
Formal Methods in Computer-Aided Design 2022

Error Correction Code
Algorithm and Implementation Verification

Using Symbolic Representations
Aarti Gupta

FVCTO1

Intel Corporation
Santa Clara, CA, USA
aarti.gupta@intel.com

Roope Kaivola
Core and Client Dev. Group

Intel Corporation
Portland, OR, USA

roope.k.kaivola@intel.com

Mihir Parang Mehta
FVCTO1

Intel Corporation
Santa Clara, CA, USA

mihir1.mehta@intel.com

Vaibhav Singh
FVCTO1

Intel Corporation
Portland, OR, USA

vaibhav.singh@intel.com

Abstract—Error-correction codes (ECCs) are becoming a de
rigueur feature in modern memory subsystems, as it becomes
increasingly important to safeguard data against random bit
corruption. ECC architecture constantly evolves towards designs
that leverage complex mathematics to minimize check-bits and
maximize the number of data bits protected, as a result of which
subtle bugs may be introduced into the design. These algorithms
traverse a vast data space and are subject to corner case bugs
which are hard to catch through constraint-based randomized
testing. This necessitates formal verification of ECC designs to
assure correctness of the algorithm and its hardware implementa-
tion. In this paper we present a technique of representing various
ECC algorithm outputs as Boolean equations in the form of
Boolean Decision Diagrams (BDDs) to facilitate reasoning about
the algorithms. We also discuss the counting and generation of
examples from the BDD representations and how it aids in tuning
ECC algorithms for performance and security. Additionally, we
display the use of Symbolic Trajectory Evaluation (STE) to prove
the correctness of register transfer level (RTL) implementations
of these algorithms. We discuss the scaling up of this verification
methodology, using different complexity and convergence tech-
niques. We apply these techniques to a number of complex ECC
designs at Intel and showcase their efficacy on several categories
of bugs.

Index Terms—error correction codes, formal verification, sym-
bolic simulation, binary decision diagrams

I. INTRODUCTION

With the ever-increasing capacity demands, memories are
becoming denser and are more susceptible to soft errors. Error
Correction Codes (ECCs) provide resiliency to the memory
cell against errors due to cosmic rays, impurities during man-
ufacturing, and other causes. Recent moves by chip manufac-
turers to extend ECC support to consumer processors, which
was once limited to servers, emphasizes the universal necessity
of ECCs. If the ECC fails, it will result in incorrect data getting
read; in a safety-critical system, this can be catastrophic. ECC

1 Formal Verification Central Technical Office

Intel provides these materials as-is, with no express or implied warranties.
Intel processors might contain design defects or errors known as errata, which
might cause the product to deviate from published specifications. Intel and
the Intel logo are trademarks of Intel Corporation. Other names and brands
might be claimed as the property of others.

designs work by carefully adding data redundancy in the form
of some check-bits to the data-stream while storing it. These
check-bits and data-bits, which may have been corrupted
during storage, are then used together to retrieve the original
data. Though helpful in providing memory-protection, ECC
designs are difficult to verify. ECC verification can be a
challenge both for dynamic validation (DV) from the coverage
perspective, and for formal verification (FV) from the con-
vergence perspective. Consider the example of a Triple Error
Correction Quadruple Error Detection (TECQED) design with
512 data-bits, 1-bit Metadata and 31 check-bits. Pre-silicon
dynamic validation would require 4.87e163 input patterns to
fully validate the design, a nearly impossible task, and post-
silicon issues are discovered very late in the design cycle, not
providing enough time to determine a robust fix. Owing to the
complex equations generally used in ECC logic, these designs
are not tractable by different industry standard FV tools. Most
commercial model-checking tools are better suited to solve
control path challenges and falter in achieving convergence on
big datapath designs. Commercial datapath FV tools tend to
rely on structural similarities of the reference specification and
the implementation. Such similarities are absent in the case of
closed-box ECC verification, where the specification is just a
property stating, “the resultant data equals the received data”.

This paper shows our results in verifying diverse ECC
algorithms and designs, across a range of datacenter and
consumer processors, using an Intel-internal datapath tool,
Forte/rSTE [3], [12]. The complexity of these verification tasks
varied from a 64-bit corruption on a Dynamic Random-Access
Memory (DRAM) device in a memory controller to a 512b-
sized TECQED ECC in a data cache. We analyze our results
with respect to different verification parameters (complexity,
coverage, runtimes etc.) and compare with commercial tools.

In the remainder of this paper, we briefly introduce error
correction (section II), and the underlying proof methodology
with the Forte tool (section III). We explain the verification
setup, and the properties we prove (section IV) on ECCs. We
evaluate the results of these verification activities (section V)
and sum up our contributions (section VII).

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 21 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_21
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_21
https://creativecommons.org/licenses/by/4.0/


Fig. 1: ECC Writer and Reader

II. ERROR CORRECTION CODES

ECC functionality is usually implemented in hardware
designs as two modules, a Writer and a Reader (Fig. 1).
Using a generator function g, the Writer generates, from Data
Dw, a codeword CWw which consists of Dw appended with
check-bits. There are two types of check-bits, locator bits Lw

and parity bits Pw. Once CWw is written to memory, it is
subject to zero or more bits of corruption. Within the reader,
the extractor function h computes the locator syndrome LS
and parity syndrome PS. These syndromes are calculated
by re-computing the locator bits L′

r and the parity bits P ′
r

and comparing them to their values Pr and Lr in the read
codeword CWr. Using these syndromes, the function f can
determine the presence of the error and determine the location
of the error, finally returning corrected data D′ and error signal
Err. Err can be:

1) No Error (NE): No corruption detected in CWr.
2) Correctable Error (CE): Corruption detected in CWr and

fixed. Thus, output data D′ = Dw.
3) Detectable but Uncorrectable Error (DUE): CWr cor-

ruption detected; but correction outside algorithm capa-
bilities. Thus, D′ ̸= Dw.

Reliability, Availability, and Serviceability (RAS), feature sets
that are associated with system resiliency in the presence of
hardware faults, impose requirements that vary across designs.
For example, some SRAM (Static Random-Access Memory)
cache designs may need protection from bit-flips that can
randomly happen at any bit-position in the cache-line, while
other designs, such as DRAM, may need protection on groups
of neighboring bits, which we will refer to as bit-groups. RAS

requirements shape the choice of the ECC algorithm. These
algorithms are based on the mathematical theories of Galois
Extensions (Bose–Chaudhuri–Hocquenghem Codes) [4], [10],
Lagrange Interpolation (Reed Solomon Codes) [15], and finite
fields.

III. SYMBOLIC SIMULATION AND FORTE TOOLSET

Symbolic simulation extends standard digital circuit
simulation with symbolic representations of values, covering
behaviors of a circuit for all possible instantiations of the
symbolic values in a single simulation. Used as a formal
verification method, symbolic simulation is algorithmically
simple and intuitive, which enables precise analysis and fine-
grained mitigation of computational complexity, allowing the
method to handle circuits that are above the capacity of
standard formal model checking tools. Symbolic simulation
excels in verification of deep targeted properties of fixed-
length pipelines, in particular arithmetic and other datapath
circuits. It has been the main vehicle for Intel arithmetic formal
verification for over twenty years, and most arithmetic execu-
tion units of Intel processor designs have been exhaustively
verified using it [3], [12]. It is the primary engine embedded
in Intel’s proprietary Forte/rSTE toolset. Symbolic simulation
was first applied to ECC verification in 2005. Gradually, this
application found its place in Server Memory Controller ECC
(MC ECC) verification arsenal.

In a symbolic simulator the input stimulus may contain
symbolic variables in addition to the concrete Boolean values
0, 1 and X. These symbolic variables are names of values,
denoting sets of concrete values. The values of the internal
signals computed in the simulation are then structural logical
expressions on the symbolic variables on the inputs. For
example, in a bit-level symbolic simulator, a single symbolic
variable a corresponds to the set of Boolean values consisting
of both 0 and 1, and if stimulus to a symbolic simulation trace
contains the variables a, b, and c, the internal signals might
carry values like a&b or a+(b&c). The symbolic expressions
in a simulation are commonly encoded using Binary Decision
Diagrams (BDDs) [5].

The limits of computational capacity are the limits between
what can and cannot be verified in practice. When attempting
to resolve a capacity challenge, the crucial difference between
symbolic simulation and other formal verification methods is
that in symbolic simulation a capacity problem is extremely
concrete. It manifests itself as a symbolic expression (BDD)
that is too large, associated with a particular node and time
in the simulation. This concreteness allows a user to analyze,
understand and resolve the problem with a greater degree of
precision than other methods of verification. This amenability
to precise performance analysis is a key differentiator en-
abling the success of symbolic simulation. Direct user-level
access to BDDs also allows advanced complexity management
techniques, such as parametric substitutions and symbolic
indexing, as well as automated analysis of the logical contents
of a computation, for example, counting the precise number
of input vectors satisfying or violating a given property.

152



In the Forte/rSTE toolset the base symbolic simulator STE
is embedded in a code layer called relational STE (rSTE) in
the context of a full-fledged functional programming language.
Common computational complexity reduction techniques, in-
cluding weakening, parametric substitution, etc., are made
easily accessible to the user through programmable options
to the tool. The framework also provides sophisticated debug
support, breakpoints, waveform and circuit visualization, etc.,
to enable users to quickly focus on usual verification problems.
The full programmability of the tool allows users to write
reusable verification recipes that automate and structure shared
or repeated tasks.

An important aspect of the verification toolset is that it pro-
vides a general symbolic computation capacity for Booleans.
Not only can circuits be simulated with symbolic values, but
any user-written program operating on Boolean data can be
symbolically computed. This feature is very useful for multiple
purposes: ad hoc programmatic analysis of failures, breaking
symbolic computations into parts to analyze complexity issues,
and early algorithm experiments prior to the existence of
hardware implementations of those algorithms.

IV. ECC FORMAL VERIFICATION

The verification setup for ECC FV involves connecting the
Writer and the Reader, as shown in Fig. 3, abstracting out
the storage component which usually sits in between these
two blocks in real designs and replacing it with a corruption
model. This model explicitly adds the effect of corruption on
the codeword CWw generated by the Writer before it is fed
to the Reader.

In the setup described in Fig. 3, there are two inputs Dw

and C. For symbolic analysis of the logic, we can assume
these inputs to be symbolic variables instead of fixed stream
of 0s and 1s, representing all values in the input space.
Symbolic simulation then traverses the design, transforming
input variables as BDDs in accordance with the design’s logic,
and finally makes the transformed BDDs available at outputs
D′ and Err′. Correctness is then evaluated as a comparison
between the output BDDs and the input BDDs under specific
assumptions on the corruption.

For an ECC to guarantee correction of up to n bits/bit-
groups and detection of up to n+1 bits/bit-groups of corrup-
tion, the following must hold:

• Property 1: (Countbits(C) = 0) ⇒ NE and D′ = Dw

• Property 2: 0 < Countbits(C) <= n ⇒ CE and D′ =
Dw

• Property 3: (Countbits(C) = n + 1) ⇒ DUE and no
guarantee on D′

If the number of corrupted bits/bit-groups exceeds n + 1,
the algorithm makes no claims. For Single Error Correction
Double Error Detection (SECDED), n = 1; for Double Error
Correction Triple Error Detection (DECTED); n = 2 and for
TECQED n = 3. DRAM ECCs employ custom algorithms
at the level of devices, groups of bits of size 32 or 64, on a
DIMM (dual inline memory module). The levels of protection

provided by DRAM ECCs include full device protection, half
device protection, and column protection.

In properties 1 to 3, it must be noted that the conditions
NE, CE, and DUE are mutually exclusive and exhaustive.
Different circuits implement this differently, but regardless it
is necessary to prove mutual exclusiveness and exhaustivity.
A circuit may encode 2 bits such that 00 is NE, 01 CE and 10
is DUE. In such a case we will need to show that 11 can not
be computed. In other cases, each type of error is indicated
by a separate signal, in which case we will need to show that
these signals are mutexed. Usually, though, circuits indicate
whether data was corrected, or not, with just one signal. If
this signal is 1, then it is DUE; if 0, it is CE or NE. We will
need to show that none of these three conditions overlap.

A. ECC Implementation Verification

Using the symbolic simulator of Forte/rSTE toolset, the
correctness of ECC designs can be ascertained without any
reference to algorithms or design internals. This gives this
technique a clear edge over other datapath FV tools which
usually depend on a high-level model (HLM) against which
an equivalence check is performed. Such HLMs are them-
selves prone to error and may incorporate an error which
is also present in the design, in which circumstance a full
equivalence check will nonetheless mask the bug. Moreover,
such HLMs may need frequent remodeling in tandem with
algorithm changes, which occur on a regular basis in the
current landscape where ECC algorithms are continuously
tuned in response to performance and security requirements.

To understand the nature of this verification process, let
us take an example SECDED design protecting 4 bits of
data (D[0]—D[3]) using 4 check-bits. The corruption vector
(C[0]—C[7]) represents corruption that can happen at any bit
position of the 8 bit codeword (data and check-bits). After
symbolic computation of BDDs at each relevant node and
times of interest, the BDD at the output port ‘NE’, which
indicates absence of corruption on read data, may look like
the BDD in Fig. 2 (a). Importantly, this BDD only makes
reference to corruption bits, although the symbolic simulation
accounts for fully symbolic data bits. This suggests that the
symbolic condition for ‘NE’ depends only on corruption bits
and is independent of the data bits. It can also be noted that
in this BDD there are several paths that lead to the terminal
node ‘T’, while the naive expectation would be for a single
path to reach this terminal i.e., the no-corruption path. This
is due to the fact that ECC algorithms are constructed to
guarantee error correction and detection up to a maximum
bound of corruption, while the corruption vector that we
considered allows corruption on every bit of codeword i.e.,
up to 8 bits of corruption. Therefore, to verify the algorithm’s
properties, we must evaluate this BDD under the implication
of the max-bound condition. Forte provides debug hooks that
allows users to access the BDDs at different design nodes
at various times, thus the ‘NE’ BDD can be extracted and
evaluated for satisfiability using simple Forte commands when
Countbits(C) ≤ 2. Under this condition, property 1 is

153



(a) (b)

Fig. 2: BDD for NE in Example

Fig. 3: ECC FV Setup

substantiated and the only satisfiable path is the one where
C[0]-C[7] are all false. Symbolic analysis can be done in a
similar fashion on other properties.

We saw that a simple 4 bit SECDED could result in a 44-
node BDD in Fig. 2 (a) for an error signal in the circuit.
Computing and storing BDDs of this kind is a likely limiting
factor as design complexity increases. By means of various
techniques described below, we could limit the BDD sizes
to smaller bounds and scale this technique to designs where
commercial datapath tools failed to converge.

1) Parametric Substitution: In many circumstances, sym-
bolically simulating for a subset of data, i.e., data under
a specified condition, is more efficient than symbolically
simulating with unconstrained data. In such circumstances,
parametric substitution [2] is very effective. A generic cor-
rectness statement of a design can be represented as:

P (x) → Q(x)

Where P is a constraint on the data space, x is a vector
of BDD variables, and Q is a function that carries out
symbolic simulation. Under parametric substitution, we use a

function param to compute a parametrized functional vector
representation of P and rewrite the correctness statement as:

Q(param(P (x))

As an example, Fig. 2 (a) depicts the BDD for the No Error
(NE) signal of the 4-bit SECDED design, when computed in a
simulation with fully unconstrained values. This BDD captures
the behavior of the design for any number of corruptions from
zero to eight. However, the design is only expected to produce
reasonable output when the number or corrupted bits is at most
two, in other words when the condition Countbits(C) ≤ 2
is true. We can compute a parametric substitution from this
condition, and instead of simulating the system with fully
unconstrained symbolic corruption bits, we can simulate it
with small BDD’s for the corruption bits, restricting the behav-
ior only to the interesting cases. Conceptually, the parametric
substitution produces BDD’s for the corruption bits that allows
the first two corruption bits to have any values, but any
subsequent bits can only be high if at most one higher bit is
already high. In the resulting simulation, the BDD for the No
Error (NE) signal is as depicted in Fig. 2 (b), a considerable
simplification when contrasted with the general case.

2) Case-Splitting: With case-splitting, we decompose the
data space into a number of sets and separately verify the
circuit for each set. This reduces the BDD complexity and
search space for each case in a divide-and-conquer fashion.
ECCs naturally lend themselves to a case-split on the number
of bits of corruption that are allowed. For example, a SECDED
design can be decomposed into 3 cases: no corruption, 1b
corruption, and 2b corruption. Parametric substitution of the
case constraint will lead to even smaller BDDs. In the case of
the example illustrated in Fig. 2, it will lead to a zero-sized

154



BDD with only a terminal vertex “True” or “False” for the
signal ‘NE’.

Further case-splitting can be done based on the locations
of the (one or more) corruption bits. This has been essential
in our verification of 512-bit TECQED designs, as it made
convergence of the proof possible. In addition, case-splitting
is useful towards reducing the runtimes of existing proofs by
means of parallel processing.

3) Symbolic Indexing: Symbolic Indexing [1] is an efficient
technique that can logarithmically scale down the number
of variables a BDD is dependent on. Taking the example
of 4-bit-SECDED, if we replace the 8-bit corruption vector
(C[0]—C[7]) with two vectors (CI1[0]-CI1[2]) and (CI2[0]-
CI2[2]), where the value CI1 gives the index of first bit that
is corrupted and CI2 gives the index of second corrupted
bit, then the same symbolic corruption information can be
relayed to the simulator using 6 variables instead of original 8.
Generally speaking, a symbolic corruption on an ECC design
with codeword length n and up to k bits of corruption can
be represented using k × log2(n) variables using symbolic
indexing, which would otherwise require n variables. This
state space reduction becomes all the more important as we
move to larger designs such as 4096-bit-SECDED, where this
technique allows use of two 13-bit corruption-index vectors
instead of a 4110-bit corruption vector.

4) Variable Ordering: BDD size is very sensitive to its
variable order [7]. Variable order of a BDD determines the
order in which variables will appear for all its node-traversal
paths. The optimal variable order is required to ease BDD
computations on bigger circuits like memory controllers where
one design may support multiple ECC schemes. In verifica-
tion of such designs, it is advisable to put control variables
before data variables. This is because the control variables
may choose a completely different mode of operation in the
circuit; and having them at the top of the BDD tree simplifies
the branches by preventing a commingling of different ECC
schemes. For example, variables on signals that select the ECC
mode, or signals that are used for configuration settings such
as error masking, should take precedence in ordering relative
to variables for corruption and data.

5) Dynamic Weakening: Symbolic simulation on ECC de-
signs may sometimes encounter a BDD blow-up. Forte assists
in investigating and resolving such a bottleneck through dy-
namic weakening. The user can provide a maximum bound
of BDD limit, and whenever BDD size at an internal node
during the symbolic simulation exceeds the provided limit,
tool automatically ‘weakens’ that node i.e., replaces that BDD
with an ‘X’. This new value is then propagated through the
circuit simulation. If the weakened node was irrelevant to the
final output computation, then it saves unnecessary simulation
on that path, else the X propagation reaches the output nodes.
In these cases, the BDD representation at output node can
be of form BDDA +X(BDDB), where BDDA represents

Fig. 4: Architectural ECC FV

the variable-assignments that give concrete values 1 and 0 to
the output and BDDB represents the variable assignments
that can lead to X. Forte’s schematic viewer enables chasing
this X and determining the cause of the divergence. The tool
also facilitates substitution of variables with random example
values. This makes sample cases more concrete and easier to
debug.

B. ECC Architectural Verification

Forte can also be used to check algorithm architecture, in ad-
dition to its use in closed-box verification of design properties.
This mode, however, does need algorithm understanding and
modeling the Writer and Reader parts of algorithms as HLMs,
but the goal remains the same i.e., checking overall correctness
of algorithm by means of property checking. This is done by
using a verification setup similar to the design verification,
only replacing the Writer and Reader design blocks, as shown
in Fig. 4, with their HLMs written in Forte’s functional
language reFLect [9]. Verification tasks of this nature, instead
of using the symbolic simulation capability of Forte, use its
symbolic computation feature. In a manner akin to abstract
interpretation [6], the input variables are propagated through
the logical functions present in the HLM, undergoing BDD
transformations at each function. Finally, BDDs are derived at
the output of the HLM, which can then be used for reasoning
about the correction and detection properties of the ECC
algorithm. This architectural verification is independent of
the design, and in practice it is often carried out before the
algorithm is implemented in RTL. This shortens the feedback
loop of design and verification, thus reducing time to market
for such designs.

C. Counting and Enumerating Error Patterns

In modern server designs, some algorithms provide protec-
tion of a bit-group within specific published bounds. Design
pressures to add metadata bits to the bit group lead to
customizations which reduce the number of check-bits and
result in such a lower bound being chosen over a guarantee
of full correction. For example, a customization to include
directory bits, poison bits, and tag bits (i.e., metadata) may
lead to an algorithm which claims, “100% detection, and better
than 99.999% correction.” This claim implies that fewer than

155



0.001% of all possible block corruption patterns can lead to a
DUE. This performance-accuracy tradeoff makes verification
of this claim complex. In contrast to the properties explained
earlier in this section, which were of the nature “under the
given conditions, BDDs on the outputs that indicate error
must evaluate to True or False”, our claim now involves
exact counting of the paths that lead to the terminal vertices.
Additionally, an algorithm may make a conditional claim such
as “Errors that fall on both right and left half of device are
outside scope of ECC and are not corrected but detected for
˜99.999% of error patterns.” Such a claim, in general, relates
several design-outputs under a specific corruption condition.
This claim bounds the number of memory failures that can go
undetected, also known as SDCs (Silent Data Corruptions).
To verify this, we need to count all corruption variable
assignments under which output BDD for DUE error signal
evaluates to False, but output data D′ is not equal to write
data Dw. Thus, the property to be checked becomes:

satCount(Cond → ¬DUE & (D′ ̸= Dw)) < x

Here, Cond is the corruption condition under which count-
ing is performed, x is an upper bound on the number of
expected SDCs, and satCount is a count of the number of
satisfying assignments to a given formula.

The corruption condition and the DUE/SDC conditions can
be composed together to form a new BDD, and we can
count the number of satisfying instances through procedures
written in reFLect. We are also able to enumerate the corruption
patterns that lead to SDC or DUE in addition to counting them.
This data is sometimes needed by memory vendors and is also
helpful during debugging to understand the frequency/location
of failures.

One consideration while generating these counts is the
avoidance of duplicates, which we illustrate for the example
of a SECDED algorithm. To count the SDC cases for 3 bit
corruptions, we define symbolic indices p1, p2 and p3. Once
we compute the SDC condition, there could be cases that are
counted multiple times, such as p1 = 0, p2 = 1, p3 = 2 and
p1 = 0, p2 = 2, p3 = 1. However, by assuming without loss
of generality that p1 > p2 > p3 in the condition in the above
expression, the counting of duplicate cases is avoided.

V. RESULTS

We discuss the impact seen from this verification effort
on ECC designs of varying complexity. In the past 2 years,
we have verified 14 ECC designs and their corresponding
algorithms, resulting in the discovery of 48 bugs overall and
proving the absence of bugs in customer releases. These ECCs
are the state of the art for commercial designs. They represent
a full range of Intel designs and were not cherry-picked for
the case study.

Quantitatively, Table I lays out the results of ECC FV
spanning multiple projects and design generations. Table I

compares ECC property checking using Forte against estab-
lished industrial EDA (Electronics Design Automation) tools
tuned for control-path and data-path FV. Since our BDD-
based technique with Forte allows us to do a closed-box
checking without reference to design internals, we explored
the feasibility of similar testing with the EDA tools for a
fair comparison. Tool #1 and Tool #2 in Table I can use the
same verification setup as shown in Fig. 3 and allow the user
to state the design properties by means of System Verilog
Assertions (SVA). Both these tools use various engines that
can run in parallel to achieve a concrete result and may give a
bounded proof in case if they fail to converge. As seen from
Table I, these tools are able to converge on small-sized designs
based on simple ECC algorithms such as SECDED, but as the
design size or algorithm complexity increases, convergence is
not seen. Our techniques, however, achieve convergence in a
matter of minutes in all of the designs under consideration.
Tool #2 is more tuned towards datapath verification, but no
difference was observed between Tool #1 and Tool #2 with
respect to convergence on these tasks. Typically, datapath FV
commercial tools do better on arithmetic designs than standard
model checkers due to their word-level engines. However, the
arithmetic in ECC algorithms is primarily bit-level and, as seen
from our results, word-level processing was not particularly
useful here.

The size of ECC designs ranged from 3K gates (smallest)
to over a million gates (largest). However, more than the
design size the proof convergence depended on arithmetic
complexity of the algorithm itself. For example, algorithm
offering bit protection were more amenable to FV proofs com-
pared to algorithms doing bit-group level protection. Also, the
complexity increased as the number of bits under protection
umbrella grew. For instance, the number of case-splits required
to achieve proof convergence were 17K for a 512 bit TECQED
and only 300 for a DECTED design of the same data-width,
while none of the SECDED designs verified needed a case-
split. Within the same algorithm category, the complexity was
directly proportional to the data-size. So, a 32 bit SECDED is
much easier to verify compared to a 4096 bit SECDED.

Qualitatively, we consider it instructive to categorize the
kinds of bugs we have found. This analysis is intended to help
both design experts and verification experts identify common
patterns that lead to design errors.

A. Architectural Bugs

Architectural FV allows early bug investigation, even before
the implementation of an algorithm in RTL. As a result, bugs
found in this process are prevented from ever entering the
RTL design. This is a worthwhile exercise since the algo-
rithms themselves are complex enough, owing to the interplay
between different architectural features, to give rise to corner
case bugs. For example, our recent investigation of single
block corruption in a new ECC scheme in a memory controller
found exactly 3 failure cases out of 18 × 232. Previously,
some of our FV investigations have found corner case bugs

156



Algorithm Protection level Data width in bits
Engineering effort
in person-days

Property Convergence
Forte EDA tool #1 EDA tool #2

SECDED Bit 1-256 < 2 Yes Yes Yes
Bit 4096 < 2 Yes No No

DECTED Bit 256 < 4 Yes No No
Bit 512 < 4 Yes No No

TECQED Bit 512 < 15 Yes No No
Custom ECC schemes for
DRAM device protection

Bit groups
(16/32/64 bits) 512

Continuous engagement
across design cycle Yes No No

TABLE I: Comparison of Property Checking with Different Formal Tools. EDA Tool #1 is a Model Checking Tool and EDA
Tool #2 is a Commercial Datapath FV Tool

Fig. 5: Implementation Error Example

that escaped testing and subsequently led to the publication of
customer errata [11].

B. Implementation Errors

Even with a correct algorithm, an implementation can be
erroneous, due to a variety of reasons such as specification
ambiguity. We encountered one such bug while reading parity
from memory; while the architecture specified a column major
order read, the RTL implementation was row major. In another
example, a simple misconnection led to a breakdown of ECC
functionality. This case is illustrated in Fig. 5 which shows
the functionality of a generic ECC Reader. The Reader reads
the codeword from memory which is comprised of Data Dr

and check-bits (i.e., locator bits Lr and Parity bits Pr). The
Reader uses the read data Dr and the Locator bits Lr to re-
calculate the new check-bits (L′

r and P ′
r). These recalculated

values are then compared against the check-bits that were read
from memory to compute syndromes that are then used to
ascertain error presence and its correction. However, in the
case presented in Fig. 5, instead of using original locator
bit Lr, (green arrow indicated in Fig. 5) the recalculated
version of L′

r was used (red arrow in Fig. 5) to re-compute
Parity bits. Due to this seemingly innocuous issue, 60% of 1b
corruption cases that specification claimed to be correctable
were marked uncorrectable in the design, and around 25% of
2b corruption cases led to fatal SDCs. The timely verification
of these designs prevented these critical bugs from making
their way into the final products.

Fig. 6: Pipeline Bug Example

C. Pipeline Bugs

Frequently, bugs arise from pipelines where a signal was
used at the wrong stage, or an incorrect clock-enable prevented
the relevant values from propagating. One such failure is
described in Fig. 6. Here 2 sets of data (Ar and B) enter
the Reader in succession, where Ar has 1b corruption, and
B is not corrupted. The design was expected to correct the
corrupted Ar to its original value A and to leave B unchanged.
However, B was changed. It was found that an internal signal,
correctionMask, used for fixing the corruption was not updated
while processing B due to an incorrect clock-enable, and its
stale value resulted in a spurious correction. This behavior
continued for a long time in the pipeline, until the next update
of the clock enable signal. This shows that an algorithm,
however carefully designed, can be rendered ineffective for
a large number of corruption cases due to pipeline bugs. The
fixing of this bug also shows the salutary effect of datapath
FV on the surrounding control-path logic, as the closed-box
verification approach focuses on the overall functioning of the
design in addition to the correctness of the ECC algorithm.

D. Specification Bugs

The RAS capabilities of an ECC design need to be clearly
documented for customers in an External Design Specification
document. Thus, these specifications need to be accurate and
must reflect exact ECC capabilities that exist in the silicon
product. Many of the complex algorithms may not provide
100% correction on a block, but nonetheless specify x%
correction, y% detection, and z% silent data corruption. These
data percentages are critical to memory vendors and need to
be verified, but this verification is complex as it is not a simple
true or false claim but involves exact counting of each category

157



of results. Since the number of satisfying assignments can be
counted using symbolic representations, it can be verified that
both the ECC algorithms and their implementations deliver the
claims that they make in the specification. We helped in fixing
some of these results based on our calculations. In one such
case, an anomaly was detected on the number of DUE counts
where the actual counts offered by algorithm differed by the
published claims by just 7.10e-13%.

E. Miscellaneous Bugs

Since we analyze each ECC design in depth, we sometimes
encounter issues such as efficiency bugs, where the design
uses more check-bits than required by the algorithm, or
parametrization bugs, where some design parameters are not
passed-down correctly in the design.

VI. RELATED WORK

Model-checking based FV techniques have been used for
verifying ECC designs. For example, a 128-bit TECQED ECC
was formally verified in [13], and a 256-bit Double Error
Correction Triple Error Detect (DECTED) ECC design was
formally verified in [8] using a commercial model checker.
Both these proofs converged only after a lot of design in-
terventions and rewriting the design to make the logic fully
combinational. These interventions need special handling, and
one needs to make sure the bridges between these abstract
models are verified, maintaining overall coherence. In contrast,
our approach does not need any reduction or abstraction of
designs. Scaling up these approaches [8], [13] to bigger ECC
designs will be difficult as model-checking tools get fatigued
due to the inherent complexity of ECC designs and the vast
input space. In [13], extreme convergence steps were taken
to conclude the proof on a 128-bit TECQED with a proof
runtime that is counted in days, while with our technique we
could verify a 4× data-width design (512-bit TECQED) in
just 2 hours.

Lvov et al. [14] verified Reed-Solomon codes by computing
Grobner bases, using the SINGULAR arithmetic engine. Their
proofs are independent of data width and their runtimes are
dependent only on the number of bits corrupted. However,
their assumption of the insufficiency of BDD-based techniques
for ECC verification has not been borne out in Forte, which
is capable of crunching through Boolean equations of the
required size. This is accomplished through variable ordering
and parametric substitution techniques, as discussed further in
section III. As a result, ECC verification in Forte becomes a
much simpler matter of declarative specification of the desired
ECC properties, without reference to the underlying algebraic
structure.

VII. CONCLUSION

The results discussed in this paper show the efficacy of
our BDD-based symbolic representation in verifying properties
of ECC designs at both the algorithmic and RTL level,
finding bugs which would have been infeasible to find through
testing. These techniques are scalable to large ECCs by means

of parametric substitution and other complexity management
techniques. The success of these techniques in discovering
bugs on industrial designs allows the categorization of the
most common kinds of ECC bugs, which in turn shapes the
practice of ECC design towards avoiding these bugs from the
very beginning.

These techniques are valuable because they allow for a
closed-box approach that requires neither knowledge of the de-
sign nor an HLM for equivalence checking. Additionally, these
Forte techniques outperform other closed-box tools. Forte
differentiates itself here by allowing algorithmic verification,
even in advance of the RTL being written, and by helping
provide bounds on the incidence of certain kinds of errors.
By facilitating efficient correctness proofs and supporting the
development and tuning of ECC designs on multiple fronts,
Forte-based ECC verification techniques position themselves
to be useful well into the future.

ACKNOWLEDGMENT

Formal verification of Error Correction Codes in the
paradigm discussed in the current paper has been practiced
at Intel since 2005. We would like to express our gratitude
to all of our former colleagues who have contributed to
this effort either conceptually or through code. In particular,
we would like to thank Scott Huddleston for his seminal
work on the error probability counting methods discussed in
section IV-C, and Levent Erkok, Flemming Andersen, John
Matthews and John Erickson for advancing the methodology
over a series of verification efforts on successive families
of memory controllers. We also thank Jing Ling, Hsing-min
Chen, Wei Wu, and Saurabh Kolambkar for architecture and
design help on various ECC circuits. We thank Disha Puri for
carrying out comparison experiments on commercial datapath
formal verification tools. Finally, we would like to thank
Gavriel Gavrielov and Achutha Kirankumar V. M. for the
opportunity to carry out this work.

REFERENCES

[1] S. Adams, M. Bjork, T. Melham, and C. H. Seger, “Automatic abstrac-
tion in symbolic trajectory evaluation,” Formal Methods in Computer
Aided Design 2007.

[2] M. D. Aagaard, R. B. Jones, and C. H. Seger, “Formal verification using
parametric representations of Boolean constraints,” Proceedings of the
36th annual ACM/IEEE Design Automation Conference 1999.

[3] Achutha Kirankumar V. M., A. Gupta, and R. Ghughal, “Symbolic
Trajectory Evaluation. The Primary Validation Vehicle for Next Gen
Intel® Processor Graphics FPU,” Formal Methods in Computer Aided
Design 2012.

[4] R. C. Bose and D. K. Ray-Chaudhuri, “On A Class of Error Correcting
Binary Group Codes,” Information and Control 1960.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, 100.8 (1986): 677-691.

[6] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” Conference Record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, California,
USA, January 1977. ACM Press. pp. 238–252.

[7] D. Deharbe and J. Vidal, “Optimizing BDD-based verification analysing
variable dependencies,” In XIV Symposium on Integrated Circuits and
System Design (SBCCI’01), pp. 64-69. Computer Society Press, 2001.

158



[8] K. Devarajegowda, V. Hiltl, T. Rabenalt, D. Stoffel, W. Kunz, and
W. Ecker, “Formal Verification by The Book: Error Detection and
Correction Codes,” DVCon 2020.

[9] J. Grundy, T. Melham, and J. O’Leary, “A reflective functional language
for hardware design and theorem proving”, Journal of Functional Pro-
gramming, 16(2):157-196, March 2006.

[10] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres 1959.
[11] Intel Corporation, “Third Gen Intel® Xeon® Scal-

able Processors Specification Update”, May 2022,
https://www.intel.com/content/www/us/en/design/resource-design-
center.html, Document ID 637780, Erratum ID ICX 66.

[12] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber and A.
Naik, “Replacing Testing with Formal Verification in Intel® Core™ i7
Processor Execution Engine Validation,” Computer Aided Verification
2009.

[13] A. Kumar and K. Devarajegowda, “Verifying ECCs Used in Safety
Critical Designs with Formal,” Jasper User Group 2021.

[14] A. Lvov, L. A. Lastras-Montano, V. Paruthi, R. Shadowen, and A. El-
Zein, “Formal verification of error correcting circuits using computa-
tional algebraic geometry,” Formal Methods in Computer Aided Design
2012.

[15] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics
1960.

159


	Introduction
	Error Correction Codes
	Symbolic Simulation and Forte Toolset
	ECC Formal Verification
	ECC Implementation Verification
	Parametric Substitution
	Case-Splitting
	Symbolic Indexing
	Variable Ordering
	Dynamic Weakening

	ECC Architectural Verification
	Counting and Enumerating Error Patterns

	Results
	Architectural Bugs
	Implementation Errors
	Pipeline Bugs
	Specification Bugs
	Miscellaneous Bugs

	Related Work
	Conclusion
	References

