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Abstract—Automated reasoners, such as SAT/SMT solvers and
first-order provers, are becoming the backbones of applications of
formal methods, for example in automating deductive verification,
program synthesis, and security analysis. Automation in these
formal methods domains crucially depends on the efficiency
of the underlying reasoners towards finding proofs and/or
counterexamples of the task to be enforced. In order to gain
efficiency, automated reasoners use dedicated proof rules to keep
proof search tractable. To this end, subsumption is one of the
most important proof rules used by automated reasoners, ranging
from SAT solvers to first-order theorem provers and beyond. It is
common that millions of subsumption checks are performed
during proof search, necessitating efficient implementations.
However, in contrast to propositional subsumption as used by
SAT solvers and implemented using sophisticated polynomial
algorithms, first-order subsumption in first-order theorem provers
involves NP-complete search queries, turning the efficient use of
first-order subsumption into a huge practical burden. In this
paper we argue that integration of a dedicated SAT solver
provides a remedy towards efficient implementation of first-
order subsumption and related rules, and thus further increasing
scalability of first-order theorem proving towards applications of
formal methods. Our experimental results demonstrate that, by
using a tailored SAT solver within first-order reasoning, we gain
a large speed-up in state-of-the-art benchmarks.

Index Terms—first-order subsumption, multi-literal matching,
automated theorem proving, satisfiability checking

I. INTRODUCTION

Most formal verification approaches use automated reasoners
in their backend to, for example, discharge verification condi-
tions [22], [10], [15], produce/block counter-examples [20],
[29], [1], or enforce security and privacy properties [30],
[25], [4], [32]. All these approaches crucially depend on the
efficiency of the underlying reasoning procedures, ranging from
SAT/SMT solving [6], [12], [3] to first-order proving [41], [21],
[34], [11]. In this paper we focus on automated first-order
theorem proving with the aim of improving efficiency towards
proving first-order (program) properties.

The leading concept behind the proof-search algorithms
used by state-of-the-art first-order theorem provers is satura-
tion [34], [21]. While the concept of saturation is relatively
unknown outside of the theorem proving community, similar
algorithms that are used in other areas, such as Gröbner basis
computation [9], can be considered examples of saturation
algorithms. The key idea behind saturation-based proof search
is to reduce the problem of proving validity of a first-order

formula 𝐴 to the problem of establishing unsatisfiability of ¬𝐴
by using a sound inference system, most commonly using
the superposition inference system [28]. That is, instead of
proving 𝐴, we refute ¬𝐴, by selecting and applying inferences
from the superposition calculus. In this paper, we focus on
saturation algorithms using the superposition calculus.
Saturation with Redundancy. During saturation, the first-
order prover keeps a set of usable clauses 𝐶1, . . . 𝐶𝑘 , with
𝑘 ≥ 0. This is the set of clauses that the prover considers as
possible premises for inferences. After applying an inference
with one or more usable clauses as premises, the consequence
𝐶𝑘+1 is added to the set of usable clauses. The number of
usable clauses is an important factor for the efficiency of proof
search. A naive saturation algorithm that keeps all derived
clauses in the usable set would not scale in practice. One
reason is that first-order formulas in general yield infinitely
many consequences. For example, consider the clause

¬positive(𝑥) ∨ positive(reverse(𝑥)), (1)

where 𝑥 is a universally quantified variable ranging over the
algebraic datatype list, where list elements are integers;
positive is a unary predicate over list such that positive(𝑥) is
valid iff all elements of 𝑥 are non-negative integers; and reverse
is a unary function symbol reversing a list. As such, clause (1)
asserts that the reverse of a list 𝑥 of non-negative integers is
also a list of non-negative integers (which is clearly valid).
Note that, when having clause (1) as a usable clause during
proof search, the clause ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥))
can be derived for any 𝑛 ≥ 1 from clause (1). Adding
¬positive(𝑥)∨positive(reverse𝑛 (𝑥)) to the set of usable clauses
would however blow up the search space unnecessarily. This
is because ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)) is a logical
consequence of clause (1), and hence, if a formula 𝐴 can
be proved using ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)), then 𝐴

is also provable using clause (1). Yet, storing ¬positive(𝑥) ∨
positive(reverse𝑛 (𝑥)) as usable formulas is highly inefficient
as 𝑛 can be arbitrarily large.

To avoid such and similar cases of unnecessarily increasing
the set of usable formulas during proof search, first-order
theorem provers implement the notion of redundancy [31], by
extending the standard superposition calculus with term/clause
ordering and literal selection functions. These orderings and
selection functions are used to eliminate so-called redundant
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clauses from the search space, where redundant clauses are
logical consequences of smaller clauses w.r.t. the considered
ordering. In our example above, the clause ¬positive(𝑥) ∨
positive(reverse𝑛 (𝑥)) would be a redundant clause as it is a logi-
cal consequence of clause (1), with clause (1) being smaller (i.e.,
using fewer symbols) than ¬positive(𝑥)∨positive(reverse𝑛 (𝑥)).
As such, if clause (1) is already a usable clause, saturation
algorithms implementing redundancy should ideally not store
¬positive(𝑥)∨positive(reverse𝑛 (𝑥)) as usable clauses. To detect
and reason about redundant clauses, saturation algorithms with
redundancy extend the superposition inference system with
so-called simplification rules. Simplification rules do not add
new formulas to the set of (usable) clauses in the search space,
but instead simplify and/or delete redundant formulas from the
search space, without destroying the refutational completeness
of superposition: if a formula 𝐴 is valid, then ¬𝐴 can be refuted
using the superposition calculus extended with simplification
rules. In our example above, this means that if ¬𝐴 can be
refuted using ¬positive(𝑥)∨positive(reverse𝑛 (𝑥)), then ¬𝐴 can
be refuted in the superposition calculus extended with simplifi-
cation rules, without using ¬positive(𝑥)∨positive(reverse𝑛 (𝑥))
but using clause (1) instead.

Ensuring that simplification rules are applied efficiently for
eliminating redundant clauses is, however, not trivial. In this
paper, we show that SAT-based approaches can be used to
identify the application of simplification rules during saturation,
improving thus the efficiency of saturation algorithms imple-
menting the superposition calculus extended with simplification
rules, as discussed next.
Subsumption for Effective Saturation. While redundancy
is a powerful criterion for keeping the set of clauses used
in proof search as small as possible, establishing whether
an arbitrary first-order formula is redundant is as hard as
proving whether it is valid. For example, in order to derive
that ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)) is redundant in our
example above, the prover should establish (among other
conditions) that it is a logical consequence of (1), which
essentially requires proving based on superposition. To reduce
the burden of proving redundancy, first-order provers implement
sufficient conditions towards deriving redundancy, so that
these conditions can be efficiently checked (ideally using only
syntactic arguments, and no proofs). One such condition comes
with the notion of subsumption, yielding one of the most
impactful simplification rules in superposition-based theorem
proving [2].

The intuition behind subsumption is that a (potentially
large) instance of a clause 𝐶 does not convey any additional
information over 𝐶, and thus it should be avoided to have
both 𝐶 and its instance in the set of usable clauses; to this
end, we say that the instance of 𝐶 is subsumed by 𝐶. More
formally, a clause 𝐶 subsumes another clause 𝐷 if there is a
substitution 𝜎 such that 𝜎(𝐶) is a submultiset of 𝐷1. In such
a case, subsumption removes the subsumed clause 𝐷 from
the clause set. To continue our example above, a unit clause

1we consider a clause 𝐶 as a multiset of its literals

positive(reverse𝑚 (𝑥)), with 𝑚 ≥ 1, would prevent us from
deriving ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)) for any 𝑛 ≥ 𝑚,
and hence eliminate an infinite branch of clause derivations
from the search space.

To detect possible inferences of subsumption and related
rules, state-of-the-art provers use a two-step approach [35]:
(i) retrieve a small set of candidate clauses, using literal filtering
methods, and then (ii) check whether any of the candidate
clauses represents an actual instance of the rule. Step (i) has
been well-researched over the years, leading to highly efficient
indexing solutions [27], [33], [35]. Interestingly, step (ii) has not
received much attention, even though it is known that checking
subsumption relations between multi-literal clauses is an NP-
complete problem [19]. Although indexing in step (i) allows the
first-order prover to skip step (ii) in many cases, the application
of (ii) in the remaining cases may remain problematic (due
to NP-hardness). For example, while profiling subsumption in
the world-leading theorem prover VAMPIRE [21], we observed
subsumption applications, and in particular calls to the literal-
matching algorithm of step (ii), that consume more than 20
seconds of running time. Given that millions of such matchings
are performed during a typical first-order proof attempt, we
consider such cases highly inefficient, calling for improved
solutions towards step (ii). In this paper we address this demand
and show that a tailored SAT-based encoding can significantly
improve the literal matching, and thus subsumption, in first-
order theorem proving.
Our Contributions. In this paper, we bring the following main
contributions.
(1) We propose a SAT-based encoding for capturing potential
applications of subsumption in first-order theorem proving
(Section III). A solution to our SAT-based encoding gives a
concrete application of subsumption, allowing the first-order
prover to apply that instance of subsumption as a simplification
rule during saturation. Our encoding uses so-called substitution
constraints to formalize matching of literals within the premises
(i.e., subset relation among literals of premises). Our encoding
can be extended to other simplification rules, in particular when
applying simplifications using the combination of subsumption
with binary resolution (i.e., subsumption resolution).

(2) We introduce a lean SAT solving approach tailored to
substitution constraints, by adjusting unit propagation and
conflict resolution towards efficient handling of such constraints.
(Section IV). We introduce a tailored encoding of substitution
constraints in SAT solving, advocating the direct use of our
SAT solver for deciding application of subsumption within
first-order proving.

(3) We implemented our SAT-based subsumption approach as
a new SAT solver in the VAMPIRE theorem prover (Section V).
We empiricially evaluate our approach on the standard bench-
mark library TPTP (Section VI). Our experiments demonstrate
that using SAT solving for deciding and applying subsumption
brings clear improvements in the saturation process of first-
order proving, for example improving the (time) performance
of the prover by a factor of 2.
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II. PRELIMINARIES

Let V denote a countably infinite set of first-order variables.
We consider standard multi-sorted first-order logic with vari-
ables V, and support all standard boolean connectives (see
later) and quantifiers in the language. Throughout the paper,
we write 𝑥, 𝑦, 𝑧 for first-order variables, 𝑐, 𝑑 for constants,
𝑓 , 𝑔 for function symbols, and 𝑝, 𝑞 for predicates. The set
of first-order terms T consists of variables, constants, and
function symbols applied to other terms; we denote terms by 𝑡.
First-order atoms, or simply just atoms, are predicates applied
to terms. Atoms and negated atoms are also called first-order
literals, and denoted by 𝐿, 𝑀 . First-order clauses, or simply
just clauses, are disjunctions of literals, denoted by 𝐶, 𝐷. All
our notation throughout this paper may possibly use indices.
A clause that consists of a single literal is called a unit clause.
Clauses are often viewed as multisets of literals; that is, a
clause 𝐶 being 𝐿1 ∨ 𝐿2 ∨ . . . ∨ 𝐿𝑛 is considered to be the
multiset {𝐿1, 𝐿2, . . . , 𝐿𝑛}. For example, the clause 𝑝 ∨¬𝑞 ∨ 𝑝

is the multiset {𝑝,¬𝑞, 𝑝}.
An expression 𝐸 is a term, literal, or clause. We denote

the set of variables occurring in the expression 𝐸 by V(𝐸).
A substitution is a function 𝜎 : V → T such that 𝜎(𝑥) ≠ 𝑥

only for finitely many 𝑥 ∈ V. The function 𝜎 is extended
to arbitrary expressions 𝐸 by simultaneously replacing each
variable 𝑥 in 𝐸 by 𝜎(𝑥). We say an expression 𝐸1 can be
matched to expression 𝐸2 if there exists a substitution 𝜎 such
that 𝜎(𝐸1) = 𝐸2.
Saturation and Subsumption. Most first-order theorem
provers, see e.g. [41], [21], [34], implement saturation with
redundancy, using the superposition calculus [2]. A clause 𝐶

subsumes a clause 𝐷 iff there exists a substitution 𝜎 such
that 𝜎(𝐶) ⊆ 𝐷, where 𝐶 and 𝐷 are treated as multisets
of literals. Subsumption is a simplification rule that deletes
subsumed clauses from the search space during saturation.
Subsumption gives a powerful basis for other simplification
rules. For example, subsumption resolution [21], [34], also
known as contextual literal cutting or self-subsuming resolution,
is the combination of subsumption with binary resolution;
and subsumption demodulation [16] results from combining
subsumption with demodulation/rewriting.
SAT Solving. Let B be a countably infinite set of boolean
variables. We denote boolean variables by 𝑏, possibly with
indices. We use the standard boolean connectives ∧, ∨, →, ¬,
and write ⊤ for the boolean constant true as well as ⊥ for
the boolean constant false. A boolean literal, denoted 𝑙, is a
variable 𝑏 or its negation ¬𝑏. A boolean clause is a disjunction
of literals. As before, we drop the qualifier boolean when it is
clear from the context.

Modern SAT solvers are based on conflict-driven clause
learning (CDCL) [24], with the core procedures decide, unit-
propagate, and resolve-conflict. The solver maintains a partial
assignment of truth values to the boolean variables. Unit
propagation (also called boolean constraint propagation), that
is unit-propagate in a SAT solver, propagates clauses w.r.t. the
partial assignment. If exactly one literal 𝑙 in a clause remains

unassigned in the current assignment while all other literals
are false, the solver sets 𝑙 to true to avoid a conflict. The
two-watched-literals scheme [26] is the standard approach for
efficient implementation of unit propagation.

If no propagation is possible, the solver may choose a
currently unassigned variable 𝑏 and set it to true or false;
hence, decide in SAT solving. The number of variables in
the current assignment that have been assigned by decision is
called the decision level.

If all literals in a clause are false in the current assignment,
the solver enters conflict resolution, via the resolve-conflict
block of SAT solving. If the current decision level is 0, the
conflict follows unconditionally from the input clauses and
the solver returns “unsatisfiable” (UNSAT). Otherwise, by
analyzing how the literals in the conflicting clause have been
assigned, the solver may derive and learn a conflict lemma,
undo some decisions, and continue solving.

III. SUBSTITUTION CONSTRAINTS AND SUBSUMPTION

Recall that a first-order clause 𝐶 subsumes a clause 𝐷 iff
there exists a substitution 𝜎 such that 𝜎(𝐶) ⊆ 𝐷, where ⊆ is to
be understood as multiset inclusion. In what follows, we refer
by clausal subsumption between 𝐶 and 𝐷 to the case when
clause 𝐶 subsumes clause 𝐷. Similarly, literal subsumption
between 𝐿 and 𝑀 refers to the case when literal 𝐿 subsumes
literal 𝑀. We note that deciding literal subsumption, that is
whether a literal 𝐿 subsumes a literal 𝑀, can be done in
almost linear time, by constructing a substitution (if it exists) 𝜎
s.t. 𝜎(𝐿) = 𝑀; in this case, the value of 𝜎(𝑥) is uniquely
determined by 𝐿 and 𝑀 for each variable 𝑥 occurring in 𝐿.
However, when working with arbitrary, and not necessarily
unit, clauses 𝐶, 𝐷, deciding clausal subsumption between 𝐶, 𝐷

is NP-complete for the following reason: for each literal 𝐿𝑖

of 𝐶, one of the literals 𝑀 𝑗𝑖 of 𝐷 needs to be chosen in such
a way that a substitution 𝜎 simultaneously matches each 𝐿𝑖

with its respective 𝑀 𝑗𝑖 ; that is, 𝜎(𝐿𝑖) = 𝑀 𝑗𝑖 for all 𝑖. Towards
addressing NP-completeness of clausal subsumption, in this
section we introdude substitution constraints (Section III-A),
allowing us to formulate clausal subsumption as a SAT
problem over substitution constraints (Section III-B). Based
on this SAT-encoding of subsumption, we further present an
effective approach towards using subsumption in saturation in
Section IV.

A. Substitution Constraints

We first introduce substitution constraints to be further used
in deciding clausal subsumption.

Definition 1 (Substitution Constraints): A substitution con-
straint Γ is a partial function from V to T , denoted as

(𝑥1, . . . , 𝑥𝑘) ▷ (𝑡1, . . . , 𝑡𝑘),

where 𝑘 ≥ 0, 𝑥𝑖 ∈ V are pairwise different, and 𝑡𝑖 ∈ T . The
set dom(Γ) ≔ {𝑥1, . . . , 𝑥𝑘} is called the domain of Γ. We
further write Γ(𝑥𝑖) = 𝑡𝑖 for 𝑖 ∈ {1, . . . , 𝑘}.

A substitution 𝜎 : V → T satisfies the substitution con-
straint Γ, written 𝜎 |= Γ, iff 𝜎(𝑥𝑖) = 𝑡𝑖 for all 𝑖 ∈ {1, . . . , 𝑘}.
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Two substitution constraints Γ1, Γ2 are compatible if there
exists a substitution 𝜎 that satisfies both Γ1 and Γ2, that is, if
Γ1 (𝑥) = Γ2 (𝑥) for all variables 𝑥 ∈ dom(Γ1) ∩ dom(Γ2).

As already discussed, literal subsumption between two
literals 𝐿 and 𝑀 can easily be determined (as there is only
one literal, i.e. 𝐿, that needs to be matched, i.e. to 𝑀). The
substitution constraint corresponding to the literal subsumption
between 𝐿 and 𝑀 is denoted by Γ(𝐿, 𝑀) and is defined below.

Definition 2 (Substitution Constraints for Literals): Let 𝐿

and 𝑀 be two literals. If there exists a substitution 𝜎 such that
𝜎(𝐿) = 𝑀 , the substitution constraint Γ(𝐿, 𝑀) for literals 𝐿

and 𝑀 is

Γ(𝐿, 𝑀) ≔ (𝑥1, . . . , 𝑥𝑘) ▷ (𝑡1, . . . , 𝑡𝑘),

where V(𝐿) = {𝑥1, . . . , 𝑥𝑘} and 𝜎(𝑥𝑖) = 𝑡𝑖 for all 𝑖 ∈
{1, . . . , 𝑘}. Otherwise, 𝐿 cannot be matched to 𝑀 and the
substitution constraint Γ(𝐿, 𝑀) for literals 𝐿 and 𝑀 is

Γ(𝐿, 𝑀) ≔ ⊥.

Example 1: Consider the following first-order literals:

𝐿1 = 𝑝(𝑥1, 𝑥2, 𝑥3) 𝐿2 = 𝑝( 𝑓 (𝑥2), 𝑥4, 𝑥4)
𝑀1 = 𝑝( 𝑓 (𝑐), 𝑑, 𝑦1) 𝑀2 = 𝑝( 𝑓 (𝑑), 𝑐, 𝑐)

We obtain the following substitution constraints:

Γ(𝐿1, 𝑀1) = (𝑥1, 𝑥2, 𝑥3) ▷ ( 𝑓 (𝑐), 𝑑, 𝑦1)
Γ(𝐿1, 𝑀2) = (𝑥1, 𝑥2, 𝑥3) ▷ ( 𝑓 (𝑑), 𝑐, 𝑐)
Γ(𝐿2, 𝑀1) = ⊥
Γ(𝐿2, 𝑀2) = (𝑥2, 𝑥4) ▷ (𝑑, 𝑐)

The constraints Γ(𝐿1, 𝑀1) and Γ(𝐿1, 𝑀2) are incompatible, as
these constraints map, for example, 𝑥1 to different values. The
constraints Γ(𝐿1, 𝑀1) and Γ(𝐿2, 𝑀2) are compatible, as both
constraints require their only shared variable 𝑥2 to be mapped
to 𝑑.

To encode clausal subsumption, we need to combine sub-
stitution constraints using boolean connectives, and boolean
variables. For this reason, we now define the semantics of
boolean combinations of substitution constraints.

Definition 3 (Boolean Combination of Substitution Con-
straints): Let 𝐹 be a formula using standard boolean con-
nectives, whose atoms are boolean variables and substitution
constraints. An interpretation 𝐼 = (𝛼, 𝜎) for such a formula is
a pair of a standard boolean assignment 𝛼 : B → {⊤,⊥} and
a substitution 𝜎 : V → T .

For a boolean variable 𝑏, we define 𝐼 |= 𝑏 iff 𝛼(𝑏) = ⊤.
For a substitution constraint Γ, we define 𝐼 |= Γ iff 𝜎 |= Γ.
For formulas 𝐹 with a top-level connective of ∧, ∨, →, or ¬,
we define 𝐼 |= 𝐹 inductively in the standard way. For boolean
constants, 𝐼 |= ⊤ and 𝐼 ̸ |= ⊥.

Remark 1: The formula 𝐹 can also be translated into an
SMT formula using the theory of equality and uninterpreted
functions (EUF), where substitution constraints are replaced by
conjunctions of equality literals. Let 𝑇 denote the set of terms 𝑡
appearing on the right-hand side of some substitution constraint

in 𝐹. We then introduce fresh constant symbols {𝑐𝑡 | 𝑡 ∈ 𝑇},
and replace each substitution constraint Γ = (𝑥1, . . . , 𝑥𝑘) ▷
(𝑡1, . . . , 𝑡𝑘) in 𝐹 by 𝑥1 = 𝑐1 ∧ · · · ∧ 𝑥𝑘 = 𝑐𝑘 . To obtain correct
semantics of substitution compatibility, we also need to add⋀︂

𝑡 ,𝑢∈𝑇,𝑡≠𝑢
𝑐𝑡 ≠ 𝑡𝑢, (2)

asserting that constants representing different terms in 𝐹 cannot
be equal.

However, for clausal subsumption in a first-order theorem
prover, it is vital that the process of encoding subsumption in
SAT, as well as the setting up of our SAT solver for handling
this encoding are as lean as possible (see Section V). Hence,
we did not employ a standard SMT solver with the EUF-based
encoding discussed above, but instead opted to directly add
support for substitution constraints to our SAT solver. The
advantage of our SAT-based approach is that we use less
boolean literals, and we avoid using all-different constraints
for terms, such as (2).

B. SAT-Encoding of Clausal Subsumption

We now present our formalization to express clausal sub-
sumption between clauses 𝐶 and 𝐷 as a SAT problem over
substitution constraints. To this end, assume that clause 𝐶

is 𝐿1 ∨ 𝐿2 ∨ · · · ∨ 𝐿𝑛, whereas 𝐷 is 𝑀1 ∨ 𝑀2 ∨ · · · ∨ 𝑀𝑚.
Recall that deciding whether 𝐶 subsumes 𝐷 reduces to the
problem of deciding whether there exists a substitution 𝜎 such
that 𝜎(𝐶) ⊆ 𝐷, where “⊆” denotes multiset inclusion (over
multisets of literals).

For arbitrary literals 𝐿𝑖 and 𝑀 𝑗 , deciding the existence of a
substitution 𝜎 with 𝜎(𝐿𝑖) = 𝑀 𝑗 can easily be done. Yet, for
clausal subsumption we are left with the challenge of finding
a substitution 𝜎 such that, for each 𝐿𝑖 , we have one of the 𝑀 𝑗

such that 𝜎(𝐿𝑖) = 𝑀 𝑗 . To address this challenge, we introduce
new boolean variables 𝑏𝑖 𝑗 to encode possible matchings of 𝐿𝑖

to 𝑀 𝑗 , given by 𝜎(𝐿𝑖) = 𝑀 𝑗 . Additionally, we use Definition 2
to derive the substitution constraints Γ(𝐿𝑖 , 𝑀 𝑗 ). Based on the
boolean variables 𝑏𝑖 𝑗 and substitution constraints Γ(𝐿𝑖 , 𝑀 𝑗 ),
we formalize clausal subsumption between 𝐶 and 𝐷 by
ensuring its three properties: (i) each literal 𝐿𝑖 in 𝐶 is matched
to a literal 𝑀 𝑗 in 𝐷, (ii) the same substitution 𝜎 is used for
each of these matchings, and (iii) 𝐶𝜎 ⊆ 𝐷 is multiset inclusion.
Our formalization of clausal subsumption between 𝐶 and 𝐷 is
given as follows.

(i) We first define the following clauses, capturing that each
literal 𝐿𝑖 from 𝐶 must be matched to (at least one) literal
𝑀 𝑗 of 𝐷: ⋀︂

1≤𝑖≤𝑛
𝑏𝑖1 ∨ 𝑏𝑖2 ∨ · · · ∨ 𝑏𝑖𝑚 (3)

(ii) We connect the boolean variables 𝑏𝑖 𝑗 to the substitution
constraints Γ(𝐿𝑖 , 𝑀 𝑗 ) through the following clauses:⋀︂

1≤𝑖≤𝑛

⋀︂
1≤ 𝑗≤𝑚

𝑏𝑖 𝑗 → Γ(𝐿𝑖 , 𝑀 𝑗 ). (4)
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These clauses employ the substitution constraints
Γ(𝐿𝑖 , 𝑀 𝑗 ) to ensure the same substitution 𝜎 is used for
matching 𝐿𝑖 and 𝑀 𝑗 simultaneously, for all 𝑖, 𝑗 .

(iii) As clausal subsumption uses multiset inclusion over the
respective multisets of literals of 𝐶 and 𝐷, we encode the
requirement that each literal of 𝐷 may only be matched
at most once:⋀︂

1≤ 𝑗≤𝑚
AtMostOne(𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗 ), (5)

where AtMostOne(𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗 ) is true iff zero or one of
𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗 are true.

Together, the constraints (3), (4), (5) fully capture clausal
subsumption, yielding the following result.

Theorem 1 (Clausal Subsumption as SAT): Clausal subsump-
tion between clauses 𝐶 and 𝐷 is given by the conjunction of
(3), (4), and (5). That is, 𝐶 subsumes 𝐷 iff (3) ∧ (4) ∧ (5) is
satisfiable.

Note that for deciding clausal subsumption between 𝐶 and
𝐷, we only need to establish satisfiability of (3) ∧ (4) ∧ (5) in
Theorem 1: one substitution 𝜎 such that 𝐶𝜎 ⊆ 𝐷 is sufficient
for deciding that 𝐶 subsumes 𝐷, implying that 𝐷 can be deleted
from the set of usable clauses during saturation. Hence, while
clausal subsumption (3)∧ (4)∧ (5) captures all substitutions 𝜎

for which 𝐶𝜎 ⊆ 𝐷, for deciding whether 𝐶 subsumes 𝐷 we are
interested to find only one satisfying instance of (3)∧ (4)∧ (5).
As a result, application of clausal subsumption in saturation
can be decided by solving the satisfiability of (3) ∧ (4) ∧ (5).

Example 2: Consider the literals defined in Example 1 and
clauses 𝐶 = 𝐿1∨𝐿2 and 𝐷 = 𝑀1∨𝑀2. The encoding of clausal
subsumption between 𝐶 and 𝐷 resulting from Theorem 1 is
the conjunction of the following clauses:

𝑏11 ∨ 𝑏12

𝑏21 ∨ 𝑏22

𝑏11 → (𝑥1, 𝑥2, 𝑥3) ▷ ( 𝑓 (𝑐), 𝑑, 𝑦1)
𝑏12 → (𝑥1, 𝑥2, 𝑥3) ▷ ( 𝑓 (𝑑), 𝑐, 𝑐)
𝑏21 → ⊥
𝑏22 → (𝑥2, 𝑥4) ▷ (𝑑, 𝑐)
¬𝑏11 ∨ ¬𝑏21

¬𝑏12 ∨ ¬𝑏22

This set of clauses is satisfiable, as witnessed by the model that
assigns 𝑏11 and 𝑏22 to true, 𝑏12 and 𝑏21 to false, and 𝜎(𝑥1) = 𝑐,
𝜎(𝑥2) = 𝑓 (𝑑), 𝜎(𝑥3) = 𝑦1, 𝜎(𝑥4) = 𝑐. We conclude that the
first-order clause 𝐶 subsumes 𝐷.

Remark 2 (Subsumption Resolution): Our encoding of clausal
subsumption can be adjusted to also decide the application
of other simplification rules in saturation, when these rules
implement variants of subsumption. To this end, we have
extended the SAT encoding (3)∧(4)∧(5) of clausal subsumption
to the inference rule subsumption resolution. In addition to
clausal subsumption, subsumption resolution also uses instances
of binary resolution. Hence, for finding substitutions 𝜎 such
that subsumption resolution between clauses 𝐶 and 𝐷 can be

applied (and 𝐷 deleted from the set of usable clauses), we
extended the clauses (3) ∧ (4) ∧ (5) with additional constraints
capturing application of resolution, while also adjusting the
encoding of (3) ∧ (4) ∧ (5) to set inclusion between literals of
𝐶 and 𝐷 (instead of multiset inclusion from subsumption).

Remark 3 (At-Most-One Constraints): We conclude this
section by noting that a correct but naive solution to encode
AtMostOne(𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗 ) in (5) would be the following:⋀︂

1≤𝑖1<𝑖2≤𝑛
¬𝑏𝑖1 𝑗 ∨ ¬𝑏𝑖2 𝑗 . (6)

More efficient encodings using at-most-one constraints (see,
e.g., [13]) can be used instead of (6). In our work however, we
opted to add direct support for at-most-one constraints when
reasoning about (5) (see Section IV).

IV. EFFECTIVE SUBSUMPTION VIA LEAN SAT SOLVING

In Section III we showed that the application of subsumption,
as an inference rule in saturation, can be reduced to the
satisfiability problem of the formula (3) ∧ (4) ∧ (5) using
substitution constraints (Theorem 1). In this section we describe
our approach for solving (3) ∧ (4) ∧ (5).

A straightforward approach towards handling (3) ∧ (4) ∧ (5)
could come with translating (3)∧(4)∧(5) into only propositional
clauses; yet, such a translation would either require additional
propositional variables to encode at-most-one constraints
or would come with a quadratic number of propositional
clauses [13]; similarly for substitution constraints.

Due to the particular distribution of subsumption instances
(see Section V), the encoding must be lightweight to be
practically feasible. To overcome the increase in propositional
variables/clauses to be used for deciding clausal subsumption in
an efficient manner, we support substitution constraints (4) and
and at-most-one constraints (5) directly in SAT solving, and
introduce a lean SAT solving approach tailored to subsumption
properties. In particular, we adjust unit propagation and
conflict resolution in CDCL-based SAT solving for handling
propositional formulas with substitution constraints. This way,
we integrate our lean SAT solving methodology directly into the
saturation process of first-order proving (Section V), instead of
interfacing first-order proving with an existing off-the-shelf SAT
solver. Such a direct integration allows us to efficiently identify
and apply subsumption during proof search (see Section VI).

a) Using Substitution Constraints in SAT Solving: For
handling substitution constraints in clausal subsumption, we
attach a substitution constraint Γ(𝐿𝑖 , 𝑀 𝑗 ) to each freshly
introduced boolean variable 𝑏𝑖 𝑗 in (3), which is equivalent
to adding the constraint 𝑏𝑖 𝑗 → Γ(𝐿𝑖 , 𝑀 𝑗 ) of (4).

b) Unit Propagation with Substitution Constraints:
Consider now the clauses 𝑏𝑖 𝑗 → Γ(𝐿𝑖 , 𝑀 𝑗 ) using substitution
constraints, with 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑚}, from
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clausal subsumption (3) ∧ (4) ∧ (5). Semantically, these con-
straints are equivalent to the following set of binary clauses:{︁

¬𝑏𝑖 𝑗 ∨ ¬𝑏𝑖′ 𝑗′
|︁|︁ 𝑖, 𝑖′ ∈ {1 . . . 𝑛}, 𝑗 , 𝑗 ′ ∈ {1 . . . 𝑚},

(𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′),
∃𝑥 ∈ dom(Γ(𝐿𝑖 , 𝑀 𝑗 )) ∩ dom(Γ(𝐿𝑖′ , 𝑀 𝑗′ ))
s.t. Γ(𝐿𝑖 , 𝑀 𝑗 ) (𝑥) ≠ Γ(𝐿𝑖′ , 𝑀 𝑗′ ) (𝑥)

}︁
,

(7)

which intuitively encodes that no two incompatible substitution
constraints may be true at the same time.

In our work, instead of creating the binary clauses of (7)
explicitly, we introduce support for substitution constraints
as an additional (unit) propagator in SAT solving: when-
ever a boolean variable 𝑏𝑖 𝑗 is assigned to true, our SAT
solver processes the associated bindings for the first-order
variables from dom(Γ(𝐿𝑖 , 𝑀 𝑗 )), and propagates all boolean
variables 𝑏𝑖′ 𝑗′ to false that are associated with conflicting
bindings for variables dom(Γ(𝐿𝑖 , 𝑀 𝑗 )) ∩dom(Γ(𝐿𝑖′ , 𝑀 𝑗′ )); in
other words, all 𝑏𝑖′ 𝑗′ whose associated substitution constraints
are incompatible with Γ(𝐿𝑖 , 𝑀 𝑗 ). This propagation is done
exhaustively once 𝑏𝑖 𝑗 is assigned to true and before standard
unit propagation in SAT solving would be applied. Thus we
ensure that no conflict can occur at this point: if there were
a conflict, that would mean a 𝑏𝑖′ 𝑗′ with conflicting bindings
has already been assigned to true; in this case however, we
would have already propagated 𝑏𝑖 𝑗 to false when assigning
𝑏𝑖′ 𝑗′ . An exception in handling conflicts occurs with the initial
propagation before starting the CDCL loop of SAT solving;
in this case, we may get a conflict if two unit clauses with
conflicting substitution constraints have been added, however, in
that case the SAT solver is at decision level 0 and can terminate
with reporting unsatisfiability (UNSAT) of (3) ∧ (4) ∧ (5).

c) Conflict Resolution with Substitution Constraints:
During conflict resolution in our SAT engine, we proceed as
if the binary clauses (7) were part of the clause database,
i.e., as if the binary clause ¬𝑏𝑖 𝑗 ∨ ¬𝑏𝑖′ 𝑗′ were the reason for
propagating 𝑏𝑖′ 𝑗′ . Therefore we only need to store the literal
𝑏𝑖 𝑗 as the reason for unit propgation. Substitution constraints
during conflict resolution thus do not need specialized treatment
in our SAT solving approach.

d) At-Most-One Constraints: During unit propagation and
conflict resolution, our at-most-one constraints (5) are treated
as if we had the corresponding binary clauses from (6), saving
the overhead from creating additional clauses and variables.

Remark 4: While we presented our approach in the context
of solving (3) ∧ (4) ∧ (5), our SAT solving approach naturally
supports arbitrary boolean clauses and at-most-one constraints,
as well as substitution constraints in the form 𝑏 → Γ (where
𝑏 is a boolean variable and Γ a substitution constraint).

V. SAT-BASED SUBSUMPTION IN FIRST-ORDER THEOREM
PROVING

We implemented our lean SAT-based approach of Section IV
as a new extension to the theorem prover VAMPIRE. While
VAMPIRE already implements highly optimized algorithms
for checking subsumption, these algorithms are built on a

standard, backtracking-based search procedure: using a static
variable ordering and limited amount of unit propagation,
without learning from conflicts. Hence, the full power of
SAT-based reasoning with unit propagation and conflict reso-
lution is not yet supported for subsumption. We overcome
this limitation by integrating our SAT-based approach for
clausal subsumption directly in VAMPIRE. Our implementation
consists of about 5000 lines of C++ code and is available at
https://github.com/JakobR/vampire/tree/sat-subsumption.

a) Implementing Subsumption: When establishing satisfi-
ability of (3) ∧ (4) ∧ (5), we can observe two different types
of subsumption instances:

(i) easy subsumption instances, where not much SAT-based
search is required (very few or even no decisions/conflicts),
For such instances the overhead of setting up the clausal
encoding of (3) ∧ (4) ∧ (5) largely determines the total
running time of our SAT solver.

(ii) hard subsumption instances, whose application is deter-
mined by a significant number of unit propagation and/or
conflict resolution steps in SAT solving.

We recall that the overall goal of our work is to improve
subsumption checking in first-order theorem proving. For this,
we complemented VAMPIRE with a SAT-based approach to
decide application of subsumption. Note that the majority of
the subsumption instances encountered during a typical first-
order proving attempt are of type (i), with instances of type (ii)
appearing occasionally, depending on the input formula. Still,
the total running time is often dominated by type (ii) instances,
and these are the target of our SAT-based approach. We must
however be careful to not become slower on type (i) instances,
thus motivating our choice of a lean, dedicated SAT-solver
embedded into VAMPIRE.

In many of the trivial instances of (3) ∧ (4) ∧ (5), the
unsatisfiabiliy (UNSAT) of these instances can be discovered
already during the encoding of (3) ∧ (4) ∧ (5) (whenever an
empty clause would be added). To save time on these instances,
in our implementation we defer the construction of watch lists
and other data structures until entering the solving loop of our
SAT engine (if at all).

We note that the number of subsumption instances, especially
easy ones of type (i), during first-order proving can become
quite large, often in the order of millions of instances in a 60 s
run of a theorem prover. Allocating and deallocating a new
SAT solver instance for each SAT-based subsumption query
can thus become expensive (see Section VI); therefore, in
our implementation we keep the same solver instance around,
and re-use it for different queries. In particular, we keep the
memory for data structures (such as clause storage, watch lists,
trail, and others), instead of reallocating it for each query.

b) Unit Propagation: To achieve efficient unit prop-
agation, our SAT solver for clausal subsumption watches
two literals of each clause [26]. However, for at-most-one
constraints the situation is different. Consider the constraint
AtMostOne(𝑙1, . . . , 𝑙𝑘) for some 𝑘 ≥ 3 (note that for 𝑘 ≤ 2 we
either drop the constraint or add a binary clause instead). As
soon as any 𝑙𝑖 is assigned true, all 𝑙 𝑗 with 𝑗 ≠ 𝑖 must be false to
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avoid violating the constraint, and are propagated thus. Hence,
the solver watches all literals of at-most-one constraints.

VI. EXPERIMENTS

We evaluated our new SAT-based implementation for clausal
subsumption in VAMPIRE (see Section V). In our experiments,
we were interested (i) to measure the performance improve-
ments we gain through our approach, as well as (ii) to assess
the advantage of re-using our SAT solver objects, and thus
having our SAT solver directly integrated the first-order proving
process of VAMPIRE.
Benchmarks. The basis for our benchmarks is formed by
the TPTP library [36] (version 7.5.0), which is a standard
benchmark library in the theorem proving community. The
TPTP library contains altogether 24,098 problems in various
languages, out of which 16,312 problems have been included
in our evaluation of SAT-based subsumption in VAMPIRE.
The remaining TPTP problems that we did not use for our
experiments either use features that VAMPIRE currently does
not support (e.g., higher-order logic with theories), or did not
involve subsumption checks.

Experimental Setup. All our experiments were carried out
on a cluster at TU Wien, where the compute nodes contain
two AMD Epyc 7502 processors, each of which has 32 CPU
cores running at 2.5 GHz. Each compute node is equipped with
1008 GiB of physical memory that is split into eight memory
nodes of 126 GiB each, with eight logical CPUs assigned to
each node. We used the tool runexec from the benchmarking
framework BENCHEXEC [5] to assign each benchmark process
to a different CPU core and its corresponding memory node,
while aiming to balance the load evenly across memory
nodes. Further, we used GNU PARALLEL [38] to schedule 32
benchmark processes in parallel.

Experimental Results on Measuring Speed Improvements.
We emphasize that using a SAT-based approach for deciding
clausal subsumption will, in theory, not prove problems that
were not provable before. If a problem is provable while using
saturation with redundancy, and hence with subsumption, then
it is also provable using saturation without redundancy, and vice
versa. However, in practice, saturation with redundancy (hence
with subsumption) will improve the prover’s performance in
finding a proof. As such, the aim of our work is to speed up the
application of subsumption in saturation. For this reason, we
set up our first experiment to measure the cost of subsumption
checks in isolation. A similar evaluation has previously been
done for indexing techniques in first-order provers, see [27].

In preparation for this experiment, we ran VAMPIRE, using
the original backtracking-based subsumption implementation,
with a timeout of 60 seconds on each TPTP problem while
logging each subsumption (and subsumption resolution) check
into a file. Each of these files contains a sequence of subsump-
tion (and subsumption resolution) checks, which we call the
subsumption log for a problem. This preparatory step yielded
a large number of benchmarks that are representative for the
checks appearing during actual proof search. These benchmarks

Figure 1. Total running time (in seconds) of backtracking-based vs. SAT-based
subsumption, with detailed information about outliers in Table I. For marks
below the dashed line, our SAT-based approach was faster.
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occupy 1.75 TiB of disk space in compressed form, and contain
approximately 114 billion subsumption checks in total. About
0.5 % of these subsumption checks are satisfiable (561 million),
while the rest are unsatisfiable.

In addition to generating these benchmarks, we have profiled
the portion of time spent by subsumption in VAMPIRE. Over
the TPTP problems used for our experiments and a time limit
of 60 seconds, it ranges from 0 % (no subsumption checks)
to more than 99 % (hard subsumption check), with a mean of
46 % and the median at 53 %.

Next, we executed the checks listed in each subsumption log
and measured the total running times, once for the already ex-
isting subsumption algorithm of VAMPIRE using backtracking,
and once for our SAT-based subsumption approach in VAMPIRE.
The subsumption checks are benchmarked in a similar way as
they would appear during a regular prover run, i.e., with the
same caching of intermediate results. For increased reliability,
each measurement was performed five times, and then taking
the arithmetic mean.

The results of these experiments are given in Figure 1 and
Table I. Each mark in Figure 1 represents one subsumption
log from a TPTP problem, and compares the total running
times of executing all subsumption checks contained in the
log with the old backtracking-based algorithm vs. the new
SAT-based algorithm. The dashed line indicates equal runtime,
hence, our SAT-based approach was faster for marks below the
line. In Table I, we give the cumulative times needed to set
up the subsumption checks, to solve them, and the total time.
Both the backtracking-based and our SAT-based subsumption
algorithm can naturally be split up into a setup stage and a
separate solving stage. The setup stage transforms the two
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Table I
RUNNING TIME OF SUBSUMPTION CHECKS

Subsumption log Backtracking-based Subsumption SAT-based Subsumption
for problem Setup Solve Total Setup Solve Total Δabs Δrel

GRP134-1.005 42.87 s 2.21 s 45.08 s 13.87 s 2.61 s 16.48 s 28.60 s 2.74 x
GRP396+1 67.05 s 88.65 s 155.70 s 15.90 s 98.01 s 113.91 s 41.79 s 1.37 x
HAL007+1 33.25 s 30.54 s 63.79 s 17.05 s 94.51 s 111.56 s -47.78 s 0.57 x
HWV056+1 26.72 s 1.01 s 27.73 s 48.73 s 2.37 s 51.10 s -23.37 s 0.54 x
HWV058-1 17.32 s 1.05 s 18.37 s 37.57 s 0.53 s 38.10 s -19.73 s 0.48 x
HWV059-1 24.21 s 0.95 s 25.16 s 35.79 s 0.68 s 36.48 s -11.31 s 0.69 x
HWV060+1 16.61 s 0.66 s 17.26 s 35.82 s 0.73 s 36.55 s -19.28 s 0.47 x
HWV086+1 17.76 s 1.80 s 19.57 s 50.12 s 3.15 s 53.27 s -33.71 s 0.37 x
LCL662+1.020 43.78 s 1.64 s 45.42 s 14.33 s 0.86 s 15.19 s 30.23 s 2.99 x
MGT038-1 13.15 s 12.88 s 26.04 s 15.35 s 41.33 s 56.67 s -30.64 s 0.46 x
MGT066+1 3.45 s 63.99 s 67.44 s 1.95 s 30.87 s 32.82 s 34.63 s 2.06 x
NLP023+1 0.08 s 154.05 s 154.13 s 0.04 s 0.10 s 0.14 s 153.99 s 1082.84 x
NLP023-1 0.09 s 157.46 s 157.55 s 0.05 s 0.10 s 0.14 s 157.40 s 1087.59 x
NLP024+1 0.08 s 88.26 s 88.34 s 0.04 s 0.09 s 0.14 s 88.20 s 642.68 x
NLP024-1 0.09 s 111.20 s 111.28 s 0.05 s 0.10 s 0.15 s 111.13 s 748.52 x
PUZ073+1 24.69 s 26.60 s 51.29 s 14.02 s 0.14 s 14.17 s 37.12 s 3.62 x
SYN307-1 2.09 s 53.81 s 55.90 s 1.17 s 26.73 s 27.90 s 28.01 s 2.00 x
TOP003-2 41.71 s 0.43 s 42.13 s 48.92 s 5.13 s 54.05 s -11.92 s 0.78 x
. . . (+16,294) . . . . . . . . . . . . . . . . . . . . . . . .
Total 16.31 h 2.39 h 18.70 h 7.21 h 1.23 h 8.44 h 10.27 h 2.22 x
Total (no reuse) - - - 8.08 h 2.05 h 10.12 h - -
Total (VMTF) - - - 7.62 h 1.40 h 9.02 h - -

input clauses into constraints while the solving stage searches
for a solution to these constraints. Additionally the table gives
detailed data for selected outliers (problems not in the bottom-
left of Figure 1).

As shown in Figure 1 and Table I, our SAT-based algorithm
for clausal subsumption gives a clear overall improvement of
the running/proving time of VAMPIRE by a factor of 2.

Note that for some problems, the running time for the
backtracking-based subsumption is higher than the original
timeout of 60 s that has been used when collecting subsumption
logs. The cause of this apparent discrepancy is that VAMPIRE
was working on a hard subsumption instance when hitting the
timeout, with the subsequent measurements in Table I showing
the true cost. Problems such as NLP023+1 are getting stuck
in the backtracking-based subsumption algorithm, while our
SAT-based approach would allow proof search to continue
much further within the same time limit.

We also evaluated the impact of our custom variable selection
heuristic (see last paragraph of Section VII) compared to the
variable-move-to-front (VMTF) heuristic of SAT solvers [8],
as VMTF is conjectured to perform well for SAT problems
that are unsatisfiable, being part of the “unstable phase”
described in [7]. Given that almost all subsumption instances
are unsatisfiable, we were interested to see how our SAT-based
approach performs compared to a VMTF heuristic. Our results
in this respect are listed in the last line of Table I. While
our custom heuristic shows slightly better solving times than
VMTF, the difference is rather small.
Experimental Results on the Advantage of Re-Using SAT
Solver Objects. We also assessed the importance of re-using
the SAT solver object instead of re-allocating the solver for
every subsumption query. The result is given in the second-
to-last line of Table I, confirming the significance of having

SAT-based subsumption directly integrated in VAMPIRE.

VII. RELATED WORK

Subsumption is one of the most important simplification
rules in first-order theorem proving. While efficient literal-
and clause-indexing techniques have been proposed [37], [33],
optimizing the matching step among multisets of literals, and
hence clauses, has so far not been addressed. In our work, we
show that SAT solving methods can provide efficient solutions
in this respect, further improving first-order theorem proving.

A related approach that integrates multi-literal matching
into indexing is given in [35], using code trees. Code trees
organize potentially subsuming clauses into a trie-like data
structure with the aim of sharing some matching effort for
similar clauses. However, the underlying matching algorithm
uses a fixed branching order and does not learn from conflicts,
and will thus run into the same issues on hard subsumption
instances as the standard backtracking-based matching.

The specialized subsumption algorithm DC [18] is based
on the idea of separating the clause 𝐶 into variable-disjoint
components and testing subsumption for each component
separately. However, the notion of subsumption considered in
that work is defined using subset inclusion, rather than multiset
inclusion. For subsumption based on multiset inclusion, the
subsumption test for one variable-disjoint component is no
longer independent of the other components.

An improved version of that algorithm, called IDC [17],
tests on each recursion level whether each literal of 𝐶 by itself
subsumes 𝐷 under the current partial substitution, which is a
necessary condition for subsumption. The backtracking-based
subsumption algorithm of VAMPIRE uses this optimization
as well, and our SAT-based approach also implements it as
propagation over substitution constraints.
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SAT- and SMT-based techniques have previously been
applied to the setting of first-order saturation-based proof
search, e.g., in form of the AVATAR architecture [39]. These
techniques are however independent from our work, as they
apply the SAT- or SMT-solver over an abstraction of the input
problem, while in our work we use a SAT-solver to speed up
certain inferences.

Some solvers, such as the pseudo-boolean solver Mini-
Card [23] and the ASP solver Clasp [14], support cardinal-
ity constraints natively, in a similar way to our handling
of AtMostOne constraints. Our encoding however requires
only AtMostOne constraints instead of arbitrary cardinality
constraints, thus simplifying the implementation.

We finally note that clausal subsumption can also be seen
as a constraint satisfaction problem (CSP). In this view, the
boolean variables 𝑏𝑖 𝑗 in our subsumption encoding (3)∧(4)∧(5)
represent the different choices of a non-boolean CSP variable,
corresponding to the so-called direct encoding of a CSP
variable [40]. A well-known heuristic in CSP solving is the
minimum remaining values heuristic: always assign the CSP
variable that has the fewest possible choices remaining. We
adapted this heuristic to our embedded SAT solver and use it
to solve subsumption instances (see Section V).

VIII. CONCLUSION

We advocate the use of lean dedicated SAT solving to
solve clausal subsumption in first-order theorem proving. We
introduce substitution constraints to encode subsumption as
a SAT instance. For solving such instances, we adjust unit
propagation and conflict resolution in SAT solving towards
a tailored treatment of substitution constraints. Crucially, our
encoding together with our tailored solver enables efficient
setup of subsumption instances. Our experimental results
indicate that SAT-based subsumption significantly improves
the performance of first-order proving. Extending our work
towards equality reasoning, and hence addressing subsumption
demodulation, is an interesting task for future work. For doing
so, we believe our substitution constraints would need to encode
matching also on the term level, and thus not only on the literal
level, in order to find suitable terms to rewrite.
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