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Kurzfassung

Die Posenerkennung von ungeschützten Verkehrsteilnehmern ist eine wichtige Aufgabe
autonomer Fahrzeuge. Informationen über die Körperhaltung von Menschen im Straßen-
verkehr können dazu beitragen, deren Absichten einzuschätzen. Dies, wiederum, kann der
effektiven Steuerung des Fahrzeuges dienen. Der Verkehrskontext unterscheidet sich von
anderen üblichen Anwendungsfällen von Posenerkennung, etwa durch sein charakteristi-
sches Szenenbild, die Schwierigkeit der Datensammlung, und die zusätzliche Verwendung
von LiDAR-Sensoren. Einstufige Methoden für die Posenerkennung wurden in diesem
Gebiet bisher wenig erforscht. Generell wurden derartige Ansätze bisher für weniger
akkurat befunden. Sie haben jedoch andere vorteilhafte Eigenschaften, etwa das Potenzial
für geringe Latenzzeiten. Wir untersuchen daher eine ausgewählte einstufige Methode
zur Posenerkennung im Verkehrskontext. Erst kürzlich wurden mehrere geeignete, domä-
nenspezifische Datensätze veröffentlicht. Die Positionen der Körperteile der beinhalteten
Posen sind jedoch meist nicht mit Tiefeninformationen versehen. Nur das Waymo Open
Dataset lokalisiert eine relativ kleine Anzahl an Posen auch in 3D. Deswegen haben
wir uns entschienen, das Waymo Open Dataset zu erweitern. Hierfür nutzen wir die
Bounding-Boxes, mit welchen alle sichtbaren Personen annotiert sind. Wir wenden eine
zweistufige Methode für Posenerkennung auf diese Bounding-Boxes an. Zusätzlich nutzen
wir die Tiefeninformation der verfügbaren LiDAR-Punktwolken. So erstellen wir mehr
als eine Million Posen mit 3D Gelenkspositionen. In einem Vergleich mit den originalen
Posendaten, beträgt der MPJPE weniger als 10 cm. Als Nächstes untersuchen wir eine aus-
gewählte einstufige Methode für Posenerkennung: KAPAO, ein neuartiger Ansatz, der sich
durch eine besonders schnelle Inferenz auszeichnet. Wir untersuchen ihn anhand von 2D
Verkehrsteilnehmer-Datensätzen. Wir variieren Trainings- und Inferenzparameter, wählen
verschiedene initiale Modellgewichte, und modifizieren die Modellarchitektur. Unsere
Resultate für die Datensätze Tsinghua-Daimler Urban Pose und Berkley DeepDrive 100K
können mit den besten veröffentlichten Ergebnissen mithalten. Mit dem erweiterten Way-
mo Open Dataset und vielversprechenden KAPAO-Konfigurationen, formulieren wir zum
Zweck der 3D-Posenschätzung KAPAO 3D: eine Variante von KAPAO, welche zusätzlich
die Tiefe von Körperteilen vorhersagt. Als Vergleichswert dient ein Uplifting-Ansatz.
Dieser führt 2D KAPAO Vorhersagen in 3D über, indem den Körperteilen naheliegende
LiDAR-Punkte interpoliert werden. KAPAO 3D liefert etwas schlechtere Ergebnisse in
Metriken wie AP, AR und MPJPE. Der visuelle Vergleich der beiden Ansätze zeigt
jedoch, dass KAPAO 3D im Allgemeinen plausiblere Posen erzeugt.
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Abstract

Human pose estimation of vulnerable road users is an important perception task for
autonomous vehicles. Understanding the pose of traffic participants can provide valuable
input for intention prediction, which, in turn, can guide the actions of the vehicle.
This autonomous driving context for human pose estimation has a number of special
characteristics, such as its distinctive scenes, the inherent difficulty of data collection and
the prominence of LiDAR sensors. Single-stage human pose estimation approaches have
hardly been studied in this setting so far. While they have generally been less accurate
than two-stage methods in the past, they showed other desirable qualities, such as the
potential for low-latency applications. We propose to study a designated single-stage
method in the autonomous vehicle domain. Recently, multiple public benchmark datasets
were released for that specific purpose. Depth information for the poses, however, is still
largely unavailable. To our knowledge, only the Waymo Open Dataset localizes a small
number of poses in 3D. Therefore, we decide to extend the Waymo Open Dataset. To that
end, we leverage 2D and 3D bounding boxes that are present for any visible person in
the dataset. Using a state-of-the-art two-stage model on those bounding boxes, as well as
depth information from the LiDAR point clouds, we create more than one million poses
with 3D joint positions. Evaluating the quality on a holdout set of original labels, we
report an MPJPE of less than 10 cm. Next, we focus on our single-stage model of choice:
KAPAO. It is a state-of-the-art human pose estimation method, which stands out due to
its inference speed. We study its performance on 2D vulnerable road user benchmark
datasets. We vary training and inference parameters, choose different initial checkpoints,
and even consider an architecture modification. Evaluating on Tsinghua-Daimler Urban
Pose and Berkley DeepDrive 100K, we find KAPAO to be competitive with the best
reported results. Having access to a large-scale dataset and promising configurations of
KAPAO, we finally study 3D pose estimation in the domain. We propose KAPAO 3D,
a variant of KAPAO that additionally predicts the depths of joints. This is compared
against a baseline uplifting approach, in which 2D KAPAO predictions are lifted into 3D
using close-by LiDAR points in a post-processing step. KAPAO 3D performs slightly
worse than the baseline in metrics like AP, AR and MPJPE. Closer visual inspection of
the errors made, however, shows that the 3D model generally produces more plausible
poses.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Perception is a central feature of autonomous vehicles (AV). To successfully navigate
the world, it is paramount that the machines sense their environment and other actors
accurately. Vulnerable road users (VRUs), such as pedestrians and cyclists, whose safety
can only be guaranteed if they are detected in time are of particular interest.

Mere detection may not always provide enough information. Human pose estimation
(HPE) gives more fine-grained insight into the pose and status of the person. Here, the
positions of individual body parts (also referred to as joints or keypoints), such as the
head, shoulders, elbows, wrists, knees, and feet, are estimated. Several tasks involving
VRUs can greatly profit from such information, including gesture recognition [FZG+20],
crossing prediction [CYQW19] and trajectory estimation [LJN+19].

Often, a distinction is made between the following two sets of approaches to HPE:
two-stage methods first detect people, and apply pose estimators to the cropped image
patches containing individuals; single-stage methods process the whole image and output
poses of multiple people. Traditionally, the former achieve better accuracy. The latter,
however, usually perform better in crowded scenes [CWP+18] and are potentially more
desirable in terms of simplicity and efficiency.

Applications of HPE vary in their setting. The AV context has distinct characteristics
that differ from those of other typical HPE domains. For one, VRUs often appear small
in the image, when they are located far from the camera and near the edges of typical
driving scenes. In these cases, there is frequent use of LiDAR sensors, which produce
sparse depth maps of their surroundings.

The outdoor setting makes automatic collection of accurate data (as produced by motion
capture systems, for example) difficult. Additionally, since the distance and angle between
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1. Introduction

the car and VRUs have an impact on the associated danger level, estimation of joint
positions in 3D is desirable (as opposed to only localizing the keypoints within a 2D
image). Large scale pose annotation by humans is significantly more difficult in 3D,
however, due to the difficulty of navigating 3D space effectively on 2D displays. The
modalities which allow for 3D annotation (e.g. point clouds) are less familiar than images
for 2D, and navigation within 3D space is less intuitive and generally more laborious.

Recently, several HPE datasets focusing on traffic scenes have been published. The
datasets Tsinghua-Daimler Urban Pose (TDUP) [WYW+21], Berkley DeepDrive 100K
(BDD100K) [YCW+20], and Waymo Open Dataset (WODS) [SKD+20] provide 2D human
pose labels (i.e., position information of multiple joints that make up a pose) in a diverse
set of scenes captured from cars in motion. WODS additionally includes a small number
of 3D labels and LiDAR data. Its video sequences are fully annotated with 2D and
3D bounding boxes (i.e., each identifiable person’s location is defined by a bounding
box). Poses, however, are not exhaustively annotated: in one frame none, some or all
people may have pose labels. In a naive application such partial annotation could lead to
single-stage methods being wrongly penalized for the detection of unlabelled individuals.

Still, single-stage HPE methods have not been studied extensively in the AV domain.
Leaderboards of the mentioned 2D benchmark datasets are largely dominated by two-
stage approaches1,2. The two single-stage approaches listed for TDUP 1 are consistently
outperformed by the other, two-stage methods. And for 3D VRU HPE, we are not aware
of any pre-existing work3.

This may be related to the limited availability of 3D HPE data. WODS features only a
small number of 3D pose labels and has the undesirable characteristic that human poses
are only selectively annotated. We aim to address the lack of single-stage applications by
first addressing the limited 3D data availability. This aim of the thesis is explained in
more detail in the following section.

1.2 Aim of the Work
In this work, we want to study single-stage HPE of VRUs. To overcome the limitations
of 3D pose label availability, we first extend WODS with automatically generated labels.
These generated labels are subsequently referred to as pseudo-labels, since they are
automatically produced and not guaranteed to be entirely correct. Then, we experiment
with multiple configurations of a state-of-the-art single-stage HPE model on the previously
mentioned 2D VRU benchmark datasets. Finally, we adapt that single-stage method
for the 3D HPE task on VRUs. The extended WODS, that we created for this purpose,
enables its training and evaluation.

1http://urbanpose-dataset.com/info/Datasets/198 [retrieved on 18.8.2022]
2https://github.com/SysCV/bdd100k-models/tree/main/pose [retrieved on 18.8.2022]
3Works such as [ZSG+21, FGS+21, KJZ+18, GWH19] consider 3D VRU HPE, but do not fit our

conception of single-stage
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1.3. Methodological Approach

We address the following research questions:

1. What is the accuracy of our generated 2D and 3D (pseudo-)labels for the Waymo
Open Dataset?

2. How does our chosen single-stage human pose estimator perform across selected
2D vulnerable road user pose estimation benchmarks?

3. How accurate is our 3D adaptation of the single-stage human pose estimator from
Question 2 applied to the dataset from Question 1?

To enable the study of 3D pose estimation, we extend WODS [SKD+20] under Question 1.
For Research Question 2, a 2D single-stage pose estimator, namely KAPAO (Keypoints as
Poses and Objects) [MVWM21], is evaluated in multiple configurations on the 2D VRU
datasets TDUP [WYW+21] and BDD100K [YCW+20]. Having established a suitable
dataset and a single-stage estimator for Questions 1 and 2, respectively, we now have the
means to address Question 3, the analysis of that pose estimation method adapted to 3D.
To that end, we modify the architecture to directly regress 3D poses with and without
LiDAR input data. We compare this to a baseline method, that lifts 2D predictions to
3D using the depth provided by LiDAR data in a post-processing step.

To answer the research questions formulated above, we make use of several evaluation
metrics. Performance in a particular 2D or 3D setting can be characterized via var-
ious HPE metrics, such as object keypoint similarity (OKS) based average precision
(AP) [LMB+14], log average miss rate (LAMR) [DWSP12], or mean per joint position er-
ror (MPJPE) [IPOS14]. 2D ground truth exists in the form of public benchmark datasets,
such as TDUP [WYW+21] and BDD100K [YCW+20]. The (extended) WODS [SKD+20]
provides LiDAR data and 3D HPE labels.

1.3 Methodological Approach
In this section, we outline the procedure we apply to answer our research questions. We
perform evaluations to answer all three questions using quantitative experiments. These
experiments are in the form of predictive performance tests on holdout splits of suitable
datasets. Furthermore, results are checked qualitatively, by visually inspecting random
data samples.

First, we extend the Waymo Open Dataset. As a first step towards generating exhaustive
3D labels, we expand the 2D label coverage. To that end, an established two-stage HPE
model architecture, HRNet [SXLW19], is chosen. We train it on the original 2D human
pose labels of WODS. Then, we apply the trained pose estimator to the image patches
defined by ground truth person bounding boxes, replacing the initial person detector
stage. Note that ground truth person bounding boxes are present for all individuals
and in all frames, which is not the case for the original joint annotations. As a result
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Figure 1.1: Overview of the content of this thesis.

of having those ground truth boxes, the pose estimation takes place exclusively on the
image patches that contain exactly one person, effectively reducing the problem to the
joint localization of a single person. This allows us to consider the models’ predictions
as automatically generated 2D pseudo-labels. Furthermore, a lifting procedure based
on LiDAR data [ZSG+21] is employed to transform 2D keypoints to 3D. After filtering
potentially bad predictions using various heuristics, we have access to more than one
million 2D and 3D pseudo-labels. The accuracy of the generated labels is evaluated by
comparing against a holdout set of original 2D and 3D HPE annotations, addressing
Research Question 1.

As the basis for further, single-stage analysis, we choose KAPAO [MVWM21]. It is a
recently published, single-stage HPE architecture that reportedly shows a particularly
good accuracy-latency trade-off. We train the chosen model on the selected 2D VRU
HPE benchmark datasets, TDUP and BDD100K. We adjust the training procedure,
hyperparameters or even architectural details as needed to achieve good performance.
Different model variants associated with these adjustments are evaluated regarding their
speed and accuracy on the provided evaluation sets, addressing Research Question 2.

The established KAPAO variants, in conjunction with the extended WODS, provide the
basis for tackling question three. We now focus on the task of 3D HPE. We propose
KAPAO 3D: an adaptation of the original KAPAO architecture that additionally predicts
the depth of keypoints. Two variants of that model are considered. One that only takes
monocular images into account. The other additionally takes a sparse depth map provided
by the LiDAR sensors as input. We compare those against a lifting baseline, which uses
the original KAPAO to predict 2D poses and lifts those to 3D using close LiDAR points
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in a post-processing step. Our proposed methods are evaluated and compared regarding
their accuracy on a holdout split of the extended WODS.

An overview of this work’s procedure is given in Figure 1.1. The individual steps are
grouped with respect to the research question they pertain to. Elements outside of the
classifications illustrate how the major blocks of this work are interrelated.

1.3.1 Structure
Finally, we present this work’s structure. In Chapter 2 we outline the current state-of-the-
art, establish some important notions and contextualize our work within the literature.
Then, in Chapters 3, 4, and 5 we present our main findings regarding the extension of
WODS, 2D HPE, and 3D HPE that allow us to answer the Research Questions 1, 2, and
3, respectively. Finally, in Chapter 6 we give concluding thoughts and outline promising
continuations of this work.

5





CHAPTER 2
Related Work

In this chapter, we discuss existing work that is relevant to this thesis. First, we
summarize the state of the art in human pose estimation, where we describe KAPAO
in more detail. Then, we introduce the datasets we apply our models to. Finally, we
explain the evaluation metrics that are used throughout this work.

2.1 Human Pose Estimation
HPE is the task of localizing the joints (also referred to as keypoints) of a person. This
can be performed in various settings, on different input modalities and with 2D or 3D
target coordinate spaces. When we refer to HPE in this thesis, we always consider
multi-person pose estimation, where, in principle, the joints of any number of people
≥ 0 are localized and grouped into individual poses. In contrast, single-person pose
estimation expects exactly one person to be depicted in a given image. In terms of input
modalities, we restrict ourselves to images and LiDAR point clouds only. We consider
both 2D HPE, i.e., estimating image coordinates in pixels, and 3D HPE, where the joints’
depths in relation to some real space (e.g. meters) are additionally estimated.

In the literature, distinctions between HPE methods are made in various ways, including
single-stage vs. two-stage and top-down vs. bottom-up. The exact definitions of these
partitions differ. We adopt the conceptions given in [MVWM21]. Therefore, single-stage
methods rely on only one pass of one neural network to estimate poses from a given
image. Two-stage methods, on the other hand, split the task into two separate neural
networks. Generally, the task is split in a top-down fashion (therefore we use top-down
and two-stage interchangeably). The first stage detects individual people (i.e., a person
detector) and the second estimates the joints of a person based on the image patch defined
by the detection of the initial stage (i.e., a single-person pose estimator). Bottom-up
methods use a neural network to predict all joints in the image (plus additional grouping
information) and form poses in non-neural post-processing steps. Therefore, bottom-up

7



2. Related Work

methods are considered a subset of single-stage methods. In this work, we are primarily
concerned with single-stage methods.

2.1.1 Single-Stage Human Pose Estimation

We outline the current state of the art in single-stage 2D HPE methods. First, we
list prominent bottom-up methods, such as HigherHRNet [CXW+20], which is built
on the backbone network HRNet [SXLW19]. It outputs keypoint heatmaps that are
combined to form poses using associative embeddings [NHD17]. Variants, such as
CenterGroup [BKL21] and SWAHR [LWH+21], adapt and improve HigherHRNet further.
DEKR [GSX+21] extends existing approaches that regress person centers and keypoint
offsets with adaptive convolution operations to achieve competitive performance. For 3D
HPE there exist similar bottom-up conceptions [FLC+20, ZMZ+18a].

KAPAO [MVWM21] represents a single-stage method that is not bottom-up. It adapts
the prominent object detection framework YOLOv5 [JCS+22] for HPE, by modelling
poses and keypoints as objects to detect. Grouping-free single-stage approaches have
been conceived for 3D as well [ZMZ+18b, WNQ+22].

KAPAO

Keypoints and Poses as Objects (KAPAO) [MVWM21] is a recently proposed single-stage
human pose estimation method. It deviates from the common approach of regressing
keypoint heatmaps. Instead, it adapts a grid-based detection framework popular in object
detection.

The architecture is illustrated in Figure 2.1. An Image (I ) is fed into a feature extraction
network (N ), such as a CNN. The network outputs a number of output grids of different
resolutions (Ĝ). Each grid cell of each grid can make a number of object predictions, as
is common in grid-based object detection.

KAPAO differs in the nature of the object definitions. KAPAO models two kinds of
objects: pose and keypoint objects. The latter are defined in the usual object detection
fashion: the class (i.e., what kind of keypoint is detected), size (a constant value provided
as a hyperparameter) and location of a bounding box enclosing the keypoint. The pose
objects represent the whole pose at once. Those extend a person object (i.e., one where
the above definition relates to the bounding box enveloping the person of interest) with
additional (xi, yi) coordinates for each keypoint i in the pose. To take advantage of
efficient matrix computation, keypoint objects are padded with zeros to match the size
of pose objects.

These pose and keypoint predictions (Ôp and Ôk, respectively) are made by the cells of
the output grids (Ĝ). Then, non-maximum suppression (NMS) is performed to eliminate
duplicate predictions. The resulting pose objects can additionally be refined with the
keypoint predictions’ locations using a simple matching algorithm (ϕ).

8



2.2. Datasets

Figure 2.1: Illustration of the KAPAO architecture. Reproduced from [MVWM21].

The authors report state-of-the-art performance with a particularly good accuracy-latency
tradeoff for KAPAO.

2.1.2 Two-Stage Human Pose Estimation
We outline the state of the art regarding two-stage HPE as well. Among the most
prominent approaches are heatmap-based ones [SXLW19, FXTL17, XWW18, CWP+18,
LWY+19, ZZD+20]. Each joint is modelled as a 2D Gaussian distribution centered at its
coordinates. The model then outputs a confidence grid for each joint, which is penalized
with respect to that distribution during training. Inference is performed by selecting the
maximum value of the grid. Notably, HRNet [SXLW19], which we employ in Chapter 3,
is such a method.

Heatmap-based approaches rely on high resolution output grids to keep the quantization
error low. This, however, can make them computationally inefficient. Direct keypoint
regression methods do not rely on such output grids. They aim to directly predict the joint
coordinates in various ways. These methods achieved competitive performance recently
by disentangling horizontal and vertical coordinates [LYZ+21], employing a specialized
loss function [LBZ+21], and using transformers [LWZ+21]. Top-down approaches with
similar ideas exist for 3D HPE [MSM+18, MCL19, RWS20].

Furthermore, there is previous work on HPE of VRUs, such as [WFX+19]. Some
of the previously listed VRU HPE datasets also report the performance of baseline
methods [YCW+20, WYW+21]1. There have also been endeavours to optimize for
TDUP specifically [KRC+21].

Then, there are methods that incorporate LiDAR data as well [ZSG+21, FGS+21]. These
focus specifically on 3D HPE in the AV context. Both papers address the limitations
in dataset availability by employing weak supervision through pseudo-labels. Our work
differs from those publications by employing a single-stage method.

2.2 Datasets
We discuss the datasets relevant to this work. Find a comparison of relevant characteristics
between the VRU datasets in Table 2.1.

1Reported baselines are mostly two-stage. The few that are single-stage underperform in comparison.
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2. Related Work

Characteristics TDUP BDD100K WODS WODS++

#2D-Labels ∼ 75K ∼ 20K ∼ 200K (∼ 1.2M)
#3D-Labels 0 0 ∼ 10K (∼ 1M)
Camera ✓ ✓ ✓ ✓

LiDAR ✗ ✗ ✓ ✓

Table 2.1: Characteristics of the different VRU HPE datasets [WYW+21, YCW+20,
SKD+20] based on training and validation splits. Parentheses in the case of WODS++
are added as a reminder that those are pseudo-labels.

Figure 2.2: Collection of sample images with pose (and segmentation) labels from COCO.
Colors are randomly assigned to the different people. Reproduced from [LMB+14].

2.2.1 Common Objects in Context
Common Objects in Context (COCO) [LMB+14] is a human-annotated dataset for object
detection, segmentation and captioning. Importantly, it also provides human pose labels.
This part of the dataset is commonly referred to as COCO Keypoints. We show a
collection of sample images in Figure 2.2.

We do not use it in this work for training or evaluation, since it does not specifically focus
on the AV domain. However, due to its prominence as a benchmark (e.g. [MVWM21,
SXLW19, CXW+20]) it has relevance to our work via the data format and evaluation
procedure it established. Furthermore, we use checkpoints trained on its pose and object
detection labels as initial weights in Chapter 4.

2.2.2 Tsinghua-Daimler Urban Pose
Tsinghua-Daimler Urban Pose (TDUP) [WYW+21] is a large-scale 2D VRU pose es-
timation dataset. It contains monocular images collected from cars in urban Chinese
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2.2. Datasets

Figure 2.3: Sample image with pose labels from TDUP. Reproduced from [WYW+21].
Colors distinguish left, right, torso and head keypoints.

environments. TDUP consists of 21, 000 images with ∼ 90, 000 person annotations,
∼ 75, 000 of which additionally have joint positions. The dataset is split into train, vali-
dation and test set. Annotations are not publicly available for the test set but prediction
quality can be evaluated via submission to an evaluation server. We display a sample
image and its labels in Figure 2.3.

More than half of the poses in the dataset are of riders; i.e., people that ride a motorcycle,
bike, or similar. It uses the same keypoint definitions (i.e., specifics of which joints are
annotated) as COCO Keypoints. This dataset is used to evaluate our methods for 2D
HPE.

2.2.3 BDD100K

Berkley DeepDrive 100K (BDD100K) [YCW+20] is a large-scale dataset for heterogenous
driving tasks. It consists of 100, 000 sequences collected across the United States. It
is hand-labelled to support a diverse set of different tasks including object detection,
tracking, and segmentation. Importantly, it was extended with VRU pose labels at the
end of 2021. We provide a sample image in Figure 2.4.

There are ∼ 27, 000 pose instances across ∼ 14, 000 images. These are split into train,
validation and test set. Annotations are not publicly available for the test set but
prediction quality can be evaluated via submission to an evaluation server. BDD100K’s
keypoint definitions are similar to COCO and TDUP. The keypoints have a similar

11
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Figure 2.4: Sample image with pose labels from BDD100K. Box colors are randomly
assigned to the different people. Skeleton colors distinguish left, right and torso (including
head) keypoints. Reproduced from [YCW+20].

granularity and also span the whole body, but do not relate to the exact same body parts.
This dataset is also used to evaluate our methods for 2D HPE.

2.2.4 Waymo Open Dataset

Waymo Open Dataset (WODS) [SKD+20] is a large-scale dataset developed to aid in
autonomous driving tasks. It is split into Motion and Perception to serve different
applications. When we speak of WODS, in the context of this thesis, we refer to the
Perception part.

WODS consists of 1, 150 sequences that are 20 seconds long, aligned sensor data from
LiDAR and cameras, and various 2D and 3D labels. It was extended in March 2022
with human keypoint annotations. It contains ∼ 170, 000 2D labels and ∼ 10, 000 3D
annotations split into train and validation sets. As opposed to the object detection labels
(2D and 3D bounding boxes), pose labels are not always present. In a particular frame
none, some or all people can have pose annotations. We provide an example scene in
Figure 2.5. We extend this dataset with large-scale 3D HPE labels in Chapter 3.

12
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(a) Image with 2D pose labels.

(b) LiDAR pointcloud with 3D pose labels.

Figure 2.5: Sample scene from WODS [SKD+20]. Each keypoint type has a different
color, consistent across people. Colored ellipses mark corresponding objects in image and
point cloud to aid orientation.

13
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2.3 Evaluation Metrics
We discuss the HPE evaluation metrics relevant to this work. Their choice is primarily
determined by the datasets used. Therefore, other prominent metrics (e.g. [FMJZ08,
YR13]) are omitted here.

2.3.1 Object Keypoint Similarity
Object keypoint similarity (OKS) is a metric used to measure the similarity between a
predicted and target pose [LMB+14]. It is generally used as part of a further, aggregate
performance measure. We provide the formula to compute the OKS score in Equation 2.1.

sOKS =
	

i∈J e
− d2

i
2s2k2

i δ(vi > 0)	
i∈J δ(vi > 0) (2.1)

Here, d is a vector of euclidean distances between corresponding joints of two poses. The
vector v denotes the annotation state of the joints (here, we assume that fully visible is
coded as 2, occluded but annotated as 1, and unannotated as 0). The evaluator function
δ(vi > 0) is 1 if the boolean expression evaluates to true; and 0 otherwise. Therefore,
the metric only takes into account joints that are annotated. In the exponent, ski acts
as the standard deviation; where s denotes the object scale and ki a pre-estimated
joint-specific positional variation. Finally, J is the index set encompassing all joints (i.e.,
|J | = dim(d)).

2.3.2 Average Precision and Average Recall
Average precision (AP) is an aggregate metric adopted from object detection and occurs
in several variations. It represents the area under the precision-recall curve. We provide
the formula to compute AP in Equation 2.2. It uses precision (pr) and recall (re), which
are defined in Equations 2.3 and 2.4, respectively.

AP = 1
|R|

�
r∈R

maxre(c)≤rpr(c) (2.2)

pr(c) = tp(c)
tp(c) + fp(c) (2.3)

re(c) = tp(c)
tp(c) + fn(c) (2.4)

Here, tp(c), fp(c), and fn(c) refer to the count of true positives, false positives, and
false negatives, respectively, at some confidence threshold c. Which of these classes a
prediction belongs to is generally determined by the OKS score at a certain threshold.
The set of reference points R is equally distributed in [0, 1], such as r ∈ {0, 0.1, ..., 0.9, 1}.
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To fit the HPE task, the original intersection-over-union (IoU) similarity mea-
sure is replaced with the OKS measure explained previously. In the COCO Key-
points [LMB+14] benchmark, AP represents an averaged score over the OKS match
thresholds {0.5, 0.55, ..., 0.9, 0.95} (unless indicated otherwise with e.g. AP.50, which
means only the AP score at the OKS threshold of 0.5 is considered). The same holds for
TDUP [WYW+21] and BDD100K [YCW+20].

Average recall (AR) works similarly. However, where AP considered the area under
the precision-recall curve, AR considers the recall-OKS curve (and originally in object
detection the recall-IoU curve).

2.3.3 Log Average Miss Rate
Log average miss rate (LAMR) is a measure of the miss-rate as a function of the false
positives per image, also adapted from object detection [DWSP12]. We provide the
formula to compute LAMR in Equation 2.5. It depends on the miss-rate and false-
positives-per-image, which are given in the Equations 2.6 and 2.7, respectively.

LAMR = exp

 1
|F |

�
f∈F

log
�
mr(argmaxfppi(c)≤f fppi (c))

 (2.5)

mr(c) = fn(c)
tp(c) + fn(c) (2.6)

fppi(c) = fp(c)
#img

(2.7)

Here, fn(c), tp(c), and fp(c) again refer to the count of false negatives, true positives,
and false positives at a confidence threshold c, respectively. F is a set of thresholds,
acting as a limit on the fppi(c) maximization (generally 9 evenly spaced thresholds in
log space between 10−2 and 100). Matching of prediction and target (for determining the
confusion matrix) may again be done using OKS. In TDUP [WYW+21] the confidence
threshold is 0.5.

2.3.4 Mean Per Joint Position Error
Mean per joint position error (MPJPE) is an aggregate distance measure over all
poses [IPOS14]. For each pair of predicted and target pose, the L2-distance between
corresponding joints is computed. Then, this measure is averaged over all joints, and
over all poses. We also consider variants where the distances are only averaged across a
subset of joints to give insight into body-part specific accuracy.
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CHAPTER 3
Extending the

Waymo Open Dataset

This chapter describes the process and results of extending the Waymo Open Dataset.
First, the procedure is outlined. Then, the experiment setup is discussed and the results
are presented.

3.1 Implementation
As discussed previously, 3D pose labels are not available on a large scale. The only
dataset to feature them at all, to our knowledge, WODS, only provides a small number
of them. Additionally, WODS does not annotate scenes fully with pose labels, which can
be detrimental to naive applications of single-stage HPE methods. Therefore, as part of
our work, we aim to generate exhaustive pose pseudo-labels for WODS. To that end, the
existing (complete) bounding box ground truth is leveraged. We train a single-person
pose estimator on the original keypoint labels, and infer the poses of all people (as located
by their bounding box labels). We call our newly generated extended dataset WODS++.

3.1.1 Extraction
First, we acquire the Waymo Open Dataset, specifically version 1.3.2 of the Perception
variant1. We then iterate over the training and validation set and extract the following
information:

1. All 2D person and cyclist objects are extracted. This always includes their bounding
boxes, and, if available, keypoint information. Further, if available, the associated
3D object information is stored, that is, bounding box and keypoints (if available).

1https://waymo.com/open/download/ [retrieved on 8.6.2022]

17

https://waymo.com/open/download/


3. Extending the Waymo Open Dataset

2. We save the image of each camera that has labels in a given frame. Additionally,
we store the 3D LiDAR points in the field of view of that camera, as well as their
2D projections on the corresponding image.

The original WODS annotations are split into a training and a validation set. We further
split the original validation set into: one for model selection and one for gauging the
final performance. We randomly partition the original validation set’s images into two
sets of equal size. Subsequently, they are referred to as the development and test split,
respectively.

3.1.2 Modelling
We then fit a two-stage HPE model on the extracted 2D keypoints. The HRNet [SXLW19]
architecture is chosen. Specifically, the mmpose COCO implementation of HRNet2, which
achieves top scores on the COCO Keypoints benchmark3. Dataset specific parameters
are adjusted to fit the needs of WODS, such as the keypoint configuration and their
estimated standard deviations (which are taken from the WODS toolkit4). Other minor
adjustments include:

1. adjusting the batch size to 16 in training to fit within hardware limits.

2. setting the number of training epochs to 250.

3. computing evaluation metrics every 5 epochs, as opposed to every 10.

Refer to Section 3.2 for a discussion of the results and Figure 3.5 in particular for a
visualization of the training progress over epochs.

3.1.3 Label Generation
Inference

Having trained the model, we now use it to create the pseudo-labels. We make use of
the bounding box annotations of WODS, that are present for all people, in all frames.
They serve as a replacement for the initial person detector stage, that is usually needed
with two-stage approaches. We infer poses using our trained HRNet on each image patch
defined by a ground truth bounding box.

2https://github.com/open-mmlab/mmpose/blob/4f5ec97c9991d4fda1c2ff8133bab8337e9663f7/
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_384x288.
py [retrieved on 13.06.22]

3https://mmpose.readthedocs.io/en/latest/benchmark.html [retrieved on 13.06.22]
4https://github.com/waymo-research/waymo-open-dataset [retrieved on 13.06.22]

18

https://github.com/open-mmlab/mmpose/blob/4f5ec97c9991d4fda1c2ff8133bab8337e9663f7/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_384x288.py
https://github.com/open-mmlab/mmpose/blob/4f5ec97c9991d4fda1c2ff8133bab8337e9663f7/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_384x288.py
https://github.com/open-mmlab/mmpose/blob/4f5ec97c9991d4fda1c2ff8133bab8337e9663f7/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_384x288.py
https://mmpose.readthedocs.io/en/latest/benchmark.html
https://github.com/waymo-research/waymo-open-dataset


3.1. Implementation

Filtering

While in principle we can estimate poses for every person that has an associated bounding
box, we filter the results; i.e., we remove certain inferred poses. This is necessary, since
there are cases where person detection is feasible, yet pose estimation is not (e.g. for
very small depictions of people). Furthermore, the benefit of using generated keypoint
labels with particularly low confidence for the training or evaluation of other models is
questionable.

We use multiple heuristics to do this. We list the chosen filtering conditions and give the
reasoning behind our decisions:

1. Inspired by TDUP [WYW+21], we only provide labels for bounding boxes with
some minimum height. To choose the threshold value, we look at the boxes for which
original labels are provided. This is for two reasons: a) we cannot meaningfully
evaluate our model performance for sizes that are not well reflected in the original
labels, and b) a small number of annotations below a certain size may reflect that
detection of keypoints is infeasible (due to low resolution, for example). Therefore,
we plot a histogram of the height of bounding boxes that contain at least 7 (i.e,
half of all) keypoints (see Figure 3.1). We choose a minimum bounding box height
of 60px. This is for two reasons: a) this decision is in line with TDUP, and b)
there are only few labels below that threshold. The latter may by itself indicate
that pose estimation at that size is infeasible. Furthermore, the model’s ability to
estimate poses accurately at that resolution may be diminished due to the lack of
training data.

2. After limiting the bounding boxes for which pose estimation is performed, we
provide limits on the keypoint confidence. We only keep the joints that have
an associated confidence above a certain threshold. We decide on the threshold
value by plotting OKS/ACC performance at various threshold values across the
confidence range [0, 1] (see Figure 3.2b). We find that for most of the range (< 0.8)
the performance degrades gradually. Any threshold in this range seems adequate.
Therefore, we choose the intuitive middle point: 0.5. This is a point at which we
do not yet lose a significant portion of our labels, yet already achieve about half of
the possible improvement.

3. Finally, we omit poses based on the number of keypoints left after the previous
filtering step. Visual inspection showed that when only few keypoints passed the
confidence threshold, the people were often either heavily occluded, truncated
or visibility was low (e.g. very dark scenes, or blending into the background).
We found the former setting to be associated with predictions of subpar quality,
and predictions in the latter setting were hard to verify (as our human ability of
locating the joints failed). Therefore, we omit such heavily limited pose information
completely. A minimum number of 5 joints (more than a third) of a pose need
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3. Extending the Waymo Open Dataset

Figure 3.1: Histogram of the number of keypoints over the range of bounding box heights
in the WODS++ development set.

to be identifiable to not be filtered altogether. This additional filtering step also
brought about a minor improvement in the evaluation metrics.

Up-Lifting

The generated 2D keypoints are lifted into 3D, leveraging WODS’ LIDAR data. We use
the procedure laid out in [ZSG+21]. The formula is given in Equation 3.1. The weight
factors it relies on are defined in Equation 3.2.

ỹk =
N�

i=1
αikxi (3.1)

αik = exp(−τ∥x
(p)
i − yk∥2)	N

j=1 exp(−τ∥x
(p)
j − yk∥2)

(3.2)

Here, k identifies a joint and i a LiDAR point. The 3D keypoint estimate ỹk is a weighted
sum of LiDAR points xi The sum is from 1 to N , where N is the number of LiDAR
points contained in the 3D bounding box of that individual. The weight factor αik is the
result of a softmax operation over the negative L2-norms between the 2D joint labels yk

and the 2D projections of the LiDAR points x
(p)
i . Therefore, points that lie closer to the

joint on the image plane have a higher weight. The smoothness of the softmax operation
is controlled with a temperature parameter τ .
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3.1. Implementation

(a) OKS/ACC performance of our HRNet [SXLW19] model at various confidence thresholds.

(b) Percentage of ground truth keypoints made ineligible due to filtering at various confidence
thresholds.

Figure 3.2: Confidence threshold study on the WODS++ development set.
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Figure 3.3: OKS/ACC 3D scores on the WODS++ development after the LiDAR lifting
procedure at various temperatures.

We choose the temperature τ = 0.25. We evaluated the prediction performance on the
WODS++ development set at the following temperatures: τk = 2k, k ∈ {−5, −4, ..., 6, 7}.
The results are visualized in Figure 3.3.

Since not all individuals have an associated 3D bounding box, a significant number of
2D poses cannot be lifted. As we will see in Chapter 5, limiting the points considered for
the uplifting operation in 3D is necessary to avoid major deviations.

Additionally, we omit instances where less than 14 points are contained in the bounding
box. The underlying intuition is that the existence of at least one LiDAR point per
keypoint is necessary for any suitable estimation.

Keeping to [ZSG+21], a reliability threshold is employed. When a keypoint has no close
enough point, we omit it. The reliability score is determined by the closest LIDAR point
on the image plane, as shown in Equation 3.3.

rk = exp(−τ mini∥x
(p)
i − yk∥2) (3.3)

This was determined in an analogous fashion to the other hyperparameters we chose so
far; i.e., we evaluate each threshold at steps of size 0.05 in the range [0, 1]. Again, we
keep track of how much ground truth is lost. The results are visualized in Figure 3.4.
The graphs show the performance measure percentages (Figure 3.4a) and the percentage
of filtered out keypoints (Figure 3.4b) across thresholds. These graphics indicate that
no particularly favorable trade-off can be achieved. Accuracy improvements come with
the loss of large quantities of labels. However, since the ground truth is hand-annotated
only on selected point clouds, it seems likely that in their choice annotators gravitated
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(a) 3D OKS/ACC performance of our lifting procedure at various reliability thresholds.

(b) Percentage of ground truth keypoints made ineligible due to filtering at various reliability
thresholds.

Figure 3.4: Reliability threshold study on the WODS++ development set.

to particularly well-formed ones. On such point clouds, the lower reliability thresholds
rarely take effect. Based on this intuition, we choose the relatively low value of 0.15.

3.2 Experiments and Results

First, we note some general statistics of the original and the extended dataset in Table
3.1. The number of labels is vastly increased to over 1 million, for both 2D and 3D.
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Metrics 2D 3D
Original Extended Original Extended

#Poses 173.143 1.242.332 11.609 1.035.184
Avg. Poses per Image 5.1 5.7 1.3 4.8
Avg. Keypoints per Pose 8.0 9.6 11.5 9.5
Avg. Height (2D) & Depth (3D) 190.3px 158.9px 14.7m 28.2m

Table 3.1: Statistics of the original [SKD+20] and extended WODS. Only images that
contain at least one pose label are considered. We give the height of 2D bounding boxes
in pixels and for 3D we give the euclidean distance to the box center.

(a) AP and AR, evaluated after each epoch
on the development set.

(b) HRNet’s heatmap training loss.

Figure 3.5: HRNet [SXLW19] training progress on WODS [SKD+20].

Furthermore, we extended to smaller depictions of humans, as evidenced by the smaller
average height and higher average depth of labels.

The model is trained for 250 epochs. Every 5 epochs we evaluate the model on the
development data split. The best model is chosen based on COCO-style AP which we
find at epoch 110 (see Figure 3.5a). At that point, training loss has mostly, but not yet
completely, levelled off (see Figure 3.5b).

While this is not explicitly stated, we assume that what is referred to as “internal dataset”
in [ZSG+21] has large overlap with the keypoint annotations that were published shortly
after the paper. Note that the authors of [ZSG+21] are affiliated with Waymo, the
publishers of WODS. The number of annotations we extracted do not match the statistics
mentioned in the paper exactly, but they are of a similar magnitude5. As such, we believe
a comparison between accuracy metrics from [ZSG+21] and our results is meaningful.
While this uncertainty is undesirable, [ZSG+21] is the only point of reference in terms

5Reported [ZSG+21]: 197, 381 2D pose labels. Extracted: 173, 526
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of performance to our knowledge6. We report the results in the OKS/ACC7 metric
proposed in the same work. Also their choice of keypoint standard deviation coefficients
used for the OKS/ACC calculation is not explicitly stated. However, due to the authors’
affiliation to Waymo, we assume that they use the ones provided in the WODS toolkit.

We report our results in the subsequent Tables (3.2, 3.3, and 3.4) and Figures (3.6 and
3.7). In all these Tables, the Filtered column refers to the performance after applying the
filtering conditions we introduced in Section 3.1.3. In the Filtered setting, we only compare
to ground truth for which we have filtered predictions (i.e., we do not incorporate false
negatives). It should be noted that the filtering only reduces the number of predictions
and does not change them, and that the metrics only consider instances where ground
truth exist. Therefore, the filtered set would necessarily perform worse, if we did not
reduce the ground truth to match the predicted set. This would hinder meaningful insight
into the quality improvement.

Furthermore, we split results into groups of two related body parts. That is generally
the left and right version of a given joint, but for the head it is forehead (respectively,
head-center in the 3D setting) and the nose. The OKS calculation between target and
prediction is only performed on the joints of the respective group. The overall category
(last row in the tables) considers all joints.

Note that the definition of keypoints between 2D and 3D differs slightly. Whereas WODS’
2D keypoint definition considers the forehead, in 3D the center of the head is specified.
Lower performance in metrics relating to the head accuracy may be due to this disparity.
The phenomenon of reduced scores for the head group is also observed in [ZSG+21].

In Table 3.2 we report the OKS/ACC performance of the 2D pseudo-labels on the test
split. We report scores ≥ 94% both filtered and unfiltered, and for any body part group.
The results reported in [ZSG+21] are consistently out-performed.

Next, we consider 3D OKS/ACC performance in Table 3.3. Here, we report values over
80% for all groups except head, with 57.5% unfiltered and 68.1% filtered, respectively.
Still we outperform performance metrics reported in [ZSG+21] in all regards.

We also quantify 3D results in terms of MPJPE in Table 3.4. Our method still generally
performs better than the reported from [ZSG+21], but not in all groups. In hip, head,
and shoulder our unfiltered MPJPE is slightly higher. Interestingly, the MPJPE for
the head group is the lowest among all groups in the filtered setting and the method
from [ZSG+21], and third lowest in our unfiltered setting. This stands in contrast to the
previous results from Table 3.3. A possible reason may be that the head keypoints have
comparatively small variations, making OKS-based metrics more strict, while lowering
MPJPE.

6At this point in time. [13.6.22]
7OKS/ACC is the average of multiple OKS based accuracy measures. For each threshold in [0.05, 0.95]

with steps of size 0.05 a prediction is considered a match for the purposes of accuracy computation if
it is above the threshold. Practically, this is a variant of COCO’s [LMB+14] AP with a wider range of
thresholds and prediction to ground truth matching being unnecessary.
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Part OKS/ACC@2D (%)
Ours Ours[Filtered] Camera [ZSG+21] Multi-Modal [ZSG+21]

head 97.3 98.5 75.1 72.2
shoulder 95.9 98.2 83.4 87.9

elbow 96.4 98.3 82.6 84.8
wrist 96.2 98.0 79.0 79.2
hip 97.9 99.0 88.0 92.4

knee 97.0 98.4 85.9 90.1
ankle 95.8 97.8 84.2 88.7
overall 94.2 97.4 78.2 82.9

Table 3.2: OKS/ACC@2D performance comparison between our HRNet [SXLW19] and
the reported values from [ZSG+21]. Metrics are computed on the WODS++ test split.

Part OKS/ACC@3D (%)
Ours Ours[Filtered] Camera [ZSG+21] Multi-Modal [ZSG+21]

head 57.5 68.1 24.5 29.7
shoulder 90.2 92.2 65.4 76.9
elbow 88.3 91.0 65.6 72.5
wrist 81.2 84.7 46.0 47.0
hip 87.9 89.6 57.7 74.8
knee 87.8 90.8 65.4 78.0
ankle 85.5 90.2 62.7 72.3
overall 84.4 87.3 51.7 63.1

Table 3.3: OKS/ACC@3D performance comparison between the lifted predictions of our
HRNet [SXLW19] and the reported values from [ZSG+21]. Metrics are computed on the
WODS++ test split.

Finally, we present our pseudo-labels on selected frames. In Figure 3.6 we show our
2D visualizations in a complex traffic scene. In Figure 3.7 we show a selection of
corresponding images and LiDAR point clouds overlaid with the generated 2D and 3D
labels, respectively. The keypoint size in the point-cloud visualization is proportional to
its estimated standard deviation (default behaviour in the WODS toolkit).
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Part MPJPE@3D (cm)
Ours Ours[Filtered] Multi-Modal [ZSG+21]

head 9.1 7.0 8.4
shoulder 8.5 7.6 8.7
elbow 8.6 7.5 8.9
wrist 10.2 8.7 13.2
hip 12.4 11.8 12.1
knee 10.1 8.7 11.1
ankle 12.2 9.4 11.1
overall 10.2 8.8 10.3

Table 3.4: MPJPE performance comparison between the lifted predictions of our HR-
Net [SXLW19] and the reported values from [ZSG+21]. Metrics are computed on the
WODS++ test split.

Figure 3.6: Pseudo-labels on a selected frame from the WODS++ development set.
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Figure 3.7: 2D and 3D pseudo-labels visualized on four selected scenes from the WODS++
development set. Colored ellipses mark corresponding objects in image and point cloud
to aid orientation. Each keypoint type has a different color, consistent across people.
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CHAPTER 4
Human Pose Estimation of

Vulnerable Road Users in 2D

In this chapter, we perform single-stage 2D HPE on VRU datasets. The KA-
PAO [MVWM21] architecture is used. We explore multiple settings: varying inference
hyperparameters, adjusting training data preprocessing strategies, choosing different ini-
tial model weights, and also modifying the structure slightly. We primarily experiment on
the datasets TDUP [WYW+21] and BDD100K [YCW+20]. First, the implementation of
the configurations is explained in detail in Section 4.1. Then, we report our experimental
results in Section 4.2.

4.1 Implementation
Our aim is to study a single-stage 2D HPE method on VRU benchmarks. In an attempt to
achieve competitive performance, we experiment with a number of different configurations
of KAPAO [MVWM21].

We build on the KAPAO-L architecture, the largest version of KAPAO with the highest
accuracy. It, in turn, is based on the architecture and weights of YOLOv5-L [JCS+22],
trained on the COCO object detection [LMB+14] dataset.

4.1.1 Training Procedure
YOLOv5 [JCS+22], the basis of KAPAO, provides an extensive suite of data augmentation
steps. The following modifications are performed during training by default:

• random left-right flipping

• perturbations in the individual dimensions of the HSV color space
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• mosaicking, i.e., creating a 2-by-2 grid of four individually augmented images for
the model input

• random re-scaling

• random translation

The first two points are considered unproblematic. The latter three, however, may be
disadvantageous in the AV context. Therefore, we consider a setting in which those are
disabled. This is motivated by the following concerns:

• Mosaicking destroys the previously present scene homogeneity, which is a conse-
quence of the image always being shot from the car (and, thereby, generally from
the street, often with sidewalks or buildings to the side, etc.).

• VRUs often appear of small size in the image, such that scaling down may make
HPE infeasible.

• In many cases, VRUs are located towards the edges of the scene. Random translation
could then result in the primary targets of interest being cut off.

Furthermore, we reconsider how keypoints are modelled in KAPAO. The default keypoint
bounding box size is 5% of the larger of the two image dimensions (64px at a total width
of 1280px). That would result in a keypoint’s bounding box frequently being wider than
the person it belongs to. We reduce it to the keypoint bounding box size 1% (12.8px).

Finally, by default, images are padded such that they are square. Since the datasets
of interest mostly have a consistent aspect ratio that is quite far from square, we can
increase efficiency by avoiding this step. So, padding is only applied to the next closest
permissible size1.

Find a comparison of example training batches between the default and our customized
setting in Figure 4.1. The gray borders represent the padding that is added after
down-scaling the input images. The customized setting (Figure 4.1b) shows the driving
scenes as they are, aside from possible flips and color perturbation. The default setting
(Figure 4.1a) additionally applies the problematic augmentations discussed previously:
mosaicking (all three images in the batch), scaling (top-right image), and translation
(top-right and bottom image).

When comparing results, we denote the original training setting with the additional
identifier {TD}. Also, we introduce {PT}, for pretrained only, when we do not train on
the target dataset at all.

1Due to the repeated use of strided convolutions, YOLOv5 places limitations on permissible input
sizes. The default architectures require multiples of 32px or 64px.
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4.1. Implementation

(a) Training batch of 3 images with extensive data augmentation.

(b) Training batch of 6 images when limiting data augmentation.

Figure 4.1: Training batch samples from TDUP [WYW+21] with the original default
training settings (top) and our customized setting (bottom). Numbers and colors identify
the different keypoints.
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Figure 4.2: Inference result of the default validation settings (with a low confidence
threshold) using the public KAPAO-L [MVWM21] checkpoint pretrained on COCO
Keypoints [LMB+14] on a scene from WODS [SKD+20].

4.1.2 Inference Settings

A number of hyperparameters need to be chosen for practical application of the model.
These include confidence and detection overlap thresholds. Their choice has considerable
impact on the number of predictions made. Therefore, they determine the precision-
recall trade-off. In addition to the inherent complexity of optimizing these parameters,
optimality may differ depending on the evaluation benchmarks’ performance metrics.

The default validation parameters provided by KAPAO2 are presumably tuned for the
prominent COCO Keypoints [LMB+14] dataset. Notably, they use a confidence threshold
of 0.001. This stands in contrast to their inference demo3, where they use a value of
0.7, thus predicting individuals at a significantly more conservative rate. The evaluation
specfics may have motivated their choice of the former, more liberal setting.

COCO’s evaluation toolkit limits the considered pose predictions to only the top 20,
based on the confidence score associated with the predictions. Additional predictions do
not influence the score, and are discarded by the metric. Therefore, the degree to which
false positives are penalized is limited. When false positives are not penalized accordingly,
the metric may not reflect effectiveness in a practical use-case properly. We show the low

2https://github.com/wmcnally/kapao/blob/ad507c2a00de330eb40d58cf0f4614d82d3c86b5/val.py [re-
trieved on 20.5.2022]

3https://github.com/wmcnally/kapao/blob/ad507c2a00de330eb40d58cf0f4614d82d3c86b5/demos/image.py
[retrieved on 20.5.2022]
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confidence threshold resulting in a particularly unnatural outcome in Figure 4.2. In this
example, the model produces many more pose predictions than there are people depicted.

The demo threshold, on the other hand, was found to be quite restrictive. Therefore, we
introduce an adjusted, more lenient version. We use demo settings with the confidence
threshold reduced to 0.15. This configuration is considered the default setting in our
experiments. We denote KAPAO’s original default validation setting with (VD) when
comparing results.

4.1.3 Initial Checkpoints
There are also multiple options for the choice of initial object weights. As in many other
deep learning applications, starting training from pretrained checkpoints is recommended
for YOLOv54.

Model checkpoints are available for both YOLOv55 and KAPAO6. We use the KAPAO-L
checkpoint that was trained on the COCO Keypoints dataset. It, in turn, started off from
the YOLOv5-L checkpoint. Since this checkpoint was already trained on a large-scale
HPE dataset, it may improve final model performance.

We can go another step further in this chain of checkpoints. After training on one of our
2D VRU datasets, the resulting weights may be used to initialize the model for training
on the other dataset. In this case, we do not only start with HPE weights, but the
specialized AV domain is also known beforehand.

As the default setting in our experiments, we start from the COCO Keypoints KAPAO-L
checkpoint. We denote setting YOLOv5-L, trained on COCO Detection, as our initial
checkpoint with [YOLO]. We also start training with the KAPAO weights trained on
the respective other VRU benchmark, which is indicated with [TDUP] and [BDD],
respectively. We also use a checkpoint trained on WODS++, marked as [W++]. This is
to establish a performance baseline for the experiments in Chapter 5. Furthermore, it
may give insight into the dataset’s utility as a training set.

4.1.4 Architecture
As mentioned previously, VRUs often appear small in traffic scenes. We do not just detect
VRUs, but their individual joints. KAPAO models these joints as objects with bounding
boxes. Therefore, the concern arises whether the underlying YOLOv5 architecture is
equipped to handle that.

Therefore, we first consider the default YOLOv5 (and therefore KAPAO) architecture
(see Figure 4.3a). On a conceptual level, YOLOv5 first applies a number of layers
that build on convolutions, to extract increasingly high-level image features (top-down

4https://docs.ultralytics.com/tutorials/training-tips-best-results/ [retrieved on 20.5.2022]
5https://github.com/ultralytics/yolov5 [retrieved on 22.8.2022]
6https://github.com/wmcnally/kapao [retrieved on 22.8.2022]
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Downsampling

Upsampling

Concatenation Predictions

(a) Default YOLOv5 [JCS+22] architecture.
Downsampling Upsampling

Concatenation Predictions

(b) Customized YOLOv5 [JCS+22] architecture. A higher resolution output grid is
added, and the previously lowest resolution grid is removed, as in [BTCB21].

Figure 4.3: Conceptual illustrations of the default and the customized YOLOv5 [JCS+22]
architecture.

phase). Afterwards, in the bottom-up phase, the features are again up-sampled and
concatenated with corresponding features from the top-down phase. This results in a
number of output-grids at different resolutions. Each cell of each grid is responsible for
detecting objects. These output grids have a resolution of {w

r × H
r |r ∈ R}, where w and

h denote the input image’s width and height, respectively. R is the resolution ratio set
(R = {8, 16, 32, 64} in YOLOv5-L).

We decide to experiment with a higher grid resolution. We shift KAPAO-L’s output grids
by one order of 2, i.e., R′ = {4, 8, 16, 32}. This is achieved by adding another up-sample
operation and adjusting the layer concatenation accordingly. This approach is inspired
by [BTCB21]. An illustration of the adjusted architecture is given in Figure 4.3b. Note
how in the upsampling step the lowest resolution grid during upsampling (dark blue) has
no prediction output arrow (which is present in Figure 4.3a), but there is an additional
grid on top (light blue) that does output predictions.

Alternatively, we could just add the additional output grid, instead of shifting the
resolution set. This is not done for two reasons, a) then the adjusted model would be
strictly more complex than the original one (whereas our modification trades the lowest
resolution grid for a higher resolution one), which also comes at additional computational
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cost, and b) in the experiments of [BTCB21] such a modification did not perform any
better than the shifting one we employ.

When discussing experiments, we use the additional identifier +XS, to denote the archi-
tecture variant with the high resolution output grid that we discussed here (and which
intuitively is responsible for handling extra small objects). When no such identifier is
present, the default KAPAO-L architecture is used.

4.2 Experiments and Results
We perform experiments to evaluate our different settings. To that end, we refer to
the public benchmark datasets TDUP and BDD100K. Furthermore, we report metrics
computed on the 2D labels of WODS++ to help contextualize results in Chapter 5.

We summarize the model setting notation:

• We refer to our KAPAO models plainly as KAPAO (or K to be space-efficient in
tables).

• The default configuration, without any additional identifier:

(a) applies the customized training procedure
(b) uses the slightly adjusted demo validation setting
(c) starts from the COCO KAPAO-L checkpoint
(d) has the unmodified KAPAO-L architecture

• {TD} identifies variants where, instead of (a), the original default training procedure
is applied.

• {PT} identifies variants where, instead of (a), no training is performed and the
unchanged pretrained checkpoint is used for inference.

• (VD) identifies variants where, instead of (b), the KAPAO default validation
parameters are used for inference.

• [YOLO], [BDD], [TDUP], and [W++] identify variants where, instead of (c), the
YOLOv5-L checkpoint, or the otherwise default setting model trained on BDD100K,
TDUP, or WODS++, respectively, is used.

• +XS denotes variants where, instead of (d), the adjusted architecture geared towards
detecting small objects is chosen.

All trainings are performed for 75 epochs, evaluating the current weights on the validation
(or, as applicable, development) set after each epoch. We keep track of the best model
version, as determined based on its AP (as computed by the COCO toolkit). That one is
saved and used in the subsequent evaluations.
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Figure 4.4: Two examples of annotations having out-of-frame coordinates in
TDUP [WYW+21].

In our datasets, it is possible to have annotations beyond the image frame. We show
two examples of such cases in Figure 4.4. To make maximal use of the data, we clip
coordinates to the image bounds, for both bounding boxes and keypoints. For keypoints,
we additionally set the visibility label to 0 (indicating a missing annotation), if clipping
was necessary. This ensures that the within-frame keypoints of clipped poses are still
usable and no ground truth is located out-of-frame (a requirement of the underlying
KAPAO/YOLOv5 framework).

Latency is measured as the time needed to run inference on a single image. For our
results, an RTX 2080 Ti GPU and an Intel i7-11700@2.50GHz CPU were used.

4.2.1 Tsinghua-Daimler Urban Pose
We evaluate our models on TDUP [WYW+21]. We report our findings in Table 4.1.

First, we provide a selection of results from the official TDUP website7, and then our own.
Note that the former are presumably evaluated on the test-set. Our values, however,
are computed on the validation-set, since we found test-set result submissions to not
work properly8. This is an advantage for our models, since we saved the best model in
terms of validation set performance. The extent to which this improves our performance
metrics is unclear. For reference, we find in Section 4.2.3 that the performance difference
between validation and test set on 2D WODS++ is ∼ 1 percentage-point.

Among the models reported on the website, we selected the best overall approach for
display: AlphaPose [FXTL17]. It is a top-down method, whose initial object detection
step is performed by YOLOv3 [RF18] in this particular case. Additionally, we show
the performance measures of other single-stage (specifically, bottom-up) methods in
HigherHRNet [CXW+20] and PifPaf [KBA19].

The results are computed using the TDUP evaluation toolkit, provided in the dataset
download package7. Labels are partitioned into three sets: Reasonable, Small and

7http://urbanpose-dataset.com/info/Datasets/198[retrieved on 4.8.2022]
8At the time of writing: 4.8.2022
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Architecture LAMR ↓ AP ↑ ms
Reas. Sm. Occ. Comb. Reas. Sm. Occ. Comb.

AlphaPose 26.33 38.43 58.75 34.03 70.41 52.33 24.27 59.37 230.2
HigherHRNet 33.91 42.84 64.40 40.90 53.39 34.90 13.71 43.61 2110
PifPaf 36.49 56.63 64.55 44.12 57.15 29.30 17.75 46.49 79.3
K{PT}(VD) 46.67 58.09 77.13 53.91 50.7 23.89 8.65 39.61 525.4
K{PT} 45.31 57.99 76.78 52.87 49.92 22.83 8.5 38.93 55.9
K{TD}(VD) 62.35 62.91 65.87 63.11 51.39 30.26 18.12 42.62 179.8
K{TD} 55.43 75.01 63.51 59.0 51.87 20.86 20.51 42.5 55.0
K(VD) 27.27 41.03 54.49 34.09 65.51 42.28 23.55 54.79 113.0
K 26.75 40.42 54.50 33.67 65.12 42.52 23.9 54.62 51.5
K[YOLO] 31.2 45.4 58.84 38.15 55.78 36.3 18.83 46.44 50.7
K[BDD] 27.95 42.27 56.63 35.12 64.04 41.31 22.28 53.41 52.3
K[W++](VD) 28.4 37.61 57.87 35.22 66.22 45.25 22.65 55.41 36.4
K[W++] 28.27 38.15 57.91 35.18 65.36 45.24 22.31 54.74 34.8
K+XS 27.18 40.15 54.49 33.94 65.03 44.13 23.41 54.61 64.8

Table 4.1: TDUP [WYW+21] evaluation metrics. The horizontal line separates reported
approaches [FXTL17, CXW+20, KBA19] and our KAPAO [MVWM21] variants. Bold
values are the best overall, underlined values are best in class.

Occluded. The former two differentiate between the size of human depictions, whereas the
latter accounts for all people that are significantly occluded or truncated. Both LAMR
and AP are computed on these sets individually. The Combined score gives a weighted
average of these: with Reasonable, Small, and Occluded scores being weighted with 0.7,
0.1, and 0.2, respectively. These weights are chosen by the benchmark authors with the
stated intent to model practical relevance. For example, people depicted small tend to
be far away and their detection may, therefore, be less important in safety applications.

Analyzing the results in Table 4.1, we find that the better KAPAO variants beat the
single-stage baselines consistently. This holds across label sets, AP, LAMR, and latency.
Furthermore, they can compete with the AlphaPose model in terms of LAMR. In terms of
AP, however, KAPAO cannot match AlphaPose, except for the Occluded class (compare
column Occluded-AP of the AlphaPose and K rows in Table 4.1). However, where the
other single-stage methods underperform by > 10 percentage-points, KAPAO only does
so by ∼ 5 percentage-points.

Among KAPAO settings, we find that the default training procedure ({TD}) and the
pretrained checkpoint ({PT}) perform significantly worse than the others (compare
rows of the respective variant with the K row in Table 4.1). Both of these results are
expected: the former intuitively increases the difficulty by destroying the traffic scene
homogeneity (see Section 4.1.1), and the latter is disadvantaged by having no knowledge
of the dataset specifics at all. Notably, these configurations also bring increased latency,
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particularly at lower confidence thresholds ((VD)). That additional time is required by
the post-processing; i.e., NMS and the KAPAO-specific pose-keypoint matching. This
increase in post-processing latency indicates that these less effective models also seem to
be less specific in what grid cells hold the respective predictions; requiring more intensive
post-processing.

Applying a lower confidence threshold at inference ((VD)) has a mixed impact. It
improves some metrics and worsens others, in a way that we found to not always be
consistent across different initial checkpoint choices. Additionally, we find that the latency
increases due to more extensive post-processing with more predictions (compare the ms
column of any KAPAO configuration row in Table 4.1 with its (VD) variant). Even
though K performs well, indicating a good fit, we find that the latency doubles with
K(VD). Interestingly, this is not observed with K[W++] and K[W++](VD), where the
discrepency is only 2.4ms.

Next, we discuss the initial checkpoint choice. Expectedly, starting from YOLOv5 as
opposed to the default (KAPAO-L trained on COCO Keypoints) decreases performance
(compare rows K and K[YOLO] in Table 4.1). This is expected, as the default initial
checkpoint started from the YOLOv5 checkpoint itself and is additionally trained on
a dedicated pose estimation dataset. Starting from the BDD100K checkpoint also
decreases performance (compare rows K and K[BDD] in Table 4.1). Possibly, this is due
to the model overfitting to the comparatively small, domain-specific dataset. Due to the
large-scale and general purpose nature of COCO Keypoints dataset, on the other hand,
models may not overfit to the same extent. Starting from the WODS++ checkpoint,
however, does provide a benefit in AP (except Occluded-AP) and Small-LAMR (compare
rows K and K[W++] in Table 4.1). This may be a consequence of the dataset’s much
larger size compared to BDD100K. Additionally, the [W++] setting also brings about a
significant decrease in latency. The change in inference time is again attributable to the
post-processing step. It seems like the inverse of the phenomenon observed previously in
this section with the weaker model variants {PT} and {TD}.

Finally, we consider the XS architecture variation (+XS). The results overall are in line
with its design considerations: performance for the Small class are slightly improved
without significantly deteriorating performance otherwise. The differences to the stan-
dard configuration (plain K) are marginal. However, K[W++] beats K+XS in Small class
performance, by 2 percentage-points in LAMR and ∼ 1 percentage-point in AP, at no
additional computational expense compared to default K. The +XS architecture has
increased latency (64.8 ms versus the default K’s 51.5 ms), which is due to the architec-
ture modification itself, rather than post-processing. Therefore, the +XS configuration
compares unfavourably overall.

4.2.2 Berkley Deep Drive 100K
Next, we report our results on BDD100K’s 2D HPE labels. Performance metrics are
displayed in Table 4.2.
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Architecture BDD100K Validation Set
AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

HRN48 50.3 64.4 55.9 48.0 74.3 72.2 92.8 79.1 69.9 78.1
ResNet-101 48.1 63.1 53.3 45.7 71.6 69.5 91.4 76.2 67.1 75.8
HRN48(DARK) 50.3 64.3 56.2 47.9 74.5 72.2 92.8 79.7 69.9 78.5
MobileNetV2 45.2 63.0 49.9 43.0 66.9 65.6 91.4 71.1 63.6 70.9
HRN32(UDP) 49.5 63.5 55.0 48.0 73.9 72.4 93.2 79.7 70.3 77.9
K 50.9 77.2 56.2 44.6 63.5 61.6 84.8 68.5 57.9 71.7
K(VD) 51.9 79.4 57.3 45.5 64.5 66.1 90.4 73.7 63.2 73.8
K[YOLO] 45.0 73.7 49.4 38.0 57.7 55.9 81.6 62.1 52.7 64.7
K[TDUP] 50.8 77.1 56.3 44.5 62.4 61.2 84.8 68.3 57.8 70.5
K[TDUP](VD) 51.6 79.1 57.1 45.4 63.7 65.2 89.8 72.9 62.5 72.7
K[W++] 51.5 78.8 56.7 45.9 63.0 62.0 85.3 68.7 58.7 70.7
K[W++](VD) 52.5 80.2 57.6 46.8 64.5 66.4 90.7 73.1 63.8 73.2
K+XS 48.2 75.1 52.6 41.0 62.9 60.0 83.9 66.7 56.5 69.2

Table 4.2: BDD100K [YCW+20] evaluation metrics (validation set). The horizontal line
separates publicly reported approaches [SXLW19, HZRS16, SHZ+18, ZZD+20, HZGH20]
and our KAPAO [MVWM21] variants. Bold values are the best overall, underlined ones
are best in class. HRNet-wXX is abbreviated as HRNXX.

Table 4.2 is set up similarly to Table 4.1. Our models are evaluated using the BDD100K
toolkit9. For comparison, we show the highest performing variant of each architecture
listed in the publicly reported results10 [SXLW19, HZRS16, SHZ+18, ZZD+20, HZGH20].
There are no single-stage methods among the published results, which we could use for
reference. The published top-down approaches use a Cascade R-CNN [CV18] with an
R-101-FPN backbone as the initial detection stage, which achieves 32.69 AP in the person
detection task on the BDD100K validation set. Since no inference times are provided
with the publicly reported results, we omit latency measures in the table. Note, however,
that the inference times of our model configurations are similar to the ones reported
for TDUP in Table 4.1. We again cannot compare test set results, since we found that
the evaluation server does not process our submissions11. However, since the published
results report validation- and test-set scores separately, we can fairly compare their and
our validation set scores.

Overall, the KAPAO variants beat or match the top-down methods in terms of AP. In
AP50 we report a significant gain of more than 15 percentage-points over the best reported
method (HRN48 [SXLW19]). Our best variant performs worse by 10 percentage-points

9https://github.com/bdd100k/bdd100k [retrieved on 22.8.2022]
10https://github.com/SysCV/bdd100k-models/tree/main/pose [retrieved on 23.5.2022]
11Documented in the following issue: https://github.com/bdd100k/bdd100k/discussions/

268 [retrieved on 5.8.2022]
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Architecture WODS++ 2D
AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Dev: K 85.1 89.6 87.3 79.8 91.6 87.8 91.7 89.6 85.6 92.6
Dev: K (VD) 87.7 93.1 90.2 82.3 94.7 92.1 96.4 94.1 89.8 96.1
Test: K 84.1 89.0 86.5 80.8 90.1 86.6 90.4 88.4 84.6 91.6
Test: K (VD) 86.3 91.6 88.9 82.7 93.1 90.2 94.3 92.2 87.8 95.0

Table 4.3: AP and AR computed on the WODS++ 2D labels. Dev: and Test: indicate
that the metrics were computed on the development and test split, respectively.

in the APL metric, however. KAPAO is also consistently inferior to all the displayed
public results in terms of AR.

We now discuss the differences between the various KAPAO settings. Generally, the
results are consistent with the ones of Section 4.2.1. Initializing the model with the
weights pretrained on COCO Keypoints (plain K) is better than taking the more specific
TDUP ([TDUP]) or the object detection checkpoint YOLOv5 ([YOLO]). Using the
WODS++ checkpoint (WODS++) leads to improved performance over default K. The XS
architecture setting (+XS) also performs slightly worse across the metrics. Wheras there
was a special class for small people depictions in Section 4.2.1 in which +XS performed
better than the default K, there is no such distinction here. We find the performance
increase provided by the low confidence threshold validation parameters ((VD)) to be
more significant here than on TDUP (see Section 4.2.1).

We do not evaluate the untrained ({PT}) variant, or the one trained with the default
procedure ({TD}). The former is infeasible due to BDD100K’s keypoint definition being
different to the COCO Keypoints datasets that the {PT} model is trained on. The {TD}
variant is omitted to avoid wasting computational resources on a setting that the previous
findings have indicated to perform significantly worse.

4.2.3 Extended Waymo Open Dataset
Finally, we evaluate KAPAO on the 2D WODS++ labels. This is the dataset whose
creation we detailed in Chapter 3. There are no baselines available. We primarily perform
this evaluation to introduce a performance baseline of KAPAO on the dataset. This is
intended to help contextualize results of Chapter 5 related to this.

We split the WODS++ evaluation set (i.e., the one having the sequences of the original
WODS’ evalution set) into a development and a test set. The partition is performed
on the recording sequence level, as opposed to the frame level. This is to avoid having
highly similar frames (as commonly found within a sequence) distributed between the
sets, thus maintaining independence. We assign 50% of the data to each set. Note that
due to differences in the sequence characteristics, the resulting frame and annotation
counts differ between the sets.
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(a) The primary COCO metrics of
KAPAO [MVWM21] evaluated on the
WODS++ development split over the
epochs.

(b) The different loss coefficients of
KAPAO [MVWM21] computed on the
WODS++ development split over the
epochs.

Figure 4.5: Performance measures during the training of KAPAO [MVWM21] on the 2D
labels of WODS++.

We keep the settings the same as previously. As opposed to the previous datasets, 75
epochs were not found to be sufficient for convergence here. Seeing the development
of losses and performance metrics across epochs, it seems likely that the model could
improve even further with longer training (see Figure 4.5). In Figure 4.5a we show the
AP and AP.5 computed on the development set over the epochs. In Figure 4.5b we show
the different training loss coefficients over the epochs, where box refers to the loss applied
to the bounding box estimation, obj penalizes the score indicating the presence of an
object of interest, cls penalizes the class of object detected (pose or a specific keypoint
type), and kp refers to the loss applied to the keypoint position estimation as part of
the pose object prediction. We did not report similar training records for TDUP or
BDD100K (see Sections 4.2.1 and 4.2.2, respectively), since the models seemed to reach
peak performance well within the 75 epochs. Still, we do not train further in this case for
three reasons: a) to keep the setting aligned with the other datasets, b) an improvement
of a few percentage-points is hard to meaningfully interpret without established baselines,
c) to save computational resources. Note with respect to the last point that training on
the large scale extended WODS dataset is quite compute-intensive. On a single GPU
(RTX 2080 Ti), an epoch takes multiple hours.

We report the results in Table 4.3. We mark the settings additionally with Dev: and Test:
to refer to evaluation on the development and test sets, respectively. The former is used
during training to keep track of the best model version. We use the COCO evaluation
suite12 with the WODS toolkit’s keypoint standard deviations13.

12https://github.com/cocodataset/cocoapi [retrieved on 5.8.2022]
13https://github.com/waymo-research/waymo-open-dataset [retrieved on 13.06.22]
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We observe a difference of ∼ 1% percentage-point between the development and test
set (compare the Dev: rows with their corresponding Test: rows in Table 4.3). On
either set, the (VD) setting improves performance metrics by ∼ 2 − 4 percentage-points.
However, while the (VD) setting improves performance metrics, it may not be effective in
practical use, due to the large number of false-positives. On the development set, which
has ∼ 170, 000 ground truth annotations, the (VD) setting makes ∼ 3, 100, 000 pose
predictions. Our default configuration (plain K), for comparison, produces ∼ 140, 000
predictions. For practical purposes, producing ∼ 80% as many poses as there are ground
truth labels (default K) seems distinctly more plausible than producing ∼ 18 times as
many ((VD)).
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CHAPTER 5
Human Pose Estimation of

Vulnerable Road Users in 3D

Previously, in Chapter 4, we established KAPAO variants for traffic datasets in 2D. Fur-
thermore, in Chapter 3, we created a large-scale dataset containing both 3D annotations
and LiDAR data. Building on that, we now study the performance of KAPAO adapted
for use in 3D pose estimation. Specifically, we examine the following settings:

• We train the original KAPAO on WODS++. Then, we lift its 2D predictions to 3D
using the LiDAR point clouds (similar to the procedure proposed in Section 3.1.3).

• A variant of KAPAO is devised that estimates 3D joint locations, based on the
image input alone.

• That same 3D KAPAO variant is used, but the input image is enriched with depth
data from LiDAR point clouds.

First, we specify the design details of the variants listed above. Also, we discuss how to
represent the 3D coordinates to suit the models. Finally, we elaborate on the experiments
performed and the results obtained.

5.1 Implementation
Applying KAPAO to said settings requires adjustments in the framework. We will specify
them subsequently. Additionally, as in the 2D case previously, we need to accommodate
the dataset-specific keypoint definitions. We use the same number, order and variation
coefficients as for 2D HPE on WODS++ (see Section 4.2.3).
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5.1.1 3D KAPAO Architecture
The prediction of 3D joint positions requires changes to the core model. YOLOv5 was
extended for 3D bounding box localization in [MKD+22]. We choose an analogous
approach for the 3D localization of keypoints within KAPAO. Specifically, we adopt the
following modifications:

• The model is extended to additionally predict the depth of keypoints (see Sec-
tion 5.1.4 for specifics on the representation chosen for this). This is accomplished
by adding additional targets to the complex pose objects that KAPAO regresses.
The keypoint objects are only trained to estimate their respective depth. The 2D
localization is kept unchanged.

• We adopt the L1-loss for the distance estimation. It is specified in Equation 5.1.

ldist = 1
|IB|

�
i∈IB

|ẑi − zi|) (5.1)

Here, IB is the index set of keypoints in a given batch. The variables zi and ẑi

represent the true and predicted depth values of a keypoint i, respectively.
Per default, KAPAO’s loss is already a weighted sum of individual loss components.
We simply extend it with our additional loss ldist. The combined loss function for
the 3D setting is given in Equation 5.2.

l3D = l + δdistldist = δobjlobj + δboxlbox + δclslcls + δkpslkps + δdistldist (5.2)

We add the distance loss ldist weighted by the factor δdist to the original combined
loss l. That previous aggregate loss consists of the objectness (lobj), box (lbox), class
(lcls), and keypoint (lkps) loss. Each is weighted by their respective factor δ(·). In
practice, the loss is additionally scaled by the number of images in the batch.

• Associated utilities are modified as needed to accommodate the architectural
changes. Notably, the target definition changes. This requires adjustment in the
loading of labels and subsequent transformation steps.

We call the model with the described architecture KAPAO 3D. Without any additional
notation, we only use images as input.

5.1.2 Additional LiDAR Input
We now consider LiDAR point clouds to complement images as our input data. We
decide on an early fusion approach. Specifically, we enrich the three-channel RGB image
with an additional (sparse) depth channel D based on the LIDAR data. It is formalized
in Equation 5.3.

44



5.1. Implementation

∀(i, j) ∈ {1, ..., w} × {1, ..., h} : D(i, j) =
�

z(i, j), if (i, j) ∈ P

0, otherwise
(5.3)

Here, P is the set of 2D projections of all LiDAR points. The image height and width is
given by w and h, respectively. The function z(i, j) denotes the smallest z among points
(x, y, z) that project to the image coordinates (i, j). Note that most of the time only one
point projects onto a particular pixel. In case multiple points project onto the same pixel,
the closest one is chosen.

We implement this setting in conjunction with the 3D architecture described previously.
This variant is referred to as LiDAR KAPAO 3D.

5.1.3 2D Prediction Lifting
Next, we present our uplifting approach based on the default 2D KAPAO architecture.
A similar procedure to the one described in Section 3.1.3 is employed. As before, we
estimate the 3D location of a joint using a weighted sum of the closest points around
the 2D keypoint prediction. The weighting is based on the L2 distance of the projected
LiDAR points to the 2D keypoint on the image plane. In contrast to the setting in
Section 3.1.3, however, we do not limit the LiDAR points based on 3D bounding box
information. Using that additional information would give an unfair advantage to this
approach in comparison to KAPAO 3D.

Still, we limit the points considered in the weighted sum. Instead of the 3D bounding
box, we take an estimated 2D bounding box. We consider any LiDAR point that is
projected within the rectangle, whose lower and upper corner are given by the minimum
and maximum keypoint coordinates, respectively. The box’ corners are specified in
Equations 5.4 and 5.5.

boxlower = (mini∈I xi, mini∈I yi) (5.4)

boxupper = (maxi∈I xi, maxi∈I yi) (5.5)

Here, I is the set of keypoint indices. Then, xi and yi refer to the i’th keypoint’s
coordinates.

A LiDAR point with its image plane projection at p = (x, y) is considered in the uplifting
operation only if boxlower ≤ p ≤ boxupper. We call this approach KAPAO↑, to indicate
that it is the default KAPAO setting with subsequent uplifting.

Alternatively, we simply selected the depth of the closest LiDAR point to a particular
keypoint. In this case, the performance metrics were worse. Therefore, the approach was
discarded.

45



5. Human Pose Estimation of Vulnerable Road Users in 3D

5.1.4 3D Coordinate Representation
WODS provides 3D annotations and point cloud coordinates in vehicle space. Its axes
originate in the center of the vehicle and point forward (the direction of driving), to
the side and upwards. The same scene, viewed through different cameras (as one could
imagine happening for the side cameras after a 180° degree turn of the vehicle), would then
be associated with different coordinates. This representation does not suit camera-based
localization methods, like the one we employ.

Therefore, we transform all 3D coordinates to camera space. This coordinate space
originates at the center of a particular camera lens. The x and y axes form the plane
parallel to the lens and image plane, and the z-axis is perpendicular to that; i.e., it
represents the depth. We always transform LiDAR points and 3D labels to the current
camera of interest; i.e, the one that corresponds to the currently processed image.

Furthermore, we choose a root-relative representation. Inspired by previous work [MCL19,
NFZY19], we split up the task of depth estimation into: a) the absolute depth estimation
of the root, and b) the depth estimation of the other joints relative to the root. Therefore,
all non-root joint depths are represented as their displacement from the root joint depth.
The root-joint depth itself stays unaltered. This is formalized in Equation 5.6.

z′
i = zi − zr∀i ∈ I \ {r} (5.6)

Here, z and z′ represent the original and root-relative joint depth vectors, respectively.
I is the index set of all keypoints for a particular pose, with r being the index of the
designated root-joint.

We remove all poses whose root joint is not annotated, since we cannot calculate the
displacement of the other joints in this case. Note that the choice of the root joint could
therefore result in a bias as to which kinds of poses the model can predict well.

Since we filter out all root-less pose annotations, we choose the most frequently available
joint in WODS++ as the root. That is the right shoulder, available for 90.5% of poses
(estimated on the development set).

5.2 Experiments and Results

5.2.1 Evaluation Metrics
We discuss the methods used to evaluate the proposed methods. The COCO [LMB+14]
dataset, and its corresponding suite of evaluation tools1 provide the prominent OKS-
based AP and AR metrics, in various settings. These can naturally be extended to
the 3D use-case: we compute the euclidean distance of 3D points, instead of 2D points,

1https://github.com/cocodataset/cocoapi [retrieved on 5.8.2022]
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when computing the OKS scores. The same generalization has been performed for the
OKS/ACC metric in [ZSG+21].

Since these metrics try to summarize pose estimation quality in one measure, they
combine penalization of joint position inaccuracies, complete detection misses, and false
positives. It can be hard to derive conclusions about the model performance in practical
terms. Therefore, we also provide the MPJPE that can be more easily interpreted as
the joint position error in matched poses. In calculating the MPJPE we rely on the
prediction-target matching that is done in the process of calculating the COCO AP and
AR metrics. Additionally, we provide what we call the root joint depth error (RJDE) and
the non-root joint depth error (NRJDE). The former is the L1 distance of the absolute
depth (i.e., the z-coordinate of the root joint) between target and prediction poses. The
latter is the average of the L1 distances of the relative depths (i.e., the z-coordinates of
the non-root joints) between target and prediction joints. We defined these metrics to
have separate performance measures for estimating the absolute depth of a person, and
for predicting the relative positioning of their joints.

Note that we cannot directly re-use the evaluation tools provided in the WODS toolkit2,
since the tools expect predictions and targets to be pre-aligned. The toolkit does not
provide functionality to match a prediction to its corresponding target (as opposed to
the COCO evaluation tools, for example).

For the 3D KAPAO variant, another transformation is necessary before the metrics can
be computed. The model estimates joint locations at pixel coordinates (x, y) and depth
z in (root-relative) meters. This mix of quantities (i.e., pixels and meters) is not suitable
for interpretable evaluation quantities. Therefore, we use the sensor intrinsics (given in
WODS) to transform the image space coordinates and depth to a meter-based (x, y, z)
coordinate in camera space. However, at the time of writing, we encountered an issue
with the projection tools provided by the dataset, such that there is a slight deviation
in results3. Therefore, we ensure that our ground-truth is generated using those same
projection tools. Then, target and prediction are projected to the same (slightly wrong)
space. The L2 distance between the space of the data provided in WODS (seemingly
correct by visual inspection) and the result of the projection is about 5 cm (estimated on
the development set).

5.2.2 Model Specifics

We specify the variants in detail. First, we consider the uplifting approach KAPAO↑.
The 2D prediction model is already available. We use the KAPAO model established
in Section 4.2.3. Specifically, we choose the default variant, plain K, according to the

2https://github.com/waymo-research/waymo-open-dataset/blob/
e0cc6134ceb2e0910386ad882eb1216ce596b505/waymo_open_dataset/metrics/python/
keypoint_metrics.py [retrieved on 29.7.2022]

3https://github.com/waymo-research/waymo-open-dataset/issues/525 (also issues
521, 493, 146, and 255) [retrieved on 27.7.2022]
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conventions introduced in that section. The lifting procedure detailed in Section 5.1.3 is
performed with a softmax temperature of 0.25. Analyzing a range of temperatures as in
Section 3.1.3, we find that the performance barely changes in this case. Therefore, we
keep to the same temperature value that we have chosen in that section (0.25).

The KAPAO 3D variant is trained for 75 epochs on the 3D labels of WODS++. As
an initial checkpoint, we use the 2D KAPAO variant that underlies KAPAO↑. All
hyperparameters are kept the same. However, there is a new additional hyperparameter:
the δdist that scales the loss applied to the depth prediction. We choose a value of 0.025,
which is equal to the 2D keypoint estimation loss scaling factor δkps. Also, in contrast
to the 2D variants considered, we omit the optional pose and keypoint object merging
specific to KAPAO. The original paper [MVWM21] reports a minor improvement using
that additional step. Due to the lack of baselines on our self-created dataset and the
added complexities of 3D prediction, we avoid it in favor of the simpler approach; i.e.,
taking the unmodified pose object predictions.

The training progress is visualized in Figure 5.1. In Figure 4.5a, we show the AP and
AP.5 computed on the development set over the epochs. In Figure 4.5b, we show the
different training loss coefficients over the epochs, where box refers to the loss applied to
the bounding box estimation, obj penalizes the score indicating the presence of an object
of interest, cls penalizes the class of object detected (pose or a specific keypoint type), kp
penalizes the 2D keypoint positions contained in the pose object, and depth refers to the
KAPAO 3D specific loss applied to the depth information of the pose object prediction.
While the best performance was observed after the last epoch, progress seems to have
levelled off. Therefore, we do not expect much progress to be achieved with additional
epochs. Interestingly, there are two major drops in performance across the epochs. The
reasons for the one at epoch ∼ 5 is unclear. The one at epoch 25, however, is most likely
an artifact of stopping and resuming training at that point.

Our LiDAR-KAPAO 3D variant has the same specification as KAPAO 3D. It only differs
in the additon of the sparse depth channel. We attempt two trainings: one initialized in
the same way as KAPAO 3D and the other with the final trained weights of KAPAO 3D.

Note that both KAPAO 3D and KAPAO↑ showed improvements using more lenient
confidence threshold settings (recall (VD) from Section 4.2). However, consistent with
the discussion in Section 4.2.3, the predictions vastly outnumbered the ground truth,
making such configurations impractical.

5.2.3 Results
For evaluation, we use the development and test-set split established in Section 4.2.3.
Subsequent results are reported on the test-set, the one that has not been used in
modelling at all.

First, we find that the LiDAR-KAPAO 3D variant does not perform any better than the
image only KAPAO 3D. With neither of the two initial weight configurations that we
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(a) The primary COCO metrics of KAPAO
3D evaluated on the WODS++ development
split over the epochs.

(b) The different loss coefficients of KAPAO
3D computed on the WODS++ development
split over the epochs.

Figure 5.1: Performance measures during the training of KAPAO 3D on the 3D labels of
WODS++.

tried did it surpass the performance measures obtained with the image-only version. We
suspect that the reason lies in the sparse representation of the data: with only a small
fraction of the depth channel having data other than 0, it may be hard for the model
to meaningfully incorporate the depth information. Considering that it requires more
information than the image-only KAPAO 3D, but performs no better, we do not consider
it promising and disregard it in the subsequent comparisons.

In terms of latency, the methods perform similarly. Recall that, for the purposes of
inference, KAPAO 3D only differs to the original 2D architecture by adding prediction
targets (i.e., the keypoint depths). Therefore, inference speed is comparable to the reports
in Section 4.2.1 at ∼ 40 ms. The 2D variant has the additional lifting overhead, where
measurement depends on when and how the data is loaded. The uplifting procedure
itself has negligible latency of < 1 ms.

We focus on the comparison between KAPAO↑ and KAPAO 3D. First, we consider the
COCO-like AP and AR metrics discussed previously. Results are reported in Table 5.1.
Both approaches perform quite similarly across all metrics. The baseline is almost always
better, but only by a small margin (< 1 percentage-point). Without knowing general
performance baselines, however, the absolute values are hard to interpret.

Less promising results are observed with MPJPE. Results are reported in Table 5.2. We
consider overall and body-part specific MPJPE as mentioned in Section 3.2. Predictions
are on average more than 3 meters off the target. The baseline method again generally
performs better. Interestingly, this is not the case for the head and ankle. It may be that
those joints are particularly often occluded or often have background LiDAR points close
by; a prominent source for uplifting errors that we will discuss shortly. Also, considering
the space we operate in (on the scale of 10s of meters), the results again seem relatively
close between the methods.
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Method WODS++ 3D Test-Set
AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

KAPAO↑ 76.0 78.3 76.5 70.3 89.3 80.9 82.7 81.1 75.8 90.7
KAPAO 3D 75.4 78.0 75.6 70.8 89.4 80.5 82.5 80.9 75.3 90.6

Table 5.1: Performance comparison in terms of AP and AR between the uplifting model
KAPAO↑ and the direct 3D pose estimation model KAPAO 3D on the WODS++ test
split.

Part MPJPE (cm)
KAPAO↑ KAPAO 3D

head 357 338
shoulder 344 354
elbow 290 350
wrist 290 342
hip 313 353
knee 317 357
ankle 357 338
overall 315 349

Table 5.2: Performance comparison in terms of MPJPE between the uplifting model
KAPAO↑ and the direct 3D pose estimation model KAPAO 3D on the WODS++ test
split.

To analyse the results more closely, we now consider the (N)RJDE. Results are given
in Table 5.3. The mean RJDE is another confirmation of the previous observations:
KAPAO↑ is slightly more accurate at an offset of 283 cm compared to the 293 cm of
KAPAO 3D. It also seems like a large fraction of the MPJPE we observed is due to the
depth error, which also intuitively represents the more challenging task. The NRJDE, on
the other hand, is quite different from these other metrics. It is much lower for KAPAO
3D than KAPAO↑. As we will also see later in the visualizations shown in Figures 5.2, 5.3,
and 5.4, KAPAO 3D generally produces much more plausible poses. It may misplace
them in the scene by a few meters, but the relative joint estimation is quite robust. This
cannot be said for KAPAO↑. As we hinted to before, KAPAO↑ often makes mistakes by
using the depth of occlusion or background objects for uplifting. We report the standard
deviations of the error measures to indicate the large fluctuations in accuracy, that are
particularly strong for KAPAO↑.

Finally, in Figures 5.2, 5.3, and 5.4, we visualize our predictions on sample scenes. Looking
at multiple samples, we can discern a few patterns in their errors. Both KAPAO↑ and
KAPAO 3D seem to identify people correctly overall. There are consistently more
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Architecture RJDE (cm) NRJDE (cm)
Mean Std. Dev. Mean Std. Dev.

KAPAO↑ 283 528 143 257
KAPAO 3D 293 516 9 7

Table 5.3: Performance comparison in terms of RJDE and NRJDE between the uplifting
model KAPAO↑ and the direct 3D pose estimation model KAPAO 3D on the WODS++
test split.

predictions than ground truth. Those surplus predictions, however, do not seem entirely
wrong. In those cases, depictions of humans really seem to be present most of the time.
Settings in which this frequently occurs are: people inside of cars (or behind any glass),
reflections or when the person is on the edge of distinguishability.

The two methods are quite different in their depth estimation, however. KAPAO↑ tends
to estimate most joints of a person accurately, but fails for some. These failings are
quite extreme and make for a very unnatural visualization. They either occur due to
occlusion or because LiDAR points of the background are mistakenly used for uplifting.
The former is a fundamental issue of the approach, which at best could be detected and
omitted. The latter could possibly be improved based on heuristics, or also removed
based on plausibility checks.

KAPAO 3D, on the other hand, estimates poses that are natural and very close to the
ground truth. However, it struggles to place them at the correct absolute depth. This
can be seen by focusing on the displacement between the point clouds of the humans
and the predictions. In that sense, its limitations are similar to the ones a human has in
this regard: the general position of the depicted people, as well as their individual poses,
can be estimated; but quantifying the distance exactly is difficult. Without seeing the
point cloud, we could hardly tell that the predictions do not match the ground truth.

This is consistent with what we observed in relation to the (N)RDJE in Table 5.3. In
terms of root joint localization, both approaches can lead to wrong results (as we have
seen, however, in quite different ways). The individual, relative pose information is
estimated much more accurately by KAPAO 3D.
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(a) The input image with 2D ground truth

(b) 3D ground truth

(c) KAPAO↑ predictions (d) KAPAO 3D predictions

Figure 5.2: First sample scene from the WODS++ test set and our 3D predictions. Each
keypoint type has a different color, consistent across people and subfigures.
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(a) The input image with 2D ground truth

(b) 3D ground truth

(c) KAPAO↑ predictions (d) KAPAO 3D predictions

Figure 5.3: Second sample scene from the WODS++ test set and our 3D predictions.
Each keypoint type has a different color, consistent across people and subfigures.
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(a) The input image with 2D ground truth

(b) 3D ground truth

(c) KAPAO↑ predictions (d) KAPAO 3D predictions

Figure 5.4: Third sample scene from the WODS++ test set and our 3D predictions.
Each keypoint type has a different color, consistent across people and subfigures.
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CHAPTER 6
Conclusion

6.1 Discussion
In this work, we studied KAPAO for application in the VRU HPE task. We separately
considered 2D and 3D localization. For the former setting, public benchmark datasets are
available, and KAPAO can be applied in its original design. For 3D, however, the model
architecture requires adjustment and applicable datasets are not as easily available.

Therefore, as a first step, we extended the WODS to have large-scale 3D human pose
annotations. We leveraged the existence of 2D & 3D bounding box labels for all identifiable
humans as a replacement for the initial object detection stage of a two-stage pose estimator.
That two-stage pose estimator, namely HRNet, was trained on the existing WODS pose
labels and applied to the exhaustive box labels. The 2D pose predictions were then
lifted to 3D using the LiDAR data included with the dataset. After a number of filtering
steps to increase the label quality, we were left with over one million 2D and 3D pose
labels. We evaluated their quality on a holdout set consisting of original WODS pose
labels. Our performance metrics are consistently better than those reported on a related
dataset [ZSG+21]. In absolute terms, we achieve a 3D MPJPE of less than ∼ 10 cm.
Visual inspection of samples indicate that the generated poses are consistently plausible.

Next, we studied KAPAO using 2D VRU HPE benchmark datasets. Specifically, we
considered the datasets TDUP [WYW+21] and BDD100K [YCW+20]. We experimented
with various changes pertaining to the training procedure, the inference hyperparameters,
initial model checkpoints, and even the architecture. Our best settings outperformed
other single-stage methods consistently, and were generally slightly worse, but competitive
with the best reported top-down approaches. Additionally, KAPAO has a lower latency
than any reported competitive approach.

We also compared our KAPAO variants among themselves. We found that image
augmentations performed by default during training in the KAPAO framework, such as

55



6. Conclusion

mosaicking, led to worse performance. The default inference setting with a low confidence
threshold may perform well on prominent evaluation metrics; but it may be impractical,
due to the high-rate of false positives it produces. By varying initial checkpoints, we
found that pre-training on the large-scale HPE datasets (COCO Keypoints and the
extended WODS) performed best. Starting from another small domain-specific VRU
dataset (BDD100K and TDUP) degraded performance. Checkpoints from HPE datasets,
irrespective of scale, led to better performance than ones pre-trained on object detection
data (COCO Detection) only. Then, considering higher resolution output grids resulted
in a slight improvement in the estimation of small poses, a decrease in performance
overall, and a significant cost in latency, thus making for an unfavorable trade-off.

Finally, we performed 3D HPE using KAPAO. We use the extended WODS that we
created for this purpose. Primarily, two ways of adapting KAPAO for 3D were considered.
For one, we extend KAPAO’s architecture to estimate poses in 3 dimensions directly
(KAPAO 3D). The other variant uses KAPAO’s default 2D predictions and estimates
their depth using the LiDAR data in a post-processing step (KAPAO↑). A third variant,
where we added LiDAR information as an additional sparse depth channel to the image
input of KAPAO 3D, could not outperform the image-only KAPAO 3D. It was, therefore,
not considered any further. We found that across popular metrics, such as AP and
MPJPE, KAPAO↑ outperformed KAPAO 3D slightly. KAPAO 3D shows desirable
qualities, however, when considering the depth estimation error in more detail, it still
has slightly less accuracy in positioning the pose in absolute terms in space. However, it
produces poses that are much more accurate relative to the root joint. Visual inspection
of the results confirm that KAPAO 3D produces plausible poses, comprehends the scene
correctly at large, but does not manage to place them precisely at the right distance
from the camera.

6.2 Future Work

We identified various potential extensions of the work presented, that we did not explore
within the scope of this thesis. We list them subsequently.

A general way of improving the approach would be to consider sequence information. We
only considered data that pertains to one specific frame. However, in WODS specifically
(and in practical autonomous driving settings) video sequences are available. This
could improve estimation accuracy, and even bring additional qualities, such as stable
predictions across frames.

We evaluated the extended WODS based on the original version. We did not, however,
compare the extended against the original in terms of their utility as training sets. This
would help to determine the value of the extended WODS, and pseudo-labels more
generally. Due to the size of these datasets, however, such a study requires the availability
of extensive computational resources.

56



6.2. Future Work

In general, the pseudo-label generation for extending WODS can be improved. The
top-down model acting as the label generator could be further fine-tuned. So can the
subsequent filtering steps. In our estimation, however, rethinking the procedure for
creating the 3D labels is most promising. We lifted 2D labels using a simple procedure
based on surrounding LiDAR points. Incorporating more complex neural methods here
could lead to even higher accuracy.

Furthermore, the examination of initial checkpoints for 2D KAPAO could be extended.
We considered the datasets only in a sequential way: the model that was trained on one
dataset is used as the initial checkpoint for training on another. Better characteristics
in terms of generalization may be achieved by mixing the datasets and training on the
merged set jointly.

Next, we identified a number of additional paths to explore with the application of
KAPAO in 3D. For one, the LiDAR based KAPAO 3D was only studied in the form
of one specific modality-fusion approach. Intuitively, it should be possible to use the
additional LiDAR data to bring an improvement. Possibly, features of the point cloud
could be extracted and merged with latent image representations within the network
at a slightly later point. Another way may be to impute missing values into the depth
channel, making it less sparse.

Finally, we found KAPAO 3D to have some desirable characteristics in prediction. The
related evaluation was limited to the VRU HPE task only. The model architecture,
however, is not specific to that domain, and could be just as well suited for any other 3D
HPE setting.
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