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Abstract

We review the evidence that cosmological topologically massive gravity may correspond to
a logarithmic conformal field theory for a specific tuning of the product of the AdS radius
with the Chern-Simons coupling. More general three-dimensional models such as new massive
gravity and generalized massive gravity as well as a generalization to a supersymmetric N =
(1, 0) extension and a four-dimensional model are shown to experience similar features. We
end with a discussion on the limiting procedure to a logarithmic field theory for non- and
ultra-relativistic contractions of the conformal algebra in two dimensions and its connection
to flat space holography.
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Introduction

The twentieth century spawned two pillars of modern day physics: quantum field theory and
general relativity. The introduction of the former lead to the formulation of the standard
model of particle physics whereas the latter gave birth to the standard model of cosmology,
both of which share an excellent agreement with experiment and helped to understand the
physics at a subatomic and physics at a cosmological scale. One of the most ambitious
goals in theoretical physics today is to find a consistent unifying theory from which both
these inherently different theories can be recovered. That quantum field theory and general
relativity should be somehow connected can be motivated by the fact that the most natural
physical cut-off that is usually introduced in the process of renormalization should be provided
by a microscopic black hole. Such a theory may also include a quantized version of gravity.
Not knowing if quantized gravity is actually necessary to describe natural phenomena [51], it
seems plausible from a present point of view that it accounts for things like the final evolution
of black holes. The lack of experiments in the regime where a theory of quantum gravity should
be considered forces one to rely solely on general physical and mathematical constraints, as
well as gedankenexperiments.

It was pointed out by Bekenstein [27] that including gravity to a thermodynamical system
requires black holes to have an entropy SBH. Moreover, in order for the second law of ther-
modynamics to hold, the very same needs to be adjusted. Imagine throwing a teapot into
a black hole. It follows that the black hole’s entropy should increase by at least the same
amount that the teapot had before vanishing behind the horizon. This shows that the second
law of thermodynamics has to be generalized [26, 28]:

”The sum of black hole entropies together with the ordinary entropy outside black holes
cannot decrease.”

This concept implies that SBH is the highest entropy that can be contained within a closed
surface. Imagine any entropic system other than a black hole within a sphere of radius R and
increase its energy until a black hole forms with its horizon at R. An initial entropy higher
than SBH violates the generalized second law of thermodynamics. This suggests that black
holes are the most entropic objects in the universe. Along this line of reasoning Bekenstein
showed that the entropy assigned to a black hole counterintuitively scales with its area rather
than with its volume as expected from any ordinary field theory within a bounded finite
region. Hawking later derived the proportionality factor [90].

SBH =
A

4~GN
(1)
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These discoveries lead to a thermodynamical interpretation of the four laws of black hole
mechanics [22] from which can be inferred that black holes can be viewed as a thermodynam-
ical system. The connection between thermodynamics and statistical physics has taught us
that the concept of entropy is connected to a phase space, implying a microscopical descrip-
tion. For black holes such a connection has been found in many different models and with
many inequivalent approaches [37, 45, 134, 136]1. A physically realistic case that concerns
four-dimensional extremal Kerr black holes can be found in [86].
Moreover, the ideas that connected an entropy to an area also lead to the formulation of
the ‘holographic principle’ [137, 138] which states that any system within a closed spacelike
surface can be represented by degrees of freedom on that surface. This thesis provides an
explicit application thereof.
Numerous explicit realizations of the holographic principle have been found until today. Many
of them include an anti-de Sitter (AdS) spacetime, a maximally symmetric solution of the
Einstein equations that has a locally Lorentzian signature as well as constant negative curva-
ture and a negative cosmological constant, and a conformal field theory (CFT), a quantum
field theory which is invariant under conformal transformations. The first precise realization
was found by Maldacena [116] who conjectured that a certain low energy limit of type IIB
string theory compactified on the product space of five-dimensional AdS spacetime with a
five-dimensional sphere, or AdS5 ⊗ S5 for short, is in a one-to-one correspondence with a
superconformal Yang-Mills theory with four fermionic generators in its supersymmetry al-
gebra. In a practical manner the correspondence of an AdS space with a CFT, henceforth
abbreviated as AdS/CFT correspondence, can be viewed as a dictionary between states in a
field theory describing gravity and operators in a CFT which exist on the boundary of the
AdS space [141]. When discussing a holographic correspondence of two theories, the most
intriguing single piece of information for the reason of applicability for problems of physical
significance may be that one theory’s spectrum of strong coupling is perturbatively accessible
to the other’s and vice versa.

In this thesis we almost exclusively concern ourselves with the case of three-dimensional gravi-
tational models. The reason being that quantum gravity in higher dimensions presents concep-
tual and technical obstacles which mostly reduce to conceptual issues in the three-dimensional
case. Pure Einstein gravity does not contain any local propagating degrees of freedom. This
implies that static test particles do not feel any gravitational attraction for a vanishing cos-
mological constant in three spacetime dimensions. But studying three-dimensional gravity
is not entirely academic since its holographic connection to two-dimensional CFT, which is
reviewed in the body of this work, allows an association to models in statistical physics as well
as string theory. In addition, even though this lower dimensional theory is trivial, choosing
the cosmological constant to be negative allows for a black hole solution [20, 21, 44]. This
black hole solution, also known as BTZ black hole, shares many properties with black holes
in 3 + 1 dimensions, such as a well defined entropy, an inner and outer horizon and the fact
that it can form through the gravitational collapse of matter.
An important precursor of the holographic hypothesis within the framework of 2+1-dimensional
gravity was found by Brown and Henneaux [40] who showed that the Hilbert space of pure Ein-
stein gravity with AdS boundary conditions is a representation of a direct sum of two copies

1This list presents just a small selection that is far from complete. See [133] for a short review of some
approaches.
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of the Virasoro algebra, the centrally extended algebra of infinitesimal conformal transfor-
mations, with both their central charges being c = 3`/2GN where ` is the AdS radius and
GN Newton’s constant. This result is not affected through the addition of matter fields. A
concrete proposal for a dual CFT to 3-dimensional pure Einstein gravity with a negative
cosmological constant was given by Witten [142]. He suggested that an AdS/CFT correspon-
dence would only be possible for certain discrete values of the coupling constant which results
in a a discrete series of dualities between CFTs and Einstein gravity. Although this proposal
has been proved not to work [71, 73, 119] it marked the starting point for further investigations
that try to solve the problem with Einstein gravity. Li, Song and Strominger considered a
more general model, called ‘cosmological topologically massive gravity’ (CTMG),where they
added a Chern-Simons term to the cosmological Einstein-Hilbert action [108] and proposed
the dual field theory to be chiral at a specific tuning of the coupling constants. As it turned
out this represents only a superselection sector of a more general correspondence which is
reviewed in this work [80, 83].

This thesis is organized as follows: In chapter 1 we review the well established AdS3/CFT2

correspondence and in doing so we highlight some important concepts and issues necessary
for its understanding which will also come in handy in the later part of this work. Chapter
2 introduces logarithmic CFTs (logCFTs) as well as CTMG and shows some facts that lead
to the conjecture of their holographic duality for a specific tuning of parameters. Chapter 3
discusses generalizations such as cosmological topologically massive supergravity and a gravity
model in 3+1 dimensions and we will see that a connection to a logCFT upholds. In addition
an Inönü-Wigner-contraction from the asymptotic conformal symmetry group to the Galilean
conformal group is considered and its non- and ultra-relativistic limit is investigated.

We mostly use natural units ~ = c = GN = kB = 1. The conventions are κ2 = 16πGN and
(−,+, · · · ,+) for the signature of the metric throughout this work. Anti-/Symmetrization of
tensor components is given by squared/round brackets around indices and do not imply any
additional prefactors, e.g. T(ab) = Tab + Tba.



4 Introduction



Chapter 1

AdS3
/
CFT2 in a Nutshell

This chapter gives a short introduction of how an AdS3/CFT2 correspondence comes about.
In doing so, we highlight and review some familiar subjects that will be of great importance
later on, thereby dismissing a thorough treatment and focusing our attention on portraying
the conceptual. We outline the concept of canonical analysis as far as it is necessary for the
models that are under consideration in this work.

1.1 Introducing Anti-de Sitter Space

An anti-de Sitter spacetime is a maximally symmetric and locally Lorentzian solution of the
Einstein equations with constant negative curvature that involves a negative cosmological
constant, i.e. an attractive potential. It can formally be understood as an embedding in
R2,d−2 which is a flat ambient space with the following metric

ds2 = −
1∑
i=0

dx2
i +

d−1∑
j=2

dx2
j . (1.1)

The constraint that yields AdS in d spacetime dimensions reads

`2 =

1∑
i=0

x2
i −

d−1∑
j=2

x2
j (1.2)

with the constant ` being refered to as the AdS-radius which is closely related to the cos-
mological constant. From the metric we can read off that the isometry group is O(d − 2, 2).
As the topology of such hypersurfaces allows for closed timelike curves which are omitted for
physical reasons, it is often more convenient to use its universal covering space which is simply
connected by construction. Unless stated otherwise it is this covering space that we refer to
whenever writing AdS.

From here onwards we restrict ourselves to three spacetime dimensions, because this is the
case we will study later on. It will be convenient to make use of a local isomorphism and recast
the isometry group as SL(2,R)L⊗SL(2,R)R

1 because the product group will allow for an easy

1Since we will later discuss the possibility of chiral theories where this symmetry plays a major role, the
indices are merely used as a helpful way to differentiate between the ‘left’ and ‘right’ sector.
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interpretation within the correspondence of AdS3 with a generic 2 dimensional CFT. Let us
motivate the correspondence by implementing a popular scheme often used when studying the
geometry of (principal) homogeneous spaces by means of group theory. Specifying a map π :
AdS3 → SL(2,R) with a convenient representation, the matter of finding global symmetries
becomes a problem that can be answered within a group theoretical framework.

π(x0, x1, x2, x3) = l−1

(
x0 + x2 x3 − x1

x3 + x1 x0 − x2

)
(1.3)

Notice that the constraint (1.2) is implemented by the determinant of the matrix being 1.
Since the group’s associated algebra is simple, the Killing form is proportional to, and so can
formally be interpreted as, the pseudo-Riemannian metric on the SL(2,R) manifold which
involves the Maurer-Cartan form ω = g−1dg with g ∈ SL(2,R).

ds2 = −tr(ω2) (1.4)

Here d is the exterior derivative and tr denotes the trace. Invariance of the metric under the
seperate left and right group action of SL(2,R) therefore determines its isometry group to be
SL(2,R)⊗ SL(2,R)/Z2. The reason for it being a quotient group comes from the equivalence
of group elements that differ by a sign.

Another parametric solution to the constraint in (1.2) can be used to determine a specific
form of the induced line element on the hypersurface. One such choice, which defines the
metric globally, is given by

ds2 = `2
(
−cosh2(ρ)dt2 + sinh2(ρ)dφ2 + dρ2

)
(1.5a)

=
`2

4

(
−2cosh(2ρ)dσ+dσ− − dσ+2 − dσ−2 + 4dρ2

)
(1.5b)

t ∼ t+ 2πl , 0 6 ρ <∞ , φ ∼ φ+ 2π

and implies that the topology of AdS3 is a solid torus with its surface as a conformal boundary
in contrast to the topology of the universal covering space, which is an infinitely long solid
cylinder with the conformal boundary R⊗ S1. Equation (1.5b) shows a representation of the
metric with respect to lightcone coordinates σ± = t± φ.

An explicit representation of the Killing vectors associated to SL(2,R)L that we will use later
on is given by

L−1 = ie−iσ
+

sinh−1(2ρ)
{

cosh(2ρ)∂+ − ∂− +
i

2
sinh(2ρ)∂ρ

}
(1.6a)

L0 = i∂+ (1.6b)

L1 = ie+iσ+
sinh−1(2ρ)

{
cosh(2ρ)∂+ − ∂− −

i

2
sinh(2ρ)∂ρ

}
(1.6c)

regarding the metric as given in (1.5b). The same representation can be chosen for the
three generators {L̄−1, L̄0, L̄+} of SL(2,R)R under the exchange σ+ ↔ σ−. The linear and
associative internal operation on the vector space that defines the sl(2) algebra is
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[L0, L±] = ∓L±, [L1, L−1] = 2L0. (1.7)

An expansion of (1.5a) for large ρ yields

ds2 = `2dρ2 +
1

4
e2ρ
(
`2dφ2 − dt2

)(
1 + O(e−2ρ)

)
. (1.8)

For our purposes it will be convenient to work in Gaussian normal coordinates with locally
asymptotically AdS conditions, i.e. any coordinate system of a form that satisfies

ds2 = dρ2 + γijdx
idxj with γij = e2ρ/`γ

(0)
ij + o(e2ρ/`) (1.9)

in the vicinity of the conformal boundary with the condition that γ
(0)
ij is invertible. The leading

term in the expansion of γij gives the boundary metric γ
(0)
ij , which will eventually be identified

with the metric of the space on which a corresponding conformal field theory is studied. When
considering pure Einstein gravity, the asymptotic equations of motion restrict the subleading
terms to be of order O(1 ) and one ends up with the standard Fefferman-Graham expansion
[67]. This kind of behaviour does not hold for more general gravity models as we will review
in chapter 2.

1.2 On the Importance of Boundary Conditions

Asymptotical boundary conditions can loosely be understood as a general classification of ‘vac-
uum’ states. Take for example the globally hyperbolic Schwarzschild and Minkowsi space-
times. Both have the same behaviour at the spatial boundary and thus correspond to an
asymptotically flat vacuum. However, differing in initial conditions when viewed as an initial
value problem, they simply represent different states within the theory. This is of course not
restricted to the flat case and can be applied to many different classes of spacetimes. We
are now going to pin down the meaning of an ‘asymptotically AdS’ spacetime along the line
of [94]. This essentially boils down to a statement about the imposed boundary conditions
that a metric should satisfy at spatial infinity. These are required to fulfill the following three
criterions: (i) They must contain a globally AdS solution, (ii) they need to be invariant under
the action of the AdS isometry group and (iii) within a canonical framework the associated
charges to the generators of the AdS isometry group need to be finite (see app. A).

As an explicit example consider the following globally AdS metric

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dφ2 (1.10)

as a solution of the equations of motion coming from the Einstein-Hilbert action with the
additional boundary conditions
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gtt = − r2

`2
+ O(1) (1.11a)

gφφ = r2 + O(1) (1.11b)

grr = `2

r2 + O(r−4) (1.11c)

gtφ = O(1) (1.11d)

gtr = O(r−3) (1.11e)

gφr = O(r−3) . (1.11f)

Given these fall-off conditions one can find the most general transformations that leave (1.11)
invariant, i.e. they map the class of asymptotically AdS solutions onto themselves. The AdS3

isometry group, generated by the Killing vectors, is contained within this larger symmetry
group at the spatial boundary, which we will henceforth call the ‘asymptotic symmetry group’
(ASG). To figure out its generators ξ we can use an altered Killing equation that takes the
boundary conditions into account.

Lξgµν = δgµν (1.12)

To be clear, δgµν represents the subleading terms in (1.11). Solving for these asymptotic
Killing vectors yields

ξt = `
(
T+ + T−

)
+

`3

2r2

(
∂2

+T
+ + ∂2

−T
−)+ O(r−4) (1.13a)

ξr = −r
(
∂+T

+ + ∂−T
−)+ O(r−1) (1.13b)

ξφ = T+ − T− − `2

2r2

(
∂2

+T
+ − ∂2

−T
−)+ O(r−4) (1.13c)

where we used that T± ≡ T (x±) with x± = t/` ± φ. Rewriting these vectors using the
coordinates x± and exploiting the periodicity in φ to make the ansatz of a Fourier series for
the two functions T± leaves us with the following generators of the ASG

ξ±n = einx
±
(
∂± −

`2n2

2r2
∂∓ −

inr

2
∂r

)
+ O(r−1) (1.14)

which form a representation of two copies of the Witt algebra

[
ξ±m, ξ

±
n

]
= −i(m− n)ξ±m+n + O(r−1) (1.15a)[

ξ±m, ξ
∓
n

]
= 0 . (1.15b)

The arbitrary subleading terms in (1.13) behave as pure gauge transformations [40]. As an
example, consider a spacetime deformation that can be related to a vector whose ξt and
ξφ components behave as O(r−4) and whose ξr components behaves as O(r−1) then this
transformation is pure gauge. They have no associated canonical boundary charge2 and the

2For the reader who has not been exposed to a Hamiltonian treatment of general relativity we refer to
appendix A.
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generators vanish weakly, that is after imposing the equations of motion. In that sense the
ASG relies on a cohomology where each element of a class of asymptotic Killing vectors
differing only in subleading terms generates the same transformation. In other words it is a
factor group that identifies all group elements which are equal up to trivial deformations.
Following the discussion in app. A, the charges form a ‘projective’ representation of the ASG
[40]

{Q
[
ξ±m
]
, Q
[
ξ±n
]
}D.B. = −i(m− n)Q

[
ξ±m+n

]
+K

[
ξ±m, ξ

±
n

]
(1.16)

where we switched from the Poisson brackets to the Dirac brackets which reduces the genera-
tors of spacetime deformations H [ξ±m] to only the surface charges due to the Hamiltonian and
the momentum constraint. The actual computation of the central term is greatly simplified
by acknowledging that the integration constant in eq. (A.22) can be chosen such that the
surface charge evaluated on a metric that is globally AdS vanishes on a hypersurface at t = 0.
Furthermore, the Dirac bracket of two surface terms may be reinterpreted as the variation of
a surface charge

δξ±nQ
[
ξ±m
]

= {Q
[
ξ±m
]
, Q
[
ξ±n
]
}D.B. (1.17)

Having chosen a convenient integration constant as explained above and using the explicit
form of the variation of the surface charge whose negative is given in eq. (A.21b) together
with (1.16) yields

δξ±nQ
[
ξ±m
]

= K
[
ξ±m, ξ

±
n

]
(1.18)

This calculation was performed for Einstein gravity in [40] where it was shown that after the
exchange of the Dirac brackets with an ordinary commutator the surface charge algebra is
isomorphic to two copies of the Virasoro algebra

[
Lm, Ln

]
= (m− n)Lm+n +

cL
12
n(n2 − 1)δm+n,0 (1.19a)[

L̄m, L̄n
]

= (m− n)L̄m+n +
cR
12
n(n2 − 1)δm+n,0 (1.19b)[

Lm, L̄n
]

= 0 (1.19c)

with the central charges being

cL = cR =
3`

2GN
. (1.20)

We notice that this symmetry algebra is exactly the one for the generators of two-dimensional
conformal symmetry. However, the central charge here is obtained through purely classical
analysis whereas for example in string theory it comes about through normal ordering after
quantization.
The explicit form of the central charges allows to associate an entropy to the BTZ black
hole in a semi-classical limit via the Cardy formula [134] which precisely agrees with the
Bekenstein-Hawking discussed in the introduction.
The equality of the central charges cL = cR in both copies of the Virasoro algebra, a feature
that need not hold in other models as we show in the next chapter, implies that there is no
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diffeomorphism anomaly. On the other hand we are left with a trace anomaly [96] which
would not be the case if one central charge were the negative of the other.
Since an AdS/CFT correspondence is interpreted as an equality of partition functions we can
check if three-dimensional Einstein-Hilbert gravity with a negative cosmological constant has
more in common with a two-dimensional CFT than what we know so far from symmetry
considerations. On the CFT side the partition function counts the Virasoro descendants of
the vaccum. It is evaluated on the torus and can be taken from the literature [64].

ZCFT(q, q̄) = |q|−
c
12 tr

(
qL0 q̄L̄0

)
= |q|−

c
12

∞∏
n=2

1

|1− qn|2
. (1.21)

The term in front of the trace essentially comes from the transformation from the (punctured)
plane onto the cylinder. The conformal structure on the boundary of the manifold on which
the gravitational theory is defined must coincide with the one on which the conformal theory
is introduced. To that end the (euclidean) partition function is not evaluated on the universal
cover of AdS but on the filled torus. We can simplify calculations with a semi-classical
approach by using a saddle point approximation for the Einstein-Hilbert action

log ZE.-H.(q, q̄) = −kΓ(0) + Γ(1) +
1

k
Γ(3) + · · · (1.22)

with q ≡ eiτ where the modular parameter τ is related to the angular potential θ and the
inverse temperature (i.e. euclidean time) via 2πτ = θ + iβ. In a semi-classical limit the
parameter k, which is proportional to the inverse Newton constant, becomes large and all
terms Γ(i) for i > 1 may be neglected. The two main contributions to the partition function
are [75, 117]

e−kΓ(0)
= |q|−

k
2 and eΓ(1)

=
∞∏
n=2

1

|1− qn|2
(1.23)

and sets the partition function to

ZE.-H.(q, q̄) = |q|−
k
2

∞∏
n=2

1

|1− qn|2
. (1.24)

For c = 6k, which was the result obtained by Brown and Henneaux (1.20), both partition
functions are exactly equal in the semi-classical limit.
The conformal Ward identities, which completely constrain the form of the two- and three-
point correlation functions of a CFT together with the central charge, provide a further
check for a holographic duality. These checks are applicable to any conjectured AdS3/CFT2

correspondence though and are not sufficient to exhibit detailed features of a duality of such
theories. In the next chapter we look at a concrete proposal for such a duality.



Chapter 2

The AdS3
/
logCFT2 Correspondence

This chapter presents the basics of a logarithmic CFT within the framework of a 1+1 di-
mensional CFT as far as it will be needed later on and shows that it arises when the con-
formal dimensions of operators degenerate. For a deeper introduction to the topic we refer
to [43, 70, 88, 89]. We will then introduce a gravitational theory called ‘topologically mas-
sive gravity’, show the correspondence of both theories for a specific tuning of parameters
and conclude that such a connection is possible when differential operators in the equations
of motion degenerate and end by listing further gravity theories which also experience this
feature.

Throughout the rest of this thesis we will neglect all surface charges and holographic coun-
terterms and just state the bulk piece when writing an action.

2.1 Logarithmic Conformal Field Theory

Logarithmic CFTs have proven themselves to be very valuable in the study of critical be-
haviour in condensed matter systems and statistical mechanics. Some physical processes that
may be described in this way are percolation [107, 120] (coming from the Q-state Potts model
as Q → 1), the behaviour of polymers by using self avoiding walks (the O(n)-model in the
n→ 0 limit), the quantum Hall plateau transition [36, 104] and systems of quenched disorder,
i.e. systems whose measurable quantities depend on random variables which do not change
over time such as the spin glass model. These particular CFTs are characterized by logarith-
mic terms that occur within correlation functions which may come about through singular
coefficients in an operator product expansion (OPE). In addition, having such a singular be-
haviour is a typical feature for conformal theories where the central charge vanishes, which
will be considered later on. A vanishing of the central charge is potentially worrying, since
the OPE of a scalar primary field Φ with itself has the following form (with suppressed indices
to avoid clutter)

Φ(r)Φ(0) =
A

r2xΦ

(
1 +B

xΦ

c
r2T (0) + · · ·

)
+ · · · (2.1)

with the normalization A, the scaling dimension xΦ of the scalar field, the energy-momentum
tensor T (r) and a calculable constant B. To avoid the singular behaviour as c → 0 one can
choose either of three ways to proceed in this limit according to [43]: (i) the normalization
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A vanishes, (ii) the scaling dimension xΦ vanishes, (iii) contributions from other operators
cancel the divergence which happens if there exists an operator whose scaling dimension
degenerates with that of the energy-momentum tensor. We will now go on and take a closer
look at the last case.

The conformal Ward identities (cf. app. C) fix the form of correlation functions that include
up to three operators. All two-point correlation functions vanish if the involved operators
differ in their conformal dimensions. Furthermore, when considering only 1+1 dimensions
projected onto the (punctured) complex plane, any mixture of purely holomorphic and anti-
holomorphic operators within two-point correlators vanishes. We define two quasi-primary
operators {O(z),Oε(z, z̄)} such that Oε(z, z̄) → O(z) in a certain limit and denote their
conformal dimensions by {(h, 0), (h+ ε, ε)} respectively. The following identities hold

〈O(z)O(w)〉 =
c

2(z − w)2h
(2.2a)

〈Oε(z)Oε(w)〉 =
cε

2(z − w)2h+2ε(z̄ − w̄)2ε
(2.2b)

with the coefficients c, cε being independent of spacetime and the factor 2 for later convenience.
For an appropriate definition of a new operator

Olog(z, z̄) := lim
ε→0

Oε(z, z̄)−O(z)

ε
=

d

dε
Oε(z, z̄)

∣∣∣
ε=0

(2.3)

and after setting cε = −c+O(ε2) with b = − limε→0
c
ε 6= 0 we obtain the following correlators

〈O(z)O(w)〉 = 0 (2.4a)

〈Olog(z, z̄)O(w)〉 =
b

2(z − w)2h
(2.4b)

〈Olog(z, z̄)Olog(w, w̄)〉 = −b ln(m2|z − w|2)

(z − w)2h
. (2.4c)

Such a structure of correlators is the defining property of a logarithmic CFT. Notice that the
last correlator involves a mass parameter m. It stems from the highest order term in O(ε2)
in the vanishing coefficient cε and can be changed by a redefinition

Oε(z, z̄)→ Oε(z, z̄) + γO(z) . (2.5)

It follows that this mass parameter is artificial and hence does not spoil the conformal sym-
metry. We can further take a look at the action of the Hamiltonian H = L0 + L̄0 and the
angular momentum J = L0− L̄0. The variations of the operators under symmetries generated
by L0 and its counterpart in the antiholomorphic sector are1

1We use ∂̄/∂ to denote the partial derivative with respect to the anti-/holomorphic coordinate.
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[
L̄0,O(z)

]
= 0 (2.6a)

[L0,O(z)] = 2O(z) + z∂O(z) (2.6b)[
L̄0,Olog(z, z̄)

]
= O(z) + z̄∂̄Olog(z, z̄) (2.6c)[

L0,Olog(z, z̄)
]

= 2Olog(z, z̄) + z∂Olog(z, z̄) +O(z) (2.6d)

Furthermore, we may use the one to one correspondence of fields with states in a Hilbert
space, which always holds provided one restricts oneself to patches on the manifold where
radial quantization holds. If this is the case then the action of the Hamiltonian and the
angular momentum on the states corresponding to the above operators is

H

(
Olog

O

)
=

(
2 2
0 2

)(
Olog

O

)
, J

(
Olog

O

)
=

(
2 0
0 2

)(
Olog

O

)
. (2.7)

To suit our purposes we apply this procedure to the holomorphic part of the energy-momentum
tensor T .2 The two-point correlator can be inferred from the OPE (as shown in app. C)

T (z)T (w) =
cL

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ · · · (2.8)

and falls in line with (2.2a) up to regular terms which may be neglected. Notice that all other
singular terms in the limit z → w are zero due to the symmetries imposed on the vacuum.
The constant c in eq. (2.2a) is identified with the central charge of the Virasoro algebra cL
and eventually leads to a reduction to the Witt algebra and T becomes a primary operator
with a vanishing two-point function. Notice that the antiholomorphic sector is completely
unaffected by all manipulations and remains unchanged.

2.2 Cosmological Topologically Massive Gravity

From the point of view of a Hamiltonian formulation of Einstein gravity, the phase space
consists of the induced metric on a hypersurface and its conjugate momentum. Both being
symmetric tensors, the number of degrees of freedom in d spacetime dimensions amounts
to 1

2d(d − 1). However, not all of them remain independent since on shell the Hamiltonian
and the diffeomorphism constraint (see app. A) must be satisfied which together eliminate
d degrees of freedom. In addition, the equations of motion include the arbitrary lapse and
the shift function (see app. A). A choice of coordinates may lead to a further reduction and
eventually leaves the total number of independent physical degrees of freedom for each point
in spacetime to be d(d− 3). It follows that in the case of 2 + 1 dimensions we are left with no
local degrees of freedom.
This situation changes when a Chern-Simons term is added to the pure Einstein-Hilbert action
[59, 60, 61]

SCTMG =
1

κ2

∫
M
d3x
√
−g
{
R− 2Λ +

1

2µ
ελµνΓρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτνρ

)}
(2.9)

2Conversely, we will use T̄ := Tz̄z̄(z̄) for the antiholomorphic part.
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which is known as ‘cosmological topologically massive gravity’ (CTMG). Compared to [60]
we did not refrain from a non-vanishing cosmological constant3 in order to include the BTZ
black hole solution. Additionally the sign was altered to ensure the positivity of the black
hole’s energy in the limit of large µ, the parameter in the Chern-Simons coupling. In what
follows we assume a negative cosmological constant and use its connection to the AdS radius
Λ = −`−2.
Since the equations of motion are of third order, the metric and its first derivative with respect
to the variable along which spacetime is foliated have to be treated as independent variables
of the configuration space and both are assigned their own canonical momentum. Hence the
counting argument as given above is no longer valid. Compared to the previous case of pure
Einstein-Hilbert gravity, the theory gains one local, massive degree of freedom as can be seen
for example by a linear perturbation around an AdS background (1.5a) g = ḡ + ψ [59] or a
canonical analysis. The equations of motion involve a combination of the Einstein tensor G
and the conformally invariant Cotton tensor C.

Gµν +
1

µ
Cµν = Rµν −

1

2
Rgµν + Λgµν +

1

µ
ε αβ
µ ∇α(Rβν −

1

4
Rgβν) = 0 (2.10)

After making use of the Bianchi identity and applying the transverse gauge ∇̄µ(ψµν−ḡµνψσσ) =
0 the linearized equation of motion reads [108]

(DMG(1))µν = (DLDRDMψ)µν = 0 (2.11)

where G(1) is the linearized Einstein tensor and the three mutually commuting operators are
defined by

(DL) β
α = δ β

α + `ε σβα ∇̄σ (2.12a)

(DR) β
α = δ β

α − `ε σβα ∇̄σ (2.12b)

(DM ) β
α = δ β

α +
1

µ
ε σβα ∇̄σ . (2.12c)

The gauge choice furthermore implies tracelessness of all solutions to eq. (2.11). Such a
setting allows for three different branches of solutions

(DAψA)µν = 0 A ∈ {L,R,M}, (2.13)

two of which are the massless left and right moving gravitons ψL/R that are already present
in Einstein gravity. The third mode ψM is a massive excitation with helicity ±2, where
the sign depends on the sign in front of the Chern-Simons term. This makes it obvious
that (cosmological) TMG is equipped with a mass scale and is not invariant under parity
transformation. It was shown in [108] that solving the linearized equations of motion (2.11)
allows for a classification of the solutions under the sl(2)L ⊕ sl(2)R algebra. Knowing that
the eigenvalues of the operators {L0, L̄0} are the conformal weights we use their explicit
representation (1.6) to make the following ansatz

ψµν = e−ihσ
+−ih̄σ−

Fµν(ρ). (2.14)

3This coins the name ‘cosmological’ TMG.
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By restricting the solutions to primary states we can impose the constraints L1ψµν = L̄1ψµν =
0. Singular solutions at the origin will be dismissed as it does not make sense to study those
under the light of perturbation theory, especially since the background metric shows no such
behaviour. Demanding regularity at ρ = 0 and normalizability as ρ → ∞ then yields the
following weights

(h, h̄)L = (2, 0) (2.15a)

(h, h̄)R = (0, 2) (2.15b)

(h, h̄)M =

(
3 + µ`

2
,
−1 + µ`

2

)
(2.15c)

and sets µ ≥ `−1. It was shown in [108] that the energy of the massive mode is negative for
µ` > 1 and positive for µ` < 1 whereas the energy of the left moving mode always differs by
a sign and the right moving mode’s energy is always positive. At the special value

µ` = 1 (2.16)

the only non-vanishing energy is the one of the right moving mode and one is left with
no negative energy solutions including the BTZ black hole’s energy. However, due to the
degeneracy of the massive with the left moving mode (cf. (2.15)) it seems that its single
degree of freedom is lost given that ψL on the bulk is pure gauge. The solution to this
conundrum [80] can be found by looking at the equation of motion (2.11) at the critical point

(DRDLDMψ)µν

∣∣∣
µl=1

= (DRDLDLψ)µν = 0 , (2.17)

which implies a further solution that fulfills

(DLDLψlog)µν = 0 (2.18a)

(DLψlog)µν 6= 0 . (2.18b)

From this it can be inferred that ψlog is a genuine degree of freedom and not pure gauge:
We use a gauge condition preserving vector field ξ to show that ψL differs from zero only by
a (trivial) diffeomorphism. Therefore it has to satisfy (DL) τ

µ

(
∇τξν +∇νξτ

)
= 0 which ψlog

does not (2.18). That CTMG retains its single degree of freedom at the critical point beyond
the limiting case of linearization was concluded in [52, 79].
Following the definition in eq. (2.3) we construct this new mode in dependence of the two
degenerating solutions

ψlog
µν = lim

ε→0

ψMµν − ψLµν
ε

= −2(it+ ln cosh ρ)ψLµν ≡ y ψLµν (2.19)

where we used 2ε = µ`−1. Its associated energy is negative, which fits the analysis carried out
in [53], bounded and time independent. Given that this new mode has an asymptotically linear
dependence on the radial coordinate means that the choice of Brown-Henneaux boundary
conditions is too stringent for it to appear in the spectrum of solutions, they must be adjusted
accordingly [80, 81] and lead to the following Fefferman-Graham like expansion of the metric
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ds2 = `2dρ2 +
(
e2ργ

(0)
ij + ργ

(1)
ij + γ

(2)
ij + · · ·

)
dxidxj . (2.20)

The loosened boundary contitions are still asymptotically AdS and equal to the ones by Brown
and Henneaux for a vanishing γ(1). In odd-dimensional spacetimes greater than four such a
linear contribution is always present in pure Einstein gravity, whereas in the three-dimensional
case it is usually required to be zero by the equations of motion. It is only for the Einstein-
Hilbert action in three dimensions that the Brown-Henneaux boundary conditions coincide
with the spacetime being asymptotically AdS (cf. [92, 93, 123]).
One might anticipate the holographic energy-momentum tensor to diverge due to the asymp-
totically linear dependence on the radial and time coordinate, however, this turns out not to
be the case. We recall that it is defined as the variation of the on-shell action with respect to
the metric on the conformal boundary (up to the square root of the Jacobian), or, equivalently,
its (densitized) functional derivative.

δSCTMG

∣∣∣
on shell

=
1

2

∫
∂M

d2x

√
−γ(0)T ijδγ

(0)
ij (2.21)

By using the Fefferman-Graham expansion from (2.20) it can be shown that the holographic
energy-momentum tensor is traceless, finite and conserved and it explicitly reads

T ij =
1

8πG`

(
γij(1) + γij(2) − γ

il
(2)γ

(0)
lk ε

kj
)

+ (i↔ j) . (2.22)

We refrain from a detailed derivation and rather refer to the original work [66]. A few remarks
are in order: The γ(1) term was added to take the solutions genuine to the critical point into
account. It therefore contains only modes from the left moving sector. Conversely, the latter
two terms project out any such solutions and so entail only right moving modes. From that
it follows that the stress-energy tensor fails to be chiral at the critical point. Moreover, (2.22)
generally changes by an additional term when considering classes of spacetimes for which the
metric on the conformal boundary is not intrinsically flat [18, 56, 96, 106, 132].
A canonical analysis in analogy to the one by Brown and Henneaux [40] has been carried out
explicitly in [99] and yields a direct sum of two Virasoro algebras associtated to the asymptotic
symmetry group just like in Einstein gravity. Their central charges, however, are dependent
on the Chern-Simons coupling, viz.

cL =
3`

2GN

(
1− 1

µ`

)
cR =

3`

2GN

(
1 +

1

µ`

)
. (2.23)

One readily sees that the central charge of the left sector vanishes at the critical point (2.16).

2.3 Connecting the Pieces

Having a conformal symmetry puts severe restrictions on a field theory in the form of the
Ward identities (see app. C). They fix the 2- and 3-point correlation functions completely.
Any two theories that are supposed to correspond to each other must by definition show the
same restrictions. For a conjectured correspondence between critically tuned CTMG and a
logarithmic CFT we already know what to expect from the gravitational correlation functions
from (2.4).
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Let us make some general remarks: Operators are the central objects to consider in a CFT,
since no asymptotic states and therefore no S-matrix can exist in a theory that is invariant
under scale transformations. When considering a CFT that is dual to a gravitational theory,
fields in AdS are in a one-to-one correspondence with operators in the CFT [5, 85, 141] in the
following way

〈e
∫
ddx φ0(~x)O(~x)〉CFT = Zgrav

[
φ(~x, ρ)

∣∣∣
∂AdS

= φ0(~x)
]
. (2.24)

In addition, any local field theory is destined to have an energy-momentum tensor by Noether’s
theorem. It can be seen as the source to which the metric on the boundary of AdS couples (just
as in eq. (2.21)). Given that a logarithmic CFT is defined by its correlation functions which
involve the energy-momentum tensor, we can check them by making use of the correspondence
between fields and operators as in eq. (2.24) and compute

〈TATB〉CFT ∼
δ2Zgrav

δψAδψB
, 〈TATBTC〉CFT ∼

δ3Zgrav

δψAδψBδψC
(2.25)

with A,B,C ∈ {L,R, log}. It is important to note that such statements do not involve
the full set of solutions of modes that extremize the gravitational action, but only the non-
normalizable ones, i.e. those which involve a γ(0)-term in a Fefferman-Graham expansion
(2.20), precisely because the statement above holds exclusively on the boundary. Such com-
putations have been done and show perfect agreement between the 2-point [132] as well as
3-point correlation functions [84] on both sides. The value of the new anomaly was found to
be

b = − 3`

GN
. (2.26)

Another possibility to falsify a holographic description of critical CTMG in terms of a logCFT
lies in showing that their partition functions fail to coincide. The one-loop contribution to
the partition function of (euclidean) TMG for thermal AdS is

Z1−loop
TMG

∣∣∣
µl=1

=

∞∏
n=2

1

|1− qn|2
∞∏
m=2

∞∏
m̄=0

1

1− qmq̄m̄
= (2.27a)

=

∞∏
n=2

1

|1− qn|2

(
1 +

q2

|1− q|2

)
+
∑
h,h̄

N(h,h̄)χ(h)χ̄(h̄) (2.27b)

and has been calculated in [72] alongside one part of the partition function for a logCFT, viz.

ZlogCFT = |q|−
c
12

∞∏
n=2

1

|1− qn|2

(
1 +

q2

|1− q|2

)
+ · · · . (2.28)

In (2.27b) we used characters χ(h) =
∏∞
n=1

1
1−qn and q depends on the modular parameter as it

was stated previously in chapter 1. The expression in (2.28) only takes the descendants of the
vacuum as well as the logarithmic operator into account, though, which physically describes
excited states that include zero and one logarithmic mode. The problem of calculating higher
order terms is technical. Nevertheless, ZTMG and ZlogCFT can be compared at least to the
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lowest order. Suggestively writing TMG’s partition function by using characters and setting
N(h,h̄) to zero culminates in a perfect coincidence up to an overall constant of both partition
functions for up to single logarithmic mode excitations. The interpretation that the neglected
terms in (2.27b) actually count the multi-log excitations gains validity by checking that the
numerical values of N(h,h̄), which should count the number of independent states at each level,

are not negative and integer. This has been shown explicitly for some representations (h, h̄)
in [72] where it was also argued that it must hold for all successive ones.
Approaching the BTZ black hole as a thermodynamical system leads to another possible
falsification of the conjectured correspondence. The previous ansatz of solving Einstein’s
equation around a black hole solution at equilibrium includes modes that decay over time.
With appropriate boundary conditions such excitations describe the dynamical relaxation of
the perturbed system back to equilibrium and by keeping these perturbations small one can
use linear response theory. Within the context of an AdS/CFT correspondence it was shown
in [38] that there is an exact agreement between the complex frequencies of these decaying
modes (a.k.a. quasi-normal modes) and where the pole of the Fourier-transformed retarded 2-
point Green’s function of the corresponding modes on the CFT side is located. The analysis
regarding TMG has been performed in [129]. Logarithmic modes at the chiral point were
taken under consideration in [128] where the connection to a logarithmic CFT was shown to
hold. It was also highlighted that the double pole in the propagator in momentum space is
responsible for the linear time dependence as seen in (2.19).

2.4 More on Higher Derivative Gravity

We present some additional models that have a more or less close connection to the previous
case of critically tuned CTMG in which Jordan cells can arise in a similar fashion.

2.4.1 ‘New’ massive gravity

An analysis in line with the last section for the action of ‘new massive gravity’ (NMG) [33, 34]

SNMG =
1

κ2

∫
d3x
√
−g
{
σR− 2λm2 +

1

m2

(
RµνRµν −

3

8
R2

)}
, (2.29)

with λ being a cosmological parameter, m a mass parameter and σ determining the sign of
the Einstein-Hilbert term, yields the following linearized equations of motion around an AdS
background under the transverse gauge

(DLDRDm+Dm−ψ)µν = 0 (2.30)

where the new differential operators Dm± are defined as in (2.12c) with the parameter µ

replaced by m±. They are related to the other parameters via m±` = ±
√

1
2 − σm2`2 with

the AdS radius being `−2 = 2m2(σ ±
√

1 + λ). The spectrum again contains two massless
gravitons which are non-trivial only on the boundary and additionally two massive modes,
each with a different of the two helicity states ±2. The sign of the helicity of each state is
captured in the index m±. Both have the same physical mass m2 = m2

± − `−2 and so these
massive modes are related by parity. The linearized equations of motion are in that way
equivalent to the Fierz-Pauli equations for a free and massive spin 2 field [33]. Interestingly,
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NMG also has a critical point that has remarkable similarities with that of TMG: One of the
two new differential operators degenerates with DL at σm2`2 = −1

2 and therefore a logarithmic
mode in the left sector appears. The new feature concerns the right sector, coming from the
degeneration of the other new differential operator with DR. This leads to an additional
logarithmic mode and the theory now gains the same Jordan cell structure as before but for
the antiholomorphic sector [78]. Applying Brown-Henneaux boundary conditions leads to
finite conserved charges [110]. The central charges of the associated Virasoro algebra are

cL = cR =
3`

2GN

(
σ +

1

2m2`2

)
. (2.31)

The new anomalies in both sectors take the same value

bL = bR = −σ 12`

GN
. (2.32)

Another interesting tuning is 2m2`2 = σ. The parameters m± vanish which results in the
degeneration of the two massive modes and leaves a logarithmic pair. Contrary to the previous
case the logarithmic CFT does not involve central charges that are equal to zero and it is not
the energy-momentum tensor that aquires a logarithmic partner. Further issues concerning
this ’partially massless gravity’ theory are considered in [34, 82].

2.4.2 Generalized massive gravity

A straightforward generalization of NMG is the enhancement of its action by a Cern-Simons
term.

SGMG =
1

κ2

∫
d3x
√
−g
{
σR− 2λm2 +

1

m2

(
RµνRµν −

3

8
R2

)
+

1

2µ
ελµνΓρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτνρ

)}
(2.33)

Generalized massive gravity (GMG) has a rich structure from which various existing models,
including the two previous ones, can be recovered. The limit µ → ∞ [m2 → ∞] leads to
NMG [TMG], the limit m → 0 while keeping m2G constant recovers a ghost-free and finite
theory of gravity of fourth order [58] and the scaling µ → 0 while keeping µG fixed leads to
conformal Chern-Simons gravity [2] . We use the same approach as in the former sections to
arrive at the equations of motion.(

DLDRDm1Dm2ψ
)
µν

= 0 (2.34)

The operators again mutually commute and the latter ones are defined just as in (2.12c) with
µ replaced by m1,2. Regarding the AdS radius, we find that it is identical to the one in NMG.
The difference to NMG lies in the fact that the masses of the massive modes need not be
equal.

m1,2 =
m2

2µ
±

√
1

`2
− σm2 +

m4

4µ2
(2.35)
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This allows for the appearance of more critical points in comparison to TMG and NMG. If
either of the two parameters m1,2 equals ±`−1 a Jordan cell of rank 2 is obtained in either
the left or the right sector. Additionally, the same structure arises if the values of only
these two parameters coincide. A degeneration of the kind m1 = −m2 = ±`−1 leads to
the same structure that was already encountered in NMG. Another new feature is a possible
degeneration of three differential operators that appears by setting m1 = m2 = ±`−1.

Analyzing the action of the Hamiltonian on the associated states of the field solutions of eq.
(2.34) at a tricritical point reveals a Jordan cell of rank three.

H

 ψlog2

ψlog

ψL

 = 2

 1 1 0
0 1 1
0 0 1

 ψlog2

ψlog

ψL

 (2.36)

Two-point correlators for one of the two tricritical points have been shown to yield [82]

〈ψL(z)ψL(w)〉 = 0 (2.37a)

〈ψL(z)ψlog(w, w̄)〉 = 0 (2.37b)

〈ψL(z)ψlog2

(w, w̄)〉 =
bL

2(z − w)4
(2.37c)

〈ψlog(z, z̄)ψlog(w, w̄)〉 =
bL

2(z − w)4
(2.37d)

〈ψlog(z, z̄)ψlog2

(w, w̄)〉 = −
bL ln(m2

L|z − w|2)

(z − w)4
(2.37e)

〈ψlog2

(z, z̄)ψlog2

(w, w̄)〉 =
bL ln2(m2

L|z − w|2)

(z − w)4
. (2.37f)

Again, the mass parameter mL is artificial and can be set to an arbitrary value without loss
of generality which has already been discussed in sec. 2.1. The correlators are in perfect
agreement with the ones of a logarithmic CFT that has a Jordan cell of rank 3 [3, 4, 69]. It
is interesting to note that the new mode fulfills the following relation

ψlog2

µ = y ψlog
µ = y2ψLµ (2.38)

where the function y ≡ y(t, ρ) has been established in eq. (2.19). We recall that this circum-
stance initially revealed the need for looser boundary conditions in the case of TMG. In order
to include ψlog2

as a solution to the linearized equations of motion we need to further loosen
the boundary conditions to allow for modes that fall off asymptotically as O(ρ2). Suffice it to
say that for consistent ’log squared’-boundary conditions their associated conserved charges
are finite only at the tricritical point [111].

2.4.3 Speculations on even higher derivative models

So far we have seen that the number of logarithmic solutions, and with it the rank of a Jordan
cell, depends on the number of degenerate operators in the equations of motion. In principle
the rank of such a Jordan cell has no upper bound since terms with an arbitrary number
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of derivatives can always be added to the action. It seems verisimilar that the boundary
conditions for a cell of rank r are in need to be generically adjusted to

γij = e2ργ
(0)
ij +

r∑
n=0

ρnγ
(1,n)
ij + γ

(2)
ij + · · · (2.39)

in order not to truncate any excitations. This shows an attempt to construct a plausible form
by extrapolating from previous knowledge. It certainly holds for r = 1 as we have seen for
TMG and NMG and r = 2 in the case of GMG where the crucial properties in (2.19) and
(2.38) demand for the alteration of the boundary conditions. The function y is a characteristic
trait in the construction of logarithmic modes which allows to speculate that the boundary
conditions given in (2.39) are in fact correct. It would be interesting to know if gravitational
theories allow a limiting procedure for the rank of Jordan cells to become infinite and also if
similar connections to a log CFT [125, 126] would still uphold.
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Chapter 3

Generalizations

Through the construction of supersymmetric models of the aforementioned gravitational the-
ories we hope to gain insight into a supersymmetric version of the AdS3/logCFT2 correspon-
dence. With that in mind we take a look at the supersymmetric extension of TMG. Other
supergravity models can be found in [8, 31]. In addition we review a particular four dimen-
sional theory with a critical tuning that exhibits similar features as NMG. We end this chapter
by looking at a particular contraction of the conformal symmetry group and discussing some
of the consequences regarding the field theory.

3.1 A Supersymmetric Extension

For the sake of taking supersymmetry into account we consider a N = (1, 0) extension, mean-
ing that only the left, i.e. the holomorphic sector of the asymptotic symmetry product group
will be adjusted. The symmetry algebra on the boundary remains a direct sum consisting of
the Virasoro algebra and its supersymmetric N = 1 extension

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (3.1a)

{Gm, Gn} = 2Lm+n +
c

3
(m2 − 1

4
)δm+n,0 (3.1b)

[Lm, Gn] = (
1

2
m− n)Gm+n . (3.1c)

This is an enhancement of the symmetry algebra on the bulk which in this case is the product
group OSp(1|2;R)L⊗ SL(2)R. As a consequence of the enhanced symmetry the stress-energy
tensor T gains a supersymmetric partner S. How the 2-point correlation function for this
fermionic operator looks like can be checked in the following way: In analogy to T and being
a field of conformal dimension (3

2 , 0), S can be mode expanded as follows

S(z) =
∑
n∈Z

z−n−
3
2Gn (3.2)

where the Gn are the aforementioned elements of the super-Virasoro algebra.1 Plugging this

1We follow the convention and set Gn := Gn(0) as we already implicitly did for the Virasoro algebra, i.e.
it corresponds to an operator insertion at the origin.
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definition into the anticommutator (3.1b), the operator product expansion can be extracted
by demanding closure of the algebra and one eventually gets

S(z)S(w) =
2c
3

(z − w)3
+

2T (w)

(z − w)
+ · · · (3.3)

where the ellipses indicate terms that are regular in the limit z → w.2 The same procedure
as in section 2.1 can be applied to get an expression for its logarithmic partner Slog. Defining
an operator Sε with weights (3

2 + ε, ε), the 2-point correlators involving Slog can be obtained
by using the definition in eq. (2.3) followed by taking the limit ε→ 0.

Slog(z, z̄) = lim
ε→0

Sε(z, z̄)− S(z)

ε
=

d

dε
Sε(z, z̄)

∣∣
ε=0

, (3.4)

For finite ε the conformal Ward identities fix 〈Sε(z)S(0)〉 = 0 and the other correllators are
once again determined by the operator product expansion in the limit ε→ 0.

〈S(z)S(0)〉 = 0 (3.5a)

〈Slog(z, z̄)S(0, 0)〉 =
2bL
3z3

(3.5b)

〈Slog(z, z̄)Slog(0, 0)〉 = −
4bL log(m2

S |z|2)

3z3
(3.5c)

The factor bL is the new anomaly that has already appeared in the correlators of the bosonic
sector and the parameter mS can yet again be set to an arbitrary value without loss of
generality since it can be adjusted accordingly via a redefinition Sε → Sε + γSS.

Using the second order formalism with the dreibein e a
µ and the spin connection ω ab

µ , the
action of cosmological topologically massive N = (1, 0) supergravity (CTMSG) that includes
a Majorana spinor in the (2,1) representation with respect to the AdS3 isometry group [57, 62]
is given by

SSTMG =
1

κ2

∫
d3xe

{
R− 2Λ− iεµνρΨ̄µ

(
Dν −

1

2l
γν

)
Ψρ

− 1

2µ
εµνρ

(
∂µω

ab
ν ωρba +

2

3
ω a
µ bω

b
ν cω

c
ρ a

)
+

i

2µ
f̄µγνγµf

ν
}

(3.6)

where the definition of fµ is

fµ = εµστDσΨτ with DσΨτ = ∂σΨτ +
1

4
ω ab
σ γabΨτ (3.7)

and denotes the dual of the gravitino field strength. Under the local supersymmetry trans-
formations

2Be reminded that the OPE holds within correlation functions and implies time ordering. It follows that
the OPE for a bosonic operator with itself must remain invariant under z ↔ w. The anticommutativity of the
supersymmetric partner of the energy-momentum tensor is reflected in its OPE with itself.
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δe a
µ = iε̄γaΨµ (3.8a)

δΨµ = 2Dµε−
1

`
γµε (3.8b)

both lines in (3.6) are separately invariant and so the action remains unchanged. The tor-
sionfull spin connection is dependent on the dreibein and the spinor ω ab

µ (e,Ψ) and is set
to be that of simple supergravity. This can also be inferred from the first order or Palatini
formalism in which the spin connection is treated as an independent field whose dependence
on the vielbein and the spinor comes about through its equation of motion and reads

ω ab
µ (e,Ψ) = ω ab

µ (e) + κ ab
µ (e,Ψ) (3.9)

with

κ ab
µ (e,Ψ) =

i

4

(
Ψ̄µγ

aΨb − Ψ̄µγ
bΨa + Ψ̄aγµΨb

)
. (3.10)

The contortion tensor κ(e,Ψ) is a bilinear expression in the spinor fields which is dependent
on the torsion whereas ω(e) is the standard spin connection.

Linearized perturbation theory around an AdS vacuum ḡ

gµν = ḡµν + λhµν + λ2jµν +O(λ3) (3.11a)

Ψµ = λψµ + λ2ψ(2)
µ +O(λ3) , (3.11b)

shows that the bosonic equations of motion are left unchanged when compared to ordinary
TMG and that the fermionic counterpart involving the gravitino completely decouples. This
should not come as a surprise, because the coupling comes about through torsion which is
an effect of second order as can be seen from (3.10). Moreover, a canonical analysis yields
the same central charges as in the non-supersymmetric case and the critical point requires
the same tuning of the coupling constants as before. Applying the gauge γµψµ = 0 (gamma-
traceless gauge) leaves the equations of motions for the gravitino to be

(DLD(µ)ψ)ν = 0 (3.12)

where the two operators are defined via

D(µ) = γµDµ +
1

2`
− µ (3.13a)

DL = D(µ)
∣∣∣
µ=1/`

(3.13b)

and do again mutually commute. The symbol D is used to identify the covariant derivative
with respect to the background spin connection and the Levi-Civita connection. The gravitino
field is a vector-spinor on an AdS3 background for which a separation ansatz much like in the
graviton case can be chosen.
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ψµ = e−ihσ
+−ih̄σ−

Fµ(ρ)

(
i
eρ

)
(3.14)

An explicit expression of solutions of ψµ can be found in [25]. The demand of normalizability
and regularity at the origin as well as restraining the fermionic solutions such that they obey
the primary conditions L1ψµ = L̄1ψµ = 0 yields modes whose weights are given by

(h, h̄)L =

(
3

2
, 0

)
(3.15a)

(h, h̄)M =

(
1 +

µ`

2
,−1

2
+
µ`

2

)
(3.15b)

where the notation is in line with the previous chapters and refers to the left and massive
gravitini modes. Once again we find a degeneration of the differential operators in the equa-
tions of motion and the weights of the two solutions at the critical point µ` = 1. This allows
for logarithmic gravitino modes that behave analogously to (2.18). These modes can further-
more be obtained by applying the same limiting procedure that was done for the logarithmic
graviton mode.

ψlog
µ = lim

ε→0

ψMµ − ψLµ
ε

= y ψLµ (3.16)

The parameter is defined by 2ε = µ`− 1 and the proportionality function on the right hand
side is identical to the one that appears in the bosonic case (2.19). Having classified the modes
under the sl(2) algebra lets us construct the Hamiltonian H = L0 + L̄0 straightforwardly and
one encounters once more a Jordan cell of rank 2

H

(
ψlog
µν

ψLµν

)
= 2

(
3
4 1
0 3

4

)(
ψlog
µν

ψLµν

)
(3.17)

whereas the angular momentum J = L0 − L̄0 is diagonal.

3.2 Critical Gravity in Higher Dimensions

Critical gravity theories that show a similar behaviour as the three dimensional models intro-
duced so far have also been investigated in higher dimensions. Some lead to Jordan cells at
their critical points and seem to have a holographic connection to a higher dimensional loga-
rithmic CFT. This is interesting, because, contrary to the two dimensional case, the number
of elements of the conformal algebra in any finite dimension higher than two is always finite.
Since the symmetry group is drastically different, studying higher dimensional holographic
connections seems worthwhile.
One of these models with curvature squared modifications, which is power-counting renor-
malizable but has ghosts in its unitary sector, has an apparent resemblance to the action of
NMG and was introduced in [114].

S =
1

2κ2

∫
d4x
√
−g
{
R− 2Λ + αRµνRµν + βR2

}
(3.18)
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In addition to the usual spin 2 excitations the theory contains a massive spin 0 mode, which
can be suppressed by a certain tuning of parameters α = −3β.3 Note that such a coupling
recovers Einstein gravity if β = 0. For such a setting the action can as well be written as
a cosmological Einstein-Hilbert term accompanied by a squared Weyl tensor α

2C
µνρσCµνρσ

(minus an invariant Gauss-Bonnet term that does not affect the equations of motion and
whose integral yields a term proportional to the Euler number) [113].

Perturbing around an AdS4 vacuum and applying the transverse gauge as in the previous
sections, the linearized equations of motion are given by(

�− 2Λ

3

)(
�− 4Λ

3
− 1

3β

)
ψµν = 0 (3.19)

from which the existence of a massive mode ψMµν and a massless mode ψLµν can be inferred.
A stability argument (see [114] and the reference therein) requires the squared mass to be
positive and so the parameter β needs to be bounded.

0 < β 6 − 1

2Λ
(3.20)

If β takes the value of the upper bound one sees a degeneration of both modes and logarithmic
solutions are obtained [6, 9, 32, 54, 87]. Although the literature assigns them positive and finite
energy, there is a potential caveat. Because the logarithmic mode can be changed arbitrarily
by a linear contribution of the left mode (cf. (2.5)) its energy might be adjusted and could
therefore be negative. Leaving that aside and proceeding with its energy being strictly positive
there are no excitations with negative energy apart from the massive modes which vanishes
only at the critical point. However, in addition to the energy of the massless mode vanishing,
the mass of the Schwarzschild-AdS4 black hole vanishes as well. This behaviour is in that
respect similar to the one encountered in the case of the BTZ black hole within NMG.

In that respect when computing the Hamiltonian and the angular momentum, the appearance
of a Jordan cell for a critical tuning of parameters [32] is not surprising.

H

(
ψlog
µν

ψLµν

)
= 2

(
3
2 1
0 3

2

)(
ψlog
µν

ψLµν

)
(3.21)

What is interesting though is that the connection between the logarithmic and the massless
mode is exactly the same as in three dimensions (2.19). The asymptotic behaviour of the
logarithmic modes can be exploited to truncate them by choosing appropriate boundary con-
ditions such as the four-dimensional analog of the ones by Brown and Henneaux. However,
the resulting theory is essentially trivial, because as noted earlier the energy of the massless
modes and the mass of the Schwarzschild-AdS4 black hole as well as its entropy vanish at
the critical point [113]. A qualitative explanation starts with the fact that for the critical
tuning α = 3

2Λ the cosmological Einstein-Hilbert action is equivalent to the one of conformal
gravity, i.e. a squared Weyl tensor, in the infrared under appropriate boundary conditions
[115]. Since the action for the right setting of parameters can be rewritten using both (c.f.
below eq. (3.18)), all nontrivial excitations effectively cancel at least in the regime of long
wavelengths.

3Another important tuning is α = 0, which gets rid of the massive spin 2 excitation but is not important
within the context considered here.
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The two point correlators for this theory involving the stress-energy tensor T and its loga-
rithmic partner T log were computed in [102] and are in agreement with generic expectations.

〈Tij(x)Tkl(0)〉 = 0 (3.22a)

〈Tij(x)T log
kl (0)〉 =

b

(2π)3
∆̂ij,kl

1

|x|2
(3.22b)

〈T log
ij (x)T log

kl (0)〉 =
b

(2π)3
∆̂ij,kl

ln(m2|x|2)

|x|2
(3.22c)

where

∆̂ij,kl =
1

2

(
Θ̂ikΘ̂jl + Θ̂ilΘ̂jk − Θ̂ijΘ̂kl

)
(3.23a)

Θ̂ij = ∂i∂j + δij� (3.23b)

and the value of the new anomaly was found to be b = 3`2

4G . This is a generalization of the
two-dimensional correlators in (2.4).

3.3 Reduction of Symmetry: The Galilean Conformal Algebra

The equations of motion of Einstein gravity imply that the intrinsic curvature on manifolds
with three spacetime dimensions is proportional to the cosmological constant which is in-
timately connected with the AdS radius Λ = −`−2. In the limit ` → ∞ the cosmological
constant vanishes which results in spacetime being flat. For such spacetimes the asymptotic
symmetry group at future null infinity J + is the Bondi-Metzner-Sachs (BMS) group. It has
an associated algebra (bms3) that is infinite dimensional and isomorphic to the Galilean con-
formal algebra (gca2) [11], consisting of the maximal set of generators of conformal isometry
transormations of two-dimensional Galilean spacetime which can be obtained as a contraction
(see app. B) of two copies of the Witt algebra. Analogously, the centrally extended gca2 can
be obtained by two copies of the Virasoro algebra. Under such a contraction, which we will
consider explicitly below, the asymptotic symmetry algebra changes to a semi-direct sum of
the Virasoro algebra with an abelian ideal.

[Kn,Km] = (n−m)Kn+m +
cK
12
n(n2 − 1)δn+m,0 (3.24a)

[Kn,Mm] = (n−m)Mn+m +
cM
12
n(n2 − 1)δn+m,0 (3.24b)

[Mn,Mm] = 0 (3.24c)

Such a procedure has been used to construct the non-relativistic limit for an AdS/CFT cor-
respondence [10, 15, 16]. Furthermore, the close connection to bms3 (the charge algebra of
asymptotically flat spacetimes has been shown to allow for classical central extensions that are
non-trivial as well [23]) marks gca2 as an important ingredient when considering gauge/grav-
ity dualities that include flat spacetimes. In particular, the gca2 appears as the asymptotic
symmetry algebra at null infinity in the ultra-relativistic limit [13, 14, 17, 24] (see also [11]).
Next we concern ourselves with the non- and ultra-relativistic limit simply to check if both
cases allow for the construction of a logGCA.
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The non-relativistic limit

Starting from an algebra that is a direct sum, one can not simply redefine single generators
and contract them as in the appendix but rather contract combinations of them, in order to
eventually get an algebra that is a semi-direct sum.

Kn = Ln + L̄n (3.25a)

Mn = δ
(
Ln − L̄n

)
(3.25b)

δ is the parameter that will eventually allow for a contraction in the limit δ → 0. In order
to end up with (3.24) the central charge cM must be of order O(δ). The new central charges
depend on the ones of the two Virasoro algebras as follows

cK = lim
δ→0

[cL + cR] , cM = lim
δ→0

[δ (cL − cR)] . (3.26)

The vacuum state in the full relativistic theory fullfils the primary condition and additionally
remains invariant under the group action of SL(2), meaning that Ln|0〉 = L̄n|0〉 = 0 for
n ≥ −1. With the definition for the new generators those conditions carry over to the new
vaccuum state, i.e. Kn|0〉 = Mn|0〉 = 0 for n ≥ −1. A redefinition of coordinates

z = t+ δx , z̄ = t− δx (3.27)

and defining new operators involving the components of the stress-energy tensor, thereby
mixing the holomorphic and antiholomorphic parts

ψK = lim
δ→0

[
ψL(z) + ψR(z̄)

]
, ψM = lim

δ→0

[
δ
(
ψL(z)− ψR(z̄)

)]
, (3.28)

lets us compute their two point functions [97, 98].

〈ψM (t, x)ψM (0, 0)〉 = 0 (3.29a)

〈ψM (t, x)ψK(0, 0)〉 =
cM
2t4

(3.29b)

〈ψK(t, x)ψK(0, 0)〉 =
cK
2t4
− 2cMx

t5
(3.29c)

These do not resemble the correlators of a logCFT, but still there appears a Jordan cell.

M0

(
ψK

ψM

)
=

(
0 2
0 0

)(
ψK

ψM

)
, K0

(
ψK

ψM

)
=

(
2 0
0 2

)(
ψK

ψM

)
(3.30)

The ultra-relativistic limit

Having seen the reduction to the non-relativistic limit lets us compute its counterpart without
trouble as it works analogously. The generators are

Kn = Ln − L̄−n (3.31a)

Mn = δ
(
Ln + L̄−n

)
(3.31b)
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with the central charges

cK = lim
δ→0

[cL − cR] , cM = lim
δ→0

[δ (cL + cR)] . (3.32)

This results again in gca2 as before, but there is a difference when it comes to its vacuum state.
It is also defined as Kn|0〉 = Mn|0〉 = 0 with n ≥ −1 which does not imply the symmetries
of the vacuum state of an ordinary CFT as discussed in the previous limit. There is no
continuous connection between the two as before. As a result the sign of the central charge in
the antiholomorphic sector effectively flips along with the sign in front of coordinates in some
definitions below. The coordinates are redefined to

z = δt+ x , z̄ = δt− x (3.33)

and the new operators read

ψK = lim
δ→0

[
ψL(z)− ψR†(−z̄)

]
, ψM = lim

δ→0

[
δ
(
ψL(z) + ψR†(−z̄)

)]
. (3.34)

This leads to similar two-point correlators that have been encountered before.

〈ψM (t, x)ψM (0, 0)〉 = 0 (3.35a)

〈ψM (t, x)ψK(0, 0)〉 =
cM
2x4

(3.35b)

〈ψK(t, x)ψK(0, 0)〉 =
cK
2x4
− 2cM t

x5
(3.35c)

The only difference to the correlation functions of the non-relativistic limit is that the spatial
and temporal coordinates are exchanged. For consistency we state that the operator M0 can
be represented by the same Jordan form as in (3.38) and K0 is again diagonal.

Let us now try to construct a logGCA along the lines of section 2.1 and start by first con-
sidering the ultra-relativistic limit. The construction again involves an operator ψε whose
weights degenerate for ε→ 0 with those of the holomorphic part of the stress-energy tensor.
We have seen that this limit requires cL to vanish for the new anomaly to stay finite. Since
all central charges should remain finite this means that cM vanishes as well. Thus the two
point correlation functions for the ultra-relativistic limit are given by

〈ψK(t, x)ψK(0, 0)〉 =
cK
2x4

(3.36a)

〈ψlog(t, x)ψK(0, 0)〉 =
bL
2x4

(3.36b)

〈ψlog(t, x)ψlog(0, 0)〉 = −
bL ln(m2

Lx
2)

2x4
(3.36c)

This structure resembles that of the logarithmic CFT previously encountered in (2.4) but is
not equal because the central charge of the Virasoro algebra is given by cK = −cR, which is
not zero at the critical point. Using the expression 2ε = µ`− 1 and the definition of the new
anomaly as it was stated in section 2.1 (see below (2.4)), the values of the coefficients in the
correlators regarding critical TMG are
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cK = bL = − 3`

GN
. (3.37)

The correlators including ψM are all zero including the one with itself. The addition of the
operator ψlog augments the representation of K0 to twice the unit matrix of rank three and
M0 to

M0

 ψlog

ψK

ψM

 =

 0 0 1
0 0 2
0 0 0

 ψlog

ψK

ψM

 (3.38)

Trying to apply the same procedure to arrive at the correlators for the non-relativistic limit
proves to be futile. Although they have been computed in the literature [97, 98], the same
approach as in the former case yields singular results. We recall that the weights of ψε are
(2 + ε, ε) and so the action of K0 as defined in (3.25) on the logarithmic operator leads to

K0 ψ
log = lim

ε→0

(
(2 + ε)ψε − 2ψL

ε
+
εψε
ε

)
= 2ψlog + ψK +

1

δ
ψM . (3.39)

Another definition of the weights, namely (2+ε,−ε), leads to ψε being an eigenstate of K0 as
in the ultra-relativistic limit. This works when considering merely the CFT side and neglecting
a holographic connection with a gravitational theory since the spin of such excitations, given
by the difference of the conformal weights s = h − h̄ = 2 + 2ε, can not be interpreted as a
massive graviton. There might be different methods of taking limits that one can adopt to
obtain the correlators from the literature. For example taking δ → 0 before doing the same
with ε or leting them both vanish simultaneously.

In the beginning of this section it was stated that the gca2 plays an important role in flat space
holography and that such spaces can be gained by a deformation of AdS via l→∞. However,
looking at (3.37) such a limit is not sensible here if this theory is supposed to have any physical
meaning unless the gravitational constant G is rescaled as well such that their ratio stays finite.
Additionally, the product of µl should also remain finite, implying that µG stays constant as
well, so the coupling constant µ associated to the Chern-Simons term needs to be sent to zero.
Putting all of this together results in the disappearance of the Einstein-Hilbert term in the
CTMG action (2.9). One is left with the non-covariant Chern-Simons gravity action whose
equations of motion are invariant under conformal transformations. Given that logGCAs are
not unitary, this would be in conflict with [14] where it was stated that the dual gauge theory
to this action should be unitary. That unitarity is indeed maintained under such conditions
will be discussed below.

The linearized equations of motion for CTMG are given in (2.11). We remind ourselves that
the transeverse traceless gauge condition was implemented. After applying the limits that
lead to Chern-Simons gravity they change to(

(D)3 h
)
µν

= 0 with D σ
α = ε σβα ∇̄σ (3.40)

where we choose the background metric to be flat. Such a degeneration has already been
discussed for GMG and leads to two logarithmic partners and a Jordan cell of rank three [14].
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M0

 ψlog2

ψlog

ψ

 =

 0 1 0
0 0 1
0 0 0

 ψlog2

ψlog

ψ

 (3.41)

All three excitations are either incompatible with the flat boundary conditions or not regular at
the origin r = 0, however, there are solutions to the equations of motion ψreg that fulfill these
requirements (see [14]). The problem is located in the choice of the transverse traceless gauge
as it is incompatible in the limit of flat spacetime since there the condition of tracelessness does
not need to hold anymore upon imposing transversality. We can try to map the solutions under
this gauge condition onto regular ones by means of a singular transformation. Given that all
modes are pure gauge in the bulk, let us denote them by ψreg

µν = ∇(µξ
reg
ν) and ψµν = ∇(µξν),

the vector field that connects the solutions via a Lie-derivative is ξreg− ξ. Applying the same
transformation to linear combinations of the two logarithmic modes always results in modes
that are again singular or not compatible with the boundary conditions. Such modes are not
physical and can be discarded from the spectrum, meaning that in the flat space limit no
Jordan cell and no logarithmic GCA exists. This resolves the issue concerning unitarity.
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Summary & Conclusion

We reviewed some connections between CTMG and a logCFT which seem to indicate that
they provide a further example of a realization of the holographic principle. The checks that
were presented included the 2- and 3-point correlation functions, quasi-normal modes and
partition functions. Since the full logCFT partition function has not been calculated due to
technical issues it is not clear if the correspondence of both theories holds to all orders or only
in a semi-classical approximation and therefore CTMG represents just an effective theory.
We presented higher derivative models which experience similar features as CTMG, but have
a richer structure. They were shown to obtain an additional logarithmic pair in the anti-
holomorphic sector and Jordan cells of higher rank. The boundary conditions seem to follow
a pattern (2.39) which depends only on the rank of the obtained Jordan cell. It would be
desirable to check if this relation holds for critical gravity theories that involve Jordan cells
of higher rank than three. This could also be done in higher dimensions.
For a supersymmetric N = 1 extension of CTMG the connection to a logCFT was reviewed
at the linearized level but also holds non-perturbatively [8, 31] which is also the case for
NMG and GMG. However, if this remains true for N > 1 is not known since supersymmetric
extensions of CTMG, NMG and GMG have only been constructed at the linearized level so
far [32].
Eventually, vir⊕ vir was contracted in two different ways in order to obtain gca2. The same
limiting procedure that was used in the case of a CFT was applied to the GCA in order to
obtain a logGCA. Consequently, we found that the non-relativistic limit, in contrast to the
ultra-relativistic case, exhibits a singular behaviour. This can be avoided by a redefinition of
the massive weights with the drawback of losing the physical interpretation of a mode of spin
2. It may be the case that another change in the limiting procedure might also avoid this
singular behaviour without meddling with the spin.

Further open issues remain. Given that holographic connections exist for other classes of
backgrounds than locally AdS, one may check if a logCFT structure emerges from backgrounds
such as asymptotically warped, Lifshitz, Schrödinger or Lobachevsky, all of which can be
considered in the framework of TMG [55]. Moreover, the Cardy formula connects the central
charges with the entropy in a semi-classical limit. It would be interesting to know if a similar
connection can be drawn for a logCFT and how the new anomlay would fit in this picture.
Lastly, another issue is the realization of logarithmic modes with spins different than 2 or 0
on which the literature is rather scarce.
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Appendix A

Hamiltonian Formulation of
General Relativity

In this section we review the approach towards a Hamiltonian formulation of general relativity
as it was pioneered by Arnowitt, Deser and Misner. To highlight its generality we will not
restrict ourselves to the three dimensional case that is used almost exclusively throughout this
thesis and rather choose to work in d + 1 dimensions. We end with a discussion on surface
terms which are eventually necessary to obtain Einstein’s equations in a canonical form. A
nice introduction to this topic can be found in [127]. For a thorough treatment of a canonical
approach towards quantization I highly recommend [95].

A Hamiltonian formulation on a smooth manifold (M, gµν) demands a concrete but arbitrary
splitting of spacetime into ‘space and time’ and so we begin by singling out a scalar field
t(xµ) along which spacetime is foliated into non-intersecting spacelike hypersurfaces Σt that
are defined by t = const. such that spacetime globally has a product topology M∼= R× Σt.
It is required that the scalar field fullfils the condition tµ∇µt = 1 in order to be nowhere
tangential to Σt where the vector field tµ represents the ’flow of time’.1 The hypersurfaces
are parameterized by yi which sets a new coordinate system (t, yi). Such a foliation naturally
induces a metric hµν on each hypersurface with unit normal vector nµ according to

hµν = gµν + nµnν (A.1)

with the crucial property that the induced metric acts as a projector onto a hypersurface
hµνn

ν = 0.

Dynamics is now described by the evolution of quantities on a d dimensional manifold Σ in
dependence of the parameter t. The time vector field may be split up into components normal
and tangential to the hypersurfaces

tµ = Nnµ +Nµ (A.2)

where the two introduced entities are called the lapse-function N and the shift vector Nµ.
Physically, the lapse function measures the change of proper time with respect to coordinate

1In this section, unless stated otherwise, we will denote tensors explicitly by their components so a confusion
of the time-flow vector t = tµ∂µ with the parameter time will not occur.
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time of a moving frame with velocity nµ. The shift vector encodes the change of the coordinate
system when comparing Σt with Σt+δt. The following

eµa =
∂xµ

∂ya
(A.3)

can be used as a pullback onto a hypersurface and can be thought of as a collection of linearly
independent tangent vectors on Σ. The basis of the cotangent space may be rewritten to
dxµ = tµdt+ eµadya and yields the line element in the new coordinates

ds2 = −N2dt2 + hab
(
dya +Nadt

)(
dyb +N bdt

)
(A.4)

where we used the fact that the projection of the time-flow vector field onto a hypersurface
equals the shift vector tµe

µ
a = Na and hµνe

µ
aeνb = hab. Such a setting requires a definition of a

covariant derivative on Σ and a quantity that tells how a surface is embedded in an ambient
space: the extrinsic curvature. Regarding the former, it can be obtained by a projection of
the covariant derivative in full spacetime onto Σ.

Dµuν ≡ h σ
µ h

τ
ν ∇σuτ or Daub ≡ eµaeνbDµuν (A.5)

We stress that the vector on the left side is an element of the tangent vector space of Σ. It
is straightforward to check that the new covariant derivative is compatible with the induced
metric if this is also attributed to the covariant derivative and the full spacetime metric itself.
The extrinsic curvature can be inferred from the rate of change of the normal vector field and
a further projection.

Kµν ≡ h σ
µ h

τ
ν ∇σnτ = h σ

µ ∇σnν =
1

2
Lnhµν or Kab ≡ eµaeνb∇µnν =

1

2
eµae

ν
bLngµν (A.6)

The first equality here implies compatibility of the covariant derivative with the metric. The
induced metric and the extrinsic curvature together contain all the information that is neces-
sary to construct the Riemann curvature tensor of Σ.

(d)R τ
µνσ wτ = [Dµ, Dν ]wσ (A.7)

Taking the definition of the extrinsic curvature and the covariant derivative and acknowledging
that Kµν is symmetric yields the Gauss-Codazzi equation2

(d)R τ
µνσ = h α

µ h
β
ν h

γ
σ h

τ
δR

δ
αβγ −KµσK

τ
ν +KνσK

τ
µ . (A.8)

Before delving into Hamiltonian mechanics we start from a covariant viewpoint. In an action
principle that involves a Lagrangian the natural quantities under consideration are the gen-
eralized coordinates and their time derivatives. To describe the dynamics on a hypersurface
after having introduced a foliation of spacetime we change from the full spacetime metric
to the induced metric on Σ, the lapse function and the shift vector. In full generality the
velocities are taken to be the Lie derivatives along the time flow vector field

ḣµν ≡ Lthµν , Ṅ ≡ LtN , Ṅµ ≡ LtNµ . (A.9)

2For an explicit derivation see [140]
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Note that the Lie derivative commutes with the pullback and we can substitute ḣab =
e µ
a e ν

b ḣµν . The next step is to rewrite the Einstein-Hilbert action to only include said quan-
tities. From the equations

Rµνστh
µσhντ = R+ 2Rµνn

µnν = 2Gµνn
µnν (A.10)

and

Rµνn
µnν = −nµ (∇µ∇ν −∇ν∇µ)nν (A.11a)

= K2 −KµνK
µν −∇µ (nµ∇νnν) +∇ν (nµ∇µnν) (A.11b)

with Gµν being the components of the Einstein tensor and K the trace of the extrinsic
curvature, one can rewrite the Ricci scalar in terms of quantities related to a hypersurface of
foliated spacetime. Using the Gauss-Codazzi equation (A.8) on the Einstein tensor

Gµνn
µnν =

1

2
Rµνh

µhν (A.12a)

=
1

2

(
(d)R+K2 −KµνK

µν
)

(A.12b)

and the fact that
√
−g = N

√
h, which can be infered from the metric in (A.4), finally yields

an expression for the cosmological Einstein-Hilbert action

SEH =
1

κ2

∫
M

dd+1x
√
−g (R− 2Λ) (A.13a)

=
1

κ2

∫
M

dd+1x
√
hN

(
(d)R−K2 +KµνK

µν − 2Λ
)

+ 2

∮
∂M

ddzµ (nµ∇νnν − nν∇νnµ) .

(A.13b)

The bulk term represents the celebrated Arnowitt-Deser-Misner action. For the time being we
are going to neglect the surface term as it does not change the equations of motion in any way.
All boundary contributions will be discussed within the Hamiltonian framework. Exploiting
linearity of the Lie derivative the extrinsic curvature can be rewritten in dependence of the
’generalized velocity’ of the induced metric Kµν = 1

2N (Lt − LN )hµν . A look at the action

now reveals no dependence on either Ṅ or Ṅµ. Since these variables fail to be dynamical,
their canonical momenta vanish πµ = π = 0 and they can be seen to simply act as Lagrange
multipliers through the equations of motion, i.e.

δLADM

δN
=
δLADM

δNµ
= 0 , (A.14)

and are effectively constraints imposed on the system.3 The only non-vanishing canonical
momentum is the one associated with the induced metric

3In Dirac’s lingo the vanishing of the canonical momenta is an example of primary constaints whereas the
constraints in (A.14) are secondary since it is necessary that the equations of motion hold for them to be valid.
His approach towards canonical quantization [65] requests the introduction of first and second class constraints.
We will not make use of this formalism here though.
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πµν ≡
δL
δḣµν

=

√
h

κ2
(Kµν − hµνK) . (A.15)

A Legendre transformation leads to the Hamiltonian. For clarity we pull all quantities back
onto the hypersurface, express the extrinsic curvature through the canonical momentum and
get

H =

∫
Σ

ddy
√
h
(
πabḣab − LADM

)
(A.16a)

=

∫
Σ

ddy (NH+NaHa) +

∮
∂Σ

dd−1z
(
NH(∂Σ) +NaH(∂Σ)

a

)
. (A.16b)

The explicit expressions of the Hamiltionian densities in the bulk are

H =
κ2

√
h

(
πabπab −

1

d− 1
π2

)
−
√
h

κ2

(
(d)R− 2Λ

)
(A.17a)

Ha = −2Dbπab . (A.17b)

The constraints from (A.14) translate straightforwardly to the Hamiltonian and yield the so
called Hamilton constraint H = 0 and the momentum or diffeomorphism constraint Ha = 0.
A variation of the action that involves this Hamiltonian is free of surface terms, provided
one imposes Dirichlet conditions on the boundary for all generalized coordinates, i.e. δhab =
δNa = δN = 0. Under this light the equations of motion coming from Hamilton’s principle

δ
(∫

ddx ḣijπ
ij −H

)
= 0 are

ḣij =
δH

δπij
and π̇ij = − δH

δhij
. (A.18)

The evolution of the system is governed by these equations, in addition with the formerly
mentioned constraints. If the spacetime allows a foliation such that Σ is a Cauchy surface,
the whole system can be described completely as an initial value problem.

We now turn our attention to the thus far neglected boundary terms. If one were to work
exclusively on closed manifolds such a discussion would not be necessary, however, this would
be much too restrictive. A functional differential, expressed conveniently, is defined as

δH [h(y), π(y)] =

∫
Σ

ddy
(
Aijδhij +Bijδπij

)
(A.19)

where we used an abbreviation for the functional derivatives as follows

Aij =
δH

δhij
and Bij =

δH

δπij
. (A.20)

We may try to bring the Hamiltonian from (A.16) in such a form and get
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δH =

∫
Σ

ddy
(
Aijδhij +Bijδπij

)
(A.21a)

+

∮
∂Σ

dd−1zl

{
Gijkl

(
N;kδhij −Nδhij;k

)
− 2Niδπ

il +
(
N lπij − 2N iπjl

)
δhij

}
(A.21b)

where we used 2κ2Gijkl =
√
γ
(
hikhjl + hijhkl − 2hijhkl

)
and a semicolon to abbreviate co-

variant differentiation with respect to the induced metric on Σ. This is clearly no functional
differential! In order to recover Einstein’s equations in their canonical form as in (A.18) one
would like to identify Aij = −π̇ij and Bij = ḣij , which would be possible if only the surface
term M , i.e. (A.21b), were to vanish somehow. This could indeed be achieved by adding a
boundary term Q to the Hamiltonian, whose variation precisely cancels this surface term.

M + δQ = 0 (A.22)

Generically M need not be the variation of a local surface term meaning that it need not
be integrable. Be reminded that we are dealing with open spaces! This implies that even
though there might not be an exact solution to eq. (A.22), it still may be possible to obtain
one asymptotically after restricting the allowed class of fields by imposing suitable boundary
conditions.4 This has been done in [94] in the case of an AdS background metric g = ḡ + w
with the result

Q =

∮
∂Σ

dd−1zi

{
Ḡijkl

(
N∇̄jwkl − wkl∇̄jN

)
+ 2πijNj

}
+O(w2) . (A.23)

So in order to yield well defined functional derivatives for Einstein’s equations, the Hamilto-
nian (A.16), which we now indicate as H0, has to be supplemented by this surface integral.

H = H0 +Q (A.24)

Notice that Q from the condition in (A.22) is actually only defined up to a constant. We refer
to that in chapter 1. In summary, even though M can always be worked out explicitly, the
evaluation of Q that needs to be added to cancel the contributing surface integral to leave a
well defined functional differential demands the imposition of fall-off conditions on the fields.
For later convenience let us rewrite the full Hamiltonian by changing the coordinate basis
back to the generical ones we started with before the temporal slicing. We use

Hµnµ = H , Hµeµa = Ha , Qµnµ = H(∂Σ) , Qµeµa = H(∂Σ)
a (A.25)

to get the following expression for (A.16)

H =

∫
Σ

ddy (tµHµ) +

∮
∂Σ

dd−1z (tµQµ) (A.26)

which represents a special case of its most general form that involves an arbitrary vector field
ζ.

4In the case of AdS3 asymptotically means nothing else than taking the spatial limit to infinity since we
are using a temporal slicing.
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H[ζ] =

∫
Σ

ddy (ζµHµ) +

∮
∂Σ

dd−1z (ζµQµ) (A.27)

With well defined generators one can now go on and introduce the variation of a functional
F on the phase-space variables along a vector field ζ

δζF = {F,H [ζ]} (A.28)

as one is used to from Hamiltonian dynamics. Brown and Henneaux showed that after having
supplemented the Hamiltonian by the necessary surface terms the Poisson brackets are always
well defined as long as these generators are given by C∞ local densities. They explicitly showed
in [41] that the Poisson bracket of two differentiable generators yields again a differentiable
generator which should be the case in order to inherit a group structure. It means that the
variation of a functional can be realized in more than one way, viz.5

{F, {H [ζ] , H [η]}} = {F,H [θ]} . (A.29)

The vector θ ≡ θ(ζ, η) is determined by the group composition law. In the case of the
asymptotic symmetry group as it is discussed in chapter 1 it would amount to a Lie-bracket.
It can be taken for granted that a variation of a functional depends on the Poisson bracket
with a generator H [ζ] to which a constant functional c [ζ] can be added without changing the
variation. Therefore the symmetry transformations are not in a one-to-one correspondence
with the charges, but rather with equivalence classes

H [ζ] ∼ H [ζ] + c [ζ] . (A.30)

This statement can be loosened even further when restricting the class of deformation vectors
to ‘asymptotic’ Killing vectors since an addition of trivial surface charges, which imply pure
gauge transformations, does not change the variation either. Together with eq. (A.29) the
algebra of charges is consequently only a ‘projective’ representation [40] of the asymptotic
symmetry group.

{H [ζ] , H [η]} = H [θ] +K [ζ, η] (A.31)

The necessary conditions which must be fulfilled by the charges in order for this algebra to
hold are finiteness and differentiability.6 When considering explicit representations the central
term might be trivial or can be absorbed in a redefinition of the generators which is not the
case in AdS3. Furthermore, no central charges occur if the asymptotic symmetries fall in line
with the exact symmetries of a background configuration. By changing from Poisson to Dirac
brackets, where the Hamiltonian and momentum constraints are satisfied, the expression in
(A.31) reduces to a statement that includes only the surface charges

{Q [ζ] , Q [η]}D.B. = Q [θ] +K [ζ, η] (A.32)

5When the deformation vectors ζ and η are restricted to the asymptotic symmetries, the generator on the
right side depends on the their Lie-bracket.

6This is not sufficient though, because it does not imply the conservation of the charges. We will not go
into detail here and refer the interested reader to [39].



Appendix B

Inönü-Wigner Contraction

The discovery of the idea of contractions of groups [101] was initially spawned by a physically
motivated question: Since classical mechanics can be obtained from relativistic mechanics by
letting the speed of light grow infinitely large, how can the symmetry group of the former,
the Galilean group, be retrieved as a limiting case of the symmetry group of the latter, the
Lorentz group? Before treating this as an example we first concern ourselves with a generic
Lie group. Let the elements of its corresponding N -dimensional Lie algebra be denoted as Y .
For clarity we label them as Y 1

a , Y 2
i with the indices defined below. The introduction of a

parameter will later allow for a contraction.

X1
a = Y 1

a with a, b = 1, . . . , r
X2
i = εY 2

i with i, j = r + 1, . . . , N
(B.1)

Following this definition, the internal associative operation of the algebra associated with the
Jacobi identity can be rewritten in terms of the new elements.

[
X1
a , X

1
b

]
=
[
Y 1
a , Y

1
b

]
=

r∑
n=1

cnabX
1
n +

1

ε

N∑
n=r+1

cnabX
2
n

[
X1
a , X

2
i

]
=ε
[
Y 1
a , Y

2
i

]
= ε

r∑
n=1

cnaiX
1
n +

N∑
n=r+1

cnaiX
2
n (B.2)

[
X2
i , X

2
j

]
=ε2

[
Y 2
i , Y

2
j

]
= ε2

r∑
n=1

cnijX
1
n + ε

N∑
n=r+1

cnijX
2
n

Demanding a finite result in the limit ε→ 0 sets the structure constants cnab for n = r+1, . . . , N
to zero. The commutators of the new Lie algebra can now be given by
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[
X1
a , X

1
b

]
=

r∑
n=1

cnabX
1
n

[
X1
a , X

2
i

]
=

N∑
n=r+1

cnaiX
2
n (B.3)[

X2
i , X

2
j

]
= 0 .

This result leads to the conclusion that a contraction of a given Lie algebra can only take
place if and only if it has a non trivial subalgebra generating a subgroup H. The remaining
elements form an abelian subalgebra of the contracted algebra and therefore generate an
abelian invariant subgroup A. Denoting the Lie group that corresponds to the contracted
algebra as Gc the following relation holds.

H ∼=
Gc
A

(B.4)

In order to obtain a group by contraction it is a necessary condition that such an isomorphism
exists.
We end this short segment with two prominent examples. The first is the aforementioned
contraction of the Lorentz algebra where Ji and Ki are the generators of boosts and rotations
respectively. For Ki = 1

cLi the contraction yields the Galilean algebra.

[Ji, Jj ] = iεijkJk [Ji, Jj ] = iεijkJk
[Ji,Kj ] = iεijkKk

c→∞−−−→ [Ji,Kj ] = iεijkKk

[Ki,Kj ] = − iεijkJk [Ki,Kj ] = 0 .

(B.5)

Lets consider the algebra so(3) for the second example. By choosing the one dimensional
so(2) as the invariant subalgebra, its contraction leads to iso(2) with the two dimensional
algebra for translations as its abelian invariant subalgebra.
For more examples within the context of higher spin gravity we refer to [1, 77].



Appendix C

Ward Identities and the Operator
Product Expansion

Within time-ordered correlation functions two local operators inserted at nearby points can
be approximated by a sum of other local operators

〈Oi(z, z̄)Oj(w, w̄) · · · 〉 =
∑
k

Ckij(z − w, z̄ − w̄)〈Ok(w, w̄) · · · 〉 (C.1)

with a singular behaviour in the limit z → w. One often refers to this as the operator product
expansion (OPE). This statement holds for any quantum field theory as long as other operator
insertions are far away compared to |z−w|. In (C.1) we explicitly used translational invariance
in writing the coefficients. In the special case of a CFT this is not an approximation but an
exact statement where the distance to the closest operator insertion that is not involved in
the OPE equals the radius of convergence.
We now review the conformal Ward identities for a field theory in 1+1 dimensions. Using a
path integral the partition function can schematically be written as

Z[φ] =

∫
Dφ e−S[φ] . (C.2)

A transformation of the fields φ→ φ+ εδφ with ε = const. that represents a symmetry leaves
the measure and the action invariant. Promoting the parameter ε to a local field leads to a
change that looks like

Z[φ′] =

∫
Dφ e−S[φ]− 1

2π

∫
d2σ
√
g Jµ∂µε (C.3)

where the factor 2π is conventional. This implies

〈∂µJµ〉 = 0 (C.4)

to leading order since the value of the partition function can not have changed. These manip-
ulations can be done within general correlation functions that involve a collection of arbitrary
fields at different arbitrary insertion points Oi(σi). We denote their transformation under the
above symmetry transformation as Oi → Oi + εδOi. If the function ε(σ) has no support over
any operator insertion point then one ends up with
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∫
Dφ e−S[φ]


∫

d2σ
√
g Jµ∂µε

∏
j

Oj

 = 0 (C.5)

again neglecting subleading terms. This is again eq. (C.4) only with other operators inside
the correlator. If on the other hand we allow ε(σ) to be supported over one insertion point of
a local operator Oi then

∫
Dφ e−S[φ]


∫

d2σ
√
g Jµ∂µε (Oi + εδOi)

∏
j 6=i
Oj

 = 0 (C.6)

and we can extract a condition on correlation function to leading order of ε.

− 1

2π

∫
Bε

d2σ
√
g ∂µ〈JµOi · · · 〉 = 〈δOi · · · 〉 (C.7)

where Bε denotes the support of ε and the ellipsis indicate all other fields that we will not be
bothered by. This is the Ward identity. In what follows we supress brackets and ellipsis and
simply imply that statements concerning OPEs always hold within time-ordered correlation
functions. We now consider the case of a CFT. Since any two-dimensional pseudo-Riemannian
manifold is flat under a conformal symmetry, we choose to work in Minkowski space. After a
change of variables to z = σ1 + iσ0 and z̄ = σ1 − iσ0 the left hand side can be rewritten to a
surface integral and we get

i

2π

∮
∂Bε

(dz Jz(z, z̄)− dz̄ Jz̄(z, z̄))Oi(w, w̄) = δOi(w, w̄) . (C.8)

So far the derivation holds for a generic 1+1 dimensional quantum field theory. However,
imposing a conformal symmetry restricts the components of the conserved vector J to be
holomorphic and antiholomorphic.

Jz(z, z̄)→ Jz(z) , Jz̄(z, z̄)→ Jz̄(z̄) (C.9)

More explicitly, under a conformal transformation z+z̄ → z+z̄+ε(z)+ε̄(z̄) the components are
Jz = ε(z)T (z) and Jz̄ = ε̄(z̄)T̄ (z̄) where T (z) ≡ Tzz(z) is the holomorphic and T̄ (z̄) ≡ Tz̄z̄(z̄)
is the antiholomorphic part of the energy momentum tensor. Given these restrictions the
Ward identity as it was given in (C.8) can be simplified to

δε,ε̄Oi(w, w̄) =
i

2π

∮
C

(
dz ε(z)T (z) + dz̄ ε̄(z̄)T̄ (z̄)

)
Oi(w, w̄) (C.10)

where the curve C encloses the operator insertion point.

We discuss its consequences with regard to certain local operators known as primary operators
that are of significant interest in a CFT. Their behaviour under a coordinate transformation
z + z̄ → w(z) + w̄(z̄) is

O(z, z̄)→ Õ(w, w̄) =

(
∂w

∂z

)−h(∂w̄
∂z̄

)−h̄
O(z, z̄) (C.11)
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which implies a variation under an infinitesimal transformation δz = ε(z), δz̄ = ε̄(z̄) of the
following form

δε,ε̄O(w, w̄) = −
(
h∂ε(w) + h̄∂̄ε̄(w̄)

)
O(w, w̄)− ε(w)∂O(w, w̄)− ε̄(w̄)∂̄O(w, w̄) (C.12)

to leading order where ∂̄/∂ denotes the partial derivative with respect to the internal anti-
/holomorphic coordinate. We will refer to h, h̄ as the weights of an operator which are
non-negative for any operator in a unitary CFT. The equation (C.12) can be rewritten with
the use of complex integration

δε,ε̄O(w, w̄) =
i

2π

{∮
dz ε(z)

(
h O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w

)
+

∮
dz̄ ε̄(z̄)

(
h̄ O(w, w̄)

(z̄ − w̄)2
+
∂̄O(w, w̄)

z̄ − w̄

)}
(C.13)

where the two curves respectively encircle the holomophic and the antiholomorphic coordinate
of the insertion point of the operator. The OPE of the energy-momentum tensor with a
primary operator can now be read off by comparison with the Ward identity (C.11)

T (z)O(w, w̄) =
h O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ · · · (C.14a)

T̄ (z̄)O(w, w̄) =
h̄ O(w, w̄)

(z̄ − w̄)2
+
∂̄O(w, w̄)

z − w
+ · · · (C.14b)

with regular terms denoted by ellipsis. Consequently, the OPE of an operator with the
energy-momentum tensor contains the information of the operator’s variation under conformal
transformations and vice versa.

To consider another example we first state that the weights are connected to the scaling
dimension ∆ = h + h̄ and the spin s = h − h̄. The scaling dimension of the stress-energy
tensor is 2 which can be infered from its connection to the energy whereas we know that it
has spin 2 simply because of its representation of the su(2) algebra. This sets the weights
of the holomorphic part of the energy-momentum tensor to (h, h̄) = (2, 0). We can go on
an try to find the OPE of the energy-meomentum tensor with itself. It may differ to the
OPE of primary operators (C.14) so we allow for an arbitrary number of singular terms of
higher order. The scaling dimension of every term in the expansion needs to be 4. Since the
weights of operators in a unitary CFT are not negative the highest pole that can appear is of
fourth order. Given that the OPE holds within time ordered correlation functions, it must be
symmetric under the exchange of bosonic operators which means that the pole of third order
can be dismissed as well1 and all we are left with is

T (z)T (w) =
c

2(z − w)4
+

2 T (w)

(z − w)2
+
∂T (w)

z − w
+ · · · (C.15)

1Note that this argument holds for any pole whose order is odd except for the one of first order which can
be seen by Taylor expansion.
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where the c is known as the central charge. Conversely, the behaviour of T (w) under infinites-
imal transformations is

δT (w) = − c

12
∂3ε(w)− 2∂ε(w)T (w)− ε(w)∂T (w) . (C.16)

The OPE of the antiholomorphic part of the stress-energy tensor with itself can be figured
out in the same way. A mixture of the form T (z)T̄ (w) is omitted, because the weights of the
two operators differ. Conformal symmetry dictates that the two-point function is always zero
in that case.
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