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Abstract

Real-Time systems require guarantees on the execution time of the executed programs,
commonly at least a Worst-Case Execution-Time (WCET) bound. The complexity of
today’s computing architectures makes it difficult to predict the execution timing of a
program.

The single-path programming scheme improves timing predictability by eliminating
the selection of different execution paths depending on the input data provided to the
program. Such programs execute the exactly same sequence of instructions for every
invocation.

This document describes the automated transformation to a single-path program
from annotated source code. The transformation consists of a dataflow analysis to iden-
tify the input-data dependent branches in the program and a transformation phase that
replaces these branches by utilizing conditional execution, i.e., predicated instructions.
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Kurzfassung

Echtzeitsysteme benötigen Garantien zum Laufzeitverhalten der ausgeführten Program-
me, üblicherweise zumindest eine Schranke der maximalen Ausführungszeit (WCET).
Die Komplexität heutiger Computer-Architekturen macht es allerdings schwierig das
Laufzeitverhalten eines Programmes vorherzusagen.

Die Single-Path Programmier-Methodik vereinfacht die Vorhersage des Laufzeitver-
haltens dadurch, dass vermieden wird, dass Eingangsdaten die Auswahl des Ausfüh-
rungspfads beeinflussen. Derartige Programme führen bei jeder Ausführung exakt die
gleiche Befehlssequenz durch.

Dieses Dokument beschreibt die automatische Übersetzung von annotiertem Quellco-
de in ein Single-Path Programm. Diese Übersetzung besteht aus einer Datenflussanalyse
zur Bestimmung der eingangsdatenabhängigen Verzweigungen und einer Übersetzungs-
phase, die diese Verzweigungen durch bedingt ausgeführten Maschinencode ersetzt.
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CHAPTER 1
Introduction

Real-Time systems require guarantees on the execution times of the programs executed.
A common requirement for a program executed by a real-time system is the knowledge
about its Worst-Case Execution-Time (WCET) bound. Only then it can be guaranteed
that the real-time system meets its timing requirements. The complexity of today’s
computing-architectures makes it difficult to predict the execution timing of a program.

The single-path programming scheme improves timing predictability by eliminating
the selection of different execution paths to depend on the input data provided to the
program. It does so by replacing input-data dependent branches by input-independent
branches and constant-time conditional expressions. The constant-time conditional ex-
pression allows to assign a condition, which controls the execution, to a program expres-
sion. The execution of the constant-time conditional expression is expected to take a
single, constant execution time. As a consequence the execution time is predictable.

This document describes the automated generation of a single-path program from
annotated source code. The single-path code generation is integrated into the LLVM
compiler. Since the ARM1 architecture targeted by this work does not immediately
provide machine instructions forming constant-time conditional expressions, the trans-
formation is implemented by using conventional conditional execution. The conditional
execution used is not guaranteed to execute in constant time, therefore the resulting
program is neither guaranteed to execute in constant time but the execution-time pre-
dictability is improved.

The transformed programs simplify the WCET-analysis since only a single execu-
tion path has to be considered in the analysis. Since this single execution path does
not differ amongst program executions, timing anomalies [48] cannot arise from differ-
ing instruction-fetching patterns. And even without the availability of a constant-time
conditional expression the absolute execution-time jitter is reduced.

Chapter 2 gives an introduction to single-path programs and explains how any
WCET-bounded program may be automatically transformed into a single-path program.

1Acorn RISC2 Machines, later Advanced RISC Machines
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As a prerequisite for the transformation the input-data dependent branches need
to be identified. Therefore a dataflow-analysis pass has been implemented, which is
described in Chapter 3.

The implementation of the single-path transformation is shown in Chapter 4. The
initial transformation steps, in the target-independent portion of the compilation process,
prepare the loops and branches so that in a later, target-specific transformation pass, it
is easier to generate single-path code.

In Chapter 5 the impact this transformation has on the execution time of the trans-
formed programs is evaluated.
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CHAPTER 2
Theory

Contents

2.1 Single-Path Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Single-Path Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Single-Path Conversion from a CFG Perspective . . . . . . . . . . . . 4

2.3.1 Reducible Control Flow . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Irreducible Control Flow . . . . . . . . . . . . . . . . . . . . . 20

2.1 Single-Path Code

Single-Path code [35] has the key property to show the same execution trace for each
execution. In conventional programs the actual execution trace depends on the input
data provided to the program. In single-path programs a unique execution trace exists,
that is executed independent from the provided input data. This is achieved by replacing
branches that depend on input data by input-data independent branches and the use of
conditional expressions.

For timing predictability the use of a constant-time conditional expression [35] is
suggested. The constant-time conditional expression is, as its name implies, expected
to execute in constant time, independent from the actual condition value, and therefore
has predictable execution timing.
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2.2 Single-Path Conversion

The single-path conversion is a transformation scheme to generate single-path code from
any WCET1-bounded program. A detailed set of transformation rules for a high-level
language has been presented in [36]. These transformation rules are reproduced in Table
2.1.

Construct S Translated Construct SP [ S ]σδ

S
if σ = T S

otherwise (σ)S

S1;S2 SP [ S1 ]σδ;
SP [ S2 ]σδ

if cond then S1
else S2

if ID(cond) guardδ := σ;
SP [ S1 ]〈σ ∧ guardδ〉〈δ + 1〉;
SP [ S2 ]〈σ ∧ ¬guardδ〉〈δ + 1〉

otherwise if cond then SP [ S1 ]σδ
else SP [ S2 ]σδ

while cond
max N times

do S

if ID(cond) endδ := false

for countδ := 1 to N do begin

SP [ if ¬cond then endδ := true ]σ〈δ + 1〉;
SP [ if ¬endδ then S ]σ〈δ + 1〉

end

otherwise while cond do SP [ S ]σδ

call proc p(pars) if σ = T call proc p(pars)

otherwise call proc p-sip(σ, pars)

def proc p(pars)
S

def proc p(pars) S;
def proc p-sip(pcnd, pars)

SP [ S ]〈pcnd〉〈0〉

Table 2.1: Single-Path Transformation Rules, taken from [36] p. 388

The rules presented in Table 2.1 show a mapping from source constructs S to the
single-path transformed construct SP [ S ]σδ. Whereby σ denotes a boolean execution
condition and δ is used to create a unique numbering for the different execution condi-
tions. The function ID(cond) maps to true, when the condition cond depends on input
data, to false otherwise.

2.3 Single-Path Conversion from a CFG Perspective

This section takes an alternative view of the single-path transformation. Instead of the
procedural approach from Section 2.1 the observations described in this section are based
on the control-flow graph representation of a program.

1Worst-Case Execution Time
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Motivation As stated in [35] the single-path conversion is applicable to any program
for which a WCET bound is computable, i.e., an upper bound for the number of loop
iterations can be determined. This section should clarify why this is the case by showing a
transformation that is applicable to all programs which have reducible control flow. The
remaining programs, having irreducible control flow, may be transformed into reducible
ones in a preprocessing step by using an algorithm like node splitting.

2.3.1 Reducible Control Flow

In this section it is shown how the single-path transformation [35] can be applied to
programs with reducible control flows. In the conventional description of the single-path
transformation the rules used to describe the transformation are based on an imperative
language. These rules can be found in [36] on Table 1. The CFG2 representation has the
advantage of a much simpler structure than the source-code representation. Additionally,
when restricting to reducible control flows, it has been shown that the entire CFG can
be processed by two transformations T1 and T2. The transformations SPT1 and SPT2,
which are based on T1 and T2, are described below. The original description of if-
conversion is also limited to reducible control flows as described in the section about
backward branches in [3] on page 183 ff.

Reducible graphs [1] have the property that the repeated generation of maximum
intervals [6] (sometimes called Allen-Cocke intervals) and the replacement of these in-
tervals by a single node leads to a graph with only one node remaining. An alternative
reducibility test is described in [42].

Reducible graphs also have the property of collapsibility [18].

Collapsibility Collapsibility represents the fact that repeated application of the two
transformations T1 and T2 results in a single remaining node on reducible graphs. The
following paragraphs give a short summary of these transformations. For the detailed
description please refer to [18] on page 249.

T1 = removal of self-loops

T2 = collapsing of a node with a single direct ancestor into that
ancestor

Collapsibility transformations as defined in [18] on page 249

The transformations T1 and T2 are shown in a graphical notation in Figure 2.1a and
Figure 2.1b.

2Control-Flow Graph
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Figure 2.1: Collapsibility transformation rules

Modifying the Collapsibility Test to Determine Execution Conditions

Here a modified collapsibility test is used to show that it is possible to determine execu-
tion conditions for all nodes in reducible control-flow graphs.

The Results The algorithm presented here yields a modified CFG that is branch
free with the exception of loop-back-edge branches. Essentially creating a chain of all
the nodes in the CFG. Additionally an execution condition is calculated for each CFG
node. These conditions compensate the fact that the execution of the program with the
modified control flow will process nodes that it would not in the original program.

The Algorithm The modified collapsibility test SPT () is shown as Algorithm 2.1.
As the original variant it repeatedly executes 2 sub-procedures. These sub-procedures
SPT1(n) and SPT2(n1, n2) are presented in Algorithm 2.3 and Algorithm 2.4.

As a preprocessing step for the following algorithm all loops must have been modified
so that they have exactly one back edge. This may be achieved by inserting a new loop-
latch node.

Then the modified collapsibility test is applied to the CFG. It computes an execution
predicate for every node in the CFG. After the modified collapsibility test has been
applied, for every CFG node n the variable σn holds the predicate under which n shall
execute. When the reducibility test completely reduces a graph, every node except the
initial node must have been used as node n2 on transformation T2. Since the modified
variant of T2 does the predicate calculation, every node except the initial one has an
execution predicate calculated. The initial node’s predicate will remain true unless it is
also a loop-header node and has therefore a loop-termination predicate assigned. Since
the program execution always enters a function in its entry point represented by the

6



initial node in the CFG this node will always be executed. Therefore no execution
condition is expected for the initial graph node.

The following algorithm analyzes the conditions that determine which control-flow
path is taken during program execution. Assuming that two nodes u and w are adjacent,
for any edge from node u to node w, Cuw denotes the condition that must hold for the
edge from u to w being executed. When u has only one outgoing edge, Cuw ≡ >.
Note that Cuw only contains the conditions local to the basic-block u, i.e. the condition
required for node w to be executed if node u is executed.

Note that parts of the algorithm that are tagged with [code] are not executed with
the algorithm, but denote additions to the transformed program’s code.

Algorithm 2.1: SPT(G)

Input : A reducible program with CFG G = (N,E)
Output: A CFG GSP = (NSP , ESP ) of a corresponding single-path program and

a set of execution-conditions ΣSP for the nodes in NSP

Data: NSP , ESP ,ΣSP

1 SPINIT ();
2 while |N | > 1 do
3 if ∃e = 〈n1 → n2〉 ∈ E,n1 ≡ n2 then
4 SPT1(n); /* node with a self loop */

5 else if ∃n2 ∈ N , where n2 only has incoming edges from n1 then
6 SPT2(n1, n2); /* node with an unique predecessor */

7 else
8 ERROR, input CFG is not reducible;
9 end

10 end
11 CreateLoopCounters();
12 return GSP = (NSP , ESP ),ΣSP ;

Analysis Results The results of the analysis presented in this section are:
NSP The set of nodes for the single-path program. This is the same set as given in the

input CFG.
ESP The set of edges for the single-path program.
ΣSP An execution condition σn for every node n ∈ NSP .

The resulting CFG GSP = (NSP , ESP ) is a single-path program. The edges in ESP
form a chain with the nodes in NSP . The only branches remaining in GSP are those
forming loops. When executing the program, the nodes in NSP must only be executing
when their corresponding execution condition in ΣSP is met.

Initialization

Initially the condition σn for the start node is set to true, for each other node to false.

7



∀n ∈ CFG : σn =

{
>, if n = start node

⊥, otherwise

Additionally, each node n has a loop-membership label L attached, which is initialized
to ∅, meaning that the node does not yet belong to any loop. This label is subsequently
used to store the header node of the innermost loop that contains node n.

∀n ∈ CFG : n.L = ∅

Further all graph edges are annotated by the labels S and T , whereby label S holds
a reference to the edge’s source node and label T that hods the edge’s target node.

Algorithm 2.2: SPTINIT

1 Remove the edge n→ n Introduce new loop-termination variable γh;
2 forall the nodes n ∈ CFG do
3 n.L←− ∅; /* loop membership */

4 if n ≡ START then
5 σn ←− >;
6 else
7 σn ←− ⊥;
8 end

9 end
10 forall the edges e = 〈u→ w〉, e ∈ CFG do
11 e.S ←− u; /* source label */

12 e.T ←− w; /* target label */

13 e.E ←− w; /* exiting edge */

14 end
15 NSP ←− ∅; /* nodes in the SP-Program */

16 ESP ←− ∅; /* edges in the SP-Program */

SPT1

The transformation SPT1(n), as well as the original transformation T1(n), removes self
loops of node n. The loop back edge eback = 〈n→ n〉 at the application time of SPT1()
may have different endpoints than the back edge had in the initial graph. The original
start and end nodes are stored in edge labels. With the original start node u ≡ eback.S
and the original target node h ≡ eback.T

The loop is extended by an additional loop termination variable γh. The loop is
considered active, as long as γh ≡ ∅. When the loop is left, γh identifies the edge
through which the loop exited. The lines in Algorithm 2.3 that are prefixed with [code]
are not considered to be executed with the algorithm. Instead the resulting program
should be extended with these code snippets. These code snippets will manipulate γh
at the program execution time.

8



The loop termination variable is initialized when the loop header h is entered from
outside the loop. An implementation may append this assignments at the end of each
node originating an edge incoming to h. Let Ein be the set of entering edges ein targeting
the loop header h excluding the back edge, with i ≡ ein.S and h ≡ ein.T being the edge
endpoints in the original graph.

γh =

{
∅, if σi ∧ Cih
⊥, otherwise

Let Eexit be the set of exit edges eexit leaving the node n except the back edge, with
ue ≡ eexit.S and we ≡ eexit.S being the edge endpoints in the original graph. The source
node ue of the exit edge is part of the loop, the node we is not contained within the loop.
Set the loop termination variable to the following node outside the loop, whenever the
loop is left through any of the exiting edges. For each edge 〈ue, we〉 ∈ Eexit, at the end
of ue set γh = we when Cuewe is met.

For each node originating an exiting edge, store the loop membership in the loop tags
attached to each node by setting them to the loop header. Existing loop memberships
are not overwritten. This way the loop membership tag refers to the innermost loop
containing the node.

∀e ∈ Eexit : E.S.L←− h
Set the execution condition of the loop header to regard the new loop termination

variable. Since the loop header had the loop back edge as an incoming edge until now,
it has not yet set another execution condition by SPT2.

σh = γh ≡ ∅

Replace the back edge u→ h by a input-independent loop enclosing u and w.

9



Algorithm 2.3: SPT1(n)

1 eBACK ←− 〈n→ n〉; /* back edge */

2 h←− eBACK .T ; /* loop header */

3 l←− eBACK .S; /* loop latch */

4 E = E \ eBACK ; /* remove the edge eBACK */

5 Introduce new loop-termination variable γh;
6 forall the edges ein = 〈i→ n〉, ein ∈ IN(n) do
7 [code] γh ←− ∅; /* when the control flow follows ein */

8 end
9 forall the edges eEXIT = 〈ue → we〉, eEXIT ∈ OUT (n) do

/* When this loop is terminated by eEXIT */

10 [code] γh ←− we; /* when the control flow follows eEXIT */

11 if we.S.L ≡ ∅ then
12 we.S.L←− h; /* innermost loop containing we.S */

13 end

14 end
/* In case an edge originating from an inner loop also terminated

this loop */

15 [code] γh ←− ⊥; /* when ¬σl ∧ γh ≡ ∅ */

16 h.L←− h;
17 σh ←− γh; /* γh holds all conditions controlling loop execution */

18 ESP ←− ESP ∪ 〈n.E → n〉; /* loop back edge in the SP-Program */

SPT2

Whenever the transformation T2 is applied to the nodes n1 and n2, let E be the non-
empty set of edges from n1 to n2.

The condition σn2 of node n2 is set to:

σn2 = σn2 ∨
∨

e(u,w)∈E


⊥, if w.L ≡ w, incoming edge is expected to set γw

γu.L ≡ w, if u.L 6≡ ∅, loop exiting edge

σu ∧ Cuw, if u.L ≡ ∅

Note that the edges e = 〈n1 → n2〉 keep references to their original source and
destination nodes in the labels e.S and e.T denoted as u and w here, even when these
nodes got collapsed by an earlier application of SPT2. In the example below these nodes
are shown as labels next to edge endpoints.

10



Algorithm 2.4: SPT2(n1,n2)

1 forall the multi-edges e ∈ E(n1, n2) do
2 u←− e.S;
3 w ←− e.T ;
4 if w.L ≡ w then
5 do nothing;
6 else if u.L 6≡ ∅ then
7 σn2 ←− σn2 ∨ (γu.L ≡ w)
8 else
9 σn2 ←− σn2 ∨ (σu ∧ Cuw)

10 end
11 forall the edges e = 〈u,w〉, e ∈ OUT (n2) do
12 E ←− E \ e ∪ 〈n1 → w〉; /* copy labels from e to the new edge */

13 end
14 N ←− N \ n2; /* remove n2 */

15 ESP ←− ESP ∪ 〈n1.E → n2〉;
16 n1.E ←− n2.E;

Evaluating the Execution Conditions

The execution conditions σn calculated for any node n are not globally valid. Instead
they have to be evaluated right before node n is entered and must keep its value until the
next execution of node n. Any further condition evaluation, that refers to σn, has to use
this stored value because a re-evaluation could yield different results due to modifications
to the variable space done in the meantime.

Update Control Flow When no further applications of SPT1 and SPT2 are possi-
ble, the applications of SPT2 established a chain of nodes in ESP . The only branches
remaining are the loop-back edges introduced by SPT1. These loops are transformed
into loops executing for an input-data independent iteration number by the execution
of CreateLoopCounters().

In addition, the single-path transformation requires a so called constant-time condi-
tional expression as presented in Section 3.1 of [35].

After application of the modified collapsibility test, the constant-time conditional
expression can be applied to all nodes n except the new loop nodes created by Cre-
ateLoopCounters(), whereby σn is the condition that controls execution. The other side
of the constant-time conditional expression remains empty.
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Algorithm 2.5: CreateLoopCounters(NSP , ESP )

1 forall the back-edges eBACK = 〈h→ l〉, eBACK ∈ ESP do
2 ESP ←− ESP \ eBACK ; /* remove eBACK */

3 NSP ←− NSP ∪ h′; /* create a new loop-header h′ */
/* Integrate h′ into the control-flow */

4 eo = 〈l→ no〉 ←− OUT (l); /* There is at most one outgoing edge */

5 ESP ←− ESP \ eo;
6 ESP ←− ESP ∪ 〈h′ → no〉;
7 forall the edges ei = 〈ni → h〉, lo ∈ IN(h) do
8 ESP ←− ESP \ ei;
9 ESP ←− ESP ∪ 〈ni → h′〉;

10 end
11 ESP ←− ESP ∪ 〈h′ → h〉;
12 ESP ←− ESP ∪ 〈l→ h′〉;

/* h′ should take the branch h′ → h as long as the input-data

independent iteration bound is not hit. Afterwards the edge

h′ → no is executed. */

13 end

The Need for WCET Boundedness When transforming a program to an SP3-
program, loops need to be modified so they show a unique iteration pattern regardless
of the program’s input data. This may be achieved by always iterating the loop for its
iteration upper-bound. Such an upper bound must exist when the program is WCET-
Bounded, although it may not be easy to determine.

Properties of the Resulting Control Flow The resulting control flow has no bran-
ches, except the ones introduced when transforming the loops. Since the loops are guar-
anteed to execute the same iteration count pattern for every call, the execution path for
every call must be the same since no other branches exist in the program.

Example Transformation

The example in Figure 2.2 illustrates the application of the modified collapsibility test
to a simple CFG.

3Single-Path
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(d) SPT2(A,B)
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C.L=B

(e) SPT2(A,D)

Figure 2.2: Example application of SPT1 and SPT2

Trans-
formation

Step σA σB σC σD
addition
to ESP

> ⊥ ⊥ ⊥
SPT2(B,C) > ⊥ σB ∧ CBC ⊥ B→C

SPT1(B) > γB ≡ ∅ σB ∧ CBC ⊥ C→B

SPT2(A,B) > γB ≡ ∅ σB ∧ CBC ⊥ A→B

SPT2(A,D) > γB ≡ ∅ σB ∧ CBC
(γB ≡ D)
∨(σA ∧ CAD)

C→D

Table 2.2: Calculation of the execution-conditions in the example shown in Figure 2.2

Update Control Flow The result of the analysis phase for the example given in
Figure 2.2 are:

NSP = {A,B,C,D}
ESP = {B → C,C → B,A→ B,C → D}
ΣSP = {σA = >, σB = γB ≡ ∅, σC = σB ∧ CBC , σD = (γB ≡ D) ∨ (σA ∧ CAD)}

13



In Figure 2.3 the graph is shown after having created the edges according to the
analysis results.

A

B

C

D

B

Figure 2.3: The example from Figure 2.2
before application of CreateLoopCoun-
ters()

A

B

C

D

h′

Figure 2.4: The result of applying Cre-
ateLoopCounters() to the CFG shown in
Figure 2.3

When all the conditions are established, remove all branches except the loop back
edges and introduce new branches as specified in ESP , so that the nodes are lined up in
the order they got merged by T2.

2.3.2 Optimizations

In the following, modifications to the transformation are described which should reduce
the execution runtime of the transformed program.

Application Order of SPT1 and SPT2

Strive to apply SPT2 to nodes with the least possible application number of SPT1. That
means, for applications of SPT1, that self loops are only removed for collapsed nodes
that only consist of previously collapsed nodes belonging to the natural loop and no
other nodes outside the loop. After the transformation is completed, nodes that are not
part of the natural loop would require computing time with each loop iteration, whereby
the execution predicates for these nodes will evaluate to false for each except the last
iteration.

With the SP-Transformation as described Algorithm 2.3 the application of this op-
timization is mandatory. This is because the resulting algorithm is simpler when the
application order of SPT1 and SPT2 is constrained as described here. A modified version
of the SP-Transformation that allows arbitrary application orders of SPT1 and SPT2
can be created by additionally tracking, for each node, the last node that has been col-
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lapsed into it by an application of SPT2. When SPT1 is creating back edges as shown in
Algorithm 2.3 on line 18 this additionally tracked node shall be used as the originating
node of the back edge.

Keep Input-Independent Branches

Branches that do not depend on input data may be preserved by the transformation.
Compared to the transformation shown in the paragraph Update Control Flow , these
branches may skip some nodes in the CFG during execution.

Advantage As a result, when executing the transformed program, on occasion pro-
gram parts are skipped by the preserved branches, resulting in a shorter execution time.
Removing these branches instead and disable the effects of the now executed program
parts by an application of the constant-time conditional expression to these program
parts would yield the same result, but would make the program’s execution more com-
putationally expensive.

With the unoptimized transformation any node n of the CFG has to be executed, if
the evaluation of σn immediately before the execution of n yields true during program
execution. When the evaluation of σn yields false and the evaluation result does not
depend on input-data, the program flow still passes through n. In this case later trans-
formation steps are responsible for isolating the modifications performed in n from the
remainder program.

Correctness The optimized transformation presented here is guaranteed to not mod-
ify the program’s behavior since all nodes that are effectively executed in the unoptimized
variant are still executed in the same order. Therefore the preserved branches must not
skip any nodes that should be executed, modify the execution order amongst executed
nodes, modify the loop termination or introduce new loops.

Algorithm Modification Keeping some of the branches is done by a slightly differ-
ent modification of the CFG than shown in the paragraph Update Control Flow . The
modification of the control flow after the analysis phase starts by removing all branches
except loop back edges and edges originating from an input-data independent branch.
Otherwise the control-flow modifications are performed like shown in Algorithm 2.1.
When the control-flow modification would insert an edge that has not been removed,
the existing edge is kept.

Result The resulting CFG will at least contain all edges it would after applying the
CFG modifications shown in Algorithm 2.1, but possibly containing some additional
edges originating from nodes with input-data independent branches. Note, that the
edges originating from these branches, which exist in both control flow variants, behave
differently in the optimized variant. When their source node is executed, control flow is
now only conditionally following these edges. Without the optimization the source node
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would have had only one outgoing edge, therefore the control flow always had to follow
this edge after executing the source node.

The calculation of the execution conditions has to be adapted to handle these new
graph edges. Because nodes can be skipped, it is no longer guaranteed that for any node
n the execution condition σp has been evaluated for every predecessor node p when the
execution reaches node n. When such an edge is executed, it is obvious that any nodes
skipped by this edge are not executed. Their execution conditions have therefore to be
assumed to evaluate to false.

Skipped Nodes The nodes skipped can be derived by examining the applications of
SPT2 in more detail. The result is a set of skipped nodes Vskipped(E) for every edge E
originating from an input-independent branch.

Initially the set of skipped nodes Vskipped(E) is empty for all edges E. Additionally
for each input-independent branch b a set of all nodes targeted Vt(b) by this branch is
tracked, which initially contains all nodes targeted by outgoing edges from b.

When applying the modified collapsibility test, at some point there will be an applica-
tion of b′ = SPT2(b, nto) with b being an input-independent branch node and some other
node nto as the second. Remove nto from the set of branch targets Vt(b) = Vt(b) \ nto.
The edge b→ nto is the outgoing edge from b that would also have been inserted in the
unoptimized version of the transformation. When b has been collapsed by an application
of SPT1 or SPT2 before, use the original branching block whenever referencing Vt .

For every application of SPT2(n, nt) with nt ∈ Vt(b) and any node n, let N be the
set of nodes collapsed into n. Add the nodes in N to the set of skipped nodes by the
other outgoing edges from branching node b. When n is the branching node n ≡ b or a
node that “contains“ b, only add the nodes collapsed into n after b.

∀no ∈ Vt(b) : Vskipped(< b, no >) = Vskipped(< b, no >) ∪N (2.1)

The list of skipped nodes for the edge b→ nt is now complete, so remove nt from the
set of branch targets Vt(b) = Vt(b) \ nt. When the set Vt(b) is empty, the list of skipped
nodes for all outgoing edges of branch b is complete.

Adapting Execution Conditions When all branch targets have been removed
Vt(b) ≡ ∅, Vskipped(n) contains the set of skipped nodes for every outgoing edge of the
branching node b, with target node n.

With the set of nodes skipped by an edge, one can think of executing the edge
E =< b, nto > as setting the skipped nodes execution conditions to false,

∀s∈Vskipped(nto) : σs = ⊥, as shown in Figure 2.5c.
Alternatively, whenever any of the execution conditions refers to σs where node s

is a node skipped by an edge E =< b, nto > branching from node b to the target node
nto, i.e. s ∈ Vskipped(E), replace σs by σs ∧ ¬(σb ∧ Cbnto). So, whenever σs would not
have been initialized because it was skipped by the edge E, the expression ¬(σb ∧Cbnto)
evaluates to false. In this case the conjunction with σs will always evaluate to false,
independent from the value of σs.
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Update Control Flow The control flow modification applied afterwards is very sim-
ilar to the one presented in Algorithm 2.1, with some additional handling of the now
preserved branches. When all the conditions are established, remove all edges except
loop-back edges and edges originating from input-data independent branches. Introduce
new edges so that the nodes are lined up in the order they got merged by SPT2. For
every application of SPT2(n1, n2) create an edge n1.nexit → n2.nenter.

Example In the example shown in Figure 2.5a the branching condition in node A is
considered being input-data independent, whereas the branching condition in node B is
input-data dependent.

Figure 2.5b shows the result of an application of the control-flow modification that
does not consider the input dependency of branches, as presented in Algorithm 2.1.
In contrast Figure 2.5c finally shows the result of the optimized transformation shown
in the previous paragraphs. The process of the execution-condition determination is
documented in Table 2.3.

A

B

C D

E

(a) Original CFG

A

B

C

D

E

(b) All branches removed

A

B

C

D

E

σB = ⊥

(c) Input-independent branch
preserved

Figure 2.5: Control-Flow modification with preserved branches

Without optimization Branch preserve optimization

σA > >
σB σA ∧ CAB σA ∧ CAB
σC (σA ∧ CAC) ∨ (σB ∧ CBC) (σA ∧ CAC) ∨ ((σB ∧ ¬(σA ∧ CAC)) ∧ CBC)

σD σB ∧ CBD (σB ∧ ¬(σA ∧ CAC)) ∧ CBD
σE (σC ∧ CCE) ∨ (σD ∧ CDE) (σC ∧ CCE) ∨ (σD ∧ CDE)

Table 2.3: Execution-conditions calculation for the example shown in Figure 2.5
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A

entry

E

B

C D

Figure 2.6: Control-Dependence Graph for the example shown in Figure 2.5a

Improved Application Order of SPT1 and SPT2 in case of Preserved Branches
To reduce the programs execution time it is beneficial to skip as many nodes as possible
with the branches that remain in the transformed program.

Again, assume an input-independent branch originating from node nbranch, with
Vt(nbranch) being the set of nodes targeted by this branch. Let n′branch be the node nbranch
or a collapsed node containing nbranch. Similarly let n′to be a node nto ∈ Vt(nbranch) or
a collapsed node containing nto. Let out(n) return the set of all outgoing edges of node
n. Eout = out(nbranch) denotes the set of outgoing edges from nbranch.

The nodes that may potentially be skipped by an edge e = nbranch → nto, are at
most all the nodes that are guaranteed not to be executed after the edge e was executed,
without executing nbranch again, i.e., they may be executed in a future loop iteration.
These nodes are a subset of the nodes that are control-dependent on nbranch. Skipping
any other nodes that may later on turn out to require execution would require the
introduction of additional back edges or additional executions of existing back edges.

The nodes that may be skipped are determined by the control dependencies in the
program. Several different forms to express control dependencies have been described
in the literature. The one that seams most convenient to determine the set of nodes
that may be skipped is the set cd as defined in [31] on page 464 to determine this set of
nodes. This set cd defines control dependencies on edges.

Vnx(n, e) is the set of nodes that may not be executed when edge e is executed to
leave node n. e is an outgoing edge of nbranch.

Vnx(e) =
⋃

eother∈out(n)\e
cd(eother), e =< n,m > (2.2)

In other words, when an outgoing edge e from some branching node is executed, all
other outgoing edges will not be executed. As a result all nodes that would require any
of the other outgoing edges being executed, will not be executed.
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Let Vsk(n) be the set of nodes that are skipped by all incoming edges to node n.

Vsk(n) =
⋂

e∈in(n)
Vnx(e) (2.3)

Whenever selecting nodes for an application of SPT2:
� Prefer n′′branch = SPT2(n

′
branch, nsk), nsk ∈ Vsk(n′branch) whenever possible.

� Otherwise try to apply n′branch = SPT2(n
′
branch, nt), nt ∈ Vt. Remove the edge

from Eout, recalculate Vsk. Prefer nt yielding maximal Vsk.

In Figure 2.6 the control-dependence graph for the example given in Figure 2.5a is
shown. For the detailed definition of control dependence see [10] on page 323.

When comparing the control-dependence graph given in Figure 2.6 to the conversion
result in Figure 2.5c one notices that only node B is skipped by the edge A → C.
Apparently this is only a very small subset of the set of nodes that are control-dependent
on node A, which is Cdep(A) = {B,C,D}. Figure 2.7 shows the result of applying SPT2
in an optimized order. The edge A → C is now skipping all nodes in C(A → B) ≡
{B,D}.

A

B

C

D

E

Figure 2.7: Improved application order of SPT2

Optimized Control-Flow Modifications in case of Preserved Branches

The applications of the transformation SPT2 impose a total order to all CFG nodes. The
unoptimized variant of the transformation shown in section 16 is generating a program
that executes all nodes in exactly this order. The control flow modification used in
case of preserved branches as described in the previous paragraphs introduces some
additional branches. The control-flow modification can take advantage of the additional
control flow branches which result from keeping input-data independent branches. In
the previous transformation variants the control flow was always transferred to the next
node in order, when a node was left. Since a node may now be skipped by the additional
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branches, occasionally it may be legal to transfer the control flow to a node further
away in node order. This is the case when the following node is targeted by one of the
additional branches in every case its execution is required.

Algorithm Modification When introducing the new edges in the application order of
SPT2(n1, n2) and n2 is one of the nodes targeted by an input-data independent branch,
for the first application with node n1, remember n1 and the original branching node b
and create the edge n1.nexit → n2.nenter as above.

For further applications of SPT2(o, p), with p being another target node of the branch
from n1, do not create the edge. Instead remember o. Note, there is already an edge
from b→ p, this is one of the unconditional branches that has not been removed before.

Check if node p may not be executed if the branch b → n2.nenter was executed, by
using control dependencies as done to determine Vsk in Formula 2.3. Repeat this check
in the order the nodes are connected until the first node nx, for which this condition
does not hold, is encountered. Create the edge o → nx. If the end of connected nodes
is reached, defer further checks until the node becomes connected to its successor. Also
consider nodes as connected when the connections get suppressed by this optimization.
Obviously here is another optimization opportunity by choosing the application order
of SPT2 in a way that maximizes the number of successive nodes that match the above
condition.

Example An example of this optimization is given in Figure 2.8a. This example is
slightly extended compared to the previous ones to illustrate the different handling of
input-data dependent and independent branches. The branch in node A is considered
input-data independent, the branch in node C is considered to depend on input-data.
Figure 2.8b shows the transformation result without the optimization described here.
The optimized result is depicted in Figure 2.8c. The edge D → E is replaced by the
optimized edge D → F because the node E ∈ Vsk(D).

2.3.3 Irreducible Control Flow

The transformation shown in Section 2.3.1 is only applicable to reducible control flows
as it is based on collapsibility and, as shown in section 5 of [18], only reducible graphs
are collapsible.

Many real programs are reducibly anyway. In the 1970s Allen [2] found, for 75
FORTRAN4 programs analyzed, that over 90% had reducible control-flows. Similarly
Knuth (see [23] on page 110) analyzed a random sample of 50 FORTRAN programs out
of 440 for reducibility, and found all of them to be reducible.

Fortunately, in a preprocessing step, every irreducible graph can be transformed into
a reducible one [44]. One approach to convert irreducible graphs into reducible ones is
based on node splitting.

4The IBM Mathematical FORmula TRANslating System
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(a) Original CFG, branch in
C is input-data independent

A

B

C

D

E

F

(b) Without optimization

A

B

C

D

E

F

(c) With optimization

Figure 2.8: Further reduction of executed nodes

Node Splitting A basic node splitting algorithm is described in [43] on page 817f.
An optimized variant generating fewer nodes is presented in [44]. There they also have
shown by the application of the optimized node splitting algorithm to several programs
that node splitting was increasing the size of the resulting code between 2% and 12%.
Whereby larger programs tended to show less relative growth.

Note however, that node splitting may come at the cost of an exponential growth in
graph size for certain graphs, as shown in [5].
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3.1 Dataflow

The goal of the SP-Transformation is to remove input-data dependent branches from the
program. Dataflow analysis allows the automated identification of these branches. Since
the purpose of the SP-transformation is to generate a program whose execution traces
are the same for each execution, input dependence in the sense of the SP-transformation
refers to data that may differ amongst executions. Branches that are based on these
data cause the execution trace to vary.

In the following a short overview over different program representations that can aid
dataflow analysis is given.
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3.1.1 Control Dependencies

During program execution, if a certain basic block is executed or not depends on the path
selected by control-flow branches executed earlier. A basic block is said to be control
dependent on those branches, which may affect the execution of this basic block.

Let G be a control flow graph. Let X and Y be nodes in G. Y is
control dependent on X iff

(1) there exists a directed path P from X to Y with any Z in P
(excluding X and Y) post-dominated by Y and

(2) X is not post-dominated by Y.

Definition of control dependence, from [10], page 323

Control dependencies can cause input dependencies as shown in the example in List-
ing 3.1. Assume x being input data. After execution of Listing 3.1 isEven holds a
truth value depending on the value of x, without directly using x to calculate the value.
Instead the two assignments to isEven are control dependent on the value of x.

1 bool isEven ;
2 i f ( x % 2 == 0)
3 isEven = true ;
4 e l s e
5 isEven = f a l s e ;

Listing 3.1: Control Dependence Example

Control-Dependence Graph

A control-dependence graph is a directed graph that contains vertices for each basic
block and an additional root vertex. Edges go from controlling basic blocks to control-
dependent basic blocks. Additional region nodes, as shown in [10], may summarize
common control conditions.

3.1.2 Data Dependencies

The effect of program statements may, and usually does, depend on input data. Also
statements may produce output data. Any two statements accessing the same data
location are data dependent. An overview over different types of representations that
may be used to represent data dependencies is given in the following paragraphs.

Dependence Graph

Dependence graphs [24] show dependence relations amongst program components. Be-
sides loop dependencies, the dependencies covered by this type of graphs are caused by
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read and write accesses to variables. For serially executed program statements, where
statement i is followed by statement j the following dependence types have been identi-
fied in [24] on page 209.

Dependence Types:
Output Dependent i and j write to the same variable.
Anti-Dependent i reads a variable written by j.
Flow Dependent A variable written by i is read by j, where no statement may

modify the variable between execution of i and j.
Input Dependent Both, i and j read the same variable.

A dependence graph is a directed graph with the program components as its vertices
and directed arcs for dependencies between them.

Program Dependence Graph

The Program Dependence Graph [10] combines data- and control-dependencies into a
single graph.

GSA-Form and the Program Dependence Web

The Program Dependence Web [30] is based on an SSA1 representation of the program.
It explicitly states control and data dependencies for each value calculated by adding
gating functions. Annotating a program with only a subset of these gating functions,
those corresponding to φ-functions in the SSA form, yields the GSA2 form.

Thinned Gated Single-Assignment

The Thinned Gated Single-Assignment [13] form is like GSA also based on the SSA
representation of a program, and extending that by gating functions. The TGSA3-form
is defined for any programs with a reducible CFG.

3.1.3 Alias Analysis

When a program is in SSA-form, direct data dependencies are usually obtainable by
querying the def-use chains. Def-Use chains allow to efficiently determine where the
variables used by an instruction may have been defined. An exact definition of def-
use chains can be found in [20]. The information of the input-dependence state of the
definitions is then combined to derive the input dependence for the use, as is shown later
on in Section 3.2.

When a program is not in pure SSA-form, as is the case for LLVM4s IR5, not all
data dependencies may be represented by def-use chains. In the case of LLVM arbitrary

1Static Single Assignment (form)
2Gated Single-Assignment
3Thinned Gated Single-Assignment [13]
4The LLVM-Project
5LLVM Intermediate-Representation
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memory access is possible by the use of the load and store instruction, as is described
in [27] on page 16. It is also possible to access memory locations that have not been
explicitly declared earlier in the program. The dataflow analysis presented later on still
requires to gather information about the data from these non-SSA memory locations.
This is done by linking load instructions to the store instructions that may have written
to the same memory location earlier by the use of alias analysis. Since alias analysis
has been shown to be undecidable in the general case [25], the analysis will usually
not be able to find the exact set of stores that may have created the value loaded at a
certain program point. In these cases a safe over estimation of store instructions will be
considered by the analysis implementation.

3.1.4 Benefits of Context-Sensitive Alias-Analysis

This section shows why the single-path transformation may benefit from context sensi-
tivity in the data-flow analysis used to determine input-data dependencies. The context
sensitivity may originate from the implementation of the data-flow analysis itself or from
the usage of a context-sensitive alias-analysis.

With the results of a context-sensitive data-flow analysis the SP-Transformation may
obtain differing input-data dependence information for differing call sites.

When context-sensitive results of the input-dependency analysis are available, the
execution time of the transformed program may benefit from using that information by
introducing branches that may skip parts of the code that would otherwise always be
executed after SP-Transformation.

1 void foo ( ) {
2 bar ( exprInDep ) ;
3 bar ( exprNonDep ) ;
4 }
5
6 void bar ( i n t cond i t i on ) {
7 i f ( cond i t i on ) { // input−dependent branch
8 e x p e n s i v e c a l c u l a t i o n ;
9 }

10 }

Listing 3.2: Example that may benefit from context-sensitive dataflow-analysis

1 void foo ( bool pcnd ) {
2 bar ( pcnd , exprInDep ) ;
3 bar ( pcnd , exprNonDep ) ;
4 }
5
6 void bar ( bool pcnd , i n t cond i t i on ) {
7 guard1 = pcnd ;
8 SP [expensive calculation ]〈pcnd ∧ condition〉〈2〉 ;
9 }

Listing 3.3: Result of applying the SP-transformation to the code from Listing 3.2
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The branch where context-sensitive data-flow analysis makes a difference when trans-
forming the code from Listing 3.2 is the branch in line 7. It is input-data dependent
when executing the call from line 2 and input-data independent when called from line
3, given that exprInDep is input-data dependent and exprNonDep is not.

In the following the effect of the single-path conversion to the execution trace of
function foo as given in Listing 3.2 is examined. The transformation result is given
in Listing3.3. When executing the function foo, with exprInDep and exprNonDep both
evaluating to false, the execution trace would be 2, 7, 3, 7 before the single-path transfor-
mation is applied and 2, 7, 8, 3, 7, 8 after the application of the SP-Transformation. Note
that before application of the single-path transformation the expensive calculation is not
executed and that after the single-path transformation expensive calculation would be
executed twice when only context-insensitive analysis-results are used. When the trans-
formation implementation regards the context-sensitive data-flow analysis results it is
able to create a program that has the run-time penalty of the SP-Transformation only
in case the argument is actually input-data dependent. The transformed program may
still contain the branch for the call with the input-independent argument exprNonDep.

Multiple Function Instances

As an optimization one could create different machine code that is used for different call
paths reflecting the differing input dependencies calculated for different call paths. The
result of applying this scheme to the example given in Listing 3.2 is shown in Listing
3.4.

This transformation could be added as a preprocessing step that does not interact
with the SP-transformation. The following example shows the application at source
level, but an implementation at the compilers IR level should also be possible.

To distinguish the function implementations generated for different sets of input-
dependencies a string encoding the input-dependencies is appended to the function
names.

To generate this string, first the list of all branches that are possibly input-data
dependent on any call path, but are known to be input-data independent on at least
one call path, is determined. When creating a function instance for a particular set of
input-dependent branches Bid, for each branch in the branch list, I is appended to the
function name if this branch is in Bid, otherwise N is appended.

27



1 void foo ( ) {
2 barI ( exprInDep ) ;
3 barN ( exprNonDep ) ;
4 }
5
6 void barI ( i n t cond i t i on ) {
7 i f ( cond i t i on ) { // input−dependent branch
8 e x p e n s i v e c a l c u l a t i o n ;
9 }

10 }
11
12 void barN ( i n t cond i t i on ) {
13 i f ( cond i t i on ) { //non input−dependent branch
14 e x p e n s i v e c a l c u l a t i o n ;
15 }
16 }

Listing 3.4: Example that may benefit from context-sensitive dataflow-analysis

1 void foo ( bool pcnd ) {
2 barI ( pcnd , exprInDep ) ;
3 barN ( pcnd , exprNonDep ) ;
4 }
5
6 void barI ( bool pcnd , i n t cond i t i on ) {
7 guard1 = pcnd ;
8 SP [expensive calculation ]〈pcnd ∧ condition〉〈2〉 ;
9 }

10
11 void barN ( bool pcnd , i n t cond i t i on ) {
12 i f ( cond i t i on ) { //non input−dependent branch
13 SP [expensive calculation ]〈pcnd〉〈2〉 ;
14 }
15 }

Listing 3.5: Result of applying the SP-transformation to the code from Listing 3.4

The execution trace for a call of the function foo as given in Listing 3.4 is now
compared to execution trace after the transformation. The resulting code from the SP-
transformation is shown in Listing 3.5. When exprInDep and exprNonDep both evaluate
to false the execution trace would be 2, 7, 13 before the single-path transformation
is applied and 2, 7, 8, 13 after application of the SP-Transformation. Note that the
expensive calculation from line 14 is not executed in this case.

Optimization To reduce the number of method instances, exclude branches that do
not result in runtime expensive code when SP-transformed from Bid and always SP-
transform these branches. Also it is possible to create multiple instances only for those
methods that appear most profitable. Possible measures for profitability may be the
loop nesting depth of the method calls or the runtime profile of a previous execution.
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Guarded Branches

As an alternative to the creation of multiple functions, it is possible to create branches
that are used in the input-independent case only. When the branch is input-dependent
predicated code would be used. Therefore it is necessary to distinguish if a branch is
input-data dependent or not during execution. Given that this property will change for
different executions of the same piece of code the input-dependency state is encoded
within the data.

In the example given in Listing 3.6 the function is augmented by an additional
parameter. This parameter carries the information if the sole branching instruction
should be considered input-data dependent or not. In this example a boolean value isID
is passed to the called function whose value is true if condition depends on input-data
and false if not. The code resulting from an application of the SP-Transformation is
shown in Listing 3.7.

At the call sites the value passed for this parameter will be chosen based on the
dependency state for the corresponding branch. Of course the input-data dependency
analysis requires to be implemented in a context-sensitive manner to yield differing result
for the individual call sites.

The set of input-dependent branches that may have parameters added to function
calls is the same than Bid in the previous paragraphs.

1 void foo ( ) {
2 bar ( true , exprInDep ) ;
3 bar ( f a l s e , exprNonDep ) ;
4 }
5
6 void bar ( bool isID , i n t cond i t i on ) {
7 i f ( i s ID | | cond i t i on ) { // cons ide r ed non input−dependent
8 i f ( cond i t i on ) { // input−dependent
9 e x p e n s i v e c a l c u l a t i o n ;

10 }
11 }
12 }

Listing 3.6: Example that may benefit from context-sensitive dataflow-analysis

1 void foo ( bool pcnd ) {
2 bar ( pcnd , true , exprInDep ) ;
3 bar ( pcnd , f a l s e , exprNonDep ) ;
4 }
5
6 void bar ( bool pcnd , bool isID , i n t cond i t i on ) {
7 i f ( i s ID | | cond i t i on ) { // cons ide r ed non input−dependent
8 guard1 = pcnd ;
9 SP [expensive calculation ]〈pcnd ∧ condition〉〈2〉 ;

10 }
11 }

Listing 3.7: Result of applying the SP-transformation to the code from Listing 3.6
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The execution trace for a call of the function foo after the transformation as given
in Listing 3.6 is now compared to execution trace before the transformation. When
exprInDep and exprNonDep again both evaluate to false the execution trace would be
2, 7, 8, 3, 7 before the single-path transformation is applied and 2, 7, 8, 9, 3, 7 after
the application of the SP-Transformation. Note that the expensive calculation is only
executed once. As a prerequisite it is required that the branch in line 7 has been preserved
by the SP-Transformation. This is possible by forcing it to be considered not input-data
dependent, regardless of its usage of the actually input dependent value condition.

3.2 Determining Input-Data Dependencies

To avoid the need of a manual attribution of each input-dependent branch in the pro-
gram dataflow analysis is used to derive the input-dependent branches from annotations
elsewhere in the program. This identification of input-dependent branches requires the
support of a dataflow analysis implementation. The still necessary annotations of input-
dependent data have to be placed in a manner that allows the dataflow analysis to derive
input-data dependency for all input-dependent branches. Ideally the dataflow analysis
is applied to the whole program, requiring annotations only at the program boundaries,
i.e., wherever input-dependent data first is processed by the program. When applying
the dataflow analysis to sub-portions of the program, e.g., on module level, the annota-
tions have to be placed at least at all source locations where input data enters the unit
of analysis.

This section describes the way used to determine which of the program’s branches
are input-data dependent and which are not.

The single-path transformation relies on the information which branches in the pro-
gram are input dependent and which are not. Therefore an iterative data-flow analysis
that determines for every instruction if it is dependent on input data has been imple-
mented.

3.2.1 Data-Flow Analysis

To determine which branches in a program depend on input data, an iterative data-
flow analysis at the level of the LLVM IR has been implemented. Within the LLVM
instruction set the only way to access data from the system memory, be it on the heap
or on the stack, is through usage of the load- and store instructions, as stated in [26],
section 3.4. With these instructions it is necessary to rely on alias-analysis to determine
possible data flows. This is because these memory accesses are not in SSA-form. The
remaining data flow, which is in SSA form, may be deduced from the def-use chains and
thus is a lot easier to handle.

The data-flow analysis is done in two steps. In a first step, detailed in paragraph
Summarizing the Effects of Function Execution, the effect of each function to the set of
input-data dependent memory locations is summarized. Building on these results in a
second step, presented in paragraph Iterative Analysis, the iterative data-flow analysis
is performed.
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The architecture of LLVM enables easy global/inter-procedural analysis and opti-
mization. For an overview description of LLVM’s architecture refer to [26], section 2.
Being able to do inter-procedural optimizations on the entire program was one of the
original design goals of LLVM. The enabling part for the inter-procedural data-flow
analysis is the LLVM linker which is provided with the LLVM set of tools. The LLVM
linker allows linking of some/all modules available in LLVM IR, yielding one large IR
module. The data-flow analysis is then performed on this linked module, thus avoiding
any references to external functions that may not have been analyzed before linking.

Summarizing the Effects of Function Execution

The effect that calling a function has to the set of possible input-data dependent memory
locations may be calculated once for each function. This calculation yields a mapping of
function inputs to function outputs. In detail it is mapping inputs to those outputs that
contain input-dependent data after function execution, when the input was input-data
dependent.

An algorithm that yields similar results is presented in [38] with the method
BackwardTabulateSLRPs(WorkList). To obtain the same result the algorithm presented
in the following can be executed once for every output of the analyzed function.

Analysis Order In the first analysis phase, the functions are evaluated in a bottom-
up order as imposed by the call graph. That means that functions that do not contain
function calls themselves are analyzed first. The current implementation does not sup-
port recursive function calls, which guarantees that the call graph is cycle free, so there
always exist functions that do not call any other functions. From these functions on the
call graph is processed towards the program entry, always analyzing functions that have
all their callees already analyzed.

Inputs of a function considered by this analysis:
� The parameters passed to the function
� Load instructions

Outputs are:
� The function’s return instructions
� Store instructions
� Arguments to calls of the functions ID and NID

The outputs that are in any case input-data dependent after a function call and those
that are known to be not input-data dependent after a function call are also part of the
analysis result. Those are stored in two sets separated from the other dependencies.
So there are not special input symbols representing always-ID and never-ID that these
outputs could depend on. And because both of these sets have the subsumption property
as described in section 3.1 of [37], there are no other dependencies for outputs that are
part of one of these two sets. Additionally, it is not possible for any output to be part
of both sets at the same time.
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Graphical Notation The graphs given in Figure 3.1a and 3.2a show the inputs to a
function on the top. The outputs are placed on the bottom. An edge from an input item
to an output item means that this output has to be considered input-data dependent if
the input may be input-data dependent. To keep the graphs simple, the outputs that are
known to be always input-data dependent are shown as if there was a special input item
true on which they depend. Any outputs that are known to not depend on any input
data after the function execution are placed amongst the outputs but they do not have
any incoming edges. Inputs that do not affect any outputs are not part of the graphs.

1 d e f i n e i 32 @ca l l e e ( i 32 %a , i 32 * %b){
2 entry :
3 %0 = load i32 * %b
4 %c a l l = c a l l i 32 @ ID ( i32 * %b)
5 %add = add nsw i32 %0, %a
6 r e t i 32 %add
7 }

Listing (3.8) Example Source to calculate a
dependency matrix

1 i n t c a l l e e ( i n t a , i n t * b) {
2 i n t r = *b ;
3 ID (b ) ;
4 re turn a + r ;
5 }

Listing (3.9) C-Source for Listing 3.8

input a

*b

b

ret %add

load %b

output ⊤

⊤

⊥
(a) Dependency matrix calculated for Listing 3.8

Figure 3.1: Dependency matrix example

When a function has been analyzed there is no need to analyze this function again
when another call to this function is encountered during creation of the dependency
matrix of another function. Instead, the previously determined dependency matrix for
the called function can be integrated by the application of simple rules. These rules
are similar to those used in the iterative dataflow analysis as described in paragraph
Function Calls, but instead of propagating input dependencies, the callee’s dependence
matrix is integrated into the caller’s dependency matrix. Figure 3.2a shows an example
combination of the dependency matrices.
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Dependency integration rules:
� Arguments passed to the callee are matched with the function parameters in

the callee’s dependency matrix.
� Load instructions in the callee are matched with any stores from the caller

that may alias to them.
� When the callee’s return value is used, the dependencies of all return instruc-

tions in the callee’s matrix are added as dependencies of the return value.
� All other entries from the callee’s dependency matrix are copied into the

currently calculated dependency matrix.

1 d e f i n e void @ca l l e r ( ) {
2 entry :
3 %c=c a l l @ca l l e e ( in t32 1 , i 32 * %gb )
4 s t o r e i 32 %c , i 32 * @gc
5 r e t void
6 }

Listing (3.10) Calling function example

1 i n t gb , gc ;
2 void c a l l e r ( ) {
3 gc = c a l l e e (1 , gb ) ;
4 }

Listing (3.11) C-Source for Listing 3.10

gb gc

b load b gca

*b ret add gc

*b c store @gc gc⊤

⊤

⊤

⊤

⊥
(a) Dependency matrix calculated for Listing 3.10

Figure 3.2: Combine dependency matrix example

Calculation In a first iteration over all instructions all the outputs of a function are
identified. These are the store and return instructions.

Then, for each of the outputs all instructions on which they may depend on are
identified. These may be operands that are directly accessible through the use-def chain,
or memory accesses yielding values that depend on previously executed store instructions
when either the stored value is input-data dependent, or the execution of the store
instruction itself is depending on some input data. The dependencies are located by
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iterating through the instruction stream and the call graph in reverse order until no
more dependencies can be determined.

When at least one of the dependencies is input-data dependent, it causes the output
instruction to be considered input-data dependent when the program flow passes the
analyzed function.

Arguments to function calls of ID() are placed in the always input-dependent set,
arguments to NID() in the never input-dependent set.

Function Calls Whenever a function call is encountered during the backward walk
through the CFG that means that this function may possibly be executed before the
instruction whose dependencies are currently determined. The already calculated de-
pendency information for this function is integrated into the dependency information
that is currently calculated.

Control Dependencies Branches that impose a control dependency to basic blocks
containing any of the output instruction, have all dependencies of these branch instruc-
tions added to the outputs. So, when a branch is input-data dependent, anything that
is in the outputs of any basic block that is control dependent on this branch is marked
input-data dependent.

Iterative Analysis

The second part of the dataflow analysis is implemented as an iterative worklist algo-
rithm. The basic principle for this class of algorithms is described in [21]. The analysis
implementation builds on the dependency matrices as described in paragraph Summariz-
ing the Effects of Function Execution earlier in this section, to efficiently handle function
calls.

Analysis Order To simplify the data-flow analysis, the programs supported by the
implemented data-flow analysis are not allowed to contain recursive function calls. As
a result the call graph is cycle free. The analysis starts at those functions that are not
called from any other functions within the current module. When this analysis is applied
to the whole program, after linking, this will usually be the program’s entry point. From
this top level function the analysis works down the call tree, always analyzing functions
that have all their callers already analyzed.

It is possible to analyze the individual modules before linking, but since there may,
and usually will, be function calls to functions within the analyzed module from some
external module, input-data dependencies originating from these function calls will not
be incorporated in the analysis result. As a result the analysis will underestimate the
input-data dependent program locations.

Whenever a function call is encountered, the dependency mapping from the bottom-
up analysis phase is used to determine how the function call would distribute the set of
input-data dependencies that have been determined up to this point. This part of the
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analysis phase requires some form of inter-procedural alias analysis. More details on this
topic can be found in paragraph Function Calls.

Results The result of this analysis phase is a mapping of each IR-instruction in the
program to an input-data dependence state. The analysis distinguishes 3 states of input-
data dependence which are shown in Figure 3.3.

Initially all instructions have their input-dependence state set to Unknown. The
analysis does then iteratively derive instructions that are known to not depend on input
data or that may depend on input data. The analysis is completed and stops iterating
when the input-data dependence states of all instructions have reached a fix-point, i.e.,
no more additional input dependencies can be determined.

Instructions for which it is not possible to derive an input-data dependence state,
these are the instructions still Unknown when the analysis terminates, can be assumed
to be input-data independent, given that all sources for input-data dependencies have
been annotated and the whole program has been analyzed.

Unknown

ID

NID

Figure 3.3: Hasse diagram of values applied during input-dependency analysis

The values from Figure 3.3 have the following interpretation:
ID May be input-data dependent.
Unknown May be either input-data dependent or not.
NID Known to not depend on any input data.

Note that the diagram given in Figure 3.3 differs by the additional value Unknown
from the similar Hasse diagram given in [11], Section 2.3. Although the meaning of ID6

and NID7 are the same as in [11]. The additional state Unknown has no effect on the
result of the analysis, because it is interpreted as NID when the analysis is complete. The
benefit of tracking the Unknown state is purely in aiding the analysis implementation
and debugging. So it is possible to distinguish values for which the analysis was able to
deduce that on all code paths the value is known to be input-data independent because
it only depends on constant values or values been annotated as input-data independent,
and values for which no input dependency could be found on any program path.

6Input-Dependent
7Non input-dependent
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Analyzing one Basic Block The dataflow analysis is modeled after the iterative
algorithm shown in [21] and [43] page 763ff. For each basic block B a set of memory
locations out[B], that may hold input-dependent data after block B has been executed,
is tracked. This set is initialized with the combined output of all predecessor blocks.

Let P be the set of predecessor blocks to B:

out[B] =
⋃
p∈P

out[p]

Iterating through all instructions, for each instruction in the block the appropriate
dataflow function is applied to determine the effect that the execution of the instruction
has on the state of input dependence. An instruction may cause additional input depen-
dences, called gen. The kill set summarizes program locations which are known to be
not input dependent after an instruction has executed.

The dataflow functions used in the iterative analysis must match the dataflow func-
tions used to create the dependency matrices as shown in paragraph Summarizing the
Effects of Function Execution earlier in this section. For the dataflow functions used to
analyze the LLVM IR see Section 3.2.3. For an instruction I the gen- and kill sets can
be derived by applying the appropriate dataflow function to this particular instruction.
Let S be input-dependence state before the instruction, S´ = f(S, I) the corresponding
gen-set is gen[I] = S´ \ S and the kill-set is kill[I] = S \ S´.

Gen Additions to the set of input-data dependent memory locations may be:
� Arguments to a call of the pseudo function ID().
� Target location of a store instruction, when the stored data may be input depen-

dent.
� Input-Dependent stores within called functions or any stores within a function, if

the execution of the function call itself is input dependent.

When a call of the function ID(id) is encountered, id is considered a memory location
that may carry input-dependent data from now on:

out[B] = out[B] ∪ id

Kill Entries removed from the set of input-data dependent memory locations are:
� Arguments to a call of the pseudo function NID() and any location currently in

the set that is known to must-alias the argument to NID().
� Target location and any must-alias locations of a store instruction, when the stored

data is not input dependent.

When a call to the function NID(nid) is encountered, nid is considered as a memory
location that does not carry input-dependent data from now on. From the set of input-
dependent locations nid and anything that is known to alias to nid is removed:

out[B] = out[B] \ (nid ∪ {a|a ∈ out[B] ∧mustalias(a, nid)})
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Function Calls Function calls are handled by integrating the information collected
during the first part of the analysis presented above.

When a function call is control dependent on input-dependent data any side effect of
the called function is added to current set of input dependencies. Even stores that are
known to write input-independent data.

When the execution of the function call is not depending on input data, anything
determined to be input-dependent in the intra-procedural analysis phase is added to
the input-data dependent set. For every output of the function dependency matrix it is
checked if any of the inputs is possibly input-data dependent. If so, this output is added
to the current input-data dependent set. The information about stores that are known
to store input-independent data is not used in the current implementation.

Propagation of Input Independencies up the Call Chain Currently no en-
tries are removed from the set of input-data dependent locations when stores of input-
independent data are executed within called functions. The reason for that is that none
of the inter-procedural alias-analysis available to the analysis implementation will ever
return always alias. Handling writes to global variables would be possible since global
memory locations may be uniquely identified across function boundaries without requir-
ing any alias analysis. Although this may be beneficial in some situations, it is not
implemented either. So calls to NID() inside functions are not propagated to the caller.
The calls to the annotation function NID() have to be repeated in the calling function’s
code to make it available to the data-flow analysis in the context of the calling functions.

Whenever the analysis passes a function-call instruction the dependency matrices,
which are calculated as described in paragraph Summarizing the Effects of Function
Execution earlier in this section, are integrated into the current output set.

Function Call Arguments For each function call, the arguments that may be input-
data dependent are collected. When a function is called more than once from within the
same caller function, all input-data dependent arguments are accumulated. When the
function is analyzed later on, each formal parameter that has one or more corresponding
arguments as part of the collected set is considered as input-data dependent.

Control Dependencies As soon as a branch is identified to be input-data dependent,
all its control-dependent basic blocks are identified. Every store instruction in these
blocks is then marked to be input-data dependent. Because they may not be executed
depending on some input-data, it is not important if the value stored by these instructions
is input-data dependent or not.

The same is true when the stores are part of functions that may be called from within
any of these basic blocks, either direct or indirectly. So all the function calls in these
basic blocks are evaluated as input dependent. This results in having all the callee’s
outputs added to the set out[B] of the calling basic block B. Luckily the function’s
dependency matrix already submerges the relevant information of all called sub-functions
so no additional processing is required.
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Finally φ-instructions may produce a value that depends on the branching instruc-
tion. These φ-instructions are identified by calculating parts of the TGSA-form as shown
in [13] and [14]. In TGSA, φ-instructions are replaced by one or more gating functions.
These gating functions do no longer depend on the incoming control-flow edge, but have
an explicit predicate that selects the value they produce. φ-instructions with more than
two incoming edges are replaced by a DAG8 of gating functions integrated into the CFG
at the appropriate control-flow join locations.

When the condition of the input-data dependent branch instruction is one of the
predicates used to build the TGSA gating functions that would replace a φ-node, this φ-
node is considered as input-data dependent. To determine if this is true for a particular
φ-instruction it is not necessary to completely build the DAG of gating functions. Instead
it is sufficient to calculate the set of selectors as described in [13], Section 4.2 and check
if one of those blocks is terminated by an input-dependent branch.

Loop termination Loops are considered as input-data dependent, when their iter-
ation count depends on input data. To determine if that holds for a particular loop
the predicates calculated for the TGSA’s η-nodes are examined. These predicates are
constructed by build loop predicate() shown in [13]. The result of this procedure is a γ-
DAG (stored in Loop.Exits) consisting of the conditions that contribute to the decision
to terminate the loop. When any of the conditions in this DAG is input-data dependent,
the loop is considered input-data dependent, which brings about that the appropriate
SP-transformation will be applied to this loop in a later transformation step.

Marking instructions As the result of this analysis each instruction in the program
is marked with one of 3 states reflecting its input-data dependency state. It may either
be unknown if an instruction is input-data dependent, an instruction may be known to
depend on input data or an instruction is known to not depend on input data. This
mark is the sole interface linking the result of the data-flow analysis to the subsequent
transformation passes.

3.2.2 Persisting Analysis Results

The SP data dependence analysis pass can store its analysis results along with the IR
by using metadata. This is necessary, because some of the single-path transformation
passes produce intermediate results that omit some control-flow information. E.g., some
branches are replaced by increments to the guard variable. It is therefore not possible
to derive the complete control-dependencies from the CFG after applying certain of the
single-path transformation passes. One could in theory determine the control dependen-
cies by analyzing the existing increments and decrements to the guard variable, but this
has not been implemented. Instead, the SP data dependence analysis pass supports the
argument -run-analysis, which instructs the pass to perform the data-dependency anal-
ysis and write the results to the metadata. All further usages of the SP data dependence

8Directed acyclic graph
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analysis pass, without this argument, do not perform any analysis at all. Instead the
result from a previous analysis run is read from the metadata.

Every instruction that depends on input data gets the metadata tag !IDD added.
Every non input-data dependent instruction lacks this tag.

All the single-path transformation passes expect these metadata tags in place, so any
of them has to be preceded by a run of the SP data dependence analysis pass along with
the -run-analysis argument.

3.2.3 Input-Data Dependency as an IFDS Problem

The determination of those branching conditions that are input-data dependent may be
achieved by solving an equivalent graph reachability problem. This is done by providing
problem-specific dataflow functions that allow the construction of a so-called supergraph
[37]. An analysis to a very similar problem to the input-data dependency analysis re-
quired for the SP-transformation has been done in [39] to identify program parts that
depend on user input. Their intention was to use the information gathered by this
analysis to further analyze the program for potential security vulnerabilities.

The approach of expressing inter-procedural dataflow analysis as graph reachability
problems has been presented in [37]. There they have formalized the IFDS9 framework
and also provided the Tabulate algorithm, in section 4, which efficiently solves this class
of problems. The key to being able to efficiently solve problems in the IFDS framework
is that the dataflow functions are in 2D 7→ 2D, with D being a finite set. Because the
dataflow functions in F are also required to distribute over the meet operator, i.e., the
greatest lower bound, it is possible to deduce summary functions by combining several of
the dataflow functions from F . Details why this is possible can be found in [37] on page
52f. The Tabulate algorithm is doing this whenever a function call is encountered. A
summary function combining all data-flow functions for the entire procedure is calculated
and stored in the set SummaryEdge. When further function calls to the same procedure
are encountered, these calculations do not have to be repeated. Instead, the application
of the summary function gives the same result. This is what makes this kind of analysis
efficient and applicable to solve inter-procedural problems.

9Interprocedural,Finite,Distributive,Subset [37]
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IP = (G∗, D, F,M,u)

An instance IP of an IFDS problem is formalized in Definition 2.4 on page 52 in [37]

G∗ being the programs supergraph.
D being the union set of inputs and outputs as described above.
F a set of distributive functions.
M maps the edges in G∗ to dataflow functions in F .
u the meet operator is union.

Advantage over the Current Implementation

Running the dataflow analysis described in Section 3.2.1 should yield exactly the same
results as the execution of the Tabulate algorithm shown in [37], whereby the later
algorithm will show a better runtime behavior in cases where not all inputs to a function
are input-data dependent. The Tabulate algorithm calculates the reachable outputs of
a function for a given function input whenever this function input has been determined
reachable from the program entry. The results of this calculation are then stored into
the SummaryEdge Set. Any further function invocations of this function, with this
particular function input being reachable, do not require further calculation, instead the
results from the SummaryEdge Set are reused.

The implementation described above creates dependence matrices similar to those
described in Section 3.2.1 that store the same information, but with the notable difference
that these are calculated in advance to the main part of the analysis for all inputs of
any function in the program. The Tabulate algorithm would only have to calculate the
dependencies for inputs that are reachable for at least one invocation of a function.
Function inputs that are not reachable, i.e., not input-data dependent in the context of
the SP data dependence analysis, on any invocation of that function would never have
their effects on the function outputs calculated.

Given that the dependence-matrix calculation as described in Section 3.2.1 is imple-
mented in a bottom-up way, i.e., is determining for a given output of a function all the
inputs that may cause it being considered input-data dependent, it is not possible to
defer the calculation until a particular input is determined input-data dependent.

Dataflow Functions representing LLVM Instructions

In this section the dataflow functions for the LLVM-IR instructions are shown. These
functions reflect how the execution of one of these instructions distribute input-data
dependent values in the systems variable space and memory.

All functions are in 2D 7→ 2D and following the notation in [37], S denotes a subset
of 2D. The functions mayalias(p) and mustalias(p) are required to return a subset of
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2D that contains all memory locations that may/must alias to p. Note that in any case
p is part of the returned set. The function controlling(inst) returns the set of branching
conditions controlling the execution of the instruction inst, which again is a subset of 2D.
Further C is used as a shorthand for the branching conditions controlling the execution
of the current instruction.

Common Instructions For every LLVM instruction that is not explicitly listed below,
the dataflow function is combining the instruction operands and control dependencies:

S = S ∪ operands(inst) ∪ C

call void @ ID(<ty>* %p) Calls to the marker function ID are used to annotate
input-data dependent memory locations in the source code:

S = S ∪mayalias(p) ∪ C

call void @ NID(<ty>* %p) Calls to the marker function NID are used to anno-
tate memory locations that should be treated as input-data independent:

S = (S ∪ C) \mustalias(p)

store <ty> %v, <ty>* %p Store instructions may generate memory locations
containing input-data dependent values by storing an input-data dependent value or by
writing to an input-data dependent storage location :

S =

{
S ∪mayalias(p) ∪ C , if (v ∈ S) ∨ (p ∈ S)

S ∪ C , otherwise

<ty> %v = load <ty>* %p The value returned by a load instruction is considered
input dependent when a potentially aliasing store instruction may earlier have written
an input-data dependent value, or when the memory location to load from is input-data
dependent:

S =

{
S ∪ v ∪ C , if (p ∈ S) ∨ (mayalials(p) ∩ S 6= ∅)
S ∪ C , otherwise

<ty> %v = phi <ty> [ <val0>, <label0>], ... The value defined by a phi
instruction is considered input-data dependent, when at least one of the alternatives is
input-data dependent, or when the input value chosen is influenced by input data.

As a side note I’d like to state, that in this case there is no precision loss through the
usage of SSA form. [29], Section 6 shows there could be, when only the incoming values
of a phi instruction are considered and the control dependencies selecting the input value
are not considered.

S =

{
S ∪ v ∪ C , if (

⋃
n=0→N (valn) ∪ controlling(φ-inst)) ∩ S 6= ∅

S ∪ C , otherwise
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3.3 Annotations

This section shows how source-level annotations are used to provide loop-iteration bounds
to the SP-transformation. Further the annotations used to annotate the entries of input
data into the program are described. These annotations are required by the SP data
dependence analysis to identify the input-data dependent branches in the program.

3.3.1 Input-Data Dependencies

To indicate which memory locations contain input data and which do not, the calls to
two marker functions are evaluated during the single-path transformation.

1 void ID ( void * p) ;
2 void NID( void * p) ;

Listing 3.12: Function prototypes to annotate input data

A call to the function ID, with a pointer p passed as the first argument, has the data
in the memory location pointed by p considered input-data dependent. Any branches
depending on data from this memory location will be transformed during the single-path
transformation.

Memory locations that are known to not contain data that depends on input data can
be attributed with calls to NID. In the current implementation any NID annotation
is not propagated to the callers of a function. Therefore it may be necessary to declare
a single memory location being input-data independent in several places.

3.3.2 Loop Bounds

A comparison of languages that are used to annotate loop bounds and other properties
used in WCET determination is done in [22].

The annotation approach implemented is using annotation function calls. These
calls to the annotation functions are manually placed to prepare the C source code
for SP-transformation. Because these function calls are placed within the source code
they are relatively easy to add and maintain. A benefit of this type of annotation is
that the implementation does not require any modifications to the C-frontend. The
annotation functions are compiled as any other function call would be. The evaluation
of the annotation function calls is done entirely on IR-level, where most of the single-
path transformation is done anyway. When the annotation calls are no longer required,
these function calls are removed from the programs IR.

When the single-path transformation encounters a loop with a possibly input-data
dependent iteration count but no loop-bound annotation, the file name and line number
of the loop’s source-code is reported in an error message, making it obvious where further
loop-bound annotations are required.

Loop bounds are attributed as calls to the function LOOP BOUND. This call is
placed right in front of the loop it belongs to.

The LOOP BOUND function declaration is expected to match:
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1 void LOOP BOUND( unsinged i n t bound ) ;

Listing 3.13: Function prototype to annotate loop bounds

The LOOP BOUND call is matched to a loop by walking up the chain of immediate-
dominator blocks of the loop header. The instructions in each of these dominator blocks
are scanned for a LOOP BOUND call. Searching for the loop bound stops when either
a loop-bound is found or when the immediate-dominator blocks belongs to another loop
than the one containing the loop-header from which the search started.

During the execution of the SP-transformed program, the argument to LOOP BOUND
is evaluated once before the loop is entered. The constant bound returned by the func-
tion is then used to initialize a loop counter. This approach has been chosen because
it is relatively easy to implement and also easy to debug. However it requires that the
loop bound is calculated before the loop is entered.

Alternative approach

This section shows an alternate approach to loop-iteration bound annotations than the
one implemented and shown in Section 3.3.2. Using this kind of annotation it would be
possible to specify a loop bound that is determined iteratively. The single-path transfor-
mation in its current implemented does currently not support this type of annotation,
but they may be a useful extension.

1 void LOOP BOUND IT( bool belowBound ) ;

Listing 3.14: Function prototype to annotate loop bounds that are determined iteratively

The argument belowBound reflects if the number of loop iterations performed to the
current point of time is below the loop-iteration bound as it may be determined from
input-data independent information. The argument to LOOP BOUND IT would be
evaluated once before every loop iteration. The evaluation result would determine if a
further loop iteration has to be performed or if the loop is terminated since the loop
bound is hit. To keep the single-path property, in SP-code the loop has to be iterated
even when it has is already logically terminated. With these iterations the evaluation
of the LOOP BOUND IT argument has to take place. One has to take care that the
evaluation of the loop-bound argument does not have any side effects modifying the
program’s behavior.

Listings 3.15 and 3.16 illustrate the usage of LOOP BOUND and LOOP BOUND IT.
This example is a slightly modified version of the example code used in [34]. It performs
a binary search on an array of sorted integers. It assumes that a constant SIZE giving
an upper bound for the parameter size is available.
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1 i n t search ( i n t k , i n t a [ ] , i n t s i z e )
2 {
3 i n t l = 0 , r = s i z e −1, idx , inc ;
4
5 LOOP BOUND( log2 ( SIZE ) + 1 ) ;
6 whi l e ( r >= l ) {
7 idx = ( r + l ) >> 1 ;
8 i f ( a [ idx ] == k )
9 return idx ;

10 r = ( k < a [ idx ] ? idx−1 : r ) ;
11 l = ( k > a [ idx ] ? idx+1 : l ) ;
12 }
13
14 return −1; // not found
15 }

Listing 3.15: Example loop with a bound
annotation

1 i n t search ( i n t k , i n t a [ ] , i n t s i z e )
2 {
3 i n t l = 0 , r = s i z e −1, idx , inc ;
4 i n t bound = SIZE<<1;
5
6 whi l e ( r >= l ) {
7 LOOP BOUND IT( ( bound>>=1)>0);
8 idx = ( r + l ) >> 1 ;
9 i f ( a [ idx ] == k )

10 return idx ;
11 r = ( k < a [ idx ] ? idx−1 : r ) ;
12 l = ( k > a [ idx ] ? idx+1 : l ) ;
13 }
14
15 return −1; // not found
16 }

Listing 3.16: Bound annotation that is
evaluated iteratively

3.3.3 Functions to Ignore

Specific functions can be attributed so that they are ignored by the single-path trans-
formation. This is done by adding sp ignore to the function attributes. Clang, one of
LLVMs C frontends, has been modified to understand this attribute. It is passing this
attribute throughout the compilation stack so that it ends up as an additional function
attribute in the LLVM-IR.

Functions with this attribute are ignored during the data-flow analysis used to deter-
mine the input-data dependencies. Nevertheless these functions may contain instructions
that store input-data dependent values. To ensure that the remaining analysis steps cor-
rectly assume that these memory locations hold input dependent data, some additional
annotations may be required.
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4.1 Transformation Overview

This chapter describes the implementation of the SP-transformation in detail. At first
the handling of guard variables is shown in Section 4.1.1. The individual transformation
steps described later on rely on this guard variable. The actual SP-transformation is
split in 3 parts, described in the Sections 4.2, 4.3 and 4.4. Finally the modifications done
to the code generation phase of the compilation process are shown in Section 4.5.

phi vs. φ The transformation and its accompanying analyses, which are described
here, work, among others, on the SSA representation of a program. The transformation
implementation is working with LLVMs IR which is also based on SSA form.

Throughout this document when referring to the general concept of SSA, φ is used.
When referring to the phi instruction that is part of LLVM’s IR, the word phi is used
instead.

4.1.1 Execution Guard

In the process of the SP-transformation a large number of conditions are determined,
which determine the execution of individual basic blocks. As it is later shown in Section
4.3.4 not all of these conditions have to be stored individually. Instead the condition
portion that does not change over a SESE1-region may be extracted into its own variable.
Further it is not required to store the conditions for each section separately. Since SESE-
regions may not interleave, one storage location is sufficient as long as it is updated at
the SESE-region’s boundaries. This single storage location is called the guard or guard
variable here.

Comparison of Storage Locations

The guarding variable will be frequently accessed by the SP-transformed program since
it has to be updated on every input-dependent branch in the program. Further it is
used to determine if input-dependent instructions should execute. Therefore the storage
location of the guard variable will affect the runtime of the transformed program. In the
following paragraphs the advantages and disadvantages of 3 different potential storage
locations are evaluated. The current implementation provides support for switching
between storage in a global variable and on the application’s stack memory.
Memory location types that may hold the guard value:

� Global Variable
� Stack
� Register

Global Variable Storing the guarding value in a global variable results in the ex-
ecution of many unnecessary load and store instructions because the common LLVM

1Single-Entry, Single-Exit
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transformation passes may not completely optimize them away. Additional, before exe-
cuting these load and store instructions, the address of the memory location containing
the guard value must be loaded. A pointer to the global variable does not have to be
passed with function calls, since global variables are also accessible, by name, from within
the called function. Function signatures do not require any modification when passing
the guard value in a global variable. During execution, functions may update the guard
value at control flow branches to reflect the truth value of the branching condition. Any
functions must restore the guard value when they return, since the value may be used
by the calling function later on.

Stack Access to a stack variable may be faster, since stack offsets are smaller and
may not require to be explicitly loaded into a register. Stack accesses are subject
to optimization by LLVM’s optimization pass PromoteMemorytoRegister or calls to
PromoteMemToReg. These optimizations may completely eliminate certain memory
accesses, e.g., by keeping the guard value in a register when appropriate. When the guard
value is located on the function’s stack, it needs to be passed to any callee’s requiring
that value. It may be passed either as a parameter to called functions or otherwise in a
global variable, if the function signature should not be modified. The called function is
not required to restore guard value before it returns, because the callee is operating on
a copy of the guard value.

Register One of the general-purpose registers could be reserved to hold the guard
value. In this case the entire remaining code must never modify the guard register.
Within the LLVM compilation architecture this could be achieved by modifying the
hardware description used to generate the machine-code generator. The generated code
would then be no longer ABI2 compatible, if the code is generated by another compiler,
which is not aware of this reserved register. Accessing the guard register would always
be fast since there is never a requirement to access any memory. As with global variables
any called functions will have to restore the guard value before they return, or the caller
has to create a duplicate. Reserving one of the general-purpose registers would result in
increased register spilling in non-guarding code due to the reduced number of available
registers.

4.2 Loops

Single-Path code guarantees that every program execution produces exactly the same ex-
ecution trace. This section covers the analysis and transformation necessary to guarantee
the same execution traces with the existence of loops within the transformed program.

For loops that depend on input data, some kind of modification is required to guar-
antee input-data independent execution traces. This requirement is known since the
first publications on single-path execution [35]. Also the basic transformation required

2Application Binary Interface
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to guarantee input-data independent execution traces with loops has been described in
[35], Section 3.3. The approach taken there was to convert the loop into one with a con-
stant trip count and adding an additional condition to the loop body that represents if
the original loop would already have terminated. Later it turned out that it is sufficient
to use an input-independent iteration counter instead of a constant one [36], p. 385.

For a loop, to yield the same execution trace for several invocations, it is required to
perform the exact same number of loop iterations. Also each iteration has to execute the
same back edge as the matching iteration in an earlier or subsequent program execution.
Finally the executed exit edge has to match across executions.

4.2.1 Notations

The following paragraphs give a short description of the notations used when describing
loops. They are mostly from [2], [17] and [16], page 374.
Loop is a closed path in the CFG.
Loop Header is the unique entry node to a natural loop.
Pre-Header is a CFG node originating the unique edge from outside the loop to the

loop header.
Loop Latch is a node in the loop which has the loop header as its immediate successor.
Entry Edge is an edge from a node not part of the loop to a node that is part of the

loop. In reducible loops the only valid target node for an entry edge is the loop
header.

Entry Node is a node in the loop with an immediate predecessor that is not part of
the loop. For natural loops the unique entry node is called the loop header.

Exit Edge is an edge from a node within the loop to a node outside the loop. The
originating node of an exit edge is called exiting node, the target node is called
exit node.

Exiting Node is a node that is part of a loop and originates at least one edge targeting
another node, an exit node that is not part of the loop.

Exit Node is a node not part of a certain loop that is targeted by an edge originating
from another node, an exiting node, which is part of the loop.

Back Edge is a control-flow edge from a block contained in the loop to the loop header.
With reducible flow graphs the set of loop back edges can be unambiguously iden-
tified [16]. Removing the set of back-edges from the control-flow graph leaves a
DAG.
The basic blocks which are part of a natural loop are determined by the back edge.
The loop consists of all nodes dominated by the loop header for which a path exists
that contains the back edge but does not contain the loop header.

Single-Entry Loop is a cycle in the CFG with a single-entry node that dominates all
other nodes in the cycle. In a reducible flow graph, any cycle is a single-entry loop.
A single-entry loop consists of one or more natural loops.

Natural Loop is a loop which is defined by a single back edge. Several natural loops
may share the same loop header node.
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Natural loops are loops with a single entry block, the loop header, and have one
back edge from a block within the loop to the loop header. The entry block is
dominating all blocks within the loop. A detailed definition for natural loops can
be found in [43] on page 738 and also in [16] on page 374.

Irreducible Loop is a loop for which edges exist that originate from outside the loop
and target blocks in the loop.
Such non-natural loop cycles can occur only in irreducible flow graphs [2]. The
control flow enters irreducible loops through more than one entry block. The set
of back edges in the CFG is no longer unambiguous.

4.2.2 Input Dependency of Loops

This section describes how input-dependent loops are identified. Further details on
input-data dependency can be found in Section 3.1.

The key property of a single-path program is the fact that its execution trace is
always the same [35], regardless of the input data provided to the program. So the goal
of this analysis is to identify those loops, whose execution trace depend on any input
data. Those loops are called input-data dependent or input dependent for short.

For the purpose of single-path code generation a loop is considered as input depen-
dent, when the loop termination depends on input data. This is the case, when at
least one branch leaving the loop is input dependent. Any other branches are handled
separately as described in Section 4.3.

As with any branch, data and control dependencies have to be considered when
determining the state of input-data dependence for one of the loop exiting branches.

As noted in [10] on page 323, the decisions leading to the termination of a loop form
a strongly connected region in the control-dependence graph. Since control dependencies
propagate input-data dependencies, as described in Section 3.2.1, when the execution
of one of the loop exits is input-data dependent, all other exits of this loop will also be
considered input-data dependent by the analysis described in this section.

Iteration Branches

A possible approach to find input-dependent loops is to identify the iteration branches
for a loop with the algorithm described in [15], Section 2.1. Iteration branches are the
branches, which affect the number of loop iterations.

A loop is considered input dependent, when at least one of the iteration branches
depends on input data. The iteration branches identified by this algorithm do not only
contain loop exiting branches, but also branches that control the execution of these bran-
ches. In [15] this set of branches is used to calculate bounds for the loop iteration count.
The same set of branches can be used to show the input dependence of the iteration
bound by showing that any one of the branch conditions is input-data dependent. The
set of iteration branches consists of the loop exiting branches and their control depen-
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dencies within the loop. As noted in [10], page 323 these are the control dependencies
forming an SCR3 in the CFG.

TGSA to detect input-dependent loops

Using the information provided by TGSA [13] simplifies the identification of input-
dependent loops by providing additional information compared to the SSA represen-
tation. TGSA annotates SSA by replacing the φ-instructions with any of the pseudo
assignments γ, µ and η that carry additional information. The pseudo assignment’s type
is determined by the control flow as listed in the table below:
TGSAs pseudo-assignment placement:

γ : at control-flow joins of forward edges.
They do, as ordinary φ nodes, hold a list of values from which one is selected.
In addition a predicate is stated that determines which of the values is se-
lected. With φ nodes one would have to analyze the control dependencies to
obtain the information contained in this predicate.

µ : at the loop header, for values that may be modified during iterations.
These assignments select an initial value when the loop is entered at first and
a loop computed value for each additional iteration.

η : at loop exit nodes, passing values calculated inside the loop out.
These instructions make, in addition to ordinary SSA form, explicit which
values are produced by a loop.

With TGSA form the control dependence of the loop header on the exit conditions
is not considered in the µ nodes placed in the loop header. I.e., µ nodes do not take into
account if the loop is terminated. In fact the µ assignments do not contain any predicate
at all. Instead any value that leaves the loop is passed to a η assignment at the loop-exit
nodes. The η node has the loop termination predicate as its sole predicate, describing
which value is produced within the loop when the loop is terminated. This predicate is
the inverse of the predicate required for execution of the loop back edge. It is the root
of a DAG of γ assignments controlling the number of loop iterations. When at least one
of the conditions in this predicate DAG is input dependent, the loop is considered input
dependent.

4.2.3 Iteration Bounds

To guarantee that the control flow of the transformed program has the same execution
trace regardless of input data, the loop-iteration counts have to be the same amongst
executions. Therefore, for loops that have been identified as having their iteration count
depending on input data by the dataflow analysis as described in Section 4.2.2, an
iteration bound is required. This iteration bound, sometimes also called loop bound,
must not depend on input data. Also it must not be lower than the iteration count
of the loop would be, for any valid input data. This iteration bound is used by the
SP-transformation to iterate the loop. Details about this part of the transformation can

3Strongly Connected Region
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be found in Section 4.2.4. In the following paragraphs two approaches to determine loop
bounds are described.

Annotations

The current implementation of the SP-transformation relies solely on source code anno-
tations that specify the iteration bounds. Details about these annotations can be found
in Section 3.3.2.

Automatic deduction

For certain programs it is possible to automatically deduce loop bounds. The current
implementation does not implement nor use automatic loop bound deduction.

4.2.4 Transformation

This section describes how the current implementation of the SP-transformation trans-
forms loops.

Transformation Scope

The scope of the transformation of a single loop starts at the loop header and ends at the
basic block at which the control flow rejoins all edges leaving the loop. That means that
the transformation is applied to a sub portion of the CFG dominated by the loop header
and post dominated by the control-flow join-block. This clearly may contain some nodes
that are not part of the loop itself. The handling of these nodes is described later on.
The existence of such a control-flow joining node can be guaranteed after running the
Unify function exit nodes pass as provided by LLVM, which guarantees that there is
a unique basic block terminating the function. At least at this unique exit block, the
control flow will rejoin.

l

a

b

Figure 4.1: Unsup-
ported Control Flow

The current implementation of the transformation requires
that all control-flow paths originating from a certain loop, i.e.,
all paths starting with one of the loop’s exiting edges, rejoin at
a single basic block. Within reducible flow graphs it is however
possible, that not all control-flow paths join at the same basic-
block when there are more than 2 different paths exiting the
loop. An example for this type of control flow is given in Figure
4.1.

The current implementation does not support this type of
control-flow layout. Instead it requires that all control-flow paths
started by the exiting edges of one loop, rejoin at a single basic
block. Handling this kind of control flow requires the introduc-
tion of an additional condition, that would be set to true when the control follows a
control-flow path that joins early. This condition would then be used to control the
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execution of the basic blocks these code paths have in common, up to the point where
the remaining control-flow paths join.

To find the node where the control flow rejoins, the post-dominance relation is used.
Starting from the loop header the first post dominator, which is not part of the loop, is
searched for, by walking the chain of immediate post dominators.

C Break Statements This paragraph shows why the restriction that all control paths
leaving a loop have to rejoin at the same block still allows the transformation of a large
portion of programs written in the C programming language.

The basic blocks, which lie outside of the loop, are usually generated by the usage of
break statement within the C programming language. These basic blocks contain code
for the instructions that immediately precede the break statement up to any control
statement allowing a further loop iteration. A loop can contain several break statements.
Each may post dominate several instructions in one or more basic blocks that are not
part of the loop. But for every execution of the loop at most one of the break statements
can be executed and, given the structured nature of the C programming language, each
of them has independent code as long as one does not add goto instructions branching
into the code preceding the break statements. As a consequence the C-compiler has no
reason to create branches between the different loop-exiting paths.

Standalone Transformation of Loops The nodes dominated by the loop header
and post dominated by the control-flow joining node form the scope on which the loop
transformation works.

The nodes in a flow graph can be split into disjoint regions. An algorithm therefor is
the interval construction as described in [6], [1] and [18]. To simplify program transfor-
mation it is, for certain transformations, possible to not transform the entire program at
once but apply transformations to the individual intervals and merge the transformation
results.

When a CFG is reducible, performing a reducibility test based on intervals as de-
scribed in [6] page 442ff and [1], at some point a maximal interval will be created with
the loop header being the interval header that contains at least all these basic blocks,
either directly or as part of already reduced nodes. The interval must contain all nodes
belonging to the loop started by the interval header when the flow graph is reducible,
since the loop header dominates all blocks in a loop and an interval contains all nodes
dominated by the interval header. Also the loop started by the interval header is the
only loop that may be directly included in the interval, since other loops would not
be included in interval construction, but start their own intervals. Other loops may of
course be part of previously reduced intervals. Additionally the interval may contain
some nodes outside of the currently handled loop, which do not need any processing
when transforming the loop.

The interval based reducibility test is, at the outer level, merging graph nodes into
intervals. Further applications of the interval construction merge graph nodes and pre-
viously constructed intervals. Every loop in the CFG results in the creation of its own
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interval. So, in reducible CFGs the transformation can handle every loop without ever
having to consider more than one loop at a time. Therefore it is required to handle al-
ready transformed intervals where the reducibility test would include an already reduced
interval. The transformation could have been applied to the included interval before.
Basic blocks in an interval that do not belong to the loop started by the interval header,
are handled as described in the previous paragraph about C Break Statements.

Transformation Overview

In this section the effects of an application of the loop transformation are presented
exemplarily. The exact steps taken in the course of this transformation are described in
the following subsections. The transformations are shown based on the SSA form, since
the implementation works with the LLVM IR which is in SSA form.

Figure 4.2 shows the scheme used by the current implementation to transform loops
into SP-code. Figure 4.2a shows the loop before the transformation is applied. This
example assumes, that this loop has previously been identified as input dependent by
the dataflow analysis as described in Section 4.2.2.

The entire graph shown in Figure 4.2a will usually be a subgraph of some larger CFG.
These outer CFG parts are omitted in this example, because anything outside does not
influence the transformation. Likewise do the elliptic nodes in Figure 4.2a denote entire
subgraphs that may also contain further loops. These subgraphs may be independently
transformed. The rectangular graph nodes represent, as usual, single basic blocks.

The natural loop shown in Figure 4.2a consists of the loop-header block header, the
loop’s latch block latch and the back edge latch → header. The remainder of the loop
is shown as loop body, a subgraph whose actual structure is not important to the loop
transformation. To clarify which parts of the CFG belong to the loop, these parts are
surrounded by an additional box.

Program parts that are transformed with the loop transformation, but are not part
of the natural loop induced by the back edge latch → header, are the subgraphs
sub break1, sub break2 and sub break3. Their names reflect the fact that in the C-
programming language, code immediately before a break statement is compiled into
such CFG structures. The edges ending at the subgraphs sub break1, sub break2 and
sub break3 are the exiting edges of the loop in this example. Figure 4.2a depicts that the
transformation has to expect exiting edges from each part of the loop. Additionally to
the edges shown in this example, each of them may originate several loop-exiting edges.
How the loop transformation handles this type of control flow is shown in detail in the
previous paragraph C Break Statements.

The conversion is done in several steps which are described in the following sections.
Before any transformation is carried out, the loop is prepared so that the CFG meets
the general expectations of the subsequent transformation steps.

The description of these preparations is separated in several parts which follow in the
next paragraphs. At first the introduction of an input-data independent loop counter is
shown. Then the removal of the loop-exiting edges, which caused the original loop to
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join

sub break1

header

sub break2

sub break3

sub loop

latch

(a) Example loop before the SP-
transformation

⇒

header

sub loop

guard == 0

guard == 0

guard–

guard–

guard–

guard–

guard == 0

pre-header:
counter := max iterations

sub break1

sub break2

sub break3

guard += 3

join

guard = 2

guard = 1

dec counter

latch

guard = 1

guard = 2

guard = 3

[guard != 0]

[guard != 0]

(b) SP-transformation applied to the loop from Fig-
ure 4.2a

Figure 4.2: Transformation of natural loops
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be considered input-data dependent, is explained in detail. Finally the transformation
procedure required to create valid phi instructions for the modified CFG is described.

Preparing the Loop

This section describes the preparing steps that are required prior to applying the trans-
formations shown in the subsequent sections. Transformations that should be avoided
before the loop transformation are shown in the following paragraph Notes on Loop
Preparation.

Pre-header A loop pre-header block with a single outgoing edge to the loop header
is required. The pre-header block is the only predecessor of the loop header that is not
part of the loop, i.e., the pre-header has to be the only block entering the loop. If such a
block is already part of the CFG, the CFG remains unmodified. If no such block exists
a new block is created, as done with node p in Figure 4.3b. The pre-header block is
used by the loop transformation to add additional initialization code that needs to be
executed once before the loop is entered.

Back edge The loop is required to have exactly one back edge after preparation. A
single-entry loop may have several back edges targeting the same header block. That
means, there are several natural loops sharing the same header node. It is always possible
to condense them into a single natural loop by introducing a new latch node, re-target
all back edges to this new latch node and introduce a new back edge from the latch node
to the loop header. An example for such a new latch node is node l in Figure 4.3b.

a

h

b

(a) Loop before preparation

⇒ a

p

b

l

h

(b) Unified back edge, pre-
header inserted

Figure 4.3: Preparation prior to loop transformation

Introduction of an Input-Independent Loop Counter

When the number of iterations of a loop depends on input data, it is rewritten in a way
that the loop iteration count is no longer input dependent.

The requirement for an input-data independent iteration count with SP-programs is
described earlier in Section 4.2.3 in the paragraph Iteration Bounds. The exact type of
transformation that may be applied to loops depends on the way the iteration bound is
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specified. In the current implementation the only supported way to provide loop bounds
is through annotations as described in Section 3.3.2. The transformation described here
requires exactly this kind of loop-bound annotation.

Further, the loop is assumed to have been prepared as previously described in the
paragraph Preparing the Loop. The loop bound provided by the annotation is required
to evaluate to a positive, input-data independent, integer value.

Figure 4.4a shows the effect to the CFG when applying the loop transformation as
currently implemented to the loop from Figure 4.3b.

In the pre-header block the parameter to LOOP BOUND is evaluated and assigned
to the SSA variable bound. The loop-header block is prefixed by a new φ-instruction
that is initialized with the value of the bound variable and decremented by one on
each loop iteration. This φ-instruction is the new, input-data independent, loop counter
determining the number of loop iterations. The sole loop-back edge is split to integrate
a new basic block, called check, into each loop cycle. Within this block the value of the
loop counter is checked and, as long it has not reached zero, the control flow branches to
the loop header. If the loop counter has reached zero, the loop is left. The exact block to
branch in this case is determined as described in paragraph Handling Loop Termination.

Figure 4.4b shows an alternative transformation scheme for loops, which differs from
the currently implemented one by checking the loop counter before the first iteration.
Applying this modified transformation would be beneficial for loops which are known to
occasionally not iterate at all.

a b

h:
counter = φ(bound, p, dec, check)

l

p:
call LOOP BOUND(bound)

check:
dec = sub counter, 1
br counter==0, exit, h

(a) Loop with an input-independent loop
counter

a b

h:
counter = φ(bound, p, dec, l)
dec = sub counter, 1
br counter==0, exit, ...

l

p:
call LOOP BOUND(bound)

(b) Alternative placement of loop termina-
tion check

Figure 4.4: Example loops with input-independent iteration count
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Handling Loop Termination

A loop is considered input dependent when at least one of the branches exiting the loop
is input dependent. Any input dependent branch has to be eliminated to guarantee a
unique execution trace for each program execution. This section shows how the loop-
exiting branches are removed in the current implementation of the SP-transformation.

When a loop-exiting edge is removed a guard setting block is inserted into the loop
instead. This guard-setting block sets the guard value when the loop would have been
terminated in the original program. The set guard value is chosen to reflect which of
the loop-exiting edges would have been executed to leave the loop. Later on in the
transformed program this new guard value determines the break-code fragment that
should be executed after the loop has been left.

If the new guard setting block is control dependent on some branches contained in the
same loop, these branches are subject to transformation by the subsequently executed
SP-branch transformation. Since the SP-branch transformation also modifies the guard
value, it has to take care that the value applied to the guard is incremented by 1 for
every nesting level transformed within the loop.

The SP-branch transformation will later insert a pair of guard-increment and guard-
decrement instructions within the loop. Whereby the guard-increment instruction will
dominate the guard-setting instruction introduced to replace the loop-exiting edge. The
guard-decrement instruction will post dominate the loop termination guard setter.

In the final active loop iteration at first the guard-increment instruction is passed
by the control flow. But the predicates applied to this instruction will prevent it from
being executed. Then, as a replacement for the loop-exiting edge, the guard value is
set by the loop-exiting guard-setter. Before control flow reaches the loop latch it will
pass the guard-decrement instruction. Now, since the guard value now reflects that the
loop is terminated, the predicates applied to the decrement instruction will allow its
execution. This decrement of the guard value has to be considered when choosing the
guard value to reflect the loop-exiting edge that would have terminated the loop in the
original program.

To communicate to the SP-branch transformation which guard values need to com-
pensate subsequent guard-decrement instructions these guard-setting instructions are
tagged by the metadata-tag !inc with nesting level. When a SESE-region is transformed
by the SP-branch transformation, as described in Section 4.3.5, all tagged instructions
contained within a guard-increment/-decrement pair will have their guard values incre-
mented.

Loop Properties Since the current implementation of the SP-transformation is only
applicable to reducible flow graphs, all loops are expected to be single-entry loops. Fur-
ther, each loop is expected to have been prepared as previously described. After these
preparations it can safely be assume that only natural loops exist and that no two of
the natural loops share the same loop header.

Following the definition for natural loops from [16], page 374, a natural loop defined
by a back edge l → h is a triple L = (NL, EL, h). With h being the loop header, l
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being the loop latch and the set of nodes NL, so that there is a path from each node
n ∈ NL to the latch node l without passing the loop header h. Given the entire flow
graph G = (N,E, n0), the set of nodes in the natural loop L is a subset NL ⊆ N of
all the nodes in G. The set of Edges EL = E ∩ (NL ×NL) in the loop is the subset of
edges of the entire graph EL ⊆ E, where source- and target-node are in NL. Since in
a reducible flow graph a loop may only be entered through the loop header, the loop
header h dominates all nodes in NL.

Exit Edge An exit edge is an edge that leaves a loop. An exit edge originates from
any of the nodes in NL and ends at a node not part of the loop, i.e., a node in N \NL.
The set of exit edges for a loop L is Eexit = {〈u → w〉 ∈ E|u ∈ NL ∧ w ∈ N \ NL}.
Following the definitions from the previous paragraph, when the control flow follows any
of the edges in Eexit there may be no further iteration of the loop’s back edge without
re-entering the loop through the loop header again.

The conditions within a loop, that control the execution of the loop-exit edges, form
an SCR in the CDG4. Since input dependence is propagated by control dependencies,
whenever one of the branches in the SCR is control dependent, all other branches in the
SCR are input dependent as well. As a consequence either all exiting branches of a loop
are input dependent or none of them is input dependent.

When one exiting branch has been determined to be input-data dependent, all other
exiting branches are control dependent on this branch and are therefore also considered
input-data dependent. This is the reason why there is no need to distinguish between
input-dependent and input-independent branches when handling the loop exits of a single
loop during SP-transformation.

Removing the Exit Edges During loop transformation at first the exit edges are
numbered. Numbering is done one based, so the edge numbers can be directly assigned
to the guard value later on. A guard value of zero is reserved to represent program parts
that should be executed.

When a loop is terminated in the original program, exactly one of its exiting edges
is executed. The transformed program removes the exiting edge and instead sets the
guard value to the exiting edge’s number. The exiting edge’s number is also used as an
execution condition for the basic block that is targeted by the exit edge in the original
program. As noted earlier, the current implementation expects that the code paths
starting with loop-exit edges have no nodes in common until the control flow of all these
paths join again. So each path leaving a loop has exactly one such condition assigned
that is valid until all paths join.

Edge Numbering For each exit edge a new guard-setting block is created that sets
the guard value to the number determined for the exit edge. The loop-exiting edge is
re-targeted to the new block. As an example see block g in Figure 4.5b.

4Control-Dependence Graph
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The numbering of the exit edges and using these numbers as execution conditions
is closely related to the transformation of exit branches as described in the original
publication on IF conversion in [3] on page 180 ff. They introduced for each exit branch
an exit flag that would evaluate to true when an exit branch would not yet have been
executed. The exit branches are replaced by an assignment of the negated predicate-
evaluation result that is required for the exit branch to be executed. All the exit flags are
then conjuncted and assigned as a predicate to all statements within the loop including
the exit flag assignments. As a result at most one of the exit flags, the one representing
the exit branch that would have been executed first, will have a value of false assigned.
The value assigned to the guard as described in the above paragraphs may be thought
of representing the number of the exit flag that would have assigned a value of false in
the original IF conversion.

Guard-Setter Placement The new guard-setting block is integrated into the loop’s
control flow with an unconditional branch to another node that is part of the loop. It
logically terminates the loop by causing further evaluations of execution predicates for
basic blocks within the loop to yield false. In the CFG this corresponds to the cre-
ation of an unconditional control-flow edge from the guard-setting block to the successor
block. The successor block for the new guard-setting block is determined by choosing
an arbitrary successor of the loop-exiting block that is part of the loop. The current
implementation uses the first one found. Every loop-exiting block must have at least
one such successor since the exiting blocks are, by definition, part of the loop. When the
target block contains phi statements, the new incoming edge from the set-guard block
is added to the phi statements. The phi’s value for this new incoming edge is set to be
the same as for the incoming edge from the exiting block, since the guard-setting block
should not modify anything but the guard value. The phi instructions in the loop-exit
nodes require some additional handling that is shown in Section 4.2.4.

The only outgoing edge of each guard-setting block targets a node that is part of the
loop. This is a node that must have been on a path to the loop latch without passing
the loop header before. Such a successor node exists, by definition, for any node that is
part of a loop, with the exception of the loop latch node. The selection of a successor
node for the loop latch is even simpler, since it can always branch to the loop header.
That means, that the guard-setting block is guaranteed to be part of the loop and its
predecessors and successor are also part of the loop. When all exiting edges are replaced
by guard-setting blocks, none of the remaining edges is exiting the loop now. A new
exiting branch has to be created with the introduction of an input-independent loop
counter.

Reducibility The incoming edge to the new guard-setting block does originate from
a basic block that is part of the loop. The originating block of this edge was originating
a loop-exiting edge in the original program and each block originating a loop-exiting
edge is contained in the loop. Since the transformation only works on reducible flow
graphs that means that the loop header dominates the block that originated the loop-
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exiting edge. The new guard-setting block has this block as its only predecessor, so it
is also dominated by the loop header. Further the branch originating the edge from the
guard-setting block to its successor block is one of the branches that existed before the
transformation. But the edge is now split with the guard-setting block as its intermediate
block. As a result the graph is guaranteed to remain reducible after this transformation.

When this transformation is applied to a loop, the loop-exit branches are all input-
dependent as shown in Section 4.2.2. This fact is communicated across transformation
passes by the use of the !IDD metadata tag. The former exit branches, which are now
redirected to the new guard-setting blocks, keep this metadata flag that marks them as
input-data dependent to ensure further transformation by the SP-branch transformation
pass later on.

Example The example in Figure 4.5a shows a loop L = {h, a, b, l} with an exiting edge
a → o. The transformed CFG shown in Figure 4.5b has the loop-exiting edge replaced
by the new basic block g. This block is expected to contain code that takes care of
the logical loop termination. Since the previous exiting edge has been removed, a new
exiting edge l→ o is introduced that allows exiting the loop when the input-independent
number of loop iterations has been performed.

a

h

b

l o

(a) Loop with an exiting edge

⇒

a

bg

h

l

o

(b) Exiting edge replaced by
block g

Figure 4.5: Replacing loop exiting edges

Rewrite φ-Instructions in Loop-Exit Blocks

In a CFG, loop-exit blocks are the basic blocks outside a loop that have predecessors
inside a loop. Exiting blocks are the basic blocks within the loop that branch to suc-
cessors outside the loop. The control-flow edges from exiting blocks to exit blocks are
called loop-exit edges. A loop is terminated when the control flow follows one of the
loop-exit edges since there is no path from a loop-exit node to the loop’s back edge
without re-entering the loop through the loop header. That guarantees that, whenever a
loop is entered through the loop header at most one of its exiting edges will be executed
before the loop is entered through the loop header again. Note that in general a loop
may also be left by an exiting edge originating from some nested loop or by execution
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of a return statement leaving the entire function, but the current implementation of the
SP-transformation does not support these types of control flows.

When rewriting the loop exits the SP-transformation distinguishes two types of φ-
instructions by the origin of their incoming values. They may be either calculated within
the loop that is exited, or not. In the former case, the φ-instruction has only a single
incoming value that is calculated within the loop. In the later case the φ-instruction
is selecting amongst loop-invariant values. A different transformation is applied to the
φ-instruction in each case. These transformations are shown in the following paragraphs.

Loop Calculated Values The loop’s exit nodes, those are the nodes that have been
targeted by at least one of the loop-exiting edges may, after the previous transformation
step, be unreachable from other nodes in the CFG since the exiting edges have been re-
targeted at the guard-setting block as described above in the paragraph Removing the
Exit Edges. As already stated, control flows with other incoming edges to the exiting
blocks are not supported by this transformation. The following describes the steps taken
to re-integrate the exit blocks into the control flow.

LLVM provides the Canonicalize natural loops pass that guarantees, in absence of
indirect branches, that all the exit blocks only have exiting blocks as their predecessors.
Executing this pass before starting the loop transformation guarantees that the former
exiting blocks have no incoming edges after the previous transformation step since this
transformation step removed all the exiting edges.

Another prerequisite for this transformation is that the loop is required to be in
LCSSA5-form, therefore any values produced by the loop are made explicit through
φ-instructions in the loop-exit blocks. The example provided in Figure 4.6a has the
φ-instructions lc1 and lc2 renaming the loop defined values v1 and v2. During the
transformation these φ-statements are split up into several φs which are placed inside
the loop, selecting a value depending on the execution of the guard-setting blocks b1
and b2 that have previously been introduced to replace the loop-exiting edges. For an
example of this type of φ-instructions see lc1.2 and lc2.2 in Figure 4.6b. Subsequent
branch transformation, as described in Section 4.3.5, makes sure that exactly the value
is selected by the φ-instruction that would have been selected by that loop exit which
would have been executed in the original program.

5Loop-Closed Static Single Assignment (form)
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exit1:
lc1 = φ(v1, e1)

exit2:
lc2 = φ(v2, e2)

ph

latch

e1

e2

(a) φ-instruction in the loop-exit block

⇒

exit block:
lc1 = φ(lc1.2, latch)
lc2 = φ(lc2.2, latch)

b1

b2

ph

latch:
lc2.2 = φ(lc2.1, e2, v2, b2)

e1:
lc1.1 = φ(lc1.2, e3, undef, ph)
lc1.2 = φ(lc2.2, e3, undef, ph)

e2:
lc1.2 = φ(lc1.1, e1, v1, b1)

(b) Updated φ-instruction

Figure 4.6: Rewriting φ-instructions of loop exits

φ-Instructions with Loop-Invariant Values The code paths leaving a loop may
contain φ-statements that choose values depending on the path the loop is left on, but
those incoming values are not generated within the loop. The SP-transformed loop is
exited on one unique code path. So selecting a value depending on the executed code
path is no longer feasible. Two possible transformations for these φ-instructions are
described in the following paragraphs Update φ and Demote all Values to Stack Slots.

Update φ The example in Figure 4.7a shows a CFG with a φ-instruction selecting
values depending on the executed loop-exit edge. The values selected are considered to
be loop invariant. Otherwise an additional loop-exit block copying the value would be
part of the CFG since the loops are expected to be in LCSSA-form. Figure 4.7b shows
how these values could be handled keeping their SSA-form. In cases where additional
basic blocks on the exit edges exist and any one of the incoming values is defined in these
basic blocks the transformation would have to place the blocks containing the definitions
so that they dominate the φ-instructions with their uses to keep the program in valid
SSA-form.
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Demote all Values to Stack Slots The current implementation uses the approach
shown in Figure 4.7c since it is easier to implement than the transformation shown
in the above paragraph Update φ. The φ-instructions are replaced by load and store
operations targeting stack memory locations by applying the Demote all values to stack
slots transformation that is provided by LLVM. The load and store operations are
guarded in a later transformation step, not shown in the example graphs, to keep the
program’s semantic. Additionally, after guarding but before the register allocation is
performed, the memory operations can be transformed back into SSA registers to prevent
the performance impact these memory accesses would impose.

exit block:
var = φ(v1, e1, v2, e2)

ph

latch

e1

e2

(a) φ-instruction depending
on the loop-exit path exe-
cuted

set2

ifb2:
var1 = φ(v1, set1, undef, ifb1)

ifb1

exit block:
var = φ(v2, set2, var1, ifb2)

b1

b2

set1

ph

latch

e1

e2

(b) Updated φ-instruction

exit block:
var = load loc

b1

b2

ph

latch

e1:
store v1→ loc

e2:
store v2→ loc

(c) Replace φ-
instructions by memory
operations

Figure 4.7: Rewriting φ-instructions on different loop-exit paths

Notes on Loop Preparation

LLVM provides several transformation passes that may be used to ensure that the pro-
gram can be transformed by the SP-transformation implementation.

The first transformation that should be executed is the Canonicalize natural loops
pass. This pass ensures that all loops have exactly one back edge which prevents further
transformation passes from splitting up the loop into several nested loops.

The remainder of this section shows transformations that should be avoided before
applying the SP-transformation described in this document. These transformations may
modify the loops in a way that they may increase the programs runtime by a large
amount. The following paragraphs illustrate the negative effect of certain transforma-
tions by showing the results of their application to the program given in Listing 4.1.
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1 i n t x ( ) {
2 i n t y , z ;
3 whi l e(−−y ) {
4 i f ( y % 4)
5 cont inue ;
6 ++z ;
7 }
8 return z ;
9 }

Listing 4.1: Loop with two back edges

Compiling the code from Listing 4.1 using clang without any optimizations yields
the CFG shown in Figure 4.8a. This CFG contains two back edges. These are the edges
from if then → while cond and if end → while cond. These two back edges form two
natural loops L1 = { while cond, while body, if then } and L2 = { while cond, while body,
if end }.

The application of the transformations Promote Memory to Register and Canonical-
ize Induction Variables to the CFG in Figure 4.8a yields the CFG shown in Figure 4.8b.
The CFG still contains two back edges but they have differing target nodes now. They
form two nested natural loops with differing loop headers. L1 = { while cond, while body,
if then } and L2 = { while cond outer, while cond, while body, if then, if end }. When
the loop L1 is subsequently modified to have an input-independent iteration count, any
execution-time overhead caused by this transformation is multiplied by the iteration
count of L2. Additionally, from here on calls to loop simplify are no longer able to
combine the two back edges into one and create a single natural loop.

Applying the Canonicalize natural loops transformation first transforms the CFG
from Figure 4.8a into the CFG shown in Figure 4.8c. Note that this transformation
is possible for all natural loops sharing the same header node by introducing a new
loop latch, called while cond backedge in this example, and redirecting the existing back
edges to the new loop latch. The loop has now only one back edge and a unique loop
header. Subsequent calls of the Promote Memory to Register and Canonicalize Induction
Variables transformations do not cause modifications to this CFG.
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end

if endif then

while cond

entry

while body

(a) CFG of a loop with two
back edges

end

if endif then

while cond

while cond outer

entry

while body

(b) CFG after loop is split up

end

if endif then

while cond

while cond backedge

entry

while body

(c) CFG after loop simplifi-
cation

Figure 4.8: Example CFGs showing how a wrong application order of loop optimizations
could degrade execution performance

Do not Run the Simplify the CFG Pass after Canonicalize Natural Loops
The canonicalize natural loops pass ensures that every loop has exactly one back edge. It
does so by inserting an additional, empty, loop latch block if necessary. The Simplify the
CFG pass should not be run after the canonicalize natural loops pass, because Simplify
the CFG will remove such empty blocks, yielding two back edges for the loop again.

Do not Run Loop Invariant Code Motion before Canonicalize Natural Loops
When a loop has more than one back edge the Loop Invariant Code Motion pass may
possibly split the loop header, thus creating additional nested loops for some, or each,
of the back edges. Whereby inner loops may contain exiting edges which do not only
leave the inner loop but also one or more of the containing loops. It may be possible
to transform the resulting CFG into single-path code but the current implementation of
the single-path transformation does not support this type of control flow. Further the
single-path transformation may cause runtime growth that is polynomial to the number
of nested loops generated when inexact iteration bounds are determined for the nested
loops.
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Removing Marker-Function Calls

Once the loop transformation has been executed, the LOOP BOUND annotation func-
tions are no longer required. Also the data-dependency analysis pass is required to have
already been executed before, since it is a prerequisite for the loop transformation pass.
As a result the marker calls to the functions ID and NID are no longer required.
The SP Remove Markers pass is provided to remove any calls to these functions. It is
recommended to execute this pass immediately after the SP loop transformation pass,
so that the marker calls do not interfere with further optimization passes.

4.3 Branches

This section discusses the transformations steps applied to branches while transforming
a program to single-path code. The branch transformations described here are done in
a separate transformation pass called the SP branch transformation pass.

Transformation Goal The SP-transformation aims at creating a program that has a
unique execution trace for each invocation. To achieve this the program is prepared so
that, at each point in the program, at most one input-data dependent predicate controls
the execution of program statements. This predicate can then be applied using the
constant-time conditional expression [35] by a later transformation pass resulting in a
program with a unique, constant execution time.

The foundation for the SP branch transformation pass is the forward branch trans-
formation shown in [3].

The basic principle of the branch transformation is illustrated in Figure 4.9, whereby
Subfigure 4.9a shows the CFG containing a branch that needs to be transformed. After
application of the transformation the resulting CFG will look like the one shown in
Subfigure 4.9b.

a:

if(cond)

b

true

c

false

d

(a) Branch before transfor-
mation

⇒

a:

if(cond)

bexecute when

cond is true

cexecute when

cond is false

d

(b) Transformed branch

Figure 4.9: Example illustrating the branch transformation
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4.3.1 Notations

A short description of the common notations used in conjunction with control-flow graphs
that are used within this section. Mostly from [2], [17] and [16], page 374.

Topological Order An order of all nodes in a DAG, so that any node n is preceded
by all nodes on all possible paths from start to n.

Forward CFG In reducible control-flow graphs the back edges can be uniquely iden-
tified by establishing a DFST6 over the graph and finding all CFG edges pointing
to an ancestor in the DFST. The exact algorithm is described in [16] on page 371.
The FCFG7 of a flow graph is obtained by removing all back edges from the CFG.

Branch Types IF-conversion in [3] distinguishes 3 types of branches:
Exit branch Branches leaving a loop. Branch origin and target differ on loop

nesting level.
Forward branch Branches at the same loop nesting level.
Backward branch Branches causing irreducible control flow. Note that these

are not the loop back edges.

4.3.2 Branches to Transform

The transformation described in this section is only applicable to branches that are not
the origin of a loop-back edge. The term forward branch has been used for this type of
branch in [3]. These are the control-flow branches and joins in the FCFG. The loop-
back edges are handled as part of the loop transformation as described in Section 4.2.
A previous run of the loop transformation is expected to have reduced the input-data
dependent exit branches to forward branches before.

To enable the application of the SP branch transformation to forward branches only,
foremost these branches have to be identified. The other types of branches identified in
[3] are exit branches and backward branches. The following paragraphs will point out
the properties that separate the forward branches from the other types of branches.

Forward Branches These are the kind of branches that the SP branch transformation
strives to remove. These branches occur within the same loop nesting level, i.e., the basic
block containing the branch instruction and all basic blocks that are targeted by this
branch are contained within the same loop.

In the C programming language [47] they may be introduced by a conditional state-
ment, i.e., if . Another common source for this type of branches in the C programming
language are logical operators within conditional statements. E.g., the logical-and op-
erator && guarantees by specification ([47], page 89) that its second operand is not
evaluated if the first one evaluates equal to 0. Clang, one of the C front-ends to LLVM,
translates that into a conditional branch.

6Depth-First Spanning Tree
7Forward Control Flow Graph
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Exit Branches The input-data dependent exit branches have already been removed
by the SP loop transformation. The remaining exit branches may be ignored by the SP
branch transformation since they have to be input-data independent.

Backward Branches

... branch to a statement occurring lexically before the branch but at
the same nesting levels ...

Definition of backward branches, from [3], page 179

This classification was sensible since the if-conversion in [3] is entirely described on
a FORTRAN source-code level. FORTRAN provides statements for iterative execution,
the so called DO-formulas allowing the specification of iterative program parts. The
implicit loops defined by backward branches were concerned separated from explicit
loops by the original if-conversion.

Since the branch transformation implemented with the SP-transformation works on
LLVM IR level using CFG analysis to identify loops there is no need to differentiate
between branches introduced by loop statements and other backward branches. When
the program has been transformed into LLVM IR, the way a loop has been specified in
the source code is no longer reflected in the IR.

Part of the problem the original if-conversion had with backward branches was that
they could introduce irreducible-control flow. The current implementation of the SP-
transformation does not support irreducible-control flow. It requires its input programs
to be reducible. Why irreducible-control flows are difficult for the SP-transformation is
described in Section 2.3.

All branches in the FCFG, which have been identified as input-data dependent by
the dataflow analysis, have to be removed by the transformation described here. The
exact steps are described in the following sections. First Section 4.3.3 describes program
preparation that are presumed by the subsequent transformation steps. Then Section
4.3.4 shows how execution predicates, that control the execution of program parts after
the removal of branches, are determined. The procedure to remove the branches from the
program is explained in Section 4.3.5. Finally Section 4.3.6 describes how the program
is reordered after branch removal.

4.3.3 Preparation

To simplify the implementation of the branch transformation, the program is prepro-
cessed to constrain the CFG as follows. Any CFG node has at most 2 successor nodes.
The number of SESE-regions is maximized by allowing only 2 incoming edges for region-
join nodes. In general these preparations require the introduction of additional basic
blocks, branches and phi-instructions.
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Terminator Instructions In the LLVM IR basic blocks always have a so-called termi-
nator instruction as their last instruction. The language specification [33] for the LLVM
IR contains the terminator instructions ret, br, switch, indirectbr, invoke, resume and
unreachable. The current implementation of the branch transformation is limited to
support only the terminator instructions ret and br. Programs that contain any of the
other terminator instructions will lead to compilation errors. This constraint simplifies
the control-flow analysis.

LLVM provides the Lower SwitchInsts to branches pass which converts switch in-
structions to an equivalent series of branch instructions. Whenever the program that
should be transformed contains a switch instruction this transformation pass has to be
executed before the branch transformation pass.

The remaining terminator instructions indirectbr, invoke, resume and unreachable
have to be avoided within programs to which the branch transformation should be ap-
plied. This can be done by modifying the program that is transformed by using a
different compiler frontend or by implementing another preprocessing transformation
that removes them. Experiments in the course of testing the SP-transformation imple-
mentation have shown when compiling simple C sources with the clang compiler frontend
the compilation does not make use of any of these terminator instructions.

As an additional restriction the ret instruction is only allowed once in each function,
namely at the end of the function. Stock LLVM provides the Unify function exit nodes
pass that ensures this property by adding a new basic block that only consists of a ret
instruction. Additionally it creates branches from all the basic blocks that previously
contained ret instructions to the new one. The old ret instructions are removed from the
program. To select the return value that is passed as an argument to the ret instruction
phi-instructions are introduced where required.

Single-Entry Single-Exit Regions CFGs may be decomposed into a tree, the PST8,
of SESE-regions. The PST simplifies the predicate determination as described in Section
4.3.4. SESE-regions have been defined to be bound by entry and exit edges [19] or entry
and exit vertices [46]. SESE-regions connect at exactly two nodes or vertices, called
region entry and region exit, to the remainder of the graph.

The SESE-region identification pass provided by LLVM locates SESE-regions bound
by vertices. The current implementation of the SP-transformation uses the analysis
results of this pass. Subsequent references to SESE-regions will refer to vertex-bound
regions unless otherwise stated.

LLVM’s SESE-region detection distinguishes canonical and complex regions. SESE-
regions that cannot be split into two disjoint regions are called canonical SESE-regions.
All manipulations described below work on canonical SESE-regions unless otherwise
noted. For an exact definition of canonical SESE-regions see [19] on page 172. Complex
regions may be split into two or more canonical SESE-regions by aggregating entry or
exit edges into new CFG nodes. Note that a complex region is not necessarily a SESE-
region until this region splitting has been performed.

8Process Structure Tree
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The branch transformation transforms SESE-regions independently from each other
as shown in the remainder of this section. To simplify this separate transformation of
SESE-regions as a preprocessing step, any complex regions in the program are trans-
formed into canonical regions so that no two regions share their entry or exit nodes.
This way, whenever modifications to a phi instruction are required all incoming edges
to the basic block containing the phi-instruction originate from the same SESE-regions.
So the phi rewriting algorithm does not have to be able to handle incoming edges from
other SESE-regions than the currently transformed one.

Splitting Complex Regions Since the supported terminator instructions are limited
to br and ret as described above, no basic block can have more than two successors. That
already ensures that no two regions share the same entry block.

When regions share a common exit block, starting from the innermost region a SESE-
region is picked and a new exit block is created for this region. The new exit block
branches to the original exit block of the complex region. All exiting edges belonging
to the picked region are redirected to the new exit block. Phi-instructions are updated
as required. This is repeated until each SESE-region has its unique exit block. When
completed, no more complex regions exist.

4.3.4 Predicate Determination

Since the branch transformation works on forward branches only, which are by definition
oriented in a forward direction w.r.t. the program flow, one can distinguish branch and
join locations in the CFG. Note that the unambiguously determination of a forward
direction in the program requires the control flow to be reducible.

Control-flow branches are nodes in the FCFG with more than one outgoing edge.
Control-flow joins are nodes with more than two incoming edges in the FCFG.

The predicate combination described here corresponds to the one described in [3] on
page 182f.

A basic example how the execution predicate that is calculated for the individual
basic blocks is modified during forward-branch removal is given in Figure 4.10. This
example contains a single branch with two branch targets. The execution of these branch
targets depends on the value determined by the evaluation of cond. When cond evaluates
to true the program’s execution would continue at basic block a, should it evaluate to
false the program’s control would be transferred to block b. Both blocks, a and b, have
a single successor c which is executed subsequently. The execution of node c does not
depend on the evaluation result of cond. Note that, since the CFG given in this example
contains no loops, FCFG and CFG are the same.

The guarding conditions that are determined during forward-branch removal for the
graph in Figure 4.10 are printed on the right side of the CFG nodes. The condition
for the entire CFG to be executed is denoted by cc which corresponds to the current
condition of the example in [3] on page 182f.
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Edge Predicates

Since the SP-transformation is implemented as a control-flow analysis based approach
it is natural to think of execution predicates attached to the edges in the CFG. In the
following these execution predicates are called edge predicates.

Edges in a CFG represent the transfer of control from one basic block to another. An
edge predicate is expected to evaluate to true iff the control is passed from the originating
basic block of the edge to the target block of the edge during program execution. Since,
for all edges outgoing from a single basic block, control can only be transferred along
exactly one edge, the edge predicates of all outgoing edges for any basic block have to
be disjoint.
Two conditions have to hold for the program control being transferred between two

basic blocks adjacent to an edge in the CFG:
1. The block originating the edge must currently have program control. In this

case the execution condition determined for this block must evaluate to true.
2. When the originating block has multiple outgoing edges, the edge under con-

sideration must be chosen to transfer control. This is when the evaluation of
the branch condition matches the edge predicate attached. For blocks with
only one outgoing edge this is always true.

As an example, Table 4.1 lists the edge conditions for the CFG given in Figure 4.10.

a cc ∧ cond

b

c (cc ∧ cond) ∨ (cc ∧ ¬cond)

cc ∧ ¬cond

cc
if:
if(cond)

T

F

Figure 4.10: Mapping of control-flow bran-
ches and joins to guarding conditions

Edge Edge condition

if→a cc ∧ cond
if→b cc ∧ ¬cond
a→c (cc ∧ cond) ∧ >
b→c (cc ∧ ¬cond) ∧ >

Table 4.1: Edge conditions for the
CFG in Figure 4.10

Control-Flow Branches

The branch condition that selects the edge used to transfer the control at control-flow
branches clearly has to be part of the execution predicates of their successing basic blocks.
Since when the basic block containing the branch is executed, the branch condition
determines the outgoing edge selected to transfer control. A notable exception is the
case where the branching block dominates the successor block, i.e., multiple paths exist
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from the branching block to the successor block. The current implementation of the SP-
transformation does not handle this case specially. Although the determined execution
conditions may be more complex than necessary, they will still be correct.

The determination of the execution conditions is implemented as a top-down process
applied in topological order of the CFG. When a branch is encountered, the branch
condition is attached to the outgoing CFG edges of the current block as described in
Section 4.3.4. An execution condition for the successor blocks is later created out of
these edge conditions. This process is described in the subsequent paragraphs about the
handling of incoming CFG edges.

The example in Figure 4.10 illustrates the predicate calculation. It contains one
branch in the basic block labeled if . Depending on the condition cond the program
control is either transferred to basic block a or b. For any of these branch targets to
be executed, 2 conditions have to hold. The current condition cc that is guarding the
execution of the branching block must evaluate to true and the evaluation of the branch
condition cond has to match the incoming edge’s condition attached in the CFG. The
conjunction of these conditions yields the execution conditions for the blocks a and b as
it can be seen in Table 4.1.

When viewing the execution condition for basic block a that means cc has to evaluate
to true and cond has to evaluate to true, what results in the guarding condition cc∧cond.
Similarly for block b, but since this block is on the false side of the branch, denoted by
the edge label F , the condition cond has to evaluate to false. The complete condition is
therefore cc ∧ ¬cond.

Single Outgoing Edge Basic blocks that have only a single outgoing edge in the CFG
are handled in a similar manner. Since whenever a basic block with a single outgoing
edge is executed its single successor block will also be executed. In this case no additional
conditions have to be regarded in the successor’s execution predicate for this particular
edge type. The edge condition of the single outgoing edge therefore equals the execution
predicate of the originating basic block. This is exemplarily shown by the conditions for
the edges a → c and b → c in Table 4.1.

Control-Flow Joins

In [3] the combination of predicates at branch-target locations in FORTRAN sources is
described. At these code locations the control flows, which originate from the branch
origin and from the preceding FORTRAN statement, merges.

The implementation of the SP-transformation is based on LLVM’s IR, in which
no fall-through from one basic block to another is specified [33]. Instead basic blocks
may have multiple branches targeting them, or from a CFG’s perspective have several
incoming edges. The merging of predicates at control-flow joins described here is applied
to these basic blocks.

Control flow joins are basic blocks in the FCFG with more than one incoming edge.
The basic blocks from which these edges originate are called the predecessor blocks.
Since an edge in the FCFG represents the transfer of control from the edges originating
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basic block to the target block [2], a basic block with more than one incoming edge
will gain control when any of its predecessors had control and transferred it through
the incoming edge. The fact that a basic block with multiple outgoing will transfer
control exactly along one of its outgoing edges is already encoded in the edge predicates
of these outgoing edges, which are determined as described in the previous paragraphs.
Therefore the predicate at control-flow joins can be determined by the disjunction of the
edge predicates of all incoming edges.

In the example given in Figure 4.10 the only basic block joining the control flow is
block c. The disjunction of the predicates calculated for the incoming edges a → c and
b → c as given in Table 4.1 yields the predicate (cc ∧ cond) ∨ (cc ∧ ¬cond).

Single Incoming Edge Basic blocks with just one incoming edge are handled exactly
like control-flow joins. Since there is just one incoming edge, the complete condition will
equal to the predicate minterm induced by the edge predicate of the single incoming
edge.

Simplification of Predicate Expressions

The execution predicates that where determined as described in the previous paragraphs
may possibly be equivalent to simpler expressions. For example the condition for basic
block c in the example given in Figure 4.10 is overly complicated since cc ≡ (cc∧cond)∨
(cc ∧ ¬cond). The original publication on if-conversion [3] suggests the application of
boolean simplifications based on the Quine-McCluskey prime implicant simplification
[45][28].

The implementation of the SP-transformation does currently implement no simplifi-
cation of the execution predicates. Since the ultimate goal of the entire transformation
process described here is to generate a program that shows an input-data independent
instruction trace when executed, any of the branches that where the reason for the gen-
eration of the execution-predicate expression should be replaced by an execution under
control of the constant-time conditional expression.

Since the system targeted by the current implementation does not directly provide
constant-time conditional expressions that could be used for optimized predicate calcu-
lation, conventional execution is used instead by the current implementation. To keep
the SP-property of the transformed program the predicate calculation is implemented in
a branch free block of combinatorial instructions. The individual combinatorial instruc-
tions execute in constant time on the target system.

Not having implemented execution-predicate simplification requires that the predi-
cates for all incoming edges will have to be evaluated before executing any basic block.
Since in the SP-program any blocks originating the incoming edges must have been
executed before, the edge conditions for all incoming edges are available when control
reaches the control-flow joining basic block. Anything left to determine the execution
predicate for the joining basic block is the disjunction of the predicates of the incoming
edges. The implementation stores the evaluation results of the execution predicates in
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SSA variables, leaving the register allocator with the task of finding an efficient memory
mapping for these values.

When composing SESE-regions which are independently transformed the implemen-
tation makes use of the fact that the predicate evaluation of the entry and exit block of
a particular region must always yield the same result. A prerequisite therefore is that
the entry and exit blocks are unique to one region, which in turn is guaranteed after
applying the preparation processing described in Section 4.3.3.

Predicate Build Order

As described above the execution predicate for any basic block is a combination of exe-
cution predicates of its predecessor basic blocks and edge conditions when a predecessor
block has more than one outgoing edge. The execution predicates for the individual
basic blocks are built in topological order of the FCFG. This guarantees that the predi-
cates of all blocks originating the incoming edges to a block had their predicates already
determined.

The reverse postorder may be used to establish a topological order for any FCFG
originating from a reducible CFG [17].

Predicates and the PST

The PST [19] is a tree representation of all SESE-regions in a program. LLVM’s SESE-
region identification pass has been modeled after the ideas in [19] and [46], as is stated
in the source comments. The fragments organized in the PST as defined in [46] are sets
of edges which are bound by an entry and exit node to the SESE-region.

Aggregation of Control Conditions The PST carries a subset of the region nodes
in the PDG9 [10]. For both representations holds that all child nodes are controlled
by the same set of control conditions. Though the region nodes in the PDG are much
more exhaustive than the information in the PST. In a CDG, as given in Figure 4.11e,
all nodes with a single common control condition are already aggregated as child nodes
of the same parent. The PDG also aggregates nodes that share more than one control
condition by introduction of new region nodes that depend on these common control
conditions.

The PST is obtained by packing nodes with exactly the same control dependencies.
As it can be seen in Figures 4.11b, 4.11c, 4.11d and 4.11e, CDG and PST are similar
in structure. Although the information contained in the PST is more suitable when
determining the execution conditions than the node-based control dependencies as shown
in Figure 4.11e. The reason therefore is that the control dependencies do not differentiate
between different control-flow paths as long as the control flow is guaranteed to reach a
certain node. SESE-regions are guaranteed to be entered by exactly a single edge. To
construct SESE-regions from control dependencies it is therefore beneficial to consider
edge-based control dependencies as presented in [31] instead.

9Program Dependence Graph
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The PST creation also has an advantage in computation time compared to the control
dependencies. The creation of the region nodes in the PDG is in O(N2) [10], whereas
the PST may be built in O(E) [19].

Node or Edge Bounded Regions The SESE-regions as provided by LLVM and the
PST in [19] are represented as collections of nodes and subregions. In [19] these regions
are bounded by a single incoming and outgoing edge on both ends. LLVM’s notion of
regions also requires them to be bounded by a single edge or, extending the regions
definition in [19], it also identifies so called extended regions that may be turned into
canonical regions by introduction of a new region-entry or -exit block and merging of
the appropriate edges.

To illustrate the differences between the different types of SESE-regions the subse-
quent paragraphs examine in detail the example given in Figure 8a in [46] on page 108.
The PST derived according to the definition in [46] for this example is shown in Figure
4.11b. The LLVM IR specified in Listing 4.2 resembles the second part of this CFG.

Figure 4.11a shows the CFG for this example. The regions identified by LLVM are
separated by a colored background. Note that the region-exit block is not considered as
a part of the region to prevent partial overlap between different regions. The edge labels
in this graph correspond to those of Figure 8 in [46] for easier comparison.

LLVM’s Complex Regions Listing 4.3 shows the output of LLVM’s SESE-region
detection when applied to the source from Listing 4.2. The 3 regions identified were
{ entry=><Function Return>, v5=>t, v5=>v7 }. Note that the region v5=>v7 is a
complex region because v7 is the target of the control-flow edges l and m as can be seen
in Figure 4.11a. Complex regions as used by LLVM are control-flow structures that may
be turned into canonical SESE-regions by aggregating several of their entry or exit edges
into a new CFG node. As complex regions have not been part of the original definition
for the PST in [19], these regions would have been merged with their ancestor region as
shown in Figure 4.11d. Besides the exit blocks with more than one incoming edge, as
in this example, the complex regions detected by LLVM also allow the sharing of the
entry or exit block amongst several SESE-region like structures. In this case the complex
regions need to be split up to gain the actual SESE-regions as shown in Section 4.3.3.
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1 d e f i n e void @regions ( i 32 %x ) {
2 entry : br l a b e l %v5
3 v5 : %b = icmp ne i32 %x , 0
4 br i 1 %b , l a b e l %v6 , l a b e l %v7
5 v6 : %b1 = icmp ne i32 %x , 0
6 br i 1 %b1 , l a b e l %v7 , l a b e l %v5
7 v7 : %b4 = icmp ne i32 %x , 0
8 br i 1 %b4 , l a b e l %v5 , l a b e l %t
9 t : r e t void

10 }

Listing 4.2: Example source code to
which region detection is applied

1 Region t r e e :
2 [ 0 ] entry => <Function Return>
3 {
4 entry , v5 => t , t ,
5 [ 1 ] v5 => t
6 {
7 v5 => v7 , v7 ,
8 [ 2 ] v5 => v7
9 {

10 v5 , v6 ,
11 }
12 }
13 }
14 End reg i on t r e e

Listing 4.3: Regions as identified by
LLVM

Properties of SESE-Regions Any SESE-region, be it node or edge bounded, has
the following two properties (see [19], page 172 for edge bound regions) that simplify the
predicate value determination:

� The entry node dominates any node in the SESE-region including the exit node.
� Every node in the SESE-region is post dominated by the exit node.

Domination A graph node a is said to predominate [2], or dominate for short, another
node b if all paths from the graph entry to node b must contain node a. Vice versa a
node b is said to post-dominate node a when every path from a to any of the exit nodes
must contain b. When, in addition, nodes a and b differ, a 6= b, the relation is called
strict [9].

Execution Predicates Since the region entry dominates every node in the region,
whenever the program execution reaches a node inside the region, the entry node will
have been executed earlier. In terms of execution predicates that means, whenever the
execution predicate for any node in the region holds when the execution reaches that
node, then the execution predicate for the entry node must have held when the execution
had passed this entry node before.

The reason therefore is that any predicate that belongs to a certain basic block is,
when control reaches that particular basic block, supposed to evaluate to true iff the
basic block is going to be executed. In conventional code this would always hold since
control flow only reaches basic blocks that have to be executed. After application of
the SP-transformation this is no longer the case. Since the region entry node will have
been passed and executed whenever another node within the region is to be executed,
the execution predicate for the region entry must have yielded true when it had been
evaluated.

Also, since the entry node dominates all other nodes within the region, when the
entry node’s execution predicate evaluated to false, i.e., control in the original CFG
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Figure 4.11: Comparing different types of PSTs
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would not have reached the entry node the subsequent evaluation of all nodes within
this SESE-region must also yield false.

Guarding For SESE-regions, as presented in the previous paragraphs, it is possible
to create a guarding variable for every SESE-region. The execution condition of the
entry block is therefore evaluated whenever the block is reached by the program control
and the evaluation result is stored to the guarding variable. Since the preprocessing
described in Section 4.3.3 guarantees that every basic block can at most be the header
of one SESE-region, the entry block uniquely identifies a SESE-region. Later on this
property is used to uniquely name the guarding variable for this region. E.g., a SESE-
region with an entry block labeled r will have its guarding variable named σr. The
guarding of SESE-regions presented here corresponds to the transformation rules for
input dependent if statements from Table 1 in [36], where, in a similar scheme, a new
guard is created for each side of if statements.

The execution conditions for all nodes that are contained within a SESE-region may
be used in conjunction with σr, thereby allowing to remove these parts of the execution
predicates that are subsumed by σr. Given that the execution predicates are constructed
by propagating conditions along the edges of the CFG, it is guaranteed for any block
contained within a SESE-regions that σr is the only condition they will ever have to
consider from outside the region.

Aside from a simplification of the execution predicates this also allows an inde-
pendent transformation in an arbitrary transformation order of SESE-regions. When
transforming a SESE-region the transformation may make use of σr as part of predicate
expressions before the outer SESE-regions have been transformed. The reason therefore
is that it can be safely assumed that σr will be determined eventually in the course of
the SP-transformation.

For the exit block of a SESE-region the same execution predicate that has been
determined for the entry block of this region can be used. Since the entry block dominates
the exit block and the exit block is post dominating the entry block, the exit block has
to be executed iff the entry block has been executed before.

Expressing Predicates in the LLVM IR

The SP-transformation derives predicates from the CFG’s structure that will ultimately
be used in conjunction with the constant-time conditional operator [35] to guarantee a
unique execution trace. The LLVM language specification [33] however does not support
any types of predicates directly. Instead the predicates have to be expressed within the
capabilities provided by the LLVM IR. In the following paragraphs two methods to
express execution predicates by the means provided with LLVMs IR are described.

Metadata A possibility for storing the execution predicates along the LLVM IR is
within the metadata section. Metadata are a part of the LLVM IR specification [33] and
allow the storage of arbitrary information. Any IR instruction can have an arbitrary
number of metadata references attached.
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The results of the predicate calculation could be integrated with the LLVM instruc-
tion stream by applying a predicate metadata tag, that references the calculated predi-
cate, to those instructions which are controlled by a predicate. Later in the compilation
process these predicate metadata tags have to be evaluated and used to insert appropri-
ate constant-time conditional operators into the instruction stream.

A downside of this approach is that the program will not execute correctly until
the constant-time conditional operators have been created. This constitutes an obsta-
cle to testing only partially transformed programs, which is something that has shown
beneficial to verify the correctness of individual transformation steps.

Tagged Branches The usual way to prevent instructions from being executed in
LLVM IR is by having branches that branch to some other basic block. Predicates
may as well be expressed as branches that branch “around” a basic block consisting of
predicated instructions when the predicate does not evaluate to true. These branches
are subsequently called predicate branches.

The main advantage of using branches instead of metadata tags for representing the
execution predicates is that they may be processed by the remaining compilation chain
without any special treatment and the resulting code will still execute correctly. That,
in turn, is useful to test the correctness of the individual transformation passes.

The new branches, that have been introduced to represent execution predicates,
have to be replaced by the constant-time conditional expression later in the compila-
tion process. They also require special treatment by some of the optimization passes
to ensure that they do not get removed or otherwise modified. To enable the recogni-
tion of these predicate branches, a reference to a single named metadata node called
!sp needs conversion is attached to their IR instruction. The optimization passes have
been modified to ignore branches that reference this metadata tag. Additionally, bran-
ches that reference this metadata tag are, during code generation, replaced by conditional
execution to mimic the behavior of the constant-time conditional operator.

When inserting a guarding branch into the control flow before control reaches the
guarded basic block the execution predicate for this block is evaluated. When it evaluates
to false the execution control is not transferred to the guarded block. Any SSA values
defined in the guarded block do no longer dominate any uses outside this basic block.
Since this is a basic requirement for valid SSA-form [9] additional phi-instructions have to
be added to the program. The control-flow merge, which immediately follows the guarded
block, can be augmented by an additional phi-instruction and any invalid usages of the
original SSA-value may then refer to this new phi-instruction instead. This ensures
that the domination property required by SSA-form is satisfied again. The new phi-
instruction selects between two incoming values. When control flow is incoming from
the guarded block, the value defined inside the guarded block is selected. Otherwise,
when the control flow skips the guarded block, the phi’s value is set to an instance of
undef . A detailed description on the handling of undefined values within LLVM can be
found in [33].

An example of using a branch to represent the execution predicate is given in Figure
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4.12b. This CFG shows that the condition cc, that has been attached as a predicate to
basic block a as shown in Figure 4.12a, is now replaced by a branch.

A predicated block may have one or more outgoing edges. Additional measures not
described here are required to preserve the program behavior in case of multiple outgoing
edges. In case of a single outgoing edge, the control flow may be modified to join at the
basic block that has previously been targeted by the single outgoing edge.

a cc

(a) CFG of a single ba-
sic block with the execution
predicate cc

⇒
a

· · ·

if(cc)

(b) Predicate cc integrated
into the CFG

Figure 4.12: Integration of execution predicates into the CFG

4.3.5 Transformation

This section describes the implementation details of the transformation that is applied to
input-dependent branches during the SP-transformation. The transformation is applied
to input-data dependent branches at LLVM IR level. Subsequently this portion of the
SP-transformation will be called branch transformation. The branch transformation
assumes that the loop transformation as described in Section 4.2.4 and the general
program preparations described in Section 4.3.3 have previously been applied.

Transformation Order The branch transformation processes SESE-regions individu-
ally, starting from the leaves of the PST. This order is beneficial for the testability of the
transformation implementation, since it is not required to transform an entire program
at once. Instead the program remains executable even when only partially transformed.

Loops When the transformation encounters a loop-header block that has previously
been transformed by the loop transformation the entire loop is handled as an opaque
block by this transformation, just like already transformed subregions are. Since the
transformation is applied from the inner SESE-regions towards the outer anything con-
tained within the loop will have been already transformed at this point.

Guard

SESE-regions may be transformed independently from each other whereby inner regions
require to have an execution-predicate parameter provided by their outer region as de-
scribed in Section 4.3.4. The current implementation passes this execution predicate in
terms of an unsigned integer variable that is expected to be zero if the region should
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be executed and nonzero otherwise. Later on this integer variable will be referred to as
guarding variable.

The SP-transformation avoids the need to allocate a variable that stores the execution
predicate for each SESE-region by combining the information of several SESE-regions
execution predicates into a single guarding variable.

This paragraph describes how the guard value is manipulated at SESE-region bounds
so that at the evaluation points the guard value reflects the execution predicates as
described above. If the guard’s value is nonzero before a SESE-region is entered it is
incremented by one. If the guard’s value is nonzero right after a SESE-region is left
it is decremented by one. Assuming the availability of the constant-time conditional
expression [35] this can be done in constant time as illustrated in Listing 4.4 and 4.5.

1 guard =
2 ( guard !=0 # guard+1 : guard )

Listing 4.4: Incrementing guard in con-
stant time

1 guard =
2 ( guard !=0 # guard−1 : guard )

Listing 4.5: Decrementing guard in con-
stant time

When treating the guard’s value in this way the guarding variable has the same value
after leaving a SESE-region as it had right before entering the SESE-region. When a
region is disabled, i.e., the guard’s value is larger than zero when the region is entered,
the guard’s value is incremented and decremented for every nested region encountered
during execution. Essentially the guard’s value is counting the nesting depth of SESE-
regions where the execution predicate is false during execution.

Example Figure 4.13a is an example for a CFG containing nested regions. The nodes
in the CFG are attributed with their execution predicates. Nodes in this example are
named lowercase. When a node has multiple outgoing edges, the condition that controls
which of these edges is executed is represented as an uppercase letter corresponding to
the nodes name. E.g., node a has two outgoing edges where one is executed if A holds
and the other if ¬A does. In a CFG it is common to label the former edge T and the later
F, but the graphs seem already a bit cluttered so these labels are omitted. Assuming
the entire graph is embedded in a larger graph, O names the predicate induced by the
outer graph.

Figure 4.13b is a graph with the same structure, but now the execution predicates
make use of the guarding variable. The predicate term G represents a check of the
guarding variable g for equality to zero. The evaluation of predicate G is expected to
yield true if the block it is attached to should be executed. The outer regions, if existing,
are expected to use the guarding variable in the same way. At the region entry G is
expected to already incorporate any predicates from outer SESE-regions that control
the execution of the nested SESE-region.

The entry and exit blocks to SESE-regions are now preceded and succeeded by guard
increment and decrement instructions. These are assumed to be implemented in a
constant-time fashion. The application of the execution predicates has to be refined
for blocks manipulating the guard’s value. Blocks preceded by a guard incrementing
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Figure 4.13: Using a guard variable with nested regions

instruction execute this increment instruction iff the execution predicate determined for
this block evaluates to false when the block is entered. The remainder of this block
has G as the only predicate to consider. Likewise the decrement instruction has to be
executed only if the predicate G of this block evaluates to false. In summary, the guard
increments and decrements are executed only for code parts that should not be executed.

Nesting Depth The current implementation makes use of a 32-bit wide integer al-
lowing 232−1 levels of region nesting when every region increments the guard’s value by
1. Given the cycle equivalence [19] property of SESE-regions the number of increments
and decrements within a loop iteration are always the same, so loops cannot use up the
guarding variables value space regardless of the number of loop iterations executed.
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4.3.6 Reordering the Control Flow

Once, according to Section 4.3.4, the execution predicates have been established for all
blocks within a SESE-region the control flow within the SESE-region is reordered so
that a unique execution trace is guaranteed. This is done by chaining the basic blocks
in topological order.

Topological Order The CFG is restructured so that the resulting unique execution
trace visits the nodes in topological order [17]. Since nested SESE-regions and loops are
considered as opaque nodes during the transformation of a region, the graph considered
in a single transformation step is actually a DAG. For any DAG the determination of
the reverse postorder yields a topological order.

SSA-form requires that any variable use is dominated by its definition, as described
in [9] on page 454f. Fortunately rearranging the control-flow nodes in a topological order
keeps this property.

The reordering is done by removing branches from each node inside the currently
transformed region and replacing it by a single unconditional branch to the following
node, or already converted region, in topological order. As an optimization, some of the
input-independent branches may be preserved, as is described later on. This can reduce
the program’s execution time.

Reordering – For each block b in topological order:
1. If necessary, rewrite phi-instructions in b.
2. Replace branches outgoing from b.
3. Insert code that evaluates the execution predicate of block b.
4. Create a predicate branch to guard the execution of b.

Execution Predicates In the current transformation implementation, the execution
predicates are determined along with the branch replacement procedure. Whenever
a basic block, whose execution is controlled by a predicate, is transformed, the SP-
transformation inserts an instruction stream before the basic block to evaluate its exe-
cution predicate. Since the blocks are considered in topological order by the implemen-
tation, it is guaranteed that the execution-predicate information for the current block
is already completely available. The evaluation result always has the type i1, a one bit
wide integer, which is the common representation of boolean values in LLVM’s IR. The
evaluated value is expected to equal to 1 when the basic block should execute or equal
to 0 if it should not. This value is passed to any successor blocks that depend of the
execution predicate of the current block.

Whenever a branch is encountered by the transformation, the execution predicate of
the branch’s target blocks is extended to reflect a transfer of control along this edge in
the original program. For unconditional branches the predicate of the originating block
is added to the predicates of the target block by a logical OR operation.

When the branch is conditional the originating block’s predicate is combined by a
logical AND operation with the branch predicate, the resulting predicate is added to the
target block’s predicate by a logical OR operation.
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Optimization In its simplest form the SP-transformation would replace all branches,
be they conditional or not, in the program by a branch to the next basic block in topo-
logical order, resulting in a chain of basic blocks and transformed subregions which are
executed in sequence. The optimization described here preserves some conditional bran-
ches in the transformed program. Where possible without losing the property of a unique
execution trace the transformation omits branches from the replacement procedure, re-
sulting in faster execution times of the transformed program.

These branches must have previously been determined to be input-data independent.
Additionally, none of the branches preceding the branch to preserve in topological order
must have been replaced within the currently transformed SESE-region. This condition
guarantees that the preserved branch does not skip any blocks that are expected to be
executed.

If a preceding branch had been replaced by a branch to its successor in topological
order, the control flow passes basic blocks that would not be executed in the original
program. In the SP-program these blocks do not execute even if execution control is
passed to them because their guarding condition evaluates to false. When such a block
is terminated by a conditional branch, this branch also would not execute in the original
program. Keeping this branch in the transformed program, without further measures,
could skip blocks that should actually be executed.

In the transformation described here a branch is only allowed to be kept when the
execution condition of the branching block being false implies that the execution condi-
tion for all control dependent blocks is also false. The simple condition that no previous
branch in the SESE-region may have been transformed is sufficient since CFG parts that
fulfill this condition form their own SESE-subregion.

Creating Guarding Branches

In the following transformation step guarding branches are created. These skip indi-
vidual basic blocks when their execution predicate does not hold. These conditional
branches, along with their condition calculations are used to represent execution pred-
icates because the LLVM IR does not provide means to directly represent predicates.
Within Section 4.3.4 one can find a more elaborate description on the use of branches
to represent execution predicates. The introduction of these branches creates a control-
flow join immediately after each predicated block. These joins are used to rewrite the
phi-instructions that have been left in an invalid state by the transformation steps so
far, as is shown in detail in the following section.

Any SSA variables defined in the guarded blocks are rewritten to be only defined
when the block is executed. This process includes introduction of new phi-instructions
in the join block immediately following the guarded block and phi-instructions that keep
the value during additional loop iterations introduced by the SP loop transformation
pass.
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Rewriting Phi-Instructions

The replacement of control-flow branches by an unconditional transfer of control to the
next basic block in topological order reduces the number of branches targeting the former
successor blocks. When such a basic block contains phi-instructions, these instructions
are no longer valid since at least one of the incoming edges they refer to do no longer
exist. The following paragraphs present a strategy to rewrite these phi-instructions to
obtain a valid SSA-program again.

LLVM’s phi-instructions correspond to φ-functions of the SSA form as described in [9]
on page 457ff. Both expect a list of alternatives from which a value is chosen depending
on the branch origin through which control flow reaches the node/block containing the
φ-function/phi-instruction. A notable difference between the two is that the φ-function
expects a common order amongst predecessor blocks and function operands, whereby the
phi-instruction expects value pairs that identify the block from which control may be
transferred and the value to select in this case. From here on the description of the trans-
formation will focus on LLVM’s phi-instructions since that is what the implementation
is using.

The rewriting of LLVM’s phi-instructions is done along with the reordering of the
control flow in topological order of the CFG. Thus all basic blocks referenced in a phi-
instruction are guaranteed to have already been processed during program execution.
Loop header blocks do not need to be considered by this transformation step since every
loop has a pre-header inserted during program pre-processing. The pre-header carries
any phi-instructions that select values when an edge from outside the loop to the loop-
header is executed.

Edge Condition During rewriting of the phi-instructions a phi-instruction is split up
into two or more phi-instructions which pick values according to the guarding expression
of the predecessor blocks. In order to generate these phi-instructions empty basic blocks
are created that are guarded by the condition required for the values to be selected by
the phi-instruction. This condition is the edge condition of the incoming edge referred
in the original phi-instruction. It is the guarding condition of the previous incoming
block conjuncted with the condition required to execute the edge targeting the node
containing the original phi-instruction. For blocks that branched unconditionally to the
phi-instruction’s block the branching condition is assumed as always true. The same is
applicable for input independent branches which are not removed by this transformation.

Setphi Block In order to update the value defined by phi-instructions that require
rewriting, empty basic blocks have been inserted. These blocks are subsequently called
setphi blocks. One of these blocks has been created for each incoming edge of the original
phi-instruction. These blocks have to be integrated into the control flow so that each of
them is dominated by the block that originated the incoming edge before guarding. This
condition ensures that the definition of the value that had been picked by the original
phi-instruction is dominating the setphi block. After the setphi blocks have been created
and placed appropriately they are guarded by their corresponding edge condition.
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In the current implementation any setphi block is always placed immediately after the
block that originates the incoming edge to the phi-instruction in the original program.
In this way the evaluation result for the common part of the guarding expression of both
blocks is more likely to be kept in a processor register during code generation which is
saving a round trip to stack memory.

Example The CFG in the example given in Figure 4.14a contains a phi-instruction
that needs to be rewritten after the blocks originating the incoming edges have been
transformed. This phi-instruction defines the variable v by selecting va when the control
flow is transferred from block a or vb when the control flow is transferred from block b.

The transformation result is depicted in Figure 4.14b. Two new guarding blocks,
aguard and bguard have been introduced. These blocks contain branches that control the
execution of the blocks a and b depending on the result of the predicate evaluation,
whose result is held in ga respectively gb. The evaluation result of these edge conditions
is expected in eba and ebp. Note that the instruction stream required to evaluate all these
conditions is omitted from this example. Also any additional phi-instructions that may
be required by the introduction of predicates by branches, as described in Section 4.3.4,
are not shown here.

The new basic blocks a p.setphi and b p.setphi contain no instructions. They are re-
quired by the following phi-instructions to distinguish between different incoming paths.
Later in the code generation process the phi-instructions will be replaced by register
assignments that will partially be placed into these currently empty basic blocks.

The determination of the value of v is split up into two phi-instructions. For phi-
instructions with more than two incoming values the same scheme can be applied by
creating an additional phi-instruction for every additional incoming edge. Every phi-
instruction selects between the value produced by its predecessing phi-instruction or one
of the values the original phi-instruction selected from, depending on the edge condition
that has been determined for the incoming edge of the original phi-instruction. The
initial phi-instruction in this chain of phi nodes cannot use the value produced by its
predecessor since there is none. Instead it is initialized with undef or, if the value pro-
duced is contained within a SP-transformed loop, a reference to another phi-instruction
that preserves the produced value amongst any additional loop iterations introduced by
the transformation. An example therefore is vloop in Figure 4.14b.
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a:

v = phi(va,a,vb,b)

b:

(a) Node with phi-
instruction prior to transfor-
mation

⇒

a:

b:

aguard :
br ga, a, a p

b p:
br ebp, b p.setphi, p

a p.setphi:

p:
v=phi(v1, b p, vb, b p.setphi)

bguard :
v1=phi(vloop, a p, va, a p.setphi)

br gb, b, b p

a p:
br eap, a p.setphi, bguard

b p.setphi:

(b) Transformed phi-instruction

Figure 4.14: Example of a phi-instruction that is rewritten during the transformation

4.4 Function Calls

This section describes how function calls are handled by the current implementation of
the SP-transformation.

In [36], Table 1, transformation rules for procedure definitions and procedure calls
are given. The following paragraphs describe these transformation rules and explain how
the current implementation realizes them.

With the transformation rules in [36], Table 1, for any procedure definition p an
alternate single-path transformed procedure named p-sip is created. The single-path
version of the procedure has its parameter list extended by an additional parameter
carrying the procedure’s execution condition, called pcnd. Procedure calls for which the
precondition σ is known to evaluate to true are left unmodified. All other procedure calls
are replaced with a call to their single-path variant, with σ passed as the first argument.

Implementation differences Contrary to the specification in [36] the current imple-
mentation transforms every procedure definition, with some exceptions specified later in
this section, into its single-path variant. Procedure calls where the guarding condition
is known to be true still have to call the SP-transformed procedure. In that case the
current implementation is passing 0 as the guarding argument. Note that the current

87



implementation considers a value of 0 to represent a fulfilled execution predicate. These
cases obviously may increase execution time.

4.4.1 Passing the Guard Value at Function Calls

With any function call to one of the SP-transformed procedures the execution predicate
has to be passed as a function argument. The implementation is currently adding a
guard argument in front of the parameter list, exactly as suggested in [36]. The following
paragraphs give a short overview about some implementation alternatives for passing the
guard value, that have been considered during implementation and their implications.

Global Variable Functions may expect the current guarding value in the global vari-
able space. For multi-threaded environments a thread-local storage location shall be
used to guarantee that the individual threads do not interfere.
Advantages Passing the guard value in the global variable space has the advantage

that the function signatures remain unmodified. When the global guard variable
is additionally initialized correctly, e.g., by placing it in a zero initialized memory
section when a guarding value of zero represents a fulfilled execution predicate, the
SP-transformed functions may be used by clients that are completely unaware of
the SP-transformation.

Disadvantages At function calls, accesses to the global memory are required even when
a free register would be available. Before any function call the global variable has
to be updated to reflect the current state of the execution predicate. The called
function likely has to load the global guarding value at least once.

Function Argument The guard value may be passed to functions by means of an
additional function argument. The callee is not required to restore the value before
it returns since the value is duplicated at the function call. This approach requires a
modification of the function signature.
Advantages Function argument passing is a common operation and hence ABI specifi-

cations usually try to keep the runtime overhead small. E.g., in the AAPCS10[32],
which is part of recent ARM ABI definitions and which is used in the current SP-
transformation implementation, the registers r0-r3 are used to pass arguments.

Disadvantages The function signature is modified. All clients of a SP-transformed
function have to be SP-aware and pass the additional guard argument with any
function call.

Register A register could be used to hold the guard value across function calls. This
approach is most reasonable when the guarding value is stored in a reserved register that
is not used otherwise, since that may be simple to implement.
Advantages No additional operations are required at function calls, when the guarding

value is located in a reserved register.

10Procedure Call Standard for the ARM Architecture
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Disadvantages Registers are scarce.

4.4.2 Implementation Details

This section describes the transformation of function definitions and function calls in the
current implementation of the SP-transformation. Everything described in this section
refers to a program representation in LLVM IR since this is the representation the current
implementation is working with.

Function Declaration Any function declaration, with some exceptions described in
paragraph Ignoring Functions, encountered during compilation has an additional argu-
ment added. This argument is called guard and is added before the first argument to
the existing argument list. The type of the new argument is a 32-bit wide integer, i32
in LLVM’s notation. Prepending the guard argument to the argument list saves from
having to implement special handling for functions with a variable number of arguments.

Function Definition Function definitions have the function signature expanded by
an additional guard argument in the same way as declarations. Whenever the branch
and loop transformation refers to the guard value at the outermost SESE-region this
additional argument is what is actually referenced.

Function Call Every function call in the program, with some exceptions listed in the
following paragraph Ignoring Functions, has the current value of the guarding variable
added as the first parameter. The loop and branch transformation have to ensure that
the guard’s value is updated to reflect the current execution predicate before executing
any function call.

Calls to Compiler-RT

Compiler-RT11 is a set of compiler-support routines developed along the LLVM compiler.
These routines implement some of the more complex algorithms required to lower the
LLVM IR to machine instructions, e.g., floating-point arithmetic for target architectures
that do not contain an FPU12. This library is LLVM’s equivalent to the GCC13 low-level
runtime library libgcc and implements mostly the same methods.

Calls to Compiler-RT require some special handling by the SP-transformation since
they are not in place in the IR representation on which most of the SP-transformation
process works.

Function Definition The conversion of function definitions of Compiler-RT functions
is done in the same way as all other functions. A guard-value argument is prepended to
the argument list and the input-dependent branches are transformed. Since the method

11Real-Time / Runtime
12Floating-Point Unit
13The GNU Compiler Collection
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calls to Compiler-RT functions have not been in place when the dataflow analysis has
been executed all arguments to functions contained in Compiler-RT are conservatively
considered input-data dependent.

Function Call Any calls to Compiler-RT functions are required to pass the additional
guard argument. Therefore the instruction lowering phase, that introduces these calls,
has been modified to add an additional 0 as the first argument. As a result the function
calls are valid again but the guard argument has no effect yet. For function calls that
should be executed unconditionally, i.e., where the execution predicate is always true,
there is nothing more to do.

Calls to functions in Compiler-RT, that should only execute under a certain exe-
cution predicate, are created during the lowering of IR instructions. But these calls
do not consider the execution predicate in any way. The requirement for a certain
execution-predicate condition is expressed by a guarding branch marked by the meta-
data tag !sp needs conversion as created by the branch transformation. These branches
are removed later on during the machine-instruction predication pass. Additionally, this
pass also recognizes the Compiler-RT calls that need an additional guarding argument
and replaces the 0 passed as the first argument by an evaluation of the execution con-
dition. When the execution predicate evaluates to true a value of 0 is passed, when the
execution predicate evaluates to false a value of 1 is passed.

As an example the machine code of method frexp() is provided in Listing A.1. It
shows a call to nedf2 without any SP-modifications to the function call. Listing A.2
shows the same function call with a value of 0 passed as the guarding argument in
register r0 as one can see in line 7. This function call would already be valid in a SP-
transformed environment when the execution predicate is known to be always true. For
all other method calls this is only an intermediate step. Later in the compilation phase,
during the replacement of the predicate branches by actual predicates, the value passed
as the guard argument is updated to reflect the current predicate. For the example this
is shown in Listing A.3 in the lines 10 and 15.

Ignoring Functions

Some functions do not have an additional guard parameter added during SP-conversion.
These are the functions named start and main which are expected to carry initialization
code.

Additionally, any function that has the function attribute sp ignore attached is
also excluded from the addition of the guard parameter. This is true for the function
declaration, which is not touched by the SP-transformation at all, as well as for any calls
to this function. When a function definition has the attribute sp ignore attached, for
correct behavior it is required that any declaration of this function throughout the entire
program also has sp ignore attached. An example for a function declaration making
use of this function attribute is given in Listing 4.6.
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1 void debug pr int ( ) a t t r i b u t e ( ( s p i g n o r e ) ) ;

Listing 4.6: Function declaration using the sp ignore attribute.

4.5 Code Generation

This section describes the final phase of the SP-transformation. It takes place during
the compiler’s code generation. The current implementation targets the Thumb-2 ISA14

on an ARM Cortex-M3 based micro controller. Any machine-code related parts that
follow in this section refer to this this type of micro controller.

At first Section 4.5.1 gives an overview how the code-generation phase is implemented
in LLVM’s backend. The following Section 4.5.2 outlines why the SP-transformation re-
places branches in the program with conditionally executed machine instructions. The
implementation of this replacement is described in the Section 4.5.3. This implemen-
tation is split into two compilation phases which are separately executed before and
after the register allocator. These phases are explained in detail in Section 4.5.4 and
Section 4.5.6. The pseudo instructions which are inserted in the command stream as an
immediate step are separately described in Section 4.5.5.

4.5.1 Code Generation Overview

Code generation is the process of transforming the program from the LLVM IR into
the target representation. In the current implementation of the SP-transformation this
conversion targets Thumb-2 machine instructions. The following list gives an overview
of the individual transformation steps executed during code generation.

This list contains passes included in any stock LLVM version, as well as passes that
are unique to the LLVM variant that generates SP-code. Some of the transformation
steps inherited from LLVM require slight modifications which are described in the fol-
lowing sections.

Code generation steps:
1. IR preparation
2. Insert Exception Handling code
3. Instruction Selection

� IR to Selection-DAG conversion
� Instruction Selection
� Instruction Scheduling

4. SP-Predicate pre-RA
5. Phi-Elimination
6. Register-Allocation
7. SP-Predicate post-RA
8. Post-RA Scheduler
9. Block-Placement

10. Print Assembler-Instructions
14Instruction Set Architecture
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IR Preparation

The IR-preparation phase subsumes several basic optimization that are applied to the IR-
code to simplify the further transformation steps. E.g., removal of basic blocks that could
never be reached, so called dead blocks. The following paragraphs describe modifications
to these transformation steps that have been conducted during the implementation of
the SP-transformation.

Block Merging During the IR-preparation blocks that are connected by unconditional
branches are merged. The later SP-code generation steps create block structures that are
expected to be retained during the transformation. So, after the initial block-merging
phase, no further basic blocks are merged during the SP-transformation. Therefor some
block merging passes in LLVM had to be partially disabled. These passes have been
extended so that they do not merge blocks that have the metadata tag !dont merge
attached to any instruction inside the blocks. The earlier SP-transformation steps apply
this tag to any blocks they want to keep separated.

Tail Duplication The tail duplication passes, early-taildup and tail-duplicate, had to
be disabled in order not to interfere with SP code generation. Tail duplication would
move phi-instructions down the CFG, essentially reverting the region simplification done
in preparation for the SP-transformation. This region simplification is described in
Section 4.3.3.

Optimize Compare Expression The OptimizeCmpExpression pass is part of the
IR preparations that are applied prior to code generation.

This optimization is called for every compare instruction. It checks, if the result of
the compare operation is used by an instruction outside of the basic block in which the
compare resides. If so, a copy of the compare instruction is created at the beginning
of the basic block in which the depending instruction is located. After duplicating the
compare instruction for every one of its dependent instructions the original compare
instruction is no longer used and may be removed from the program.

The execution predicates introduced by the SP-transformation are expressed as con-
ditional branches based on the resulting values of such compare instructions. This is
necessary because LLVM’s IR does not directly provide means to attach execution pred-
icates to program parts. When transforming the conditional branches into predicates
the SP-transformation expects a continuous sequence of blocks which has been carefully
prepared by the earlier transformation steps. Letting the OptimizeCmpExpression
pass duplicate the compare instructions could possibly modify the processor-state regis-
ter which would later on, during the register allocation, require additional processing to
save the state register’s current value. The reason therefor is that the SP-transformed
program makes heavy use of the state register to hold the current execution predi-
cate. As a consequence this transformation would increase the execution time in the
SP-transformed program.

92



The earlier SP-transformation passes attach the metadata attribute !dont move to
any compare instructions that are not expected to be relocated. This attribute is then
evaluated by the IR preparation.

IR to Selection-DAG Conversion

The so-called Selection-DAG is a dataflow oriented program representation on which
instruction selection is performed. This is done by matching portions of the Selection-
DAG to the dataflow DAG representations of the available machine instructions. The
following paragraphs show where the transformation of the IR into the Selection-DAG
has been modified to consider the requirements of the SP-transformation.

Emit Branches for Logically Combined Conditions During the Selection-DAG
construction the conditions of all branches in the IR are analyzed. When the branch
condition is logically combined by an and- or or-operator this branch is split up into
several branches. This is in particular true for the conditions used by the guarding
branches which are a carefully crafted sequence of conjunctions and disjunctions as
described in Section 4.3.4.

Splitting a basic block that is terminated by a branch that depends on a combined
condition into two or more basic blocks requires the introduction of new branching
instructions. These new branches may be input-data dependent. But since the iden-
tification of input-dependent branches is executed in a much earlier stage of the SP-
transformation process, these newly created branches would be ignored by the remainder
of the SP-transformation and end up in the generated machine code. The resulting code
in turn would not fulfill the requirements of single path code due to these branches.

An example of a typical IR fragment for code that is generated during execution-
predicate calculation is given in Listing 4.7. Listing 4.8 shows the machine code generated
out of the code from Listing 4.7 by a stock version of LLVM. Note the additional
input-dependent branch in line 4. Finally Listing 4.9 shows the sequence of machine
instructions generated by a LLVM variant that is modified to generated SP-code. From
the absence of branches in the code follows that all the logical operations are executed
even if the result of the operation is already implied by one of the preceding operations.

1 i f . e l s e . branch :
2 %10 = load i32 * @ guard1
3 %11 = icmp ugt i32 %10, 0
4 %12 = xor i 1 %cmp11join phi , t rue
5 %not guard and not X = and i 1 %11, %12
6 br i 1 %not guard and not X , l a b e l %i f . e l s e15 , l a b e l %i f . e l s e . inc guard

Listing 4.7: IR of a branch that is expected to end up in a single basic block
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1 . LBB2 10 :
2 l d r r12 , [ r2 ]
3 cmp r12 , #0
4 beq . LBB2 12
5 @ BB#11:
6 eor r3 , r3 , #1
7 cmp r3 , #0
8 bne . LBB2 13

Listing 4.8: ARM code that is generated
by the stock LLVM compiler

1 . LBB2 10 :
2 l d r r12 , [ r2 ]
3 cmp r12 , #0
4 eor r3 , r3 , #1
5 mov r12 , #0
6 movne r12 , #1
7 t s t r12 , r3
8 bne . LBB2 12

Listing 4.9: ARM code with logically
combined conditions preserved

Instruction Selection

During instruction selection some DAG patterns are replaced by calls to functions pro-
vided by the Compiler-RT library. These are mostly patterns requiring more complex
implementations on the particular target. During the creation of a SP-transformed pro-
gram all functions in the Compiler-RT have been modified to expect a guard parameter.
The creation of function calls to functions contained within the Compiler-RT has been
modified to provide this additional guard parameter. In the current implementation a
dummy parameter of constant zero is added. The actual guard value is provided during
instruction predication later on.

4.5.2 Turning Branches into Predicates

The key modification implemented in the code generation phase, which enables the gen-
eration of SP-code, is the replacement of branches by predicated instructions. The idea
behind that is to approximate the behavior of the constant-time conditional expression
[35] by these predications.

Hardware Predication Support

The implemented approach to replace branches by predicating all instructions dependent
on these branches requires appropriate hardware support, i.e., all instructions must
support conditional execution.

Cortex-M3 Predication Support Since the current implementation targets a Cortex-
M3 based microcontroller, a closer examination of the instruction timing and predication
support, conditional execution in ARM terms, on these types of micro-controllers fol-
lows here. Note that the terms predicated execution and conditional execution are used
interchangeable here.

The Cortex-M3 is an implementation of the ARMv7-M [4] architecture profile. The
execution timing for the Cortex-M3 architecture is described in [8], Section 3.3. Condi-
tional execution is described in [7], Section 3.3.7.

The APSR15 contains 4 state flags which are updated by certain arithmetic oper-

15Application Program Status Register
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ations. These are Negative, Zero, Carry and Overflow, abbreviated by N, Z, C, and
V. Note that the register model of the current ARM back-end implementation within
LLVM still uses the label CPSR16 for this register. Instructions may be executed, based
on the current value of these four condition flags. In the Cortex-M3 ISA, which is limited
to Thumb instructions, this is realized by prefixing the instructions that should execute
only under a certain condition by an IT instruction as shown in [7], Section 3.9.3. A set
of 14 execution conditions is defined in [4] Section A6.3. These conditions are directly
derived from one or more of the 4 state flags described above. In assembler code, when
using UAL17 instruction syntax, each of these 14 conditions is represented by a two letter
suffix which is also listed in this table.

Execution Timing Although the Cortex-M3’s architecture is rather simple compared
to the larger processors available nowadays, the determination of the execution timing
is not that simple anymore. The execution time of certain instructions depends on the
systems current state. Ideally, to mimic the constant-time conditional expression by the
use of predicated instructions, the execution of each instruction would take exactly the
same time regardless if the instruction’s predicate is fulfilled or not.

For Cortex-M3 based microcontrollers this is clearly not the case as one can tell
by examining the instruction set summary table from [8], Section 3.3.1. In general
instructions are specified to execute in between 1 and 12 clock cycles, some varying
dependent on conditions like the type of the preceding instruction, pipeline stalls or the
data processed. Under certain conditions instructions may be folded onto their preceding
instruction and require no execution time at all. Instructions waiting for an interrupt
or event may take even longer than 12 cycles. When instructions are predicated and
their condition evaluated to false, they usually take one clock cycle to execute. As a
result, the execution time of blocks containing predicated instructions is expected to
vary, depending on the condition state.

4.5.3 Implementation

In this section the preparations that are required to enable the replacement of branches
by predicated instructions are described. These preparations are mainly required to re-
serve registers so that they are not assigned by the register allocator. These preparations
are performed before register allocation in the pass called SP-Predicate pre-RA.

Preconditions After the preprocessing steps done by the loop and branch transforma-
tions it is guaranteed that all input dependent branches are branching around exactly
one basic block. This prevents any nesting of input dependent branches as shown in
the example given in Figure 4.12b. Additionally the input-data dependent branches are
guaranteed to have the !sp needs conversion metadata tag attached. These transfor-
mations have been done on the IR of the program, so these guarantees are primarily

16Current Program Status Register, deprecated synonym for APSR
17ARM Unified Assembler Language
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asserted on this level of representation. Since the instruction selection, which has been
executed before, works on a basic block level the program structure remains unmodified,
keeping these properties also in the machine-instruction representation.

Existing Predicates The subsequently described transformation is required to assign
a predicate to any instruction inside guarded blocks. In the targeted architecture an
instruction may have at most one execution condition assigned. When the instructions
in the input program already make use of conditional execution the transformation has
to derive a condition that combines the previously used condition with the SP execution
condition. To avoid this construction of combined conditions the transformation prefers
input programs that do not make use of conditional instructions. The transformation is
implemented to be correct in the case of prior existing predicates but the additionally
required predicate handling will result in longer execution times.

If-Converter Pass LLVM’s IR does not directly provide conditionally executed in-
structions. When a program is compiled by the stock LLVM compiler, any use of pred-
icated instructions in the resulting program is introduced by passes working on the
machine-code representation. The pass that introduces most of the predicated instruc-
tions when code is generated by the stock LLVM compiler for an ARM target is the If
Converter pass. This pass is originally applied after instruction selection.

In the modified LLVM compiler used for SP-transformation the If Converter pass is
disabled. With this pass disabled, the generated code is mostly predicate free. Note that
this pass implements a transformation that is similar to the transformation described
here but with a focus on performance improvement and other varying details, e.g., it
ignores basic blocks that already contain predicates.

4.5.4 Transformation before Register Allocation

The SP-Predicate pre-RA pass inserts pseudo instructions into the command stream with
the purpose to reserve one or more registers for later use by the SP-Predicate post-RA18

pass. It will use these registers to store conditions and the state of the condition flags
in the APSR. The pseudo instructions inserted are described in Section 4.5.5.

Transformation Realm The SP-Predicate pre-RA transformation works on a subset
of the CFG that consists of three or four basic blocks. A branch block, the two targets of
this branch, which are called true and false block here. And a join block which is the
common, unconditional, branch target of the true and false block. When the branch
block executes, the true block is executed next if the branching condition is fulfilled.
Otherwise the false block is executed next. The transformation also allows structures
that omit either the true or false block, thereby the join block is a direct target of the
branch block.

18Register-Allocation
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When neither the true nor the false block contain any instructions that modify the
APSR nothing has to be done for these blocks.

Reserving Registers In the following the insertion of pseudo instructions into the
command stream is described. These pseudo instructions add additional register refer-
ences for which later on the register allocator will assign physical registers.

In case there are any instructions modifying the APSR, an SP SAVE PRED pseudo
instruction is inserted immediately before the branching instructions in the branch block.

In both, the true and the false block, after each instruction that may modify the
APSR an SP SAVE PRED COMBINED pseudo instruction is inserted when the just
defined predicate is referenced by a later instruction.

The saved predicates are required whenever an already predicated instruction is
encountered in the instruction stream. An SP EVAL PRED pseudo instruction is added
to the program immediately before these predicated instructions. These new instructions
are responsible for restoring the APSR to the state it would have had without the entire
transformation.

In the join block a phi-instruction is inserted which references the predicate registers
value regardless if the control flow enters from the true or the false block. This phi-
instruction ensures that the predicate registers are referenced and are not declared dead
and removed during register allocation.

4.5.5 Pseudo Instructions

The following paragraphs describe the semantics of the pseudo instructions inserted by
this transformation. Since registers are still expected to be in SSA-form when these
pseudo instructions are created, the same register can not be assigned twice. Instead the
pseudo functions take a reference to the register containing the previous value, subse-
quently called predreg, and write the result into a newly allocated virtual register. The
register with the previous value is never used after this point which enables the register
allocator to reuse the same physical register.

<dst> = SP SAVE PRED <pred> Evaluates if the current state of the APSR
matches the predicate supplied by pred. The evaluation result is stored to the register
dst. This instruction is commonly used to retain the branch condition of a branch
instruction that is removed during this transformation.

<dst> = SP SAVE PRED COMBINED <predreg> <pred> Evaluates if the
current APSR matches pred and combines the result with a previous saved predicate.
The register predreg is assumed to contain a predicate state that has been saved by an
earlier SP SAVE PRED. The result is stored to register dst. dst is expected to contain
both, the combined and the previous uncombined evaluation result and may be used
appropriately by subsequent SP EVAL PRED instructions.
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SP EVAL PRED <predreg> <restore carry> <pred> Restores the value of
the APSR based on the information in predreg. The register predreg is assumed to carry
the result of a previous SP SAVE PRED or SP SAVE PRED COMBINED instruction.
When the boolean argument restore carry is set, the carry flag of the APSR is restored
based on the information in the register predreg. This may be necessary because all
APSR modifying operations inserted here do also clobber the carry bit.

4.5.6 Transformation after Register Allocation

During register allocation the pseudo instructions that have been inserted before, as
described in Section 4.5.4, had physical registers allocated. In the post-RA transfor-
mation described here these pseudo instructions are now replaced by actual machine
code. This step is, of course, highly target-architecture specific. A short description of
the implementation targeting a Cortex-M3 based microcontroller follows. In addition to
replacing the pseudo instructions this pass removes the input dependent branches from
the program, appends the branch target blocks to the branching block and predicates
the instructions in these blocks as necessary.

This transformation is again working on a branch block, its two target blocks which
are called true block and false block here and their common target called join block.

Removing Branches

As the first step the branching code is removed from the branch block. The branching
condition is preserved by a SP SAVE PRED instruction that has already been created
earlier. Then, if a false block exists, the instructions from the false block are appended
to the branching block. The now empty false block is then removed. Subsequently the
same is done for the true block.

Note that the appending order of the true and false block is completely arbitrary
until one of the blocks manipulates the guarding variable which is referenced within the
other. In the current implementation the previous transformations are expecting exactly
the order described here.

The example in Figure 4.15a shows a CFG before the transformation, Figure 4.15b
depicts the transformation result.

branch

false true

join

(a) CFG before branch removal

⇒

branch

false

true

join

(b) CFG after branch removal

Figure 4.15: Removal of the branching instruction during post-RA processing
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Expand Pseudo Instructions

In this pass the pseudo instructions that have previously been inserted are now replaced
by target specific machine code. The machine code generated in this pass has to im-
plement the functions described in Section 4.5.5. The following paragraphs describe the
implementation for each of the pseudo instructions shown there.

<dst> = SP SAVE PRED <pred> Sets all bits in the register dst to 1 when the
predicate pred is met by the current APSR, to 0 otherwise. All bits are set to simplify
the implementation of a possibly following SP SAVE PRED COMBINED instruction.

The following listing exemplary shows the expansion of a SP SAVE PRED instruc-
tion.

1 # implements r1 = SP SAVE PRED gt
2 mov r1 , #0
3 mvngt r1 , #0

Listing 4.10: SP SAVE PRED expanded

<dst> = SP SAVE PRED COMBINED <predreg> <pred> Combines the
current APSR with a previous saved predicate. When the current APSR meets the
predicate pred, the bit representing pred is cleared in predreg and the result assigned
to the register dst. The bit representing a certain predicate is determined by the index
of the predicate in Table 3-4, Condition code suffixes of [7], with the first entry being
the second least significant bit. The first bit retains the original predicate value and is
never overwritten.

The following listing exemplarily shows an expansion of an SP SAVE PRED COM-
BINED instruction. Note that lt is the 12th entry in Table 3-4 Condition code suffixes
of [7] and that the condition-code ge is the inverse of lt.

1 # implements r1 = SP SAVE PRED COMBINED r1 l t
2 b i cge r1 , #12

Listing 4.11: SP SAVE PRED COMBINED expanded

SP EVAL PRED <predreg> <restore carry> <pred> Restores the value of
the APSR based on the information in predreg. When the predicate pred is passed to
this instruction the appropriate bit in predreg, containing the combined predicate infor-
mation of a previous SP SAVE PRED COMBINED instruction, is evaluated. Without
pred the least significant bit is evaluated. When the evaluated bit is set, indicating the
condition would have been met by the original condition flags the current condition is
changed to ne. Otherwise, if the original condition flags would not have met pred, the
condition flags are changed to eq.

The following listing exemplarily shows an expansion of an SP EVAL PRED instruc-
tion. It evaluates the condition saved into register r1 as shown in the example in Listing
4.11.
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1 # implements r1 = SP EVAL PRED l t
2 t s t r1 , #12

Listing 4.12: SP EVAL PRED expanded

Predicate Instructions

In the final step of the transformation the instructions of the original true and false
blocks are marked for conditional execution. The process of applying an execution
condition to an instruction is called predication here.

The predication is performed in instruction order, starting at the first instruction
inherited from the false block.

As long as the condition flags in APSR contain the state that would have resulted
from the original branching condition, the instructions in the true block are predicated
with the branching condition, the instructions in the false block with the inverse of the
branching condition.

When the condition flags in APSR become clobbered or when an already predicated
instruction is encountered the condition flags in the APSR cannot directly be used as
predicates. They either need to be restored or would be required to carry a combination
of two predicates. This is implemented by the pseudo instructions SP SAVE PRED,
SP SAVE PRED COMBINED and SP EVAL PRED which previously have been care-
fully crafted to set the condition flags in APSR to a state representing the required
condition. The following instructions are then predicated accordingly. For the imple-
mentation of the SP EVAL PRED pseudo instruction as shown in Listing 4.12, this
means applying the execution condition ne to any following instructions.
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5.1 Runtime

In the following the runtime behavior of programs before and after SP-transformation
is evaluated.

Experiments regarding the execution time behavior of several basic algorithms have
been conducted in [34]. In this work the same algorithms have had the automatic single-
path conversion applied to, examining the differences in code size, memory usage and
execution timing of the resulting binaries.

The experiments described here have been conducted using a Stellaris EDS-LM3S8962
[40] evaluation kit from Texas Instruments. The CPU1 is configured to use an 8 MHz
clock signal. The clock is driven directly from the on-board oscillator, bypassing all clock
dividers and PLL2s.

Measurements are done by using the integrated Timer. The timer is configured to
use the system clock as timer source. Dividers are disabled, so the timer does count
clock cycles.

1Central Processing Unit
2Phase-Locked Loop
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5.1.1 Binary search

The code for this experiment was taken from [34], “Figure 1. Traditional Binary Search.”
and “Figure 2. WCET-Oriented Version of Binary Search.”. To enable automatic gener-
ation of single-path code, the loop was annotated with a loop-iteration bound of 5. The
loop-iteration bound can be specified as a fixed value here because the experiment will
execute search operations only in arrays consisting of exactly 16 elements.

Algorithms analyzed:
binsearch avg A conventional implementation of the binary-search algorithm,

optimized for the average case. Source code is provided in Listing A.4.
binsearch wcet An implementation of binary-search, manually optimized for low

jitter by using the C conditional-expression operator. Source code is provided
in Listing A.5.

Build types compared Three different builds have been compared. These are called
SP build, SP-prepared build and regular build. A short description of each build
type follows.
SP This build is a full SP-transformation of the program.
SP-prepared This build does the complete single-path transformation, but with-

out the final step, the if-conversion. The loop conversion is applied, so the
number of loop iterations is input independent. Also all nested conditions
are transformed into simple conditions that could be directly used to do the
if-conversion. All the code the single path transformation will ultimately cre-
ate is in place, but the branches are not eliminated. The resulting program
does still skip conditionally executed code portions instead of executing them
under a predicate.

Regular This build is optimized towards low execution times. It does not take
any measures to generate code that yields constant execution time.

102



Runtime Comparison

The following tables compare the runtime of calls to binsearch avg and binsearch wcet
for different compilation options.
The execution-time histogram for the SP-prepared build of binsearch avg is given in
Figure A.4, for binsearch wcet in Figure A.5.

Regular SP

Code-Size [bytes] 84 770
# Cond. Branch-Instructions 5 1

Min. execution-time [clock-cycles] 71 1724
Avg. execution-time [clock-cycles] 166.3 1738.5
Max. execution-time [clock-cycles] 215 1748

Jitter [clock-cycles] 144 24
Execution-Time Distribution see Figure 5.1a see Figure 5.1b

Table 5.1: Runtime Comparison of calls to binsearch avg
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(a) Regular build. For a detailed graph
please refer to Figure A.6
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(b) SP build. For a detailed graph please
refer to Figure A.2

Figure 5.1: Execution time distributions of calls to binsearch avg
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Regular SP

Code-Size [bytes] 62 236
# Cond. Branch-Instructions 3 1

Min. execution-time [clock-cycles] 153 587
Avg. execution-time [clock-cycles] 168.7 588.9
Max. execution-time [clock-cycles] 187 589

Jitter [clock-cycles] 34 2
Execution-Time Distribution see Figure 5.2a see Figure 5.2b

Table 5.2: Runtime Comparison of calls to binsearch wcet
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(a) Regular build. For a detailed graph
please refer to Figure A.7
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Figure 5.2: Execution time distributions of calls to binsearch wcet

Detailed analysis

As can be seen in Table 5.1, even a relatively small example as the binary-search al-
gorithm shows a large increase in execution time after application of the automatic
single-path conversion. The maximum observed execution time for the conventionally
compiled binary-search example has been 215 clock cycles, whereby the single-path con-
verted variant has shown a maximum execution time of 1748 clock cycles. This is a
more than 8-fold increase in execution time. To find the cause for this large increase in
execution time, the generated programs have been compared on the machine instruction
level. Listing A.6 shows the assembler instructions resulting from a compilation without
SP-transformation, Listing A.7 shows the resulting assembler code with an application
of the SP-transformation. The instructions in these listings have been colored to reflect
their categories according to the following list.

The machine instructions of the inner loop for the binary-search program have been
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categorized into the following four different types.
Program Instructions that constitute the programs functionality.
Spill Instructions that spill register values onto the stack or reload previously spilled

values.
Move Instructions that move values between registers to prevent spilling the register

values onto the stack.
Guarding Instructions that have been introduced by the SP-transformation to calculate

guarding conditions.

In Table 5.3 the result of the analysis is summarized. As one can see there, the
number of instructions has been largely increased because of the additional guard-value
calculation instructions. However, the currently generated guarding code is highly inef-
ficient. These calculations could be reduced to a large extent by optimizing them. This
can be seen in detail in Listing A.7. Also note that the number of program instructions
has been slightly reduced. This is because some of the original branching instructions
do no longer exist after the SP-transformation.

The overall number of instructions in this example has increased by a factor of ap-
proximately 7.7, which is, in this example, close to the factor of 8.1 by which the runtime
has increased. This is because the binary-search program examined here executes most
of the instructions contained within the inner loop on every loop iteration.

The execution-time jitter remaining in the SP-transformed program results from
load and store instructions since these are the only instructions which may not execute
in exactly one clock cycle. This can also be seen in the assembler code provided in
Listing A.7. For detailed information on the timing of the individual instructions on the
Cortex-M3 architecture please refer to [8], page 3-4ff.

Regular SP

Program [# of instructions] 34 29
Spill [# of instructions] 0 36

Move [# of instructions] 3 14
Guarding [# of instructions] 0 208

Overall [# of instructions] 37 287

Table 5.3: Instruction classification of the inner loop in binsearch avg

5.1.2 SolveCubic

The following experiments have been conducted using the MiBench [12] benchmark suite,
version 1.0. MiBench is a collection of different benchmarks, which are grouped into 6
categories. In the following the focus will be on the basicmath test, which is part of the
automotive test group. The experiment is additionally restricted to the basicmath small
variant due to memory constraints of the test platform. The test platform is based on
a Stellaris-LM3S8962 [41] microcontroller which provides 64 KB SRAM and 256 KB
FLASH.
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The execution behavior of the function SolveCubic, which forms a large portion of the
basicmath small test, is analyzed in detail here. SolveCubic implements a cubic function
solver. The following execution times measured are those of a single call to SolveCubic,
solving equation 5.1. The static call graph of the compiled function is shown in Figure
A.1. The static call graph is the same for the single-path variant of the program and the
conventionally compiled one. The measured execution times for this single invocation of
SolveCubic are listed in Table 5.4.

1.0 ∗ x3 − 10.5 ∗ x2 + 32 ∗ x− 30 = 0 (5.1)

Execution Time Measurement

Table 5.4 lists execution times for the three different compilations of the same program.

Regular The first compilation, denoted as Regular, is an ordinary, execution-time
optimized compilation similar to the compilation result of a stock LLVM version.

SP-prepared The result set named SP-prepared was obtained by performing all prepar-
ing steps of the SP-transformation, but without the final step of replacing the branches
by predicated instructions. Function calls are performed as in the SP-converted variant
of the program, i.e., also functions that would not be executed in the original program
are called but their effects are isolated by passing an appropriate guarding value. The
notable exception are calls to functions in Compiler-RT. Since these are introduced late
in the compilation process the transformation of the program structure does not con-
sider them. This is done during the predication phase. Because the function calls may
be skipped in the SP-prepared variant whereby they are always executed with the fully
SP-transformed variant, the number of calls for functions in Compiler-RT increases from
the SP-prepared variant to the SP variant.

SP Finally there is a set of execution-time measurements for the fully SP-transformed
program, denoted SP. In contrast to the SP-prepared variant input dependent branches
in the program are replaced by predicated instructions.

For each of the compilation types the execution time has been measured. This
measurement has been done by setting a hardware timer to run synchronous to the
CPU clock, essentially counting clock cycles. All time measurement results are therefore
in clock ticks. The clock was set to 8.0 MHz, derived directly from the 8.0 MHz crystal
provided by the Stellaris LM3S8962 Evaluation Board [40].
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Execution Time

The following paragraphs describe the contents of the individual columns in Table 5.4.

Name Name of the function whose execution time is measured.

Time Execution time, in clock cycles, for this function including all functions called.
All functions were instrumented to compute the differences of the timer value between
function entry and function exit, yielding the runtime in clock cycles. This runtime has
been accumulated for multiple executions.

# Number of invocations of the current function.

RT-factor Runtime factor of the time spent executing the current function and its
sub-functions compared to the regular compilation.

Vertically the results are split into 3 parts to illustrate the different program parts.
These 3 layers are, from top to bottom, MiBench, libmusl and Compiler-RT. The fact
that the program is organized into these 3 layers is also reflected in the call graph shown
in Figure A.1.

Interpretation

For this particular invocation, the single-path compiled variant of SolveCubic requires
the 1473-fold time to execute than the conventionally compiled variant does. The much
smaller binary-search example presented in Section 5.1.1 in contrast has only shown a
10- to 20-fold increase in execution time.

The data from Table 5.4 allows to roughly distinguish between two causes for this
increase in runtime. Roughly refers to the fact that SP-prepared does not include all
calls to Compiler-RT functions, as described above. The two causes are the control-flow
modifications with predicate calculations and the ”execution” of disabled code parts.
The former is included in the times provided by the SP-prepared columns, the latter in
the SP columns.

The largest portion of execution-time growth is caused by the iteration over disabled
code parts, as can be determined by comparing the times provided in the columns SP-
prepared and SP. In this example it is causing approximately a 73-fold increase in
execution time. That means that, on the now unique instruction trace, only 1/73 of the
instructions are required to calculate the result for that particular invocation.
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Regular SP-prepared SP

RT- RT-
Function Time # Time # factor Time # factor

SolveCubic 39351 1 793978 1 20 57968641 1 1473

cos 6494 1 38341 1 6 162703 1 25
atan 8234 2 48476 2 6 88498 2 11

cos 15134 3 633691 3 42 57348569 3 3789
floor 0 0 0 0 497520 60
pow 0 0 7247 1 223950 1

scalbn 0 0 17219 67 1101344 127
sqrt 5885 5 48913 8 8 124406 8 21

rem pio2 2627 3 578138 3 220 56861057 3 21645
rem pio2 large 0 0 564561 3 56565732 3

adddf3 10283 93 79764 95 8 29213803 18908 2841
cos 0 0 0 0 0 0

divdf3 2159 13 9199 13 4 37855 33 18
eqdf2 0 0 0 0 23298 66

fixdfsi 0 0 0 0 81702 801
floatsidf 0 0 0 0 322960 3670

gtdf2 66 2 197 1 3 64600 183 979
ledf2 0 0 156 1 314 1
ltdf2 0 0 0 0 22592 64

muldf3 9239 96 70295 97 8 23888715 18943 2586
sin 0 0 0 0 0 0

subdf3 4763 25 22883 25 5 1167529 725 245
unorddf2 4 1 0 0 0 5632 64 1408

Table 5.4: Execution times for a call to SolveCubic with different compilation types
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Runtime Comparison The following table compares the runtime of all calls to Solve-
Cubic during the execution of the basicmath small benchmark for different compilation
options.

Regular SP

Code-Size [bytes] 25210 77814
# Cond. Branch-Instructions 426 110

Min. execution-time [clock-cycles] 21203 57965986
Avg. execution-time [clock-cycles] 25851 57966836
Max. execution-time [clock-cycles] 43953 57968921

Jitter [clock-cycles] 22750 2935
Execution-Time Distribution see Figure 5.3a see Figure 5.3b

Table 5.5: Runtime Comparison of all calls to SolveCubic in basicmath small
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(a) Regular build. For a detailed graph
please refer to Figure A.8.
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Figure 5.3: Execution-Time distribution of calls to SolveCubic

5.2 Cost Drivers

Timing measurements done in Section 5.1 have shown a large increase in execution time.
In this section some reasoning about the causes for this execution-time increase is done,
especially on the effect the program size has on the execution time.

5.2.1 Predicate Calculation

The predicate calculation is done for every basic block and its runtime cost may be
estimated to be in O(basic-block size) for each particular block, since each predicate
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use requires some constant-time processing. Blocks with more instructions have more
opportunities to make use of predicates. Once for each instruction.

In the SP-transformed program variant each instruction will be executed. For each
instruction a certain processing overhead is generated that does not grow with program
size. These predicate calculations are always executed before the actual program in-
structions are. Therefore the predicate handling is causing some constant execution-time
factor for SP-transformed programs.

In the current implementation a rough upper bound for the execution-time increase
may be deducted from the increase of the executable code size that is caused by the SP-
transformation. The reason therefore is that on the Cortex-M3 target all instructions
are similar in size and the predicate calculation is only using simple instructions that are
usually executed within one clock cycle. Any growth in executable size which is caused
by the predicate calculation will therefore lead to an increase in execution time due to
the necessity to execute this new instructions. Should the previously existing code also
consist of simple instructions that execute within a single clock cycle, the factor by which
the runtime increases from the new predicate-calculating instructions can be assumed
to be close to factor in which the code size increased. Actual programs will also consist
of, in terms of clock cycles required for their execution, more expensive instructions, so
the relative execution-time growth will be below the relative code size growth.

The results in Section 5.1 show that SP-transformation increases code size by a
factor between 2 and 8 times, depending on the program transformed. In these cases
optimizations to the predicate calculation may at most reduce execution time to 1

8 th.

5.2.2 Iteration Bounds

In the SP-transformed program each input-data dependent loop is always executed for
the number of iterations that has been annotated. When the iteration bound provided
for a certain loop is not higher than the number of iterates executed in its worst-case,
for the worst-case there is no additional cost due to additional loop iterations in the
SP-program compared to the conventionally compiled program.

Additional runtime is required when the specified iteration bound ITannot is larger
than the number of loop iterations executed in the wost-case ITWC . The number of
additional loop iterations that the SP-program executes compared to the worst-case
execution of the conventional program may be calculated by: ITSP = ITannot − ITWC .
Assuming that the time required for the execution of a single loop iteration is TIT , the
additional execution-time cost due to the larger than necessary iteration bound is:

TSP = ITSP ∗ TIT (5.2)

When loops are nested, the execution time of an outer loop contains the execution
time of any nested loops. Let ToutIT be the average iteration time of the outer loop
and TinIT the execution time of the inner loop. The iteration time of the outer loop is
a combination of the time spent in the inner loop and the time Tx spent execution loop
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content not part of the inner loop. IT inSP denotes the additional iterations, caused by
a larger than necessary iteration-bound annotation, of the inner loop.

ToutIT = Tx + (IT inWC + IT inSP ) ∗ TinIT (5.3)

When the outer loop’s iteration annotation exceeds the worst-case iteration bound
IToutWC by IToutSP , the complete execution time for an invocation of the outer loop
may be calculated as follows.

Tout = IToutannot ∗ ToutIT (5.4)

= (IToutWC + IToutSP ) ∗ ToutIT (5.5)

= (IToutWC + IToutSP ) ∗ (Tx + (IT inWC + IT inSP ) ∗ TinIT ) (5.6)

= IToutWC ∗ IT inWC ∗ TinIT + . . . (5.7)

So, for two nested loops with larger than necessary iteration bounds the execution-
time growth is in o(IToutWC ∗ IT inWC). Any further nesting in a loop with a larger
than necessary iteration bound will further increase the execution time in the same way.

In general, for n nested loops with imprecise iteration bounds, where each iteration
bound is at least ITminSP too large, the growth of execution time will be in:

o(ITminSP
n) (5.8)

To reduce the effect of this source for execution-time growth keep the number of
loop-nesting levels low and use precise loop-iteration bounds.

5.2.3 Nesting

The number of nesting levels of SESE-regions also has implications on the execution time
of the SP-transformed program. For simplicity, in the following all branches are assumed
to be input-data dependent. Non input-dependent branches starting SESE-regions do
not increase execution time, since they are preserved in the transformed program. Loops
are ignored here, since the effect to loop iterations is already considered in the previous
section, and anything said in this section should also work for programs that have each
loop completely unrolled.

Any SESE-region contains at least one basic block, which is not necessarily executed,
for a given invocation of the region entry and exit. So, when the SESE-region entry is
passed, there is a probability p that the block contained in the region is executed before
the region exit is passed. The probability for not executing this block is 1− p.

Nesting the SESE-region inside another SESE-region adds a probability p1 that the
inner region is not executed at all when the outer regions entry block is passed. When the
outer region is entered, the probability for the block contained within the inner region
to be executed before the outer regions exit block is passed is p1 ∗ p. Adding more levels
of nesting on average decreases the probability for all contained blocks, be it directly or
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in subregions, to be executed. Assuming a uniform execution time t for all blocks, on
average the entire region executes in time T :

T = t+ t ∗ p+ t ∗ p1 ∗ p (5.9)

Call Graph Anything said above for SESE-regions is also true for function calls. So
one has to regard the number inter-procedural nesting levels here.

Since a program does not only grow by adding new nested regions, a region may also
contain a sequence of subregions. Let nl be the number of basic blocks on nesting level
l and further unifying all execution probabilities to 1/p, the average execution T time
for 2 nesting levels is:

T = n0 ∗ t+ n1 ∗ t ∗ p+ n2 ∗ t ∗ p1 ∗ p (5.10)

In general for L nesting levels:

T =
L−1∑
l=0

nl ∗ t ∗ pl (5.11)

Further assuming a uniform distribution of the n basic blocks amongst nesting levels,
resulting in n/L basic-blocks per level, yields

T =

L−1∑
l=0

n

L
∗ t ∗ pl (5.12)

=
n

L
∗ t ∗

L−1∑
l=0

pl (5.13)

Effect on SP-programs In the single-path variant each basic block is executed once.
Resulting in TSP = n ∗ t. The runtime factor from SP-conversion is therefore:

TSP
T

= L ∗ p− 1

pL − 1
(5.14)

Since the probability p < 1, so pL decreases for larger values of L. The runtime factor
of the single-path transformed program in relation to the conventional compiled program
may, by all the assumptions made above, be expected to linearly grow by the number
of nested regions in the program. For real programs at least the uniform distribution
of basic blocks amongst nesting levels may not be true. Should the number of blocks
decrease towards in the inner nesting levels, the runtime factor will be lowered.

Relationship of Nesting-Depth to Program Size Empirical studies have shown
that the nesting depth within a procedure does not increase with the procedure size [19].
Therefore growth in the inter-procedural nesting depth will most likely be the result of
an increased call-graph depth.
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CHAPTER 6
Conclusion and Outlook

Conclusion The implementation of the SP-transformation done in the course of this
thesis has shown that it is feasible to automatically generate an SP-program from the
annotated sources of a high-level programming language.

In Section 2.3 a transformation scheme for any program that may be represented
as a reducible flow-graph and has iteration bounds given into a single-path program
has been presented. This transformation scheme corresponds to the SP-transformation
rules publicized earlier which where specified for an imperative programming language.
The specification at control-flow level has the advantage to not require a mapping from
the concrete program-implementation language to the SP-transformation rules. Instead
the transformation may be applied at the control-flow level, whereby the transformation
into a control-flow representation is likely to have been already implemented with the
compilation process anyway.

Experiments with programs resulting from the automatic SP-transformation have
shown that the converted programs may require a much longer execution time than the
unconverted program’s WCET. Whereby this increase in runtime depends on the struc-
ture of the converted program. The impact of input data on the programs execution
time has been reduced by the SP-transformation. It has, however, not completely dis-
appeared, since the transformed programs make use of the conditional-execution mech-
anism provided by the target hardware. This conditional execution does not have the
property of a constant execution time as it is provided by the constant-time conditional
expression that has been used when specifying the SP-transformation. Therefore the
execution times still vary with the input data provided.
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Outlook It remains to be analyzed which algorithms are suited best for an automatic
conversion into an SP-program. It might be that these are commonly programs that
solve tasks that are typical for real-time applications.

Further, another implementation of the constant-time conditional expression may be
used with the automatic SP-transformation to generate programs that show even less
execution time jitter than ones generated by the current implementation.

The execution of the transformed programs does currently show a unique sequence of
instructions executed. To achieve truly constant execution times on a cached computing
architecture further measures for memory accesses have to be provided. One could, for
any memory access where the address does not depend on input data extend SP-programs
to show a unique pattern on the memory address bus. Since loops in SP-programs always
iterate for their worst-case number of times, memory accesses within loops may also be
performed when the loop has already logically terminated. To be able to also do this
for write accesses the memory location could first be read and, in the disabled case, be
re-written with the unmodified data. The resulting programs should not only have a
unique addressing pattern for instruction locations but also for data-memory locations.
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Appendix

A.1 Call Graphs

Compiler-RT

libmusl

__subdf3
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__cos

__sin

atan
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floor

pow

main

SolveCubic

Figure A.1: Static callgraph for SolveCubic
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A.2 Execution-Time Distributions
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Figure A.2: Execution-Time distribution for calls to binsearch avg, SP-Build
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Histogram of binsearch_wcet_sp
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Figure A.3: Execution-Time distribution for calls to binsearch wcet, SP-Build
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Histogram of binsearch_avg_prep
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Figure A.4: Execution-Time distribution for calls to binsearch avg, SP-Prepared
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Histogram of binsearch_wcet_prep
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Figure A.5: Execution-Time distribution for calls to binsearch wcet, SP-Perpared
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Histogram of binsearch_avg
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Figure A.6: Execution-Time distribution for calls to binsearch avg, regular build
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Histogram of binsearch_wcet
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Figure A.7: Execution-Time distribution for calls to binsearch avg, regular build
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Histogram of SolveCubic
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Figure A.8: Execution-Time distribution for calls to SolveCubic
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Histogram of SolveCubic_sp
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Figure A.9: Execution-Time distribution for calls to SolveCubic, SP-Build
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A.3 Listings

1 BB#14: der ived from LLVM BB %i f . then
2 Live Ins : %R4 %R5 %R6 %R8 %R9 %R10
3 Predece s so r s accord ing to CFG: BB#13
4 SP EVAL PRED %R6 , pred : 1 4 , pred :%CPSR<imp−def , dead>
5 %R0<def> = MOVr %R5 , pred : 1 4 , pred :%noreg , opt :%noreg ;
6 %R1<def> = MOVr %R4 , pred : 1 4 , pred :%noreg , opt :%noreg ;
7 %R2<def> = MOVi 0 , pred : 1 4 , pred :%noreg , opt :%noreg
8 %R3<def> = MOVi 0 , pred : 1 4 , pred :%noreg , opt :%noreg
9 BL <es : nedf2 >, %R0<k i l l >, %R1<k i l l >, %R2<k i l l >, %R3<k i l l >, %R0<

imp−def >, %R1<imp−def , dead>, %R2<imp−def , dead>, %R3<imp−def ,
dead>, %LR<imp−def , dead>, %CPSR<imp−def , dead>, %SP<imp−use >,
. . . ;

10 %R7<def> = MOVr %R0<k i l l >, pred : 1 4 , pred :%noreg , opt :%noreg ;
11 CMPri %R7 , 0 , pred : 1 4 , pred :%noreg , %CPSR<imp−def >;
12 %R6<def> = SP SAVE PRED COMBINED %R6<k i l l >, pred : 1 , pred :%CPSR<k i l l

>;
13 SP EVAL PRED %R6 , pred : 1 , pred :%CPSR<imp−def >;
14 %R7<def> = MOVi 1 , pred : 1 , pred :%CPSR, opt :%noreg ;
15 SP EVAL PRED %R6<k i l l >, pred : 1 4 , pred :%CPSR<imp−def , dead>
16 Succe s so r s accord ing to CFG: BB#15

Listing A.1: Call to compiler-rt ( nedf2) without additional guard-argument

1 BB#14: der ived from LLVM BB %i f . then
2 Live Ins : %R4 %R5 %R6 %R8 %R9 %R10
3 Predece s so r s accord ing to CFG: BB#13
4 SP EVAL PRED %R6 , pred : 1 4 , pred :%CPSR<imp−def , dead>
5 %R0<def> = MOVi 0 , pred : 1 4 , pred :%noreg , opt :%noreg
6 STRi12 %R0<k i l l >, %SP<k i l l >, 0 , pred : 1 4 , pred :%noreg ; mem: ST4 [ Stack

]
7 %R0<def> = MOVi 0 , pred : 1 4 , pred :%noreg , opt :%noreg
8 %R1<def> = MOVr %R5 , pred : 1 4 , pred :%noreg , opt :%noreg ;
9 %R2<def> = MOVr %R4 , pred : 1 4 , pred :%noreg , opt :%noreg ;

10 %R3<def> = MOVi 0 , pred : 1 4 , pred :%noreg , opt :%noreg
11 BL <es : nedf2 >, %R0<k i l l >, %R1<k i l l >, %R2<k i l l >, %R3<k i l l >, %R0<

imp−def >, %R1<imp−def , dead>, %R2<imp−def , dead>, %R3<imp−def ,
dead>, %LR<imp−def , dead>, %CPSR<imp−def , dead>, %SP<imp−use >,
. . . ;

12 %R7<def> = MOVr %R0<k i l l >, pred : 1 4 , pred :%noreg , opt :%noreg ;
13 CMPri %R7 , 0 , pred : 1 4 , pred :%noreg , %CPSR<imp−def >;
14 %R6<def> = SP SAVE PRED COMBINED %R6<k i l l >, pred : 1 , pred :%CPSR<k i l l

>;
15 SP EVAL PRED %R6 , pred : 1 , pred :%CPSR<imp−def >;
16 %R7<def> = MOVi 1 , pred : 1 , pred :%CPSR, opt :%noreg ;
17 SP EVAL PRED %R6<k i l l >, pred : 1 4 , pred :%CPSR<imp−def , dead>
18 Succe s so r s accord ing to CFG: BB#15

Listing A.2: Call to compiler-rt ( nedf2) with const zero as additional guard-argument
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1 BB#13: der ived from LLVM BB %i f . then . guard
2 Live Ins : %R4 %R5 %R8 %R9 %R10
3 Predece s so r s accord ing to CFG: BB#12
4 %R0<def> = LDRi12 %SP , 4 , pred : 1 4 , pred :%noreg ; mem:LD4[%guard ]
5 CMPri %R0<k i l l >, 0 , pred : 1 4 , pred :%noreg , %CPSR<imp−def >;
6 %R6<def> = SP SAVE PRED pred : 1 , pred :%CPSR
7 SP EVAL PRED %R6 , pred : 1 4 , pred :%CPSR<imp−def , dead>
8 %R0<def> = MOVi 0 , pred : 0 , pred :%CPSR, opt :%noreg
9 STRi12 %R0<k i l l >, %SP<k i l l >, 0 , pred : 0 , pred :%CPSR; mem: ST4 [ Stack ]

10 %R0<def> = MOVi 0 , pred : 0 , pred :%CPSR, opt :%noreg
11 %R1<def> = MOVr %R5 , pred : 0 , pred :%CPSR, opt :%noreg ;
12 %R2<def> = MOVr %R4 , pred : 0 , pred :%CPSR, opt :%noreg ;
13 %R3<def> = MOVi 0 , pred : 0 , pred :%CPSR, opt :%noreg
14 %R6<def> = SP SAVE PRED pred : 0 , pred :%CPSR;
15 %R0<def> = MOVi 1 , pred : 1 , pred :%CPSR, opt :%noreg ;
16 BL <es : nedf2 >, %R0<k i l l >, %R1<k i l l >, %R2<k i l l >, %R3<k i l l >, %R0<

imp−def >, %R1<imp−def , dead>, %R2<imp−def , dead>, %R3<imp−def ,
dead>, %LR<imp−def , dead>, %CPSR<imp−def , dead>, %SP<imp−use >,
. . . ;

17 %R7<def> = MOVr %R0<k i l l >, pred : 1 4 , pred :%noreg , opt :%noreg ;
18 CMPri %R7 , 0 , pred : 1 4 , pred :%noreg , %CPSR<imp−def >;
19 %R6<def> = SP SAVE PRED COMBINED %R6<k i l l >, pred : 1 , pred :%CPSR<k i l l

>;
20 SP EVAL PRED %R6 , pred : 1 , pred :%CPSR<imp−def >;
21 %R7<def> = MOVi 1 , pred : 1 , pred :%CPSR, opt :%noreg ;
22 SP EVAL PRED %R6<k i l l >, pred : 1 4 , pred :%CPSR<imp−def , dead>
23 Succe s so r s accord ing to CFG: BB#15

Listing A.3: Call to compiler-rt ( nedf2) with additional guard-argument dependent on
guarding-value
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1 s t a t i c i n t binSearch avg ( i n t key , i n t a [ ] )
2 {
3 i n t l e f t = 0 , r i g h t = SIZE−1, idx , inc ;
4 i n t found = 0 ;
5 LOOP BOUND(5) ;
6 do
7 {
8 idx = ( r i g h t + l e f t ) >> 1 ;
9 i f ( a [ idx ] == key )

10 {
11 found = 1 ;
12 }
13 e l s e i f ( a [ idx ] < key )
14 {
15 l e f t = idx +1;
16 }
17 e l s e
18 {
19 r i g h t = idx −1;
20 }
21 } whi le ( ! found && ( r i g h t >= l e f t ) ) ;
22
23 i f ( found )
24 {
25 return idx ;
26 }
27 e l s e
28 {
29 return −1;
30 }
31 }

Listing A.4: Traditional Binary Search. Taken from [34] page 4, Figure 1. With
additional loop-bound annotation.

1 s t a t i c i n t binSearch wcet ( i n t key , i n t a [ ] )
2 {
3 i n t l e f t = 0 , r i g h t = SIZE − 1 , idx , inc ;
4
5 idx = ( r i g h t + l e f t ) >> 1 ;
6
7 f o r ( inc = SIZE ; inc > 0 ; inc = inc >> 1)
8 {
9 r i g h t = ( key < a [ idx ] ? idx − 1 : r i g h t ) ;

10 l e f t = ( key > a [ idx ] ? idx + 1 : l e f t ) ;
11 idx = ( r i g h t + l e f t ) >> 1 ;
12 }
13
14 return idx ;
15 }

Listing A.5: WCET-Oriented Version of Binary Search. Taken from [34] page 5, Figure
2.
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1 binSearch avg :
2 push { r4 , r5 , r6 , l r }
3 mov r5 , r0
4 movs r0 , #5
5 mov r6 , r1
6 b l LOOP BOUND
7 movs r2 , #0
8 movs r1 , #15
9 mov r3 , r2

10 b . LBB5 2
11 . LBB5 1 :
12 . LBB5 2 :
13 adds r0 , r1 , r2
14 a s r s r0 , r0 , #1
15 l d r .w r4 , [ r6 , r0 , l s l #2]
16 cmp r4 , r5
17 bne . LBB5 4
18 movs r3 , #1
19 b . LBB5 8
20 . LBB5 4 :
21 l d r .w r4 , [ r6 , r0 , l s l #2]
22 cmp r4 , r5
23 bge . LBB5 6
24 adds r2 , r0 , #1
25 b . LBB5 7
26 . LBB5 6 :
27 subs r1 , r0 , #1
28 . LBB5 7 :
29 . LBB5 8 :
30 cmp r3 , #0
31 bne . LBB5 11
32 cmp r1 , r2
33 mov .w r4 , #0
34 i t ge
35 movge r4 , #1
36 b . LBB5 12
37 . LBB5 11 :
38 movs r4 , #0
39 . LBB5 12 :
40 cmp r4 , #1
41 beq . LBB5 1
42 cmp r3 , #0
43 beq . LBB5 15
44 b . LBB5 16
45 . LBB5 15 :
46 mov .w r0 , #−1
47 . LBB5 16 :
48 pop { r4 , r5 , r6 , pc}

Listing A.6: Assembler-instructions of the binary-search example given in Listing A.4
when compiled without SP-transformation.
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1 binSearch avg :
2 push .w { r4 , r5 , r6 , r7 , r8 , r9 , r10 , r11 , l r }
3 sub sp , #52
4 mov r4 , r2
5 mov r6 , r0
6 movs r0 , #5
7 s t r r1 , [ sp , #36]
8 s t r r4 , [ sp ]
9 b l LOOP BOUND

10 cmp r6 , #0
11 mov .w r10 , #0
12 mov .w r8 , #0
13 i t ne
14 addne .w r10 , r6 , #1
15 s t r r1 , [ sp , #24]
16 movs r3 , #15
17 mvn r2 , #4
18 s t r r1 , [ sp , #32]
19 s t r r1 , [ sp , #28]
20 s t r r1 , [ sp , #20]
21 s t r r1 , [ sp , #48]
22 s t r r1 , [ sp , #44]
23 movs r1 , #0
24 s t r r1 , [ sp , #40]
25 . LBB5 2 :
26 cmp .w r10 , #0
27 s t r r6 , [ sp , #4]
28 s t r r2 , [ sp , #12]
29 i t t eq
30 addeq .w r0 , r3 , r8
31 asreq r0 , r0 , #1
32 cmp .w r10 , #0
33 mov .w r2 , #0
34 i t t t t eq
35 mvneq r2 , #0
36 ld r eq .w r1 , [ r4 , r0 , l s l #2]
37 ld r eq r6 , [ sp , #36]
38 cmpeq r1 , r6
39 and r2 , r2 , #1
40 eor r2 , r2 , #1
41 sub r2 , r2 , #1
42 i t ne
43 bicne r2 , r2 , #2
44 t s t r2 , #1
45 i t ne
46 movne r5 , #0
47 t s t r2 , #2
48 i t ne
49 movne r5 , #1
50 t s t r2 , #1
51 cmp .w r10 , #0
52 mov .w r1 , #0
53 s t r r5 , [ sp , #8]
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54 eor r12 , r5 , #1
55 i t eq
56 moveq r1 , #1
57 t s t .w r1 , r12
58 i t e eq
59 addeq .w r1 , r10 , #1
60 movne r1 , #0
61 cmp r1 , #0
62 mov .w r6 , #0
63 i t t t t eq
64 mvneq r6 , #0
65 ld r eq .w r2 , [ r4 , r0 , l s l #2]
66 ld r eq r4 , [ sp , #36]
67 cmpeq r2 , r4
68 and r6 , r6 , #1
69 eor r6 , r6 , #1
70 sub r6 , r6 , #1
71 i t ge
72 b i cge r6 , r6 , #4096
73 t s t r6 , #1
74 i t ne
75 movne .w r9 , #0
76 t s t r6 , #4096
77 i t ne
78 movne .w r9 , #1
79 t s t r6 , #1
80 cmp r1 , #0
81 mov .w r6 , #0
82 eor r2 , r9 , #1
83 i t eq
84 moveq r6 , #1
85 t s t r6 , r2
86 i t e eq
87 addeq r1 , #1
88 movne r1 , #0
89 cmp r1 , #0
90 i t t eq
91 subeq r6 , r0 , #1
92 s t r e q r6 , [ sp , #28]
93 movs r4 , #0
94 cmp r1 , #0
95 i t ne
96 subne r4 , r1 , #1
97 cmp r4 , #0
98 mov .w r1 , #0
99 mov r5 , r11

100 i t eq
101 moveq r1 , #1
102 t s t r1 , r2
103 mov r2 , r7
104 i t t ne
105 ldrne r2 , [ sp , #28]
106 movne r5 , r8
107 cmp r4 , #0
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108 mov .w r6 , #0
109 i t eq
110 moveq r6 , #1
111 t s t .w r6 , r9
112 i t e eq
113 addeq r4 , #1
114 movne r4 , #0
115 cmp r4 , #0
116 i t t eq
117 addeq r6 , r0 , #1
118 s t r e q r6 , [ sp , #32]
119 movs r6 , #0
120 cmp r4 , #0
121 i t ne
122 subne r6 , r4 , #1
123 cmp r6 , #0
124 mov .w r4 , #0
125 i t eq
126 moveq r4 , #1
127 t s t .w r4 , r9
128 i t t t ne
129 movne r2 , r3
130 ldrne r1 , [ sp , #32]
131 movne r5 , r1
132 s t r r0 , [ sp , #16]
133 movs r0 , #0
134 cmp r6 , #0
135 i t ne
136 subne r0 , r6 , #1
137 cmp r0 , #0
138 mov .w r6 , #0
139 mov l r , r7
140 i t eq
141 moveq r6 , #1
142 t s t .w r6 , r12
143 mov r12 , r11
144 i t t t t ne
145 movne r1 , r5
146 s t rne r1 , [ sp , #48]
147 movne r1 , r2
148 s t rne r1 , [ sp , #44]
149 i t t ne
150 movne r12 , r5
151 movne l r , r2
152 cmp r0 , #0
153 mov .w r1 , #0
154 i t eq
155 moveq r1 , #1
156 l d r r2 , [ sp , #8]
157 t s t r1 , r2
158 i t e eq
159 addeq r0 , #1
160 movne r0 , #0
161 mov .w r10 , #0
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162 cmp r0 , #0
163 i t ne
164 subne .w r10 , r0 , #1
165 cmp .w r10 , #0
166 mov .w r0 , #0
167 i t eq
168 moveq r0 , #1
169 t s t r0 , r2
170 i t t t t ne
171 movne r0 , #1
172 addne .w r1 , sp , #40
173 stmne .w r1 , { r0 , r3 , r8 }
174 movne r12 , r11
175 i t ne
176 movne l r , r7
177 l d r r6 , [ sp , #4]
178 cmp .w r10 , #0
179 cmp .w r10 , #0
180 mov .w r0 , #0
181 i t eq
182 mvneq r0 , #0
183 l d r r3 , [ sp , #24]
184 l d r r7 , [ sp , #20]
185 i t t eq
186 ld r eq r1 , [ sp , #40]
187 cmpeq r1 , #0
188 and r0 , r0 , #1
189 eor r0 , r0 , #1
190 sub r0 , r0 , #1
191 i t ne
192 bicne r0 , r0 , #2
193 t s t r0 , #1
194 i t ne
195 movne r3 , #0
196 t s t r0 , #2
197 i t ne
198 movne r3 , #1
199 t s t r0 , #1
200 cmp .w r10 , #0
201 mov .w r0 , #0
202 mvn .w r1 , r3
203 i t eq
204 moveq r0 , #1
205 t s t r0 , r1
206 i t ne
207 movne r7 , #0
208 cmp .w r10 , #0
209 mov .w r0 , #0
210 mov .w r1 , #0
211 mov r5 , r2
212 i t eq
213 moveq r0 , #1
214 ands r0 , r3
215 i t t t t ne
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216 mvnne r1 , #0
217 ldrne r2 , [ sp , #48]
218 ldrne r4 , [ sp , #44]
219 cmpne r4 , r2
220 and r1 , r1 , #1
221 eor r1 , r1 , #1
222 sub r1 , r1 , #1
223 i t l t
224 b i c l t r1 , r1 , #2048
225 t s t r1 , #1
226 i t ne
227 movne r6 , #0
228 t s t r1 , #2048
229 i t ne
230 movne r6 , #1
231 t s t r1 , #1
232 l d r r4 , [ sp ]
233 l d r r2 , [ sp , #12]
234 cmp r0 , #1
235 i t eq
236 moveq r7 , r6
237 cmp .w r10 , #0
238 mov .w r0 , #0
239 s t r r7 , [ sp , #20]
240 s t r r3 , [ sp , #24]
241 mvn .w r1 , r7
242 i t eq
243 moveq r0 , #1
244 t s t r0 , r1
245 i t ne
246 movne .w r10 , #1
247 l d r .w r8 , [ sp , #48]
248 l d r r3 , [ sp , #44]
249 l d r r0 , [ sp , #16]
250 adds r2 , #1
251 mov r11 , r12
252 mov r7 , l r
253 bne .w . LBB5 2
254 movs r6 , #0
255 cmp .w r10 , #0
256 i t ne
257 subne .w r6 , r10 , #1
258 cmp r6 , #0
259 mov .w r2 , #0
260 i t eq
261 mvneq r2 , #0
262 i t t t eq
263 moveq r1 , #0
264 ld r eq r3 , [ sp , #40]
265 cmpeq r3 , #0
266 and r2 , r2 , #1
267 eor r2 , r2 , #1
268 sub r2 , r2 , #1
269 i t ne
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270 bicne r2 , r2 , #2
271 t s t r2 , #2
272 i t ne
273 movne r1 , #1
274 t s t r2 , #1
275 cmp r6 , #0
276 mov .w r3 , #0
277 mov .w r2 , #0
278 mvn .w r7 , r1
279 i t eq
280 moveq r3 , #1
281 t s t r3 , r7
282 cmp r6 , #0
283 i t eq
284 moveq r2 , #1
285 t s t r2 , r1
286 i t ne
287 movne .w r0 , #−1
288 add sp , #52
289 pop .w { r4 , r5 , r6 , r7 , r8 , r9 , r10 , r11 , pc}

Listing A.7: Assembler-instructions of the binary-search example given in Listing A.4
when compiled with SP-transformation. Colors are used to categorize the instructions
into Program- (black), Spill- (green), Move- (brown) and Guarding-instructions (blue).
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List of Acronyms

AAPCS Procedure Call Standard for the ARM Architecture
ABI Application Binary Interface
APSR Application Program Status Register
ARM Acorn RISC Machines, later Advanced RISC Machines
CDG Control-Dependence Graph
CFG Control-Flow Graph
CPSR Current Program Status Register, deprecated synonym for APSR
CPU Central Processing Unit
DAG Directed acyclic graph
DFST Depth-First Spanning Tree
FCFG Forward Control Flow Graph
FPU Floating-Point Unit
FORTRAN The IBM Mathematical FORmula TRANslating System
GCC The GNU Compiler Collection
GSA Gated Single-Assignment
ID Input-Dependent
IFDS Interprocedural,Finite,Distributive,Subset [37]
IR LLVM Intermediate-Representation, The main language of LLVM
ISA Instruction Set Architecture
LCSSA Loop-Closed Static Single Assignment (form)
LLVM The LLVM-Project, formerly Low Level Virtual Machine. To reflect the ex-

tended scope of the LLVM-Project, nowadays LLVM is used as a name instead of
an acronym

NID Non input-dependent
PDG Program Dependence Graph
PLL Phase-Locked Loop
PST Process Structure Tree
RA Register-Allocation
RISC Reduced Instruction Set Computer
RT Real-Time / Runtime
SCR Strongly Connected Region
SESE Single-Entry, Single-Exit
SP Single-Path
SSA Static Single Assignment (form)
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TGSA Thinned Gated Single-Assignment [13]
UAL ARM Unified Assembler Language
WCET Worst-Case Execution Time
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