
Formal Methods in Computer-Aided Design 2022

Reducing NEXP-complete problems to DQBF
Fa-Hsun Chen

National Taiwan University
r10944015@ntu.edu.tw

Shen-Chang Huang
National Taiwan University

b07902135@ntu.edu.tw

Yu-Cheng Lu
National Taiwan University
luyucheng@protonmail.com

Tony Tan
National Taiwan University

tonytan@csie.ntu.edu.tw

Abstract—We present an alternative proof of the NEXP-
hardness of the satisfiability of Dependency Quantified Boolean
Formulas (DQBF). Besides being simple, our proof also gives us
a general method to reduce NEXP-complete problems to DQBF.
We demonstrate its utility by presenting explicit reductions from
a wide variety of NEXP-complete problems to DQBF such as
(succinctly represented) 3-colorability, Hamiltonian cycle, set
packing and subset-sum as well as NEXP-complete logics such
as the Bernays-Schönfinkel-Ramsey class, the two-variable logic
and the monadic class. Our results show the vast applications
of DQBF solvers which recently have gathered a lot of attention
among researchers.

Index Terms—Dependency quantified boolean formulas
(DQBF), NEXP-complete problems, polynomial time (Karp) re-
ductions, succinctly represented problems

I. INTRODUCTION

The last few decades have seen a tremendous development
of boolean SAT solvers and their applications in many areas of
computing [1]. Motivated by applications in verification and
synthesis of hardware/software designs [2]–[8], researchers
have recently looked at the generalization of boolean formulas
known as dependency quantified boolean formulas (DQBF).

While solving boolean SAT is “only” NP-complete, for
DQBF the complexity jumps to NEXP-complete [9]. This
makes solving DQBF quite a challenging research topic.
Nevertheless there has been exciting progress. See, e.g., [10]–
[18] and the references within, as well as solvers such as
iDQ [19], dCAQE [20], HQS [21], [22] and DQBDD [23].
A natural question to ask is if we can use DQBF solvers to
solve any NEXP-complete problems – similar to how SAT
solvers are used to solve any NP-complete problems.

In this short paper we show how to reduce a wide variety of
NEXP-complete problems to DQBF, especially the succinctly
represented problems that recently have found applications in
hardware/software engineering [24]–[26]. We present another
proof for the NEXP-hardness of DQBF. We actually give two
proofs. The first is by a very simple reduction from succinct
3-colorability [27]. The second is by utilizing the notion that
we call succinct projection. It is the second one that we view
more interesting since it gives us a general method to reduce
any NEXP-complete problem to DQBF.

The main idea is quite standard: We encode the accepting
runs of a non-deterministic Turing machine (with exponential
run time) with boolean functions of polynomial arities. How-
ever, we observe that the input-output relation of these func-
tions can actually be “described” by small circuits/formulas.
Succinct projections are simply deterministic algorithms that

construct these circuits efficiently. This simple observation is
a deviation from the standard definition of NEXP, that a
language in NEXP is a language with an exponentially long
certificate.

Using succinct projections, we present reductions from vari-
ous NEXP-complete problems such as (succinct) Hamiltonian
cycle, set packing and subset sum. We believe our technique
can be easily modified for many other natural problems. Note
that the reduction in [9] gives little insight on how it can
be used to obtain explicit reductions from concrete NEXP-
complete problems.

We also present the reductions from well known NEXP-
complete logics such as the Bernays-Schönfinkel-Ramsey class,
two-variable logic (FO2) and the Löwenheim class [28]–[32].
In fact we show that they are essentially equivalent to DQBF.
Note that these are logics that have found applications in
AI [33], databases [34] and automated reasoning [35], but
lack implementable algorithms. Prior to our work, the only
algorithm known for these logics is to “guess” a model (of
exponential size) and then verify that it is indeed a model of
the input formula.

We hope that the technique introduced in this short paper
can lead to richer applications of DQBF solvers as well as a
wide variety of benchmarks which in turn can lead to further
development. It is also open whether the class NEXP has a
bona-fide problem [27]. Our paper demonstrates that DQBF
can be a good candidate – akin to how boolean SAT is the
central problem in the class NP.

This paper is organized as follows. In Sect. II we review
some definitions and terminology. In Sect. III we reprove the
NEXP-completeness of solving DQBF. In Sect. IV and V
we present concrete reductions from some NEXP-complete
problems and logics to DQBF instances. The full version of
this paper can be found in [36].

II. PRELIMINARIES

Let Σ = {0, 1}. We usually use the symbol ā, b̄, c̄ (possibly
indexed) to denote a string in Σ∗ with |ā| denoting the length
of ā. We use x̄, ȳ, z̄, ū, v̄ to denote vectors of boolean variables.
The length of x̄ is denoted by |x̄|. We write C(ū) to denote a
(boolean) circuit C with input gates ū. When the input gates
are not relevant or clear from the context, we simply write C.
For ā ∈ Σ|ū|, C(ā) denotes the value of C when we assign
the input gates ū with ā. All logarithms have base 2.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 26 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_26
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_26
https://creativecommons.org/licenses/by/4.0/

A dependency quantified boolean formula (DQBF) in
prenex normal form is a formula of the form:

Ψ := ∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃ym(z̄m) ψ (1)

where each z̄i is a vector of variables from {x1, . . . , xn} and
ψ, called the matrix, is a quantifier-free boolean formula us-
ing variables x1, . . . , xn, y1, . . . , ym. The variables x1, . . . , xn
are called the universal variables, y1, . . . , ym the existential
variables and each z̄i the dependency set of yi.

A DQBF Ψ in the form (1) is satisfiable, if for every
1 ⩽ i ⩽ m, there is a function si : Σ|z̄i| → Σ such that
by replacing each yi with si(z̄i), the formula ψ becomes a
tautology. The function si is called the Skolem function for yi.
In this case, we also say that Ψ is satisfiable by the Skolem
functions s1, . . . , sm. The problem SAT(DQBF) is defined as:
On input DQBF Ψ in the form (1), decide if it is satisfiable.

Since many NEXP-complete problems use circuits as the
succinct representations of the inputs, we allow the matrix ψ
to be in circuit form, i.e., ψ is given as a (boolean) circuit
with input gates x1, . . . , xn, y1, . . . , ym. This does not effect
the generality of our results, since every DQBF in circuit form
can be converted to one in the standard formula form as stated
in Proposition 1.

Proposition 1. Every DQBF Ψ in the form of (1) in circuit
form can be converted in polynomial time into an equisatis-
fiable DQBF formula Ψ′ whose matrix is in DNF. Moreover,
Ψ and Ψ′ have the same existential variables (with the same
dependency set).

The proof is by standard Tseitin’s transformation [37]. As
an example, consider the following DQBF.

∀x1∀x2 ∃y1(x1)∃y2(x2) ¬
(︁
x2 ∨ (y1 ∧ x1 ∧ y2)

)︁
It is equisatisfiable with the following DQBF.

∀x1∀x2 ∀u1∀u2∀u3 ∀v1∀v2 ∃y1(x1)∃y2(x2)(︃
(v1 ↔ y1) ∧ (v2 ↔ y2) ∧ (u1 ↔ v1 ∧ x1 ∧ v2)
∧(u2 ↔ x2 ∨ u1) ∧ (u3 ↔ ¬u2)

)︃
→ u3

Intuitively, we use the extra variable v1 to represent the value
y1, v2 the value y2, u1 the value y1 ∧ x1 ∧ y2, u2 the value
x2 ∨ (y1 ∧ x1 ∧ y2) and u3 the value ¬(x2 ∨ (y1 ∧ x1 ∧ y2)).
Note that the matrix can be easily rewritten into DNF.

III. THE NEXP-COMPLETENESS OF SAT(DQBF)

In this section we present two new proofs that SAT(DQBF)
is NEXP-complete, originally proved in [9].

Theorem 2. [9] SAT(DQBF) is NEXP-complete.

Note that the membership is straightforward. So we will
focus only on the hardness.

A. The first proof: Reduction from succinct 3-colorability

The reduction is from the problem graph 3-colorability
where the input graphs are given in a succinct form [24]. A
(boolean) circuit C(ū, v̄), where |ū| = |v̄| = n, represents a

graph G(C) = (V,E) where V = Σn and (ā, b̄) ∈ E iff
C(ā, b̄) = 1. The problem succinct 3-colorability is defined
as: On input circuit C, decide if G(C) is 3-colorable. This
problem is NEXP-complete [27].

The reduction to SAT(DQBF) is as follows. Let C(ū, v̄) be
the input circuit, where |ū| = |v̄| = n. We represent a 3-
coloring of G(C) as a function g : Σn → {01, 10, 11} which
can be encoded by the following DQBF.

Ψ :=∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄1) ∃y3(x̄2)∃y4(x̄2)
x̄1 = x̄2 → (y1, y2) = (y3, y4) (2)

∧ (y1, y2) ̸= (0, 0) ∧ (y3, y4) ̸= (0, 0) (3)
∧ C(x̄1, x̄2) = 1 → (y1, y2) ̸= (y3, y4) (4)

Intuitively, we use y1, y2 and y3, y4 to represent the first and
the second bits of the image g(x̄1) and g(x̄2), respectively.
Lines (2) and (3) state that (y1, y2) and (y3, y4) must represent
the same function from Σn to Σ2 and that their images do not
include 00. Line (4) states that the colors of two adjacent
vertices must be different. Thus, G(C) is 3-colorable iff Ψ is
satisfiable.

B. The second proof: Reduction via succinct projections

Our second proof uses the notion of succinct projection.
We need some terminology. Let C(ū1, v̄1, ū2, v̄2) be a circuit
with input gates ū1, v̄1, ū2, v̄2 where |ū1| = |ū2| = n and
|v̄1| = |v̄2| = m. We say that a function g : Σn → Σm agrees
with the circuit C, if C(w1, g(w1), w2, g(w2)) = 1, for every
w1, w2 ∈ Σn. In this case, we also say that the circuit C
describes the function g. In the following whenever we say
that a function g : Σn → Σm agrees with C(ū1, v̄1, ū2, v̄2), we
implicitly assume that n = |ū1| = |ū2| and m = |v̄1| = |v̄2|.

Definition 3. A succinct projection for a language L is a
polynomial time deterministic algorithm M such that on input
w ∈ Σ∗, M outputs a circuit C such that w ∈ L iff there is
a function g that agrees with C.

Intuitively, we can view the function g as the certificate for
the membership of w in L and the circuit C as the succinct
description of g. Since succinct projection runs in polynomial
time, the output circuit can only have polynomially many
gates. The following theorem is a new characterization of
languages in NEXP.

Theorem 4. A language L ∈ NEXP iff it has a succinct
projection.

Proof. (if) Suppose that L has a succinct projection. Consider
the following algorithm. On input w, first use the succinct
projection to construct the circuit C. Then, guess a function
g (of exponential size) and verify that it agrees with C. It is
obvious that it runs in non-deterministic exponential time. That
it is correct follows from the definition of succinct projection.

(only if) It is essentially the Cook-Levin reduction disguised
in the form of function certificates. We only sketch it here.
Let L ∈ NEXP and M be a 1-tape NTM that accepts L in
time 2p(n) for some polynomial p(n). For a word w ∈ L of

200

length n, its accepting run can be represented as a function g :
Σp(n)×Σp(n) → Σℓ, where g(i, j) denotes the content of cell i
in time j. The tuples in the codomain Σℓ encode the states and
the tape symbols of M . To verify that g represents an accepting
run, it is sufficient to verify that for every i1, j1, i2, j2 ∈ Σp(n),
the tuple (i1, j1, g(i1, j1), i2, j2, g(i2, j2)) satisfies a certain
property P which depends only on the input word w and the
transitions of M . The desired succinct projection constructs in
polynomial time a circuit C describing this property P .

The second proof of the NEXP-hardness of SAT(DQBF): Let
L ∈ NEXP. The polynomial time (Karp) reduction from L to
SAT(DQBF) is described as Algorithm 1 below.

Algorithm 1: Reducing L ∈ NEXP to SAT(DQBF)
Input: w ∈ Σ∗.
1: Run the succinct projection of L on w.
2: Let C(x̄1, ȳ1, x̄2, ȳ2) be the output circuit where
|x̄1| = |x̄2| = n, |ȳ1| = |ȳ2| = m, ȳ1 = (y1,1, . . . , y1,m)

and ȳ2 = (y2,1, . . . , y2,m).
3: Output the following DQBF Ψ:

∀x̄1∀x̄2 ∃y1,1(x̄1) · · · ∃y1,m(x̄1) ∃y2,1(x̄2) · · · ∃y2,m(x̄2)

C(x̄1, ȳ1, x̄2, ȳ2) ∧
(︁
x̄1 = x̄2 → ȳ1 = ȳ2

)︁
We show w ∈ L iff Ψ is satisfiable. Suppose w ∈ L. Let

g : Σn → Σm be a function that agrees with C. For each
1 ⩽ i ⩽ m, define the Skolem function si : Σ

n → Σ where
si(ā) is the i-th component of g(ā), for every ā ∈ Σn. It is
routine to verify that Ψ is satisfiable with each si being the
Skolem function for y1,i and y2,i.

Conversely, suppose Ψ is satisfiable. Let sj,i : Σn → Σ be
the Skolem function for yj,i, where 1 ⩽ j ⩽ 2 and 1 ⩽ i ⩽ m.
Since x̄1 = x̄2 → ȳ1 = ȳ2, the functions s1,i and s2,i must
be the same, for every 1 ⩽ i ⩽ m. Define g : Σn → Σm

where g(ā) = (s1(ā), . . . , s1,m(ā)) for every ā ∈ Σn. Since
C(ā1, g(ā1), ā2, g(ā2)) is true for every ā1, ā2, the function g
agrees with C. That is, there is a function that agrees with C.
Hence, w ∈ L. This completes the second proof.

Remark 5. Observe that when Theorem 4 is applied to
languages in NP, the accepting run of a non-deterministic
Turing machine with polynomial run time p(n) is represented
as a function g : Σlog p(n) × Σlog p(n) → Σℓ and the
succinct projection outputs a circuit C(x̄1, ȳ1, x̄2, ȳ2) where
|x̄1| = |x̄2| = log p(n) and |ȳ1| = |ȳ2| = ℓ. Thus, for
L ∈ NP, the DQBF output by Algorithm 1 has 4 log p(n)
universal variables and 2ℓ existential variables.

IV. SOME CONCRETE REDUCTIONS

In this section we show how to utilize succinct projection to
obtain the reductions from concrete NEXP-complete problems
to SAT(DQBF). These are (succinct) Hamiltonian cycle, set
packing and subset sum [27]. We use the notion of succinctness
from [24] which has been explained in Sect. III-A. By Algo-
rithm 1, it suffices to present only the succinct projections.

Some useful notations: For an integer k ⩾ 1, [k] denotes
the set {0, . . . , k− 1}. For i ∈ [2n], binn(i) is the binary rep-
resentation of i in n bits. The number represented by ā ∈ Σn

is denoted by num(ā). For ā, b̄ ∈ Σn, if num(ā) = num(b̄)+1
(mod 2n), we say that ā is the successor of b̄, denoted by
ā = b̄+ 1. Note that successor is applied only on two strings
with the same length and the successor of 1n is 0n. It is not
difficult to construct a circuit C(x̄, ȳ) (in time polynomial in
|x̄|+ |ȳ|) such that C(ā, b̄) = 1 iff ā = b̄+ 1.

Reduction from succinct Hamiltonian cycle: Succinct
Hamiltonian cycle is defined as follows. The input is a circuit
C(ū, v̄). The task is to decide if there is a Hamiltonian cycle
in G(C).

Let C(ū, v̄) be the input circuit where |ū| = |v̄| = n. We
use a function g : Σn → Σn to represent a Hamiltonian cycle
(b̄0, . . . , b̄2n−1) where g(binn(i)) = b̄i, for every i ∈ [2n]. To
correctly represent a Hamiltonian cycle, the following must
hold for every ā1, ā2 ∈ Σn.
(H1) If ā1 ̸= ā2, then g(ā1) ̸= g(ā2).
(H2) If ā2 = ā1 +1, then (g(ā1), g(ā2)) is an edge in G(C).
The succinct projection for succinct Hamiltonian cycle simply
outputs the circuit that expresses (H1) and (H2), i.e., it outputs
the following circuit D(x̄1, ȳ1, x̄2, ȳ2) where |x̄1| = |x̄2| =
|ȳ1| = |ȳ2| = n:(︁
x̄1 ̸= x̄2 → ȳ1 ̸= ȳ2

)︁
∧
(︁
x̄2 = x̄1 + 1 → C(ȳ1, ȳ2) = 1

)︁
Obviously, a function g : Σn → Σn represents a hamiltonian
cycle in G(C) iff it agrees with D.

Reduction from succinct set packing: In the standard
representation the problem set packing is defined as follows.
The input is a collection K of finite sets S1, . . . , Sℓ ⊆ Σm

and an integer k. The task is to decide whether K contains
k mutually disjoint sets. We assume each Si has a “name”
which is a string in Σlog ℓ.

The succinct representation of the sets S1, . . . , Sℓ is a circuit
C(ū, v̄) where |ū| = m and |v̄| = log ℓ. A string ā ∈ Σm is in
the set Sb̄, if C(ā, b̄) = 1. We denote by K(C) the collection
of finite sets defined by the circuit C. The problem succinct set
packing is defined analogously where the input is the circuit
C(ū, v̄) and an integer k (in binary).

We now describe its succinct projection. Let C(ū, v̄) and k
be the input where |ū| = m and |v̄| = n. We first assume that
k is a power of 2. We represent k disjoint sets S1, . . . , Sk in
K(C) as a function g : Σlog k ×Σm → Σn where g(bin(i), ā)
is the name of the set Si. Note that the string ā is actually
ignored in the definition of g.

For a function g : Σlog k × Σm → Σn to correctly
represent k disjoint sets, the following must hold for every
(ā1, b̄1), (ā2, b̄2) ∈ Σlog k × Σm.
(P1) If ā1 = ā2, then g(ā1, b̄1) = g(ā2, b̄2). That is, the

function g does not depend on b̄1 and b̄2.
(P2) If ā1 ̸= ā2 and b̄1 = b̄2, then C(b̄1, g(ā1, b̄1)) = 0 or

C(b̄1, g(ā2, b̄2)) = 0. That is, the element b̄1 is not in
the sets whose names are g(ā1, b̄1) and g(ā2, b̄2).

It is routine to verify that g represents k disjoint sets iff
(P1) and (P2) hold for every (ā1, b̄1), (ā2, b̄2) ∈ Σlog k ×Σm.

201

The succinct projection outputs the following circuit D that
formalizes (P1) and (P2):(︁

x̄1 = x̄2 → z̄1 = z̄2
)︁

∧
(︁
x̄1 ̸= x̄2 ∧ ȳ1 = ȳ2

)︁
→ ¬

(︁
C(ȳ1, z̄1) = C(ȳ1, z̄2) = 1

)︁
If k is not a power of 2, we conjunct both atoms x̄1 = x̄2
and x̄1 ̸= x̄2 with a circuit that tests whether the numbers
represented by the bits x̄1 and x̄2 is an integer in [k]. Such a
circuit can be easily constructed in polynomial time in ⌈log k⌉.

Reduction from succinct subset-sum: In the standard
representation the instance of subset-sum is a list of positive
integers s0, . . . , sk−1 and t (all written in binary). The task is
to decide if there is a subset X ⊆ [k] such that

∑︁
i∈X si = t.

Such X is called the subset-sum solution. The succinct rep-
resentation is defined as two circuits C1(ū1, v̄) and C2(ū2),
where |ū1| = maxi∈[k] log si, |v̄| = log k and |ū2| = log t.
Circuit C1 defines the numbers si’s where C1(ā, b̄) is the i-th
least significant bit of sj , where i = num(ā) and j = num(b̄).
Circuit C2 defines the number t where C2(ā) is the i-th
least significant bit of t, where i = num(ā). The subset-sum
instance represented by C1 and C2 is denoted by N (C1, C2).
We will describe the succinct projection for succinct subset-
sum.

Let C1(ū1, v̄) and C2(ū2) be the input where |ū1| = |ū2| =
n and |v̄| = m. We need a few notations. Let s0, . . . , s2m−1 be
the numbers represented by C1 and t the number represented
by C2. For a set X ⊆ [2m], let TX =

∑︁
i∈X si. For 0 ⩽ j ⩽

2m, let TX,j = TX∩[j]. Abusing the notation, for b̄ ∈ Σm, we
write sb̄ and TX,b̄ to denote si and TX,i, respectively, where
i = num(b̄). For ā ∈ Σn, bit-ā means bit-i where i = num(ā).

We represent a set X ⊆ [2m] as a function g : Σn×Σm →
Σ5 where g(ā, b̄) = (α, β, γ, δ, ϵ) such that:

• α = 1 iff sb̄ ∈ X .
• β is bit-ā in TX,b̄.
• γ is the carry of adding TX,b̄ and sb̄ up to bit-(ā− 1).
• δϵ = β + γ +C(ā, b̄), i.e., ϵ is the least significant bit of
β + γ + C(ā, b̄) and δ is the carry.

See the illustration below.

TX,b̄ :
bit-0 to bit-(ā− 1) in TX,b̄ β = bit-ā in TX,b̄

sb̄ :
bit-0 to bit-(ā− 1) in sb̄

γ
C(ā, b̄)

δ

ϵ

Intuitively, g(ā, b̄) contains the information about the additions
performed on bit-ā in sb̄ (with respect to the set X). In
particular, the bits of the number TX are all contained in
g(ā, 1m) for every ā ∈ Σn. These bits can then be compared
to those in t by means of the circuit C2.

Note that for a function g : Σn × Σm → Σ5 to properly
represent a number TX , for some X ⊆ [2m], it suffices to
check the values of g on “neighbouring” points in Σn ×Σm.
More precisely, the following conditions must be satisfied
for every (ā1, b̄1), (ā2, b̄2) ∈ Σn × Σm, where g(ā1, b̄1) =
(α1, β1, γ1, δ1, ϵ1) and g(ā2, b̄2) = (α2, β2, γ2, δ2, ϵ2).

(i) If b̄1 = b̄2, then α1 = α2. That is, the value α1 depends
only on the index of a number.

(ii) If α1 = 0, then γ1 = δ1 = 0 and β1 = ϵ1.
(iii) If α1 = 1, then γ1 + C(ā1, b̄1) + β1 = δ1ϵ1.
(iv) If ā1 = 0n, then γ1 = 0.
(v) If ā1 = 1n, then δ1 = 0.

(vi) If b̄1 = 0m, then β1 = γ1 = 0.
(vii) If b̄1 = 1m, then ϵ1 = C2(ā1).

(viii) If α1 = 1 and b̄1 = b̄2 and ā2 = ā1 + 1, then δ1 = γ2.
(ix) If α1 = 1 and b̄2 = b̄1 + 1 and ā2 = ā1, then ϵ1 = β2.

Intuitively, (ii) and (iii) state that the values of
(α1, β1, γ1, δ1, ϵ1) must have their intended meaning,
i.e., when α1 = 0, no addition is performed and when
α1 = 1, the addition γ1 + C(ā1, b̄1) + β1 is performed and
the result is δ1ϵ1. (iv) states that there is no carry from the
previous bit when considering the least significant bit. (v)
states that there shouldn’t be any carry after adding the most
significant bit (if we want TX equals t). (vi) states that TX,0

must be zero. (vii) states that bit-ā in TX must equal to
bit-ā in t. Finally, (viii) and (ix) state that when (ā1, b̄1) and
(ā2, b̄2) are neighbors, the bits β1, γ1, δ1, ϵ1 and β2, γ2, δ2, ϵ2
must obey their intended meaning.

Obviously, if g satisfies (i)–(ix), then it represents a set X
such that TX = t. Conversely, if there is a set X such that
TX = t, then there is a function g that satisfies (i)–(ix). It is
not difficult to design a succinct projection that constructs a
circuit D that describes functions that satisfy (i)-(ix).

V. REDUCTIONS FROM OTHER NEXP-COMPLETE LOGICS

In this section we will consider the following fragments of
relational first-order logic (with the equality predicate):

• The Bernays-Schönfinkel-Ramsey (BSR) class: The class
of sentences of the form:

Ψ1 := ∃x1 · · · ∃xm ∀y1 · · · ∀yn ψ

where ψ is a quantifier-free formula.
• The two-variable logic (FO2): The class of sentences

using only two variables x and y.
The classic result by Scott [38] states that every FO2

sentence can be transformed in linear time into an equi-
satisfiable FO2 sentence of the form:

Ψ2 := ∀x∀y α(x, y) ∧
m⋀︂
i=1

∀x∃yβi(x, y)

for some m ⩾ 1, where α(x, y) and each βi(x, y) are
quantifier free formulas.

• The Löwenheim/monadic class: The class of sentences
using only unary predicate symbols. Sentences in this
class are also known as monadic sentences.

Let SAT(BSR), SAT(Mon) and SAT(FO2) denote their cor-
responding satisfiability problems. It is well known that all
of them are NEXP-complete [28]–[32]. The upper bound is
usually established by the so called Exponential Size Model
(ESM) property stated as follows.

202

• If the BSR sentence Ψ1 is satisfiable, then it is satisfiable
by a model with size at most m+ 1 [31, Prop. 6.2.17].

• If the FO2 sentence Ψ2 is satisfiable, then it is satisfiable
by a model with size m2n, where n is the number of
unary predicates used [30].

• If a Löwenheim sentence is satisfiable, then it is sat-
isfiable by a model with size at most r2n, where r
is the quantifier rank and n is the number of unary
predicates [31, Prop. 6.2.1].

The main idea of the reduction to SAT(DQBF) is quite
simple. We will represent the domain of a model with size
at most N as a subset of Σt, where t = logN and use a
function f0 : Σt → Σ as the indicator whether an element
is in the domain. Every predicate in the input formula can
be represented as a function f : Σkt → Σ where k is
the arity of the predicate. All these functions can then be
encoded appropriately as existential variables in DQBF. Note
that the universal FO quantifier ∀x · · · can be encoded as
∀ū f0(ū) → · · · . The existential FO quantifier can first be
Skolemized and then encoded as existential variables in DQBF.

The rest of this section is organized as follows. For technical
convenience, we first introduce the logic Existential Second-
order Quantified Boolean Formula (∃SOQBF) – an alterna-
tive, but equivalent formalism of DQBF. The only difference
between ∃SOQBF and DQBF is the syntax in declaring the
function symbol. Then, we consider the problem that we call
Bounded FO satisfiability, denoted by Bnd-SAT(FO), which
subsumes all SAT(BSR), SAT(FO2) and SAT(Mon) and show
how to reduce it to SAT(∃SOQBF).

The logic ∃SOQBF: The class ∃SOQBF is the extension
of quantified boolean formulas (QBF) with existential second-
order quantifiers, i.e., formulas of the form:

Ψ := ∃f1∃f2 · · · ∃fp Q1v1 · · · Qnvn ψ

where each Qi ∈ {∀,∃} and each fi is a boolean function
symbol associated with a fixed arity ar(fi). The formula ψ is
a boolean formula using the variables vi’s and f(z̄)’s, where
f ∈ {f1, . . . , fp}, |z̄| = ar(f) and z̄ ⊆ {v1, . . . , vq}. We call
each f(z̄) in ψ a function variable.

The semantics of Ψ is defined naturally. We say that Ψ is
satisfiable, if there is an interpretation Fi : Σar(fi) → Σ for
each fi such that Q1v1 · · · Qnvn ψ is a true QBF. In this case
we say that F1, . . . , Fp make Ψ true. It is not difficult to see
that DQBF and ∃SOQBF can be transformed to each other in
linear time while preserving satisfiability.

Bounded FO satisfiability (Bnd-SAT(FO)): The problem
Bnd-SAT(FO) is defined as: On input relational FO sentence φ
and a positive integer N (in binary), decide if φ has a model
with cardinality at most N . It is a folklore that Bnd-SAT(FO)
is NEXP-complete. Note that due to the ESM property,
Bnd-SAT(FO) trivially subsumes all SAT(BSR), SAT(FO2) and
SAT(Mon).

Reduction from Bnd-SAT(FO) to SAT(∃SOQBF): Let φ
and N be the input to Bnd-SAT(FO). We may assume that φ
is in the Prenex normal form: φ := Q1x1 · · ·Qnxn ψ, where
each Qi ∈ {∀,∃} and ψ is quantifier-free formula. Adding

redundant quantifier, if necessary, we assume that Q1 is ∀.
Then, we Skolemize each existential quantifier as follows. Let
i be the minimal index where Qi = ∃. We rewrite φ into:

φ′ := ∀x1 · · · ∀xi−1 Qi+1xi+1 · · ·Qnxn ∀z
z = g(x1, . . . , xi−1) → ψ′

where z is a fresh variable, g is the Skolem function represent-
ing the existentially quantified variable xi and ψ′ is obtained
from ψ by replacing every occurrence of xi with z. Hence,
we may assume that the input sentence φ is of form:

φ := ∀x1 · · · ∀xn ψ (5)

where ψ is quantifier-free formula where every (Skolem)
function symbol g(x1, . . . , xi−1) only occur in the equality
predicate z = g(x1, . . . , xi−1) and z is one of xi, . . . , xn.

Let g1, . . . , gk be the Skolem function symbols in ψ and
P1, . . . , Pℓ be the predicates in ψ. Let ar(gi) and ar(Pi) denote
the arity of gi and Pi. Let t = ⌈logN⌉. Construct the following
∃SOQBF formula:

Φ := ∃f0 ∃f1,1 · · · ∃f1,t · · · ∃fk,1 · · · ∃fk,t ∃fP1 · · · ∃fPℓ

∀ū1 · · · ∀ūn
(︃
ū1 = 0t → f0(ū1)

∧
⋀︁n

i=1 f0(ūi) → Ψ

)︃
(6)

where:
• The arity of f0 is t.
• For every 1 ⩽ i ⩽ k, the arity of f1,1, . . . , f1,t is t·ar(gi).
• For every 1 ⩽ i ⩽ ℓ, the arity of fP1

, . . . , fPℓ
is t ·ar(Pi).

• For every 1 ⩽ i ⩽ n, |ūi| = t.
The formula Ψ is obtained from ψ as follows.

• Each predicate Pi(xj1 , . . . , xjm) is replaced with
fPi

(ūj1 , . . . , ūjm).
• Each predicate xj = gi(xj1 , . . . , xjm) is replaced with
ūj = (fi,1(ūj1 , . . . , ūjm), . . . , fi,t(ūj1 , . . . , ūjm))

• Each predicate xj = xi is replaced with ūj = ūi.
Intuitively, we use f0 as the indicator to determine whether
a string in Σt is an element in the model. To ensure that
the model is not empty, we insist that 0t belongs to the
model, hence, the formula ū1 = 0t → f0(ū1). We use the
vector of variables ūi to represent xi. For every 1 ⩽ i ⩽ k,
the functions fi,1, . . . , fi,t represent the bit representation of
gi(xj1 , . . . , xjm). Finally, for every 1 ⩽ i ⩽ ℓ, the function fPi

represents the predicate Pi. Note the part
⋀︁n

i=1 f0(ūi) → Ψ
which means we require Ψ to hold only on the vectors
ū1, . . . , ūn that “passes” the function f0, i.e., they are elements
of the model. It is routine to verify that the formula φ in
Eq. (5) is satisfiable by a model with cardinality at most N
iff the ∃SOQBF formula Φ in Eq. (6) is satisfiable.

ACKNOWLEDGEMENT

We are very grateful to Jie-Hong Roland Jiang for many
fruitful discussions on the preliminary drafts of this work.
We also thank the anonymous reviewers for their constructive
comments. We acknowledge the generous financial support of
Taiwan National Science and Technology Council under grant
no. 109-2221-E-002-143-MY3.

203

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. IOS Press, 2009.

[2] J. R. Jiang, “Quantifier elimination via functional composition,” in CAV,
2009.

[3] V. Balabanov and J. R. Jiang, “Reducing satisfiability and reachability
to DQBF,” in Talk given at QBF, 2015.

[4] C. Scholl and B. Becker, “Checking equivalence for partial implemen-
tations,” in DAC, 2001.

[5] K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker,
“Equivalence checking of partial designs using dependency quantified
boolean formulae,” in ICCD, 2013.

[6] R. Bloem, R. Könighofer, and M. Seidl, “SAT-based synthesis methods
for safety specs,” in VMCAI, 2014.

[7] K. Chatterjee, T. Henzinger, J. Otop, and A. Pavlogiannis, “Distributed
synthesis for LTL fragments,” in FMCAD, 2013.

[8] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, 2002.

[9] G. Peterson and J. Reif, “Multiple-person alternation,” in FOCS, 1979.
[10] V. Balabanov, H. K. Chiang, and J. R. Jiang, “Henkin quantifiers and

boolean formulae: A certification perspective of DQBF,” Theor. Comput.
Sci., vol. 523, pp. 86–100, 2014.

[11] A. Fröhlich, G. Kovásznai, and A. Biere, “A DPLL algorithm for solving
DQBF,” in POS-12, Third Pragmatics of SAT workshop, 2012.

[12] A. Ge-Ernst, C. Scholl, and R. Wimmer, “Localizing quantifiers for
DQBF,” in FMCAD, 2019.

[13] O. Kullmann and A. Shukla, “Autarkies for DQCNF,” in FMCAD, 2019.
[14] R. Wimmer, C. Scholl, and B. Becker, “The (D)QBF preprocessor hqspre

- underlying theory and its implementation,” J. Satisf. Boolean Model.
Comput., vol. 11, no. 1, pp. 3–52, 2019.

[15] K. Wimmer, R. Wimmer, C. Scholl, and B. Becker, “Skolem functions
for DQBF,” in ATVA, 2016.

[16] R. Wimmer, S. Reimer, P. Marin, and B. Becker, “HQSpre – an effective
preprocessor for QBF and DQBF,” in TACAS, 2017.

[17] G. Kovásznai, “What is the state-of-the-art in DQBF solving,” in Join
Conference on Mathematics and Computer Science, 2016.

[18] C. Scholl and R. Wimmer, “Dependency quantified boolean formulas:
An overview of solution methods and applications - extended abstract,”
in SAT, 2018.

[19] A. Fröhlich, G. Kovásznai, A. Biere, and H. Veith, “iDQ: Instantiation-
based DQBF solving,” in POS-14, Fifth Pragmatics of SAT workshop,
2014.

[20] L. Tentrup and M. Rabe, “Clausal abstraction for DQBF,” in SAT, 2019.
[21] K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, and B. Becker,

“Solving DQBF through quantifier elimination,” in DATE, 2015.
[22] R. Wimmer, A. Karrenbauer, R. Becker, C. Scholl, and B. Becker, “From

DQBF to QBF by dependency elimination,” in SAT, 2017.
[23] J. Sı́c and J. Strejcek, “DQBDD: an efficient bdd-based DQBF solver,”

in SAT, 2021.
[24] H. Galperin and A. Wigderson, “Succinct representations of graphs,”

Inf. Control., vol. 56, no. 3, pp. 183–198, 1983.
[25] D. Kini, U. Mathur, and M. Viswanathan, “Data race detection on

compressed traces,” in ESEC/SIGSOFT FSE, 2018.
[26] A. Pavlogiannis, N. Schaumberger, U. Schmid, and K. Chatterjee,

“Precedence-aware automated competitive analysis of real-time schedul-
ing,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 39,
no. 11, pp. 3981–3992, 2020.

[27] C. Papadimitriou and M. Yannakakis, “A note on succinct representa-
tions of graphs,” Inf. Control., vol. 71, no. 3, pp. 181–185, 1986.

[28] H. Lewis, “Complexity results for classes of quantificational formulas,”
J. Comput. Syst. Sci., vol. 21, no. 3, pp. 317–353, 1980.

[29] M. Fürer, “The computational complexity of the unconstrained limited
domino problem (with implications for logical decision problems),” in
Logic and Machines: Decision Problems and Complexity, 1983, pp. 312–
319.

[30] E. Grädel, P. Kolaitis, and M. Vardi, “On the decision problem for two-
variable first-order logic,” Bull. Symbolic Logic, vol. 3, no. 1, pp. 53–69,
3 1997.

[31] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem.
Springer, 1997.

[32] T. Lin, C. Lu, and T. Tan, “Towards a more efficient approach for the
satisfiability of two-variable logic,” in LICS, 2021.

[33] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[34] S. Itzhaky, T. Kotek, N. Rinetzky, M. Sagiv, O. Tamir, H. Veith, and
F. Zuleger, “On the automated verification of web applications with
embedded SQL,” in ICDT, 2017, pp. 16:1–16:18.

[35] J. Robinson and A. Voronkov, Eds., Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

[36] F.-H. Chen, S.-C. Huang, Y.-C. Lu, and T. Tan, “Reducing NEXP-
complete problems to DQBF,” CoRR, vol. abs/2208.06014, 2022.
[Online]. Available: http://arxiv.org/abs/2208.06014

[37] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logic, Part
II, 1968.

[38] D. Scott, “A decision method for validity of sentences in two variables,”
The Journal of Symbolic Logic, p. 377, 1962.

204

http://arxiv.org/abs/2208.06014

	Introduction
	Preliminaries
	The NEXP-completeness of SAT(DQBF)
	The first proof: Reduction from succinct 3-colorability
	The second proof: Reduction via succinct projections

	Some concrete reductions
	Reductions from other NEXP-complete logics
	References

