
Formal Methods in Computer-Aided Design 2022

INC: A Scalable Incremental Weighted Sampler
Suwei Yang

National University of Singapore
Singapore

suwei.yang@comp.nus.edu.sg

Victor Liang
GrabTaxi Holdings Pte. Ltd.

Singapore
victor.liang@grab.com

Kuldeep S. Meel
National University of Singapore

Singapore
meel@comp.nus.edu.sg

Abstract—The fundamental problem of weighted sampling
involves sampling of satisfying assignments of Boolean formulas,
which specify sampling sets, and according to distributions
defined by pre-specified weight functions to weight functions. The
tight integration of sampling routines in various applications has
highlighted the need for samplers to be incremental, i.e., samplers
are expected to handle updates to weight functions.

The primary contribution of this work is an efficient knowledge
compilation-based weighted sampler, INC1, designed for incre-
mental sampling. INC builds on top of the recently proposed
knowledge compilation language, OBDD[∧], and is accompanied
by rigorous theoretical guarantees. Our extensive experiments
demonstrate that INC is faster than state-of-the-art approach for
majority of the evaluation. In particular, we observed a median
of 1.69× runtime improvement over the prior state-of-the-art
approach.

Index Terms—knowledge compilation, sampling, weighted
sampling

I. INTRODUCTION

Given a Boolean formula F and weight function W ,
weighted sampling involves sampling from the set of satisfying
assignments of F according to the distribution defined by
W . Weighted sampling is a fundamental problem in many
fields such as computer science, mathematics and physics, with
numerous applications. In particular, constrained-random sim-
ulation forms the bedrock of modern hardware and software
verification efforts [1].

Sampling techniques are fundamental building blocks, and
there has been sustained interest in the development of
sampling tools and techniques. Recent years witnessed the
introduction of numerous sampling tools and techniques, from
approximate sampling techniques to uniform samplers SPUR
and KUS, and weighted sampler WAPS [2]–[6]. Sampling
tools and techniques have seen continuous adoption in many
applications and settings [7]–[12]. The scalability of a sampler
is a consideration that directly affects its adoption rate. There-
fore, improving scalability continues to be a key objective for
the community focused on developing samplers.

The tight integration of sampling routines in various applica-
tions has highlighted the importance for samplers to handle in-
cremental weight updates over multiple sampling rounds, also
known as incremental weighted sampling. Existing efforts on
improving scalability typically focus on single round weighted
sampling, and might have overlooked the incremental set-
ting. In particular, existing approaches involving incremental

1code available at https://github.com/grab/inc-weighted-sampler/

weighted sampling typically employ off-the-shelf weighted
samplers which could lead to less than ideal incremental
sampling performance.

The primary contribution of this work is an efficient scalable
weighted sampler INC that is designed from the ground up to
address scalability issues in incremental weighted sampling
settings. The core architecture of INC is based on knowledge
compilation (KC) paradigm, which seeks to succinctly repre-
sent all satisfying assignments of a Boolean formula with a
directed acyclic graph (DAG) [13]. In the design of INC, we
make two core decisions that are responsible for outperforming
the current state-of-the-art weighted sampler. Firstly, we build
INC on top of PROB (Probabilistic OBDD[∧] [14]) which
is substantially smaller than the KC diagram used in the
prior state-of-the-art approaches. Secondly, INC is designed to
perform annotation, which refers to the computation of joint
probabilities, in log-space to avoid the slower alternative of
using arbitrary precision math computations.

Given a Boolean formula F and weight function W , INC
compiles and stores the compiled PROB in the first round
of sampling. The weight updates for subsequent incremental
sampling rounds are processed without recompilation, amor-
tizing the compilation cost. Furthermore, for each sampling
round, INC simultaneously performs annotation and sampling
in a single bottom-up pass of the PROB, achieving speedup
over existing approaches. We observed that INC is significantly
faster than the existing state-of-the-art in the incremental
sampling routine. In our empirical evaluations, INC achieved
a median of 1.69× runtime improvement over the state-of-
the-art weighted sampler, WAPS [6]. Additional performance
breakdown analysis supports our design choices in the de-
velopment of INC. In particular, PROB is on median 4.64×
smaller than the KC diagram used by the competing approach,
and log-space annotation computations are on median 1.12×
faster than arbitrary precision computations. Furthermore, INC
demonstrated significantly better handling of incremental sam-
pling rounds, with incremental sampling rounds to be on
median 5.9% of the initial round, compared to 67.6% for
WAPS.

The rest of the paper is organized as follows. We first in-
troduce the relevant background knowledge and related works
in Section II. We then introduce PROB and its properties in
Section III. In Section IV, we introduce our weighted sampler
INC, detail important implementation decisions, and provide
theoretical analysis of INC. We then describe the extensive

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 27 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://github.com/grab/inc-weighted-sampler/
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://creativecommons.org/licenses/by/4.0/

empirical evaluations and discuss the results in Section V.
Finally, we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Knowledge Compilation: Knowledge compilation (KC)
involves representing logical formulas as directed acyclic
graphs (DAG), which are commonly referred to as knowledge
compilation diagrams [13]. The goal of knowledge compila-
tion is to allow for tractable computation of certain queries
such as model counting and weighted sampling. There are
many well-studied forms of knowledge compilation diagrams
such as d-DNNF, SDD, BDD, ZDD, OBDD, AOBDD, and the
likes [15]–[21]. In this work, we build our weighted sampler
upon a variant of OBDD known as OBDD[∧] [14].

OBDD[∧]: Lee [15] introduced Binary Decision Dia-
gram (BDD) as a way to represent Shannon expansion [22].
[16] introduced fixed variable orderings to BDDs (known as
OBDD) [16] for canonical representation and compression
of BDDs via shared sub-graphs. Lai et al. [14] introduced
conjunction nodes to OBDDs (known as OBDD[∧]) [14] to
further reduce the size of the resultant DAG to represent a
given Boolean formula. In this work, we parameterize an
OBDD[∧] to form a PROB that is used for weighted sampling.

Sampling: A Boolean variable x can be assigned either
true or false, and its literal refers to either x or its negation. A
Boolean formula is in conjunctive normal form (CNF) if it is
a conjunction of clauses, with each clause being a disjunction
of literals. A Boolean formula F is satisfiable if there exists an
assignment τ of its variables such that the F evaluates to true.
The model count of Boolean formula F refers to the number
of distinct satisfying assignments of F .

Weighed sampling concerns with sampling elements from a
distribution according to non-negative weights provided by a
user-defined weight function W . In the context of this work,
weighted sampling refers to the process of sampling from
the space of satisfying assignments of a Boolean formula F .
The weight function W assigns a non-negative weight to each
literal l of F . The weight of an assignment τ is defined as the
product of the weight of its literals.

WAPS: KUS [5] utilizes knowledge compilation tech-
niques, specifically Deterministic Decomposable Negation
Normal Form (d-DNNF) [19], to perform uniform sampling
in 2 passes of the d-DNNF. Annotation is performed in the
first pass, followed by sampling. WAPS [6] improves upon
KUS by enabling weighted sampling via parameterization of
the d-DNNF. WAPS performs sampling in a similar manner
to KUS, the main difference being that the annotation step
in WAPS takes into account the provided weight function. In
contrast, we introduce INC which performs weighted sampling
in a single pass by leveraging the DAG structure of PROB.

Knowledge compilation-based samplers typically perform
incremental sampling as follows. The sampling space is first
expressed as satisfying assignments of a Boolean formula,
which is then compiled into the respective knowledge compila-
tion form. In the following step, samples are drawn according
to the given weight function W . Subsequently, the weights

are updated depending on application logic and weighted
sampling is performed again. The process is repeated until
an application-specific stopping criterion is met. An example
of such an application would be the Baital framework [10],
developed to use incremental weighted sampling to generate
test cases for configurable systems.

III. PROB: - PROBABILISTIC OBDD[∧]
PROB is a DAG composed of four types of nodes -

conjunction, decision, true and false nodes. The internal nodes
of a PROB consist of conjunction and decision nodes whereas
the leaf nodes of the PROB consist of true and false nodes.
A PROB is recursively made up of sub-PROBs that represent
sub-formulas of Boolean formula F . We use VarSet(n) to
refer to the set of variables of F represented by a PROB with
n as the root node. Subdiagram(n) refers to the sub-PROB
starting at node n and Parent(n) refers to the immediate parent
of node n in PROB.

A. PROB Structure
Conjunction node (∧-node): A ∧-node nc represents

conjunctions in the assignment space. There are no limits to
the number of child nodes that nc can have. However, the
set of variables (VarSet(·)) of each child node of nc must be
disjoint. An example of a ∧-node would be n2 in Figure 1.
Notice that VarSet(n4) = {z} and VarSet(n5) = {y} are
disjoint.

Decision node: A decision node nd represents decisions
on the associated Boolean variable Var(nd) in Boolean for-
mula F that the PROB represents. A decision node can have
exactly two children - lo-child (Lo(nd)) and hi-child (Hi(nd)).
Lo(nd) represents the assignment space when Var(nd) is set to
false and Hi(nd) represents otherwise. θndhi

and θndlo
refer to

the parameters associated with the edge connecting decision
node nd with Hi(nd) and Lo(nd) respectively in a PROB.
Node n1 in Figure 1 is a decision node with Var(n1) = x,
Hi(n1) = n3 and Lo(n1) = n2.

True and False nodes: True (⊤) and false (⊥) nodes are
leaf nodes in a PROB. Let τ be an assignment of all variables
of Boolean formula F and let PROB ψ represent F . τ corre-
sponds to a traversal of ψ from the root node to leaf nodes. The
traversal follows τ at every decision node and visits all child
nodes of every conjunction node encountered along the way. τ
is a satisfying assignment if all parts of the traversal eventually
lead to the true node. τ is not a satisfying assignment if any
part of the traversal leads to the false node. With reference to
Figure 1, let τ1 = {x, y,¬z} and τ2 = {x, y, z}. For τ1, the
traversal would visit n1, n3, n6, n7, n9, and τ1 is a satisfying
assignment since the traversal always leads to ⊤ node (n9).
As a counter-example, τ2 is not a satisfying assignment with
its corresponding traversal visiting n1, n3, n6, n7, n8, n9. τ2
traversal visits ⊥ node (n8) because variable z 7→ true in τ2
and Hi(n6) is node n8.

B. PROB Parameters
In the PROB structure, each decision node nd has two pa-

rameters θLo(nd) and θHi(nd), associated with the two branches

206

x

∧ ∧

y zz y

⊤⊥

n1

n2 n3

n4 n5 n6 n7

n8 n9

Fig. 1: A smooth PROB ψ1 with 9 nodes, n1, ..., n9, rep-
resenting F = (x ∨ y) ∧ (¬x ∨ ¬z). Branch parameters are
omitted

of nd, which sums up to 1. θLo(nd) is the normalized weight
of the literal ¬Var(nd) and similarly, θHi(nd) is that of the
literal Var(nd). One can view θLo(nd) to be the probability of
picking ¬Var(nd) and θHi(nd) to be that of picking Var(nd) by
the determinism property introduced later. Let xi be Var(nd).
Given a weight function W :

θLo(nd) =
W (¬xi)

W (¬xi) +W (xi)
θHi(nd) =

W (xi)

W (¬xi) +W (xi)

C. PROB Properties

The PROB structure has important properties such as de-
terminism and decomposability. In addition to the determinism
and decomposability properties, we ensure that PROBs used in
this work have the smoothness property through a smoothing
process (Algorithm 1).

Property 1 (Determinism). For every decision node nd, the set
of satisfying assignments represented by Hi(nd) and Lo(nd)
are logically disjoint.

Property 2 (Decomposability). For every conjunction node
nc, VarSet(ci)∩VarSet(cj) = ∅ for all ci and cj where ci, cj ∈
Child(nc) and ci ̸= cj .

Property 3 (Smoothness). For every decision node nd,
VarSet(Hi(nd)) = VarSet(Lo(nd)).

D. Joint Probability Calculation with PROB

In Section III-B, we mention that one can view the branch
parameters as the probability of choosing between the positive
and negative literal of a decision node. Notice that because of
the decomposability and determinism properties of PROB, it
is straightforward to calculate the joint probabilities at every
given node. At each conjunction node nc, since the variable
sets of the child nodes of nc are disjoint by decomposability,
the joint probability of nc is simply the product of joint
probabilities of each child node. At each decision node nd,
there are only two possible outcomes on Var(nd) - positive
literal Var(nd) or negative literal ¬Var(nd). By determinism
property, the joint probability is the sum of the two possible

scenarios. Formally, the calculations for joint probabilities P ′

at each node in PROB are as follows:

P ′ of ∧-node nc =
∏

c∈Child(nc)

P ′(c) (EQ1)

P ′ of decision-node nd = θLo(nd) × P
′(Lo(nd)) (EQ2)

+ θHi(nd) × P
′(Hi(nd))

For true node n, P ′(n) = 1 because it represents satisfying
assignments when reached. In contrast P ′(n) = 0 when n
is a false node as it represents non-satisfying assignments. In
Proposition 2, we show that weighted sampling is equivalent
to sampling according to joint probabilities of satisfying
assignments of a PROB.

IV. INC - SAMPLING FROM PROB

In this section, we introduce INC - a bottom-up algorithm
for weighted sampling on PROB. We first describe INC for
drawing one sample and subsequently describe how to extend
INC to draw k samples at once. We also provide proof of
correctness that INC is indeed performing weighted sampling.
As a side note, samples are drawn with replacement, in line
with the existing state-of-the-art weighted sampler [6].

A. Preprocessing PROB

In the main sampling algorithm (Algorithm 2) to be intro-
duced later in this section, the input is a smooth PROB. As a
preprocessing step, we introduce Smooth algorithm that takes
in a PROB ψ and performs smoothing.

The Smooth algorithm processes the nodes in the input
PROB ψ in a bottom-up manner while keeping track of
VarSet(n) for every node n in ψ using a map κ. True and
false nodes have ∅ as they are leaf nodes and do not represent
any variables. At each conjunction node, its variable set is the
union of variable sets of its child nodes.

The smoothing happens at decision node n in ψ when
VarSet(Lo(n)) and VarSet(Hi(n)) do not contain the same
set of variables as shown by lines 8 and 16 of Algorithm 1.
In the smoothing process, a new conjunction node (lcNode
for Lo(n) and rcNode for Hi(n)) is created to replace the
corresponding child of n, with the original child node now
set as a child of the conjunction node. Additionally, for each
of the missing variables v, a decision node representing v is
created and added as a child of the respective conjunction
node. The decision nodes created during smoothing have both
their lo-child and hi-child set to the true node. To reduce
memory footprint, we check if there exists the same decision
node before creating it in the checkMakeTrueDecisionNode
function.

As an example, we refer to ψ2 in Figure 2. It is obvious
that ψ2 is not smooth, because VarSet(Lo(n1)) = {y} and
VarSet(Hi(n1)) = {z}. In the smoothing process, we replace
Lo(n1) with a new conjunction node n2 and add a decision
node n4 representing missing variable z, with both child set
to true node n9. We repeat the steps for Hi(n1) to arrive at
PROB ψ1 in Figure 1.

207

Algorithm 1 Smooth - returns a smoothed PROB

Input: PROB ψ
Output: smooth PROB

1: κ← initMap()
2: for node n of ψ in bottom-up order do
3: if n is true node or false node then
4: κ[n]← ∅
5: else if n is ∧-node then
6: κ[n]← unionVarSet(Child(n), κ)
7: else
8: if κ[Hi(n)]− κ[Lo(n)] ̸= ∅ then
9: lset ← κ[Hi(n)]− κ[Lo(n)]

10: lcNode ← new ∧ −node()
11: lcNode.addChild(Lo(n))
12: for var v in lset do
13: dNode ← checkMakeTrueDecisionNode(v)
14: lcNode.addChild(dNode)
15: Lo(n)←lcNode
16: if κ[Lo(n)]− κ[Hi(n)] ̸= ∅ then
17: rset ← κ[Lo(n)]− κ[Hi(n)]
18: rcNode ← new ∧ −node()
19: rcNode.addChild(Hi(n))
20: for var v in rset do
21: dNode ← checkMakeTrueDecisionNode(v)
22: rcNode.addChild(dNode)
23: Hi(n)←rcNode
24: κ[n]← Var(n) ∪ unionVarSet({Hi(n), Lo(n)})
25: return ψ

x

y z

⊤⊥

n1

n5 n6

n8 n9

Fig. 2: A PROB ψ2 representing Boolean formula F = (x ∨
y) ∧ (¬x ∨ ¬z), branch parameters are omitted

B. Sampling Algorithm

INC takes a PROB ψ representing Boolean formula F and
draws a sample from the space of satisfying assignments of F ,
the process is illustrated by Algorithm 2. INC performs sam-
pling in a bottom-up manner while integrating the annotation
process in the same bottom-up pass. Since we want to sample
from the space of satisfying assignments we can ignore false
nodes in ψ entirely by considering a sub-DAG that excludes
false nodes and edges leading to them, as shown by line 3. As
an example, hideFalseNode when applied to ψ1 would remove
node n8 and the edges immediately leading to it. Next, INC
processes each of the remaining nodes in bottom-up order
while keeping two caches - ω to store the partial samples
from each node, φ to store the joint probability at each node.

Algorithm 2 INC - returns a satisfying assignment based on
PROB ψ parameters
Input: smooth PROB ψ
Output: a sampled satisfying assignment

1: cache ω ← initCache()
2: joint prob cache φ ← initCache()
3: ψ′ ← hideFalseNode(ψ)
4: for node n of ψ′ in bottom-up order do
5: if n is true node then
6: ω[n]← ∅
7: φ[n]← 1
8: else if n is ∧-node then
9: ω[n]← unionChild(Child(n), ω)

10: φ[n]←
∏

c∈Child(n) φ[c]
11: else
12: plo ← θLo(n) × φ[Lo(n)]
13: phi ← θHi(n) × φ[Hi(n)]
14: pjoint ← plo + phi
15: φ[n]← pjoint
16: r ← x ∼ binomial(1, phi

pjoint
)

17: if r is 1 then
18: ω[n] ← ω[Hi(n)] ∪ Var(n)
19: else
20: ω[n] ← ω[Lo(n)] ∪ ¬Var(n)
21: return ω[rootnode(ψ)]

INC starts with ∅ at the true node since there is no associated
variable.

At each conjunction node, INC takes the union of the child
nodes in line 9. Using n2 in Figure 1 as an example, if sample
drawn at n4 is ω[n4] = {¬z} and at n5 is ω[n5] = {y},
then unionChild(Child(n2), ω) = {y,¬z}. At each decision
node n, a decision on Var(n) is sampled from lines 16
to 20. We first calculate the joint probabilities, plo and phi
of choosing ¬Var(n) and choosing Var(n). Subsequently,
we sample decision on Var(n) using a binomial distribution
in line 16 with the probability of success being the joint
probability of choosing Var(n). After processing all nodes,
the sampled assignment is the output at root node of ψ.

Extending INC to k samples: It is straightforward to
extend the single sample INC shown in Algorithm 2 to draw
k samples in a single pass, where k is a user-specified number.
At each node, we have to store a list of k independent copies of
partial assignments drawn in ω. At each conjunction node nc,
we perform the same union process in line 9 of Algorithm 2
for child outputs in the same indices of the respective lists
in ω. More specifically, if nc has child nodes cx and cy , the
outputs of index i are combined to get the output of nc at index
i. This process is performed for all indices from 1 to k. At
each decision node nd, we now draw k independent samples
instead of a single sample from the binomial distribution as
shown in line 16. The sampling step in lines 16 to 20 are
performed independently for the k random numbers. There is
no change necessary for the calculation of joint probabilities

208

in Algorithm 2 as there is no change in literal weights.
Incremental sampling: Given a Boolean formula F

and weight function W , INC performs incremental sampling
with the sampling process shown in Figure 3. In the initial
round, INC compiles F and W into a PROB ψ and performs
sampling. Subsequent rounds involve applying a new set of
weights W to ψ, typically generated based on existing samples
by the controller [10], and performing weighted sampling
according to the updated weights. The number of sampling
rounds is determined by the controller component, whose logic
varies according to application.

Compile
into PROB

Weighted
Sampling

Is F
compiled?

CNF F
Weights W

Controller

No

Samples

YesUpdate
W

INC

Fig. 3: INC’s incremental sampling flow

C. Implementation Decisions

Log-Space Calculations: INC performs annotation pro-
cess - computation of joint probabilities in log space. This
design choice is made to avoid the usage of arbitrary precision
math libraries, which WAPS utilized to prevent numerical
underflow after many successive multiplications of probability
values. Using the LogSumExp trick below, it is possible to
avoid numerical underflow.

log(a+ b) = log(a) + log(1 +
b

a
)

= log(a) + log(1 + exp(log(b)− log(a)))

The joint probability at a decision node nd is given
by θLo(nd) × joint probability of Lo(nd) + θHi(nd) ×
joint probability of Hi(nd). Notice that if we were to
perform the calculation in log space, we would have to add
the two weighted log joint probabilities, termed plo and
phi in Algorithm 2. Using the LogSumExp trick, we do
not need to exponentiate plo and phi independently which
risks running into numerical underflow. Instead, we only
need to exponentiate the difference of plo and phi which is
more numerically stable. Equations EQ1 and EQ2 can be
implemented in log space as follows:

Q of ∧-node nc =
∑

c∈Child(nc)

Q(c)

Q of decision-node nd = LogSumExp[

log(θLo(nd)) +Q(Lo(nd)),

log(θHi(nd)) +Q(Hi(nd))]

In the equations above, Q refers to the corresponding log joint
probabilities in EQ1 and EQ2. In the experiments section,
we detail the runtime advantages of using log computations
compared to arbitrary precision math computations.

Dynamic Annotation: In existing state-of-the-art
weighted sampler WAPS, sampling is performed in two
passes - the first pass performs annotation and the second
pass samples assignments according to the joint probabilities.
In INC, we combine the two passes into a single bottom-up
pass performing annotation dynamically while sampling at
each node.

D. Theoretical Analysis

Proposition 1. Branch parameters of any decision node nd
are correct sampling probabilities, i.e. W (xi) : W (¬xi) =
θHi(xi) : θLo(xi) where Var(nd) = xi.

Proof.

W (xi)

W (¬xi)
=

W (xi)
W (xi)+W (¬xi)

W (¬xi)
W (xi)+W (¬xi)

=
θHi(xi)

θLo(xi)

We start with the ratio of literal weights of x, multiply both
numerator and denominator by W (xi)+W (¬xi) and arrive at
the ratio of branch parameters of nd. Notice that only the ratio
matters for sampling correctness and not the absolute value of
weights.

Remark 1. Let nd be an arbitrary decision node in PROB
ψ. When performing sampling according to a weight function
W , θLo(nd) is the probability of picking ¬Var(nd) and θHi(nd)

is that of Var(nd). The determinism property states that the
choice of either literal is disjoint at each decision node.

Proposition 2. INC samples an assignment τ from PROB ψ
with probability 1

N

∏
l∈τ W (l), where N is a normalization

factor.

Proof. The proof consists of two parts, one for ∧-node and
another for decision node.
∧-node: Let nc be an arbitrary conjunction node in

PROB ψ. Recall that by decomposability property, ∀ci, cj ∈
Child(nc) and ci ̸= cj , VarSet(ci) ∩ VarSet(cj) = ∅. As
such an arbitrary variable xi ∈ VarSet(nc) only belongs to
the variable set of one child node ci ∈ Child(nc). Therefore,
assignment of xi can be sampled independent of xj where
xj ∈ VarSet(cj),∀cj ̸= ci. Let τ ′ci be partial assignment
for child node ci ∈ Child(nc). Notice that each partial
assignment τ ′ci is sampled independently of others as there
are no overlapping variables, hence their joint probability is
simply the product of their individual probabilities. This agrees
with the weight of an assignment being the product of its
components, up to a normalization factor.

Decision node: Let nd be an arbitrary decision node in
PROB ψ and xd be Var(nd). At nd, we sample an assignment
of xd based on the parameters θLo(xd) and θHi(xd), which
are probabilities of literal assignment by Proposition 1. By
Proposition 1, one can see that the assignment of xd is sampled

209

correctly according to W . As the sampling process at nd is
independent of its child nodes by the determinism property,
the joint probability of sampled assignment of xd and the
output partial assignment from the corresponding child node
would be the product of their probabilities. Notice that the
joint probability aligns with the definition of weight of an
assignment being the product of the weight of its literals, up
to a normalization factor.

Since we do not consider the false node and treat it
as having 0 probability, we always sample from satisfying
assignments by starting at the true node in bottom-up ordering.
Reconciling the sampling process at the two types of nodes,
it is obvious that any combination of decision and ∧-nodes
encountered in the sampling process would agree with a given
weight function W up to a normalization factor 1/N . In
fact, N =

∑
τi∈S W (τi) where S is the set of satisfying

assignments of Boolean formula F that ψ represents. As
mentioned in Proposition 1 proof, normalization factors do
not affect the correctness of sampling according to W , and
we have shown that INC performs weighted sampling correctly
under multiplicative weight functions.

Remark 2. From the proof of Proposition 2, the determin-
ism and decomposability property is important to ensure the
correctness of INC. The smoothness property is important
to ensure that the sampled assignment by INC is complete.
For formula F = (x ∨ y) ∧ (¬x ∨ ¬z), an assignment τ1
sampled from a non-smooth PROB could be {x,¬z}. Notice
that τ1 is missing assignment for variable y. By performing
smoothing, we will be able to sample a complete assignment
of all variables in the Boolean formula as both child nodes of
each decision node n have the same VarSet(·).

V. EXPERIMENTS

We implement INC in Python 3.7.10, using NumPy 1.15 and
Toposort package. In our experiments, we make use of an off-
the-shelf KC diagram compiler, KCBox [23]. In the later parts
of this section, we performed additional comparisons against
an implementation of INC using the Gmpy2 arbitrary precision
math package (INCAP) to determine the impact of log-space
annotation computations.

Our benchmark suite consists of instances arising from
a wide range of real-world applications such as DQMR
networks, bit-blasted versions of SMT-LIB (SMT) bench-
marks, ISCAS89 circuits, and configurable systems [6], [10].
For incremental updates, we rely on the weight generation
mechanism proposed in the context of prior applications of
incremental sampling [10]. In particular, new weights are
generated based on the samples from the previous rounds,
resulting in the need to recompute joint probabilities in each
round. Keeping in line with prior work, we perform 10 rounds
(R1-R10) of incremental weighted sampling and 100 samples
drawn in each round. The experiments were conducted with a
timeout of 3600 seconds on clusters with Intel Xeon Platinum
8272CL processors.

In this section, we detail the extensive experiments con-
ducted to understand INC’s runtime behavior and to compare

it with the existing state-of-the-art weighted sampler WAPS [6]
in incremental weighted sampling tasks. We chose WAPS as
it has been shown to achieve significant runtime improvement
over other samplers, and accordingly has emerged as a sampler
of the choice for practical applications [10]. In particular, our
empirical evaluation sought to answer the following questions:

RQ 1 How does INC’s incremental weighted sampling run-
time performance compare to current state-of-the-
art?

RQ 2 How does using PROB affect runtime performance?
RQ 3 How does log-space calculations impact runtime

performance?
RQ 4 Does INC correctly perform weighted sampling?

RQ 1: Incremental Sampling Performance: The scatter
plot of incremental sampling runtime comparison is shown in
Figure 4, with Figure 4a showing runtime comparison for the
first round (R1) and Figure 4b showing runtime comparison
over 10 rounds. The vertical axes represent the runtime of
INC and the horizontal axes represent that of WAPS. In
the experiments, INC completed 650 out of 896 benchmarks
whereas WAPS completed 674. INC completed 21 benchmarks
that WAPS timed out and similarly, WAPS completed 45
benchmarks that INC timed out. In the experiments, INC
achieved a median speedup of 1.69× over WAPS.

Further results are shown in Table I. Observe that for
runtime taken for R1 (column 3), WAPS is faster and takes
around 0.44× of INC’s runtime in the median case. However,
INC takes the lead in runtime performance when we examine
the total time taken for the incremental rounds R2 to R10
(column 4). For incremental rounds, WAPS always took longer
than INC, in the median case WAPS took 4.48× longer than
INC. We compare the average incremental round runtime with
the first round runtime for both samplers in columns 1 and
2. In the median case, an incremental round for WAPS takes
67% of the time for R1 whereas an incremental round for
INC only requires 5.9% of the time R1 takes. We show the
per round runtime for 5 benchmarks in Table II to further
illustrate INC’s runtime advantage over WAPS for incremental
sampling rounds, even though both tools reuse the respective
KC diagram compiled in R1. This set of results highlights
INC’s superior performance over WAPS in the handling of
incremental sampling settings. INC’s advantage in incremental
sampling rounds led to better overall runtime performance than
WAPS in 75% of evaluations. The runtime advantage of INC
would be more obvious in applications requiring more than
10 rounds of samples.

Therefore, we conducted sampling experiments for 20
rounds to substantiate our claims that INC will have a larger
runtime lead over WAPS with more rounds. Both samplers are
given the same 3600s timeout as before and are to draw 100
samples per round, for 20 rounds. The number of completed
benchmarks is shown in Table III In the 20 sampling round
setting, INC completed 649 out of 896 benchmarks, timing
out on 1 additional benchmark compared to 10 sampling
round setting. In comparison, WAPS completed 596 of 896
benchmarks, timing out on 78 additional benchmarks than in

210

0 1000 2000 3000
Time taken (sec) by WAPS

0

1000

2000

3000

Ti
m

e
ta

ke
n

(s
ec

)b
y

IN
C

(a) Single Round (R1) Runtime Scatter Plot

0 1000 2000 3000
Time taken (sec) by WAPS

0

1000

2000

3000

Ti
m

e
ta

ke
n

(s
ec

)b
y

IN
C

(b) Incremental Runtime Scatter Plot

Fig. 4: Runtime comparisons between INC and state-of-the-art weighted sampler WAPS

Statistic
WAPS MEAN(R2 to R10)

WAPS R1
INC MEAN(R2 to R10)

INC R1
WAPS R1
INC R1

WAPS SUM(R2 to R10)
INC SUM(R2 to R10)

WAPS Total
INC Total

Mean 0.74 0.064 1.03 15.66 6.12

Std 0.24 0.040 1.47 26.42 10.73

Median 0.67 0.059 0.44 4.48 1.69

Max 1.25 0.188 10.65 172.66 73.96

TABLE I: Incremental weighted sampling runtime ratio statistics for WAPS and INC (Numerators and denominators refer to
the corresponding runtimes)

the 10 sampling round setting. In addition, WAPS takes on
median 2.17× longer than INC under the 20 sampling round
setting, an increase over the 1.69× under the 10 sampling
round setting.

The runtime results clearly highlight the advantage of INC
for incremental weighted sampling applications and that INC
is noticeably better at incremental sampling than the current
state-of-the-art.

RQ 2: PROB Performance Impacts: We now focus on
the analysis of the impact of using PROB compared to d-
DNNF in the design of a weighted sampler. We analyzed
the size of both PROB and d-DNNF across the benchmarks
that both tools managed to compile and show the results
in Table IV. From Table IV, PROB is always smaller than
the corresponding d-DNNF. Additionally, PROB is at median
4.64× smaller than the corresponding d-DNNF, and that for
PROB is an order of magnitude smaller for at least 25%
of the benchmarks. As such, PROB emerges as the clear
choice of knowledge compilation diagram used in INC, owing
to its succinctness which leads to fast incremental sampling
runtimes.

RQ 3: Log-space Computation Performance Impacts:
In the design of INC, we utilized log-space computations
to perform annotation computations as opposed to naively
using arbitrary precision math libraries. In order to analyze the
impact of this design choice, we implemented a version of INC
where the dynamic annotation computations are performed
using arbitrary precision math in a similar manner as WAPS.
We refer to the arbitrary precision math version of INC as
INCAP. As an ablation study, we compare the runtime of
both implementations across all the benchmarks and show the
comparison in Table V. The statistics shown is for the ratio
of INCAP runtime to INC runtime, a value of 1.12 means that
INCAP takes 1.12× that of INC for the corresponding statistics.

The results in Table V highlight the runtime advantages
of our decision to use log-space computations over arbitrary
precision computations. INC has faster runtime than INCAP

in majority of the benchmarks. INC displayed a minimum of
0.70×, a median of 1.12×,and a max of 1.89× speedup over
INCAP. Furthermore, INCAP timed out on 2 more benchmarks
compared to INC. It is worth emphasizing that log-space

211

Benchmark Tool R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total Speed

or-50-5-5-UC-10 WAPS 56.6 56.3 52.5 59.4 52.5 53.6 59.4 53.2 53.4 61.7 558.6 1.0×
(100, 253) INC 1461.3 7.6 8.4 8.4 8.4 8.4 8.5 8.5 8.4 8.5 1536.3 0.4×
or-100-20-9-UC-30 WAPS 73.0 69.1 66.7 76.0 66.5 66.9 76.6 66.0 66.9 78.6 706.1 1.0×
(200, 528) INC 269.5 4.7 4.8 4.8 4.9 5.1 4.8 4.8 4.8 5.1 313.4 2.3×
s953a 15 7 WAPS 1.7 1.1 1.1 1.2 1.0 1.1 1.2 1.1 1.1 1.3 11.9 1.0×
(602, 1657) INC 4.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 11.5 1.0×
h8max WAPS 90.3 104.2 92.4 116.0 94.3 94.1 112.9 92.9 94.4 120.4 1011.9 1.0×
(1202, 3072) INC 34.1 2.1 2.2 2.4 2.3 2.4 2.2 2.4 2.4 2.3 55.7 18.2×
innovator WAPS 195.5 221.9 201.3 244.4 200.1 206.7 247.2 202.0 202.9 257.4 2179.3 1.0×
(1256, 50452) INC 32.8 1.6 1.8 1.9 1.9 1.9 1.8 1.9 1.9 1.9 49.4 44.1×

TABLE II: Runtime (seconds) breakdowns for each of ten rounds (R1-R10) between WAPS and INC for benchmarks of
different sizes e.g. ‘h8max’ benchmark consists of 1202 variables and 3072 clauses.

Number of rounds WAPS INC

10 674 650

20 596 649

TABLE III: Number of completed benchmarks within 3600s,
for 10 and 20 round settings

Statistic WAPS KC size
INC KC size

Mean 18.92

Std 81.19

Median 4.64

Max 1734.08

TABLE IV: Statistics for number of nodes in d-DNNF (WAPS
KC diagram) over that of smoothed PROB (INC KC diagram).

computations do not introduce any error, and our usage of
them sought to improve on the naive usage of arbitrary
precision math libraries.

RQ 4: INC Sampling Quality: We conducted additional
evaluation to further substantiate evidence of INC’s sampling
correctness, apart from theoretical analysis in Section IV-D.
Specifically, we compared the samples from INC and WAPS,
which has proven theoretical guarantees [6], on the ‘case110’
benchmark that is extensively used by prior works [4]–[6]. We
gave each positive literal weight of 0.75 and each negative
literal 0.25, and subsequently drew one million samples using
both INC and WAPS and compare them in Figure 5.

Statistic INCAP runtime
INC runtime

Mean 1.14

Std 0.16

Median 1.12

Max 1.89

TABLE V: Runtime comparison of INC and INCAP

0 22 24 26 28 210 212 214 216

Count (log2 scale)

0

22

24

26

28

210

#
of

So
lu

tio
ns

(l
og

2
sc

al
e)

WAPS
INC

Fig. 5: Distribution comparison for Case110, with log scale
for both axes

Figure 5 shows the distributions of samples drawn by INC
and WAPS for ‘case110’ benchmark. A point (x, y) on the plot
represents y number of unique solutions that were sampled x
times in the sampling process by the respective samplers. The
almost perfect match between the weighted samples drawn
by INC and WAPS, coupled with our theoretical analysis in
Section IV-D, substantiates our claim INC’s correctness in
performing weighted sampling. Additionally, it also shows that
INC can be a functional replacement for existing state-of-the-
art sampler WAPS, given that both have theoretical guarantees.

Discussion: We demonstrated the runtime performance
advantages of INC and the two main contributing factors - a
choice of succinct knowledge compilation form and dynamic
log-space annotation. INC takes longer than WAPS for single-
round sampling, mainly because WAPS takes less time for
KC diagram compilation than INC, leading to WAPS being
faster in single-round sampling. In the incremental sampling
setting, the compilation costs of KC diagrams are amortized,
and since INC is substantially better at handling incremental
updates, it thus took the overall runtime lead from WAPS

212

in the majority of the benchmarks. Extrapolating the trend,
it is most likely that INC would have a larger runtime lead
over WAPS for applications requiring more than 10 sampling
rounds. The runtime breakdown demonstrates that INC is
able to amortize the compilation time over the incremental
sampling rounds, with subsequent rounds being much faster
than WAPS. In summary, we show that INC is substantially
better at incremental sampling than existing state-of-the-art.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we introduced a bottom-up weighted sampler,
INC, that is optimized for incremental weighted sampling. By
exploiting the succinct structure of PROB and log-space com-
putations, INC demonstrated superior runtime performance in
a series of extensive benchmarks when compared to the cur-
rent state-of-the-art weighted sampler WAPS. The improved
runtime performance, coupled with correctness guarantees,
makes a strong case for the wide adoption of INC in future
applications.

For future work, a natural step would be to seek further
runtime improvements for PROB compilation since INC takes
longer than SOTA for the initial sampling round, due to slower
compilation. Another extension would be to investigate the
design of a partial annotation algorithm to reduce computa-
tions when only a small portion of the weights have been
updated. It would also be of interest if we could store partial
sampled assignments at each node as a succinct sketch to
reduce memory footprint, for instance we could store each
unique assignment and its count.

ACKNOWLEDGEMENT

We sincerely thank Yong Lai for the insightful discussions.
Suwei Yang is supported by the Grab-NUS AI Lab, a joint col-
laboration between GrabTaxi Holdings Pte. Ltd., National Uni-
versity of Singapore, and the Industrial Postgraduate Program
(Grant: S18-1198-IPP-II) funded by the Economic Develop-
ment Board of Singapore. Kuldeep S. Meel is supported in part
by National Research Foundation Singapore under its NRF
Fellowship Programme(NRF-NRFFAI1-2019-0004), Ministry
of Education Singapore Tier 2 grant (MOE-T2EP20121-0011),
and Ministry of Education Singapore Tier 1 Grant (R-252-000-
B59-114).

REFERENCES

[1] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained
random simulation,” in 2007 IEEE/ACM International Conference on
Computer-Aided Design, pp. 258–265, IEEE, 2007.

[2] M. Jerrum and A. Sinclair, “The markov chain monte carlo method: an
approach to approximate counting and integration,” 1996.

[3] T. Shi, J. Steinhardt, and P. Liang, “Learning where to sample in
structured prediction,” in AISTATS, 2015.

[4] D. Achlioptas, Z. Hammoudeh, and P. Theodoropoulos, “Fast sampling
of perfectly uniform satisfying assignments,” in SAT, 2018.

[5] S. Sharma, R. Gupta, S. Roy, and K. S. Meel, “Knowledge compilation
meets uniform sampling,” in LPAR, 2018.

[6] R. Gupta, S. Sharma, S. Roy, and K. S. Meel, “Waps: Weighted and
projected sampling,” in Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 4 2019.

[7] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, and
G. Shurek, “Constraint-based random stimuli generation for hardware
verification,” AI Mag., vol. 28, pp. 13–30, 2007.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[9] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4,
p. 307–392, 2019.

[10] E. Baranov, A. Legay, and K. S. Meel, “Baital: An adaptive weighted
sampling approach for improved t-wise coverage,” in Proc. 28th Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2020.

[11] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp, G. V.
den Broeck, K. Kersting, and Z. Ghahramani, “Einsum networks: Fast
and scalable learning of tractable probabilistic circuits,” in ICML, 2020.

[12] T. Baluta, Z. L. Chua, K. S. Meel, and P. Saxena, “Scalable quantitative
verification for deep neural networks,” in Proceedings of International
Conference on Software Engineering (ICSE), 5 2021.

[13] A. Darwiche and P. Marquis, “A knowledge compilation map,” J. Artif.
Intell. Res., vol. 17, pp. 229–264, 2002.

[14] Y. Lai, D. Liu, and M. Yin, “New canonical representations by augment-
ing obdds with conjunctive decomposition,” J. Artif. Intell. Res., vol. 58,
pp. 453–521, 2017.

[15] C. Y. Lee, “Representation of switching circuits by binary-decision
programs,” Bell System Technical Journal, vol. 38, pp. 985–999, 1959.

[16] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, pp. 677–691, 1986.

[17] S. ichi Minato, “Zero-suppressed bdds for set manipulation in com-
binatorial problems,” 30th ACM/IEEE Design Automation Conference,
pp. 272–277, 1993.

[18] A. Darwiche, “Decomposable negation normal form,” J. ACM, vol. 48,
pp. 608–647, 2001.

[19] A. Darwiche, “A compiler for deterministic, decomposable negation
normal form,” in AAAI/IAAI, 2002.

[20] R. Mateescu, R. Dechter, and R. Marinescu, “And/or multi-valued
decision diagrams (aomdds) for graphical models,” J. Artif. Intell. Res.,
vol. 33, pp. 465–519, 2008.

[21] A. Darwiche, “Sdd: A new canonical representation of propositional
knowledge bases,” in IJCAI, 2011.

[22] G. Boole, “An investigation of the laws of thought: On which are
founded the mathematical theories of logic and probabilities,” 1854.

[23] Y. Lai, K. S. Meel, and R. Yap, “The power of literal equivalence
in model counting,” in Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), 2 2021.

213

	Introduction
	Background and Related Work
	PROB: - Probabilistic OBDD[]
	PROB Structure
	PROB Parameters
	PROB Properties
	Joint Probability Calculation with PROB

	INC - Sampling from PROB
	Preprocessing PROB
	Sampling Algorithm
	Implementation Decisions
	Theoretical Analysis

	Experiments
	Conclusion and Future Work
	References

