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Abstract—The focus of this paper is on the synthesis of
unidirectional symmetric ring protocols that are self-stabilizing.
Such protocols have an unbounded number of processes and
unbounded variable domains, yet they ensure recovery to a set
of legitimate states from any state. This is a significant problem
as many distributed systems should preserve their fault tolerance
properties when they scale. While previous work addresses
this problem for constant-space protocols where domain size of
variables are fixed regardless of the ring size, this work tackles
the synthesis problem assuming that both variable domains and
the number of processes in the ring are unbounded (but finite).
We present a sufficient condition for synthesis and develop
a sound algorithm that takes a conjunctive state predicate
representing legitimate states, and generates the parameterized
actions of a protocol that is self-stabilizing to legitimate states.
We characterize the unbounded nature of protocols as semilinear
sets, and show that such characterization simplifies synthesis.
The proposed method addresses a longstanding problem because
recovery is required from any state in an unbounded state space.
For the first time, we synthesize some self-stabilizing unbounded
protocols, including a near agreement and a parity protocol.

Index Terms—Parameterized Systems, Synthesis and Verifica-
tion, Self-Stabilization

I. INTRODUCTION

This paper investigates the problem of synthesizing Self-
Stabilizing unidirectional Symmetric ring protocols with Un-
bounded number of processes and unbounded variable do-
mains, called SS-SymU protocols (a.k.a. unbounded uni-
rings). A process contains a set of atomic actions. When an ac-
tion of a process is executed, it is disabled until enabled again
by the neighborning processes; i.e., self-disabling actions. In a
symmetric ring, the actions of each process are generated from
a template process by a simple variable re-indexing. A self-
stabilizing protocol automatically recovers (in a finite number
of steps) to a set of legitimate states I from any arbitrary state
[1]; i.e., all states are initial states. Such recovery should be
achieved without the intervention of a central authority. The
significance of this synthesis problem is multi-fold. First, while
uni-ring is a simple topology, it is of practical importance
in distributed systems where the underlying communication
topology may include cyclic structures. Second, the unbound-
edness of the ring size and variable domains is a requirement
where networks scale up and buffer sizes grow. The elegance
of many distributed protocols/algorithms (e.g., logical clocks
[2], Dijkstra’s token passing [1], unbounded registers [3])

is due to the assumption of unbounded variable domains
and processes, which makes it significant to develop tools
that can synthesize such protocols under the unboundedness
assumption. Third, self-stabilization is an important fault tol-
erance property that enables decentralized recovery in the
presence of transient faults, which perturb the system state
without causing permanent damages. While previous work
[4], [5], [6], [7], [8] addresses the verification and synthesis
of parameterized symmetric uni-rings, the domain size of
variables remains constant regardless of the ring size. To the
best of our knowledge, this paper presents the first method
for the synthesis of SS-SymU protocols that are unbounded in
terms of both the number of processes and variable domains.

Most existing methods for the synthesis of self-stabilizing
protocols either focus on fixed-size protocols or consider an
unbounded number of processes only; variable domains are
considered bounded. For example, specification-based meth-
ods [9] compose a pair of template processes to reason about
the global safety and local liveness properties of parameterized
synchronization skeletons. Methods for fixed-size synthesis
[10], [11], [12], [13] consider a fixed upper bound k on the
number of processes, and generate a solution that is correct
up to k processes. To enable the synthesis of parameterized
self-stabilizing systems where solutions work for an arbitrary
number of n processes, some approaches rely on parameter-
ized synthesis [14] where an implementation is generated for a
parameterized specification and a parameterized architecture.
Such methods employ bounded [15] and SMT-based [11] syn-
thesis to show the correctness of a solution with cutoff number
of processes, where a solution exists for a protocol with cutoff
number of processes iff (if and only if) a solution exists
for the parameterized protocol with unbounded number of
processes. Other methods [7] present cutoffs for the synthesis
of self-stabilizing protocols in symmetric networks, however,
such cutoffs can be quadratic/exponential in the bounded
variable domains depending on the structure of I. Synthesis
of parameterized systems with threshold guards [4] starts with
a sketch automaton (whose transitions have incomplete guard
conditions capturing the number of received messages), and
complete the guards towards satisfying program specifica-
tions. Our previous work [5] addresses the synthesis of self-
stabilizing parameterized protocols where the local state space
of the template process remains constant.
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Contributions. In contrast to most existing methods, we
propose a novel approach based on the synthesis of semilinear
sets in the unbounded local state space of the template process
of SS-SymU for conjunctive predicates. Specifically, we start
with a global state predicate I = ∀i ∈ N :: L(xi−1, xi) where
L(xi−1, xi) denotes a local state predicate of the template
process Pi and xi is an abstraction of the local state of Pi. We
then generate a protocol that self-stabilizes to I regardless of
network size and the domain size of variables. Domain size is
of particular importance as some protocols may not exist for
specific domain sizes (e.g., Dijkstra’s token ring [1] requires
a domain size of at least N − 1 in a ring of N processes).
We utilize necessary and sufficient conditions identified in [5],
[6] for the livelock-freedom of a solution with constant-space
processes in order to impose a structure on the unbounded
transition system of the template process. Such conditions
require the existence of a value γ in the domain of xi for which
L(γ, γ) holds. Moreover, necessary and sufficient conditions
for livelock-freedom (under an unfair scheduler) require a tree-
like structure rooted at γ for the local state transition system
of the template process. While these results are for constant-
space processes, we generalize them for unbounded domain
sizes. Specifically, we show that if the state transition system
of the template process is a semilinear set represented as an
infinite tree rooted at γ, then a solution exists. A semilinear
set is the finite union of a set of linear sets, where a linear
set contains periodic integer vectors. Based on this sufficient
condition, we develop a sound algorithm that takes L(xi−1, xi)
and generates the periodic linear sets of a semilinear set in a
way that their vectors are organized in a potentially infinite
tree rooted at γ. Each synthesized linear set represents the
unbounded structure of a protocol action. We then use such
linear sets to synthesize the parameterized actions of a protocol
that self-stabilizes to I for unbounded number of processes
and unbounded domain sizes. We demonstrate the proposed
method using a near-agreement and a parity protocol.
Organization. Section II provides some basic concepts. Sec-
tion III presents the proposed synthesis method. Section IV
demonstrates the application of the synthesis method for a
parity protocol. Section V discusses related work. Section VI
makes concluding remarks and discusses future research.

II. PRELIMINARIES

This section represents the definition of state predicates,
parameterized protocols and their representation as locality
graphs (adopted from [16], [17], [5], [6]), and semilinear
sets. We use the term parameterized protocol to refer to uni-
ring symmetric protocols that have both unbounded number
of processes and unbounded variable domains. A protocol p
includes N > 1 symmetric processes on a uni-ring, where the
code of each process is derived from the code of a template
process Pi by variable re-indexing. The template process Pi

has a variable xi whose domain abstracts the set of valuations
to all writable variables of Pi. The domain of xi, denoted
M = Dom(xi), can be unbounded (but finite). Any local state
of a process (a.k.a. locality/neighborhood) is determined by a

unique valuation of its readable variables. We assume that any
writable variable is also readable. Network topology defines
the set of readable variables of a process. For example, in a
uni-ring consisting of N processes, each process Pi (where
i ∈ ZN , i.e., 0 ≤ i ≤ N − 1) has a predecessor Pi−1, where
subtraction is in modulo N . That is, Pi can read the values
of xi and xi−1, but can update only xi. The global state of
a protocol is defined by a snapshot of the local states of all
processes. The state space of a protocol p, denoted by Σp, is
the universal set of all global states of p. A state predicate
is a subset of Σp. A process acts (i.e., transitions) when it
atomically updates its state based on its locality.

We assume that processes act one at a time (i.e., interleav-
ing semantics). Thus, each global transition corresponds to
the action of a single process from some global state. An
execution/computation of a protocol is a sequence of states
s0, s1, . . . , sk where there is a transition from si to si+1 for
every i ∈ Zk. The transition function δ : Σp×Σp → Σp of the
template process captures its set of actions xi−1 = a ∧ xi =
b −→ xi := c, which can also be captured as triples of the
form (a, b, c). That is, δ(a, b) = c iff (if and only if) Pi has
an action xi−1 = a ∧ xi = b −→ xi := c. An action has two
components; a guard, which is a Boolean expression in terms
of readable variables and a statement that atomically updates
the state (i.e., writable variables) of the process once the guard
holds; i.e., the action is enabled. Previous work [18] shows that
assuming self-disabling and deterministic processes simplifies
synthesis without undermining soundness and completeness.
An action (a, b, c) cannot co-exist with action (a, c, d) in a self-
disabling process for any d. A deterministic process cannot
have two actions enabled at the same time; i.e., an action
(a, b, c) cannot co-exist with an action (a, b, d) where d ̸= c.

Definition II.1 (Action Graph). For a fixed domain size M ,
we can depict the set of actions of the template process of
a symmetric uni-ring by a labeled directed multigraph G =
(V,A), called the action graph, where each vertex v ∈ V
represents a value in ZM , and each arc (a, c) ∈ A with a
label b captures an action xi−1 = a ∧ xi = b −→ xi := c.

For example, consider the Parity protocol introduced in [6].
Each process Pi has a variable xi ∈ Z3 (i.e., M = 3) and
actions xi−1 = 0∧xi = 1 −→ xi := 0, xi−1 = 1∧xi = 2 −→
xi := 0, and xi−1 = 2 ∧ xi = 1 −→ xi := 0. This protocol
ensures that, from any global state of a symmetric uni-ring, a
state is reached where processes agree on a common odd/even
parity. We formally specify these states as the state predicate
IPar = ∀i ∈ ZN : ((|xi−1 − xi| mod 2 = 0). Throughout
this paper, the subscript operations are modulo number of
processes, and the arithmetic operations in the state predicates,
and in the guard and assignment of actions are performed
modulo M . Figure 7b illustrates this protocol as an action
graph containing arcs (0, 1, 0), (1, 2, 0), and (2, 1, 0).

Definition II.2 (Self-Stabilization and Convergence). A pro-
tocol p is self-stabilizing [1] to a state predicate I iff from
any state in ¬I, every computation of p reaches a state in
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I (i.e., convergence) and remains in I (i.e., closure). A state
predicate I is closed in p iff there is no transition (s, s′),
where s ∈ I and s′ /∈ I. Convergence of p to I requires that
p does not reach a deadlock, nor does it reach a livelock in
¬I. A deadlock state is a global state where no process has
any enabled action. A livelock is an infinite cyclic computation
l = ⟨s0, s1, · · · , s0⟩, where si is a global state, for i ≥ 0.

Definition II.3 (Locality Graph). Consider a global state
predicate I = ∀i ∈ ZN : L(xi−1, xi) for a protocol, and a
domain size M . The local predicate L(xi−1, xi) captures a set
of local states, representing an acceptable relation between the
states of each process Pi and the states of its predecessor Pi−1.
We represent L(xi−1, xi) as a digraph G = (V,A), called the
locality graph, such that each vertex v ∈ V represents a value
in ZM , and an arc (a, b) is in A iff L(a, b) holds.

Figure 7a illustrates the locality graph of the Parity protocol
introduced in this section for M = 3 and the state predicate
L(xi−1, xi) ≡ ((|xi−1−xi| mod 2) = 0). We have extensively
studied [5], [6] the use of locality and action graphs in
local reasoning about global properties (e.g., livelocks). Our
previous work [17], [5] investigates the following synthesis
problem, whereas in Section III we solve this problem when
its assumption is lifted.

Problem II.4 (Synthesis of Symmetric Uni-Rings).

• Input: L(xi−1, xi), and the domain size M of xi.
• Output: The transition function δ (represented as an

action graph or parameterized actions) of a protocol p
such that the entire ring is self-stabilizing to I = ∀i : i ∈
ZN : L(xi−1, xi) for any ring size N ≥ 3.

• Assumption: M is fixed regardless of the ring size N ;
i.e., p has constant-space processes.

The following theorem (proved in [17], [5]) provides the
foundation of a synthesis method for parameterized uni-rings
with constant-space processes. In the rest of this section, we
present an overview of the synthesis method of [5] since its
knowledge is required for our exposition.

Theorem II.5. There is a symmetric uni-ring protocol p (with
deterministic, self-disabling and constant-space processes)
that self-stabilizes to I = ∀i ∈ ZN : L(xi−1, xi) for an
unbounded (but finite) number of N processes iff there is a
vertex γ in the locality graph G of L(xi−1, xi), where L(γ, γ)
holds, and the action graph of p is a directed spanning tree
of G, sinking at γ as its root [17], [5].

Algorithm 1 (introduced in [5]) takes as input the local
predicate L(xi−1, xi) and generates the set of parameterized
actions of a self-stabilizing uni-ring protocol. For example,
Step 1 takes the local predicate (|xi−1 − xi| mod 2 = 0) of
IPar in Parity with domain size 3, and initially generates its
locality graph illustrated in Figure 7a. This occurs because
there is some γ for which L(γ, γ) holds. Selecting γ as 0,
Algorithm 2 generates the spanning tree of Figure 7b in Step
3 (excluding the labels). Notice that, the output of Algorithm

2 is a spanning tree over the vertices of the locality graph
of L(xi−1, xi) rooted at γ, including a self-loop on γ. Step
4 of Algorithm 1 then includes the arc labels, where a value
b becomes a label for an arc (a, c) iff ¬L(a, b) ∧ (b ̸= c).
For example, when labeling the arc (0, 0) in Figure 7b ,
a = 0, and the algorithm looks for any value b in Z3 such
that (|0 − b| mod 2) ̸= 0 modulo 3. For M = 3, the value
b = 1 is the only acceptable label.

Algorithm 1. SynUniRing(L(xi−1, xi): state predicate, M :
domain size)

1: Check if a value γ ∈ ZM exists such that L(γ, γ) =
true.

2: If no such γ exists, then return ∅ and declare that no
solution exists.

3: τ := ConstructSpanningTree(L(xi−1, xi),M, γ).
4: Transform τ into an action graph of a protocol by the

following step:
For each arc (a, c) in τ , where a, c ∈ ZM ,
label (a, c) with every value b ∈ ZM for
which L(a, b) = false and b ̸= c hold.

5: Return the actions represented by the arcs of τ .
end

Algorithm 2. ConstructSpanningTree(L(xi−1, xi): state pred-
icate, M : positive integer, γ ∈ ZM )

1: Construct the locality graph G = (V,A) of L(xi−1, xi)
for domain size M .

2: Induce a subgraph G′ = (V ′, A′) that contains all arcs
of G that participate in cycles involving γ.

3: Construct a spanning tree τ rooted at γ for G′. Use
backward reachability to construct the spanning tree.

4: For each node v ∈ G that is absent from G′, include an
arc from v to the root of τ . The resulting graph would
still be a tree, denoted τ ′.

5: Include a self-loop (γ, γ) at the root of τ ′.
6: Return τ ′.

end

Theorem II.5 explains why Algorithm 2 includes a self-loop
at the root γ (in Step 5). Moreover, the reason why Algorithm
1 constructs a spanning tree is to ensure deadlock and livelock-
freedom. We have shown [5] that the existence of such a
spanning tree is necessary and sufficient for convergence to
I in symmetric uni-rings with constant-space processes.

Definition II.6 (Vector). A vector of dimension d ≥ 1 of
non-negative integers is a tuple (a1, a2, · · · , ad) ∈ Nd, where
ai ∈ N for 1 ≤ i ≤ d, and N denotes the set of non-negative
integers.

Definition II.7 (Linear Set). Any non-empty subset of Nd is
linear [19] if it can be represented as a periodic set of vectors
L = {vb + Σn

i=1λi · pi : λi ∈ N}, vb ∈ Nd is the base vector
and {p1, · · · , pn} ⊆ Nd is a finite set of period vectors.

For example, a singleton set L1 = {(5, 7)} is linear (with
dimension d = 2) because the base vector is (5, 7), and there
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is a unique period vector (0, 0). Moreover, the linear set L2 =
{(3, 2), (4, 3), (5, 4), · · · } has a base vector (3, 2) and a period
vector p1 = (1, 1). That is, L2 = {vb + λp1 : λ ∈ N}, where
vb = (3, 2), n = 1, d = 2, p1 = (1, 1), and λ ∈ N.

Definition II.8 (Semilinear Set). A semilinear set [19] is a
finite union of some linear sets. Semilinear sets provide a finite
representation for finite and infinite subsets of Nd.

Ginsburg and Spanier [20] show that semilinear sets capture
the sets of integers that are definable in the first-order theory
of integers with addition and order; i.e., Presburger arithmetic.
Semilinear sets are closed under Boolean operations [20].

III. SYNTHESIS METHOD

This section first presents a sufficient condition for the
existence of a SS-SymU protocol, and then provides a sound
algorithm for generating such protocols. We use the Near
Agreement (NA) protocol as a running example to ease the
presentation of this section.
Problem Statement. We solve Problem II.4 without its as-
sumption of constant-space processes; i.e., processes have
unbounded state spaces due to unbounded variable domains.
Example: Near Agreement (NA) Protocol. A node Pi in a
ring of N symmetric nodes nearly agrees with Pi−1 iff
(xi−1 = xi) ∨ (xi−1 = xi + 1), where subtraction is in
modulo N and addition is done modulo M . Thus, the entire
ring should self-stabilize to INA = ∀i ∈ N :: L(xi−1, xi),
where L(xi−1, xi) ≡ (xi−1 = xi) ∨ (xi−1 = xi + 1). Figure
3a illustrates the locality graph of L(xi−1, xi) for M = 3. Our
objective is to synthesize an NA protocol that is self-stabilizing
regardless of the number of processes and the domain size M .

A. Sufficient Condition for Solvability

Since Algorithm 1 is a sound and complete algorithm for
any fixed domain size M , one can enumeratively increase
the domain size and utilize Algorithm 1 to generate a self-
stabilizing protocol for each particular M . However, such an
approach would not bear fruit for unbounded domain sizes
unless we can ensure that the structure of the spanning tree
(and in turn the action graph) that Algorithm 1 generates for
M , will be inductively preserved for M+1 and beyond. This is
a challenge because when the domain size increases to M+1,
the locality graph of L(xi−1, xi) may be totally different. For
example, observe how the locality graphs in Figures 2a and 3a
change when M is increased from 2 to 3 for the NA protocol.
To ensure that the spanning tree’s structure would be preserved
when domain size increases, one approach is to keep the arcs
of the spanning tree τM for domain size M , and systematically
include one more arc (a, a′) in τM to derive another spanning
tree τM+1 for the domain size M + 1. In turn, expanding
the domain of xi from M + 1 to M + 2 should ensure that
τM+2 preserves all arcs of τM+1 and includes an additional arc
(b, b′) through some function f such that f [(a, a′)] = (b, b′)
and b =M+1 modulo M+2. Moreover, if f [(b, b′)] = (c, c′)
when the domain size increases to M +3, then c− b = b− a
and c′ − b′ = b′ − a′ must hold. That is, the growth of the

spanning tree must be periodic. Moreover, the root remains to
be γ. If such conditions are met, then for any domain size M ,
the conditions of Theorem II.5 hold. Since the vertices of the
spanning tree are non-negative integers, each arc (a, b) in a
tree is an integer vector. As such, the vector (a, a′) would be
the base vector of a linear set and (b − a, b′ − a′) gives the
period vector of that linear set. Each one of the arcs in the first
tree τM for the initial domain size M would also form a finite
linear set. Therefore, the arcs of the unbounded spanning tree
would form a semilinear set.

Theorem III.1. Let I = ∀i ∈ N :: L(xi−1, xi), and let
there be a value γ for which L(γ, γ) holds starting from some
domain size M onward. If the arcs of the γ-rooted spanning
trees built for each domain size k ≥M represent the periodic
growth of a semilinear set, then there is a symmetric uni-ring
protocol that self-stabilizes to I regardless of the ring size and
domain size. (Proof is due to Algorithm 3 and its soundness.)

B. Overview of the Synthesis Method

An implication of Theorem III.1 is that we no longer have
a finite spanning tree. Instead, we have an unbounded set of
spanning trees τ0, τ1, · · · as the domain size M grows. Put
it another way, for an unbounded domain size, we have an
unbounded spanning tree that has an unbounded branching
factor, or an unbounded depth (or both). How do we formally
represent such unbounded structures to facilitate the synthesis
of actions? Theorem III.1 points us to semilinear sets. For
example, Algorithm 1 generates the tree in Figure 2b for
the NA protocol and domain size 2, whose arcs represent a
set of integer vectors {(1, 1), (0, 1)}. Likewise, the trees in
Figures 3b to 5b respectively capture these three sets of inte-
ger vectors: {(1, 1), (0, 1), (2, 1)}, {(1, 1), (0, 1), (2, 1), (3, 2)}
and {(1, 1), (0, 1), (2, 1), (3, 2), (4, 3)} for domain sizes 3 to
5. The vectors (1, 1) and (0, 1) exist in the intersection of
all four sets and will be there for larger domain sizes too.
We call this set of vectors the common core, denoted C.
The remaining vectors can be generalized as the linear set
UC = {(2, 1), (3, 2), · · · } with the base vector (2, 1) and the
period vector (1, 1). We call the linear set UC the unbounded
core of the protocol. Since the common core is finite, each
vector in it can be represented as a linear set. Thus, we first
generate the linear sets of a semilinear set that represents the
unbounded spanning tree of a protocol (Figure 1). Then, we
synthesize the parameterized action from linear sets.

C. Generating Linear Sets

This section presents an algorithm for the generation of a
semilinear set representing the unbounded spanning tree of a
protocol. This problem is divided into the formal specifica-
tions of the common and unbounded cores of a protocol as
linear sets. A tree is acceptable as long as it has a vertex
corresponding to each value in a domain size M and its root
is a value γ ∈ ZM for which L(γ, γ) holds. Algorithm 3
generates the linear sets of an unbounded tree as Presburger
formulas. Naturally, we start with the domain size of 2. Steps 2
and 3 of Algorithm 3 search for a value γ for which L(γ, γ)
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Fig. 1: Overview of the proposed synthesis method.

holds for two consecutive odd and even domain sizes. This
search continues up to a preset upper bound B. Without such
an upper bound, the algorithm may never terminate. Step 4
invokes Algorithm 2 for the construction of a spanning tree
for M and γ found in Step 3. The common core C (see
Step 5) then includes the integer vectors corresponding to the
arcs of the spanning tree τ built in Step 4. After forming the
common core, Algorithm 3 increases the domain size in Step
6. Such an increase introduces a new value in the domain of xi,
denoted vM , which corresponds to a new vertex added to τ . To
determine how vM should be included in the tree, Algorithm
3 identifies the set U of all vertices u for which L(vM , u)
holds. We ignore the arcs L(u, vM ) because connecting any
non-leaf node to vM creates a cycle in the tree. Moreover,
connecting a leaf node l to vM would result in two parents
for l. Thus, the only option for connecting vM to the tree is
to include an outgoing arc from vM to some other tree node.
If the set U is empty (Step 7), then vM is directly connected
to the root γ; i.e., an arc (vM , γ) is included in τ . In this
case, we consider (vM , γ) as the base vector of a linear set
and (1, 0) as the period vector. Such a linear set captures the
unbounded growth of the domain size as new arcs connected to
the root. That is, the root γ would have an unbounded number
of children. If U is non-empty (Step 8), then a value w ∈ U is
randomly selected to be the parent of vM in the tree; i.e., the
arc (vM , w) is included in the tree. Every time the domain size
increases, the value of vM is incremented. For this reason, the
first element of the period vector must be 1. For simplicity, we
consider the growth of w in an incremental fashion too. That
is, the period vector is (1, 1) and the base vector is (vM , w).
Overall, Steps 7 and 8 determine the values of the base vector
(b, b′) and the period vector (p, p′) of the unbounded core.

Algorithm 3. Gen LinearSets(L(xi−1, xi): state predicate,
B: positive integer)

1: M := 2.
2: If M ≥ B then declare that γ could not be found and

exit; // Upper bound reached.
3: If there is a solution for some value γ where L(γ, γ)

holds modulo M and M + 1, then go to Step 4;

otherwise, M :=M + 1 and go to Step 2.
4: τ := ConstructSpanningTree(L(xi−1, xi),M, γ).
5: C := Sτ where Sτ represents the set of arcs of τ as a

set of integer vectors. // The common core detected
6: M ′ := M + 1 and let vM denote the new vertex (i.e.,

value M modulo M ′) due to domain size increase.
Calculate the set U = {u | L(vM , u) holds };

7: If U = ∅ then include arc (vM , γ) every time the
domain is increased. Set the base vector to (vM , γ), and
the period vector to (1, 0). Thus, (b, b′) := (vM , γ), and
(p, p′) := (1, 0). // Unbounded core UC.

8: Else select an arc (vM , w) for some value w ∈ U as
the base vector. Set the base vector to (vM , w), and the
period vector to (1, 1). Thus, (b, b′) := (vM , w), and
(p, p′) := (1, 1). // Unbounded core UC.

9: For each integer vector (c, d) ∈ C, return formulas
ϕ(xi−1)

def
= (xi−1 = c), ψ(xi−1, x

′
i)

def
= (x′i = d), and

ψx′
i
(xi−1)

def
= d.

10: Corresponding to the unbounded core UC constructed
in Steps 7 and 8, return formulas ϕ(xi−1)

def
= (xi−1 =

b+λp), ψ(xi−1, x
′
i)

def
= (x′i = xi−1+(b′−b)+λ(p′−p)),

and ψx′
i
(xi−1)

def
= (xi−1 + (b′ − b) + λ(p′ − p)), where

λ ∈ N.
end

Steps 9 and 10 specify the linear sets corresponding to
the common core and the unbounded core as Presburger
formulas [20]. Each integer vector (a, b) in a linear set
actually represents an atomic action of the protocol specified
as xi−1 = a∧C(xi−1, xi) → xi := b, where C(xi−1, xi) is a
Boolean expression specified in terms of xi and xi−1. Since
the second element of each vector (a, b) represents the updated
value of xi, we use the notation x′i instead of xi when formally
specifying the linear sets of a semilinear set. For example,
we specify the linear set {(0, 1)} as xi−1 = 0 ∧ x′i = 1.
Each such formula provides an incomplete sketch of an action,
which should be completed in subsequent steps of synthesis.
In general, we specify a linear set L with the base vector
(b, b′) and the period vector (p, p′) as {(xi−1, x

′
i) | ∀λ ∈ N ::

(xi−1 = b + λp) ∧ (x′i = b′ + λp′)}. Since xi−1 and x′i
are free variables and λ is known to be a natural value, we
eliminate the quantifications in Steps 9 and 10 of Algorithm
3. Let F1 = (xi−1 = b + λp) and F2 = (x′i = b′ + λp′).
Subtracting F1 from F2 relates x′i with xi−1 as ψ(xi, x′i)

def
=

x′i = xi−1 + (b′ − b) + λ(p′ − p) (Step 10). Factoring out x′i,
we get ψx′

i
(xi−1)

def
= (xi−1 + (b′ − b) + λ(p′ − p)). In fact,

ψx′
i
(xi−1) represents the expression that should be assigned

to xi in the action corresponding to the linear set L.
The NA protocol. Figures 2a and 2b respectively represent the
locality graph and the spanning tree of NA for M = 2. Figures
3 to 5 illustrate the locality graphs and the spanning trees for
domain sizes 3 to 5. The semilinear set of the NA protocol
can be specified as the union of the following linear sets:

• Linear set 1: The base vector is (1, 1), and the period
vector is (0, 0). That is, for the unbounded domain M ,
this set would be equal to {(xi−1, x

′
i) | xi−1 = (1 +
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0 1

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

(b) A spanning tree rooted at 1.

Fig. 2: Locality graph and a spanning tree of NA for M = 2.

0 1

2

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

2

(b) A spanning tree rooted at 1.

Fig. 3: Locality graph and a spanning tree of NA for M = 3.

λ0) = 1 and x′i = (1 + λ0) = 1 where λ ∈ N}. Since
the period vector is (0, 0), this set includes just a single
vector; i.e., {(1, 1)}. Thus, we have ϕ(xi−1)

def
= (xi−1 =

1), ψ(xi−1, x
′
i)

def
= (x′i = 1) and ψx′

i
(xi−1)

def
= 1 for this

linear set.
• Linear set 2: The base vector is (0, 1), and the period

vector is (0, 0). Thus, we have ϕ(xi−1)
def
= (xi−1 = 0),

ψ(xi−1, x
′
i)

def
= (x′i = 1) and ψx′

i
(xi−1)

def
= 1.

• Linear set 3: Using the base vector (2, 1), and the period
vector (1, 1), this linear set is specified as {(xi−1, x

′
i) |

xi−1 = 2+λ and x′i = 1+λ where λ ∈ N}. Step 10 gives
ϕ(xi−1)

def
= (xi−1 = 2 + λ), which means ϕ(xi−1)

def
=

(xi−1 ≥ 2). Moreover, we have ψ(xi−1, x
′
i)

def
= (x′i =

xi−1 − 1), and ψx′
i
(xi−1)

def
= (xi−1 − 1).

The union of the above linear sets forms a semilinear set
that captures the unbounded spanning tree of the NA protocol.

Theorem III.2. Algorithm 3 terminates and is sound. That
is, it correctly generates a semilinear set representing an
unbounded spanning tree rooted at γ.

Proof. Due to space constraint, we provide a proof sketch here
and refer interested readers to [21] for the complete proof. The
proof of termination follows from the finiteness of the upper
bound B. The proof of soundness includes two parts. First, we
show that the common core C constructed in Step 5 is a finite
union of some linear sets. Second, we prove that the union
of C and the unbounded core generated in Steps 7 and 8 is a
semilinear set representing an unbounded spanning tree rooted
at γ. We show this by induction on M .

D. Synthesizing Parameterized Actions from Linear Sets

This section presents a method for the synthesis of param-
eterized actions of self-stabilizing protocols from linear sets.
Each linear set in the semilinear set represents the structure
of an individual action in a protocol with deterministic and

0 1

3 2

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

3 2

(b) A spanning tree rooted at 1.

Fig. 4: Locality graph and a spanning tree of NA for M = 4.

0 1

4 3 2

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

4 3 2

(b) A spanning tree rooted at 1.

Fig. 5: Locality graph and a spanning tree of NA for M = 5.

self-disabling process. However, such a structure lacks details
of the guard and statement of each action. Thus, the question
is: how do we synthesize the guard of each action? and how
do we synthesize the statement of each action? The guard
of each action includes three components: (1) its structure
(taken from a linear set); (2) ¬L(xi⊖1, xi), and (3) the self-
disabling condition, which is the negation of the statement of
the action. Since a linear set contains integer vectors (a, b)
where a represents the value that xi−1 should have before the
value of xi is updated to b, the first component of a guard
includes all values of xi−1 that make the formula ϕ(xi−1)
true, and the statement of the guard should make ψ(xi−1, x

′
i)

true. Moreover, an action is enabled for all values of xi (in
the current state of a process) that make L(xi−1, xi) false,
which is why ¬L(xi−1, xi) is a part of the guard condition.
The statement of the action should make L(xi−1, xi) true.
Moreover, once an action is executed, it should disable itself;
i.e., self-disabling assumption. This means that the guard
of an action should contain the negation of the expression
that holds after the execution of the action. Thus, the third
component of a guard is ¬ψ(xi−1, xi). In the computation
of ψ(xi−1, xi), Algorithm 4 uses the values of xi−1 and
xi in the current state of process Pi, before xi is updated.
In summary, the guard of each action would be equal to
ϕ(xi−1) ∧ ¬L(xi−1, xi) ∧ ¬(xi = ψx′

i
(xi−1)) (see Algorithm

4). Since x′i represents the updated value of xi in ψ(xi−1, x
′
i),

one can refactor ψ(xi−1, x
′
i) in order to generate ψx′

i
(xi−1),

which denotes ψ(xi−1, x
′
i) modulo x′i. That is, ψx′

i
(xi−1)

treats x′i as a function of xi−1. This way, we create the
assignment xi := ψx′

i
(xi−1) in Line 2 of Algorithm 4.
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Algorithm 4. Gen Actions(ϕ(xi−1), ψ(xi−1, x
′
i): Presburger

formula corresponding to a linear set, L(xi−1, xi): State
predicate)

1: G def
= ϕ(xi−1) ∧ ¬L(xi−1, xi) ∧ (xi ̸= ψx′

i
(xi−1))

2: A def
= (xi := ψx′

i
(xi−1))

3: Return G → A
end

1) Example: Synthesis of the Actions of the NA Protocol:
We first demonstrate how we generate the action correspond-
ing to the linear set (1, 1). We take the output of Algorithm 3
for this linear set (i.e., ϕ(xi−1)

def
= (xi−1 = 1), ψ(xi−1, x

′
i)

def
=

(x′i = 1) and ψx′
i
(xi−1)

def
= 1) and generate its action.

• ¬L(xi−1, xi): Since L(xi−1, xi) = (xi−1 = xi) ∨
(xi−1 = xi + 1), we include the constraint (xi−1 ̸=
xi) ∧ (xi−1 ̸= xi + 1) in the guard of this action.

• Linear set constraint: This linear set imposes the con-
straint ϕ(xi−1) ≡ (xi−1 = 1) on the guard of the action.

• Self-disabling constraint: We use ψ(xi−1, x
′
i)

def
= (x′i = 1)

to specify this constraint. To this end, we first determine
the assignment of the action using ψx′

i
(xi−1)

def
= 1. Thus,

the assignment is just xi := 1. As a result, the self-
disabling constraint is the negation of xi = 1; i.e., xi ̸= 1.

Thus, the synthesized action is (xi−1 = 1)∧ (xi−1 ̸= xi)∧
(xi−1 ̸= xi + 1) ∧ (xi ̸= 1) → xi := 1. Likewise, the action
generated from the linear set {(0, 1)} is (xi−1 = 0)∧ (xi−1 ̸=
xi)∧ (xi−1 ̸= xi+1)∧ (xi ̸= 1) → xi := 1. We now generate
the action corresponding to the linear set {(xi−1, x

′
i) | xi−1 =

2 + λ and x′i = 1 + λ where λ ∈ N}. Corresponding to
this unbounded linear set, Algorithm 3 generates ϕ(xi−1)

def
=

(xi−1 ≥ 2), ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 1) and ψx′

i
(xi−1)

def
=

(xi−1 − 1). We first synthesize the three components of the
guard of this action, and then generate its assignment.

• ¬L(xi−1, xi): This part is again (xi−1 ̸= xi) ∧ (xi−1 ̸=
xi+1) for the same reason discussed for the first action.

• Linear set constraint: The constraint ϕ(xi−1) requires
that we include (xi−1 ≥ 2) as part of the guard condition.

• Self-disabling constraint: Using ψx′
i
(xi−1)

def
= (xi−1−1),

we realize that the assignment of this action establishes
the condition (xi = xi−1 − 1). Thus, we include the
constraint (xi ̸= xi−1−1) in the guard, and xi := xi−1−
1 as the assignment of this action.

Putting everything together, we get the following action for
this unbounded linear set: (xi−1 ≥ 2) ∧ (xi−1 ̸= xi) ∧ (xi ̸=
xi−1 − 1) → xi := xi−1 − 1.
Sample executions. Consider a computation of a ring of four
processes for a domain size M = 4 (i.e., xi ∈ Z4) starting at
the state s0 = ⟨0, 2, 1, 3⟩, where the underlined values indicate
the enabled processes based on the synthesized actions. That
is, processes P0, P1 and P3 are enabled. For example, P0 is
enabled because x0 = 0 ∧ x3 = 3 and the third action is
enabled. Using a similar reasoning, one can figure out why
P1 and P3 are enabled at s0. For brevity, we demonstrate a
synchronous execution of this ring, but one can extract an
asynchronous interleaving of processes that converges to the

same final state. Starting at s0, all three enabled processes
can execute, where the entire ring transitions to the state
s1 = ⟨2, 1, 1, 1⟩, and then reaches the state s2 = ⟨1, 1, 1, 1⟩,
where everyone agrees with its predecessor. For a domain size
M = 5 and an arbitrary start state ⟨0, 2, 0, 3⟩, the NA protocol
generates the following computation: ⟨2, 1, 1, 1⟩, ⟨1, 1, 1, 1⟩.
As another example, consider a larger ring of five processes
and M = 5. Starting at ⟨0, 4, 2, 3, 1⟩, the NA protocol will con-
verge through the following states: ⟨0, 4, 3, 1, 2⟩, ⟨1, 4, 3, 2, 1⟩,
⟨1, 1, 3, 2, 1⟩, ⟨1, 1, 1, 2, 1⟩, ⟨1, 1, 1, 1, 1⟩. Yet another example
includes a case of M = 7 and six processes in the ring.
Starting at ⟨6, 2, 0, 3, 6, 4⟩, the NA protocol has the follow-
ing converging computation: ⟨3, 5, 1, 1, 2, 5⟩, ⟨4, 2, 4, 1, 1, 1⟩,
⟨1, 3, 1, 3, 1, 1⟩, ⟨1, 1, 2, 1, 1, 1⟩, ⟨1, 1, 1, 1, 1, 1⟩. Observe that,
the synthesized NA protocol is self-stabilizing for different
ring sizes and domain sizes.

IV. PARITY PROTOCOL

This section demonstrates the synthesis of a Parity pro-
tocol, where processes in the uni-ring should converge to
an agreed-upon parity starting from any arbitrary state. For-
mally, the entire ring should self-stabilize to states where
∀i : i ∈ N : (|xi−1 − xi| mod 2) = 0 holds. (Notice that,
|xi−1 − xi| =max(xi−1 − xi, xi − xi−1).) Figures 6 to 9
illustrate how the spanning tree of Parity grows as the domain
size increases. The common core is {(0, 0), (1, 0), (2, 0)}
because M = 3 is the first domain size for which there is a
solution. We synthesize an action corresponding to each linear
set.

• Linear set 1: The self-loop on 0 can be represented as
a linear set with the base vector (0, 0) and the period
vector (0, 0). Algorithm 3 outputs ϕ(xi−1)

def
= (xi−1 = 0),

ψ(xi−1, x
′
i)

def
= (x′i = 0), and ψx′

i
(xi−1)

def
= 0. Thus, the

assignment of the action is xi := 0, and the requirement
of having self-disabling actions would be xi ̸= 0. The
constraint ¬L(xi−1, xi) provides (|xi−1 − xi| mod 2) ̸=
0. Thus, the synthesized action is (xi−1 = 0)∧ ((|xi−1−
xi| mod 2) ̸= 0) ∧ (xi ̸= 0) → xi := 0.

• Linear set 2: The base vector of this linear set is (1, 0)
and its period vector is (0, 0). As a result, we have
ϕ(xi−1)

def
= (xi−1 = 1), ψ(xi−1, x

′
i)

def
= (x′i = 0), and

ψx′
i
(xi−1)

def
= 0. The assignment of the action is xi := 0,

which leads to the self-disabling constraint xi ̸= 0. The
constraint ¬L(xi−1, xi) provides ((|xi−1−xi| mod 2) ̸=
0). Thus, the synthesized action is (xi−1 = 1)∧((|xi−1−
xi| mod 2) ̸= 0) ∧ (xi ̸= 0) → xi := 0.

• Linear set 3: The base vector of this linear set is (2, 0)
and its period vector is (0, 0). As a result, we have
ϕ(xi−1)

def
= (xi−1 = 2), ψ(xi−1, x

′
i)

def
= (x′i = 0), and

ψx′
i
(xi−1)

def
= 0. The assignment of the action is xi := 0,

which leads to the self-disabling constraint xi ̸= 0. The
constraint ¬L(xi−1, xi) provides ((|xi−1−xi| mod 2) ̸=
0). Thus, the synthesized action is (xi−1 = 2)∧((|xi−1−
xi| mod 2) ̸= 0) ∧ (xi ̸= 0) → xi := 0.

• Linear set 4: Using the base vector (3, 1) and the period
vector (1, 1), this linear set contains integer vectors S4 =
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{(xi−1, x
′
i) | (xi−1 = 3 + λ) ∧ (x′i = 1 + λ) where

λ ∈ N}. Algorithm 3 gives us ϕ(xi−1)
def
= (xi−1 = 3 +

λ), which can be written as ϕ(xi−1)
def
= (xi−1 ≥ 3).

Algorithm 3 also outputs ψ(xi−1, x
′
i)

def
= (x′i = xi−1−2),

and ψx′
i
(xi−1)

def
= (xi−1−2). The assignment of the action

is obtained from ψx′
i
(xi−1)

def
= (xi−1 − 2), leading to

xi := xi−1−2. Thus, the synthesized action for this linear
set is (xi−1 ≥ 3) ∧ ((|xi−1 − xi| mod 2) ̸= 0) ∧ (xi ̸=
xi−1 − 2) → xi := xi−1 − 2.

0 1

(a) Locality graph representing
predicate |xi−1−xi| mod 2 = 0
in the Parity protocol.

0 1

(b) A spanning tree rooted at 0.

Fig. 6: Locality graph and a spanning tree of the Parity
protocol for domain size 2.
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(a) Locality graph representing
predicate |xi−1−xi| mod 2 = 0
in the Parity protocol.

0 1

2

1

2

1

(b) A spanning tree rooted at 0.

Fig. 7: Locality graph and a spanning tree of the Parity
protocol for domain size 3.
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2 3

(a) Locality graph representing
predicate |xi−1−xi| mod 2 = 0
in the Parity protocol.

0 1

2 3

(b) A spanning tree rooted at 0.

Fig. 8: Locality graph and a spanning tree of the Parity
protocol for domain size 4.

V. RELATED WORK

This section discusses the state-of-the-art in the verification
and synthesis of parameterized systems, especially unbounded
and infinite-state systems. For example, predicate abstraction
[22], [23] enables a method for creating a finite-state repre-
sentation of infinite-state systems where safety properties can

0 1

2 34

Fig. 9: A spanning tree of the Parity protocol for domain size
5.

be verified. Constraint language programming [24] enables
the verification of safety properties of concurrent systems
with unbounded data. Approaches for reachability analysis
of generalized Petri nets [25], [26] apply over-approximation
towards generating a finite model, and then develop an efficient
semi-decision procedure for forward reachability analysis.
Counter abstraction [27] utilizes integer counters to count the
number of processes in a specific state, but such abstractions
are too coarse for the design of self-stabilizing protocols
where recovery must be ensured from every concrete state.
Environment abstraction [28] extends counter abstraction in
order to model the abstract state and the environment of each
process. Invisible invariants [29], [30] infer an invariant of a
parameterized system by examining a few small instantiations
of protocols. Indexed predicates [31] provide a method for
the generation and verification of invariant predicates specified
in terms of the process indices in infinite-state systems. The
aforementioned methods mostly aim at the verification of
safety and local liveness properties, and it is unclear how they
can synthesize self-stabilizing unbounded protocols.

Most methods for the synthesis of parameterized unbounded
systems provide little results for the synthesis of unbounded
self-stabilizing protocols, where a global liveness property
(i.e., convergence) must be met from any state in an unbounded
state space. For example, synthesis of Petri nets [32], [33], [34]
mainly focuses on the transformation of behavioral specifica-
tions in the form of labeled transition systems to Petri nets.
UCLID5 [35], [36] provides a framework for modular verifi-
cation and synthesis of the artifacts (e.g., invariants, assume-
guarantee conditions) that are used during verification. Syntax-
Guided Synthesis (SyGus) [37] generates the implementation
of a set of functions (each adhering to a grammar) in the
specification of a system for a background logic theory. It
is unclear how one can use SyGus to synthesize the actions
of SS-SymU protocols which must interact asynchronously to
ensure convergence in a specific topology. Moreover, methods
that combine SyGus with reactive synthesis are mostly applied
to centralized systems [38]. Oracle-Guided Inductive Synthesis
(OGIS) [39], [40], [41] is based on iterative query-response in-
teractions between a learner and a teacher towards synthesizing
a system that adheres to formal specifications. Utilizing OGIS
in the synthesis of self-stabilizing unbounded systems may not
converge to a solution that must recover from any state rather
than recovery from a proper set of initial states. While the
existing synthesis methods inspire our work, the novelty of
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our approach mainly lies in the characterization of unbounded
actions as semilinear sets for the synthesis of SS-SymU.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigated the problem of synthesizing self-
stabilizing symmetric protocols (SS-SymU) on uni-rings,
where a ring can have an unbounded number of processes and
processes have unbounded variables. While previous research
[5] has addressed this problem for rings of unbounded size,
we are not aware of any work that synthesizes self-stabilizing
protocols having unbounded variables too. We first showed
that the ability to represent unbounded actions of a protocol as
semilinear sets is sufficient for synthesis. This reduces the syn-
thesis of SS-SymU to the synthesis of semilinear sets. Then,
we presented a sound algorithm that generates a semilinear
set for a protocol from which the parameterized actions of
the protocol are derived. We demonstrated how our algorithm
can generate SS-SymU protocols (e.g., near agreement and
parity on unbounded uni-rings) that were previously infeasible.
We are currently implementing the proposed method as a
synthesizer and are investigating the feasibility of synthesis
for more complicated protocols and topologies. We would
also like to know how semilinear sets can be utilized for the
verification and synthesis of unbounded protocols that satisfy
general temporal properties (instead of just self-stabilization).
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