract information from the state and returns
the proper data structures (e.g., BDs). These DMAC specific
functions must be defined to obtain a concrete DMAC model.
Table II summarizes the behavioral functions (except for a
scheduler that resolves non-determinism) and the two most
important projection functions.
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Function Modeled Operation/State Information
∆.rr (See rule [rr ]) Given an internal state s1 and the addresses

as of the DMAC register to read, returns an updated internal
state s2, the read bytes bs, and potential maintenance memory
requests rs associated with the read.

∆.wr (See rule [wr ]) Given an internal state s1, the addresses as of
the DMAC register to write, the bytes bs to write, returns an
updated internal state s2 and potential maintenance memory
requests rs associated with the write.

Π.fas (See rule [f1 ]) Given an internal state s, returns the memory
read request rft [as] for fetching the next part of the BD being
fetched at addresses as and with request identification tag t.

∆.f (See rules [f2 ] and [f3 ]) Given an internal state s1, and
for external BDs a fetch reply pf

t [bs], (where the bytes bs
constitutes a part of the currently fetched BD and with t
being the request identification tag of the corresponding read
request), but ⊥ for internal BDs; returns an updated internal
state s2, and either a fetched BD bd and the stage op ∈ {u, p}
the BD shall be moved to, or ⊥ if additional external or
internal memory reads are necessary to fetch the next BD.

∆.p (See rule [pt ]) Given an internal state s1, the first BD bd in
the process stage and whose memory transfers are currently
being performed (i.e., the DMA transfers specified by bd),
and the DMA read replies ps associated with the process
stage; returns an updated internal state s2 reflecting the
processing of the given memory replies and the generatation
of potentially new memory requests rs, and a boolean flag
indicating whether all requests/replies associated with bd have
now been issued/processed and the BD shall be moved to the
write back queue.

∆.w (See rule [w ]) Given an internal state s1, and the BDs in the
write back queue c.w; returns an updated internal state s2,
the memory write requests rs containing the bytes to write to
memory associated with any given BD (not used for internal
BDs), and the BDs bds that are now released due to the write
back (removed from the write back queue).

∆.m (See rule [m]) Given an internal state s1 and memory read
replies ps (to read requests issued by [rr ] and [wr ]); returns
an updated internal state s2 and the processed replies pps
that shall be removed from the message box.

Π.cf (See rules [w ] and [ma] in Subsection IV-A) Given internal
state s and memory m, returns the pending BDs bds that
remains to fetch (bds = [BD4, BD5] in Fig. 3).

TABLE II
SUMMARY OF THE DMAC SPECIFIC FUNCTIONS.

In the following we use D to represent the set of addresses
of DMAC registers. The reaction of the DMAC when the CPU
accesses such a register at addresses as is DMAC specific and
must be described by the Read Register and Write Register
functions: ∆.rr and ∆.wr. Notice that these functions can
affect the internal state of the DMAC and may return memory
requests rs in case a register access makes it necessary for the
DMAC to update maintanence data in main memory (c = a+b
denotes c = a ∪ {b} ∧ a ∩ {b} = ∅):

(s2, bs, rs) = ∆.rr(s1, as) as ⊆ D

(s1, b, c)
rd(as,bs)−−−−−−→ (s2, b+ rs, c)

[rr ]

(s2, rs) = ∆.wr(s1, as, bs) as ⊆ D

(s1, b, c)
wt(as,bs)−−−−−−→ (s2, b+ rs, c)

[wr ]

The message box acts as a buffer between the memory
and the DMAC. The message box synchronizes with memory,

consuming a request (previously produced by operation op and
with identifier t) and for reads adding a correponding reply:

(s, b+ ropt [as], c)
rd(as,bs)−−−−−−→ (s, b+ pop

t [bs], c) [rm]

(s, b+wop
t [as, bs], c)

wt(as,bs)−−−−−−→ (s, b, c) [wm]

The other rules are for internal DMAC transitions. For
fetching BDs (op = f ) there are five cases: three if BDs are
stored in main memory and two if BDs are stored in internal
memory. [f1 ] describes the first step in fetching an external
BD, that is applicable when there are no pending memory
replies for BD fetches. In this case a memory request is added
to the message box for fetching new BDs. In Fig. 3, the rule
can produce the request RQf when starting to fetch BD4.
The addresses and the tag are given by the function Fetch
Addresses Π.fas:

{pf
t′ [bs] ∈ b} = ∅ rft [as] = Π.fas(s)

(s, b, c)
τ−→ (s, b+ rft [as], c)

[f1 ]

When a memory read request for fetching a BD is served,
the corresponding reply is added to the message box. [f2 ]
describes the behavior when such a reply exists but more reads
are necessary to fetch the complete BD, in which case the
function Fetch ∆.f returns ⊥. ∆.f can update the internal
state with the consumed reply, which contains a partial BD:

(s2,⊥) = ∆.f(s1,p
f
t [bs])

(s1, b+ pf
t [bs], c)

τ−→ (s2, b, c)
[f2 ]

[f3 ] handles the case when a BD fetch reply pf
t [bs] exists

and it contains the last chunk of bytes bs of the BD bd
being fetched. In this case ∆.f returns a pair consisting of
the abstract representation of the fetched BD bd and which
pipeline stage queue op ∈ {u, p} the BD shall be appended to
(denoted by ++):

(s2, (bd, op)) = ∆.f(s1,p
f
t [bs])

(s1, b+ pf
t [bs], c)

τ−→ (s2, b, c[op 7→ c.op++ bd])
[f3 ]

The fetching BD rules for DMACs with internal BDs are
similar to [f2 ] and [f3 ], but no memory requests and replies
are involved, since BDs are obtained from the internal DMAC
state.

Two rules model the process stage (op = p), depending
on whether the currently processed BD is now completed
or not. The following rule covers the case when a BD
is completely processed (the other case when more DMA
transfers remain of the BD is similar, but keeps the BD at the
head of the process queue). In either case, the function Process
∆.p models the DMAC specific behavior of generating and
processing memory requests and replies. It takes the currently
processed BD bd at the head of c.p, and pending memory
replies for the process stage; and returns an updated internal
state, optional new memory requests rs, and a completion flag
which specifies if the BD has now been processed and shall be
moved to the write back stage. These requests represents DMA
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reads and writes, while the replies are the results of previously
issued read requests that have been served by memory. All
replies are consumed and the new requests are added to the
message box. In Fig. 3 the rule can produce the request RQp
to write the buffer addressed by bd2.

c.p = bd :: bds
ps = {pp

t [bs] ∈ b} (s2, rs, true) = ∆.p(s1, bd, ps)

(s1, b, c)
τ−→ (s2, b− ps+ rs, c[p 7→ bds, w 7→ c.w ++ bd])

[pt ]

Updating and writing back BDs are similar and for this
reason we only describe write back in detail. The main
difference is that updating a BD moves the updated BD from
the head of update queue to the tail of the process queue, while
a write back may remove a (possibly empty) prefix of BDs
from the write back queue c.w. If BDs are stored in main
memory, the Write back function ∆.w returns the memory
write requests rs for writing back the BDs, while internal
BDs are written back by updating the internal state (in Fig. 3
the rule can produce the request RQw to update bd1 in main
memory):

(s2, rs, bds) = ∆.w(s1, c.w)

(s1, b, c)
τ−→ (s2, b+ rs, c[w 7→ c.w − bds])

[w ]

Finally, the DMAC can react to the replies ps to the
read requests produced by the mainteinance operations (i.e.,
requests issued by [rr ] and [wr ]), removing the processed
replies pps ⊆ ps from the message box:

ps = {pm
t [bs] ∈ b} (s2, pps) = ∆.m(s1, ps)

(s1, b, c)
τ−→ (s2, b− pps, c)

[m]

IV. VERIFICATION

Our goal is to verify general conditions that are sufficient
to guarantee DMAC isolation (Theorem 1): The DMAC can
only read “readable” and write “writable” memory regions,
denoted by the sets of addresses R and W .

Our verification is based on refinement. Let M3 be the
DMAC model defined in Section III. We introduce two layered
abstractions M2 and M1. For each model Mi+1 we introduce
an invariant Ii+1 that allows us to prove bisimulation between
Mi+1 and Mi. We finally introduce an invariant I1 for M1

that demonstrate DMAC isolation and use the bisimulation
to transfer this property down to the M3 DMAC model.
This strategy has three benefits: (i) it allows us to solve
one problem at a time via a single refinement step; (ii) it
establishes a bisimulation between the concrete model and
the more abstract one, which allows further properties (e.g.,
functional correctness of a device driver) to be verified using
abstract models; (iii) it allows us to identify assumptions that
all DMAC instantiations and drivers must satisfy in the form
of proof obligations. The obligations must be proved for a
given DMAC instantiation, but these proofs depend only on
the instantiation (∆ and Π) in contrast to a complete DMAC
model. The driver conditions can be proven relying only on
the DMAC guarantee that are established by our verification.

A. Abstract DMAC Models
The lower abstraction M2 is a virtual DMAC that cannot

self-modify pending BDs. This property allows a driver to
prepare, extend, and read the queue that must be fetched by
the DMAC without being concerned that the DMAC may alter
the queue. This is done by checking that pending BDs are not
addressed by BD updates, write backs, and DMA writes. For
instance, the rule for write back becomes (where a ⊃/⊂b means
that sets a and b are disjoint: a ∩ b = ∅):

(s2, rs, bds) = ∆.w(s1, c.w) ⋃
bd∈bds

bd.wa ∪
⋃

wop
t [as,bs]∈rs

as

 ⊃/⊂
⋃

bd∈Π.cf (m,s1)

bd.ra

(s1, b, c)
τ−→ (s2, b+ rs, c[w 7→ c.w − bds])

[w ]

The rule prevents write backs from modifying pending BDs,
independently of whether the BDs are stored in internal or
main memory. For internal BDs, the locations modified by
∆.w are identified from the list of released BDs bds. For
external BDs, the addresses are in the requests rs produced
by ∆.w. Π.cf returns the list of remaining (Concrete) pending
BDs to Fetch, as identified by the internal state and memory
(BD4 and BD5 in Fig. 3).

The upper abstraction M1 guarantees that BDs cannot be
changed by the CPU. The pending BDs to fetch are stored in
an abstract queue c.f . By definition the CPU cannot modify
or remove entries from this list, but it can append BDs by
either: writing a DMAC register (e.g. by writing the tail pointer
register or by writing the next pointer field of a BD in external
memory). This makes it possible to prove properties of DMA
transfers (e.g., memory isolation) without considering inter-
leavings with CPU transitions which can potentially corrupt
pending BDs. This abstract model alters the previous transition
system by composing the abstract DMAC and memory in
such a way that the abstract DMAC can “magically” extend
the abstract queue of pending BDs with new BDs bds when
the CPU writes memory m1 at locations with addresses as
and bytes bs resulting in memory m2 (writing registers is
similar but with the updated internal state considered instead
of updated memory):

as ⊆ M m2 = m1[as 7→ bs]
bds′ = Π.cf (m2, s) ∃bds. bds′ = c.f ++ bds

m1|(s, b, c)
wt(as,bs)−−−−−−→ m2|(s, b, c[f 7→ bds′])

[ma]

The internal operations of M1 also differ. For [f3 ], the BD
bd returned by ∆.f is ignored and instead the first BD of c.f
is moved to c.u or c.p, depending on whether the BD shall be
updated or not. The reason why main memory is still accessed
to fetch BDs (even though they are not used) is to keep the
transition systems synchronized: Internal states are updated
identically in both M1 and M2. In addition, the checks for
updates/write backs and DMA writes in M2 are also in M1.

B. Refinement Relations, Invariants, and Proof Obligations
We use (m, di+1) ≃i+1 (m, di) for the refinement relation

between Mi+1 and Mi. These relations require the common
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state fields to be equal: di+1 = di. Additionally (m, d2) ≃2

(m, d1) requires that the abstract and concrete pending BDs
are equal: d1.ch.f = Π.cf (m, d2.s).

The refinement proofs depend on invariants that restrict the
state of the lower layer. The invariant for M2 requires that no
DMA write request targets pending BDs I2(m, s, b, c) :=:=:=

wop
t [as, bs] ∈ b ∧ bd ∈ Π.cf (m, s) =⇒ as ⊃/⊂bd.ra

This invariant simply propagates the checks of the internal
abstract DMAC operations (e.g., [w ] of M2).

In order to establish the bisimulation for the model of
Section III, we also need an invariant that enforces the same
constraints that are checked by the abstract models. The
invariant I3 requires that every pending or fetched BD in the
pipeline do not have update/write back addresses nor DMA
writes to pending BDs (this includes that pending BDs do not
overlap; in the definition of I3, c denotes the concatenation of
c.u, c.p and c.w): I3(m, s, b, c) :=:=:=⋃

bd∈c∪Π.cf (m,s)

(bd.wa ∪ bd.dwa) ⊃/⊂
⋃

bd∈Π.cf (m,s)

bd.ra

The last invariant restricts M1 to force the DMAC to
access only readable and writable memory (in the definition
of I1, c denotes the concatenation of c.f , c.u, c.p and c.w):
I1(m, s, b, c) :=:=:=⋃

ropt [as]∈b

as ∪
⋃
bd∈c

bd.ra ∪
⋃

bd∈c.op,op ̸=w

bd.dra ⊆ R ∧

⋃
wop

t [as,bs]∈b

as ∪
⋃
bd∈c

bd.wa ∪
⋃

bd∈c.op,op̸=w

bd.dwa ⊆ W

The instantiation of a given DMAC must satisfy some
proof obligations, which mainly state that the behavioral and
projection functions are consistent:

1) A fetched BD (by [f3 ]) is the first pending BD:
If rft [as] = Π.fas(s1), and (s2, (bd, op)) =
∆.f(s1,p

f
t [m[as]]), then there exist BDs bds such that

Π.cf (m, s1) = bd :: bds. Also, after fetching a BD, the
projection function must reflect the removal of the BD
from the pending queue: Π.cf (m, s2) = bds.

2) The queue of pending BDs depends only on the
locations of the BDs and the internal state: If
∀a ∈

⋃
bd∈Π.cf (m,s) bd.ra. m2[a] = m1[a], then

Π.cf (m1, s) = Π.cf (m2, s).
3) The function associated with DMA transfers does

not affect the queue of pending BDs: (s2, rs, cf) =
∆.p(s1, bd, ps) implies Π.cf (m, s2) = Π.cf (m, s1)

The proof obligations of the driver are that it only appends
BDs and preserves the invariants I1 and I3. This proof obli-
gation is only relevant for non-internal CPU transitions, since
the invariants do not depend on the CPU. For memory writes
(other cases are similar) this means that if

∧
i∈{1,3} Ii(m, d),

cpu
wt(as,bs)−−−−−−→ cpu′, and as ⊆ M then:

1) ∃bds. Π.cf (m[as 7→ bs], d.s) = Π.cf (m, d.s) ++ bds.

2) (m|d) wt(as,bs)−−−−−−→1 (m′|d′) implies Ii(m′, d′), where →1

denotes the transition relation of M1.
That is, writes (updates, write backs and DMA writes) of
appended BDs do not point to pending BDs or non-writable
memory, appended BDs do not overlap, and reads (both fetches
and DMA) of appended BDs do not point to non-readable
memory. Notice that invariant preservation can be done by
checking the state of the the more abstract DMAC model M1,
disregarding the lower layers.

C. Refinement and Memory Isolation

Refinement is phrased as a bisimulation and assumes the
invariant. For i ∈ {2, 3} (→i denotes the transition relation of
Mi):

Lemma 1. If Ii+1(m, d), (m, d) ≃i+1 (m, e), and

(c,m, d)
l−→i (c

′,m′, d′) then exists e′ such that (c,m, e)
l−→i

(c′,m′, e′) and (m′, d′) ≃i+1 (m′, e′), and vice versa with
transitions of −→i.

Proof. Consider i = 1. For the fetch rules the main difference
between M1 and M2 is that M1 fetches abstract BDs and
M2 fetches concrete BDs. ≃2 guarantees that these queues
are equal. M1 moves the first BD of d1.c.f to the tail of
the update or process queue (d1.c.op, op ∈ {u, p}). DMAC
proof obligation 1) ensures that M2 performs a corresponding
operation by moving the first concrete BD of Π.cf (m, d2.s).

For updating, processing and writing back BDs, the abstract
pending BDs of M1 cannot change by definition. To show that
the concrete pending BDs of M2 are also unchanged we use
the the update/write back checks in M2 and DMAC proof
obligation 2). Moreover, I2 and DMAC proof obligation 2)
imply that memory writes do not change concrete pending
BDs in M2, preserving equality between concrete and abstract
BDs queues.

Finally, for CPU transitions, there are two cases depending
on whether the pending BDs are modified. If not, then memory
and register accesses have identical effects in M1 and M2.
Otherwise, Driver proof obligation 1) ensures that M2 only
appends BDs. This allows M1 to produce the corresponding
abstract queue of pending BDs by extending the existing one
via the rule [ma] (and similarly for register writes).

For i = 3, I3 is transferred by ≃3 to M2, implying that
all checks in M2 pass (e.g. [w ]). Thus, M2 and M3, perform
identical operations. CPU and DMAC memory transitions are
identical in M2 and M3.

We then prove that invariants are preserved and transfered
by the refinements:

Lemma 2. If Ii(m, d) and (c,m, d)
l−→i (c′,m′, d′) then

Ii(m′, d′). Also if j < i and (m, dj) ≃j (m, dj+1) then
Ii(m, dj+1) ⇔ Ii(m, di).

Finally we show that DMAC transitions modify and depends
on only the right regions of memory (where f |A is the projec-
tion of a function over domain A and Ā is set complement):
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Fig. 4. Organization of BD queues of the USB DMAC.

Theorem 1. If
∧

i Ii(m, d) and (c,m, d) −→3 (c,m′, d′) then
m|W̄ = m′|W̄ , and if m|R̄ = m1|R̄ then (c1,m1, d) −→3

(c1,m
′
1, d

′) and m′|W̄ = m′
1|W̄

The theorem follows from Lemmas 1, 2 and by establishing
a further bisimulation with an even more abstract layer that
is isolated by construction. This model have additional checks
compared to M1 that prevent adding memory requests to the
message box that point outside R and W .

V. USB DMAC

We instantiate our framework with the DMAC of the USB
controller of the AM3358 SoC by Texas Instruments [32],
the SoC on the development board BeagleBone Black [7]. As
Fig. 4 illustrates, the DMAC organizes BD queues by means
of two memory regions, one storing BDs (BDRAM) and one
storing linking information (LRAM), the base addresses of
which are configurable. Both regions are organized as arrays
with the same number of entries. To transmit a DMA packet,
potentially scattered in memory in multiple buffers (e.g., DMA
packet 1 is the concatenation of buf11, buf12 and buf13), the
driver initializes in BDRAM one BD for each buffer (BD11,
BD12 and BD13), linking them via the next descriptor pointer
in the order the data buffers shall be transmitted to the USB
device. The first BD of a packet is called Start Of Packet
(SOP). The LRAM is used to link packets: if BDRAM[i] is
a SOP then LRAM[i] links the SOP BD of the next DMA
packet (BD11 is linked to BD2 via LRAM entry LE11, in
effect linking DMA packets 1 and 2). Both the driver and the
DMAC read and write BDRAM, but only the DMAC uses
LRAM.

To enqueue a DMA packet the driver writes the address of
its SOP BD (e.g., BD2 to enqueue packet 2) to the enqueue
register Q. This write causes the DMAC to append the BDs of
the new DMA packet to the pending queue: The LRAM entry
of the previous tail SOP BD (e.g., LE11) is updated with a link
to the appended SOP BD. Once a BD has been fetched, it is
processed, without being updated, and finally written back. A
write back moves the head SOP BD of the transferred DMA
packet from the pending queue to the tail of the completion
queue (which is another queue whose links are also stored in
LRAM). The completion queue is traversed by the driver to
recycle BDs. The driver does this by reading the C register,

Fig. 5. State diagram of the USB DMAC instantiation. The transition labels
denote the rules that cause the corresponding transition.

making the DMAC return the address of the first SOP BD
in the completion queue, and read LRAM to find the next
completed SOP BD which now becomes the first SOP BD in
the completion queue.

We focus on the instantiation of the transmission channel,
since reception is similar. The internal state is a record s =
(r, hp, tp, hc, tc, t) containing the registers r (except Q and C

which are not physical registers), the head and tail pointers
of the pending and completion queues hp, tp, hc, tc, and the
state t of the automaton in Fig. 5 that keeps track of the state
of the operation of the current DMA packet in transfer.

In state f, the rules [f1 ] and [f3 ] fetch the next BD and
move it to the process queue c.p (BDs are fetched atomically,
making [f2 ] unnecessary; thus, ∆.f always returns a BD).

In state p1, [pf ] repeatedly obtains memory read requests
and handles replies until all data in the buffer has been read. If
the BD in c.p is not the last BD of the DMA packet (e.g. BD12)
then [pt ] sets the next state to f to operate on the next BD
of the DMA packet (e.g. BD13). Otherwise, after processing
the last byte of the buffer, a further application of [pf ] is used
to produce a DMA read request needed to read the LRAM
entry of the SOP BD (LE11) of the DMA packet in transfer.
This data is needed later to update the linking ram in the write
back stage and must be read by [pt ], since [w ] cannot read
memory. The state is set to p2, in which [pt ] processes the
reply containing the LRAM entry and sets the state to w1.

Write backs are performed in two steps. First, in state w1,
[w ] updates the head pointer hp of the pending queue to the
address of the next SOP BD (BD2), which has been previously
retrieved in p2. Second, in state w2, the tail pointer tc of the
completion queue is set to the address of the completed SOP
BD (BD11); the LRAM entry of the previous tail SOP BD of
the completion queue is now linked to the new tail (completed)
SOP BD (e.g. BD11); the next state is f to fetch the next
SOP BD (BD2); and all BDs accumulated in c.w are released,
meaning that the driver can reuse them.

Register accesses are performed by directly reading and
writing s.r, except Q and C. When Q is written, tp is updated to
the written address of the appended SOP BD. When C is read,
the value of hc is returned with hc set to the address of the
next SOP BD in the completion queue. These register accesses
cause additional DMA management accesses to LRAM in
order to reflect the queue updates (e.g., linking LE11 to LE2

when BD2 is written to Q).
The following is a description of Π.cf , and why Π.cf , ∆.f

and Π.fas satisfy DMAC proof obligation 1). Π.cf (m, s) finds
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Aspect NIC DMAC w/o fw USB DMAC w/ fw
LoC model 1500 2000
LoC verification 55000 2000
Modeling time 3 person-months 2 person-months
Verification time 9 person-months 1/2 person-month

TABLE III
EFFORT OF VERIFYING MEMORY ISOLATION OF A NIC [33] AND A USB

DMAC WITH AND WITHOUT THE FRAMEWORK. THE HOL4 EXPERIENCE
BEFORE THE NIC DMAC WORK WAS ABOUT FOUR MAN-MONTHS, AND

ABOUT 30 MAN-MONTHS BEFORE THE USB DMAC WORK.

the unfetched BDs in four steps. (1) It retrieves the address of
the current SOP BD of the current DMA packet in transfer. (2)
The address of the next BD to fetch is obtained from hp. (3) If
hp is zero, then the entire pending queue has been visited and
the function returns the accumulated BDs so far. Otherwise, it
collects the unfetched BDs of the current DMA packet, starting
from the next BD to fetch and traversing the next descriptor
pointer fields. (4) The next BD to fetch is the SOP BD of the
next DMA packet, identified by reading the LRAM entry of
the last visited SOP BD. The procedure continues with step
3. The first BD that is fetched by ∆.f is at the address given
by Π.fas obtained from hp, which is the address obtained by
Π.cf in step 2. Hence, the fetched BD is the first pending BD.

VI. APPLICATION AND EVALUATION

The framework consists of about 28000 lines of HOL4
code, including models and proofs. It was first described in
pseudocode based on reviews of more than 20 DMACs, and
then refined into HOL4 code [42]. The high-level design,
definition, and proof took in total 18 person-months.

The instantiation of the USB DMAC consists of about 2000
lines for the model, and about 2000 lines for the proofs of the
proof obligations. The model is based on the informal specifi-
cation [32], which, as is common with informal specifications,
contains undefined terms whose meaning must be derived from
the (lacking) context, dispersed information, and typos. Similar
to the framework, we started with high-level pseudocode that
was gradually refined to remove ambuiguities and to make
it fit the framework, requiring seven person-weeks. Verify-
ing the proof obligations took about two additional person-
weeks. In previous work [33], we have modeled and verified
memory isolation of a NIC DMAC without the support of
the frawemork, taking about three months of modeling and
nine months in proving that the invariant is preserved. Due
to significantly less time in using the framework, we believe
that the framework provides significant assistance in verifying
memory isolation of DMACs, with the main benefit being
the proof of that the invariant is preserved. Table III makes
a comparison between the efforts invested into verifying the
NIC and USB DMACs with and without the framework.

The benefit of our approach is that we can establish sound-
ness of the verification conditions independently of the driver.
Then one can independently analyze the driver. For instance,
the Linux driver of the USB DMAC uses only a limited
set of the features of the device: It allocates one single BD
per channel, meaning that the DMA packets consist of only

one buffer, and it enqueues a new packet only after that the
previous one has been completed. The driver allocates two
memory regions for BDRAM and LRAM. These memory
regions do not overlap, neither do the BDs, with each BD
of each channel being allocated a fixed location. The Linux
virtual memory manager allocates the BDRAM and LRAM
regions, and likewise the DMA buffers for data transfers.
Assuming that these memory regions are disjoint and located
in “readable” and “writable” memory, this driver satisfies
the two driver proof obligations as follows. First, the driver
pops BDs from the completion queues by reading the C

register, before reinitializing them and appending them by
writing the Q register, thus only modifying the pending BD
queues by appending BDs. LRAM is not accessed by the
driver. Moreover, by assumption, BDs and DMA buffers are in
readable and writable memory. The driver organizes the BDs
in disjoint array slots in BDRAM, meaning that BDs do not
overlap, and thus write back addresses do not coincide with
read addresses of other BDs.

VII. RELATED WORK

Verification of Device Drivers without DMA Model checkers
and interactive theorem provers have been used to verify
various properties of drivers controlling devices without a
DMAC: Reading from flash memory gives previously written
data [34]; correct copying of data from memory to an ATAPI
disk [35]; termination of a UART driver transferring data
from memory to the external environment [36]; safety and
liveness properties of a UART driver [37]; absence of data
races and illegal memory accesses by a keyboard driver [38];
and equivalence between abstract and concrete models of an
SPI driver and the SPI controller [39].

These devices do not have a DMAC, meaning that their
memory isolation depends only on the memory accesses per-
formed by the driver. For devices without a DMAC, methods
have been investigated for synthesizing and (semi-) automat-
ically generating device drivers that satisfy the interfaces of
the OS and the I/O device [50], [51].

Hardware Verification Our work assumes that the the
hardware implementation of the device satisfies its hardware-
software interface. Hardware verification is indeed an ortogo-
nal problem to the driver verification problem.

A DMAC is reminiscent of a CPU in the sense that BDs
corresponds to instructions, BD operations correspond to an
instruction pipeline, and concurrent DMA channels correspond
to multiple instruction streams (threads) with BDs from dif-
ferent channels. These aspects have been investigated by the
CPU formal verification community [52]–[54].

Specifically for DMAC implementations, Clarke et al. [40]
have used model checking to verify that DMAC transfers
are eventually completed, that the DMAC is eventually ready
for new transfers, and that memory operations terminate. The
analyzed DMAC is relatively simple: The DMAC maintains
no queues nor multiple channels; its configuration depends
only on the DMAC registers; and the next transfer can be
programmed only after the previous transfer is finished. The
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same DMAC design was later used to verify relationships
between signals, including clock cycle delays [41].

Verification of DMAC Drivers Monniaux [43] has verified
a USB driver that controls a DMAC, using a static C code
analyzer designed to detect memory access and arithmetic
errors. The driver and the device are modeled in C, with
interleaved execution. The C analyzer can automatically verify
that the driver and the controller access only allowed memory.

Even if an existing C analyzer largely automates veri-
fication, the framework addresses some of the limitations
of this work. First, to automate the analysis, the C model
coarsely overapproximates all possible device actions. In order
to check soundness of this overapproximation, one should
refine the model and prove some sort of refinement (see Sub-
section IV-C), which can be difficult in C and is not supported
by the tool. Second, the use of a general C verification tool
requires the model to be defined in terms of C semantics.
For example, the tool is designed for 32-bit atomic variable
accesses, but some devices may use single byte granularity.
Third, it is not clear if the tool can analyze models of DMACs
that have complex BD queues. In fact, the analyzed model
has a relatively simple structure, where BD queues consist
of three static arrays. Finally, the overapproximation used to
automate the analysis may prevent it from being used to verify
functional properties (e.g., a buffer is actually copied from
source to destination), which the tool has no support for.

Donaldson et al. [46] have used model checking to verify
absence of data races to DMA buffers between the PPE (a
general CPU) and SPEs (HW accelerators) of the IBM Cell
BE processor, which have embedded DMACs in the SPEs to
transfer data between main memory and their local memory.
In their analysis, BD queues are not considered, only single
atomic DMA commands. Hence, this work is limited to this
specific hardware and does not consider memory isolation.

Schwarz et al. [47] have used Coq to model a DMAC and
a hypervisor, which virtualizes the DMAC among two guests,
and verified that the DMAC virtualization keeps the guest
isolated. Also this work concerns a specific and simple DMAC,
not dealing with complex organizations of BD queues.

In previous work [33] we modeled a DMAC of an Ethernet
NIC in HOL4 and verified sufficient conditions for isolating
packets in transfer. The BD queues are organized as linked
lists stored in internal DMAC memory. The formalization and
verification took about one person-year, the majority of which
can be saved with the DMAC framework.

Techniques for Isolating DMACs The ability of isolating
DMA accesses is fundamental for guaranteeing security of
entire systems. For instance, the security of several verified
systems [23]–[30], [48], [49] requires restricted DMA.

Hardware assisted DMAC isolation uses stand-alone IOM-
MUs [15] or IOMMU embedded in the DMAC [8] to prevent
the DMAC from accessing critical memory due to untrusted
configurations. In absence of dedicated hardware mechanisms,
the common approach to enforce memory isolation is via
a monitor in the OS [44], [55] or the hypervisor [45], that
intercepts driver reconfigurations of the DMAC. Other meth-

ods analyze an aspect of the system in runtime and react
to violations: Execution of device firmware follows a pre-
determined pattern [14] (e.g. the stack pointer and program
counters are in valid memory regions), memory bus activ-
ity follows a pre-determined pattern [13], execution traces
recorded by hardware or binary instrumentation [12], and
integrity of firmware and I/O configuration (the checks of
which are triggered by interrupts and thresholds of hardware
performance counters) [11].

Grisafi et al. [56] presents a mechanism to isolate mem-
ory for low-end embedded systems with DMACs. This is
achieved by means of a hypervisor, and a compiler that inserts
hypervisor calls in applications accessing DMAC registers.
The software design has been verified, however the security
of the system depends on the fact that the security policies
enforced by the hypervisor prevent the DMAC to access
critical region of memory. While this is simple to check for
simple DMACs with single BDs and that are configured only
via memory mapped registers, guaranteeing this property for
complex DMACs requires to analyze the device model. Our
work is complementary to the software verification, since it
supports the identification of the verification of the security
policies for teh devices.

VIII. CONCLUSION

We have implemented a framework in the interactive the-
orem prover HOL4 for modeling DMACs, and by means
of refinement formally verified DMAC memory isolation.
Comparing the efforts of the USB DMAC instantiation with
previous verification of memory isolation of a NIC DMAC
[33], strongly suggests that the framework can significantly
reduce the cost of verification of isolation (i.e., proving that
the invariant is preserved).

Our verification can be extended in two directions. Towards
software, the proof obligations can be used to check that
device drivers securely configure DMACs or to synthesize
security monitors, and the abstract model can be used to check
functional correctness (e.g., transmission of network packets).
Towards hardware, the model M3 can be used to either show
that a formal hardware design respect the specification, or for
model driven testing of closed source hardware.

We plan to implement and model a monitor that runs
underneath the Linux USB DMAC driver for the USB DMAC
on BeagleBone Black [7], [32], checking that the driver
reconfigurations are secure; and then verify that the monitor
satisfies the proof obligations. This fulfills two goals: The
monitor preserves security even if the driver is buggy, and
the monitor itself can be used to detect if the Linux driver has
memory isolation bugs.
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[38] W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens,
“Sound Formal Verification of Linux’s USB BP Keyboard Driver,”
NASA Formal Methods, 2012.

[39] N. Dong, R. Guanciale, and M. Dam, “Refinement-Based Verification
of Device-to-Device Information Flow,” Formal Methods in Computer
Aided Design, 2021.

[40] E.M. Clarke, S. Bose, M.C. Browne, and O. Grumberg, “The Design
and Verification of Finite State Hardware Controllers,” Technical Report
CMU - CS - 87-145 , Carnegie Mellon Univ., July 1987.

[41] H. Hiraishi, K. Hamaguchi, H. Fujii, and S. Yajima, “Regular Temporal
Logic Expressively Equivalent to Finite Automata and Its application to
Logic Design Verification,” Journal of Information Processing, vol. 15,
no. 1, pp. 130-138, 1992.

[42] https://github.com/kth-step/dma-controller-verification.git
[43] D. Monniaux, “Verification of Device Drivers and Intelligent Con-

trollers: a Case Study,” Proceedings of the 7th ACM & IEEE inter-
national conference on Embedded software, pp. 30-36, Sept. 2007.

[44] A. Mera, Y. H. Chen, R. Sun, E. Kirda, and L. Lu “D-Box: DMA-
enabled Compartmentalization for Embedded Applications,” Network
and Distributed Systems Security Symposium, San Diego, CA, USA,
April 2022.

[45] J. Haglund and R. Guanciale, “Trustworthy isolation of DMA devices,”
Journal of Banking and Financial Technology, pp. 75-94, 2020.

[46] A. F. Donaldson, D. Kroening, and P. Rümmer, “Automatic analysis of
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