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Abstract—Bounded Model Checking (BMC) is an effective and
precise static analysis technique that reduces program verification
to satisfiability (SAT) solving. In this paper, we present the
design and implementation of a new BMC engine (SEABMC)
in the SEAHORN verification framework for LLVM. SEABMC
precisely models arithmetic, pointer, and memory operations of
LLVM. Our key design innovation is to structure verification
condition generation around a series of transformations, starting
with a custom IR (called SEA-IR) that explicitly purifies all
memory operations by explicating dependencies between them.
This transformation-based approach enables supporting many
different styles of verification conditions. To support memory
safety checking, we extend our base approach with fat pointers
and shadow bits of memory to keep track of metadata, such
as the size of a pointed-to object. To evaluate SEABMC, we
have used it to verify aws-c-common library from AWS. We
report on the effect of different encoding options with different
SMT solvers, and also compare with CBMC, SMACK, KLEE
and SYMBIOTIC. We show that SEABMC is capable of providing
order of magnitude improvement compared with state-of-the-art.

I. INTRODUCTION

Bounded Model Checking (BMC) is an effective technique
for precise software static analysis. It encodes a bounded
(i.e., loop- and recursion-free) program P with assertions
into a verification condition V C in (propositional) logic, such
that V C is satisfiable iff P has an execution that violates
an assertion. The satisfiability of V C is decided by a SAT-
solver (or, more commonly, by an SMT-solver). BMC can
be extremely precise, including path-sensitivity, bit-precision,
and precise memory model. Its key weakness is scalability –
precise reasoning requires careful selection of what details to
include into the analysis.

A BMC engine can be implemented directly at the level
of program source code, as best illustrated by CBMC [1] –
the oldest and most mature BMC for C. This allows verifying
absence of undefined behaviour and other source-level prop-
erties, and improves error reporting since it can be done at
the source level. However, this complicates the implementa-
tion because modern programming languages are incredibly
complex. Moreover, most industrial code relies on de-facto,
rather than the standard language semantics [2] and on non-

standard features that are supported by mainstream compilers.
An alternative is to implement BMC on an intermediate
representation (IR) of a compiler. LLVM IR [3], called bitcode,
is a common choice. This simplifies implementation to focus
only on capturing semantics of the IR, allows sharing infras-
tructure with the compiler, simplifies integration of verification
into current build systems, and simplifies supporting multiple
source languages (e.g., SMACK [4] supports 8 languages [5]).
This is the approach we take in this paper.

Over the years, there have been multiple BMC tools de-
veloped for LLVM, including SEAHORN (that we build on),
SMACK, and LLBMC [6]. However, the issue still remains
that existing tools are either not maintained, commercial (and
not publicly available, e.g. LLBMC), or are not effective at
bit- and memory-precise reasoning (SEAHORN and SMACK).
Our goal is to address this deficiency, while re-examining
and re-evaluating many of the design decisions. Thus, while
BMC is a mature technique, we have two objectives. First, we
want different strategies for generating verification conditions
(VCGen) through program transformations. This allows us to
examine which encoding works best in practice for production
code, and why. Second, we want to provide mechanisms
to express safety properties, e.g. memory safety, succinctly.
In accomplishing these objectives, we believe that we have
identified a new interesting point in the design space.

For our first objective, we propose a new pipeline. A
source program is translated to a new IR, called SEA-IR, that
extends LLVM IR, with explicit dependency between memory
operations. This, effectively, purifies memory operations, i.e.,
there is no global memory, and no side-effects. A SEA-IR
program then goes through a series of program transformations
for VCGen. The program is progressively reduced to a pure
data-flow form in which all instructions execute in parallel,
and is only then, converted to SMT-LIB supported logic. This
allows experimenting with different strategies of VCGen by
controlling these transformations. For example, we can gen-
erate VCs using a control flow representation of the program
like DAFNY [7] or a pure data flow representation like CBMC.
VCs depend on memory representation. Thus, we explore
two different forms of representing memory content: lambda-
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based [8] that represents memory as nested ITE-expressions1,
and array-based that uses SMT theory of arrays [9]. In partic-
ular, lambda-based representation allows precise and efficient
modelling of wide memory operations such as memcpy. We
also explore the space of memory models between flat memory
in which memory is a flat array, and an object memory where
memory is represented by a set of arrays.

To improve checking for safety properties, our second
objective, we attach additional information to pointers (so
called fat) and to memory (so called shadow). This simplifies
tracking of various program metadata for modelling safety
properties. As an example, we can use fat pointers to check for
out of bounds array access and shadow memory to check for
immutability of read only memory. While existing tools report
memory safety analysis, SEABMC can capture metadata of
arbitrary size since we are not constrained by concrete pointer
or memory width. Additionally, we model pointer provenance.
This allows us to catch out-of-bounds accesses which might
be missed by tools like LLBMC and ASAN [10].

We evaluate SEABMC on verification tasks of
aws-c-common C library developed by Amazon Web
Services (AWS). The library is a collection of common
data-structures for C (including buffers, arrays, lists, etc.).
We chose it for several reasons. First of all, it has been
recently verified using CBMC. Thus, it includes many
meaningful verification tasks. Second, it is a live industrial
project, thus, it provides an example of how to integrate
SEABMC into a real project, and shows that SEABMC
supports all of the necessary language features. Third, it
provides an opportunity to compare head-to-head against a
mature tool (CBMC) on industrial code. We feel this is a
more interesting comparison than, for example, comparing
on isolated verification benchmarks of SVCOMP [11]. We
show that SEABMC is an order of magnitude faster than
CBMC, and outperforms three mature LLVM-based tools:
SMACK, SYMBIOTIC [12] and KLEE [13]. Note that we
focus on SEABMC design and performance. An extensive
case study comparing different kinds of verification tools on
aws-c-common is available in [14].

In summary, this paper makes the following contributions:
an IR, SEA-IR, for LLVM bitcode that purifies memory
operations; a VCGen that combines program transformations
with encoding into logic allowing for many different styles
of VCs; a memory model that combines fat-pointers with
shadow-memory to represent metadata; an open-sourced BMC
tool; and, a thorough evaluation against the state-of-the-art
verification tools on production C code.

II. GENERATING VERIFICATION CONDITIONS

This section presents our main verification condition gen-
eration (VCGen) algorithm. We start with a new intermediate
representation, that we call SEA-IR. This representation ex-
tends LLVM bitcode with purified memory operations. We
then describe a series of transformations that transform a

1ITE stands for If-Then-Else.

program in SEA-IR to a pure data-flow (PD) form where no
part of computation depends on control. Each transformation
progressively simplifies the program for generating verification
conditions. The PD form is one from which verification condi-
tions can be generated in the most straightforward way. Finally,
we show how PD programs can be converted to verification
conditions in SMT-LIB. In this section, we assume that
the input program contains only one function, no loops or
global variables. In practice, this is achieved by inlining all
functions, unrolling loops to a fixed depth, and eliminating
global variables. The loop unroll bound is often detected
automatically, but can also be set by the user.
SEA-IR SEABMC transforms LLVM bitcode to an inter-
mediate representation, called SEA-IR, that extends LLVM
bitcode by making dependency information between memory
operations explicit. In LLVM IR, this information does not
exist in the program. Fig. 1 shows the simplified syntax of
SEA-IR. Here, we present a simplified version with many
features removed, e.g., types, expressions, function calls, etc.
However, we assume that the type of each register is known
(but not shown). We use R to represent a scalar register, P for a
pointer register and M for a memory register. A legal SEA-IR
program is assumed to be in a Static Single Assignment (SSA)
form with all registers are assigned before use, all expressions
well-typed and a program always ending with a halt.

We use the term object to refer to an allocated sequence
of bytes in memory. Interestingly, we do not use a single
addressable memory that maps from addresses to values.
Instead, a SEA-IR program uses a set of memory regions
or memories, which collectively contains all objects in a
program. Each memory, in-turn, contains a subset of objects
used in the program. To maintain compatibility with de-facto
semantics, addresses are assigned from a single address space
and are, thus, globally unique. To aid program analysis, all
memories are pure: storing in memory creates a new memory
i.e., definition; loading from a memory is a use. This def-use
scheme [15] is known as MemorySSA in LLVM. Partitioning
memory into multiple memories relieves the SMT-solver from
some of the alias analysis reasoning.

To explain SEA-IR, we use a simple C program in Fig. 2.
The program initializes variable x with a non-deterministic 8-
bit integer obtained by the return value of function nd_char().
The value of x is further constrained by the assume, such that
x > 0 && x < 10. Then, the program non-deterministically
allocates 1- or 2-byte memory region and assigns the address
to the variable p. The first byte that p points to is assigned
by the value of x. The second byte (if any) is assigned 0.
For the moment, ignore that the second assignment might be
undefined behaviour (we expand on this in Sec III). Finally,
the two asserts describe the post-condition.

Fig. 3a shows the SEA-IR program transformed from the
C program. In this presentation, we do not strictly follow the
syntax of SEA-IR. For example, we allow immediate values
to appear in place of registers, and write expressions in infix
form. The program is a single function main, which consists
of four basic blocks labeled by BB0, BB1, BB2 and BB3. A basic
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PR ::= fun main(){BB+}
BB ::= L : PHI∗ S+

(BR | halt)

BR ::= br E, L, L | br L

PHI ::= R = phi [R, L](,[R, L])∗ |
M = phi [M, L](,[M, L])∗ |
P = phi [P, L](,[P, L])∗

S ::= RDEF | MDEF | VS

RDEF ::= R = E | P, M = alloca R, M |
P, M = malloc R, M | R = load P, M |
P = load P, M | M = free P, M

MDEF ::= M = store R, P, M | M = store P, P, M

VS ::= assert R | assume R

Fig. 1: Simplified grammar of SEA-IR, where E, L R, P and M
are expressions, labels, scalar registers, pointer registers and memory
registers, respectively.

block consists of a label, zero or more PHI-statements, one or
more statements, an optional branch statement or a halt.

A SEA-IR program has three types of registers: scalar
registers, pointer registers and memory registers. Scalar reg-
isters store values of basic datatype – integers. Pointers store
pointer values. Memory registers store memory regions, and
map from addresses to values. Each memory register maps to
a unique memory and we use memory register and memory
interchangeably. For example, in Fig. 3a, R0 is a scalar register
which stores an integer and P1 is a register for storing a pointer.
M0 and M1 are memory registers. Since each program is finite,
the number of registers is finite as well.

An assignment statement defines the register by the value
of a given expression. We assume that expressions include the
usual set of operations, e.g., arithmetic, bitwise operations,
cast operations and pointer arithmetic. For example, in BB0 of
Fig. 3a, R2 = R0 < 10 defines the value of register R2 by the
value of the expression R0 < 10, where < is an unsigned 8-bit
less-than operator.

A phi selects a value from a list of values when a control
flow merges. For example, M3 = phi[M1,BB1],[M2,BB2] in
BB3 of Fig. 3a assigns M1 (M2) to M3 if the previously executed
basic block was BB1 (BB2).

SEA-IR provides alloca and malloc instructions to allo-
cate memory on the stack and the heap, respectively. A given
number of bytes are allocated in memory on RHS of the
statement, defining a new memory on the LHS. While the
allocation does not change memory, it does define it. This is
explained in Sec. III. Consider P1, M1 = malloc 2, M0 in BB1

of Fig. 3a. It allocates 2 bytes (on the heap) in memory M0,
defines memory M1 and a fresh pointer in P1.

A store, e.g., M5 = store 0, P5, M4 in BB3, defines mem-
ory M5 by writing the value 0 to the address pointed-to by the
pointer register P5 in memory M4. Note that the instruction
is pure; i.e., all effects of the instructions are on the output
registers only. The result of the modification is in M5, while M4

is unchanged. Similarly, a load reads the value pointed-to by
a pointer register in memory register M, and assigns the value
to a new register. assert and assume are the usual verification
statements for assertions and assumptions, respectively.

1 int main() {
2 uint8_t x = nd_char();
3 assume(x > 0 && x < 10);
4 uint8_t *p = nd_bool() ? malloc(2*sizeof(uint8_t))
5 : malloc(sizeof(uint8_t));
6 *p = x;
7 *(p + 1) = 0;
8 assert(0 < *p && *p < 10);
9 assert(*(p + 1) == 0); // potential UB

10 return 0;
11 }

Fig. 2: An example C program.

Program Transformation Before generating verification con-
ditions, a series of program transformations, as given below,
are applied to a SEA-IR program.
Single Assert Form. A program is in a Single Assert (SA)
form if it only contains one assert, which appears as the
last instruction (before halt) in the last block of a program.
Fig. 3b shows the code in a SA form transformed from
the one in Fig. 3a, where an ERR label is added to the
original code, and denotes an error state. In BB3, assert R6 is
transformed into br R6, BB4, ERR, meaning that if R6 is false,
then the program’s execution trace is diverted to ERR. Similarly,
assert 0 = 0 in BB3 is transformed into assume 0 != 0 and
br ERR.
Single Assume Single Assert (SASA) Form. A program is in
SASA form if it is in SA form, and contains a single assume

immediately followed by a single assert. For example, the
two definition of registers R1 and R2 in BB0 of Fig. 3b are
combined into one definition of R1 in Fig. 3c, where the two
boolean expressions are combined by a conjunction. A phi-
statement, A = phi [R6,BB4],[R1,BB3], is added to ERR, so
that register A tracks the value of the conjunction. The assume

ensures that A is true prior to the assertion.
Gated Single Static Assignment Form. A program in SASA
form is further transformed into a Gated Single Static As-
signment (GSSA) form, where phi-functions are replaced by
select expressions2. For example, phi [M1,BB1], [M2,BB2]

in ERR of Fig. 3c is transformed into select R2, M1, M2 in
Fig. 3d, where R2 is the condition that the program trace is
diverted to BB1 or BB2.
Pure Dataflow Form. A (loop-free) program is in a Pure
Dataflow (PD) form if it is in GSSA form and contains a
single basic block. As shown in Fig. 4a, all the labels and
br are removed from Fig. 3d, and the five basic blocks are
merged into one single basic block.
Reduced Pure Dataflow Form. A program is in a reduced PD
form if every definition appears on a def-use chain of either
assume or assert. Each such definition is said to be in the
cone of influence (COI). In Fig. 4a, the highlighted code is
not in the cone of influence and is not considered.

A reduced PD program has no control dependencies. It is
essentially a sequence of equations with two side-conditions
determined by assume and assert. All definitions are used,

2In LLVM, select is the usual ternary ITE such as a ? c : b in C.
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fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0
assume R1
R2 = R0 < 10
assume R2
R3 = nd_bool()
br R3, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
P4 = phi [P1,BB1],[P2,BB2]
M4 = store R0, P4, M3
P5 = P4 + 1
M5 = store 0, P5, M4
R6 = R0 > 0 && R0 < 10
assert R6
assert 0 == 0
halt

}

(a) SEA-IR

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0
assume R1
R2 = R0 < 10
assume R2
R3 = nd_bool()
br R3, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
P4 = phi [P1,BB1],[P2,BB2]
M4 = store R0, P4, M3
P5 = P4 + 1
M5 = store 0, P5, M4
R6 = R0 > 0 && R0 < 10
br R6, BB4, ERR

BB4:
assume 0 != 0
br ERR

ERR:
assert false
halt

}

(b) Single Assert (SA)

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
br R2, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
P3 = phi [P1,BB1],[P2,BB2]
M4 = store R0, P3, M3
P4 = P3 + 1
M5 = store 0, P4, M4
R5 = R0 > 0 && R0 < 10
br R5, BB4, ERR

BB4:
R6 = false
br ERR

ERR:
A = phi [R6,BB4],[R1,BB3]
assume A
assert false
halt

}

(c) Single Assume (SASA)

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
br R2, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = select R2, M1, M2
P3 = select R2, P1, P2
M4 = store R0, P3, M3
P4 = P3 + 1
M5 = store 0, P4, M4
R5 = R0 > 0 && R0 < 10
br R5, BB4, ERR

BB4:
R6 = false
br ERR

ERR:
A = select R5, R6, R1
assume A
assert false
halt

}

(d) Gated SSA (GSSA)

Fig. 3: Program from Fig. 2 in: (a) SEA-IR, (b) SA, (c) SASA, and (d) GSSA forms.

fun main() {
entry:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
P1, M1 = malloc 2, M0
P2, M2 = malloc 1, M0

M3 = select R2, M1, M2
P3 = select R2, P1, P2

M4 = store R0, P3, M3
P4 = P3 + 1

M5 = store 0, P4, M4
R5 = R0 > 0 && R0 < 10
R6 = false
A = select R5, R6, R1
assume A
assert 0
halt

}

(a) Pure-Dataflow (PD)

r1 = (0 < r0 ∧ r0 < 10) ∧

p1 = addr0 ∧m1 = m0 ∧
p2 = addr0 + 4 ∧m2 = m0 ∧

p3 = ite(r2, p1, p2) ∧

p4 = p3 + 1 ∧

r5 = (r0 > 0 ∧ r0 < 10) ∧
r6 = false ∧
a = ite(r5, r6, r1) ∧
a ∧
¬false

(b) SMT-LIB

Fig. 4: Program from Fig. 2 in PD and SMT-LIB forms. The
highlighted lines are removed from the program.

directly, or indirectly, by either assume or assert (or both).
Now, generating VC implies mapping each definition into a
logic equation.

Verification Condition Generation We now describe the
translation function sym that encodes a program into a VC.
Throughout the section, we illustrate sym using the program
in Fig. 4a and the corresponding VC in Fig. 4b.

The input to sym is a SEA-IR program in a reduced PD
form, and the output is a SMT-LIB program. For simplicity
of presentation, we assume that two fundamental sorts are
used in the encoding: bit-vector of 64 bits, bv(64), and a map

between bit-vectors, bv(64) → bv(64).3 In addition, we use
the following helper sorts: scalr : bv(64), ptrs : scalr , and
mems : bv(64) → bv(64), where scalr is sorts of scalars,
ptrs of pointers, and mems of memories.
sym is defined recursively, bottom up, on the abstract

syntax tree of SEA-IR. First, each register, R, is mapped to a
symbolic constant sym(R) of an appropriate sort. To simplify
the presentation, we use a lower-case math font for constants
corresponding to the register. For example, in Fig. 4a, sym(R0)
is r0 of scalr sort, sym(P2) is p2 of ptrs sort, and sym(M0)
is m0 of mems sort, respectively.

Second, each expression E in SEA-IR is mapped into a
corresponding SMT-LIB expression sym(E). We omit the
details of this step since they are fairly standard. For example,
a select is translated into an ite , scalar addition, such as
R9 + 1 is translated into bit-vector addition bvadd, etc. Pointer
manipulating expressions, such as pointer arithmetic (gep) and
pointer-to-integer cast (ptoi) are described in Sec. III.

Finally, sym translates each statement into an equality. For
example, R = E is translated into r = e, where e is sym(E).
For example, in Fig. 4a, A = select R5,R6,R1 is translated
into a = ite(r5, r6, r1) in Fig. 4b.

Translating alloca and malloc requires a memory allocator.
We parameterize sym by an allocation function alloc : A →
ptrs that maps allocation expressions in A to values of pointer
sort. For example, in Fig. 5, P1, M1 = alloca R0, M0 is
translated into p1 = alloc(alloca R0 M0) ∧ m1 = m0, and is
reduced to p1 = addr0∧m1 = m0, where addr0 is the return
value of alloc.

3In practice, SEABMC supports multiple bit-widths for scalars, and different
ranges for values for maps.
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sym(R = E) ≜ r = e sym(assume R) ≜ r sym(assert R) ≜ ¬r
sym(M1 = store R1,P2,M0) ≜ m1 = write(m0, r1, p2)

sym(R1 = load P0,M) ≜ p1 = read(m, p0)

sym(P1,M1 = alloca R0,M0) ≜ p1 = alloc(alloca R0,M0) ∧ m1 = m0

sym(P1,M1 = malloc R0,M0) ≜ p1 = alloc(malloc R0,M0) ∧ m1 = m0

Fig. 5: Definition of sym.

∀a ∈ A · size(a) is known ∀a ∈ A · (alloc(a) mod align(a)) = 0

∀a1 ̸= a2 ∈ A · (alloc(a1) + size(a1) ≤ alloc(a2)) ∨ (alloc(a2)+

size(a2) ≤ alloc(a1))

Fig. 6: Specifications for size , align , and alloc.

For sym, alloc must satisfy the basic specifications of a
memory allocator. The spec is formalized in Fig. 6, where
size and align return the size and alignment of each allocation
expression in A. Intuitively, each allocated segment must have
a statically known bound on size, all pointers returned by
an allocation are aligned, and all allocations are mutually
disjoint. For example, in Fig. 4a, the memory allocations
in P2, M1 = malloc 2, M0 and P1, M2 = malloc 1, M0 are
guaranteed to be disjoint since Fig. 4b adds a constraint that
p1 = addr0 ∧ p2 = addr0 + 4. In practice, we also enforce
that stack allocations (alloca) return high addresses, and heap
allocations (malloc) return low addresses. Other constraints,
such as separating kernel- and user-space addresses can be
easily added.

The semantics for memory operations depends on the rep-
resentation of memories (see Sec. III). We use two functions,
read and write , to encapsulate the actual translation when
defining the meaning of load and store, respectively. The
function read(m, p) represents the value of the memory reg-
ister m at index p. The function write(m, r1 , p2 ) represents a
new memory obtained by writing the value r1 at index p2 in
m. In Fig. 5, load P0, M and store R1, P2, M0 are translated
into read(m, p0), and write(m0, r1, p2), respectively.

SEABMC has two memory representations: Arrays and
Lambdas.
Arrays. Memories are modeled by an SMT-LIB theory of
extensional arrays ArraysEx4. A memory register M is mapped
to a symbolic constant m, where m is of sort mems . As shown
in Fig. 7, a write is translated into an ArrayEx store, and a
read is translated into an ArrayEx select.
Lambdas. Memories are modelled by λ-functions of the form
λx.e, where e is an expression with free occurrences of x. A
memory register M is translated into an uninterpreted function
m of sort mems . As shown in Fig. 7, read(m, r0) is translated
into a function application m(r0), and write(m0, r1, p2) is
translated into a new λ-function, λx.ite(x = p2, r1,m0). In
the final VC, function applications are β-reduced to substitute
formal arguments with actual parameters. Thus, the VC only

4http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml.

Array λ
read(m, p0) select m p0 m(p0)

write(m0, r1, p2) store m0 r1 p2 λx.ite(x = p2, r1,m0(x))

Fig. 7: Translation of read and write.

RDEF ::= R = isderef R, R | R = isalloc R,M | R = ismod R, M

Fig. 8: SEA-IR syntax for memory safety.

has ites, and does not require ArrayEx support in the SMT-
solver.

Overall, for a program P in a reduced PD form with a
sequence of statements S0 · · · Sk, followed by assume R0 and
assert R1, sym(P) is defined as follows:

sym(P) ≜

 ∧
0≤i≤k

sym(Si)

 ∧ sym(R0) ∧ sym(R1).

For example, the VC for a program in Fig. 4a is shown in
Fig. 4b. Definitions in Fig. 4a are translated into a conjunction
of equalities, and assert 0 is translated into ¬false . The VC
is unsatisfiable since A evaluates to false .

Theorem 1: sym(P) is satisfiable iff P has an execution that
satisfies the assumption and violates the assertion.

III. VERIFYING MEMORY SAFETY

In most languages, including C, memory safety is difficult to
specify directly. To make such specifications possible, we use
fat pointers [16] and shadow memory to keep metadata about
pointers and memory, respectively. Moreover, we present a
general extension of both memory and pointer semantics.

Intuitively, we want to represent each fat pointer as a tuple
of values that collectively represent the value of the pointer
and all the metadata (i.e., fat) that is cached at it. We do
not put restrictions on the number of values nor their sorts.
However, we assume that there is a function addr that maps
a pointer to an expression representing an address. Thus,
for a pointer register P, sym(P) is a tuple ⟨t1, . . . , tj⟩ of j
constants that represents the pointer, and addr(⟨t1, . . . , tj⟩) is
an address of that pointer. For example, a common case is
to use the first element of the tuple to represent the address:
addr(⟨t1, . . . , tj⟩) = t1. Fig. 13 presents a small program (on
the left) that writes a fat pointer P0 to memory at address
P1. Memory is divided into five parts with val memory used
to store the actual program data. Here, val stores the base
value of the fat pointer and offset and size store the fat.
Memory operations are tracked by alloc and mod memory
that mark whether an address is allocated and whether it has
been written to, respectively. Fig. 13 shows the memory state
after the store operation. Both alloc and mod are set to 1
because P1 is allocated and has been modified.

Formally, we re-define ptrs to be a tuple of sorts, written
as ⟨s1, . . . , sj⟩. We say that a tuple τ = ⟨c1, . . . , cp⟩ of p
constants is of a tuple sort ⟨s1, . . . , sp⟩ iff, for each 0 < i ≤ p,
ci is of sort si. Tuples of sorts, and tuples of constants are
only present during VCGen, but not in the final verification
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fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
P1, M1 = malloc 2, M0
P2, M2 = malloc 1, M0

M3 = select R2, M1, M2
P3 = select R2, P1, P2
R4 = isderef R3, 1

M4 = store R0, P3, M3
P5 = gep P3, 1
R6 = isderef P5, 1

M5 = store 0, P5, M4
R7 = R0 > 0 && R0 < 10
R8 = false
A0 = select R7, R8, R1
A1 = select R6, A0, R1
A2 = select R4, A1, R1
assume(A2)
assert(0)
halt

}

(a) Pure-Dataflow (PD)

r1 = r0 > 0 ∧ r0 < 10 ∧

p1.base = addr0 ∧ p1.offset = 0 ∧ p1.size = 4 ∧m1 = m0 ∧
p2.base = addr0 + 4 ∧ p2.offset = 0 ∧ p2.size = 4 ∧m2 = m0 ∧

p3 = ite(r2, p1, p2) ∧
r4 = 0 ≤ (1 + p3.offset) < p3.size ∧

p5.base = r3.base ∧ p5.offset = r3.offset + 1 ∧ p5.size = r3.size ∧
r6 = 0 ≤ (1 + p5.offset) < p5.size ∧

r7 = r0 > 0 ∧ r0 < 10 ∧
r8 = false ∧
a0 = ite(r7, r8, r1) ∧
a1 = ite(r6, a0, r1) ∧
a2 = ite(r4, a1, r1) ∧
a2 ∧
¬false

(b) VC in SMT-LIB

Fig. 9: Program from Fig. 2 in PD and SMT-LIB forms. The
isderef instruction checks for spatial memory safety.

sym(P1,M1 = malloc R0,M0)) ≜

p1 = alloc(malloc R0, M0) ∧m1 = allocsh (m0, p1)

sym(M1 = free P0,M0) ≜ m1 = freesh (m0, p0)

sym(MR = store R1,P2,M1)) ≜

⟨mr1, . . . ,mrj⟩ = ⟨write(m0.1, r1, addr(p2.1)), . . . ,

write(m0.j, r1, addr(p2.j))⟩ ∧
⟨m1j+1, . . . ,m1k⟩ = storesh (⟨m0j+1, . . . ,m0k⟩, p2)

sym(R1 = load P0,M0) ≜

r1 = ⟨read(m0.1, addr(p0)), . . . , read(m0.j, addr(p0))⟩

Fig. 10: Memory-safety aware VCGen semantics.

condition. For that, we rewrite equality between two tuples as
conjunction of equalities between their elements, and use τ.i
for the ith element of tuple τ .

Similarly, we re-define mems for a memory register M to
be a tuple of values that store the program and the shadow
states. Thus, sym(M) = ⟨v0, . . . , vk⟩, where each vi is the sort
bv(64) → bv(64). If a pointer is represented by a j-tuple, we
assume that memory is represented by a k-tuple, with k ≥ j,
so that the first j entries in a memory register are wide enough
to store the fat pointer. Specifically, we require that the sort
of vj is same as sort of tj for 1 ≤ j ≤ k.

We modify the semantics of malloc by storing meta data
along with explicit program states. The modification is defined
in Fig. 10 (M1 is now a memory tuple). The signature of alloc
is unchanged, but now returns a fat pointer. Given a pointer
p of sort ptrs , a function size(⟨t1, . . . , tj⟩) returns the size
of a memory object pointed-to by p. An additional function
allocsh : mems → mems operates on shadow memory. The
semantics of allocsh and freesh is described later.

A store is divided into two parts. First is the store of
the actual program data. Since the data can be of sort scalr
or ptrs , a store of a k-tuple of data on memory m0 is
translated into k writes, on each element of ⟨m01, . . . ,m0j⟩.
Second is updating metadata, done by storesh that works

allocsh (m, p) ≜

⟨m.val ,m.offset ,m.size,write(m.alloc, 1, p.base),m.mod⟩
freesh (m, p) ≜

⟨m.val ,m.offset ,m.size,write(m.alloc, 0, p.base),m.mod⟩
storesh (⟨m.alloc,m.mod⟩, p) ≜

⟨m.alloc,write(m.mod , 1, p.base)⟩

Fig. 11: Shadow memory semantics for memory safety.

sym(R1 = isderef P0 B) ≜ r1 = 0 ≤ p0.offset < p0.size

sym(R1 = isalloc P0 M) ≜ r1 = read(m.alloc, p0.base)

sym(R1 = ismod P0 M) ≜ r1 = read(m.mod , p0.base)

Fig. 12: Semantics for verifiying memory safety.

on ⟨m0j+1, . . . ,m0k⟩. The details of storesh are described
later in this section. Similarly, a load expects to read
⟨m01, . . . ,m0j⟩ of sort ptrs . This allows representing arbi-
trary fat and shadows. We illustrate its specializations for
memory safety next.
Spatial memory safety A program satisfies spatial memory
safety iff every read and write is always inside an allocated
object. A fat pointer is defined as a tuple of three constants
⟨s1, s2, s3⟩ denoted as ⟨base, offset , size⟩ for convenience.
Here base is the start address of the object, offset is an index
into the object, and size is its size. The address addr is given
by base + offset .

With fat pointers, we introduce instructions for pointer
arithmetic and pointer integer casts. The instruction gep is
used for pointer arithmetic. Fig. 9a shows an example use
in R5 = gep R3, 1. Here, semantically, a new pointer R5 is
created that has the same base and size as R3, with offset
incremented by 1. We also introduce ptoi instruction that casts
a pointer to an integer by adding offset to base . For an integer
to pointer cast, we use the itop instruction. This instruction
sets base to the integer value and fat (i.e., metadata) to zero.

To assert that a pointer dereference is spatially safe, we
provide an isderef instruction, whose semantics is shown
in Fig. 12. For example, the program in Fig. 9a executes
assert(0) as R6 = isderef R5, 1 evaluates to false causing
A1 and A2 to evaluate to R1 and true , respectively. Thus, the
VC in Fig. 9b is satisfiable which exposes the out of bounds
error in Fig. 2 line 9. Note that this error is not caught by the
VC in Sec. II. In SEABMC, we automatically add isderef

assertions before memory accesses. Many of such assertions
are statically and, thus, cheaply resolved to true or false prior
to SMT solving.

Note that SEABMC semantics for spatial safety differs from
LLBMC [17]. LLBMC treats only accesses to unallocated
memory as unsafe. This implies that it is valid for a pointer to
overflow into another object allocated just below or above.
In SEABMC, jumping across the allocated boundary is in-
valid. SEABMC also differs from CBMC in this regard. In
CBMC [1], the pointer representation is fixed and a few bits
in the pointer representation are reserved for fat data. These
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fun main() {
BB0:

M0 = mem.init()
// addr=0x100
P0, M1 = malloc 1, M0
// addr=0x200
P1, M2 = malloc 1, M1
M3 = store P0, P1, M2
halt

}

(a) a program

Memory

0x100 0 1 1 1

base offset size
0x200 0 1

P1:

…
…

(b) memory state

Fig. 13: Memory state M3 - when P0 is stored at location P1.

constraint the available address range. Additionally, only lim-
ited metadata can be stored in each pointer. In SEABMC, we
support composite pointer representations that maintain parity
with concrete pointer representation while allowing for rich
metadata in the fat region of the pointer.
Temporal memory safety A program satisfies temporal
memory safety iff it never does one of the following: (UAF) an
object is used after it has been freed; and (RO) an object
marked as read-only (by programmers) is modified. We detect
a violation of memory safety by tracking the status of a
memory object using shadow memory. Each memory is a tuple
⟨v1, . . . , v5⟩ of constants of sort bv(64) → bv(64), denoted
⟨val , offset , size, alloc,mod⟩, where ⟨val , offset , size⟩ maps
to pointer data ⟨base, offset , size⟩, and alloc and mod track
the allocated and modified status of an object, respectively.

An object can be in allocated or freed state. To track
allocated state, sym in Sec. II is extended for alloca, malloc,
and free. The new semantics is shown in Fig. 10. The function
allocsh : mems → mems is defined, for temporal memory
safety, as shown in Fig. 11. Note that allocsh(m, r) marks
m.mod memory only at the start of an object, i.e., r.base. For
this reason it is necessary to use the fat pointer representation
since it records the base for every pointer. The isalloc

instruction, shown in Fig. 8, is used to check the allocated
state of an object at any point in the program. The semantics
for isalloc is defined in Fig. 12.

A C program has no native mechanism for verifying that
an object remains unmodified when passed to a function. To
remedy this, we extend the semantics for store (see Fig. 10).
The function storesh : mems → mems is implemented for
temporal memory safety (see Fig. 11). The ismod in Fig. 8 is
used to check the read-only state of an object at any program
point. The semantics for ismod is given in Fig. 12. We also
provide a companion instruction resetmod R, M that resets
m.mod at address r.base to zero. This allows initializing an
object, resetting modified state, and then checking that the
subsequent program does not modify the object. We track
memory state only at object granularity, therefore, the current
implementation is tied to using the fat pointer representation.

IV. EXPERIMENTS

In this section, we describe the evaluation of SEABMC5 on
verification tasks from aws-c-common. Each task verified
post-conditions and memory safety of a single function from

5Source at https://github.com/seahorn/seahorn/tree/dev10.

aws-c-common. Overall, there are 169 tasks in 20K LOC.
Results and tasks are available at https://github.com/seahorn/
verify-c-common6. We have chosen these tasks because they
represent a real industrial use-case of BMC. We have adapted
them from CBMC to be compatible with LLVM-based C
verification tools. Note that here we focus on SEABMC perfor-
mance. A detailed comparison of different kinds of verification
tools on aws-c-common is presented in [14].
Comparing Different VCGen Strategies We evaluate the
effectiveness of the different VCGen strategies by controlling
which transformations are enabled. The main performance
metric is time solved – the time to solve all solved tasks7

(i.e., with timeout excluded). The time limit is 600s per task.
First, we evaluate the two memory representations: Ar-

rays vs Lambdas. We use Z3 [18] and YICES2 [19] to
account for the difference between SMT-solvers. The results
are summarized in Tab. Ia. For Z3, we find that Arrays
are less efficient than Lambdas. For YICES2, the results are
comparable, suggesting that the choice of the representation
is less important. Z3 with Lambdas is the overall winner, and
we use it for the rest of the experiments.

Second, we evaluate the effectiveness of the transformations
in Sec. II. The results are in Tab. Ib. Here, optimal means
applying all of the transformation involved, plus eagerly sim-
plifying VC during VCGen. β-reducing lambdas introduces
many nested ITE-terms, so simplifying them early is useful.

To evaluate, we compare with 5 additional strategies by
disabling some transformations: 1) rel alloc – use alloc that
returns relative addresses from some symbolic start of stack
and heap, rather than concrete addresses 2) flat mem – one
flat memory instead of using alias analysis to partition memory
into disjoint memories as much as possible 3) no coi – disable
cone-of-influence 4) no simp – disable eager simplification
5) p cond – generate VC directly from SSA form by using
path condition to encode phi-functions as in [6], [20]. Re-
moving any of the transformations either noticeably degrades
performance, or causes a timeout.

SEABMC supports memory word size of 1 byte (bv(8)), 4
bytes (bv(32)) and 8 bytes (bv(64)). The 1-byte words are
most precise and support arbitrary memory accesses, while 8-
byte words require aligned accesses. The comparison between
the two is shown in Tab. Ic. Wider words significantly improve
performance, but can be unsound for some benchmarks. By
supporting both, SEABMC lets the user pick most appropriate
choice per benchmarks. In other experiments, we adjust word
size per individual benchmarks.8

Shadow memory performance A C program has no builtin
mechanism for verifying that an object is not modified by a
function. To overcome this limitation, the verification tasks
in aws-c-common record the value of a byte from a non
deterministic offset within an allocated object and then verify
that this byte is unchanged in all executions. While this is a

6This website includes instructions for reproducing the experiments.
7This analysis uses 172 tasks instead of 169. 3 tasks are SEABMC specific.
8CBMC uses a similar per-benchmark configuration as well.
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config solver unsat timeout failed solved
time(s)

array z3 158 8 6 1 647
yices2 170 0 2 1 016

lambdas z3 172 0 0 836
yices2 172 0 0 912

(a) Different memory repre-
sentations.

config unsat timeout solved
time(s) avg(s) std(s)

optimal 172 0 836 5 10
rel alloc 172 0 1 456 8 19
flat mem 163 9 2 689 16 55
no coi 170 2 849 5 10
no simp 166 6 1 429 9 33
p cond 170 2 659 4 6

(b) Different encodings.

word size unsat timeout failed solved
time(s)

bv(64) 156 0 16 679
bv(8) 171 1 0 2 546

(c) Different word sizes.

config unsat solved time(s)

no shadow memory 70 143
shadow memory 70 90

(d) Different memory fea-
tures.

TABLE I: Evaluations of different configuration.

clever technique, setting it up in a verification task is complex.
The ismod instruction added in SEABMC (see Sec. III) offers
a user friendly alternative. We also found it to be more
performant in the SEABMC implementation. We ported 70
tasks in aws-c-common to use ismod. Ported tasks ran 55%
faster, on average, than their originals (see Tab. Id). This
strengthens the case for shadow memory from both usability
and performance perspectives.
SEABMC vs. State-of-the-Art Overall, the results for our
configurations in previous discussion suggest that the optimal
strategy provides best performance in terms of precision and
efficiency. We also consider four tools comparing against:
CBMC [1], SMACK [4], KLEE [13], and SYMBIOTIC [12].
LLBMC is another interesting BMC tool, however, we de-
cided to exclude it from comparisons due to the lack of
an easily accessible public version9 for user to reproduce
LLBMC results. CBMC is, perhaps, the oldest and most well-
known BMC for C programs (not based on LLVM). It is
actively used by AWS, and was used for the verification of
aws-c-common. SMACK is an LLVM-based BMC tool that
uses Boogie [21] and Corral [4] for bounded and deductive
verification. SYMBIOTIC is a KLEE-based tool that combines
program instrumentation, slicing, and symbolic execution [22].
Both SMACK and SYMBIOTIC performed very well on the
“SoftwareSystems” category in SV-COMP’21. KLEE is a
LLVM-based symbolic execution tool that does not encode
the VC in one shot but rather explores satisfiability of path
conditions in a program one path-at-a-time. It is a practical
alternative to BMC.

The results collected on an AMD Ryzen(TM) 5 5600X CPU
with 32 GB memory are shown in Tab. II. Only SEABMC
and CBMC solve all verification tasks from aws-c-common.
SMACK in bit-precise mode times out on most instances, and
in arithmetic mode times out on 20 and fails on 4. SYMBIOTIC
times out on 5 and fails on 10. It is best-performing on
priority_queue and ring_buffer. However, it also
failed to detect seeded bugs10, which questions its results.
KLEE is particularly effective on linked_list – showing
the benefit of exploring path-at-a-time, when number of paths
is small.
Bugs found In [14], we discuss bugs found and reported to
AWS. One example, in Fig. 14, concerns the byte buffer

data structure that is defined as a length delimited byte string.

9LLBMC source code is not publicly available; Binary download on
website is broken.

10Details at https://github.com/seahorn/verify-c-common/issues/124

1 typedef
2 struct byte_buf {
3 char* buf;
4 int len, cap;
5 } BB;
6 bool BB_is_ok(BB *b)
7 { return (b->len == 0
8 || b->buf); }

Fig. 14: Incorrect byte_buf invariant

Its data representation should be either the buffer (buf) is
NULL or its capacity (cap) is 0 (not the len as defined in
BB_is_ok Line 7). Under the correct model (a malloc that
can potentially fail), SEABMC produces counter examples in
50 seconds, CBMC in 112 seconds. However, KLEE cannot
detect this bug since it needs an allocated buffer with an
explicit size to proceed with analysis.

Overall, SEABMC outperforms competitors on most cate-
gories and in the overall run-time. Thus, we conclude that
SEABMC is a highly efficient BMC engine.

We have compared SEABMC with tools from SV-COMP, but
not with the benchmarks. There are two reasons. First, while
a version of aws-c-common appears in SV-COMP, it is
pre-processed with CBMC harnesses, and, therefore, includes
undefined behaviors (e.g., uninitialized variables). This is not
supported by SEABMC front-end. Second, we felt it is more
important to validate tools in an actively developed code-base.
Thus, we focused our effort on building an infrastructure for
continuously verifying current aws-c-common using many
existing tools, rather than integrating SEABMC into the rules
of SV-COMP.

V. RELATED WORK

Bounded Software Model Checking is a mature program
analysis technique. We briefly review only some of the closest
related work. Over the years, there have been many model
checking tools built on top of the LLVM platform. The
closest to ours is the work of Babic [23] and LLBMC
[17]. Similarly to [23], we rely on the Gated SSA form to
remove all control dependence leaving only data-flows to be
represented. However, our encoding is significantly simplified
by an intermediate representation that purifies memory flows.
Unfortunately, [23] has not been maintained making head-to-
head comparison difficult.

We borrow the idea of using lambda-encoding for repre-
senting memory from LLBMC [17]. One important advantage
of lambdas is that we can represent memory operations such
as memcpy efficiently (while with arrays, these have to be
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Statistics SEABMC CBMC SMACK SYMBIOTIC KLEE

category cnt loc avg (s) std (s) time (s) avg (s) std (s) time (s) cnt fld/to avg (s) std (s) time (s) cnt fld/to avg (s) std (s) time (s) cnt avg (s) std (s) time (s)

arithmetic 6 202 1 0 3 4 0 22 6 2/0 3 1 18 6 0/0 135 281 809 6 1 0 5
array 4 390 2 1 7 6 0 23 4 0/1 53 98 213 4 0/0 11 4 44 4 26 2 103
array list 24 3,150 3 4 71 19 33 450 24 0/0 5 1 126 23 0/0 43 68 980 24 41 38 994
byte buf 29 2,908 1 1 29 9 10 252 29 0/2 27 50 788 29 0/0 40 162 1,168 27 59 96 1,592
byte cursor 24 2,365 1 0 23 6 3 153 16 0/2 32 66 519 17 0/0 7 4 125 17 10 11 169
hash callback 3 347 6 5 18 8 5 25 3 0/0 4 2 11 3 0/0 40 62 120 3 50 38 151
hash iter 4 708 9 15 37 10 6 39 4 0/0 91 58 363 3 0/1 37 44 112 3 14 6 41
hash table 19 3,295 6 8 105 19 28 366 19 2/4 54 79 1,025 15 8/4 472 1,261 7,088 15 33 72 492
linked list 18 2,127 2 2 37 33 112 595 18 0/5 96 91 1,735 18 0/0 8 5 143 18 1 0 12
others 2 31 0 0 1 4 0 7 1 0/0 2 0 2 1 0/0 5 0 5 1 1 0 1
priority queue 15 3,004 14 22 202 286 700 4,284 15 0/1 20 50 307 15 0/0 10 20 152 15 32 8 473
ring buffer 6 934 21 22 128 13 8 78 6 0/3 133 98 796 6 1/0 10 9 63 6 30 16 180
string 15 1,329 3 2 49 7 5 104 15 0/2 31 69 467 15 1/0 9 11 137 15 102 106 1,528

total 169 20,790 710 6,398 4/20 6,370 10/5 10,946 5,741

TABLE II: Verification results for SEABMC, CBMC, SMACK, SYMBIOTIC, and KLEE. Timeout for SMACK and SEABMC
is 200s, and 5,000s for SYMBIOTIC. cnt, fld, to, avg, std and time, are the number of verification tasks, failed cases, timeout
cases, average run-time, standard deviation, and total run-time in seconds, per category.

unfolded). In particular, this allows for unbounded verification
of loop-free programs that use these operations. The most
significant difference from LLBMC is in our encoding of
memory safety. In particular, we cache bounds information
in the pointer, and check that every access is inside the
allocated memory object. In contrast, LLBMC assumes an
arbitrary allocator and checks that all accesses are into some
allocated memory, not necessarily into the expected object.
Unfortunately, there is no public version of LLBMC available,
precluding a head-to-head comparison.

SMACK [4], [5] is probably the most known BMC for
LLVM. It is based on Boogie and Corral from Microsoft
Research. It is most effective for arithmetic abstraction of soft-
ware (i.e., abstracting machine integers by arbitrary precision
integers). Its model for memory safety relies on complex en-
coding using universally quantified axioms in Boogie, leading
to quantified reasoning in SMT. In contrast, our representation
is tuned to perform well with modern SMT solvers. SMACK
shares SEADSA [24], [25] alias analysis with SEABMC. DI-
VINE4 [26] is an explicit state model checker that also targets
LLVM. However, it uses LLVM 7 which makes head-to-
head comparison difficult. It targets parallel programs, which
SEABMC does not. For sequential programs, it is related to
libFuzzer and KLEE that we compare with.

VI. CONCLUSION

We have presented the techniques behind SEABMC, a new
LLVM-base Bounded Model Checker for C. SEABMC is path-
sensitive, bit-precise, and provides a precise model of memory.
It extends the traditional memory model with fat pointers
and shadow memory that allow attaching metadata to pointers
and memory. We have evaluated SEABMC against CBMC,
SMACK, SYMBIOTIC, and KLEE and show significant per-
formance improvements over the competition.
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P. Ročkai, and V. Štill, “Model checking of C and C++ with DIVINE
4,” in Automated Technology for Verification and Analysis, ser. LNCS,
vol. 10482. Springer, 2017, pp. 201–207.

223

https://doi.org/10.1007/978-3-642-36742-7_50
https://doi.org/10.1007/978-3-642-32469-7_14


flag meaning

--unwind 1 number of times to unwind loops
--flush print to stdout
--object-bits 8 number of pointer bits to store meta information
--malloc-may-fail malloc may fail
--malloc-fail-null malloc may fail and return NULL

TABLE V: CBMC options for no-mem-safe.

flag meaning

--unwind 1 number of times to unwind loops
--flush print to stdout
--object-bits 8 number of pointer bits to store meta information
--malloc-may-fail malloc may fail
--malloc-fail-null malloc may fail and return NULL

TABLE VI: CBMC options no-memmove.

verification task config tool run-time (s)

aws-array-list-erase all SEABMC 4
CBMC 98

aws-array-list-erase no-mem-safe SEABMC 2
CBMC 98

aws-array-list-erase no-memmove SEABMC 3
CBMC 40

TABLE III: SEABMC vs. CBMC for aws-array-list-erase.

flag meaning

--unwind 1 number of times to unwind loops
--flush print to stdout
--object-bits 8 number of pointer bits to store meta information
--malloc-may-fail malloc may fail
--malloc-fail-null malloc may fail and return NULL
--bounds_check check access is within bounds
--pointer_check check access is within bounds

TABLE IV: CBMC options for all.

APPENDIX

Performance of SEABMC vs CBMC In this section we
look at performance of SEABMC vs CBMC more closely.
In App. A we study tool performance on a single task by
using different features of the tools. In App. B, we look at the
CBMC flags used for the analysis.

A. Comprehensive Analysis w.r.t. CBMC
SEABMC outperforms CBMC on many of the categories.

To ensure that the comparison is “fair”, we have done a

comprehensive manual analysis with a few verification tasks.
For a fair comparison, one must show that the verification

problem being solved is the same. While both tools verify
user-supplied assertions in aws-c-common, they also verify
internal properties such as memory safety, integer overflow,
etc., depending on how they are invoked. For example, CBMC
checks for integer overflow, while SEABMC does not. Hence,
as a first step, we identified all such options in CBMC and
disabled them.

There are many other factors that differentiate SEABMC
and CBMC including: IRs (i.e., GOTO program vs. LLVM-
IR), model of memory operations, and VCGen. Thus, we
identified the differences that benefit SEABMC. We chose
one verification task aws-array-list-erase, and derived 3
configurations based on the above analysis11: 1) All: SEABMC
and CBMC verify a similar set of properties, namely, user-
supplied assertions and memory safety. 2) No Memory Safety:
SEABMC and CBMC verify user-supplied assertions only.
3) No memmove: aws-array-list-erase uses memmove in its
implementation. Since memmove has custom implementations
in both SEABMC and CBMC, we evaluated run-time when
disabling the assertions for it.12

The results are shown in Tab. III. We present the analysis
for one verification task, however, the same applied to other
verification tasks where SEABMC outperforms CBMC– even

11See App. B for CBMC flags used.
12These assertions guarantee spatial memory safety of memmove.

when verifying similar properties. Further manual analysis
shows that most difference is due to the model of memory
in SEABMC and CBMC. Specifically, memory operations on
large blocks, are very expensive for CBMC (40s vs. 98s due
to pre-conditions for memmove in Tab. III).

B. Command line options for CBMC

This section lists the CBMC command line flags used for
aws-array-list-erase verification job for different configu-
ration.
all Options to enable user assertions and memory safety checks
no-mem-safe Options to enable user assertions only
no-memmove Options to enable user assertions and remove
memory safety and memmove checks.
The memmove checks are disabled manually in source code.
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