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Abstract—Attribute grammars allow the association of semantic
actions to the production rules in context-free grammars, pro-
viding a simple yet effective formalism to define the semantics
of a language. However, drafting the semantic actions can be
tricky and a large drain on developer time. In this work,
we propose a synthesis methodology to automatically infer the
semantic actions from a set of examples associating strings
to their meanings. We also propose a new coverage metric,
derivation coverage. We use it to build a sampler to effectively
and automatically draw strings to drive the synthesis engine. We
build our ideas into our tool, PĀN. INI, and empirically evaluate
it on twelve benchmarks, including a forward differentiation
engine, an interpreter over a subset of Java bytecode, and a
mini-compiler for C language to two-address code. Our results
show that PĀN. INI scales well with the number of actions to be
synthesized and the size of the context-free grammar, significantly
outperforming simple baselines.

Index Terms—Program synthesis, Attribute grammar, Seman-
tic actions, Syntax directed definition

I. INTRODUCTION

Attribute grammars [1] provide an effective formalism to
supplement a language syntax (in the form of a context-free
grammar) with semantic information. The semantics of the
language is described using semantic actions associated with
the grammar productions. The semantic actions are defined in
terms of semantic attributes associated with the non-terminal
symbols in the grammar.

Almost no modern applications use hand-written parsers
anymore; instead, most language interpretation engines today
use automatic parser generators (like YACC [2], BISON [3],
ANTLR [4] etc.). These parser generators employ the sim-
ple, yet powerful formalism of attribute grammars to couple
parsing with semantic analysis to build an efficient frontend
for language understanding. This mechanism drives many
applications like model checkers (eg. SPIN [5]), automatic
theorem provers (eg. Q3B [6], CVC5 [7]), compilers (eg.
CIL [8]), database engines (eg. MYSQL [9]) etc.

However, defining appropriate semantic actions is often not
easy: they are tricky to express in terms of the inherited and
synthesized attributes over the grammar symbols in the respec-
tive productions. Drafting these actions for large grammars
requires a significant investment of developer time.

In this work, we propose an algorithm to automatically syn-
thesize semantic actions from sketches of attribute grammars.

S ↣ E [1] output(E.val;)

E ↣ E + F [2] E.val ← h•
1(E.val, F.val);

| E - F [3] E.val ← h•
2(E.val, F.val);

| F [4] E.val ← F.val;
F ↣ F * K [5] F.val ← h•

3(F.val, K.val);
| K [6] F.val ← K.val;

K ↣ K ˆnum [7] K.val ← h•
4(K.val, num);

| SIN ( K ) [8] K.val ← h•
5(K.val);

| COS ( K ) [9] K.val ← h•
6(K.val);

| num [10] K.val ← getVal(num) + 0ε;
| var [11] K.val ← lookUp(Ω, var) + 1ε;

Fig. 1: Attribute grammar for automatic forward differentiation
(Ω is the symbol table)

Fig. 1 shows a sketch of an attribute grammar for automatic
forward differentiation using dual numbers (we explain the
notion of dual numbers and the example in detail in §III-A).
The production rules are shown in green color while the
semantic actions are shown in the blue color. Our synthesizer
attempts to infer the definitions of the holes in this sketch (the
function calls h•

1, h•
2, h•

3, h•
4, h•

5, h•
6); we show these holes

in yellow background. As an attribute grammar attempts to
assign “meanings” to language strings, the meaning of a string
in this language is captured by the output construct.

This is a novel synthesis task: the current program synthesis
tools synthesize a program such that a desired specification is
met. In our present problem, we attempt to synthesize semantic
actions within an attribute grammar: the synthesizer is required
to infer definitions of the holes such that for all strings in the
language described by the grammar, the computed semantic
value (captured by the output construct) matches the intended
semantics of the respective string—this is a new problem that
cannot be trivially mapped to a program synthesis task.

Our core observation to solve this problem is the follows:
for any string in the language, the sequence of semantic
actions executed for the syntax-directed evaluation of any
string is a loop-free program. This observation allows us to
reduce attribute grammar synthesis to a set program synthesis
tasks. Unlike a regular program synthesis task where we
are interested in synthesizing a single program, the above
reduction requires us to solve a set of dependent program
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Fig. 2: Parse tree for input xˆ2+4*x+5

synthesis instances simultaneously. These program synthesis
tasks are dependent as they contain common components (to
be synthesized) shared by multiple programs, and hence, they
cannot be solved in isolation—as the synthesis solution from
one instance can influence others.

Given a set of examples E (strings that can be derived
in the provided grammar) and their expected semantics O
(semantic values in output ); for each example ei ∈ E , we
apply the reduction by sequencing the set of semantic actions
for the productions that occur in the derivation of ei. This
sequence of actions forms a loop-free program Pi, with the
expected semantic output oi ∈ O as the specification. We
collect such programs-specification pairs, ⟨Pi, oi⟩, to create a
set of dependent synthesis tasks. An attempt at simultaneous
synthesis of all these set of tasks by simply conjoining the
synthesis constraints does not scale.

Our algorithm adopts an incremental, counterexample
guided inductive synthesis (CEGIS) strategy, that attempts to
handle only a “small” set of programs simultaneously—those
that violate the current set of examples. Starting with only
a single example, the set of satisfied examples are expanded
incrementally till the specifications are satisfied over all the
programs in the set.

Furthermore, to relieve the developer from providing ex-
amples, we also propose an example generation strategy for
attribute-grammars based on a new coverage metric. Our
coverage metric, derivation coverage, attempts to capture
distinct behaviors due to the presence or absence of each
of the semantic actions corresponding to the syntax-directed
evaluation of different strings.

We build an implementation, PĀN. INI1, that is capable
of automatically synthesizing semantic actions (across both
synthesized and inherited attributes) in attribute grammars. For
the attribute grammar sketch in Fig. 1, PĀN. INI automatically
synthesizes the definitions of holes as shown in Fig. 3 in a
mere 39.2 seconds. We evaluate our algorithm on a set of
attribute grammars, including a Java bytecode interpreter and

1PĀN. INI ( ) was a Sanskrit grammarian and scholar in ancient India.

a mini-compiler frontend. Our synthesizer takes a few seconds
on these examples.

To the best of our knowledge, ours is the first work at
automatic synthesis of semantic actions on attribute grammars.
The following are our contributions in this work:

• We propose a new algorithm for synthesizing semantic
actions in attribute grammars;

• We define a new coverage metric, derivation coverage,
to generate effective examples for this synthesis task;

• We build our algorithms into an implementation, PĀN. INI,
to synthesize semantic actions for attribute grammars;

• We evaluate PĀN. INI on a set of attribute grammars
to demonstrate the efficacy of our algorithm. We also
undertake a case-study on the attribute grammar of the
parser of the SPIN model-checker to automatically infer
the constant-folding optimization and abstract syntax tree
construction.

An extended version of this article is available [10]. The
implementation and benchmarks of PĀN. INI are available at
https://github.com/pkalita595/Panini.

II. PRELIMINARIES

Attribute grammars [1] provide a formal mechanism to
capture language semantics by extending a context-free gram-
mar with attributes. An attribute grammar G is specified by
⟨S, P, T,N, F,Γ⟩, where

• T and N are the set of terminal and non-terminal symbols
(resp.), and S ∈ N is the start symbol;

• A set of (context-free) productions, pi ∈ P , where pi :
Xi ↣ Yi1Yi2 . . .Yin; a production consists of a head Xi ∈
N and body Yi1 . . .Yin, such that each Yik ∈ T ∪N .

• A set of semantic actions fi ∈ F ;
• Γ : P → F is a map from the set of productions P to

the set of semantic actions fi ∈ F .
The set of productions in G describes a language (denoted as
L(G)) to capture the set of strings that can be derived from S.
A derivation is a sequence of applications of productions pi ∈
P that transforms S to a string, w ∈ L(G); unless specified, we
will refer to the leftmost derivation where we always select the
leftmost non-terminal for expansion in a sentential form. As
we are only concerned with parseable grammars, we constrain
our discussion in this paper to unambiguous grammars.

The semantic actions associated with the grammar produc-
tions are defined in terms of semantic attributes attached to
the non-terminal symbols in the grammar. Attributes can be
synthesized or inherited: while a synthesized attributes are
computed from the children of a node in a parse tree, an
inherited attribute is defined by the attributes of the parents
or siblings.

Fig. 1 shows an attribute grammar with context-free pro-
ductions and the associated semantic actions. Fig. 2 shows the
parse tree of the string x2+4x+5 on the provided grammar;
each internal node of the parse tree have associated semantic
actions (we have only shown the “unknown” actions that need
to be inferred).

305

https://github.com/pkalita595/Panini


h•
1 (a1 + a2ε, b1 + b2ε):
r ← a1 + b1
d← a2 + b2
return r + dε

(a)

h•
2 (a1 + a2ε, b1 + b2ε):
r ← a1 − b1
d← a2 − b2
return r + dε

(b)

h•
3 (a1 + a2ε, b1 + b2ε):
r ← a1 ∗ b1
d← a2 ∗ b1 + a1 ∗ b2
return r + dε

(c)
h•
5 (a1 + a2ε):
r ← sin(a1)
d← a2 ∗ cos(a1)
return r + dε

(d)

h•
6 (a1 + a2ε):
r ← cos(a1)
d← a2 ∗ sin(a1) ∗ −1
return r + dε

(e)

h•
4 (a1 + a2ε, c):
r ← pow(a1, c)
d← a2 ∗ pow(a1, c− 1)
return r + dε

(f)

Fig. 3: Synthesized holes for holes in Fig. 1

Parser generators [2] accept an attribute grammar and
automatically generate parsers that perform a syntax-directed
evaluation of the semantic actions. For ease of discussion, we
assume that the semantic actions are pure (i.e. do not cause
side-effects like printing values or modifying global variables)
and generate a deterministic output value as a consequence of
applying the actions.

An attribute grammar is non-circular if the dependencies
between the attributes in every syntax tree are acyclic. Non-
circularity is a sufficient condition that all strings have unique
evaluations [11].
Notations. We notate production symbols by serif fonts, non-
terminal symbols (or placeholders) by capital letters (eg. X)
and terminal symbols by small letters (eg. a). Sets are denoted
in capital letters. We use arrows with tails (↣) in productions
and string derivations to distinguish it from function maps.
We use the notation e[g1/g2] to imply that all instances of
the subexpression g2 are to be substituted by g1 within the
expression e. We use the notation of Hoare logic [12] to
capture program semantics: {P}Q{R} implies that if the
program Q is executed with a precondition P , it can only
produce an output state in R; P and R are expressed in some
base logic (like first-order logic).

III. OVERVIEW

Sketch of an attribute grammar. We allow the sketch G• of
an attribute grammar (as syntax directed definition (SDD)),
G• = ⟨S, P, T,N,H•,Γ⟩, to contain holes for unspecified
functionality within the semantic actions h•

i ∈ H•. For
example, in Fig. 1, the set of holes comprises of the functions
H = {h•

1, h
•
2, h

•
3, h

•
4, h

•
5, h

•
6}. If the semantic action corre-

sponding to a production p contains hole(s), we refer to the
production p as a sketchy production; when the definitions for
all the holes in a sketchy production are resolved, we say that
the production is ready. The completion (denoted G{f1,...,fn})
of a grammar sketch G• denotes the attribute grammar where
a set of functions f1, . . . , fn replace the holes h•

1, . . . , h
•
n.

We denote the syntax-directed evaluation of a string w on
an attribute grammar G as JwKG ; we consider that any such
evaluation results in a value (or ⊥ if w /∈ G).
Example Suite. An example (or test) for an attribute grammar
G can be captured by a tuple ⟨w, v⟩ such that w ∈ L(G) and

JwKG = v. A set of such examples constitutes an example
suite (or test suite).

If the language described by the grammar G supports vari-
ables, then any evaluation of G needs a context, β, that binds
the free variables to input values. We denote such examples
as JwKGβ = v. When the grammar used is clear from the
context, we drop the superscript and simplify the notation to
JwKβ = v. Consider the example Jxˆ3Kx=2 = 8 + 12ε ,
where “xˆ3” is a string from the grammar shown in Fig. 1
and the input string evaluates to 8 + 12ε under the binding
x = 2. Clearly, if the language does not support variables,
the context β is always empty.

Problem Statement. Given a sketch of an attribute
grammar, G•, an example set E and a domain-specific
language (DSL) D, synthesize instantiations of the
holes by strings, w ∈ D, such that the resulting
attribute grammar agrees with all examples in E.

In other words, PĀN. INI synthesizes functions f1, . . . , fn
in the domain-specific language D such that the completion
G{f1,...,fn} satisfies all examples in E.

A. Motivating example: Automated Synthesis of a Forward
Differentiation Engine

We will use synthesis of an automatic forward differen-
tiation engine using dual numbers [13] as our motivating
example. We start with a short tutorial on how dual numbers
are used for forward differentiation.

1) Forward Differentiation using Dual numbers: Dual num-
bers, written as a+ bε, captures both the value of a function
f(x) (in the real part, a), and that its differentiation with
respect to the variable x, f ′(x), (in the dual part, b)—within
the same number. Clearly, a, b ∈ R and we assume ε2 = 0
(as it refers to the second-order differential, that we are not
interested to track). The reader may draw parallels to complex
numbers that are written as a + ib, where ‘i’ identifies the
imaginary part, and i2 = −1.

Let us understand forward differentiation by calculating
f ′(x) at x = 3 for the function f(x) = x2 + 4x+ 5.

First, the term x needs to be converted to a dual number at
x = 3. For x = 3, the real part is clearly 3. To find the dual
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part, we differentiate the term with respect to variable x, i.e.
dx
dx that evaluates to 1. Hence, the dual number representation
of the term x at x = 3 is 3 + 1ε.

Now, dual value of the term x2 can be computed simply by
taking a square of the dual representation of x:

x2⏟ ⏞⏞ ⏟
(3 + 1ε)2 =

x⏟ ⏞⏞ ⏟
(3 + 1ε) ∗

x⏟ ⏞⏞ ⏟
(3 + 1ε) = 32+(2∗3∗ε)+ε2 = 9+6ε+0

Finally, the dual number representation for the constant 4 is
4+ 0ε (as differentiation of constant is 0). Similarly, the dual
value for 4x: (4 + 0ε) ∗ (3 + 1ε) = 12 + 4ε+ 0. So, we can
compute the dual number for f(x) = x2 + 4x+ 5 as:

x2⏟ ⏞⏞ ⏟
(9 + 6ε)+

4x⏟ ⏞⏞ ⏟
(12 + 4ε)+

5⏟ ⏞⏞ ⏟
(5 + 0ε) = 26 + 10ε

Hence, the value of f(x) at x = 3 is f(3) = 26 (real part
of the dual number above) and that of its derivative, f ′(x) =
2x + 4 is f ′(3) = 10, which is indeed given by the the dual
part for the dual number above.

2) Synthesizing a forward differentiation engine: The at-
tribute grammar in Fig. 1 (adapted from [14]) implements for-
ward differentiation for expressions in the associated context-
free grammar; we will use this attribute grammar to illustrate
our synthesis algorithm. lookUp(Ω, var) returns the value of
the variable var from symbol table Ω.

We synthesize programs for the required functionalities for
the holes from the domain-specific language (DSL) shown in
Equation 1. Function pow(a, c) calculates a raised to the
power of c. We assume the availability of an input-output
oracle, Oracle(w⟨β⟩), that returns the expected semantic
value for string w under the context β.

Fun ::= C + Cε
C ::= var | num | 1 | 0 | −C | C + C | C − C | C ∗ C

| sin(C) | cos(C) | pow(C, num)
(1)

B. Synthesis of semantic actions
h•
3 (a1 + a2ε, b1 +

b2ε):
r ← a1 ∗ b1
d ← b1 + b2 +
3 ∗ a2
return r + dε

Fig. 4: Wrong
definition of h•

3

Our core insight towards solving
this synthesis problem is that the
sequence of semantic actions cor-
responding to the syntax-directed
evaluation of any string on the at-
tribute grammar constitutes a loop-
free program.

Fig. 5 shows the loop free
program from the semantic
evaluation of the example
Jxˆ2+4*x+5Kx=3 = 26 + 10ε ; the Hoare triple

captures the synthesis constraints over the holes.
Similarly, our algorithm constructs constraints (as

Hoare triples) over the set of all examples E (e.g.
Jx+xKx=13 = 26 + 2ε , J3-xKx=7 = -4 - 1ε ,

Jx*xKx=4 = 16 + 8ε ,

Jsin(xˆ2)Kx=3 = 0.41 - 5.47ε ,

Jcos(xˆ2)Kx=2 = -0.65 + 3.02ε ,

Jx*cos(x)Kx=4 = -2.61 + 2.37ε ).

Synthesizing definitions for holes that satisfy Hoare triple
constraints of all the above examples yields a valid completion
of the sketch of the attribute grammar (see Fig. 3). As the
above queries are “standard” program synthesis queries, they
can be answered by off-the-shelf program synthesis tools
[15], [16]. Hence, our algorithm reduces the problem of
synthesizing semantic actions for attribute grammars to solving
a conjunction of program synthesis problems.

{x = 3}
K1.val← 3+ 1ε;
K2.val← h•4(K1.val, 2);
K3.val← 4+ 0ε;
F1.val← h•3(K3.val, K1.val);
E1.val← h•1(K2.val, F1.val);
K4.val← 5+ 0ε;
output← h•1(E1.val, K4.val);

{output = 26+ 10ε}

Fig. 5: Hoare triple constraint
for x2 + 4x+ 5 at x = 3

While the above
conjunction can be
easily folded into a
single program synthesis
query and offloaded to a
program synthesis tool,
quite understandably,
it will not scale. To
scale the above problem,
we employ a refutation-
guided inductive synthesis
procedure: we sort the
set of examples by
increasing complexity,
completing the holes for
the easier instances first. The synthesized definitions are
frozen while handling new examples; however, unsatisfiability
of a synthesis call with frozen procedures refutes the prior
synthesized definitions. Say we need to synthesize definitions
for {h•

0, . . . , h
•
9} and examples {e1, . . . , ei−1} have already

been handled, with definitions {h•
1 = f1, . . . , h

•
5 = f5}

already synthesized. To handle a new example, ei, we
issue a synthesis call for procedures {h•

6, . . . , h
•
9} with

definitions {h•
1 = f1, . . . , h

•
5 = f5} frozen. Say, the constraint

corresponding to ei only includes calls {h•
2, h

•
4, h

•
6, h

•
8} and

the synthesis query is unsatisfiable. In this case, we unfreeze
only the participating frozen definitions (i.e. {h•

2, h
•
4}) and

make a new synthesis query. As new query only attempts
to synthesize a few new calls (with many participating calls
frozen to previously synthesized definitions), this algorithm
scales well.

For example, consider the grammar in Fig. 1: the loop-
free program resulting from the semantic evaluation of
the input Jx+xKx=13 = 26 + 2ε (say trace t1) includes
only one h•

1. Hence, we synthesize h•
1 with only the con-

straint {x = 13}t1{output = 26 + 2ε}, that results
in the definition shown in Fig. 3a. Next, we consider
the input Jx*xKx=4 = 16 + 8ε ; its constraint includes
the holes h•

3, which is synthesized as the function def-
inition shown in Fig. 4. Now, with {h•

1, h
•
3} frozen to

their respective synthesized definitions, we attempt to han-
dle Jx*cos(x)Kx=4 = -2.61 + 2.37ε . Its constraint
includes the holes {h•

3, h•
6}; now we only attempt to synthesize

h•
6 while constraining h•

3 to use the definition in Fig. 4.
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In this case the synthesizer fails to synthesize h•
6 since the

synthesized definition for h•
3 is incorrect, thereby refuting the

synthesized definition of h•
3. Hence, we now unfreeze h•

3 and
call the synthesis engine again to synthesize both h•

3 and h•
6

together. This time we succeed in inferring correct synthesized
definition as shown in Fig. 3.

C. Example Generation

We propose a new coverage metric, derivation coverage,
to generate good samples to drive synthesis. Let us explain
derivation coverage with an example, Jxˆ2+4*x+5Kx=3

from the grammar in Fig. 1. The leftmost derivation of this
string covers eight productions, ({1, 2, 4, 5, 6, 7, 10, 11})
out of a total of 11 productions. Intuitively, it implies that the
Hoare triple constraint from its semantic evaluation will test
the semantic actions corresponding to these productions.

Similarly, the Hoare logic constraint from the example
Jxˆ2+7*x+sin(x)Kx=2 will cover 9 of the productions,
{1, 2, 4, 5, 6, 7, 8, 10, 11}. As it also covers the semantic
action for the production 8, it tests an additional behavior
of the attribute grammar. On the other hand, the example
Jxˆ3+5xKx=5 invokes the productions, {1, 2, 4, 5, 6, 7, 10,

11}. As all these semantic actions have already been covered
by the example Jxˆ2+4*x+5Kx=3 , it does not include the
semantic action of any new set of productions.

In summary, derivation coverage attempts to abstract the
derivation of a string as the set of productions in its leftmost
derivation. It provides an effective metric for quantifying the
quality of an example suite and also for building an effective
example generation system.

Validation. Our example generation strategy can start off by
sampling strings w from the grammar (that improve derivation
coverage), and context β; next, it can query the oracle for
the intended semantic value v = Oracle(w⟨β⟩) to create an
example JwKGβ = v.

Consider that the algorithm finds automatically an example
Jxˆ2+4*x+5Kx=3 . Now, there are two possible, seman-

tically distinct definitions that satisfy the above constraint
(see Fig. 3c and Fig. 4), indicating that the problem is
underconstrained. Hence, our system needs to select additional
examples to resolve this. One solution is to sample multiple
contexts on the same string to create multiple constraints:

• {x = 2} K1.val← 2+ 1ε; . . . {output = 13+ 6ε}
• {x = 4} K1.val← 4+ 1ε; . . . {output = 29+ 10ε}
The above constraints resolve the ambiguity and allows

the induction of a semantically unique definitions. The check
for semantic uniqueness can be framed as a check for dis-
tinguishing inputs: given a set of synthesized completion
G{f1,...,fn}, we attempt to synthesize an alternate completion
G{g1,...,gn} and an example string w (and context β) such
that JwKG

{f1,...,fn}

β ̸= JwKG
{g1,...,gn}

β . In other words, for
the same string (and context), the attribute grammar returns
different evaluations corresponding to the two completions.
For example, Jxˆ2+4*x+5Kx=2 is a distinguishing inputs

Algorithm 1: SYNTHHOLES(G•, T,R,D)

1 φ← ⊤;
2 G•1 ← G•[R];
3 for ⟨w, v⟩ ∈ T do
4 t← GENTRACE(JwKG•

1
);

5 φ← φ ∧ (out(t) = v);

6 B ← SYNTHESIZE(φ,D);
7 return B;

witnessing the ambiguity between the definitions shown in
Fig. 3c and Fig. 4.

On the other hand, the algorithm could have sampled other
strings (instead of contexts) for additional constraints. PĀN. INI
prefers the latter; that is, it first generates a good example suite
(in terms of derivation coverage) and only uses distinguishing
input as a validation (post) pass. If such inputs are found,
additional contexts are added to resolve the ambiguity.

We provide the detailed algorithm of example generation in
the extended version [10].

IV. ALGORITHM

Given an attribute grammar G•, a set of holes hi ∈ H ,
a domain-specific language D, an example suite E and a
context β, PĀN. INI attempts to find instantiations gi for hi

such that,

Find{g1, . . . , g|H|} ∈ D such that ∀⟨s, β, v⟩ ∈ E. JsKGβ = v
(2)

where the attribute grammar G = G•[g1/h1, . . . , g|H|/h|H|]
and variable bindings β maps variables in s to values.

A. Basic Scheme: ALLATONCE

Our core synthesis procedure (Algorithm 1), SYNTH-
HOLES(G•, E,R, D), accepts a sketch G•, an example (or
test) suite E, a set of ready functions R and a DSL D;
all holes whose definitions are available are referred to as
ready functions. When SYNTHHOLES is used as a top-level
procedure (as in the current case), R = ∅; if not empty, the
definitions of the ready functions are substituted in the sketch
G• to create a new sketch G•1 on the remaining holes (Line 2).
We refer to the algorithm where R = ∅ at initialization as the
ALLATONCE algorithm.

Our algorithm exploits the fact that a syntax-directed seman-
tic evaluation of a string w on an attribute grammar G produces
a loop-free program. It attempts to compute a symbolic
encoding of this program trace in the formula φ (initialized
to true in Line 1). GENTRACE() instruments the semantic
evaluation on the string w to collect a symbolic trace (the loop-
free program) consisting of the set of instructions encountered
during the syntax-directed execution of the attribute grammar
(Line 4); an output from an operation that is currently a hole
is appended as a symbolic variable. The assertion that the
expected output v matches the final symbolic output out(t)
from the trace t is appended to the list of constraints (Line 5).
Finally, we use a program synthesis procedure, Synthesize with
the constraints φ in an attempt to synthesize suitable function
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definitions for the holes in φ (Line 6). Given a constraint
in terms of a set of input vector x⃗ and function symbols
(corresponding to holes) h⃗,

SYNTHESIZE(φ(x⃗, h⃗)) := h⃗ such that ∃h⃗. ∀x⃗. φ(x⃗, h⃗) (3)

We will use an example from forward differen-
tiation (Fig. 1) to illustrate this. Let us consider
two inputs, Jxˆ2-2*xKx=3 = 3 + 4ε and

J3*x+6Kx=2 = 12+3ε . For the first input

J3*x+6Kx=2 = 12 + 3ε , the procedure GENTRACE()
(Line 4) generates a symbolic trace (denoted t1):

{x1 = 2+1ε; α1 = h•
3(3+0ε, x1); outt1 = h•

1(α1, 6+0ε); }
The following symbolic constraint is generated from above
trace:

φt1 ≡ (x1 = 2+1ε∧α1 = h•
3(3+0ε, x1)∧outt1 = h•

1(α1, 6))

In the trace t1, operations h•
1 and h•

3 are holes and variables,
i.e., α1, outt1 are the fresh symbolic variables. In the next step
(line 5), the constraints generated from trace t1 is added,

φ ≡ ⊤ ∧ (φt1 ∧ outt1 = 12 + 3ε)

In the next iteration of the loop at line 3, the algorithm will
take the second input, (i.e., Jxˆ2-2*xKx=3 = 3 + 4ε ). In
this case, GENTRACE() will generate following trace (t2),

{x2 = 3 + 1ε;α2 = h•
4(x2, 2); α3 = h•

3(2 + 0ε, x2);

outt2 = h•
2(α3, α4)}

The generated constraints from t2 will be,

φt2 ≡(x2 = 3 + 1ε ∧ α2 = h•
4(x2, 2) ∧ α3 = h•

3(2 + 0ε, x2)

∧ outt2 = h•
2(α3, α4))

At line 5, new constraints will be,

φ← ⊤∧ (φt1 ∧ outt1 = 12 + 3ε) ∧ (φt2 ∧ outt2 = 3 + 4ε)

At line 6, with φ as constraints, the algorithm will attempt to
synthesize definitions for the holes (i.e., h•

1, h
•
2, h

•
3 and h•

4).

B. Incremental Synthesis

The ALLATONCE algorithm exhibits poor scalability with
respect to the size of the grammar and the number of examples.
The route to a scalable algorithm could be to incrementally
learn the definitions corresponding to the holes and make use
of the functions synthesized in the previous steps to discover
new ones in the subsequent steps.

However, driving synthesis one example at a time will lead
to overfitting. We handle this complexity with a two-pronged
strategy: (1) we partition the set of examples by the holes
for which they need to synthesize actions, (2) we solve the
synthesis problems by their difficulty (in terms of the number
of functions to be synthesized) that allows us to memoize their
results for the more challenging examples. We refer to this
example as the INCREMENTALSYNTHESIS algorithm.

Algorithm 2: SYNTHATTRGRAMMAR(G•, E, D)
1 T ← ∅;
2 R← ∅;
3 while T ̸= E do
4 ⟨w, v⟩ ← SELECTEXAMPLE(E \ T );
5 Z ← GETSKETCHYPRODS(G•, w);
6 if Z ⊆ R then
7 G•1 ← G•[R];
8 if JwKG•

1
= v then

9 T ← T ∪ {⟨w, v⟩};
10 continue;
11 else
12 R← R \ Z;
13 Te ← T ∪ {⟨w, v⟩};
14 else
15 Te ← {⟨wi, vi⟩ | w ∼= wi, ⟨wi, vi⟩ ∈ E};
16 B ← SYNTHHOLES(G•, Te, R,D);
17 if B = ∅ then
18 if R ∩ Z ̸= ∅ then
19 R← R \ Z;
20 B ← SYNTHHOLES(G•, T ∪ Te, R,D);

21 if B = ∅ then
22 return ∅;

23 Rf ← {(pi : {. . . , hi → B[hi], . . . }) |
pi ∈ Z \R, hi ∈ holes(Γ(pi))};

24 R← R ∪Rf ;
25 T ← T ∪ Te;

26 return R;

Derivation Congruence. We define an equivalence relation,
derivation congruence, on the set of strings w ∈ L(G):
strings w1, w2 ∈ L(G) are said to be derivation congruent,
w1
∼=G w2 w.r.t. the grammar G, if and only if both the

strings w1 and w2 contain the same set of productions in
their respective derivations. For example, w1 : J3*x+5Kx=2 ,

w2 : J5*x+12Kx=3 and w3 : J4*x+7*xKx=3 .
Note that though the strings w1, w2 and w3 are derivation

congruent to each other, while w1 and w2 have similar parse
trees, w3 has a quite different parse tree. So, intuitively,
all these strings are definition congruent to each other, as,
even with different parse trees, they involve the same set of
productions ({1, 2, 4, 5, 6, 10, 11}) in their leftmost derivation.

Algorithm 2 shows our incremental synthesis strategy. Our
algorithm maintains a set of examples (or tests) T (line 2) that
are consistent with the current set of synthesized functions for
the holes; the currently synthesized functions (referred to as
ready functions), along with the respective ready productions,
are recorded in R (line 1). The algorithm starts off by selecting
the easiest example ⟨w, v⟩ at line 4 such that the cardinality
of the set of sketchy production, Z, in the derivation of w
is the minimal among all examples not in T . The set R
maintains a map from the set of sketchy productions to a set of
assignments to functions synthesized (instantiations) for each
hole contained in the respective semantic actions.

If all sketchy productions, Z, in the derivation of w are
now ready, we simply test (line 6) to check if a syntax-
guided evaluation with the currently synthesized functions in
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R yield the expected value v: if the test passes, we add the
new example to the set of passing examples in T (line 9).
Otherwise, as the current hole instantiations in R is not
consistent for the derivation of w, at line 12 we remove
all the synthesized functions participating in syntax-directed
evaluation of w (which is exactly Z). Furthermore, removal
of some functions from R requires us to re-assert the new
functions on all the past examples (contained in T ) in addition
to the present example (line 13).

If all the sketchy productions (Z) in the derivation of w are
not ready, we attempt to synthesize functions for the missing
holes, with the set of current definitions in R provided in the
synthesis constraint.

The synthesis procedure (line 16), if successful, yields a set
of function instantiation for the holes. In this case, the solution
set from B is accumulated in R, and the set of passing tests
extended to contain the new examples in Te.

However, synthesis may fail as some of the current defi-
nitions in R that were assumed to be correct and included
in the synthesis constraint is not consistent with the new
examples (Te). In this case, we remove the instantiations of
all such holes occurring in the syntax-directed evaluation of
w (line 19) and re-attempt synthesis (line 20). If this attempt
fails too, it implies that no instantiation of the holes exist in
the provided domain-specific language D (line 22).

We provide a detailed example on the run of this algorithm
in the extended version [10].
Theorem. If the algorithm terminates with a non-empty set of
functions, G• instantiated with the synthesized functions will
satisfy the examples in E; that is, the synthesized functions
satisfy Equation 2.

The proof is a straightforward argument with the inductive
invariant that at each iteration of the loop, the G• instantiated
with the functions in R satisfy the examples in T .

V. EXPERIMENTS

Our experiments were conducted in Intel(R) Xeon(R) CPU
E5-2620 @ 2.00GHz with 32 GB RAM and 24 cores on a set
of benchmarks shown in Table I. PĀN. INI uses FLEX [17] and
BISON [3] for performing a syntax-directed semantic evalu-
ation over the language strings. PĀN. INI uses SKETCH [15]
to synthesize function definitions over loop-free programs,
and the symbolic execution engine CREST [18] for generating
example-suites guided by derivation coverage.
We attempt to answer the following research questions:

• Can PĀN. INI synthesize attribute grammars from a variety
of sketches?

• How do INCREMENTALSYNTHESIS and ALLATONCE
algorithms compare?

• How does PĀN. INI scale with the number of holes?
• How does PĀN. INI scale with the size of the grammar?
The default algorithm for PĀN. INI is the INCREMENTAL-

SYNTHESIS algorithm; unless otherwise mentioned, PĀN. INI
refers to the implementation of INCREMENTALSYNTHESIS
(Algorithm 2) for synthesis using examples generation guided
by derivation coverage (detailed explanation available in the

extended version [10]) . While ALLATONCE works well for
small grammars with few examples, INCREMENTALSYNTHE-
SIS scales well even for larger grammars, both with the number
of holes and size of the grammar.

PĀN. INI can synthesize semantic-actions across both syn-
thesized and inherited attributes. Some of our benchmarks
contain inherited-attributes: for example, benchmark b8 uses
inherited-attributes to pass the type information of the vari-
ables. Inherited-attributes pose no additional challenge; they
are handled by the standard trick of introducing “marker” non-
terminals [19].

A. Attribute Grammar Synthesis

We evaluated PĀN. INI on a set of attribute grammars adapted
from software in open-source repositories [14], [19]–[24].
Table I shows the benchmarks, number of productions (#P),
number of holes (#H), input example, solving time (Time,
AAO for ALLATONCE and IS for INCREMENTALSYNTHE-
SIS) and number of times a defined function was refuted (#R).
Please recall that ALLATONCE refers to Algorithm 1 (§IV-A)
and INCREMENTALSYNTHESIS refers to Algorithm 2 (§IV-B).

We provide more detailed descriptions of the benchmarks
b1 to b9 in the extended version [10]. The benchmark b10
is the forward differentiation example described in §III-A.
Benchmarks b11 and b12 are quite complex benchmarks that
interpret a (subset) of Java bytecode and compile C code:
b11 Bytecode interpreter. Interpreter for a subset of Java

bytecode; it supports around 36 instructions [25] of dif-
ferent type, i.e., load-store, arithmetic, logic and control
transfer instructions.

b12 Mini-compiler. Fig. 6 shows the different steps of
synthesizing semantic actions in mini-compiler. Fig. 6b is
a sample input for the mini-compiler. Fig. 6a shows snip-
pet of the attribute grammar for mini-compiler. Fig. 6c
shows the two-address code generated from the input
code shown in Fig. 6b, where h•

a and h•
b are two holes

in the two-address code. Finally, in Fig. 6d shows the
synthesized definition for h•

a and h•
b in the target language

for two-address code.
Fig. 8 attempts to capture the fraction of time taken by the

different phases of PĀN. INI: example generation and synthesis.
Not surprisingly, the synthesis phase dominates the cost as it
requires several invocation of the synthesis engines, whereas,
the example generation phase does not invoke synthesis en-
gines or smt solvers. Further, the difference in time spend
in these two phases increases as the benchmarks get more
challenging.

B. ALLATONCE v/s INCREMENTALSYNTHESIS

1) Scaling with holes: Fig. 9a and Fig. 9b show PĀN. INI
scales with the sketches with increasingly more holes. We
do this study for forward differentiation (b10) and bytecode
interpreter (b11). As can be seen, PĀN. INI scales very well. On
the other hand, ALLATONCE works well for small instances
but soon blows up, timing out on all further instances. The
interesting jump in b10 (at #Holes=8) was seen when we
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S ↣ MAIN B
| MAIN B

. . .
A ↣ T

| E + T A.val = h•
a(E.val, T.val) ;

| E - T A.val = h•
b (E.val, T.val) ;

T ↣ F
| T * F T.val = h•

c(T.val, F.val) ;

| T / F T.val = h•
d(T.val, F.val) ;

. . .

(a) Attribute grammar sketch for
mini-compiler

in t main{
in t a , b , c ;
a = 4;
b = a + 3; / / h•

a

c = a − b; / / h•
b

return c ;
}

(b) A simple C code

op arg1 arg2 dst

assign 4 a
h•
a a 9 T0

assign T0 b
h•
b a b T1

assign T1 T2
ret T2

(c) Three-address code
generated from C code

in Fig. 6b

h•
a a b:
emit(“load r1 a”)
emit(“load r2 b”)
emit(“plus r1 r2”)

h•
b a b:
emit(“load r1 a”)
emit(“load r2 b”)
emit(“sub r1 r2”)

(d) Synthesized definition
for h•

a, h
•
b

Fig. 6: Synthesis of mini-compiler (b12)

TABLE I: Description of benchmarks

Id Benchmark #P #H Example #R Time (s)
AAO IS

b1 Count ones 5 1 11001 0 3.2 3.1
b2 Binary to integer 5 1 01110 0 3.6 2.9
b3 Prefix evaluator 7 4 + 3 4 0 TO 10.1
b4 Postfix evaluator 7 4 2 3 4 ∗ + 0 TO 10.5
b5 Arithmetic calculator 8 4 5 ∗ 2 + 8 0 TO 12.8
b6 Currency calculator 10 4 USD 3 + INR 8 0 TO 13.6
b7 if-else calculator 10 4 if(3+4 == 3)

then 44;
else 73;

1 TO 21.7

b8 Activation record layout 10 3 int a , b; 0 TO 13.8
b9 Type checker 11 5 (5 - 2) == 3 1 TO 15.4

b10 Forward differentiation 20 12 x*pow(x,3) 2 TO 39.2
b11 Bytecode interpreter 39 36 bipush 3;

bipush 4;
iadd;

3 TO 141.4

b12 Mini-compiler 43 6 int main(){
return 2+3;}

0 TO 9.2

init {
run Foo(8+(6-7));
}

(e) PROMELA source code

node n1 = node(val=8);
node n2 = node(val=6);
node n3 = node(val=7);

node n4 = h•
a (n2, n3);

node n5 = h•
b (n1, n4);

node n6 = h•
c (‘Foo’,n5);

(f) Trace generated

Fig. 7: Trace generation for AST
construction

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11
Benchmarks

0

20

40

60

80

100

%
 T

im
e

Example generation
Action synthesis

Fig. 8: Stacked bar graph for the % time spent in example creation
and synthesis

started adding holes for the definitions of the more complex
operators like sin() and cos().

2) Scaling with size of grammar: Table I shows that
INCREMENTALSYNTHESIS scales well with the size of the
grammar (by the number of productions). On the other hand,
ALLATONCE works well for the benchmarks b1 and b2 as
they have only one hole while it times out for the rest.

The complexity of INCREMENTALSYNTHESIS is indepen-
dent of the size of the attribute-grammar but dependent on the
length of derivations and the size of the semantic actions. The
current state of synthesis-technology allows PĀN. INI to synthe-
size practical attribute grammars that have a large number of
productions but mostly “small” semantic actions and where
short derivations can “cover” all productions. Further, any
improvement in program-synthesis technology automatically
improves the scalability of PĀN. INI.

VI. CASE STUDY

We undertook a case-study on the parser specification of the
SPIN [5] model-checker. SPIN is an industrial-strength model-
checker that verifies models written in the PROMELA [26]
language against linear temporal logic (LTL) specifications.
SPIN uses YACC [2] to builds its parser for PROMELA.
The modelling language, PROMELA, is quite rich, supporting
variable assignments, branches, loops, arrays, structures, pro-
cedures etc. The attribute grammar specification in the YACC
language is more than 1000 lines of code (ignoring newlines)
having 280 production rules.

The semantic actions within the attribute grammar in the
YACC description handle multiple responsibilities. We selected
two of its operations:
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(a) Forward differentiation (b10)
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(b) Java bytecode (b11)

Fig. 9: #Hole v/s Time for benchmarks b10 and b11

init {
int flags[(5 * 25) - 42];
int v = flags[10 - 4 + (9 / 3)];
}

(a) PROMELA source

init {
int flags[83];
int v = flags[9];
}

(b) PROMELA optimized

Fig. 10: Constant folding in PROMELA

a) Constant folding array indices: As the PROMELA
code is parsed, semantic actions automatically constant-fold
array indices (see Fig. 10). We removed all the actions
corresponding to constant-folding by inserting 8 holes in the
relevant production rules (these correspond to the non-terminal
const_expr). The examples to drive the synthesis consisted
of PROMELA code with arrays with complex expressions and
the target output was the optimized PROMELA code. PĀN. INI
was able to automatically synthesize this constant-folding
optimization within less than 4 seconds.

b) AST construction: A primary responsibility of the
semantic analysis phase is to construct the abstract syntax
tree (AST) of the source PROMELA code. We, next, attempted
to enquire if PĀN. INI is capable of this complex task.

In this case, each example includes a PROMELA code as
input and a tree (i.e. the AST) as the output value. We removed
the existing actions via 23 holes. These holes had to synthesize
the end-to-end functionality for a production rule with respect
to building the AST: that, the synthesized code would decides
the type of AST node to be created and the correct order of
inserting the children sub-trees.

Run of the example suite on the sketchy productions
generates a set of programs (one such program shown in
Fig. 7); these programs produce symbolic ASTs that non-
deterministically assigns type to nodes and assigns the children
nodes. We leverage the support of references in Sketch to
define self-referential nodes.

We insert constraints that establish tree isomorphism by
recursively matching the symbolic ASTs with the respective
output ASTs (available in example suite); for example, in
Fig. 11 isomorphism constraints are enforced on the concrete
and the symbolic ASTs. Sketch resolves the non-determinism
en route to synthesizing the relevant semantic actions. In
this case-study, PĀN. INI was able to synthesize the actions
corresponding to the 23 holes within 20 seconds.

VII. RELATED WORK
Program synthesis is a rich area with proposals in varying

domains: bitvectors [27], [28], heap manipulations [29]–[33],
bug synthesis [34], differential privacy [35], [36], invariant

Foo

8

6 7

RUN

+

_

(a) Desired concrete AST

+ - /* RUN

ROOT

? ? ?

? ? ? ? ? ?

Foo 6 7 8

(b) Symbolic AST

Fig. 11: Desired AST for code in Fig. 7 and symbolic AST.
Grey lines (in Fig. 11b) denote symbolic choices.

generation [37], Skolem functions [38]–[40], synthesis of
fences and atomic blocks [41] and even in hardware secu-
rity [42]. However, to the best of our knowledge, ours is the
first work on automatically synthesizing semantics actions for
attribute grammars.

There has some work on automatically synthesizing parsers:
PARSIFY [43] provides an interactive environments to auto-
matically infer grammar rules to parse strings; it is been shown
to synthesize grammars for Verilog, Tiger, Apache Logs, and
SQL. CYCLOPS [44] builds an encoding for Parse Conditions,
a formalism akin to Verification Conditions but for parseable
languages. Given a set of positive and negative examples,
CYCLOPS, automatically generates an LL(1) grammar that
accepts all positive examples and rejects all negative examples.
Though none of them handle attribute grammars, it may be
possible to integrate them with PĀN. INI to synthesize both the
context-free grammar and the semantic actions. We plan to
pursue this direction in the future.

We are not aware of much work on testing attribute
grammars. We believe that our derivation coverage metric
can also be potent for finding bugs in attribute grammars,
and can have further applications in dynamic analysis [45]–
[47] and statistical testing [48], [49] of grammars. However,
the effectiveness of this metric for bug-hunting needs to be
evaluated and seems to be a good direction for the future.
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