
DIPLOMA THESIS

SDR-based RFID Reader with
Sub-Symbol-Synchronization

supervised by

Assistant Prof. Dipl.-Ing. Dr.techn. Holger Arthaber
and

Univ.Ass. Dipl.-Ing. Dr.techn. Thomas Faseth

performed at the
Institute of Electrodymamics, Microwave and Circuit Engineering

by

Florian Galler, BSc.
Matr.Nr. 0826275

Carl-Appel-Straße 5/1108, 1100 Vienna

Vienna, November 2014

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Radio-frequency identification (RFID) is a wireless technology for
identification of objects based on attached tags. RFID readers used
for identification of tags are already commercially available. A recent
research field is the localization of passive RFID tags.

During the course of this thesis an electronic product code ultra high
frequency RFID reader based on a National Instruments USRP soft-
ware defined radio (SDR) platform was designed and evaluated. This
work provides a versatile platform for developing real time localiza-
tion systems in upcoming research projects. Therefore, special re-
quirements for a localization algorithm based on a superimposed Di-
rect Sequence-Spread Spectrum signal were considered. Since some
of the requirements couldn’t be fulfilled with the driver framework
provided by the manufacturer of the SDR platform a custom field-
programmable gate array implementation was necessary.

The implementation is based on a soft core processor system with at-
tached user generated custom logic peripherals. An important element
of the design is the decoder, which not only decodes the backscattered
data, but also provides real time sub-symbol synchronization for the
planned localization algorithm. Different decoder strategies have been
analyzed and compared within the thesis. Considerable attention was
drawn on a hardware efficient design, such that future developments
are possible and have enough free FPGA resources left.

Finally, tests with commercially available tags were made to verify
the overall reader design.

i

Kurzfassung

Radio-frequency identification (RFID) ist eine funkbasierte Technolo-
gie zur Identifizierung von Objekten durch angebrachte Transpon-
der. RFID Lesegeräte für die Identifikation von RFID Transpondern
sind bereits kommerziell verfügbar. Gegenwärtige Forschungen unter-
suchen Lokalisierungsverfahren für passive RFID Systeme.

Ziel dieser Diplomarbeit ist die Entwicklung eines RFID Lesegeräts
basierend auf einer National Instruments USRP Software Defined Ra-
dio (SDR) Plattform für EPC UHF RFID Tags. Dieses Lesegerät soll
eine vielseitige Plattform für die Entwicklung von Echtzeit-Lokalisie-
rungssystemen für kommende Forschungsprojekte bieten. Besondere
Anforderungen eines auf Grundlage von überlagerten Direct Sequence-
Spread Spectrum Signalen basierten Entfernungsmessverfahrens wur-
den berücksichtigt. Die vom Hersteller der SDR Plattform bereit-
gestellten Treiber können diese Anforderungen nicht erfüllen. Daher
wurde im Zuge dieser Arbeit eine FPGA basierte maßgeschneiderte
Implementierung erarbeitet.

Das Design basiert auf einem Softcore Mikroprozessorsystem an wel-
chem selbst entwickelte Userlogic Peripherie angeschlossen ist. Ein
wichtiger Teil dieser Peripherie ist der Dekoder, welcher neben dem
Empfangen der vom Tag gesendeten Daten, eine Echtzeit sub-symbol
Synchronisation für das geplante Entfernungsmessverfahren bereit-
stellt. Verschiedene Dekoder Strategien wurden im Zuge der Diplo-
marbeit analysiert und verglichen. Auf Hardwareeffizienz wurde wäh-
rend des gesamten Entwurfsprozess geachtet, so dass zukünftige En-
twicklungen über genügend freie FPGA-Ressourcen verfügen können.

Abschließend wurde das entwickelte RFID Lesegerät mit kommerziell
erhältlichen Transpondern getestet.

ii

To my parents

iii

Contents

1 Introduction 1

2 EPCTMRadio-Frequency Identity Protocol 3
2.1 System Overview . 4

2.1.1 Tags . 4
2.1.2 Interrogator . 5

2.2 Logical Operation . 6
2.3 Physical Layer . 7

2.3.1 Reader to Tag Communication 7
2.3.2 Tag to Reader Communication 8

3 NI USRP-2922 Software Defined Radio Platform 11
3.1 Customized Implementation versus Available Framework 11
3.2 National Instruments USRP-2922 12

3.2.1 N210 . 13
3.2.2 SBX . 16

4 Decoder 18
4.1 Requirements . 18
4.2 Maximum Likelihood Sequence Detector 20
4.3 Synchronous Sub-Symbol Decoder 21

4.3.1 Correlator . 21
4.3.2 Decoder . 24
4.3.3 Performance of the Sub-Symbol Decoder 25

5 Implementation within the FPGA 27
5.1 Overview . 27
5.2 Transmit Module (rfidtx) . 30

5.2.1 Pulse Generation . 31
5.2.2 Pulse Shaping . 31

5.3 Receive Module (rfidrx) . 32

iv

CONTENTS

5.3.1 Correlator . 33
5.3.2 Decoder . 35
5.3.3 Debug . 35

6 Phase Noise 37
6.1 Hardware Changes . 37
6.2 Measurement Results . 39

7 Verification of the Implementation 42

8 Conclusion and Outlook 44

Appendices 48

A RFIDUHF Registers and Memories 48

B Example Code 57

v

Abbreviations

ADC . . . Analog to digital converter
AGC . . . Automatic gain control
ASK . . . Amplitude shift keying
AWGN . . . Additive white gaussian noise
BER . . . Bit error rate
BLF . . . Backscatter link frequency
BRAM . . . Block RAM
CW . . . Continuous wave
DAC . . . Digital to analog converter
DS-SS . . . Direct Sequence - Spread Spectrum
DSB . . . Double side band
EDK . . . Embedded development kit
ETSI . . . European telecommunications standards institute
EPC . . . Electronic product code
FPGA . . . Field-programmable gate array
ISE . . . Integrated software environment
LO . . . Local oscillator
LMB . . . Local memory bus
LNA . . . Low noise amplifier
PA . . . Power amplifier
PIE . . . Pulse interval encoding
PLB . . . Processor local bus
PR . . . Phase reversal
RAM . . . Random-access memory
RF . . . Radio frequency
RFID . . . Radio frequency identification
RX . . . Receiver
SDK . . . Software development kit
SDR . . . Software defined radio
SNR . . . Signal to noise ratio
SSB . . . Single side band
TX . . . Transmitter
UHF . . . Ultra high frequency

vi

Chapter 1

Introduction

Radio-frequency identification (RFID) is a wireless technology for identifying and
tracking of objects using attached transponders. RFID offers several advantages
compared to optical identification methods like bar-codes, e.g. RFID tags can also
be read when they are not in line of sight of the interrogator. There are several
applications for RFID systems: Access management, contactless payment sys-
tems, tracking of goods or animals, electronic article surveillance (EAS), logistic,
biometric passports, electronic toll collection etc.

RFID systems can usually be divided into two main parts - the reader (inter-
rogator) and the transponders (tags). These systems can be classified by their
operating frequency, power supply of the tags, operating range, costs per tag, and
so on.

During the work on this thesis an interrogator compliant to the EPCTMRadio-
Frequency Identity Protocols Generation-2 UHF RFID [1] standard will be devel-
oped. The EPC RFID standard describes an RFID system for product identifi-
cation with passive tags operating in the frequency range between 860 MHz and
960 MHz. The typical reading ranges are below 10 meters and are mainly depen-
dent on the minimum operating power of the tags. For example, the UCODE
G2XM tag from NXP needs a minimum operation power of −15 dBm which re-
sults in conjunction with a maximum ERP power of 33 dBm in a theoretical
maximum reading range of 7.1 m according to the data sheet [2]. Practically, the
reading distance is significantly lower due to attenuation of the electromagnetic
waves by objects, destructive interference in multipath environments or other
phenomena like bad antenna design. UHF EPC tags are passive or semi-passive
meaning that they receive their operating power from the RF field of the inter-
rogator by a carrier beacon, hence they need no batteries or other forms of power
supplies. The modulation format and other important properties of EPC RFID

1

systems will be discussed in chapter 2.
An interesting active research question is the localization of RFID tags. The

interrogator developed during this thesis should provide a versatile test platform
for localization systems. The platform is intended to be used during the upcoming
research project REFlex (RFID Real-Time Localization for Flexible Production
Environments) (Project number: 845630) funded by the FFG (Österreichische
Forschungsförderungsgesellschaft mbH) as a demonstrator. This project investi-
gates localization systems for passive RFID tags utilized for intelligent process
control and production systems. Besides other research topics a localization algo-
rithm based on a superimposed Direct Sequence-Spread Spectrum (DS-SS) signal
introduced in [3] should be further investigated. Therefore, special requirements
for the localization have to be respected during the design and implementation
of the interrogator, e.g. the decoder must not only be able to decode the received
data of the tag, it has to produce also precise timing information of the backscat-
tered signal edges to be used by the correlation algorithm used for localization.

A software defined radio (SDR) is an RF-transmission system where main
parts of the signal processing are done by software instead of hardware. This
allows the reuse of hardware for multiple communication scenarios because the
software is easily exchangeable. The concept of SDRs is not new, but in recent
years there has been a rapid development in this sector. The available band-
width and resolution has increased and also the devices got more affordable. The
benefit of using an SDR platform is that development time for the hardware can
effectively be saved. Some of the commercially available SDR systems are closed
source, meaning that the user has no access to the schematics or the program
code. In a closed source system the user is only able to use the hardware as
a blackbox system with the already prepared interfaces provided by the manu-
facturer, unless the user reverse-engineers the system which is normally a really
demanding task.

During the course of this thesis an EPC RFID interrogator was implemented
on an off-the-shelf SDR from National Instruments namely the USRP-2922. The
USRP-2922 is essentially a relabeled version of the Ettus Research N210 with a
SBX daughter board. These units are open hardware to some extent since their
schematics are available for download and the FPGA design is open source and
available via GitHub. Consequently, a detailed understanding of the hardware
can be gained. It also allows the implementation of own software on the device
and to exploit the full capabilities of the hardware.

2

Chapter 2

EPCTMRadio-Frequency Identity
Protocol

During the course of this thesis an interrogator for EPC UHF tags was developed.
This chapter shall provide an introduction into the EPCTMRadio-Frequency Iden-
tity Protocol standard [1]. The standard specifies the physical layer as well as the
logical operation procedures of EPC UHF RFID interrogators and tags. Section
2.1 will provide an overview over an EPC RFID system. Section 2.2 introduces
the logical operation, e.g. inventorying tag populations. Section 2.3 discusses the
physical layer of EPC UHF RFID systems, e.g. the modulation.

RFIDRFID
Reader Tag

R⇒T T⇒R

command signal CW carrier

backscatter signal

Application

Database

Figure 2.1: Overview of a typical RFID system

3

2.1 System Overview

Rectifier

Envelope
Detector

Modulator

F
S
M

M
em

or
y

Figure 2.2: Block diagram of an RFID Tag

2.1 System Overview

In this section a typical RFID system will be discussed. In order to make it
more tangible the system will be explained using an electronic article surveillance
(EAS) system as example. Figure 2.1 shows an overview of an RFID system. The
tag is the device which should be mounted on the object which is intended to be
secured or identified. Each tag includes unique identifiers, e.g. the stored EPC and
the tag ID (TID). The RFID reader is mounted in the vicinity of the warehouse
exit. The antennas are mounted such that they only read tags when they leave
the building. The RFID reader is continuously searching for tags and informs
the stock management system (application) when a tag is leaving the warehouse,
including the unique identifier of the tag. Then the stock management system
looks up in the database, if the unique identifier corresponds to an article which
isn’t paid yet. In case of a match it triggers an alarm. In the case the good is
already paid either the tag is permanently deactivated at the cash desk or it’s
marked in the database as already paid, therefore no alarm would be triggered.

EPC RFID systems operate at frequencies between 860 MHz and 960 MHz
whereby national radio regulations must be respected. In Europe the ETSI EN
302.208 standard [4] defines usable frequencies, maximum transmit power, and
an interrogator spectral mask.

2.1.1 Tags

Figure 2.2 shows a typical block diagram of an EPC RFID tag. A tag consists of
an antenna with an integrated circuit attached to it. The integrated circuit chip
can be further divided into an analog RF front-end and a digital data processing
block. The RF front-end consists of three blocks:

• The rectifier block can be seen as the power supply for the remaining

4

2.1 System Overview

integrated circuit. Since RFID EPC tags are passive their operating power
must be drawn from the RF input power received via the tag antenna.
Therefore, the rectifier converts the RF power into DC power.

• The envelope detector is used for demodulating the reader to tag (R⇒T)
communication. The used modulation format will be discussed further in
section 2.3.1.

• The modulator is used for the tag to reader (T⇒R) communication which
uses so called backscatter modulation. It consists of a switch which is
controlled by the finite state machine. By changing the state of the switch
also the impedance of the antenna feedpoint is changed and consequently
the reflected signal of the tag changes. The interrogator can detect this
change in the received signal and demodulate the data. Further details of
the used modulation scheme are discussed in section 2.3.2.

The digital data processing block consists of a finite state machine (FSM)
used for the implementation of the protocol stack. This FSM is connected to
some kind of non volatile memory for storing data, e.g. EPC, TID, kill password,
access password, and user memory.

2.1.2 Interrogator

The basic task of the interrogator is to read and write memory content of tags
located within its reading range. The EPC protocol specifies a half duplex data
transmission. During the whole communication the RF carrier must be turned
on to supply the passive tags with sufficient power.

During the R⇒T communication the reader transfers data to the tag by
switching off the RF carrier for short intervals, where the information is coded
into the time duration between these pulses. The short pulses can be detected
by the envelope detector of the tag and are decoded by the FSM. This is called
pulse interval encoding (PIE) and will be discussed in detail in section 2.3.2.
During these pulses the power supply to the tag is interrupted. According to the
EPC standard [1] the maximal duration of these off pulses is 13.125 µs. Since
the rectifier inside the tag must be able to supply the other blocks continuously
with power, it has to store energy in capacitors for the periods where no power
is supplied from the interrogator.

As already explained the T⇒R communication is done by backscatter modu-
lation. Therefore, the reader has to transmit an unmodulated CW carrier during
an expected uplink communication. The reader has to synchronize to the tag
response and decode it.

5

2.2 Logical Operation

T1 T2

Interrogator

Tag

Single Tag Reply

CWCW

NAK if EPC

is invalid

QueryRep

or other

command if

EPC is validCW

T4

RN16 PC/XPC, EPC, PacketCRC

Query Ack QueryRepSelect

T1 T2

NAK

Figure 2.3: Link timing for reading out the EPC (from [1])

Furthermore, the reader also has to provide an interface which is used by
the application to control and configure the reader, e.g. it gives the reader the
command to read out the EPC of all tags and report the readout data. This is
normally done via a standardized interface with custom commands, e.g. Ethernet,
serial port or USB.

2.2 Logical Operation

Since EPC UHF RFID tags offer read distances up to a few meters, multiple
tags can simultaneously be located within the reader’s reading range. Therefore,
the EPC standard defines an access scheme to separate multiple tags. The com-
munication is always initiated by the interrogator. Figure 2.3 shows a typical
communication flow to read out the EPC of a tag.

In the beginning the interrogator selects a part of or the whole tag population
by using the Select command as specified in the EPC standard [1]. This allows
altering flags in the tags based on masked memory content within the tags. These
flags are later used by the Query command to inventories only a sub population
of the tags located within the reading range.

The inventory round is initiated by a Query command. The Query command
specifies the link parameters for the next inventory round, e.g. the used backscat-
ter link frequency (BLF), the used backscatter modulation format, the number
of slots (Q), and flags which must be set to participate. When a tag receives a
correspondingly valid Query command it initializes its slot counter with a ran-
dom number between 0 and (2Q − 1). All tags which have now a zero in the slot
counter reply immediately with a 16-bit random number (RN16). The interroga-
tor must send an ACK including the previously sent RN16 within a stringent

6

2.3 Physical Layer

timing requirement
3

fBLF

< T2 <
20

fBLF

. (2.1)

After the tag receives the ACK including the right RN16 it backscatters its
stored EPC. The interrogator then has two opportunities. First it can access
the tag by sending a Req_RN command, where afterwards for example the tag’s
memory could be altered. Or the reader can use the QueryRep command, which
forces all tags participating the inventory round to decrease their slot counter by
one. Again, tags with slot counter equal to zero reply with an RN16 like it would
be done after the Query command. This can now be done until all slots (2Q) are
read.

The parameter Q has to be chosen carefully according to the expected number
of tags such that probability of a collision is low. Of course, when two tags choose
the same slot counter after the Query command, their RN16 responses will collide
and the tags will not be inventoried because the interrogator can’t receive the
correct RN16 and therefore, can’t send a valid ACK message. This results in
the fact that these tags can’t be read during the actual inventory round. On the
other hand, choosing a too high Q value results in many free slots and therefore
longer readout cycles and decreased tag read rates.

The problem regarding the implementation of an EPC RFID reader within
an SDR is the following. At the maximum backscatter link frequency (BLF)
the time between the end of the RN16 response of the tag and the beginning of
the ACK of the reader during an inventory round must be less than 31 µs. It is
obvious that this is a stringent timing requirement which can’t be fulfilled with
using an implementation with the provided driver framework as will be discussed
in the latter section 3.1.

2.3 Physical Layer

The following section discusses the modulation formats used in the up-link (R⇒T)
and in the down-link (T⇒R) communication of an EPC RFID interrogator.

2.3.1 Reader to Tag Communication

According to the EPC standard, an interrogator communicates to a tag popula-
tion within its reading range by modulating an RF carrier using double-sideband
amplitude shift keying (DSB-ASK), single-sideband amplitude shift keying (SSB-
ASK), or phase reversal amplitude shift keying (PR-ASK). The binary data is
coded into different time intervals between short pulses. This is called pulse in-
terval encoding (PIE). This modulation format can be decoded very hardware

7

2.3 Physical Layer

tss

1

fBLF

tsymbol =
M

fBLF

logic 0

logic 0logic 0

logic 0

logic 0

logic 0
logic 1

logic 1

logic 1

logic 1

Concatenation Example:

M=2

M=4

M=8

Figure 2.4: Miller symbols with both starting phases and a concatenation example

efficient by the tags using an envelope detector. This is essential since the avail-
able processing power in the tags is limited due to their passive operation with
the power supplied over the RF field of the interrogator.

The (R⇒T) communication is started by a Preamble or a Frame-Sync. Both
are used to synchronize the tag to the length of the PIE symbols used for the sub-
sequent communication. A Preamble is only sent in front of a Query command.
It additionally includes the T⇒R calibration (TRcal) period, which together with
the divide ratio (DR) specifies the tag’s BLF used during the inventory round.

An important point is the pulse shaping of the transmit signal. Since transmit
signals have to fulfill stringent requirements in time domain as well as in frequency
domain. The requirements of the EPC standard [1] as well as national radio
regulations rules have to be respected. In Europe the ETSI EN 302.208 [4] defines
the spectral mask of the interrogator signal and the usable frequencies.

2.3.2 Tag to Reader Communication

A tag communicates to an interrogator using backscatter modulation. Thereby
the tag switches the antenna reflection coefficient between two states in accor-

8

2.3 Physical Layer

dance to the data to be sent. The data is either encoded as FM0 baseband
or Miller sub-carrier modulation. The interrogator uses the Query command to
specify the used modulation type for the inventory round. Therefore, an inter-
rogator does not have to be able to decode both modulation types. During the
course of this thesis only Miller modulation will be investigated.

Miller modulation is a sub-carrier backscattering modulation format, where
the sub-carrier frequency equals the tag’s BLF (fBLF). According to the standard
[1] the BLF has to be chosen between 40 kHz and 640 kHz. The BLF is specified
by the interrogator during the Query command by length of the TRcal period
and the divide ratio (DR). Miller modulation can somehow be seen as some kind
of binary phase shift keying. The M value is 2, 4, or 8 and sets the number of
sub-carrier cycles by bit, therefore the Miller symbol rate is

fsymbol =
1

tsymbol

=
fBLF

M
. (2.2)

Figure 2.4 shows the different possible miller symbols. It can be seen that a
logic one is transmitted by inverting the phase at the middle of the symbol, a logic
zero lacks of this inversion. The rule for concatenation of two Miller symbols is
that a phase change between two symbols is only made if two consecutive logical
zeros have to be transmitted. Miller symbols can be split into Miller sub-symbols,
e.g. a Miller M=2 symbol can be split into four Miller sub-symbols. The duration
tss of the sub-symbols is equal to half a BLF cycle.

tss =
1

2fBLF

(2.3)

Figure 2.5 shows the different preambles which precede the T⇒R communi-
cation. By setting the TRext bit within the Query command the reader is able
to choose if the normal preamble or an extended preamble shall be used by the
tag for its response. The preamble is used by the reader to find the beginning of
the tag response and to synchronize to the tag’s BLF which has tolerances of up
to ±22 %.

9

2.3 Physical Layer

Miller Preamble (TRext = 0)

Miller Extended Preamble (TRext = 1) with Pilot Tone

M=2

M=8

M=2

M=4

M=8

M=4

16 M/BLF

10 0 1 1 14 M/BLF 0 1 0 1 14 M/BLF 1

4 M/BLF

16 M/BLF

16 M/BLF

10 0 1 1 1

10 0 1 1 1

0 1 0 1 1 1

10 0 1 1 1

Figure 2.5: Different Miller preambles (from [1])

10

Chapter 3

NI USRP-2922 Software Defined
Radio Platform

The focus of the following chapter is on the introduction of the SDR platform
used during the course of this thesis. Section 3.1 presents the reasons for a custom
FPGA implementation of the RFID reader instead of realizing the reader using
the provided driver framework. Section 3.2 provides an overview of the hardware
components and specifications of the used SDR platform.

3.1 Customized Implementation versus Available

Framework

The USRP-2922 is intended to be used as an SDR connected to a personal com-
puter (PC) running Matlab, Simulink, Labview, or GNU Radio. A library of
drivers is available, such that the unit can be integrated very easily into these
software environments. By using the pre-built drivers the base band signal pro-
cessing can be carried out using the PC. In such a scenario the raw analog to
digital converter (ADC) and digital to analog converter (DAC) samples are trans-
ferred to the PC via the Ethernet connection. This is a very convenient way to
use the SDR. However, limitations are introduced by the Gigabit Ethernet con-
nection.

The first limitation is the data rate of the Gigabit Ethernet interface. The
maximum raw data rate of the ADC is 2.8 GBits/s and the maximum raw data
rate of the DAC is 3.2 GBits/s. This is apparently too much for the Gigabit
Ethernet (1 GBits/s) interface. Therefore, in order to transfer the sampled data,
the SDR has to reduce the sampling rate and/or the resolution. According to the

11

3.2 National Instruments USRP-2922

datasheet of the USRP-2922 [5] the maximum sampling rate achievable via the
Ethernet interface is 50 MSamples/s for a resolution of 8 bit or 25 MSamples/s
for a resolution of 16 bit. Since the ranging algorithm which is planned to be
implemented on the reader uses low spectral power density broadband signals
a reduction of the sampling rate and resolution would considerably limit the
performance of the localization estimation.

A second issue is the latency that is created when the software running on the
PC communicates to the USPR platform. The EPC standard [1] has stringent
timing requirements especially during inventorying a tag population as discussed
in section 2.2. The large latency would lead to problems especially when higher
backscatter link frequencies are used. The problems arising when GNU Radio is
used for implementing a UHF RFID reader are summarized in [6]. Although the
authors are not using exactly the same hardware, the problems can be assumed to
be very similar. Furthermore, for the intended localization algorithm the partly
unpredictable latency would cause reasonable problems.

A custom FPGA implementation doesn’t suffer from these problems at all
and generally results in a higher flexibility for testing and developing of the lo-
calization algorithms. Since the main target is to build a versatile test platform,
a custom implementation for the FPGA has been realized. The drawback of
this solution is that much more implementation effort is needed. Furthermore,
for a custom FPGA implementation a detailed understanding of the hardware is
necessary. Therefore, the available schematics [7] [8] and the datasheets of the
components have been analyzed. The next section provides an overview of the
system components of the USRP-2922.

3.2 National Instruments USRP-2922

Within this chapter the hardware components of the USRP-2922 are discussed.
This unit essentially is a relabeled version of the Ettus Research N210 with a
SBX daughter board. Ettus Research is a subsidiary of National Instruments
and their products are sold directly and also via National Instruments.

The SDR used for this diploma project consists of two printed circuit boards
(PCB), namely the N210 and the SBX. The N210 is the lower board depicted in
figure 3.1 and is mounted directly on the case of the SDR. It includes the cir-
cuits used for baseband signal generation and processing and also the interfaces
for the communication to a PC. On top of the N210 the SBX daughter board is
mounted, which carries the RF relevant components like mixers, variable atten-
uators, synthesizers and amplifiers. It is used for up- and down-converting the
analog baseband signals.

12

3.2 National Instruments USRP-2922

Clock distribution IC

SPI FLASH

JTAG connector

Spartan-3 FPGA

MICTOR

ADCDAC

SBX-RX connectorSBX-TX connector

ext. Ref

MIMO expansion

Figure 3.1: Picture of the N210 circuit board

3.2.1 N210

Figure 3.2 shows an overview of the N210 circuit board and the included compo-
nents. Blue dashed lines indicate clock lines, black lines indicate data connections.
In the middle of this picture the FPGA can be found which is connected to al-
most everything for configuration and data transfer. The FPGA is also the only
user programmable logic inside the USRP-2922 platform. The utilized FPGA is
a Xilinx Spartan-3A DSP XC3SD3400A in a high performance speed grade and
FG676 packaging [7].

This FPGA has no non-volatile memory inside the package. Therefore, the
configuration data must be stored externally. In the case of the N210 the con-
figuration could be loaded into the FPGA either from an SPI Flash memory or
directly from the PC running a design environment by using a JTAG adapter
cable. The SPI Flash can be directly programmed using the SPI programming
header or via JTAG over the FPGA. More information about the configuration
of the FPGA can be found in the Spartan-3 Configuration User Guide [9].

The clock distribution IC Analog Devices AD9510 contains a PLL for the
generation of the main clock. Either an internal or external reference clock can
be chosen by an RF switch controlled by the FPGA. The external clock is either
derived from the REF IN SMA connector or from the MIMO expansion connector.
Furthermore, the AD9510 is used as clock distributor of the 100 MHz main VCO.
Different clock dividers can be applied to each clock output. After powering
up the AD9510 the PLL is powered down, therefore the 100 MHz main VCO

13

3.2 National Instruments USRP-2922

N210 Board

int. 10 MHz Ref Clock distribution
AD9510

I2C EEPROM SPI FLASH JTAG

9 Mbit RAM
CY7C1354C

Spartan-3 FPGA

XC3SD3400A

Debug connector

MICTOR-38

14-bit ADC
ADS62P44

16-bit DAC
AD9777

SBXRX
daughterboard

SBXTX
daughterboard

SERDES
TLK2701

GigE Transceiver

ET1011C

ex
t.

R
ef

M
IM

O
E

X
P

A
N

S
IO

N
S
F

F
-8

08
8

P
P

S
IN

G
ig

ab
it

E
th

er
n
et

R
J4

5

Figure 3.2: Overview of the hardware on the N210 circuit board. Blue dashed
lines indicate clock lines, black lines indicate data connections.

14

3.2 National Instruments USRP-2922

driving the clock distribution is free running at first. A clock divider of two is
set to the FPGA clock by default also. Since the whole design is planned to run
in the 100 MHz clock domain, a state machine for power up configuration was
implemented in the FPGA, see section 5.1.

The digital to analog converter (DAC) Analog Devices AD9777 is used to
generate the analog baseband output. Its maximum input sampling rate is
160 MSamples/s and it has a resolution of 16 bits. The DAC is connected to
the FPGA via a 32 bits parallel bus used as data interface for the sampling data
and an SPI interface used for configuration. The DAC receives its sampling clock
directly from the clock distribution IC. In the final implementation the DAC runs
at a sampling rate of 100 MSamples/s.

The analog to digital converter (ADC) Texas Instruments ADS62P44 is used
for sampling the analog baseband input signal. This ADC is a dual channel 14 bit
105 MSamples/s ADC. It’s connected to the FPGA via a 28 bits parallel bus which
is transferring the sampled data and an SPI interface used for configuration. The
ADC gets its sample clock directly from the clock distribution IC. Therefore, the
sampling jitter between ADC and DAC is very small. According to [3] this is a
crucial requirement for the localization algorithm.

A Cypress CY7C1354C-AC 9 Mbit SRAM is placed on the printed circuit
board. In the implemented FPGA design this RAM is used as storage for the
custom built debug module which is intended to capture and playback ADC data
at full sampling rate.

Furthermore, a Microchip 24LC024 2 Kbit I2C EEPROM is available, which
can be used to store board specific calibration data. During the work on the thesis
such a storage was not needed but the functionality is designated for future use.

Another very useful component is the MICTOR 38 debug connector. This
connector is directly connected to the FPGA and provides direct access to 34
FPGA pins. Since MICTOR connectors are commonly used e.g. breakout boards
are available. For the implementation of the reader in this thesis the MICTOR
connector is used for the serial interface to the PC.

A gigabit Ethernet transceiver is also available on the N210 board which can
be used for interfacing to the PC. The Ethernet interface is not used in the FPGA
implementation built during the work on this thesis, since the interface to the
PC was implemented by a simple serial connection.

Another interesting interface is the MIMO expansion connector which is in-
tended to be used to synchronize two N210 boards. On this SFF-8088 connector
eight differential line pairs are available. Four pairs are directly connected to the
FPGA, two pairs are connected to a Texas Instruments TLK2701 transceiver,
and the remaining two pairs are connected to the AD9510 clock distribution IC.
This allows flexible synchronization of two N210 baseband clocks. The Serializ-
er/Deserializer Texas Instruments TLK2701 would allow full duplex 1.6 Gbit/s

15

3.2 National Instruments USRP-2922

Figure 3.3: Picture of the SBX circuit board with the hardware modifcation
presented in chapter 6

communication to another device. Therefore, the MIMO expansion interface
could be used for future applications to provide proper synchronization between
multiple SDRs, e.g. for a MIMO RFID reader consisting of multiple USRPs.

3.2.2 SBX

Figure 3.3 shows the SBX daughter board which is placed on top of the N210
board. The SBX board converts the baseband signals to the desired radio fre-
quency (RF) and vice versa. The components of the SBX are all controlled by
the FPGA located on the N210 board. Figure 3.4 shows an overview of the RF-
components. It can be seen that the SBX uses direct conversion since there are
no intermediate frequency stages [8].

The transmit branch and the receive branch can be seen as separate units,
except for the RF front-end. The two RF-switches at the front-end allow that the
TX/RX ANT port could be used as transmitter or receiver (half-duplex). The
other configuration option is that for RX and TX separate ports are used. Since
an RFID reader has to transmit a CW carrier during the tag response the RX
and TX branches have to work simultaneously. Therefore, the switches in the RF
front-end have to be configured to the latter configuration.

In order to allow dual-band operation, where RX and TX frequencies are
different, the SBX board is equipped with two separate synthesizers for the gen-
eration of the local oscillator (LO) signals. These synthesizers utilize the same
reference clock provided by the N210 board. Therefore, their outputs are phase
synchronized if they are configured to deliver the same output frequency. How-
ever, the separate synthesizer implementation introduces additional phase noise,

16

3.2 National Instruments USRP-2922

RFID Tag

ADC

DAC
TX/RX

RX

LNA 3

LNA 1 SW 2 ATT 1 LNA 2

DEMOD

LP 2 AMP 1 LP 3

SYNTH 2

1.2GHz

LP 5MODATT 3AMP 3ATT 2AMP 2LP 4

SW 4LP 6

5.8 GHz 50 MHz

40 MHz 50 MHz

SYNTH 1

1.2 GHz

SW 1LP 1

SW 3

100 MHz

100 MHz

SBX Daughter board N210

Figure 3.4: Overview of the hardware on the SBX circuit board

which degrades the performance of the RFID reader. An analysis of this effect
and a solution found is presented in chapter 6. The synthesizers are connected
to the FPGA via SPI and some GPIOs for configuration. The output of the
synthesizers can be filtered by a 1.2 GHz low pass to suppress harmonics.

In the transmit and receive path variable attenuators are used for level ad-
justment. They can be controlled from the FPGA via a parallel interface and can
be adjusted in 0.5 dB steps from 0 dB to 31.5 dB.

Again, two Microchip 24LC024 2 Kbit I2C EEPROM are available on this
board equal to the N210. As explained before, this storage can be used to store
board specific data, e.g. calibration data. During the work on this thesis such a
storage was not needed,nevertheless, the design is prepared for later integration.

17

Chapter 4

Decoder

The focus of the following chapter is on the design of the decoder for the RFID
reader. In section 4.1 the requirements of the decoder will be discussed. Sec-
tion 4.2 introduces the maximum likelihood sequence decoder as the optimum
sequence decoder for the AWGN case. Problems regarding the implementation
of such a decoder will be identified. Section 4.3 will explain the synchronous
sub-symbol decoder developed and implemented within this thesis.

4.1 Requirements

An interrogator communicates to a passive tag by first transmitting a reader
command (as shown in section 2.3.1) which is followed by an unmodulated RF
carrier and listening for the backscattered reply. The tag backscatters data by
varying the reflection coefficient of its antenna between two states in accordance
with the modulation scheme selected by the reader. Therefore, the reflected signal
of the tag changes, is received by the antenna of the reader again, and is used for
demodulation of the exchanged data.

Figure 4.1 shows a typical constellation diagram of a backscattered signal.
The large offset from the centerpoint of the IQ diagram is caused by the self
interference of the unmodulated CW carrier used for supplying the tag with
power. This interference is caused by the coupling between transmit and receive
antenna and maybe also by scattering objects in the close vicinity of the antennas.
Consequently, the overall received signal must be attenuated in a way that the
receiver hardware isn’t overdriven. When the received overall signal is attenuated
also the tag response is attenuated. This results in a smaller distance between the
constellation points s1 and s2 at the ADC and therefore reduces the sensitivity
of the receive path. Hence, self interference caused e.g. by antenna coupling is a

18

4.1 Requirements

ℑ

ℜ

co
up

lin
g

α

β

s1

s2

s1

s2

modulation depth

Figure 4.1: Constellation

critical system parameter [10]. The magnitude and angle α of the coupling can
change significantly when scattering objects move.

The second position of the constellation s2 is obtained when the tag is in its
second backscattering state reached by switching the reflection coefficient of the
antenna. The distance between s1 and s2 is called the modulation depth. The
angle β mainly depends on the tag to reader distance. A moving tag would result
in a continuously changing angle β. Therefore, if moving tags should be read
also, the decoder must also be tolerant to slow changes of the positions of the
constellation points.

As explained in chapter 2 the backscatter modulation of the UHF-EPC tags
is either FM0 or Miller modulated. In order to reduce the complexity of the
receiver only Miller modulation will be implemented because anyway the larger
amount of data will be needed for the future implementation of the localization
algorithm.

Another crucial issue is the large frequency tolerance of the backscatter-link
frequency which is allowed by the EPC standard [1] of up to ±22 %. Further-
more, the decoder must also be tolerant to backscatter-link frequency variations
of ±2.5 % during the backscatter. These large frequency variations are allowed in
order to save processing power inside the tags and to allow cheap mass production
of tags.

Moreover, for the planned localization system some requirements have to be
considered for the decoder implementation. The UHF RFID DS-SS range estima-
tion algorithm introduced in [3] uses the demodulated data for suppressing static

19

4.2 Maximum Likelihood Sequence Detector

scattering objects. Therefore, the demodulated data, especially the positions of
the sub-symbols’ edges, must be available before the correlation of the spreading
sequence with the received data is carried out. This leads to the requirement
that the demodulated data must be available as soon as possible, since all delays
in the decoding process have to be compensated by delaying the ADC data for
the ranging process, which is limited by the available memory of the FPGA. For
example, storing the ADC data of one Miller 8 symbol with the lowest BLF would
need 64 BRAMs, more than half of the available BRAMs of the used FPGA. Of
course this is not feasible.

A regular RFID reader which only demodulates the data sent by the tag would
use down sampling to reduce the amount of data to be processed. However, the
localization algorithm needs precise timing information of the sub-symbol edge
position. Consequently, down sampling of the received data for demodulation
would introduce here a timing uncertainty. Therefore, it is a main goal of the
design not to reduce the sample rate. On the other side this limits the possi-
ble complexity of the receiver a lot. For example, an FIR filter correlating the
sampled data with a Miller symbol would not be possible in the 100 MHz clock
domain, since too much filter taps would be needed and timing closure would be
impossible.

4.2 Maximum Likelihood Sequence Detector

Miller modulation has four possible Miller-encoded symbols where some state
transitions are not allowed. Hence Miller modulation is not memory free. There-
fore, the optimum detector in the additive white Gaussian noise (AWGN) case
would be the maximum likelihood sequence detector[11]. Practically this decoder
would be problematic in the implementation especially when the requirements
for the localization are addressed.

First of all it would require a large number of correlator banks which would be
exponentially growing with the number of bits to decode. This could be avoided
by using the Viterbi algorithm.

Another problem would be the frequency tolerance and the frequency variation
during backscattering of the BLF. This problem could be tackled by using the
preamble to synchronize to the tag’s BLF initially. Afterwards the actual BLF
must be tracked, e.g. by multiple correlators running on different BLFs. But
the complexity would be too high to be implemented within the 100 MHz clock
domain inside the given FPGA.

As explained in section 4.1 a problem would be that the demodulated bits
would be available after some Miller symbol periods. Therefore the ADC samples
used for the planned localization system must be delayed which would require an

20

4.3 Synchronous Sub-Symbol Decoder

f(t)

f(t)

g(t)

g(t)

ttt

ttt

⋆

⋆

=

=

f ⋆ g(t)

f ⋆ g(t)

Figure 4.2: Example of correlation results

unfeasible amount of memory.
Furthermore, the complexity of this decoder would also be too large for an

implementation inside the given FPGA without a reduction of the sampling rate.
When the sampling rate is reduced also the time resolution reduces, which is not
desirable for the implementation of the planned localization algorithm.

With regard to above mentioned problems for the implementation within this
thesis a decoder design had to be chosen that is suboptimal from the point of
view of signal and detection algorithms, however, fitting better the needs of the
localization algorithm.

4.3 Synchronous Sub-Symbol Decoder

In this section the implemented decoder will be discussed. This decoder was
designed, simulated and implemented during the work on this diploma thesis.
The design can be separated into two main parts. First, the received signal is
correlated with one period of a square wave which has a frequency equal to the
expected BLF. Second, a decoder converts the correlation results into data bits.
The whole system has been simulated using Matlab and has afterwards been
implemented using Xilinx ISE (see section 5.3).

4.3.1 Correlator

Miller modulation encodes the data bits into phase changes of the backscattered
sub-carrier. Therefore, the data bits can be decoded when the time differences
between the phase changes are known. To estimate this differences the received

21

4.3 Synchronous Sub-Symbol Decoder

signal is correlated with g(t) which is one period of a square wave which has a
frequency equal to the expected BLF fBLF.

g(t) =



























−1, −
1

2fBLF

< t ≤ 0

1, 0 < t ≤
1

2fBLF

0, otherwise

(4.1)

Figure 4.2 shows the correlation result of the function g(t) with two possible
received signals f(t) - one with a phase change and the other without a phase
change at t = 0. One could see that at each edge of the received signal correlation
maxima or minima occur. Furthermore, for the phase change the correlation
result is zero. Using that information the decoder is now able to decode the data
bits. A positive side effect of this correlation is that an offset of the BLF doesn’t
affect the correlation result much and that this kind of correlation can be realized
time discrete in a very hardware efficient, since it can be based on an iterative
algorithm:

(f ⋆ g)[n] = (f ⋆ g)[n − 1] − f [n − a] + 2f [n] − f [n + a] (4.2)

where

a =









fsample

2fBLF







. (4.3)

Another highly desirable property of the decoder can be found when corre-
lation is performed on the complex baseband signal of a backscattered signal.
Here, self interference caused e.g. by antenna coupling will be suppressed since
the mean of the base function g(t) is zero. Therefore, as long as the coupling
changes much slower than the BLF, which will be true for almost all usecases of
the designed reader, the influence of self interference or static reflections on the
correlation result of the decoder is negligible.

Furthermore, the correlation result of the complex baseband signal can be sep-
arated into magnitude and phase. The magnitude is independent of the unknown
angle β between the backscatter constellation points. Nevertheless, it includes
the information of the phase changes of the sub-carrier and is therefore used by
the decoder for decoding the data bits. The phase of the correlation result jumps
between β and β + π. This could be used to estimate the unknown angle β. As
mentioned before, time variations of the angle β could be used in the future, e.g.
to estimate the speed of the tag in relation to the RFID reader.

22

4.3 Synchronous Sub-Symbol Decoder

Preamble Data D1

in
p
u
ts

ig
n
al

|c
or

re
la

ti
on

re
su

lt
|

Samplingindex

000000

0
0

111111111

500

1000

1000

1500

2000

2000

2500

3000

3000 4000 5000 6000

6445

6450

6455

6460

6465

6470

6475

7000 8000 9000 10000

Figure 4.3: Example of a Miller M=2 modulated tag response with the corre-
sponding magnitude of the correlation result

23

4.3 Synchronous Sub-Symbol Decoder

4.3.2 Decoder

The decoder uses the magnitude of the previously mentioned correlator for decod-
ing the data bits transmitted by the tag. The bits are decoded by mapping the
time distance between two phase inversions onto received bits. The decoder must
be synchronized to the BLF for deciding between a phase inversion and no phase
inversion. As already discussed the BLF could have a large frequency offset. Fur-
thermore, a decision threshold must be found since the value of the correlation
maxima is dependent on the unknown distance between the constellation points
s1 and s2 (see figure 4.1).

Therefore, it is necessary to synchronize to the BLF in the beginning of the
decoding process. Normally, a Miller modulated tag response is preceded by a
preamble. Here, the tag starts by backscattering an unmodulated sub-carrier for
a certain period see figure 4.3. Since no phase changes occur (because there is
no data modulation) the magnitude of the correlation result shows peaks with a
time difference of 1/2fBLF and a certain maximum value. The information about
the time difference of the correlation peaks is used to estimate the actual BLF
and in a similar manner the threshold is found by taking half of the correlation
peak magnitude. To get a more accurate result the average over multiple peaks
is calculated. The used peaks are indicated using red triangles in figure 4.3.

In order to keep synchronized to the BLF the sampling points used for the
detection of a phase change are derived based on the location of the last peak and
the BLF estimated during the preamble. As mentioned before, a phase change is
detected when the magnitude of the correlation result is lower than the threshold.

The next step is to find the first bits so that the decoding can begin. Since
the first bits are "0" and "1" according to the Miller preamble the decoder waits
for this first phase inversion (black squares in figure 4.3). When the first phase
inversion is detected, it is assumed that it is the inversion located in the middle of
the first "1" bit. Afterwards the decoding operation begins. Based on the number
of peaks between the last phase inversion and the actual phase inversion and the
knowledge of the last decoded bit the final bitstream can be decoded.

The decoding process is stopped when an unfeasible time distance between
two consecutive phase inversions is detected. This can be the end of the message
or a decoding error. This is not a problem since the communication is either saved
by a CRC checksum or the number of bits to be received is known beforehand
because the reader requested a certain amount of data from the tag.

Finally, it is worth to mention that some performance improvements to the
decoder would be possible. For example, a recovery from a decoding error would
be feasible by checking the phase of the correlation result from the previous and
next correlation maximum. Also the synchronization process could probably be
improved by not only taking the last peak as reference. Since simulations con-

24

4.3 Synchronous Sub-Symbol Decoder

10 15 20 25 30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

Epacket/N0 [dB]

P
E
P

Sub-Symbol Decoder
Sub-Symbol Decoder synced
Optimum Sequence Decoder
Symbol-wise ML

Figure 4.4: Comparison of different decoders decoding an RN16

ducted with measured tag responses, recorded using the SDR platform, showed
that the SNR for decoding the tag response is usually large enough when the tag
gets enough energy to reply in the downlink channel, no further investigation of
the suggested improvements was done during this thesis.

4.3.3 Performance of the Sub-Symbol Decoder

It is obvious that this kind of decoder is not optimum from the point of view of
signal and detection. Figure 4.4 shows a comparison of various decoders discussed
above. The simulation results present the packet error probability (PEP) for a
RN16 response with M=2 over the packet energy to noise ratio. This unusual
representation has been chosen to provide a fair comparison between the decoders.
Since also the effects of imperfect synchronization of the synchronous sub-symbol
decoder should be discussed, it is necessary that the test signal also includes
the preamble for synchronization. Therefore, as a standardized case the decoding
performance of an RN16 tag response has been compared. All depicted results are
simulation results. The synchronous sub-symbol decoder introduced in section
4.3 and implemented in the final design shows a performance difference of about
12 dB compared to the optimum sequence decoder discussed in section 4.2. Since
the decoder implemented in this thesis doesn’t utilize the memory of the Miller
coding, the performance of a symbol-wise maximum likelihood detector was also
simulated.

25

4.3 Synchronous Sub-Symbol Decoder

The performance of the implemented decoder is about 10 dB worse compared
to the symbol wise maximum likelihood detector. Since this large gap could not
be explained well first, a simulation with a perfectly synchronized sub-symbol
decoder has been done. This still demonstrates a difference of about 7 dB to the
symbol wise ML decoder. Nevertheless, this can easily be explained by three
effects. First, the fact that the correlation is only taken with respect to two sub-
symbols. Therefore, in the case of M=2 as indicated above the energy available
for the correct decision is only half of the total amount when it is compared to
the whole Miller symbol. Consequently, 3 dB of decoding performance are lost.

Furthermore, the signal space of receiving a phase change or not can be de-
scribed by two orthogonal basis functions. Since the correlation is taken only
with respect to one of these functions (g(t)) another 3 dB performance loss can
theoretically be explained. Since the second basis function would not have zero
mean value the coupling must be estimated and subtracted to get the correct
correlation value. Of course, this would result in an additional complexity of the
implemented receiver and has been omitted therefore. Furthermore, for detecting
a correct Miller symbol, four correct decisions are needed in advance. This also
degrades the performance and explains the last missing gap of 1 dB.

Finally, the performance difference between the perfectly synchronized sub-
symbol decoder and the implemented decoder can be explained by the imperfect
synchronization algorithm that is typical for any practically realizable solution.

26

Chapter 5

Implementation within the
FPGA

The focus of the following chapter is on the implementation of the RFID inter-
rogator using the National Instruments USRP-2922 SDR platform. In section
5.1 an overview of the implemented design within the FGPA will be presented.
Section 5.2 and 5.3 will discuss the implemented user logic used for generating
the transmit signal and decoding the backscattered signal in detail.

5.1 Overview

A field-programmable gate array (FPGA) is a user configurable integrated cir-
cuit, which is able to process information fully parallel since it consists of many
programmable logic blocks, which can be connected via reconfigurable intercon-
nects. Since all these logic blocks work independent of each other, an FPGA is
ideally suited for parallel high data rate signal processing and interfacing. The
user can configure the behavior of the FPGA by loading a binary file called bitfile,
e.g. during the startup procedure. Usually an FPGA has no non-volatile memory
inside the package, therefore the configuration data must be stored externally. In
the case of the N210 the configuration could be loaded into the FPGA either from
an SPI Flash memory or directly from the personal computer and the design en-
vironment using a JTAG adapter cable. To generate this bitfile the user describes
the wanted behavior by a hardware description language (HDL) or a schematic
design. There are different HDL languages available, during this diploma the-
sis VHSIC hardware description language (VHDL) was used. Since the board
utilizes a Xilinx Spartan 3 DSP FPGA the Xilinx ISE (Integrated Software En-
vironment) has been used as the development tool for synthesis, implementation

27

5.1 Overview

and simulation of the presented design. The desired parallel computing perfor-
mance comes at the cost that it needs more implementation effort compared to
microprocessors. Furthermore, designs realized within FPGAs are not easily to
be debugged compared to microprocessors. Therefore searching for and fixing
programming errors is a challenging task.

The use of FPGAs has big advantages when parallel processing is needed,
but complex sequential tasks can be realized much more hardware efficient in
microprocessor platforms since the used logic resources are reused for multiple
tasks. In general, program codes for microprocessors are easier to debug, since
the development environment usually offers more debug features in comparison
to FPGA tools, e.g. halting the processor when it reaches a certain point in the
program. In order to combine the benefits of both concepts a, so called softcore
microprocessor which is directly placed in the FPGA is often used. Xilinx ISE
features the MicroBlaze softcore processor which is fully integrated in the design
workflow and is easily configurable.

In the implementation of the RFID reader developed within this thesis such
a processor is used for the less time critical tasks like configuration of the RF
hardware on the boards or the communication to the PC via the serial interface.
Furthermore, it is possible to attach user defined logic written in HDL language
to the processor local bus (PLB) for sharing memory resources and reading and
writing to registers. Hence, the time critical signal generation and signal detection
was realized in a user logic FPGA block, which can then be controlled by the
software running on the MicroBlaze. This module is called rfiduhf and combines
the receiver and transmitter logic.

In figure 5.1 a block diagram is presented which shows all modules within the
FPGA design and the main signal flows. The top_level contains the three main
modules of the design which are the adc_dac_interface, the MicroBlaze XMP
project and the clk_reset. Additionally, it shows the connections of the FPGA’s
internal blocks and the external interfaces.

The clk_reset module is connected to the clock distribution IC (AD9510) on
the N210 board. The module includes a state machine which is used for the
start-up configuration of the clock distribution IC. The implemented procedure
is needed since a clock divider by two is programmed on the clock output of the
FPGA by default after powering up the system. This would result in an initial
FPGA clock of 50 MHz but since the whole design should run on 100 MHz this
clock divider must be deactivated. After the initial configuration the FPGA resets
itself and from this point on the SPI interface of the AD9510 is forwarded directly
to the MicroBlaze so that all further configuration can be done via software
running on the processor. The clk_reset module also includes the digital clock
manager which is used to generate the 50 MHz, 100 MHz and 200 MHz system
clocks used by other blocks in the overall design.

28

5.1 Overview

top_level

ad
c_

d
ac

_
in

te
rf

ac
e

cl
k_

re
se

t

microblaze

microblaze

rfiduhf

user_logic

rfidtx

rfidrx

so
ft

_
re

se
t

in
te

rr
u
p
t_

co
nt

ro
l

plbv46_slave_single

B
R

A
M

xp
s_

u
ar

tl
it

e

xp
s_

gp
io

xp
s_

ti
m

er

xp
s_

sp
i

A
D

C

D
A

C

ex
te

rn
al

R
A

M

P
C

N
21

0
G

P
IO

S
B

X
G

P
IO

S
P

I
d
ev

ic
es

C
lo

ck
D

is
t.

Figure 5.1: Overview of the FPGA implementation

29

5.2 Transmit Module (rfidtx)

The adc_dac_interface contains user logic which is used to guarantee the in-
terface timing required by the external ADC and the DAC so that the subsequent
logic can sample this data at the rising edge of the global 100 MHz clock.

The microblaze module contains the MicroBlaze softcore which is connected to
some block RAM (BRAM) memory blocks via the LMB as well as the remaining
peripherals connected via PLB to the processor.

The xps_spi and xps_gpio IP-cores from Xilinx are used for configuring the
external hardware like the ADC, DAC, synthesizer, variable attenuators, and
clock distribution. xps_timer provides basic timer functionality for the MicroB-
laze and is used to get precise delays which are needed for example for the timing
of the RFID protocol. The xps_uartlite is used for communication with a PC.

For generating custom peripherals Xilinx provides the EDK’s Create and Im-
port Peripherals Wizard. This is a tool for generating a framework for custom
logic implementations. It was used to generate the template of the rfiduhf logic
block which consists of four main blocks. The soft_reset, the plbv46_slave_single
and the interrupt_control block are used to provide a framework for communi-
cation with the PLB and are automatically created by the EDK’s Create and
Import Peripherals Wizard. The user_logic block contains all logic needed for
pulse shaping, encoding, decoding, and also a module which can be used for
recording raw ADC data. The presented user_logic block incorporates the rfidtx
and rfidrx blocks which are one of the main achievements of the development
process performed within the thesis. Therefore, these will be discussed in detail
in the following sections.

5.2 Transmit Module (rfidtx)

In this section the rfidtx module which is used to realize a EPC standard [1] con-
formal interrogator-to-tag (R⇒T) communication, is discussed. A state-machine
capable of producing a PIE DSB-ASK or PIE PR-ASK modulated output signal
was designed. Subsequently, this signal is fed to a 51 tap finite impulse response
filter (FIR) [12], which is used for pulse shaping purposes in order to accomplish
the stringent EPC transmission mask. This signal utilizes a 2 MHz sampling
clock which is then resampled to the 100 MHz domain by using a cascaded inte-
grator–comb filter (CIC) [13]. The 2 MHz sampling rate of the state machine and
the attached FIR-filter was chosen in order to reduce the required number of taps
of the FIR-filter (51) and to provide sufficient time resolution (0.5 µs) to be able
to choose different down- and uplink-datarates according to the EPC protocol.

30

5.2 Transmit Module (rfidtx)

5.2.1 Pulse Generation

It was decided at the beginning of the work which block must be implemented
inside the FPGA as dedicated logic and what functionality could be implemented
within the MicroBlaze processor or on an attached personal computer running
e.g. MATLAB. Of course, dedicated logic must be used to generate the input
signals for the DAC on the N210 board since the data rate on this interface is too
large to be provided directly by the MicroBlaze processor. However, the EPC
protocol handling can be easily done by the processor. The interface between the
user logic and the processor is defined in a way, that the processor writes the data
bits to be transmitted into a BRAM which can also be accessed by the user logic.
Some registers are used for configuring the user logic, e.g. setting the number of
bits to transmit, configuring the PIE timings (Tari, Tone, RTcal, TRcal, PW)
and so on. The configuration registers are all well described in appendix A.1.2.
By writing a logic 1 to the start_tx bit in the register rfiduhf_txconf1, the state
machine begins to generate the PIE encoded data for the pulse shaping and sets
the busy_tx bit of register rfiduhf_txconf1 to logic 1. The start_bit is cleared
automatically after the busy_tx bit is set. When the transmission has finished
the state machine clears the busy_tx bit indicating that the unit is ready for the
next transmission.

Furthermore, in the state machine a feature has been implemented to detect
if the R⇒T signaling has to begin with an EPC Preamble or a Frame-Sync.
This feature is activated by default, but, it can also be manually chosen if the
transmission should start with an EPC Preamble or a Frame-Sync.

Also both checksums, CRC5 and CRC16, are calculated during the transmit
operation and can be appended at the end of the data transmission. Either
the first bits of the message indicating the type of EPC command are used to
determine which checksum should be applied in an automatic mode or otherwise
the checksum can be chosen manually.

The pwr_on_tx in register rfiduhf_txconf1 is used to switch on and off the
RF carrier. After switching the RF carrier on the state machine ensures that for
1500 µs no R⇒T communication starts. Furthermore, the state machine ensures
that the RF carrier cannot be turned on again before it has been turned off for
at least a duration of 1 ms. This power-up and power-down timing requirements
are implemented according the EPC standard [1].

5.2.2 Pulse Shaping

On the one hand the transmit pulse has to be filtered to generate an output signal
compliant to the spectral transmission mask specified in the EPC standard [1]
and ETSI norm [4]. On the other hand, timing requirements listed in the EPC

31

5.3 Receive Module (rfidrx)

adc_dac_interface

200 MHz

2 MHz CE

Statemachine

NDND

FIR Filter CIC Filter

16

1616

PLB Interface

Figure 5.2: TX module overview

standard have to be accomplished. Consequently, the filter design process is a
critical task. In order to gain some flexibility for pulse shaping purposes a re-
configurable FIR filter is implemented. The length of the filter is chosen based on
the maximal length of a data-0 symbol (25 µs). Furthermore, this is the reason
for the reduction of the sampling rate of the FIR filter and the state machine.
A sampling rate of 100 MHz would lead to a filter using 2500 taps. For example
the implementation of the filter in the FPGA would result in the need of 158
DSP slices while the used FPGA offers 126 DSP slices at all. In order to provide
enough free resources for future extension of the FPGA RFID reader design the
sampling rate of the FIR Filter is chosen to be 2 MHz. This reduces the required
number of taps to 50 but also limits the time resolution of the state machine to
0.5 µs.

The FIR filter block can be clocked by a frequency larger than the sampling
frequency, in order to save resources. A 200 MHz clock rate is used and only two
DSP slices and two BRAMs are needed which seems to be reasonable for this
task. A CIC filter is used to resample the signal to the 100 MSamples/s domain
which is the sampling rate of the DAC. The CIC filter uses again three DSP
slices. Figure 5.2 shows an overview of the connections of the filters. The FIR
filter coefficients used for pulse shaping can be reconfigured by a configuration
register. The usage of this configuration register is explained in appendix A.1.7.

5.3 Receive Module (rfidrx)

In this section the rfidrx module which is used to demodulate and decode the
data backscattered by the tag will be discussed. The decoder implementation
is based on the synchronous sub-symbol decoder discussed in section 4.3. This
module consists of three state-machines each responsible for a different task.
Figure 5.3 gives an overview of the module. The debug block provides a signal

32

5.3 Receive Module (rfidrx)

rfidrx

external RAM debug
ADC Data

PLB Interface

PLB Interface

correlator

FIFO BRAM

FIFO BRAM
correlator

statemachine
CORDIC

BRAM rx statemachine

Figure 5.3: RX module overview

capturing and playback functionality used for analysis and tests of the module.
The correlator block calculates the correlation of the ADC signal and one period
out of a square wave with frequency equal to the expected BLF (see section
4.3.1). The magnitude of the correlation result is then used by the decoding
state machine to estimate the actual backscatter-link frequency (BLF) of the tag
and to decode the backscattered bits of the tag response. As already stated in
chapter 4 the implemented receiver is not optimal in the sense of an optimum
sequence decoder or matched filter. The advantages of the implemented receiver
are that it is easy to implement, uses not much logical resources on the FPGA
and it provides the data of the sub-symbol edges which is mandatory for the
planned future implementation of an additional localization algorithm [3]. In the
following sections all these blocks will be discussed in detail.

5.3.1 Correlator

In this block the cross correlation between the ADC data received from the debug
block and one period out of a square wave with frequency equal to the expected
BLF is computed. A correlator can easily be built using an FIR filter, but. this

33

5.3 Receive Module (rfidrx)

would lead to the same problems as discussed before in section 5.2.2 where a FIR
filter is used for pulse shaping purposes. It is one of the main goals of the design
process of the RFID reader not to reduce the sample rate because of the planned
future implementation of a localization algorithm. Consequently, another solution
has to be found. An iterative algorithm has been found during the work on this
thesis which bases on the fact that the signal g[n] is one period out of a square
wave. Therefore it is possible to calculate the correlation of this signal g[n] with
the ADC data f [n] by

g[n] =











1, −a < n ≤ 0
−1, 0 < n ≤ a
0, otherwise

(5.1a)

(f ⋆ g)[n] = (f ⋆ g)[n − 1] − f [n − a] + 2f [n] − f [n + a] (5.1b)

where

a =









fsample

2fBLF







. (5.2)

It can be seen from equation 5.1b that the cross-correlation can be calculated
by adding four values and a simple multiplication by a factor of two. For the
summation the previous correlation value, the actual ADC value, the ADC values
delayed by a and 2a are needed. The delay is realized by BRAMs used as circular
buffers. The multiplication by the factor of two can be realized as a simple shift-
operation on the binary integer data. As demonstrated, a iterative calculation
is possible in real-time using the FPGA of the SDR platform. The remaining
problem is to find a suitable starting value for the correlator. This is solved by
setting the correlator value to zero and turning on the used adders in a sequence
according to equation 5.3 by the correlator state machine.

(f ⋆ g)[n] =



























0, n = 0

(f ⋆ g)[n − 1] − f [n + a], 0 < n ≤ a

(f ⋆ g)[n − 1] + 2f [n] − f [n + a], a < n ≤ 2a

(f ⋆ g)[n − 1] − f [n − a] + 2f [n] − f [n + a], 2a < n

(5.3)

After changing the period length a the correlator state machine has to be re-
set. Afterwards the output of the correlator stage is invalid for 2a samples. The
correlation is done in the I and Q channel separately. The I and Q correlation
results are then processed by a coordinate rotation digital computer (CORDIC)
core to obtain the magnitude and angle of the correlation result. A CORDIC
is an efficient algorithm to implement mathematical functions, e.g. trigonomet-
ric functions. Xilinx ISE provides a CORDIC IP core which was used for the
implementation [14].

34

5.3 Receive Module (rfidrx)

5.3.2 Decoder

The decoder converts the results of the correlator module to data bits, which are
afterwards stored in a BRAM which is accessible also from the MicroBlaze. Before
starting the decoder the configuration registers must be set to the desired values.
The decoder is started by writing a logic one to the start bit in the configuration
register (see Appendix A.1.11). After the start the decoder state machine resets
the correlator and waits until the correlation values become valid as discussed
above. Afterwards it waits until the magnitude of the correlation result reaches
a certain threshold set in the configuration register to advance to the next state
where the actual BLF and the magnitude of the correlation peaks are estimated.
This is done by finding and storing the maximum values of the magnitude of the
correlation result. The values of the correlation peaks are added up during the
Miller Preamble. The result is then divided by the number of peaks which gives
the average value of the maxima. The average is an indication of the signaling
power of the tag and is made available to the processor via a register for further
utilization. The second result of the processed preamble is an estimate of the
BLF, which is calculated by the number of samples between the first and the
last observed peak divided by the number of gaps between the peaks. Again this
value is accessible to the processor via a register.

Subsequently, the state machine starts decoding the actual tag message by
waiting for the first two sub-symbols without modulation state inversion in be-
tween them which indicates the first logic one of the preamble and thus the start
of the tag data to be decoded. This is done by comparing the correlation mag-
nitude between two sub-symbols with half the value of the average peak value
estimated before. When the first bit is found the state machine evaluates the
interval between the sub-symbols without modulation state inversion and uses
this information to decode the backscattered data bits which are written to a
BRAM accessible by the processor. If there is any unexpected interval detected
the state machine switches its state to idle and clears its busy flag. Decoding is
stopped and the end of the tag message is found. The processor can read the
received data as well as the estimated BLF, the estimated signal power, and the
number of received bits.

5.3.3 Debug

The design of the receiver also includes a debug module which is placed in between
the incoming ADC data and the correlator module. Either, it can be used to
capture live data or to test the correlator and decoder user logic by playing back
some stored signals. The debug module uses the external RAM on the N210 board
and provides a memory depth of 256 kSamples. Keeping in mind the sample rate

35

5.3 Receive Module (rfidrx)

of 100 MSamples/s the maximal duration of one recording is 2.6 ms. Because
longer record and playback durations might be useful a simple sampling clock
divider is incorporated. It is important to notice that this feature doesn’t apply
any filtering technique to suppress aliasing distortion. The external memory is
not dual ported. Thus, only one read or write operation can be performed at a
time and the memory is only accessible via the LMB when the debug module is
in the initial state.

Furthermore, the module has some triggering functionality from the processor
as well as directly from the user logic. It can be operated in four modes:

• The single capture mode waits for a trigger event and records one shot
afterwards, then it goes back to the initial state.

• The continuous capture mode records the ADC data using the RAM as
a circular buffer. When recording is stopped by a trigger event the state
machine goes back to the initial state and the current address of the circular
buffer can be read out from a register.

• The single playback mode waits for a trigger event and plays out the
stored data one time afterwards. During the waiting time for the trigger
the data stored in the default register is output.

• The continuous playback works like the single playback with the dif-
ference that the playback is not stopped after one cycle. The continuous
playback is stopped by a reset of the module.

36

Chapter 6

Phase Noise

Since the USRP-2922 is intended to be a versatile SDR it features dual-band oper-
ation, meaning that it is possible to transmit and receive on different frequencies.
Because of that fact the SDR has two independent synthesizers for TX- and RX-
LO generation. But, in an RFID reader the RX and TX frequency are the same
since backscattering is used for the T⇒R communication. Therefore, the two
synthesizers have to be tuned to the same frequency. Since the reference clock
of both synthesizers is the same, their outputs are phase coherent. But the in-
herent phase noise of the two PLLs is uncorrelated. This causes distortion of the
received signal by the phase noise.

A regular RFID reader would use one LO for up and down conversion so that
this problems would not be encountered. Utilizing the same oscillator for TX and
RX is only possible when some hardware changes are made. Section 6.1 discusses
the hardware changes made and section 6.2 shows measurement results.

6.1 Hardware Changes

A short look in the documentation of the SDR shows that it is not possible
to use one oscillator for RX and TX path just by a software reconfiguration.
Consequently, some hardware modifications had to be done. Two RF-Baluns (T5
and T6 according to the schematic of the SBX [8]) were resoldered with SMA
pigtails attached to them. These SMA connectors were mounted on the back
plane of the SDR (see figure 6.1) allowing flexible external configuration of the
LO signals. Figure 6.2 shows the logical points where the external wiring was
attached to.

The four SMA connectors on the backplane (see figure 6.1 and table 6.1) now
allow many different configurations:

37

6.1 Hardware Changes

1234

Figure 6.1: Picture of the hardware modification of the USRP

RFID Tag

ADC

DAC
TX/RX

RX

LNA 3

LNA 1 SW 2 ATT 1 LNA 2

DEMOD

LP 2 AMP 1 LP 3

SYNTH 2

1.2GHz

LP 5MODATT 3AMP 3ATT 2AMP 2LP 4

SW 4LP 6

5.8 GHz 50 MHz

40 MHz 50 MHz

SYNTH 1

1.2 GHz

SW 1LP 1

SW 3

100 MHz

100 MHz

SBX Daughter board N210

SMA 2

SMA 1

SMA 4

SMA 3

Figure 6.2: Hardware changes on the SBX daughter board to allow flexible LO
configuration

38

6.2 Measurement Results

SMA 1 Demodulator input LO RX
SMA 2 Synthesizer output LO RX
SMA 3 Modulator input LO TX
SMA 4 Synthesizer output LO RX

Table 6.1: List of connections on the back plane of the modified N210

• By using two SMA jumpers (2 → 1) and (4 → 3) the normal operation (two
independent synthesizers) of the USRP can be rebuilt.

• By connecting one of the two synthesizer outputs (2 or 4) to an external
power divider and connecting its output to the modulator inputs (1 and
3) one could use one synthesizer to drive both LO inputs. The other free
synthesizer output should of course be terminated properly into a 50 Ω load.
The result is phase coherence between the RX and TX without additional
phase noise. The synthesizers on the SBX have programmable RF output
power levels (−4 dBm to 5 dBm). Therefore, a passive 3 dB power divider
can be used to resolve the problems caused by the phase noise.

• Another possibility is to drive both LO inputs (1 and 3) using an external
RF source. The input drive levels of the modulator and demodulator have
to be respected (−6 dBm to 6 dBm) in order not to damage the hardware.
This also allows phase coherence between multiple USRPs. This also opens
the opportunity to use this SDR platform in a MIMO reader scenario.

The presented list demonstrates various opportunities achieved by this hard-
ware modification, but is not meant to be complete.

6.2 Measurement Results

In order to visualize the problem and to demonstrate that the hardware changes
solved the phase noise problem, measurements have been done. The SDR was
configured to transmit a CW carrier at the desired measurement frequency (e.g.
865.7 MHz). The TX-port of the SDR was connected to the RX-port via a care-
fully chosen attenuator such that the ADC isn’t overdriven. Samples have been
recorded at full sampling rate using the debug module introduced in section 5.3.3.

In order to illustrate the problem the sampled data was post processed and
normalized. Figure 6.3 illustrates the coordinate system transformation which
was used to split the overall noise into a phase dependent part ~eϕ and an amplitude
dependent part ~er.

39

6.2 Measurement Results

ℑ

ℜ

~er

~er

1

~eϕ

~eϕ

Figure 6.3: Coordinate transformation used to split the overall noise into an phase
dependent part and an amplitude dependent part

Figure 6.4 shows the histograms of the distribution of the recorded data with-
out hardware changes. The right histogram shows the distribution in ~er direction,
the left in ~eϕ direction. It can be clearly seen that the distribution is much broader
in the ~eϕ direction due to the inherent influence of the phase noise.

Figure 6.5 as a comparison shows the measurement results after the applied
hardware modification, where the TX synthesizer output has been connected to
an external power divider which splits the oscillator signal for the up- and down-
converter. For the synchronized case, the measurement results show that the
distributions in ~er and ~eϕ are nearly the same. Therefore, a short look into the
measurement results demonstrates that the phase noise problem was solved by
moderate hardware changes to the SBX daughter board.

40

6.2 Measurement Results

−0.02 0 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

−0.02 0 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

~er ~eϕ

Figure 6.4: Measurement results without hardware modification

−0.02 0 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

−0.02 0 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

~er ~eϕ

Figure 6.5: Measurement results in the synchronized case

41

Chapter 7

Verification of the
Implementation

The implemented UHF EPC reader design was tested using commercially avail-
able Philips (NXP) UCODE EPC G2 V4 tags. Figure 7.1 shows the used single
antenna setup where a directional coupler is used for decoupling the transmit and
receive path. Tests demonstrate that reading out the stored EPC of an EPC tag
is possible within the whole range of standardized BLF frequencies. Figure 7.2
depicts the recorded ADC Data of such a successful EPC readout at the maxi-
mum BLF (640 kHz). The reading range of this setup has been compared to a
commercially available chip based RFID reader evaluation board from austriami-
crosystems (AS3992)[15] connected to the same antenna.

The conducted measurements shows that the reading range of both readers
is approximately the same since the SNR of the back scatted signal seems to be
large enough for successful fault free decoding as long as the tag gets enough
energy to be powered up.

NI URSP-2922
RFID Reader

RX

TX
RFID
Tag

PC
MATLAB

Antenna
HUBER & SUHNER
SPA 860/65/9/0/V

Coulper
KRYTAR
Model 1850

Figure 7.1: Measurment setup for verification of the system

42

Query RN16 ACK PC, EPC, PacketCRC

A
D

C
-v

al
u
es

C
h
an

n
el

A
A

D
C

-v
al

u
es

C
h
an

n
el

A

Sampleindex @ 100 MSamples/s

Sampleindex @ 100 MSamples/s

0
0

1000

2000

3000

4000

5000

6000

7000

10000 20000 30000 40000 50000 60000

6400

6420

6440

6460

6480

6500

6520

13000 14000 15000 16000 17000 18000 19000 20000

RN16 Tag response (zoomed into orange box)

Figure 7.2: ADC recording of a successful readout of an EPC Tag

43

Chapter 8

Conclusion and Outlook

During the work on this thesis an RFID reader for EPC UHF tags was built
based on an off-the-shelf available Software Defined Radio platform. The reader
was designed to provide a flexible test platform for RFID localization for future
investigations within the project REFlex (project number: 845630) funded by the
Österreichische Forschungsförderungsgesellschaft mbH (FFG).

Therefore, special requirements for a localization algorithm introduced in [3]
were included during the development of the reader. The ranging algorithm,
which is planned to be implemented on the reader, uses low spectral power den-
sity broadband signals. Therefore a high sampling rate and resolution is desirable.
The hardware of the USRP-2922 features a 14-bit ADC and a 16-bit DAC with a
maximum sampling rate of 100 MSamples/s. Unfortunately the bit rate provided
by the Gigabit Ethernet interface is too low to stream the sampling data with
full sampling rate and resolution to a personal computer to perform the signal
processing there. Therefore, if the SDR is used with the provided driver frame-
work of the manufacturer, the sampling rate and or the resolution is reduced in
the SDR and consequently the hardware capabilities cannot be fully exploited.
Since a reduction of the sampling rate and resolution would considerably limit
the performance for the localization algorithm, a custom FPGA implementation
was developed during the work on this thesis which doesn’t suffer from these
problems.

The implementation of the RFID reader developed within this thesis uses
a combination of a soft microprocessor and custom user logic attached to that
processor. These custom user logic modules combine the receiver and transmitter
logic needed for UHF RFID.

A decoder for Miller modulated tag responses was developed, simulated, im-
plemented within custom user logic, and also tested with commercially available

44

tags. The decoder is suboptimal from the point of view of signal and detection
algorithms, however, from the perspective of practical realizability this decoder
has only very low hardware complexity, such that the FPGA has enough free
hardware resources available for the localization algorithm. Furthermore, the im-
plemented decoder offers precise timing information needed for the localization
algorithm.

Because the RFID reader provides the basis for a future research project
(REFlex/FFG), the next steps of a future work will be the implementation of the
localization algorithm. Furthermore, with the help of the reader realized within
this thesis research of MIMO RFID readers is possible since the USRP-2922
Platform offers synchronization possibility among multiple units.

45

References

[1] EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID, GS1
EPCglobal Inc. Std., Rev. V 2.0.0, 2013. [Online]. Available: http://www.
gs1.org/epcglobal

[2] “SL3ICS1002/1202 UCODE G2XM and G2XL product datasheet,”
NXP Semiconductors, 2013. [Online]. Available: http://www.nxp.com/
documents/data_sheet/SL3ICS1002_1202.pdf

[3] Thomas I. Faseth, “Wireless Localization for Intelligent Transport Systems,”
Ph.D. dissertation, Vienna University of Technology, 2012.

[4] Electromagnetic compatibility and Radio spectrum Matters (ERM); Radio
Frequency Identification Equipment operating in the band 865 MHz to 868
MHz with power levels up to 2 W, ETSI Std., Rev. V 1.4.1, 2011. [Online].
Available: http://www.etsi.org

[5] “USRP N200/N210 networked series datasheet,” Ettus Research, 2012.
[Online]. Available: https://www.ettus.com

[6] M. Buettner and D. Wetherall, “A software radio-based UHF RFID reader
for PHY/MAC experimentation,” in in Proc. IEEE Int. Conf. RFID, April
2011, pp. 134–141.

[7] “N210 schematic,” Ettus Research, 2012. [Online]. Available: http://files.
ettus.com/schematics/n200/n2xx.pdf

[8] “SBX, 400MHZ-4.4GHZ Transceiver schematic REV 8,” Ettus Research,
2013. [Online]. Available: http://files.ettus.com/schematics/sbx/SBX.pdf

[9] “Spartan-3 Generation Configuration User Guide - UG332,” Xilinx, Inc.,
2009. [Online]. Available: http://www.xilinx.com/support/documentation/
user_guides/ug332.pdf

[10] J.-P. Curty, M. Declercq, C. Dehollain, and N. Joehl, Design and Optimiza-
tion of Passive UHF RFID Systems. New York, NY: Springer, 2007.

46

http://www.gs1.org/epcglobal
http://www.gs1.org/epcglobal
http://www.nxp.com/documents/data_sheet/SL3ICS1002_1202.pdf
http://www.nxp.com/documents/data_sheet/SL3ICS1002_1202.pdf
http://www.etsi.org
https://www.ettus.com
http://files.ettus.com/schematics/n200/n2xx.pdf
http://files.ettus.com/schematics/n200/n2xx.pdf
http://files.ettus.com/schematics/sbx/SBX.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf

REFERENCES

[11] A. F. Molisch, Wireless communications, secound edition. New York, NY:
IEEE Wiley, 2011.

[12] “IP LogiCORE FIR Compiler v5.0 - DS534,” Xilinx, Inc., 2011.
[Online]. Available: http://www.xilinx.com/support/documentation/ip_
documentation/fir_compiler_ds534.pdf

[13] “LogiCORE IP CIC Compiler v2.0 - DS613,” Xilinx, Inc., 2011.
[Online]. Available: http://www.xilinx.com/support/documentation/ip_
documentation/cic_compiler_ds613.pdf

[14] “LogiCORE IP CORDIC v4.0 - DS249,” Xilinx, Inc., 2011. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/ip_documentation/
cordic_ds249.pdf

[15] “AS3992 UHF Reader IC product datasheet,” ams AG.
[Online]. Available: https://www.ams.com/eng/Products/UHF-RFID/
UHF-RFID-Reader-ICs/AS3992

47

http://www.xilinx.com/support/documentation/ip_documentation/fir_compiler_ds534.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fir_compiler_ds534.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cic_compiler_ds613.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cic_compiler_ds613.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
https://www.ams.com/eng/Products/UHF-RFID/UHF-RFID-Reader-ICs/AS3992
https://www.ams.com/eng/Products/UHF-RFID/UHF-RFID-Reader-ICs/AS3992

Appendix Chapter A

RFIDUHF Registers and
Memories

The following section describes the via LMB accessible registers and memories of
the rfiduhf userlogic implemented during the course of this thesis.

A.1 Register Descriptions

The addresses of the rfiduhf user logic registers are shown in table A.1. The
registers are used for configuration and control of the rfiduhf user logic from the
MicroBlaze.

48

A.1 Register Descriptions

Register Name PLB Address
rfiduhf_adc_dcm C_BASEADDR + 0x00
rfiduhf_txconf1 C_BASEADDR + 0x04
rfiduhf_txconf2 C_BASEADDR + 0x08
rfiduhf_txconf3 C_BASEADDR + 0x0C
rfiduhf_txconf4 C_BASEADDR + 0x10
rfiduhf_txconf5 C_BASEADDR + 0x14
rfiduhf_coefrld C_BASEADDR + 0x18
rfiduhf_rxdebug_conf C_BASEADDR + 0x1C
rfiduhf_rxdebug_counter C_BASEADDR + 0x20
rfiduhf_rxdebug_default C_BASEADDR + 0x24
rfiduhf_rxconf1 C_BASEADDR + 0x28
rfiduhf_rxconf2 C_BASEADDR + 0x2C
rfiduhf_rxconf3 C_BASEADDR + 0x30
rfiduhf_rxconf4 C_BASEADDR + 0x34

Table A.1: Register address map

A.1.1 rfiduhf_adc_dcm

Bits Name Description R/W
0:7 version_fpga

unsigned
Version number of the FPGA hardware R

8:29 reserved
30 dcm_adc_locked Connected to the LOCKED status output

of the DCM for the ADC interface.
0: DCM is not locked
1: DCM is locked

R

31 dcm_adc_reset By writing a logic 1 the DCM for the ADC
interface is reset. This bit is self clearing.

R/W

Table A.2: rfiduhf_adc_dcm register

49

A.1 Register Descriptions

A.1.2 rfiduhf_txconf1

Bits Name Description R/W
0:7 reserved
8 busy_tx The busy flag is set when the TX statema-

chine is busy, e.g. it’s sending out data.
R

9 start_tx Writing a logical 1 to this bit enables the
TX process with the set parameters. It’s
reset automatically when the busy flag is 1.

R/W

10 modulation_tx The modulation bit selects between the two
implemented modulation formats:
0: ASK-PIE
1: PR-PIE

R/W

11 pwr_on_tx Used for switching the RF carrier:
0: RF-carrier off
1: RF-carrier on

R/W

12:13 crc_tx
unsigned

Defines the type of CRC appended:
0: auto CRC
1: CRC5
2: CRC16
3: no CRC

R/W

14:15 preamble_tx
unsigned

Defines if the message should be preceded
by a preamble or a frame sync. The au-
tomatic mode inspects the first bits of the
message to detect a Query command. If a
Query is detected it starts with a preamble
otherwise with a frame sync.
0 or 1: automatic mode
2: Frame-Sync
3: Preamble

R/W

16:29 lenght_tx
unsigned

Sets the number of bits to be sent. R/W

30:31 reserved

Table A.3: rfiduhf_txconf1 register

50

A.1 Register Descriptions

A.1.3 rfiduhf_txconf2

Bits Name Description R/W
0:15 tone_tx

unsigned
length of a PIE coded 1 in 0.5 µs steps, e.g.
for 10 µs the value should be 20

R/W

16:31 tari_tx
unsigned

length of a PIE coded 0 in 0.5 µs steps R/W

Table A.4: rfiduhf_txconf2 register

A.1.4 rfiduhf_txconf3

Bits Name Description R/W
0:15 trcal_tx

unsigned
length of the TRcal period in 0.5 µs steps R/W

16:31 rtcal_tx
unsigned

length of the RTcal period in 0.5 µs steps R/W

Table A.5: rfiduhf_txconf3 register

A.1.5 rfiduhf_txconf4

Bits Name Description R/W
0:15 txpwr_tx

signed
Used to set the input values to the FIR filter
generated by the PIE encoding state ma-
chine. For full scale output set the value to
231/

∑

filter coefficients.

R/W

16:31 pw_tx
unsigned

length of the PW period in 0.5 µs steps R/W

Table A.6: rfiduhf_txconf4 register

A.1.6 rfiduhf_txconf5

Bits Name Description R/W
0:15 dacb_offset_tx

signed
Offset compensation for DAC channel B R/W

16:31 daca_offset_tx
signed

Offset compensation for DAC channel A R/W

Table A.7: rfiduhf_txconf5 register

51

A.1 Register Descriptions

A.1.7 rfiduhf_coefrld

The rfiduhf_coefrld register is used to reconfigure the FIR filter coefficients. List-
ing A.1 shows an example.

Bits Name Description R/W
0:15 nextcoef

signed
Register for reloading the filter coeffi-
cients of the FIR filter. Connected to
COEF_DIN of the FIR filter[12]

W

16 coefwe Writing a logic 1 to this bit, generates a
pulse on the COEF_WE of the FIR filter
[12] for a 200 MHz clock cycle. Afterwards
the bit is reset to logic 0 automatically.

W

17 coefld Writing a logic 1 to this bit, generates a
pulse on the COEF_WE of the FIR filter
[12] for a 200 MHz clock cycle. Afterwards
the bit is reset to logic 0 automatically.

W

Table A.8: rfiduhf_coefrld register

void g_rfiduhf_writefiltercoef(u16 filtercoef []){
u8 i;

rfiduhf_coefrld = (1<< coefld); // start

for (i=0;i <51; i++) {
rfiduhf_coefrld = (1<< coefwe)|((u32) filtercoef [i]);

}
}

Listing A.1: Example for reloading the filter coefficients

52

A.1 Register Descriptions

A.1.8 rfiduhf_rxdebug_conf

Bits Name Description R/W
1 waittrigger Indicates that the debug state machine is

waiting for a trigger event
R

2 busy_debug Indicates that the debug state machine is
not in the initial state

R

3 trigger_imterm Writing a logic 1 initiates a trigger event.
This bit is self clearing.

W

4 reset_debug Writing a logic 1 resets the debug state ma-
chine to the initial state. This bit is self
clearing.

W

5 start_debug Writing a logic 1 starts the debug state ma-
chine. This bit is self clearing.

W

6:7 mode_debug
unsigned

Sets the mode of the debug module:
0: continues record
1: continues playback
2: single record
3: single playback

R/W

8:11 trigger_mask Sets the trigger mask for the hardware trig-
gers

R/W

12:15 reserved
16:31 clk_div_debug

unsigned
Sets the clock divider of the debug unit.
Note: no filtering is applied to suppress
aliasing distortion.

R/W

Table A.9: rfiduhf_rxdebug_conf register

A.1.9 rfiduhf_rxdebug_counter

Bits Name Description R/W
0:17 countervalue

unsigned
Can be read out in the initial state to get
a pointer to the last written RAM address
during recording (used after stopping con-
tinues capturing).

18:31 reserved

Table A.10: rfiduhf_rxdebug_counter register

53

A.1 Register Descriptions

A.1.10 rfiduhf_rxdebug_default

Bits Name Description R/W
0:3 reserved
4:17 adca_default

signed
Default play out value ADC A

18:31 adcb_default
signed

Default play out value ADC B

Table A.11: rfiduhf_rxdebug_default register

A.1.11 rfiduhf_rxconf1

Bits Name Description R/W
0 reserved
1 reset_rx Writing a logic 1 resets the state machine

of the receiver to the initial state. This bit
is self clearing.

R/W

2 start_rx Writing a logic 1 starts the state machine
of the receiver. This bit is self clearing.

R/W

3 trext_rx Set this bit to logic 1 when the tag response
is preceded by a extended preamble

R/W

4:5 m_rx
unsigned

Miller modulation format of the tag re-
sponse:
0: reserved
1: M=2
2: M=4
3: M=8

R/W

6:31 threshold_rx
signed

Sets the threshold value for detection of the
start of the tag response.

R/W

Table A.12: rfiduhf_rxconf1 register

54

A.1 Register Descriptions

A.1.12 rfiduhf_rxconf2

Bits Name Description R/W
0:15 lencorrpulse_rx

unsigned
Set this register to length of a half correla-
tion pulse in 10 ns steps.

TRcal · 100 MHz

2DR
(A.1)

R/W

16:31 bfl_rx
unsigned

Set this register to the length of a BLF
period in 10 ns steps.

TRcal · 100 MHz

DR
(A.2)

R/W

Table A.13: rfiduhf_rxconf2 register

A.1.13 rfiduhf_rxconf3

Bits Name Description R/W
0:4 reserved
5 busy_rx A logic 1 indicates that the RX state ma-

chine is not in the initial state.
R

6:31 pwrestimate_rx
signed

Can be read out after receiving a message
indicating the average value of the corre-
lation peaks during the first part of the
preamble.

R

Table A.14: rfiduhf_rxconf3 register

55

A.2 Memory Descriptions

A.1.14 rfiduhf_rxconf4

Bits Name Description R/W
0:15 bitsread_rx

unsigned
Indicates the number of received bit by the
module after reception is finished.

R

16:31 bflestimate_rx
unsigned

Can be read out after receiving a message
indicating the estimated length of a BLF
period in 10 ns steps, during the first part
of the preamble.

R

Table A.15: rfiduhf_rxconf4 register

A.2 Memory Descriptions

Table A.16 lists the from the MicroBlaze accessible memories of the rfiduhf user
logic. The bram_tx memory is used to configure the data to be sent with the
rfiduhf block. The rfiduhf user logic stores in the bram_rx memory the received
data to be read from the MicroBlaze. The ram_debug memory is used for reading
out the by the debug module captured data or for storing the data to be played
out by the debug module. The ram_debug memory can only be accessed when
the debug state machine is in the initial state (busy_debug = 0).

Memory Name PLB Base Address Size
bram_tx C_MEM0_BASEADDR 2 kB
bram_rx C_MEM1_BASEADDR 2 kB
ram_debug C_MEM2_BASEADDR 1 MB

Table A.16: Memory address map

56

Appendix Chapter B

Example Code

The following section presents a code example to read out the EPC of a single
Tag in the reading range. Section B.1 shows an example configuration of the
hardware platform. Section B.2 shows an example program which shows how the
MicroBlaze has to interact with the rfiduhf user logic to read out the EPC.

B.1 Initializing the Hardware

B.1.1 Initializing the N210 and SBX GPIOs

In the beginning the GPIOs connected to the N210 and SBX are configured such
that all ICs needed for the subsequent procedures are enabled and supplied with
power. Also the RF switch selecting the reference clock for the clock distribu-
tion IC is set to the internal 10 MHz reference. Listing B.1 shows a working
configuration example.
gpio1_data = 0 xF18CE69C ;
gpio2_data = 0 x00008F0E ;

Listing B.1: Example for initializing the SBX GPIOs

B.1.2 Initializing the Clock Distribution IC

Listing B.2 shows a sample configuration for the clock distribution IC. The PLL
is activated and the distribution is configured to provide 100 MHz to all other
ICs, e.g. ADC, DAC, and the synthesizers.
// configure PLL:
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000400); //A divider not used
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000500); //B divider MSB [4:0]
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000605); //B divider LSB [7:0]

57

B.1 Initializing the Hardware

g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000B00); //R divider MSB [5:0]
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000C01); //R divider LSB [7:0]

g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000700); // PLL 1
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000847); // PLL 2
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000940); // PLL 3
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000A04); // PLL 4
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x000D00); // PLL 5

// configure clock distribution :
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x003C08); // (testclk : LVPECL 810 mV)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x003D08); // (fpgaclk : LVPECL 810 mV)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x003E08); // (adcclk: LVPECL 810 mV)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x003F08); // (dacclk: LVPECL 810 mV)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004003); // (SERDES: Output off)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004102); // (CLKTXDB : LVDS 3.5 mA)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004203); // (CLKEXPOUT : Output off)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004302); // (CLKRXDB : LVDS 3.5 mA)

g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004980); // Divider0 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004B80); // Divider1 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004D80); // Divider2 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x004F80); // Divider3 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x005180); // Divider4 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x005380); // Divider5 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x005580); // Divider6 (Bypass MODE)
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x005780); // Divider7 (Bypass MODE)

// update registers :
g_spi_write (SPI_DEV_MAINCLK , 24, 0 x005A01);

Listing B.2: Example for initializing the clock distribution IC (AD 9510)

B.1.3 Initializing the DAC

Listing B.3 shows an example configuration for the Analog Devices AD 9777
DAC.
// configure DAC:
g_spi_write (SPI_DEV_DAC , 16, 0 x0004);
g_spi_write (SPI_DEV_DAC , 16, 0 x0480);
g_spi_write (SPI_DEV_DAC , 16, 0 x0104);
g_spi_write (SPI_DEV_DAC , 16, 0 x0301);

Listing B.3: Example for initializing the DAC (AD 9777)

B.1.4 Initializing the ADC

Listing B.4 shows an example configuration for the Texas Instruments ADS62P44
ADC. It also shows how the DCM for the ADC interface is reset properly.
g_spi_write (SPI_DEV_ADC , 16, 0 x0002); // Perform reset
g_timer_delay (TIMER_TICKS_US (800)); // wait 800 us

// configure ADC:

58

B.1 Initializing the Hardware

g_spi_write (SPI_DEV_ADC , 16, 0 x1480);
g_spi_write (SPI_DEV_ADC , 16, 0 x1600);
g_spi_write (SPI_DEV_ADC , 16, 0 x1700);
g_spi_write (SPI_DEV_ADC , 16, 0 x1A80);
g_spi_write (SPI_DEV_ADC , 16, 0 x1B03);
g_spi_write (SPI_DEV_ADC , 16, 0 x1D00);

// reset the ADC DCM :
rfiduhf_adc_dcm = rfiduhf_adc_dcm | (1 << dcm_adc_reset);

// wait till locked :
while (!(rfiduhf_adc_dcm & (1<< dcm_adc_locked)));

Listing B.4: Example for initializing the ADC (ADS62P44)

B.1.5 Initializing the Synthesizers

Listing B.5 and figure B.1 show a example configuration for the two Analog
Devices ADF4351 synthesizers. This configuration example targets a RF output
frequency of 865.7 MHz.

g_spi_write_rxtxsynt (32, 0 x00580005); // Register 5
g_spi_write_rxtxsynt (32, 0 x002C8234); // Register 4
g_spi_write_rxtxsynt (32, 0 x00013E83); // Register 3
g_spi_write_rxtxsynt (32, 0 x60010642); // Register 2
g_spi_write_rxtxsynt (32, 0 x000087D1); // Register 1
g_spi_write_rxtxsynt (32, 0 x001104E8); // Register 0
g_spi_write_rxtxsynt (32, 0 x001104E8); // Register 0

Listing B.5: Example for initializing the synthesizers (ADF4351)

59

B.2 Reading the EPC from a single tag in reading range

Figure B.1: Example configuration for the synthesizers (ADF4351)

B.2 Reading the EPC from a single tag in read-

ing range

The following example listing B.6 should show how the during this thesis devel-
oped user logic can be used to readout the EPC of an RFID tag in reading range
of the USRP-2292 platform.
u16 RN16 ;

// Parameters for the Inventory round:
u8 DR = 0; // DR = 8 see Query command
u8 M = 1; // M = 2 see Query command
u8 TRext = 0;
u8 sel = 0; // all tags should participate in the inventory round
u8 session = 0; // Session S0
u8 target = 0; // Target A
u8 Q = 0; // only one tag is expected in the reading range

u16 PW = 25; // PW in 0.5 us steps -> 12.5 us
u16 Tari = 50; // Tari in 0.5 us steps -> 25 us
u16 Tone = 100; // Tone in 0.5 us steps -> 50 us
u16 RTcal = Tari + Tone ;
u16 TRcal = 320; // TRcal in 0.5 us steps -> 160 us
u16 modulation = 0; // ASK modulation
u16 txpwr_tx = 4800; // according to the default filtercoef

60

B.2 Reading the EPC from a single tag in reading range

u16 blf_samples = 2000; // 50 kHz BLF -> 2000 samples in 100 MSample /s
u16 lencorrpulse = 1000; // 50 kHz BLF
u32 threshold = 5000;

// switch on the RF - carrier :
rfiduhf_txconf1 = (1<< pwr_on_tx); // set the pwr_on_tx bit
while ((rfiduhf_txconf1 & (1<< busy_tx)); // wait till busy_tx is 0

// configure rfidrx :
rfiduhf_rxconf1 = (threshold <<6) |(M <<4) |(TRext <<3) |(1<< reset_rx);
rfiduhf_rxconf2 = (blf_samples < <16) |(lencorrpulse);

// configure rfidtx :
Xil_Out32 (C_MEM0_BASEADDR ,(0 b1000 < <28) |(DR < <27) |(M < <25) |\

(TRext < <24) |(sel < <22) |(session < <20) |(target < <19) |(Q < <15));
rfiduhf_txconf2 = (Tari < <16) |(Tone);
rfiduhf_txconf3 = (RTcal < <16) |(TRcal);
rfiduhf_txconf4 = (PW < <16) |(txpwr_tx);
rfiduhf_txconf5 = 0;

// start rfidtx send 17 bits :
rfiduhf_txconf1 = (17<< lenght_tx)|(1<< pwr_on_tx)|(1<< start_tx);

// wait till rfidtx is finished :
while ((rfiduhf_txconf1 & (1<< busy_tx));

// start rfidrx:
rfiduhf_rxconf1 |= (1<< start_rx);

// wait till RN16 is received :
while ((rfiduhf_rxconf3 & (1<< busy_rx));

// read out the RN16 from the bram_rx :
RN16 = (Xil_In32 (C_MEM1_BASEADDR) >>10);

// wait T2:
g_timer_delay (TIMER_TICKS_100MHZ (3* blf_samples));

// send ACK:
Xil_Out32 (C_MEM0_BASEADDR ,(0 b01 < <30) |((RN16 < <14) &0 x3FFFC000));
rfiduhf_txconf1 = (18<< lenght_tx)|(1<< pwr_on_tx)|(1<< start_tx);

// wait till rfidtx is finished :
while ((rfiduhf_txconf1 & (1<< busy_tx));

// start rfidrx:
rfiduhf_rxconf1 |= (1<< start_rx);

// wait till EPC is received :
while ((rfiduhf_rxconf3 & (1<< busy_rx));

// the EPC can now be found in the bram_rx

Listing B.6: Reading the EPC of a single Tag using the rfiduhf user logic

61

	Introduction
	EPC™Radio-Frequency Identity Protocol
	System Overview
	Tags
	Interrogator

	Logical Operation
	Physical Layer
	Reader to Tag Communication
	Tag to Reader Communication

	NI USRP-2922 Software Defined Radio Platform
	Customized Implementation versus Available Framework
	National Instruments USRP-2922
	N210
	SBX

	Decoder
	Requirements
	Maximum Likelihood Sequence Detector
	Synchronous Sub-Symbol Decoder
	Correlator
	Decoder
	Performance of the Sub-Symbol Decoder

	Implementation within the FPGA
	Overview
	Transmit Module (rfidtx)
	Pulse Generation
	Pulse Shaping

	Receive Module (rfidrx)
	Correlator
	Decoder
	Debug

	Phase Noise
	Hardware Changes
	Measurement Results

	Verification of the Implementation
	Conclusion and Outlook
	Appendices
	RFIDUHF Registers and Memories
	Register Descriptions
	rfiduhf_adc_dcm
	rfiduhf_txconf1
	rfiduhf_txconf2
	rfiduhf_txconf3
	rfiduhf_txconf4
	rfiduhf_txconf5
	rfiduhf_coefrld
	rfiduhf_rxdebug_conf
	rfiduhf_rxdebug_counter
	rfiduhf_rxdebug_default
	rfiduhf_rxconf1
	rfiduhf_rxconf2
	rfiduhf_rxconf3
	rfiduhf_rxconf4

	Memory Descriptions

	Example Code
	Initializing the Hardware
	Initializing the N210 and SBX GPIOs
	Initializing the Clock Distribution IC
	Initializing the DAC
	Initializing the ADC
	Initializing the Synthesizers

	Reading the EPC from a single tag in reading range

