
Formal Methods in Computer-Aided Design 2022

Synthesizing Instruction Selection Rewrite Rules
from RTL using SMT

Ross Daly
Stanford University
Stanford, CA, USA

rdaly525@cs.stanford.edu

Caleb Donovick
Stanford University
Stanford, CA, USA

donovick@cs.stanford.edu

Jackson Melchert
Stanford University
Stanford, CA, USA

melchert@stanford.edu

Rajsekhar Setaluri
Stanford University
Stanford, CA, USA

setaluri@stanford.edu

Nestan Tsiskaridze Bullock
Stanford University
Stanford, CA, USA

nestan@stanford.edu

Priyanka Raina
Stanford University
Stanford, CA, USA

praina@stanford.edu

Clark Barrett
Stanford University
Stanford, CA, USA

barrett@cs.stanford.edu

Pat Hanrahan
Stanford University
Stanford, CA, USA

hanrahan@cs.stanford.edu

Abstract—Creating a compiler for an instruction set archi-
tecture (ISA) requires a set of rewrite rules describing how to
translate from the compiler’s intermediate representation (IR) to
the ISA. We address this challenge by synthesizing rewrite rules
from a register-transfer level (RTL) description of the target
architecture (with minimal annotations about its state and the
ISA format), together with formal IR semantics, by constructing
SMT queries where solutions represent valid rewrite rules.

We evaluate our approach on multiple architectures, support-
ing both integer and floating-point operations. We synthesize both
integer and floating-point rewrite rules from an intermediate
representation to various reconfigurable array architectures in
under 1.2 seconds per rule. We also synthesize integer rewrite
rules from WebAssembly to RISC-V with both standard and
custom extensions in under 4 seconds per rule, and we synthesize
floating-point rewrite rules in under 8 seconds per rule.

I. INTRODUCTION

The end of Moore’s law and Dennard scaling means that
processor performance will not continue to increase expo-
nentially due to improvements in process technology. Future
performance increases will instead be due to the increased
efficiency of domain-specific architectures and accelerators. In
their Turing Award lecture, John Hennessy and David Patter-
son envision such a future; they predict that these innovations
will lead to a new golden age of computer architecture [33].
In order to realize this vision, there must be a corresponding
golden age of software tools, programming models, and com-
pilers to design and program specialized architectures [55].

Every new instruction set architecture (ISA) must be ac-
companied by a set of rewrite rules to be used in code
generation. These rules describe how to transform a compiler’s
intermediate representation (IR) to the ISA. Crafting these
rules is a labor-intensive task and is often performed by

someone other than the ISA designer. Hence, the ISA must be
carefully documented to support compiler writers—this too is
a tedious, error-prone process. Moreover, changes to an ISA
require new documentation and new rewrite rules.

This leads to a world where there are very few ISAs,
and design space exploration is limited to microarchitectural
details. To perform architectural design space exploration, a
working compiler is critical to perform realistic benchmarking.
The work in this paper arose in the context of the Agile
Hardware Project, where one of the primary goals is to
facilitate rapid design space exploration for a coarse-grained
reconfigurable array (CGRA) [7]. We found that manually
maintaining rewrite rules for a rapidly changing architecture
was a constant pain point. This experience led us to develop
a method for automatically synthesizing instruction selection
rewrite rules, which is the primary contribution of this paper.
Our method requires a register-transfer level (RTL)1 descrip-
tion of the target architecture, a description of the architectural
state, and a description of the instruction format. This method
has made possible the efficient and algorithmic exploration of
large design spaces [41], as generation of the rewrite rules can
be efficiently performed without a human in the loop.

Even for established ISAs, it is easy to overlook nuances
that are obvious to the ISA designers. This can lead to ineffi-
ciencies in compiled code. For example, the RISC-V ISA does
not include equals or not-equals instructions but documents
“pseudo operations" for performing them using a subtract and
an unsigned less-than ((x - y) < 1 and 0 < (x - y)
respectively) [2]. Similarly, there are no instructions for less-
than-or-equals or greater-than-or-equals, each of which can

1Not to be confused with Register Transfer Language

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-4938-5250
https://orcid.org/0000-0001-9336-1267
https://orcid.org/0000-0002-8232-1603
https://orcid.org/0000-0003-2078-0991
https://orcid.org/0000-0002-4729-9770
https://orcid.org/0000-0002-8834-8663
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-3474-9752
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20
https://creativecommons.org/licenses/by/4.0/

also be implemented as two instruction sequences using a
less than and an xor ((y < x) ^ 1 and (x < y) ^ 1,
respectively); however, these sequences are not documented.

Using the architecture’s RTL, we synthesize rewrite rules by
constructing first-order logic queries whose solutions, obtained
using a satisfiability modulo theories (SMT) solver, represent
instruction selection rewrite rules. Additionally, we propose
a methodology for abstracting complex operations, such as
floating point operations, which proved too costly for previous
SMT-based approaches [12]. While some prior work [18],
[19], [49], [12] tackled similar problems, they used manually-
defined ISA specifications in the form of enumerated lists of
instructions with their parameters and semantics. Using RTL
directly has the benefit of avoiding this manual specification
step. This is particularly important when doing design space
exploration, as it is difficult to maintain both the RTL and
a corresponding formal specification for a rapidly changing
design. ISA specifications also do not typically capture the
instruction format or the instruction decode logic, both of
which are needed for an end-to-end correctness argument. In
addition to these benefits, using the RTL directly also presents
unique challenges which we address. Our main contributions
are as follows:

• Formalization of the correctness criteria for a general
class of rewrite rules between arbitrary IRs and RTL-
based architectures.

• A technique for supporting parametric rewrite rules.
• A method for abstracting operations whose semantics are

either unknown or too complex to model efficiently (e.g.,
floating-point operations).

• A methodology for efficiently encoding and solving the
rewrite rule synthesis problem using SMT.

In our evaluation, we synthesize rewrite rules from CoreIR
(an IR designed for RTL) [16] to a family of CGRAs. We also
synthesize rewrite rules from WebAssembly to various RISC-
V architectures. We target both the base RISC-V ISA and
a number of extensions, including extensions with floating-
point operations. All of these tasks can be done in seconds.
Additionally, we are able to synthesize short multi-instruction
sequences for pseudo-operations such as those mentioned
above (whether officially documented or not). These take at
most 90 seconds to synthesize.

The rest of this paper is organized as follows. Section II pro-
vides background on compilers, instruction selection, rewrite
rules, and SMT. Section III formalizes rewrite rules and
describes our encoding of the problem into SMT. Section IV
presents case studies highlighting the utility and performance
of the tool. Section V covers related work and, finally,
Section VI provides future steps to take towards a general,
automatically-derived compiler.

II. BACKGROUND

A. Code Generation

Most compilers share a common structure: a front end
which translates a high-level language into an IR, an optimizer

Notation Meaning

BV [n] Sort for bitvectors of length n
+[n],−[n],×[n],÷[n] Arithmetic modulo 2n

+f [n] n-bit floating-point addition
x ◦ y Bitvector concatenation
x[msb : lsb] Bitvector extraction
ite(c, x, y) If-then-else: if c then x else y
a[i] Read from array a at index i
a[i] := v Result of updating array a at

index i with value v
T = Algebraic data type T with

C1(s1 : σ1) | constructors C1, C2, testers is_C1

C2(s2 : σ2, s3 : σ3) and is_C2, and selectors si of sort σi

TABLE I: Theory-specific notation.

which optimizes the IR, and a code-generator which translates
the IR into a hardware-specific representation (which then
may be further optimized for the target architecture). The
code generation stage typically involves instruction selection,
scheduling, resource assignment, and assembly.

There has been significant work devoted to developing
instruction selection algorithms [29], [25], [26], [45], [20],
[4], [24], [23], [10] that use a set of pre-defined rewrite
rules to translate IR programs to architectural instructions.
These rewrite rules are dependent on the target ISA and are
usually constructed manually. In this paper, we automatically
synthesize rewrite rules from the RTL of target architectures;

B. Logical Setting

We work in the setting of many-sorted logic (see e.g., [21],
[54]). Let S be a set of sort symbols (sorts in this setting
play a role similar to types in type theory). For every sort
σ ∈ S, we assume an infinite set of variables of that sort. We
assume the usual definitions of terms, literals, formulas, and
interpretations, and use |= to denote the satisfiability relation
between interpretations and formulas. We write e {x ↦→ t } for
the result of simultaneously replacing each occurrence of x in
e by t. If x1 and x2 are two vectors of variables, we write
x1 :: x2 to denote their concatenation. A term of the form
ite(φ, t1, t2) is an if-then-else operator, whose meaning is
the same as t1 in an interpretation I where I |= φ, and the
same as t2 otherwise.

A theory T assigns meaning to certain theory-specific
symbols by fixing a class of allowable interpretations (e.g.,
it may fix the meaning of the symbol ‘+‘ to be the addition
function). A formula φ is T-satisfiable (resp., T-unsatisfiable,
T-valid) if it is satisfied by some (resp., no, all) interpretations
in T . The satisfiability modulo theories (SMT) problem is
simply the question of determining T-satisfiability of a formula
for some given theory T . SMT solvers solve this problem for
a standard set of useful theories (and their combinations).

Some examples of common theories supported by SMT
solvers include fixed-width bit-vectors, arrays, integer and
floating-point arithmetic, uninterpreted functions, and alge-
braic data types. Table I lists some notation from these theories
that we will use in illustrative examples below. A more
thorough introduction to SMT can be found in [9].

140

III. SYNTHESIZING REWRITE RULES

Rewrite rules are a key component in instruction selection,
as they indicate the options for how to transform one or
more IR instructions into one or more architecture-specific
instructions. In this section, we show how to formalize and
solve the rewrite rule synthesis problem using SMT.

A. Intermediate Representation Formalization

An intermediate representation (IR) includes a collection
of instructions which can be composed together in various
ways to represent programs. IR instructions can be represented
in many ways, including as graphs or as functions. Here,
we represent IR instructions as SMT formulas. The formulas
encode how an instruction’s inputs are transformed into a set
of outputs. Formally, let x = (x1 : σ1, . . . , xk : σk) be a vector
of variables. Then, the tuple IR(x) = (IR1(x), . . . , IRl(x))
is an IR instruction with k inputs (each xi is an input) and l
outputs (represented by each IRj). The value of output j for a
given concrete input (c1, . . . , ck) is given by constructing the
formula IRj(c1, . . . , ck) and then evaluating it using the se-
mantics of the theory operations in the formula. For example,
an 8-bit adder with two outputs, the sum and the carry-out,
and inputs x1 and x2 of sort BV [8] could be represented as:

(x1 +[8] x2, (0 ◦ x1 +[9] 0 ◦ x2)[8 : 8]).

For the concrete input (11111111, 00000001), the outputs are
00000000 and 1, respectively.

A formula-tuple IR need not represent only a single in-
struction. A complex operation or pseudo-instruction can be
represented as a composition of other instructions. Our SMT
representation can easily accommodate composition: if an
output IRj from IR1 is connected to an input xi in IR2,
then the composition is simply the result of substituting IRj

for xi in IR2, i.e., IR2 {xi ↦→ IRj }. Below, we assume that
IR represents some IR program (comprising one or more IR
instructions) that we wish to find a rewrite rule for.

B. Architecture Formalization

An architecture is a circuit that is parameterized by a single
architectural instruction value (separate from and not to be
confused with the IR instructions mentioned above), which
indicates how other inputs and existing states are transformed
into outputs and next states. As above, we represent an
architecture as a tuple of SMT formulas. The instruction
itself is an input to the architecture, which we assume can
be modeled as a variable inst of sort τ . We further let
y = (y1 : τ1, . . . , ym : τm) be a vector of variables with sorts
in Σ, where τi is the sort of the architecture’s i’th input. The
tuple Arch(inst ,y) = (Arch1(inst ,y), . . . ,Archn(inst ,y))
is an architecture with m + 1 inputs and n outputs. As an
example, consider an 8-bit ALU with 4 operations. An input
inst of sort BV [2] selects which operation to perform on two

other inputs, y1 and y2, both of sort BV [8]. Its single output
is also of sort BV [8]. For this example, Arch could be:

(ite(inst = 00, y1 −[8] y2,

ite(inst = 01, y1 +[8] y2,

ite(inst = 10, y1 ∗[8] y2, y1 ÷[8] y2)))).

States. Architectures with states can be modeled by including
current state values as inputs and next state values as outputs.
Suppose z = (z1 : ω1, . . . , zp : ωp) are variables representing
the states. Then, we can represent the architecture as:

Arch(inst ,y, z) =

(Arch1(inst ,y, z), . . . ,Archn(inst ,y, z),

Archn+1(inst ,y, z), . . . ,Archn+p(inst ,y, z)),

where Archn+i are formulas that encode the next-state func-
tion for the ith state variable. An example with states appears
in Section III-C, below.

Composing Architectures. A rewrite rule for an IR program
might require more than one instruction at the architec-
tural level. Fortunately, as was the case for IR programs,
it is straightforward to compose multiple architectures us-
ing our SMT representation. Let Arch1(inst1,y1, z1) and
Arch2(inst2,y2, z2) be two architectures with m1 and m2

inputs, p1 and p2 states, and n1 and n2 outputs, respec-
tively, and suppose that output i of Arch1 is passed into
input j of Arch2. Let inst = (inst1, inst2), y = y1 ::
(y2,1, . . . , y2,j−1, y2,j+1, . . . , y2,m2

), z = z1 :: z2, and y′
2 =

y2 { y2,j ↦→ Arch1,i(inst1,y1, z1) }. Then, the composition
is:

Arch(inst ,y, z) =

(Arch1,1(inst1,y1, z1), . . . ,Arch1,n1(inst1,y1, z1),

Arch2,1(inst2,y
′
2, z2), . . . ,Arch2,n2(inst2,y

′
2, z2),

Arch1,n1+1(inst1,y1, z1), . . . ,Arch1,n1+p1(inst1,y1, z1),

Arch2,n2+1(inst2,y
′
2, z2), . . . ,Arch2,n2+p2(inst2,y

′
2, z2)).

C. Rewrite Rule Formalization

A rewrite rule defines how a specific IR program can be
implemented using one or more instructions of a particular
architecture. We start with a simple but incomplete definition
of a rewrite rule and incrementally build up a definition with
more generality and sophistication. The simplest rewrite rule
is a tuple (IR,Arch, instc), where IR is an IR program,
Arch is an architecture (without states for now), and instc is
a concrete constant (i.e., a constant that maps to a particular
domain value, like 0 or 1) of sort τ . We say such a tuple is a
valid rewrite rule if the following formula is well-formed and
T -valid:

∀x.Arch(instc,x) = IR(x) (1)

Note that well-formedness requires that Arch and IR have
the same number of inputs and outputs and that corresponding
inputs and outputs have the same sort. As an example, take
again the sum output of the IR program given in Sec. III-A,

141

that is, IR = (x1 +[8] x2), and suppose Arch is as given
in Section III-B. Then, (1) holds when instc = 01, and so
(IR,Arch, 01) is a valid rewrite rule. In practice, things can
be more complicated in several ways, which we address next.

Bindings. One problem with (1) is that the inputs and outputs
of the IR rarely match those of the architecture. A more
general rewrite rule is (IR,Arch, instc, b

in , bout), where
(bin , bout) is a pair of formula tuples, called a binding, that
specifies how to map between the inputs and outputs of the
two formulas. The rewrite rule is valid if the following formula
is well-formed and valid:

∀x. bout(Arch(instc, b
in(x))) = IR(x). (2)

Here, well-formedness means bin(x) = (bin1 (x), . . . , binm (x)),
where each bini (x) has sort τi. We also require bout(w) =
(bout1 (w), . . . , boutl (w)), where w = (w1, . . . , wn), the sort
of each wi matches Archi, and the sort of each boutj matches
IRj . As an example, consider bin = (x2, x1) and bout = (w2).
This binding swaps the two IR inputs and only uses the second
architecture output.

Another complexity with bindings is that sometimes it is
necessary to map the IR inputs to only a subset of the
architecture inputs (for example, mapping a unary IR operation
to an ISA supporting only binary operations). The extra inputs
which do not correspond to any IR input must not have
any effect on the output. To model this, we extend bin so
that, in addition to x, it also takes additional arguments
y = (y1 . . . ym) with sorts (τ1, . . . , τm). The idea is that the
binding can choose to simply map some variable yi to an extra
architecture input. With this extension, we can write the new
rewrite rule formula as follows:

∀x,y. bout(Arch(instc, b
in(x,y))) = IR(x). (3)

Finally, we can handle the full generality of architec-
tures with states by including these in the binding as
well, where bin is extended to be a function of sort
(σ1 . . . σk, τ1 . . . τk, ω1 . . . ωp) → (τ1 . . . τm, ω1 . . . ωp), and
bout also takes an additional p inputs of sort ω1, . . . , ωp.

∀x,y, z. bout(Arch(instc, b
in(x,y, z))) = IR(x). (4)

As an example, consider a simple architecture which ei-
ther multiplies its inputs and accumulates the result into a
register file z (represented by an array variable) at index 0
while outputting the product or performs a subtraction, both
outputting the result and storing it at index 1 of the register
file. Assume the instruction is of sort BV [1], and the other
inputs are of sort BV [8]. All operators use 8-bit arithmetic (so
we will omit the [8] subscript to ease readabilty). The formula
for the architecture is then:

Arch(inst , y1, y2, z) = (ite(inst = 0, y1 ∗ y2, y1 − y2),

ite(inst = 0, z[0] := z[0] + (y1 ∗ y2), z[1] := y1 − y2))

Note that the first formula in the Arch tuple represents the
output of the architecture, while the second represents the next
state of z. Now, suppose we are searching for a rewrite rule
for IR(x) = (x3 ∗ x2) + x1. One valid rule is instc = 0,

bin(x, y, z) = (x3, x2, z[0] := x1), and bout(w) = w2[0]
(note that w2, represents the second input to bout , which
corresponds to the register file state). This rule represents a
solution using instc = 0 when x1 is the value of z[0], x2

drives the y2 input, and x3 drives the y1 input. The result is
stored at index 0 of the (next state value of the) register file.

D. Rewrite Rule Synthesis

We next formalize the problem of synthesizing rewrite rules.
We assume that we are given IR and Arch representing an
IR program and an architecture, respectively. We must find
instc, bin , and bout . Starting from (4), we can simply replace
instc, bin , and bout with variables to get a (second-order)
formula. It is also useful to make the bindings a function of
the instruction, as we explain below. Thus, we have:

∃ inst , bin , bout . ∀x,y, z.
bout(inst ,Arch(inst , bin(inst ,x,y, z))) = IR(x). (5)

If (5) holds, then there exists a valid rewrite rule.
In order to use (5) for a practical rewrite rule synthesis al-

gorithm, we must additionally specify what kinds of functions
are allowed for bin and bout . These functions should tell us
how to map the inputs and outputs, but should not introduce
extra functionality. For non-state inputs to the architecture, we
simply require that the binding either pick a variable in x or
pass through the corresponding variable from y.

For state inputs, there are two2 cases. For programmable
states (states with compile-time addresses that can be written
and read by instructions, e.g., a register file), we allow the
binding to update part of the state with a variable in x.
This corresponds to a previous instruction storing its result
(the input for the current instruction) in the state. We do
this by using array variables for these states and allowing
the binding to write to the arrays. Other states, such as the
accumulators or other non-programmable registers, are passed
through unchanged by the binding. Formally, we require:

bini (inst ,x,y, z) =

⎧⎪⎨⎪⎩
yi or xj(1 ≤ j ≤ k), if i ≤ m,

zi−m, if i > m (non-programmable)
update(zi−m, inst ,x), otherwise,

where update(z, inst ,x) is one or more array writes to z at
indexes specified by one or more fields in inst and with values
from the variables in x. The output binding is similar:

boutj (inst ,w) =

⎧⎪⎨⎪⎩
wi (1 ≤ i ≤ n+ p), or
read(wi, inst) (n+ 1 ≤ i ≤ n+ p),

where wi is programmable,

where read(w, inst) is a read from the array w at an index
specified by some field of inst . Implicit in this formulation
is the requirement that instructions must either directly output
their result or write them to programmable state in a single a

2A third kind of state with computed addresses (like indirect loads and
stores), can be handled in a way similar to [12], or by using the computed
address from the architecture and the IR in the output bindings.

142

cycle. Pipeline registers and other micro-architectural state fall
into the category of states which cannot be bound. We discuss
possible approaches for handling pipelining in Section VI.

We next explain how to solve (5), subject to the constraints
on bindings. But first, we introduce two useful generalizations.

Synthesizing Parametric Rewrite Rules. Sometimes, we are
interested in finding a parameterized rewrite rule that works
for a family of IR nodes (for instance, the family of IR
instructions that multiply a constant parameter by some input).
Rather than having to discover a different rewrite rule for each
value of the parameter, we would like to solve the problem
once and have it work for all possible values of the parameter.
Formally, let c be a vector of parameters, and let IR(c,x) be
a family of IR nodes parameterized by c. Using equation (5)
as a starting point, the new rewrite formula becomes:

∀ c. ∃inst , bin , bout . ∀x,y, z.
bout(inst ,Arch(inst , bin(inst ,x,y, z))) = IR(c,x). (6)

In other words, we would like there to be an appropriate
instruction encoding for each value of the parameter c. As
it stands, this formulation is not very useful, as it does not tell
us how to connect the instruction to the parameter. However,
by Skolemizing (6), we get the following:

∃inst , bin , bout . ∀ c,x,y, z.
bout(inst(c),Arch(inst(c),

bin(inst(c),x,y, z))) = IR(c,x). (7)

where now, inst is a function from c to instructions.3

Abstracting Complex Operations. Complex operations (e.g.,
floating-point arithmetic) can present a challenge. However,
it is often the case that there are identical complex oper-
ations in the IR and in the architecture. We can handle
such situations by replacing such complex operations with
uninterpreted functions [13]. We must be careful about how
this is done though. If we simply introduce new function
symbols in the formulas for the IR and the architecture, they
will be implicitly existentially quantified when checking for
satisfiability, leading to spurious results as the solver can
choose any interpretation. Hence, introduced function symbols
must be universally quantified. Formally, let Archabs and
IRabs be the abstract versions of Arch and IR, respectively,
where the complex operations are removed and replaced with
a vector of function symbols f . Then, building on (7), we get
the following formulation for the fully general rewrite rule
synthesis formula:

∃inst , bin , bout . ∀ c,x,y, z, f . IRabs(c,x, f) =

bout(inst(c),Archabs(inst(c), f , bin(inst(c),x,y, z))).
(8)

3Technically, to maintain logical equivalence, bin and bout should also be
functions of c, but for simplicity, we omit this, keeping the restrictions on
their form introduced above. We also did not find any additional dependency
on c to be needed in practice.

E. Rewrite Rule Synthesis Implementation

Here, we detail several additional considerations required
to solve the rewrite rule synthesis problem formalized above
in practice. Specifically, we discuss (i) removing second-order
quantifiers; (ii) encoding instructions; (iii) formula optimiza-
tions; and (iv) solving algorithm optimizations.

Removing Second-Order Quantifiers. Note that inst , bin ,
bout , and f are all quantified functions. In order to use an SMT
solver, we first need to find an equivalent formulation using
only first-order quantification. For the binding functions, this
is straightforward. Given the restrictions outlined above, there
are only a finite number of possible binding functions.4 Let B
be the set of all legal bindings (bin , bout). Then, formula (8)
is equivalent to

∃inst . ∀ c,x,y, z, f .
⋁︂

(bin ,bout)∈B

IRabs(c,x, f) =

bout(inst(c),Archabs(inst(c), f , bin(inst(c),x,y, z))).
(9)

Unfortunately, just satisfying this formula does not tell us
which binding to use, so in practice, we also add an indi-
cator variable i, whose value indicates which binding was
used. Formally, we extend the notion of binding to a triple
(b, bin , bout), where b is an integer unique to each binding.
Then, our formula becomes:

∃inst , i. ∀ c,x,y, z, f .
⋁︂

(b,bin ,bout)∈B

i = b∧ IRabs(c,x, f) =

bout(inst(c),Archabs(inst(c), f , bin(inst(c),x,y, z))).
(10)

To remove the quantification on f , we can use Ackerm-
annization [3]. For each function symbol f , we replace each
instance of f with a fresh variable of the same sort as the return
sort of f and add constraints requiring that if the arguments
to any two of those instances of f are equal, then the fresh
variables representing those instances are equal too. Assume,
for ease of presentation, that f = (f) and f appears only
once in IRabs , with arguments s, and once in Archabs , with
arguments t. Then, (10) is equivalent to5

∃inst , i. ∀ c,x,y, z, f1, f2.
⋁︂

(b,bin ,bout)∈B

i = b ∧

(s = t → f1 = f2) → IRabs(c,x, f1) =

bout(inst(c),Archabs(inst(c), f2, b
in(inst(c),x,y, z))).

(11)

Encoding Instructions. Above, we have assumed a simple
instruction model, where instructions are taken from some
sort τ . In practice, an architecture may have a variety of

4To ensure finiteness, we limit the update operation mentioned above to
allow no more updates than there are IR inputs.

5With some abuse of notation, if P (f) is a formula containing f , and f1 is
a variable whose sort matches the return sort of f , we write P (f1) to mean
the result of replacing the application of f in P by f1.

143

instructions, each with different components. This can be
modeled by letting τ be an algebraic data type (ADT), with
different constructors for each type of instructions. This also
solves the problem of how to handle inst as a function of
c. Some types of instructions allow immediate values to be
encoded as part of the instruction. For those instructions, we
allow a parameter from c to appear as the immediate value.
This is a very limited type of functional dependence on c, but
it is sufficient for modeling the kinds of parametric rewrite
rules we are interested in.

To see how this works, consider as an example two formats
from the RISC-V integer instruction set (RV32I): (i) R-
type: register-register instructions; and (ii) I-type: register-
immediate instructions. We can model these using the ADT:

INST = RType(op : BV [7], rd : BV [5], func3 : BV [3],

rs1 : BV [5], rs2 : BV [5], func7 : BV [7]) |
IType(op : BV [7], rd : BV [5], func3 : BV [3],

rs1 : BV [5], imm : BV [12])

This could be further refined by declaring op, func3, etc. as
additional data types with limited sets of values. To handle
the dependence on parametric values, we add a constraint
stating that some immediate value is equal to a parameter.
For example, if we want to encode the case where the
immediate of IType is a constant c, we add the constraint
is_IType(inst)∧ imm(inst) = c. To consider many possible
mappings of constants to immediates, we use a disjunction
over a set of possibilities as we do with bindings.
Formula Optimizations.

For non-trivial designs, it is too expensive to repeat the
architecture and IR formulas for every disjunct in the set of
bindings. An alternative is to introduce additional variables
for the inputs to and outputs from the architecture and to
have the bindings operate only on those variables. For ease
of presentation, let’s go back to formula (5) and write it as:

∃ inst . ∀x,y, z.⋁︂
(bin ,bout)∈B

bout(inst ,Arch(inst , bin(inst ,x,y, z)))

= IR(x). (12)

This is equivalent to:

∃ inst . ∀x,y, z,u,v,w.⎛⎝ ⋁︂
(bin ,bout)∈B

(bout(inst ,u) = v ∧ bin(inst ,x,y, z) = w)

⎞⎠
→ (Arch(inst ,w) = u ∧ v = IR(x)). (13)

In practice, it can also be inefficient to include memories
and register files in the architecture. An alternative is to remove
them and add an additional input for every read port and output
for every write port. From the point of view of the rewrite rule
synthesis, the problem is equivalent. This is the approach we
take in our experiments. For example, the RISC-V register file,

which has the property that register 0 always holds 0, can be
modeled with two formulae:
One for reads:

let r1 =

{︄
0 if rs1 = 0

v1 otherwise
r2 =

⎧⎪⎨⎪⎩
0 if rs2 = 0

v1 if rs1 = rs2 ̸= 0

v2 otherwise

in (r1, r2)

and one for writes: (ite(rd = 0, s, v))
In the first formula, v1 and v2 are the values bound into

the register file (or more precisely added as inputs to the
architecture). r1 and r2 represent the values read from the
register file. rs1 and rs2 are the read addresses calculated by
the architecture from its instruction. Note that this is equivalent
to having two reads on an array without an intervening update.
However, it massively simplifies the task of generating bin , as
we do not need to reason about how rs1 and rs2 will be
derived from inst .

In the second formula, rd is the write address, s represents
the previous state of the written register, and v is the value to
be written. Similar to the abstraction of reads, this significantly
simplifies the generation of bout . These simplifications are
possible as we do not care about the full state of the register
file. We only care about the two indices which are read and
the one index that is written.

Solving Strategy. While some SMT solvers have support
for quantified formulas, it is well-known that quantified for-
mulas often lead to performance and robustness problems
(and indeed, we observed this in preliminary experiments).
We therefore adopt an external technique to solve the final
quantified SMT queries, all of which are in exists-forall form:

∃a.∀b. ϕ(a,b) (14)

Our technique is inspired by the counter-example guided
synthesis (CEGIS) [51] approach introduced in [15] and
more formally described in [27]. The algorithm consists of
alternating phases. The algorithm first suggests a solution for
a by simply checking the satisfiability of ϕ(a,b). If ac is
the value found, it then checks whether this works for all
values of b by checking the satisfiability of ¬ϕ(ac,b). If this
is unsatisfiable, then ac is a solution for a in (14). Otherwise,
let bc be the satisfying value found. We simply update ϕ to
be ϕ(a,b) ∧ ϕ(a,bc) and repeat. Essentially, we thus collect
many sample points, bc with the hope that after enough are
collected, it will drive the search to find a value for a that
satisfies (14). We found that in our setting of rewrite rule
synthesis, this approach works well.

IV. EVALUATION

We evaluate the above approach for rewrite rule synthesis
by showing the ability to efficiently synthesize rewrite rules in
two settings. First, we synthesize rewrite rules from the Cor-
eIR intermediate representation to different CGRA processing
elements and, second, from the WebAssembly intermediate
representation to RISC-V with extension.

144

We implement the architectures in the Magma hardware
description language [1], [55]. We chose Magma as it has
first class support for formal analysis through its associated
“hwtypes” library [37], whose semantics match those of the
SMT-LIB theory of bitvectors. We construct an SMT formula
for the architecture by tracing the inputs of the circuit and
the outputs of the architectural state to the outputs of the
circuit and the inputs of its architectural state. While Magma
is convenient, it is not essential; any HDL could be used to
generate a formal model. We specify IRs directly in SMT
using pysmt [27] and use Boolector [43] as the SMT solver.
Additionally, we implement minimal compilers which apply
the synthesized rules in order to compare to existing hand-
coded tools. Details of our full experimental set up and more
results can be found in the appendix.

A. Rewrite Rules for CGRAs

Our first case study targets CGRAs, style of spatial ar-
chitecture similar to FPGAs which have been of increasing
interest to both academia and industry. CGRAs differ from
FPGAs by employing larger processing elements (PEs) instead
of lookup tables (LUTs). Further, CGRAs typically have more
restricted word-level routing networks rather than bit-level
routing networks [39]. We evaluate our ability to synthesize
rewrite rules for such architectures by synthesizing rewrite
rules from CoreIR to four different PEs. We chose CoreIR
as a source IR as it is formally specified [16], [40].

1) CGRA Processing Element Implementation: We use four
versions (PE-A, PE-B, PE-C, PE-F) of an internally developed
16-bit processing element. PE-A contains a two-input ALU
that can perform bit-wise operations, comparisons, shifts,
addition, and multiplication, along with a lookup table for
Boolean operations. Each ALU input can be driven by an
external signal or a local immediate constant. PE-F adds
16-bit floating point (bfloat16) addition and multiplication
to PE-A. We then extend PE-A with operations commonly
occurring in image processing applications. PE-B extends
PE-A with absolute difference (|x-y|), and PE-C extends
PE-B with fused multiply-add with an immediate constant
(x*const + y). Generating such a collection of similar
architectures is a common practice when doing design space
exploration. Our synthesis method, combined with a tool such
as VTR [42] to perform place and route, could enable a
designer to evaluate a large design space on real benchmarks.

2) Rewrite Rule Synthesis: We evaluate our ability to
synthesize rewrite rules for CoreIR’s 16-bit integer instructions
(i16), Boolean instructions (i1), and floating point instruc-
tions using Bfloat16 [17] (bfloat16).

The times to derive these rewrite rules are shown in Fig-
ure 1. Note that while most CoreIR operations can be mapped
to the base PE, some can only be mapped to one or more of
the variants. Each rule for the integer PEs can be found within
1.1 seconds. Additionally, the floating-point instructions can
be found for PE-F within 1.2 seconds.

In Table II, we show the total time in seconds spent
synthesizing rewrite rules (a SAT result) or proving that no

Fig. 1: The median time over 10 runs needed to derive a
rewrite rule for various CoreIR operations to different PE
architectures.

PE-A PE-B PE-C PE-F
UNSAT (s) 0.81 0.74 0.34 118.09

SAT (s) 8.63 10.15 11.06 91.49
Total (s) 9.44 10.88 11.40 209.58

TABLE II: Total time generating SAT results and UNSAT
results, for each PE design.

rewrite exists (an UNSAT result, potentially due to the lack
of a matching abstraction) for each PE design. Targeting the
integer PEs is extremely fast, taking less than 12 seconds per
design to generate a full set of rewrite rules. The process is
"slow" for PE-F requiring about 3.5 minutes. However, this
time is trivial compared to the time it would take to manually
write these rules.

B. Rewrite Rules for RISC-V

Our second case studies shows how our technology can be
used to synthesize rewrite rules from WebAssembly targeting
RISC-V processors. WebAssembly is an intermediate repre-
sentation designed to be a target for web applications. The
IR itself has formally-defined semantics for each operation,
making it suitable for our method.

We extract the post-instruction-fetch portion of the proces-
sor in order to give it the appearance of having an instruction
input. Further, we replace the register file with the simpli-
fied model described in Section III-E. These transformations
require only a handful of lines of boilerplate python for
each architecture. Additionally, we construct specifications
of instruction formats as ADTs and provide any necessary
annotations for the register file (i.e., which registers have
special semantics, like register 0 in RISC-V).

1) RISC-V Implementation: In addition to implementing a
processor for the base RV32I ISA, we implement processors
for the RV32IM and RV32IF standards. The "M" extension
adds instructions for multiplication, division, and remainder.
The "F" extension adds support for floating point operations.
Full details can be found in the RISC-V manual [2]. In addition
to these standard extensions, we define our own extension
RV32X, which adds common bit-counting operations, which
are defined in WebAssembly. Specifically: count-leading-zeros

145

Instruction RV32I RV32IM RV32IX RV32IF
i20.const 0.3 10.4 1.8 4.2
i32.le_s 2.2 27.3 3.7 80.1
i32.ge_s 1.6 30.8 4.5 71.7
i32.le_u 1.6 25.7 4.7 75.1
i32.ge_u 2.4 18.1 2.2 51.2
i32.eq 2.1 23.5 3.3 22.3
i32.ne 2.2 6.4 1.2 9.9

TABLE III: Median SMT performance in seconds for syn-
thesizing two sequential instructions for i20.const and
comparison instructions.

(i32.clz), count-trailing-zeros (i32.ctz), and population
count (i32.popcnt).

2) Rewrite Rule Synthesis: We evaluate our ability to
synthesize rewrite rules for WebAssembly’s 32-bit integer
instructions (i32) and a subset of floating point instructions
(float). The integer instructions also include pop-count,
count-leading-zeros, and count-trailing-zeros.

Fig. 2: Time needed to synthesize a single RISC-V instruction
for each RISC-V Architecture. SAT means a rewrite rule
was discovered. UNSAT means there is provably no single
instruction rewrite that is possible. Reported times are the
median result over 10 runs.

In Figure 2, either the time to synthesize a rewrite rule (SAT)
or the time to prove that a rewrite rule does not exist (UNSAT)
is shown for each IR instruction. Synthesis for RV32I succeeds
in finding all instructions executable as a single instruction on
the target architecture. For the integer processors, all rules
are discovered within 4.1 seconds, with most only taking a
few hundred milliseconds. Proving that rewrite rules do not
exist is also possible within 4.1 seconds. For RV32IF, all
the rules are found within 22 seconds, with most taking less
than 8 seconds. Proving that particular rules like i32.rem_s
are not possible takes up to 38 seconds. RV32IF contains
many floating point instances, each requiring an expensive new
universally quantified variable (explained in Section III-E).
This can mostly explain the higher time compared to the other
architectures.

Some comparison instructions are impossible to implement
in a single instruction (a fact verified by our method), so
we searched for sequences of two instructions, by composing
two architectures as described in Section III-B. The times
to find rewrites for these comparison operations for each of

Fig. 3: Total time to generate single instruction SAT results,
2 instruction SAT results, and UNSAT results of 37 rewrite
rules for each RISC-V architecture.

the RISC-V architectures are shown in Table III. We are
able synthesize these rules for RV32I and RV32IX in a few
seconds. For RV32IM and RV32IF, which are significantly
more complex circuits, synthesis times are under 31 and 81
seconds, respectively. We note that verifying a rewrite rule
can be done nearly instantaneously (well under a second for
any rule we discovered). Therefore, given the knowledge that
RV32I is a subset of RV32IF, one could simply verify that
rules generated for RV32I work for RV32IF in order to avoid
the longer synthesis times which arise from the complexity of
floating point.

Similar to Table II, in Figure 3 we show the time spent
synthesizing rewrite rules or proving no rewrite rule exists for
each RISC-V architecture. This includes the time for proving
that the instructions in Table III cannot be accomplished in one
instruction, and the time for synthesizing each two-instruction
rule. Results from targeting RV32I and RV32IX are fast,
each taking less than a minute. Results targeting RV32IM
and RV32IF are slower at around 3 minutes and 9 minutes,
respectively, but this is still significantly faster than manually
writing these rules.

V. RELATED WORK

In recent years, many new techniques and tools have been
developed for synthesis based on SAT and SMT solving [30],
[31], [34], [50], [52], [51], [53]s. In the SKETCH language,
for example, a programmer provides a specification and a
partial program with “holes” [52], [51]. SKETCH attempts
to fill these holes so that the complete program matches the
specification. However, due to the nuances of targeting RTL,
we found that a direct encoding into SMT formulas was
more flexible and convenient than using an existing program
synthesis system. One promising approach is Syntax-guided
synthesis (SyGuS) [5], [6], [48], in which a program must
be synthesized within a given grammar to meet a given
specification (the grammar and specification are given using a
variant of the SMT-LIB language [8]). Exploring possible uses
of SyGuS in this context is an interesting avenue for future
work.

Perhaps more relevant is the work of Dias and Ramsey [18],
[19], [49], who, in their 2006 work, propose a system to
synthesize rewrite rules using an ISA specification where

146

each instruction is specified as a distinct formula. They use
a pattern-matched syntax tree to synthesize these rules. In
contrast, we use SMT to find all equivalences. Further, we
use the RTL directly rather than a manually specified enumer-
ation of instructions. This distinction is especially important
during design space exploration, when automating as much as
possible is crucial.

More recently, Buchwald, Fried, and Hack proposed a
system which, like the work of Dias and Ramsey, synthe-
sizes rewrite rules using an enumeration of an ISA’s instruc-
tions [12]. However, instead of using pattern matching they
leverage SMT to find rewrite rules for integer instructions.
They notably lack support for floating-point, which we can
handle efficiently. One interesting contribution of their work is
the ability to synthesize control flow instructions by modeling
them as a set of Boolean functions which indicate which
branch target was taken. Applying a similar method in our
approach is an interesting avenue for future work.

VI. DISCUSSION AND FUTURE WORK

Our technique for rewrite rule synthesis is a step towards
automatically synthesizing a complete code generator from
an RTL description of the target architecture. Future work
includes two directions: synthesizing more kinds of rewrite
rules, and targeting more expressive RTL. Pipelined architec-
tures could leverage unpipelining [38] or unrolling [11] (with
side conditions to ensure progress) to generate a model with
the desired properties. Alternatively, if the RTL is derived from
a high-level language, we could capture the synthesized design
before micro-architectural details are added.

Architects often explore many alternatives when designing
new hardware. This is often done incrementally. They propose
a design change, implement it, then reevaluate the efficiency. A
major impediment to design space exploration is implementing
the software changes needed to compile the application to the
new accelerator. The work in this paper enables automatically
deriving part of the code generator and is one step towards the
goal of eventually building a complete system for rapid and
automated design space exploration.

REFERENCES

[1] Magma. https://github.com/phanrahan/magma.
[2] The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version

2.2. RISC-V Foundation, 2017.
[3] W. Ackermann. Solvable cases of the decision problem. Studies in Logic

and the Foundation of Mathematics, 1954.
[4] Alfred V Aho, Mahadevan Ganapathi, and Steven WK Tjiang. Code

generation using tree matching and dynamic programming. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 11(4):491–
516, 1989.

[5] Rajeev Alur, Rastislav Bodik, Eric Dallal, Dana Fisman, Pranav Garg,
Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,
Mukund Raghothaman, Shamwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-Guided Synthesis. To Appear in Marktoberdrof NATO pro-
ceedings, 2014. http://sygus.seas.upenn.edu/files/sygus_extended.pdf,
retrieved 2015-02-06.

[6] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In FMCAD, pages 1–17. IEEE, 2013.

[7] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly,
Caleb Donovick, David Durst, Kayvon Fatahalian, Kathleen Feng, Pat
Hanrahan, et al. Creating an agile hardware design flow. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[9] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 305–343. Springer
International Publishing, 2018.

[10] Eli Bendersky. A deeper look into the LLVM code generator, Part 1,
Feb 2013.

[11] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. 2003.

[12] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing
an instruction selection rule library from semantic specifications. In
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, pages 300–313, 2018.

[13] Jerry R Burch and David L Dill. Automatic verification of pipelined
microprocessor control. In International Conference on Computer Aided
Verification, pages 68–80. Springer, 1994.

[14] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke,
Martin E Hopkins, and Peter W Markstein. Register allocation via
coloring. Computer languages, 6(1):47–57, 1981.

[15] Chih-Hong Cheng, Natarajan Shankar, Harald Ruess, and Saddek Ben-
salem. EFSMT: A logical framework for cyber-physical systems. CoRR,
abs/1306.3456, 2013.

[16] Ross Daly and Lenny Truong. Invoking and linking generators from
multiple hardware languages using coreir. In Proceedings of the 1st
Workshop on Open-Source EDA Technology, 2018.

[17] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V Le, Mark Z Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul
Tucker, et al. Large scale distributed deep networks. 2012.

[18] Joao Dias and Norman Ramsey. Converting intermediate code to
assembly code using declarative machine descriptions. In International
Conference on Compiler Construction, pages 217–231. Springer, 2006.

[19] Joao Dias and Norman Ramsey. Automatically generating instruction
selectors using declarative machine descriptions. ACM Sigplan Notices,
45(1):403–416, 2010.

[20] Helmut Emmelmann, F-W Schröer, and Rudolf Landwehr. Beg: a
generator for efficient back ends. ACM Sigplan Notices, 24(7):227–237,
1989.

[21] Herbert Enderton and Herbert B Enderton. A mathematical introduction
to logic. Elsevier, 2001.

[22] Martin Anton Ertl. Implementation of Stack-Based Languages on
Register Machines.

[23] Christopher W Fraser and David R Hanson. A retargetable C compiler:
design and implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[24] Christopher W Fraser, David R Hanson, and Todd A Proebsting.
Engineering a simple, efficient code-generator generator. ACM Letters on
Programming Languages and Systems (LOPLAS), 1(3):213–226, 1992.

[25] Mahadevan Ganapathi. Retargetable Code Generation and Optimization
Using Attribute Grammars. PhD thesis, 1980. AAI8107834.

[26] Mahadevan Ganapathi and Charles N. Fischer. Description-driven
code generation using attribute grammars. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’82, page 108–119, New York, NY, USA, 1982.
Association for Computing Machinery.

[27] Marco Gario and Andrea Micheli. Pysmt: a solver-agnostic library for
fast prototyping of smt-based algorithms. In SMT workshop, 2015.

[28] Philip B Gibbons and Steven S Muchnick. Efficient instruction schedul-
ing for a pipelined architecture. In Proceedings of the 1986 SIGPLAN
symposium on Compiler construction, pages 11–16, 1986.

[29] R. Steven Glanville and Susan L. Graham. A new method for compiler
code generation. In Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’78, page
231–254, New York, NY, USA, 1978. Association for Computing
Machinery.

[30] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2011.

147

https://github.com/phanrahan/magma
http://sygus.seas.upenn.edu/files/sygus_extended.pdf

[31] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program
synthesis. Found. Trends Program. Lang., 4(1-2):1–119, 2017.

[32] Christopher G Harris, Mike Stephens, et al. A combined corner and
edge detector. In Alvey vision conference, volume 15, pages 10–5244.
Citeseer, 1988.

[33] John L. Hennessy and David A. Patterson. A new golden age for
computer architecture. Commun. ACM, 62(2):48–60, January 2019.

[34] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided
component-based program synthesis. In 2010 ACM/IEEE 32nd Interna-
tional Conference on Software Engineering, volume 1, pages 215–224,
2010.

[35] Ron Kimmel. Demosaicing: image reconstruction from color ccd
samples. IEEE Transactions on image processing, 8(9):1221–1228,
1999.

[36] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[37] Caleb Donovick Leonard Truong. hwtypes. https://github.com/leonardt/
hwtypes.

[38] Jeremy Levitt and Kunle Olukotun. A scalable formal verification
methodology for pipelined microprocessors. In Proceedings of the 33rd
annual Design Automation Conference, pages 558–563, 1996.

[39] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie
Han, Shouyi Yin, and Shaojun Wei. A survey of coarse-grained reconfig-
urable architecture and design: Taxonomy, challenges, and applications.
ACM Computing Surveys (CSUR), 52(6):1–39, 2019.

[40] Cristian Mattarei, Makai Mann, Clark Barrett, Ross G Daly, Dillon
Huff, and Pat Hanrahan. Cosa: Integrated verification for agile hardware
design. In 2018 Formal Methods in Computer Aided Design (FMCAD),
pages 1–5. IEEE, 2018.

[41] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Clark
Barrett, Mark Horowitz, Pat Hanrahan, and Priyanka Raina. Automated
design space exploration of cgra processing element architectures using
frequent subgraph analysis. arXiv preprint arXiv:2104.14155, 2021.

[42] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jai Min Wang, Mohamed
ElDafrawy, Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean
Wu, Matthew J. P. Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu,
Kenneth B. Kent, and Vaughn Betz. Vtr 8: High performance cad and
customizable fpga architecture modelling. ACM Trans. Reconfigurable
Technol. Syst., 2020.

[43] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J.
Satisf. Boolean Model. Comput., 9(1):53–58, 2014.

[44] Mark Nixon and Alberto Aguado. Feature extraction and image
processing for computer vision. Academic press, 2019.

[45] Eduardo Pelegri-Llopart and Susan L Graham. Optimal code generation
for expression trees: an application burs theory. In Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 294–308, 1988.

[46] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,
Jonathan Ragan-Kelley, and Mark Horowitz. Programming heteroge-
neous systems from an image processing dsl. ACM Transactions on
Architecture and Code Optimization (TACO), 14(3):1–25, 2017.

[47] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

[48] Mukund Raghothaman and Abhishek Udupa. Language to Specify
Syntax-Guided Synthesis Problems. CoRR, abs/1405.5590, 2014.

[49] Norman Ramsey and Joao Dias. Resourceable, retargetable, modular
instruction selection using a machine-independent, type-based tiling of
low-level intermediate code. ACM SIGPLAN Notices, 46(1):575–586,
2011.

[50] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superopti-
mization. SIGPLAN Not., 48(4):305–316, March 2013.

[51] Armando Solar-Lezama. Program sketching. International Journal on
Software Tools for Technology Transfer, 15(5):475–495, 2013.

[52] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. Combinatorial sketching for finite programs.
In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 404–
415, 2006.

[53] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-
based program verification and program synthesis. Int. J. Softw. Tools
Technol. Transf., 15(5-6):497–518, 2013.

[54] Cesare Tinelli and Calogero G. Zarba. Combining decision procedures
for sorted theories. In Jóse Júlio Alferes and João Leite, editors,
Logics in Artificial Intelligence, pages 641–653, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[55] Lenny Truong and Pat Hanrahan. A golden age of hardware description
languages: Applying programming language techniques to improve
design productivity. In Benjamin S. Lerner, Rastislav Bodík, and Shriram
Krishnamurthi, editors, 3rd Summit on Advances in Programming Lan-
guages, SNAPL 2019, May 16-17, 2019, Providence, RI, USA, volume
136 of LIPIcs, pages 7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

[56] Henry S Warren. Hacker’s delight. Pearson Education, 2013.
[57] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak,

Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. Interstellar:
Using halide’s scheduling language to analyze dnn accelerators. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
369–383, 2020.

[58] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion, pages
301–312, 2011.

148

https://github.com/leonardt/hwtypes
https://github.com/leonardt/hwtypes

APPENDIX

In addition to showcasing the efficiency of generating in-
struction rewrite rules, we wrote two compilers, one targeting
the CGRA PEs, and one targeting the RISC-V processors,
that showcase the synthesized rewrite rules can be used in
real application compilation. The CGRA rewrite rule synthesis
and compiler are actively being used in production in our lab’s
efforts to design and run applications on our CGRA [7].

1) CGRA Compilation Results: We apply our synthesized
rewrite rules to a number of image processing applications
written in the domain-specific language Halide [47]. Halide
is generally amenable to hardware acceleration [46], [57],
making it a suitable source language to target our PE designs.
The standard Halide compiler first lowers the program to its
internal IR consisting of multiple computational kernels and
structured for-loops [47]. Each kernel is further lowered to
a dependency graph of CoreIR instructions. Our instruction
selector then applies the synthesized rewrite rules to transform
each kernel into a graph of PE instructions.

We selected four typical image processing applications: (1)
Gaussian blur, an algorithm for blurring an image using con-
volution with a Gaussian kernel [44]; (2) A bfloat16 version of
Gaussian blur; (3) Harris corner detection, which finds sharp
corners of objects in images [32]; and (4) A complete camera
pipeline, which is representative of end-to-end processing of
raw sensor data to a final image [35]. The camera pipeline
includes kernels for hot pixel suppression, demosaicing, and
color correction. These applications have 3, 3, 10, and 14
distinct kernels, respectively, and the number of operations
within a kernel range from just a single operation to almost
200.

We compare our synthesized rewrite rules to an existing
hand-coded set for PE-F. Table IV shows the instruction counts
for each application with each set of rewrite rules. The code
sizes for the synthesized rewrite rules are the same or better
than the sizes of those from the hand-coded rules. For Harris,
which contains the i16.umin and i16.smin operations,
the hand-coded result uses 2 instructions6 (i16.lte and
i16.mux), but since we synthesize rewrite rules directly for
i16.umin and i16.smin, the instruction selector produces
more efficient code. Additionally, our instruction selector
works for the new PE variants automatically. It uses the
i16.absd instruction in both PE-B and PE-C, reducing
the total instructions for Camera. Similarly, it leverages the
i16.const-fma instruction in PE-C, greatly reducing the
total instructions for Gaussian and slightly reducing them for
Camera. This example demonstrates that it is easy to extend
PEs with new instructions and automatically update the set of
valid rewrite rules.

2) RISC-V Compilation Results: We also show that we can
compile branch-free C programs using our synthesized rewrite
rules. This approach has been used to evaluate other code

6We are unsure at this point whether this is a result of the architecture being
updated without a corresponding update to the hand-coded rewrite rules or
whether this rule was just overlooked by the original author of the tool. In
any event this sort of mistake motivates this paper.

Hand-
Coded Synthesized

Application PE-F PE-F PE-A PE-B PE-C
Gaussian i16 20 20 20 20 12

Gaussian
bfloat16 20 20 N/A N/A N/A

Harris 116 109 109 108 108
Camera 343 338 338 309 308

TABLE IV: The number of PE instructions required for
four Halide applications: Camera, Gaussian integer, Gaussian
bfloat16, and Harris. The applications are compiled using both
the hand-coded rewrite rules and the synthesized ones.

Benchmark Synthesized gcc -O0 gcc -O1
P1 3 16 3
P2 3 16 3
P3 3 16 3
P4 3 16 3
P5 3 16 3
P6 3 16 3
P7 5 19 4
P8 5 19 4
P9 4 20 4
P10 4 24 5
P11 4 22 4
P12 5 23 5
P13 5 22 4
P14 5 25 5
P15 5 25 5
P16 10 29 6
P17 6 23 5
P18 4∗ 36 7
P19 6 35 7
P20 9 35 8
P21 25 50 13
P22 26 39 11
P23 32 50 15
P24 18 50 12
P25 27 72 19

TABLE V: Number of RISC-V RV32IM instructions on 25
Hacker’s Delight programs (P1-P25). We show our system
versus gcc with two levels of optimization. ∗The compilation
of P18 to WebAssembly generated a i32.popcnt and hence
could only be compiled to RV32IX.

generators [50], [30]. Specifically, we compile 25 Hacker’s
Delight [56] programs. We use C implementations from Gul-
wani et al. [30].

We compile C to stack-machine WebAssembly byte code
using Emscripten [58] (using emcc -Os). We then transform
the resulting code into a basic block by abstract interpreta-
tion on a virtual stack [22], implemented with a modified
WebAssembly interpreter.

We apply type legalization [36] to decompose i32 con-
stants into i12 and i20 constants. These bit-widths are
chosen as they are the bit-width of immediate fields in the
RISC-V ISA. Instruction selection is then applied using the
synthesized rewrite rules. Next, we perform basic instruction
scheduling and register allocation, and finally we assemble the
instructions into RISC-V byte code [28], [14].

We compare the code we generate to that produced

149

by gcc (riscv64-unknown-elf-gcc -march=rv32g
-mabi=ilp32). The gcc -O0 option uses the stack to store
intermediates so our code size is better, while gcc -O1 uses
multiple basic blocks to decrease code size, which we do not
support.

Table V shows a comparison of the number of instructions
generated from our compiler versus a RISC-V gcc compiler
for each Hacker’s Delight program. For P21-P25, gcc -O1
generates small code size by using branching code, an op-
timization we do not implement. P18 uses a i32.popcnt
in the generated WebAssembly. When targeting RV32IX we
can leverage the custom instructions to compile program P18
using only 4 instructions.

150

	Introduction
	Background
	Code Generation
	Logical Setting

	Synthesizing Rewrite Rules
	Intermediate Representation Formalization
	Architecture Formalization
	Rewrite Rule Formalization
	Rewrite Rule Synthesis
	Rewrite Rule Synthesis Implementation

	Evaluation
	Rewrite Rules for CGRAs
	CGRA Processing Element Implementation
	Rewrite Rule Synthesis

	Rewrite Rules for RISC-V
	RISC-V Implementation
	Rewrite Rule Synthesis

	Related Work
	Discussion and Future Work
	References
	Appendix
	CGRA Compilation Results
	RISC-V Compilation Results

