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Kurzfassung

Angetrieben durch das starke Wirtschaftswachstum nimmt auch die weltwedtgiEnachfrage konti-
nuierlich zu. Der massive Verbrauch von fossilen Ressourcen tréiithedie Treibhausgasemissionen
unweigerlich in die he und &rdert somit das Voranschreiten des Klimawandels. Die dringende Not-
wendigkeit einer maf3geblichen @rderung in diesem Bereich ist daher deutlich gegeben. Um eine
nachhaltige und saubere Energieversorgung zLabdeisten, muss eine emissionsarme Energietech-
nologie gefunden werden, die gleichzeitig auch Versorgungssidhgérantieren kann. Letzteres stellt
bei den derzeitig vetigbaren erneuerbaren Technologien vermutlich di®tg Herausforderung dar.

Im Gegensatz zu fossilen Brennstoffen, die mehr oder weniger kanstdranden sind, sind erneuer-
bare Ressourcen oftmals starken Schwankungen unterlegen unddagsauch schwer prognostizie-
ren. Die Wechselwirkungen aiiersclissiger und unzureichender Erzeugung sowie eingaskten
Speichermglichkeiten erschweren die Planbarkeit erneuerbarer Energiggnzg deutlich. Ein weite-

res Hindernis sind die hohen Investitionskosten, die bei erneuerlhactmologien anfallen, &hrend
fossile Energieerzeugung zu wirtschaftlichen Preisé@glioh ist. Diese hohen Kosteroknten aller-
dings nach einer gewissen Laufzeit durch das Ansammeiln von Erfgdwenten und Wissen reduziert
werden. Da die meisten Entscheidungen in der Energieplanung jedodeiawdinhergehenden Ko-
sten basieren und der Planungshorizont oft zu kurzfristig gesetainsisolche Lerneffekte mit zu
beriicksichtigen, werden Investitionen in erneuerbare Energieerzguygerst wieder in die Zukunft
verschoben, was dendglichen Rahmen alternativer Energieerzeugung stark eisktr

Um diese Problematikaher zu untersuchen, befasst sich die vorliegende Doktorarbeit reitRaihe

von optimalen Kontrolimodellen, welche die die Entscheidung eines Ldittkydie optimale Zusam-
mensetzung eines Portfolios bestehend aus fossiler und erneuéthargie zur Deckung des eigenen
Energiebedarfes ermitteln. Hiérfwird das Angebot der fossilen Energie als konstant angenommen,
wahrend jenes der erneuerbaren Ressource saisonalen Schgamkuterliegt. Um die ergdhnte Ko-
stenreduktion durch Lerneffekte in die Modelle mit einzubauen, wird daw&pt der Lernkurve ver-
wendet. Welche Unterschiede sich aus deiiBksichtigung dieser Lerneffekte ergeben, zeigt die Ana-
lyse von drei unterschiedlichen Modellvarianten, wobei in der ersteimdéstitionskosten unvandert
bleiben, in der zweiten der treibende Aspekt durch Erfahrung gegsbeund in der dritten Variante
ein weiterer Faktor in Form von Forschungs- und Entwicklungspreresst eingebunden wird.






Abstract

Induced by the persistent and rapid economic growth, the worldwide defoarenergy services is
constantly increasing. The accompanying abundant use of fossilroes) however, strongly enhances
green house gas emissions boosting the progress of climate changestibsgsies the urgency of miti-
gation policies in this field. The probably biggest challenge along the pathdev@amore sustainable
energy supply is to find a low-carbon energy technology that simultalyeguarantees energy security.
For renewable energy generation, however, especially the secah ¢pard to achieve as, in contrast
to fossil resources, renewable resources strongly fluctuate amdt@nehard to predict. Consequently,
the interplay of generated surpluses and shortfalls as well as limited stooagiilities complicate
proper scheduling of renewable energy generation. Another maja fissuenewable energy is given
by the high costs. While conventional energy forms are competitive, edslevenergy technology
comes along with high investment costs that strongly restrict their profitabiligsé high costs would
decline after some time in operation as experience and know-how improvectitedal processes and
hence foster the productivity. However, as the basis of energy plgutieicisions is mostly a matter of
expenses and, in many cases, the planning horizon is too short to taiésthiesng effects into account,
investments for renewable energy technologies are often postponederftduhe, which strongly re-
stricts the scope of renewable energy generation.

To address this issue, this thesis deals with optimal control models that cottedenergy planning
decision of a small country optimizing a portfolio consisting of fossil andweide energy to cover the
country’s energy demand. While fossil energy is assumed to be constaatlgble, renewable energy
is fluctuating seasonally. To include the mentioned effect of cost reduttierto the accumulation of
experience and knowledge, the concept of the learning curve is appteadvestigate the differences
in the outcome depending on whether the mentioned learning effects are tholualet in the decision
process, three different model approaches are analyzed. Ingherfe the high investment costs of re-
newable energy capital remain unchanged over time, in the second orer¢hegduced by a so-called
one-factor learning curve, where accumulated experience redosess and in the third one a so-called
two-factor learning curve is considered, where additionally R&D effarssdr the cost reduction.
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CHAPTER 1

Introduction

Facing the more frequent occurrence of natural disaster as a camsegof climate change, the
rapid economic growth associated with a higher demand for energy sereitker in form of
power, heat, or transport, as well as the fact that the energy sectue isf ohe main contributors
to the constant increase in greenhouse gas emissions (see IPCG 2@ikt)ines the urgency of
climate change mitigation policies to induce a restructuring of the currentyesapply system.
Therefore, one of the main challenges of the 21st century is to find a wenatale a sustainable,
low-carbon energy supply providing the balance between energyitseeaconomic development,
and environmental protection. This, however, is not at all an easy tasthawable energy tech-
nologies exhibit some properties that strongly complicate a successfusimlinto the system,
especially, if no proper political circumstances are given.

1.1 Challenges of Renewable Energy Supply

The probably most fundamental barrier for a successful inclusioar@wable energy technolo-
gies into the market is given by the high differences in investment costs cechfzaconventional
energy forms. Whereas, for example, fossil energy is already gyoget in the market and, con-
sequently, competitive, the acquisition of new technology capital is vergresige as almost no
experience with this technology exists, necessary work environmergsdtée adapted, and fur-
ther research is needed to improve the performance. Therefore, ihdhesn the inclusion of
a new technology would be too costly, as competitiveness with the alreadingxtischnologies
is not given. In the long run, of course, the investment costs wouldedserwhile experience
improves the technological processes. In the literature, this effectégedfto as the learning
curve and will be explained in more detail in the subsequent expositionthathenergy planning
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decisions are made long- or short-sighted can be crucial, becauseamwltagies can only turn
out to be profitable if their whole life-cycle and hence also these learnfagtefare considered in
the decisions.

A second barrier for a shift towards a more sustainable energy supgilyeis by the fact that the
renewable resources used for energy generation are subject tordséigsonal fluctuations, which
complicates proper scheduling, whereas the supply of fossil resoisro®re or less constant and
predictable.

1.2 The Concepts of Learning

The incentives for developing and improving renewable energy techyndilave changed during
the last decades. The original driving force has been the rapidlgwig horizon of depletion of
fossil fuels. However, due to the development of new extraction techaignd the discovery of
new sources, the threats of global warming have become a more importent\iggh energy gen-
eration being one of the major sources of greenhouse gas emissions, nmtg@ioies in form of
investments in renewable energy technology try to reduce the emissioni®arabsyn the global
warming process. The available alternatives of energy generation inttire fhowever, strongly
depend on structural and technological changes together with the aaogimgp investment deci-
sions right now, because the development and the diffusion of a nendlegy is a time-intensive
dynamic process (cf. Harmon, 2000). This underlines the importance ditptesning for en-
ergy technology decisions. As investment costs play a major role for semikiohs and since
these costs are very high for renewable technologies compared to thefaventional energy
forms, investments are postponed until they get cheaper, hence strestyigting the scale of
alternative energy generation (cf. Rong-Gang, 2013; Berglundaddrholm, 2006). Therefore,
itis important to consider the whole life span of a new technology for en@egning decisions in
order to include the diffusion process and the cost reduction that cdores\aith implementing
the new technology.

In the literature of recent years, some important developments in macaemsand energy
economics can be observed, dealing with the issue of technologicaleh&viile in previous
modeling approaches technological change, if considered at all, basif@#uded as an exoge-
nous increase in energy conversion efficiency, more recently the arden to endogenously
model technological change, especially in form of learning-by-doifertf sometimes also con-
sidered as technological learning (see, for example, Chakravoity20@8, 2011; Messner, 1997;
Reichenbach and Requate, 2018fier et al., 2006).
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1.2.1 Historical Background of the Learning Curve

The concept of the learning curve has been introduced by Wrigh6j®Bo observed that in
an airplane-manufacturing the number of working-hours spent forb@ugtion of an airframe
is a decreasing function of the total number of the previously producédrais of the same
type. In other words, this means that the unit costs of labor declined witiriexgge measured in
cumulative output. However, in case that the rate of output is constant, dhig wnply that also
the stimulus for learning would appear to be constant as well. TherefoyA1962) suggests to
use cumulative gross investments in form of cumulative production of cajuitals as a measure
for experience. This implies that each new machimed in production leads to a learning process
with continual incentive, which makes a steady state growth in productivigipe. In 1968, the
learning curve concept has also been applied in the field of strategic srarag(see BCG, 1970),
and from then on has been used in several areas of researctalcfulicBrahmi, 2008). To give
an example of application in energy economics, Neij (1997) used the Igacnoive approach
to analyze prospects of diffusion and application of renewable enecpaéogy with a focus
on wind and photovoltaic. Although there exist concepts with differenpassmf application
and aggregation, they are all based on Arrow’s explanation that |gabyirdoing enables cost
reduction and quality improvements (cf. Nemet, 2006).

Given the goal of achieving adequate technology policies to mitigate climatgehtre im-
plementation of endogenous technological change via the learning cumvedels of future en-
ergy and macroeconomic scenarios is essential (see, for examfplgietGand Messner, 1998;
Gerlagh and Van der Zwaan, 2003). The learning curve provides aoriamp tool to measure
the cost-effectiveness of policy decisions to support new technoldgmsnnects expected future
costs with current investments so that the cost of the new technology dieparearlier devel-
opments reflected by the cumulative capacity. This comes along with the pathddsre of
technological competition.

The economic role and the importance of research and development (R&@xchnical pro-
cesses has been investigated intensively in various forms in literaturé.toJoention a few
examples, see Cunha-a &t al. (2010), Rauscher (2009), Popp (2006), and Grimaud €04l1}.
Here, R&D is seen as the main driving force of technological change aogation by generating
new information. Cohen and Levinthal (1989) were among the first to lfrthe idea of the dual

1Arrow (1962) considers in his work capital goods with a fixed life time. rEfare, gross investments only incorpo-
rate the purchase of new machines. In case of capital goods demgeigponentially, however, also the maintenance
of already existing machines would be included in gross investments.



role of R&D in the sense of not only generating new information but alsorarihg the ability
to assimilate and exploit already existing information. With this new aspect, thatifid@&D
expenditures as a learning mechanism based on the knowledge prapigatérm’s environ-
ment. Since then, R&D expenditures have, next to accumulated expeti@ooene an important
learning factor for the cost reduction of technological processes.

In general, one can distinguish between two different learning curmeegas. On the one
hand, there is the one-factor learning curve for which cumulative ptamuof capital goodsis
considered to be the driving aspect for the accumulation of experiewideemce for the reduction
of the investment costs. On the other hand, in the so-called two-factoimgamrve, additional
R&D efforts increase knowledge, which additionally contributes to the eaktation. These two
approaches are presented in more detail in what follows.

1.2.2 One-Factor Learning Curve

The one-factor learning curve empirically quantifies the impact of learnyjngoing on the pro-
duction costs of an industry or a firm by considering the investment costslaslining function
of cumulative production of capital goods. In the literature, a variety éédiht functional forms
modeling this interrelationship can be found, but the probably most commois timelog-linear
function due to its simplicity and its observed good fit with data. In this case, rdgrgssive
decrease is explained by the so-called progress rate given by

PR=277,

wherea > 0 is the learning-by-doing coefficient. The progress rate correspmritie percentage
change in costs, when the cumulative production of capital goods is dbulierefore, a progress
rate of 80% means that the costs are reduced to 80% of its previous vaduetivdrcumulative

production of capital goods is twice as high. The reduction, in this cas@%f & referred to as
the learning-by-doing rate and is given by

LDR=1-PR=1-279.

2|nstead of cumulative production of capital goods, also cumulativeubun be used as the driving factor for
the learning effect, as originally suggested by Wright (1936). Both facce possible approximating measures for
knowledge (cf. Argote et al., 1990). However, in analogy to the aggravhich we later will use for our model, we
already focus on capital goods.
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The costs are then calculated as

C=Co (,f;) (1.1)

whereC; are the investment costs at tié; is the cumulative production of capital goods at time
t, Ko is its initial level at timet = 0, andCy are the initial investment costs. This scaling expresses
the fact that for an initially low cumulative production of capital goods, it takmre efforts and
investments in order to produce a given output than for an initially high lefeVan der Zwaan

et al., 2002). Taking the logarithm of Equation (1.1) yields an expressiochvean be estimated
econometrically in order to get an estimatedgrand therefore for the learning-by-doing raeR.
This, of course, strongly depends on the type of technology and imtfocthe speed of learning.

A survey on estimates of learning rates for a set of energy technolagidsecfound in McDonald
and Schrattenholzer (2001). Equation (1.1) is also referred to as tjle-sim one-factor-learning
curve.

1.2.3 Two-Factor Learning Curve

The one-factor approach with cost development of a technology bdinmgcdon of only one in-
dependent variable has a drawback from a methodological point ofagetvere exists no other
policy instrument than purchasing in order to accelerate the technologizakgs (cf. Miketa and
Schrattenholzer, 2004). In the so-called two-factor learning cus/@r@posed by Kouvaritakis
et al. (2000), the costs of investments are assumed to decline due to twatypasning, first
learning by doing induced by the accumulation of experience, and sésamihg by searching as
a result of accumulating knowledge. The quantitative relationship betwekndigical perfor-
mance and R&D expenditures is modeled in the same way as the relation betyweedrme and
cost reduction in the one-factor learning curve representation. Additiomthe already introduced
progression rat€R and learning-by-doing rateDR, a second rate is included for the two-factor
learning curve, which is called learning-by-searching rate and is dpiyen

LSR=1—2"F,

wheref is the learning-by-searching coefficient. The interpretation is the followhsgume that
there is no accumulated knowledge, then the meaning afiitidis similar to the one-factor model
describing the percentage cost reduction when cumulative producticapdhl goods doubles.
On the other hand, if there is no cumulative production of capital goodsl, $ifereflects the
percentage cost reduction when the stock of knowledge doubles ifeftdvand Schrattenholzer,



2004). To model the cost reduction due to these two learning conceptsymraesric way, the
costs then are given in form of a Cobb-Douglas-type function as

K\ % (Ke ) P
— ot i s 1.2
a=o(ie) (&) (12)
whereKRg, is the stock of knowledge accumulated by R&D efforts at tinaadKg, is the initial
knowledge stock at time= 0.

1.2.4 Learning Curves in Energy Systems

Especially for the evolution of energy systems, technological learning @aymportant role as
the costs are the fundamental measure for the performance of a techn@ogsequently, in
order to improve a process and become competitive, experience is dsgetainology will not
evolve unless experience can be accumulated with it (see Barreto aneldsyi999). The same
argument can be found in Wene (2000) where it is additionally stated thappetunity to gain
experience on the market is crucial for new energy technologies aswagle, its availability to
the market is prematurely foreclosed.

To apply the learning curve concept in energy system models, the appsoased where cu-
mulative production of capital goods is the driving factor for learninge Gépital goods for energy
technologies are given by the installed capacities. Focusing on renesvedstg technologies, the
fact that the supply of the renewable resource is exogenously deteraiteconsequently, the
cumulative output cannot directly be controlled, points out why cumulatyecity here is the
better measure for experience. Figure 1.1 shows schematically how pacgaires the invest-
ment costs of a renewable technology through cumulative capacity. Farrarig-by-doing rate
of 16%, 20%, and 25%, the investment costs for the renewable enelgytegy are plotted. In
contrast, one can see the investment costs of a conventional energgltegh here fossil en-
ergy taken as example. The so-called break-even point (BE) ocdwea the new technology
gets competitive with the conventional one. This means that the collectedengeEmakes the
new technology cost-efficient. As the learning-by-doing rate definespded of learning, this, of
course, happens at a higher cumulative capacity the lower the learydgifig rate is. The area
between the renewable and the fossil curve indicates the learning invésineeessary to reach
the break-even point. For more details on the idea that renewable enehgyplegies break even
with fossil energy see Wene (2000).



CHAPTER 1. INTRODUCTION

Investment Cos’

Renewabl

LDR=16%
LDR=20%
LDR=25%

Cumulative Capaci

Figure 1.1: Break-even points for different learning rates.

1.2.5 Forgetting by Not Doing

In the learning concepts presented so far, cumulative output or gnasstriments in form of cu-
mulative production of capital goods are considered to be the drivirtgriafor the learning
effect leading to a reduction of investment costs. Because these facéorson-negative and
non-decreasing quantities, the accumulated experience along the learogegs is assumed to
be persistent in time and, hence, does not depreciate. This further img@taawbstment costs
are monotonously decreasing. However, there exist referenceslitetature stating that invest-
ment costs do not always decrease over time, indicating that they possbigiasubject to pure
learning. Such kind of negative learning effect, which in the literaturetenateferred to as orga-
nizational forgetting or forgetting by not doing, could be defined as treedbknowledge caused
by stopping to perform certain activities (Joosten et al., 1995). This caurdor example, when
the production process is interrupted. "Inventions don't just get &dbpnce and forever; they
have to be constantly practiced and transmitted, or useful techniques rfagden” (Diamond,
1993). Baloff (1970) was among the first providing suggestive empeiddence of a loss in pro-
duction efficiency when production is paused. Keachie and Fontafé) @icuss the phenomena
of unlearning between intermittent production runs. They explain this phenon with the ar-
gument that in case of large time lags between the production lots, it is rédesonassume that
one would not follow the same learning curve at the point where one ldfinbeistment costs



would have been increased back to a higher level again when prodigtiesumed. Similarly,
also Epple et al. (1991) present a counter-evidence for the hypotheas knowledge becomes
completely embodied in the technological process. They investigate a modle¢ aransfer of
knowledge acquired through learning by doing and show with their obtagmdts that not all
knowledge is carried forward from one period to the next. Consequémigyimplies that the con-
ventional measure for learning overstates the persistence of learemglé® Argote et al., 1990;
Argote and Epple, 1990). Focusing on the origin of the learning cungeyhtie field of airplane-
manufacturing, Benkard (2000) analyzes the dynamics of learning anlh of organizational
forgetting in commercial aircraft production. The good fit of the obtainedehoebults with the
data underlines his assumption that learning can only take place when planesoduced and
unless the production rates are not maintained, the gained experientis@cstipreciate. There-
fore, recent production experience seems to be more important fortdrenilgation of the current
production efficiency than past production experience.

All these references underline the hypothesis, that experience dgaimedearning by doing
does not remain forever. However, it is unclear what is the drivingefdrehind this forgetting
process. Benkard (2000) explains the depreciation of experiencehgitargument that experi-
ence acquired through learning by doing can be thought as accumulétiaman capital and as
periods of decreasing production rates are often accompanied byslaya$ organizational hu-
man capital depreciates. Additional to highly variable production rates lgiogsible reason for
organizational forgetting, also in Argote et al. (1990) it is supposed#mad job turn over could
be the major reason, where production workers are replaced by lgsgenced ones. However,
their obtained model results show that knowledge depreciates more rapdiyhé rate of job
turn over which indicates the existence of some other significant factohvaoiald be, beyond
others, technological obsolescence, as they claim. Which aspect is manggntgor the process
of forgetting further on depends on whether the production is more capitibor-intensive (see
Benkard, 2000).

Also in models of energy technologies negative learning effects in forfiorgétting can play
an important role. McDonald and Schrattenholzer (2001) say that alscsifiethdl, indeed, inter-
ruptions in production and use can cause experience to be lost andsisit@rise: "Unlike a fine
wine, a technology design that is left on the shelf does not become bettenges it sits unused.”
While it is indisputable that the mechanism of forgetting by not doing finds iticgpion in the
R&D factor of the learning curve (see Wene, 2000), it seems reasotmbielude it in the cu-
mulative capacity factor as well (see Barreto, 2001). This is especialigrlined when following
Benkard (2000) in interpreting experience as human capital, which usleghgciates over time.
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1.3 Formulation of the Problem

In order to analyze the challenges and chances of integrating renegraigy into the energy
system as well as the differences in energy planning decisions whamigaiffects are included
into the decision process, we consider as a benchmark the energydeztemall country. The
representative decision maker of this energy sector has to decidethbaatmposition of a port-
folio consisting of fossil and renewable energy with which the countrgergy demand should
be covered. In the literature many research papers can be fountdatieg the supply of a less
pollutive or possibly even carbon free backstop technology, for elatdprtley et al. (2010),
Coulomb and Henriet (2011), and Van der Ploeg and Withagen (20d4&)e dransition to such a
backstop technology as in Greiner et al. (2014) or Heinzel and WinR@t1). What is however
not included in these approaches is the fact that supply of renewalgleroes is not constant at
all but strongly fluctuating due to climate or weather conditions. Focusinglan energy as an
example, we therefore postulate seasonal fluctuations in supply indudbd mterplay of sum-
mer and winter. Further on, harvesting of the renewable energy simuor free, but in order to
use this resource, an appropriate capital is necessary, which actesrutanvestments and hence
comes at some costs. In contrast, for the supply of fossil energy itislptesd that the considered
small country does not have own fossil energy resources andegoestly, fossil energy has to
be imported for the current market price from other countries. Givesetihwo different energy
types, the representative energy-sector decision maker is lookingsfoptimal portfolio compo-
sition such that the energy demand of the country can be covered amdnfaks occur. Proper
forecasting of the energy demand is of course a really important ancuttifisue in the energy
supply sector. However, as the interest of this research rather liee gudfitative composition of
the portfolio than on proper prognosis methods, we postulate for simplicitfuth@nformation
about the energy demand that has to be covered is available and no furtiestainties occur.
We also follow Coulomb and Henriet (2011) and assume that it is stationattye literature, ap-
proaches can be found where the energy demand is considered tpdraldat on the electricity
price or on the GDP of the country, see for example Chakravorty etGl2§2 However, we here
follow Messner (1997) and take the energy demand to be exogenously. grhis allows us to
focus on the supply side of renewable energy and on how a given demaylead to an optimal
division of supply between fossil and renewable energy.
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In the first model approach, we consider a problem without includingnilegreffects to see
how the optimal portfolio composition looks like when the initial high investment dostenew-
able energy capital remain unchanged over the whole planning periecerigrgy demand is first
assumed to be constant over the year to clearly see the changes in thikqiodficed by the sea-
sonal fluctuations. Sensitivity analysis then shows how the optimal composttitie portfolio
changes, when the fossil energy price increases. In a secomihvevs model the energy demand
seasonally fluctuating as well, where it either reaches its peak in winter deatimg, in summer
due to air conditioning, or both.

Given this basic model approach, we then extend the model by first ingladone-factor
learning curve into the objective function. Instead of considering gra&stments as suggested
by Arrow (1962), we take net investments as the driving factor for thenileg:-by-doing effect,
in order to simultaneously consider forgetting by not doing. As solar grierg more capital-
intensive than labor-intensive technology, forgetting then occurs @sudt of insufficient mainte-
nance activities. This effect is described in Sturm (1993) where difféssuin maintaining plants
are considered to be a possible reason for negative learning effentslear energy. The main
difference between learning by doing based on gross and net invdstimgiven by its econom-
ical interpretation. If the capital stock is assumed to depreciate exponemngias investments
imply that experience is not only gained from investments in new machinedsouinamaintain-
ing already existing machines. In the second approach with net investmewtsyer, only buying
new machines contributes to the learning process. Maintenance of aéeiatigg machines here
is not considered to be an innovative activity providing additional knogdedFurther on, as
net investments can, in contrast to gross investments, also decreasieneyehey allow for the
mechanisms of forgetting by not doing. In this first model extension, multiplgisns occur and
an indifference threshold point separates the areas of attractionitidgnanalysis with respect
to the fossil energy price, the learning-by-doing coefficient as wellifsrent intensities of the
supply of the renewable resource give insights how the optimal longedutian behaves.

In the third approach we additionally introduce learning by searching thydimg a two-factor
learning curve into the objective function and adding a second state to the witde represents
the state of knowledge. This knowledge stock is accumulated by R&D investmwbitdh are
considered as third control, but it also depreciates, describing thetfioig process. Also here,
multiple solutions occur whose areas of attraction are separated in thiscaseitdifference
threshold curve, and sensitivity analysis with respect to the fossil gipeige and the intensity of
the supply of the renewable resource is conducted.
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As we include seasonal fluctuations into the models, we obtain non-autosmptional con-
trol problems with infinite horizon. In the first two approaches we have tnmrols and one state,
while in the third approach we have three controls and two states. Due tactliedathe problem
explicitly depends on time, the analysis differs from the usual steady-stalgsés of autonomous
problems.

1.4 Software

The considered optimal control problems are solved with Pontryagin’s maxiprinciple (see,

for example, Grass et al., 2008). Due to the complexity of the models, havegvanalytical solu-

tion is only possible for some special cases, but cannot be found imagemberefore, numerical
methods are used which are explained in detail in the various chaptersftiar® for these cal-
culations, MATLAB®7.5.0.342 (R2007b) has been used. The application of the shooting method
that is presented and used in Chapters 3 and 4 in the course of the #greiialysis is carried

out with CL MATCONT for Matlab? see for more details Dhooge et al. (2006). Especially for
the continuation of the optimal paths as well as the calculation of the indiffetaneshold points

and curves in Chapters 3 and 4, additionally the MATLAB packag¢at developed by Dieter
Grass has been employ#d.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2 we present and arthlyZmsic model where
no learning effects are included. This first model approach as welkeashtiained results provide
the fundamental background for the analysis in the subsequent chapteChapter 3 the first
extension of the basic model with a one-factor learning curve is presantednalyzed, and the
changes in the results compared to the basic model are discussed in det@hagter 4 also
the learning-by-searching effect is included into the model in form of afagtor learning curve
in the objective function. This model, which is extended by an additional abat well as
an additional state, is analyzed and the economic interpretation of the netaipexdbresults is
presented. Chapter 5 then summarizes and discusses the findings cfalindalel approaches,
the differences and the economic interpretations as well as important mietbiodbaspects for
non-autonomous optimal control models that have arisen in the courselgtiag the models.

3Download fromhttp: //www.matcont .ugent.be/ (accessed 01.06.2014)
4Download fromhttp://orcos.tuwien.ac.at/research/ocmat_software/ (accessed 01.06.2014)
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1.6 Publications

A summarized version of Chapter 2 presenting the first model approachuwldgarning effects
has been published in Moser et al. (2014) together with the co-authaer @ieass, Gernot Tra-
gler, and Alexia Prskawetz in the peer-reviewed proceedings of then@mahtional Conference
on Large-Scale Scientific Computing 2013 in Sozopol, Bulgaria. Furthes shortened version
of Chapter 3 has been submitted to a refereed journal together with thetearsDieter Grass
and Gernot Tragler.



CHAPTER 2

The Basic Model

This chapter focuses on the formulation and the analysis of the basic mitehaviearning

effects included. Beyond the obtained results, which will build the fundghéasis for the
investigations in the subsequent chapters, also some theoretical aggebtsig non-autonomous
optimal control models are presented.

2.1 The Model

We consider the energy sector of a small country in which both fossil emelarable energy can
be used as perfect substitutes to cover an exogenously given etergnd. Due to the small
size of the country it is assumed that there are no or at least not encaitdbée fossil resources
so that fossil energy has to be imported from other countries for therdumarket price. As far
as renewable energy is concerned, generation is possible within theocmmtryc In contrast to
fossil energy, which is assumed to be constantly available, howeven)pipdysof renewable en-
ergy fluctuates seasonally. In order to use this renewable energycesoapital is necessary for
the energy generation for which investments have to be undertaken. M&feleofor our model a
representative energy-sector decision maker who chooses the optiengy goortfolio composi-
tion for the whole country. It is postulated that this decision maker has fulinmtion about the
energy demand that has to be covered at each point of time. Thetedtsbe decides on the most
cost-effective portfolio consisting of these two energy types that is iesedver the exogenously
given demand, taking into account the seasonal fluctuations of reteemdrgy supply and the
import costs of fossil energy. One important implication of the size of thetcpis) that this rep-
resentative energy-sector decision maker is assumed to be a priceatakegcordingly his/her
decision has no influence on the market price.

13
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We take the considered fossil energy as an aggregate of fossiyesmigces (e.g. coal, gas,
etc.), and follow Chakravorty et al. (2006) in focusing on solar enaggsenewable resource. To
give an example for the seasonal supply, Figure 2.1a shows the avdady global radiation
in Austria. One can clearly observe the seasonal differences thatapdsallenge to a constant
renewable energy supply over the whole year. Of course, savingnefmable energy would be
supportive in the short-run, but as we are rather interested in longedutions and for this time
frame saving possibilities are limited, we follow Chakravorty et al. (2006)sunigéng that storage
is not possible and focus only on the change in the portfolio composition. rmiééns that the
generated energy has to be used immediately or otherwise it is lost.

To include these seasonal fluctuations in our model a deterministic time-dapdadction is
used,

VR(t) = vsird(tm) + T,

which is plotted in Figure 2.1b. The period length of the seasonal fluctuatiams case is one
year,T is the minimal supply in winter, and is the maximal increment during sumniefo get
reasonable parameter values we used Austrian data (ZAMG, 201Xtioragion. Note that we
only consider annual fluctuations and do not include daily fluctuationsetisas’ changes due to
weather conditions.

To convert solar radiation into energy, specific captain form of photovoltaic cells is nec-
essary. This capital is accumulated by investmaéiit$ and depreciates by a factds. The capital
accumulation equation in our model reads as follows:

Ks(t) = Is(t) — 3sKs(t). (2.1)

Given the available capital at each time and the current supply of globaltian, renewable
energy is generated as
Es(Ks(t),t) = (vsir?(tm) + 1)Ks(t)n,

wheren is the degree of efficiency (cf. Deshmukh and Deshmukh, 2008; Nerah, €009).
For common photovoltaic cells that are currently on the mankes about 20%. Note that this
function explicitly depends on time which therefore makes the problem non-autonomous.
Since the representative energy-sector decision maker is assumedetexaat information
about the required energy demaBdand no further uncertainties are included, it is postulated
that the demand has to be covered completely by the portfolio of fBsétl) and renewable

1As usual, we let denote the time argument.
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The average daily global radiation in Austria

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(@)
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Figure 2.1: (a) Average global radiation per month in Austrigb) Deterministic function to
describe the varying global radiation over one year|0, 1].
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Es(Ks(t),t) energy. Shortfalls are not allowed while surpluses are possible. Howey we do
not include the possibility of storage, this implies that surpluses are lostamtbtbe further
used? This balance is included in the model by the mixed-path constraint

Er(t)+ Es(Ks(t),t) —E>0.

Given these restrictions and the current market ppgefor fossil energy, the representative
energy-sector decision maker determines the most cost-effective sddytimmimizing total ex-
penditures given by investment costs in renewable energy capital and itopts for fossil energy,

C(Is(t), Er (1)) = Is(t) (b-+ cls(t) ) + P Er (1).

Note that we distinguish between linear investment and quadratic adjustnsts} ahere the
latter ones arise from installation efforts (cf. Feichtinger et al., 2006mRasen, 2001).

Summing up, we consider a non-autonomous optimal control model with infinfizaing
two controls representing the capital investments and the imported fosgijyeaed one state
describing the capital stock. This cost minimization problem is transformed tedhizalent
maximization problem and, for a discount rajés given by

EFEP)?})S((U/OOO e <— Is(t) <b+cls(t)) — peEr (t)) dt (2.2)
st Ks(t) = Is(t) — dsKs(t), (2.2a)

Er (t) + Es(Ks(t),t) —E > 0, (2.2b)
Es(Ks(t),t) = (vsiré(tm) + 1)Ks(t)n, (2.2c)

Er (t),Is(t) = 0. (2.2d)

2|n practice, of course, small surpluses generally would be tradedeanarket. However, in times of great surpluses
as it sometimes occurs around Christmas due to the very low demares pfien turn negative which also comes along
with great losses. Therefore, we do not include this trading aspectrimodel but consider such losses in form of
sunk investment costs.
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2.2 Solution

2.2.1 Canonical System and Necessary First Order Conditien

Let (K&(t),E£(t),14(t)) be an optimal solution of the control problem in (2.2), then according to
Pontryagin’s maximum principléor infinite time horizon problems (cf. Grass et al., 2008), there
exists a continuous and piecewise continuously differentiable fundtipne R, also known as
theadjoint variableor costate and a constamty > 0 satisfying for alt > 0

(A0,A(t) # O,

ZL(Ks,Ef,18,A, Ao, U1, o, U3, t) = Epmﬁ(t)ﬂKé,EF,lsM,Ao,ul,uz,us,t),

where.Z defines thd_agrangiarf which reads as

Z(Ks, ErIs. A, Ao, Ha, iz, Ha.t) = Ao (—bls(t) — Cls(t)? — peE (1)) +A (1) (Is(t) — SKs(t))
() (Ex (1) + (Vi (t7) + TKs(t) — E) + Ha(t)Er (1) + Ha(t)ls(t),

with (), Uo(t), andus(t) being the piecewise continuousgrange multiplierdor the mixed-
path constraint and the non-negativity conditions, respectively. Fusthet each point where the
controls are continuous,

0.2 (K& EENE A, Ao, L, Mo, s, t)
IKs(t)

At)=rA(t)—
is given and the complementary slackness conditions

pa(t) (B2 (1) + E3(KE(D,t) —E) = 0 , m(t)>0, (2:3)
HOEED) = 0, ) >0, (2.4)
) = 0, w0, (2.5)

3Note that we omit the time argument in the function arguments of the Laigmafmy the ease of exposition.
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have to be satisfied. The necessary first order conditions and thetagfjoiation are given as

follows:
;I'i § = —Aob—2kgels) +A (1) Hlt) O, (2.6)
Alt) = r)\(t)%:(Hés))\(t)ul(t)n(vsinz(tn)+r). (2.7)

Further on, we require the limiting transversality condition

imA(t)e™ =0 (2.8)

t—o0

to be satisfied. Note that the Lagrangian is linedft) and, consequently, a bang-bang solution
occurs wherég (t) is determined by the switching function

0.7
GEF(D) —AoPF + Ha(t) + pa(t)
so that

00 >

. 0Z

Er(t) = < singular Ifﬁ?(t) _\o

F

0 <

Proposition 1. Without loss of generality we can skf= 1 for the subsequent analysis.

Proof. Let Ag = 0, then the Lagrangian is also linearligt) and the switching functions for the
two controls and the adjoint equation read as

Se = MO+ hal) 29
s = A+ Halt) (2.10)
At) = (r+089)A(t)— pu(t)n(vsirt(tm) +1). (2.11)

As s (t), 42(t) > 0, it follows that in case of no fossil enerdgy(t) = 0, pi(t) = Uo(t) = 0 has

to hold. ForEg(t) > 0 the complementary slackness condition in (2.4) implies thét) = O.
Moreover, however, alspi(t) = 0 has to hold in this case which is obtained either from the
complementary slackness condition in (2.5) if the mixed-path constraint in)(2.2atisfied with
inequality, or from the switching function in (2.9) if it is satisfied with equality.alhcases, the
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solution of the adjoint equation (2.11) is given by
At) = A (0)elrosi,

To satisfy the transversality condition in (2.8)(0) = 0 is the only feasible initial value. This,
however, implies thai (t) = 0, Vt, which is contradictory tdAo, A (t)) # 0. ThereforeAg > 0 has
to hold and adequate standardization yields

1_

Ao = )\0/\0

1,

which proofs the proposition. O

The necessary first order conditions and the adjoint equation are itreanag follows:

a‘ti) = —b—2cls(t)+/\(t)+l~13(t):0<:>Is(t):W,
At = (r+39)A(t) — p(t)n (vsinf(tm) +1),
which yields the canonical system
kst = MOTESOD gty = (e Ks(0).A () () 2.12)
A = (r+38)AM) — pu(t)n(vsiftm +1) = LA, mM).  (2.13)

Note that the Lagrangian is concave #t), and linear inEg (t) andKs(t). Further on, the partial
derivatives of the objective function and the dynamics are continuouginatguments, and the
feasible region is convex. As, additionally, the transversality condition i8) (& required to
be satisfied, this implies that foEZ (t),15(t),KS(t)) andA (t) satisfying Pontryagin’s maximum
principle and for all feasibl&s(-) the limiting transversality condition

lim A () (Ks(t) — K&(t)) > 0

has to hold andEf (t),15(t), K&(t)) is an optimal solution. Consequently, not only the necessary
but also the sufficient conditions are satisfied for the solutions we obtaie fiollbwing analysis.

Proposition 2. A solution path in the interior of the feasible domain of this optimal control prob-
lem can never be optimal.
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Proof. Let (E£(t), 14(t)) be a solution of the optimal control problem in (2.2) which satisfies
YVt e (tl,t2> witht; <t

(Ef(t) + (vsirf(tm) + T)K&(t)n —E) > 0, (2.14)
EZ(t) >0, (2.15)
15(t) > 0, (2.16)

with K&(t) andA*(t) being the state and costate, respectively, solving the canonical systain. Th
means, this solution lies in the interior of the feasible domain of the model (2.2n, Tiom the
complementary slackness conditions (2.3)-(2.5) we olgih) = 5 (t) = p3(t) = 0Vt € (t1,t2).

As we have shown thaiy = 1, it holds for this case that

9L _ o

JErm)  PFS
Consequently, the maximum is reached at the lowest feasible c&atftl This, however, implies
that a solution(E£ (t), 1(t)) that satisfies (2.16)-(2.14) is suboptimal as there always exists a
solution with a lower contrdEg (t) and hence a better performance, which proves the proposition.

O

An important implication of Proposition 2 is that the optimal solution is reached edthtre
boundary
Ef (t) + (vsird(tm) + 1)KE(t)n —E=0

and/or at the boundarigf (t) = 0. Moreover, despite the fact that we have got a bang-bang solu-
tion for fossil energyEf (t) is continuous with respect to time, as 8¢ (t) > 0 the mixed-path
constraint has to be satisfied with equality.

As the proof of Proposition 2 shows, an interior solution with both contglg), Is(t) > 0
and the mixed-path constraint of (2.2b) satisfied with inequality, can neveptimal as the cost
of inefficient surpluses could immediately be reduced by decreasing thenamiofossil energy
until either the mixed-path constraint is satisfied with equality or the fossilggremount gets
zero, which both corresponds to boundary cases. Hence, we pgiately omit the interior so-
lution and focus on the boundaries of the feasible domain. In total, we cangtish between
three of them:
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e Thefossilcase: No investments in renewable energy capital are made,
Er(t) >0,
Is(t) =0,
Er (t) + Es(Ks(t),t) —E = 0.4

e Themixedcase: Both types of energy are used for the coverage,
Er (1),
Is(t) >0,
Er(t) + Es(Ks(t),t) —E =0.

e Therenewablecase: No fossil energy is used to cover the demand,
Er(t) =0,
Is(t) >0,
Es(Ks(t),t) —E > 0.

Inserting the corresponding values of the controls and Lagrange mukipiields the canonical
systems for these boundary cases, which are given for the fossibgas

Ks(t) = —dsKs(t), (2.17)

At) = (r+089)A(t)— pen(vsir(tm) +1), (2.18)
for the mixed case by

k) = 2O a) 219

)\(t) = (r+08)A(t) — pen (vsiré(tm) + 1), (2.20)

and for the renewable case by

kst) = 2070 axa) 2.2
At = (r+3)A). (2.22)

Figure 2.2 illustrates these three cases, wiheis some fixed point of time during the year. If

“Note that for the fossil case the generated renewable erijds(t),t) is still included in the energy balance
equation. This is because renewable energy at the beginning of thequadhstill contribute to the portfolio if there
is an initially positive capital stock. As no further investments are madeehervthe capital stock will decline over
time and the contribution of renewable energy gets negligibly small. If, itrast) the initial capital stock is zero, the
contribution is zero along the whole path.
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the initial capital stock is zero and, furthermore, no investments are madenawable energy
is generated at all and the whole energy demand has to be coveredsbyefesgy. As soon
as capital is accumulated by investments, a mixture of the two energy typeslisousaver the
demand, which hence corresponds to the mixed case. If, howeveapital stock gets sufficiently
high so that enough renewable energy can be generated to completiytmdemand, no further
import of fossil energy is necessary. This finally corresponds to tewable solution.

Energy EyKg(f), 1)
Fossil Energy Demand E
Ep(®)=E Mixed |
F(t)=E-Eg.,.) |
1
1
1
1
:ES(. ,.)=E
I
1
1
: Renewable
| Ex(t)=0
0 > Ks(t*)

Figure 2.2: Fossil, mixed, and renewable solutions to cover the givegydemand.

2.2.2 Periodic Solution

The canonical system in (2.12)-(2.13) is not only non-autonomousntaddition it is also pe-
riodic int with period length 1, and therefore belongs to a special class of nonamatus dif-
ferential equation systems, also caltate-periodic differential equation®ue to this periodicity,
the most reasonable candidate for the optimal long-run solution of the prabl€.2), which is
the solution to which each optimal solution is converging over time, is given leyiagic solution
with the period length of one year.

SNote that this is in contrast to autonomous optimal control problems wherexistence of periodic optimal
solutions only is given under specific necessary and sufficient consliteee for this Hartl (1993) and Han et al.
(1994).
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In order to find such candidates, we first determine the instantaneailibrgm points, which
are calculated for the general canonical system in (2.12)-(2.13) as

At) = (r+389)A(t)— pa(t)n(vsirA(tm) +1) =0

_m(t)n(vsirf(tm + 1)
o )\IEP(t)_ r+6s
Ks(t) = W—&Ksa)ﬂ
IEP _
o KISEP(I):)‘ (t)z‘i(‘:gss(t) b_
_ mn(vsirftm +T)  ps(t) —b
(r + ds)2cos 2cos

Note that the curve of instantaneous equilibrium points is not a trajectorg @fhonical system,
unless{K!EP(t),A'EP(t))} = {0,0}, ¥t, see Ju et al. (2003). This special case, however, can
not occur in our model approach. We solve the following boundary vatablem using these
instantaneous equilibrium points as starting solution,

Ks(t) = fX(t,Ks(t),A(t), ua(t)),  with Ks(0) = Ks(1),
A) = LA, (), with A (0) = A (1).

Solving this boundary value problem yields the periodic solufig(t),A*(t)) that lies com-
pletely in one of the three boundary cases of the feasible domain. Hquitesean happen that the
solution at some point leaves the current boundary of the feasible dorefirelihe end of the
period is reached. In this case, one cannot find a closed periodic scdlbiog this boundary, but
one has to switch to the corresponding canonical system of the neitiléelbsundary to end up
with a periodic solution existing of several arcs. Therefore, a multi-pa@ohbdary value problem
has to be solved. At each point of time where the constraints of the cuegionh are violated, a
switch to the proper region happens, meaning that the correspondiogicalsystem is used to
continue the solution. Farswitching timest, ..., T, and the boundary pointg andt, 1, which
satisfy
T =0<T1< < <Th1<Th<l= Th,

n+ 1 arcs have to be calculated for which the continuity of the solution with réspeime at
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each switch has to be guaranteed. We introduce an index

1, for the fossil region
a = | 2, for the mixed region (2.23)

3, for the renewable region

which distinguishes between the canonical systems for the three bouwrataey of the feasible
domain described in (2.17)-(2.22) for each avath i = 1,...,n+ 1. In what follows, we use for
simplicity the notation

Ks(t) = f5S(tKs(1),Ai(1), B3 (1),  te[ti1,T, (2.24)
Ai(t) = B (6 A1), iy (1)), te (g 1,1, (2.25)

for n switches along the periodic solutidns 1,...,n+1, anda € {1,2,3}. For the corresponding
canonical system at arcit has to hold that

& # a1, (2.26)
la—ai-1] = 1, (2.27)

which means that switches only can happen between neighboring regitmes sense that only
one control condition changes at the switch. For the numerical solutior afygtem, for each arc
i we use a time transformation so that it can be solved with fixed time intervals. Thisstieat,
in order to solve a system of equations as in (2.24)-(2.25),

X(t) = f(t,x(t)), ten_1,T0,i=1....n+1170=0,Th41=1,
we are looking for a time transformation= T (s) so that
y(s) = f(s,y(9), seli—1,i], withy(s) =x(T(9)).
It turns out that the linear transformation

T(S) = (Ti — Ti,]_)(Sf i) + T (2.28)
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satisfies the required conditions. Hence, in terms of the original dynamicgelds

y(s) =X(T(s)) = dx(;jl's(s)) = d)(;(_}l’((ss))) d-g(j = f(T(s),y(9))(Ti — Ti_1).

Using this transformation, we have to solve for 1,...,n+1, j=1,...,n, s€[i—1,i],
7o = 0, Th 1 = 1 the multi-point boundary value problem

Ks(s) = (1i—Ti-1)f4(T(5),Ks(9),Ai(8), 13 (1)), (2.29)
Ai(S) = (Ti—Tio1)fa(T(9),A(9), by, (1)), (2.30)
0 = (Kg(11),Ai(1))) = (Ks 1 (1)), Aja(T5)) (2.31)
0 = (Ksua(D):Ansa(1)) — (Ks (0),A1(0)), (2.32)
0 = c(aj,aj+1). (2.33)

Equation (2.31) ensures, that the continuity of the state and the costatespiéittéo time at each
switch is given. As the aim is to find a periodic solution, Equation (2.32) demtnad the starting
and the end point coincide. Equation (2.33) finally guarantees that thelsare continuous
with respect to time as well. This condition is dependent on the involved regowell as on the
direction of the switch and foy=1,...,nis given as

A . )‘j(Tj)_b:O . L {{172}7{271}}
c(aj,aj+1) = if {aj,aj11} € -
ES(KSj(Tj)vrj)_EZO {{273}7{372}}

The periodic solution that solves this boundary value problem then is given

(K&(),A"(0) = (K& 070 gery» (KEOAZ0) 1y (K&, 0 A1) oy

2.2.3 Stability

Due to the periodicity irt of the canonical system, its solutions have certain properties that are
useful to determine their asymptotic behavior, which we will show in what falofo do so, we
first introduce the ternffoincae map following the detailed demonstration in Hale and Kocgak
(1991). Let

= f(t,x), (t,x) eRxR", (2.34)
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be the general notation of a 1-periodic canonical system. Further ap(tlé, o) be the solution
of (2.34) through the pointy € R" at timety. Due to the periodicity, it holds that

pt+Lto+1,%) = @t to,%),
O(t+1t9,X0) = o(t,to,@(to+ 1,to,Xo)).

We now define a scalar mapping that maps the initial vaguat timetg = 0 to the value of the
solution@(1,0,x%p) given by

P:R"— R", X0 — ¢(1,0,Xo).

This is the so-called Poindamap associated with the periodic orbit of the system (2.34) and is
also known asime-oneor period map Obviously, the initial valueg then is a fixed point of this
map. Further on, the Poin@amap is monotone and differentiable with non-negative derivative
(see for this Hale and Kocgak, 1991). To illustrate the Poimcaap also graphically, the system
(2.34) can be converted into the equivalent pair of autonomous diffateqquations,

6 = 1, (2.35)
x = f(6,%),

where the first equation is periodic with any period and hence can besetbffierential equation

on the unit circleS?, while the second one is 1-periodic and consequently remains unchtamged
all 6 + k with any integetk. Therefore, the orbits and trajectories of (2.35) can conveniently be
viewed along the cylindrical manifold = S x R". When using the coordinatégmod1), x) and
considering in this space the 1-dimensional cross-section

Z={(t,x) e X:t =0},

each orbitLy of the system (2.35) then crossesransversally (cf. Kuznetsov, 1998), which can
be seen in Figure 2.3. As the initial valug is a fixed point of the Poincarmap, the stability
properties ofg are the same as ob. If @(t,0,X%p) is the solution of the system (2.34), with

©(0,0,x0) = Xo, then
9¢(t,0,%o)

M) = =55
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Figure 2.3: Poincd map.

is the solution of the boundary value problem

where
30 = I (t.0(t.0.%)
- 0X 7(P 9 7X0
is the Jacobian matrix of the system (2.34) &nid then-dimensional identity matrixM(t) is the

fundamental matrix of the system (2.36) and is given by
M(t) = ',

The differential equation in (2.36) is also called thnear variational equatiorabout the solution
¢(t,0,%p), as it describes the system of a perturbatitin of the periodic solution,

X(t) = @(t,0,x0) + y(t).

Differentiating the Poinc& mapP(Xp) = @(1,0,xg) with respect tog finally yields the Jacobian

of the Poincag map,
oP 9¢(1,0,%0)

= o0 = g T =M =,

Jp
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Consequently, the perturbatigtt) decreases if all eigenvalués, ..., &, of Jp are within the unit
circle, |€| < 1, which implies that the solutio@(t,0,Xo) is asymptotically stable. Further on, the
eigenvalues are independent from the starting vaduéhe periodic orbily, andZ. One can see
that these eigenvalues coincide with the ones of the mist(ik), which is called thenonodromy
matrix. &,...,¢&, are also referred to as th@oquet multipliers and the fundamental matrix can
be represented in the so-callebquet form

M(t) = ef'C(t),

whereC(t+1) =C(t) holds andR € C™" is a constant matrix whose eigenvalues are known
as thecharacteristic exponentand the Floquet multipliers are given by the eigenvalues of the
matrix €X. For autonomous problems, the monodromy matrix always has 1 as eigewabines
called thetrivial Floquet multiplier. The reason for this is that the tangent vector on the periodic
orbit atxg is an eigenvector of the monodromy matrix with eigenvalue 1 (see Grass €1G8), 2
The same applies also for non-autonomous problems if the canonical ggstamsformed to the
(n+1)-dimensional autonomous system of (2.35). Then, also here perturbatwrg the periodic
orbit have eigenvalue 1 and the eigenvalues of the monodromy matrix ane gyl &, ..., &
(see Guckenheimer and Holmes, 1990). If the trivial multiplier is the only g&ea of unity,

the periodic solution is also hyperbolic, which implies that its stability can be detedriom

the linearization of the Poincamap and hence from the remainingigenvalues (see Hale and
Kocak, 1991).

In order to analyze the dynamic behavior of an obtained periodic solbfigrof the canonical
system (2.12)-(2.13) with period length 1, we therefore calculate the momydmatrix as the
fundamental matrix solution of the variational equation

y = IOy, (2.37)

Yo = (; 2)

whereJ(t) is the Jacobian matrix evaluated at the periodic solufig,

dfks  9fKs

| 9Ks oA
=\ o5 |,

JKg )

For the case of mixed as well as renewable energy supply in the curreld,nftis matrix reads
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_ 1
Jm:( 05S rfas)

Solving the differential equation in (2.37) yields the solution matrix, and tbez¢he monodromy

efés d+9s_eg9s
M(l) _ e_](l) _ 2c(r+20s) .

as

matrix

0 g+

For the case where only fossil energy is used, the Jacobian matrixagads

= <_:S rf%) ’

which yields the monodromy matrix

—Os
YM(l)eJ(l)(e ° )
0 g+

Note that in both caseXt) only depends on parameters and therefore is independent of the peri-
odic solutionr” (t). We get for both monodromy matrices the eigenvalues

El = 8_657 EZ = er+55’

where the corresponding eigenvectors are given by

1 1
vy = L Vo= 2c(r+2ds) :
0 1

in the mixed and renewable case, and by

) ()

in the fossil case. The eigenvalues of the monodromy matrix reflect the stalfititg periodic
solution. Leté;, i =1,...,nbe the eigenvalues of the monodromy matrix and let

nt={i:|& <1}, n ={i:|& > 1},



30

be the sets of eigenvalues indicating stalie) (@nd unstabler(") directions, a periodic solution
I(t) is called ofsaddle-typef
Int[|n"| >0

holds, which means that at least one of each type has to exist. |l 0, the periodic solution is
unstable (see Grass et al., 2008). As s < 1 andr + ds > 0 always holds, the two eigenvalues
satisfyé; = e % < 1 and& = €% > 1. Due to the fact that the Jacobian matrix and therefore
also the monodromy matrix is independent of the state and the control vayidiidagsult implies
that every periodic solution that we can find within one of the boundaripmegs of saddle-
type. Further on, as no eigenval&e=1, i € {1,2} occurs, it even is a hyperbolic cycle, which
guarantees that the behavior of the system near this periodic solutior ¢alytdescribed by its
linearization.

2.2.4 Numerical Continuation of Optimal Paths

In order to calculate a trajectory starting at an initial capital stdgk converging towards the
optimal long-run periodic solution and lying completely within one of the bouerdanf the feasi-
ble domain, a numerical continuation algorithm is neededI'lBt= (K&(t),A*(t)) be a periodic
solution of the model, then the goal is to find a solution g&t(t), A (t)) which satisfies

0 = Ks(0)—Ksg, (2.38)
— F ((KS(TIO)> . <K§(O)>> : (2.39)
A(Tp) A*(0)

where the matri¥ is spanning the orthogonal complement to the stable eigenspace of theégeriod
solution (see Grass, 2012) amglis the truncation time of the path. The condition in (2.39) guar-
antees that the solution ends on the linearized stable manifold to which the astorthogonal,

cf. Figure 2.4 (for a more detailed theory on manifolds see Carr, 198RenGhe eigenspace
determined in Section 2.2.3, the orthogonal complement to the stable eigetispiiseneeded

for the boundary value problem described in (2.38)-(2.39) is then leddclias

-()

We normalize the time interval frorf®, Tp] to [0,1]. Similar to the transformation we have
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9 long-run optimal
periodic solution

stable
eigenspace

(Ks*(0), A1 (0))

Figure 2.4: The stable eigenspace of the optimal long-run periodic solthiemrthogonal com-
plement spanned by, and a starting solution path startingkd(0) = Kslo.

used in Section 2.2.2, we here set
T(s)=Tps, se[0,1], (2.40)
in order to transform a system of the form
X(t) = f(tx(t), tel0,Ty,

to the new system
= ——— = f((9,x(), s€01]

To find a solution path that satisfies (2.38)-(2.39), the periodic solutionnsnued stepwise so
that, after a finite number of steps, the target vdggis reached. Starting with the initial value
Kéo = K{(0) yields the trivial solution (t) = (K&(t),A*(t)), which is used as starting solution.
Assume that we havBl steps, then at each step=1,...,N we have to find a solution path
(K3(t),A"(t)) so that

0 = K&0)—K&, (2.41)

o _ F,<<Kg<1>>_<r<§<0>>>. (2.42)
A \a(o)
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A simple strategy to deduce from one starting pQI(@*l(O),)\ n-1(0), Kg;l) a prediction of
the next starting pointKg(0),A"(0),Kg ) is given by linear interpolation (Euler method),

Ks'(0) K2-1(0)
A0) | = | A"10) | +hno1vio1,  with [[va_1|| = 1,
K2 K

whereh,_; is the(n— 1)st step width and,_; is the tangential vector which can be approximated
by the secant vector

Kg(0) KS2(0)
Vn-1 & AY0) | = | A"2(0)
hnil anl anz
S S

As at each step the system has 3 unknow @), A"(0), Kg) but only 2 equations, it is thus
under-determined. Therefore, an additional equation

is needed. One possibility is to set

which means that the predicted target vaﬁ@ and consequently als§g(0) is fixed and the
corresponding\"(0) has to be found. In geometric terms, this means that a solution is searched
along a 1-dimensional hyperplane which is orthogonal to the chiigeoordinate and that this
solution is given by the intersection point of this hyperplane and the soluéitn phis algorithm
works as long as the solution path is not bending back, as in this case tisaramatrix of the
enlarged system is singular in this point. This problem gets obvious in Fighee Blaving this
drawback in mind, we use a slightly adapted version of this algorithm bylseartor a solution
along a hyperplane which is not orthogonal to Kzecoordinate but to the secant vectgiinstead,

and runs through the predicted po(l’ftsn(O),f\”(O), KQO). Formally, this is given by the equation

Ks'(0) K3(0)
g(K&(0),A"(0),KE) =V, 1 | [ An0) | - [ A"(0)
Kgo K&
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At) At)

long-run optimal
periodic solution

long-run optimal
periodic solution

Ks(t) ' ' Ks(t)

Figure 2.5: Algorithm where a solution is searched along a hyperplaneganial to(a) the Ks-
coordinate(b) the tangential vector. The latter one allows back-bending of the solution path

With this method, the Jacobian matrix of the enlarged system does not fughsingular and,
hence, back-bending of the solution path causes no problems, see Eifhr To control the step
width h,, we use simple step width regulation, which means that the step width depetiis on
number of Newton iterations. If this number is high, the step width is reducids ibw, the step
width is increased, and if it is moderate, the step width does not change.

To sum up, we solve at each step the following boundary value problesef0, 1]:

KS™(0) K&(0)
0 = Vo A nfl(o) +hn_1vn-1— | A™(0)
-1
Kg K2

The solution at théN-th step yields the path leading from the initial stitg, if feasible, into the

optimal long-run periodic solution.
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2.3 Results

For the numerical analysis we use the parameter values summarized in Talbligar#& 2.6 shows

Interpretation Parameter, Value || Interpretation Parameter Value
Investment costs b 0.6 || Depreciation rate Os 0.03
Adjustment costs c 0.3 || Degree of efficiency n 0.2
Energy demand E 2000 || Maximal radiation increment v 4.56
Fossil energy price Pr 0.08 || Minimal radiation in winter T 0.79
Discount rate r 0.04

Table 2.1: Parameter values used for the numerical analysis.

the optimal long-run periodic solution that corresponds to the case with huek tf energy used
to cover the energy demand. The black arrow marks the starting point inrwidere, global

radiation is weak and therefore the benefit of the capital stock with respeenewable energy
generation is low. Also investments are kept on a low level. However, asiglaBiation goes
up in spring and the benefit of the capital stock increases, investmergasecas well in the first
guarter of the year in order to accumulate capital. The capital stock an@nlea/able energy
generation then grow and reach a peak during summer which coincides withakimum of

global radiation. Note that investments during the second quarter of thalyeady decline again
to stop the increase of the capital stock at this peak. In the third quartee ofetir, also the
capital stock decreases and renewable energy generation goeskdoally, in winter, increasing
investments let the capital stock level out at its initial value.

Figure 2.7 shows a phase portrait in the state-control space for thidjgesioution. The
trajectories (gray) lead cyclically into the periodic solution (black), wheeddft one starts at an
initially lower and the right one at an initially higher capital stock. Along the lethpone can see
that the periodical investments lead to accumulation of the capital stock overioveever, to
understand this fluctuating investments in more detail, one has to distinguistehatwestments
for acquisition and investments for maintenance effort. Remember that wertewded depreci-
ation in the state equation in (2.1), so over time maintenance activities are amgcieskeep the
capital in a good condition. Figure 2.8 shows this aspect in more detail. ilttdepe ratio of de-
preciation and total investments to illustrate maintenance activities. While at thenlmegof the
path starting at an initially lower capital stock almost all investments are usedumatate cap-
ital, more and more is invested relatively in maintenance the closer the path cothesfmimal
long-run periodic solution, in which investments and depreciation aregiirfealanced. Along
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Figure 2.6: Periodic solution (left box), time paths for investments and capital one year
(two boxes in the middle) and renewable energy generation (right box fiossil energy price
pe = 0.08.

the path starting at the initially higher capital stock, the investment path folloaclgxhe oppo-
site direction. Here, the initial capital stock is higher than optimal, so no invesforaacquisition

are made along the whole path and all investments are used for maintendncel@mever, as
the capital stock should decline towards the optimal level, investments aretltavedepreciation
(underinvestments) and full compensation of depreciation is reachedhathky optimal long-run
periodic solution.

Considering the proportions of fossil and renewable energy thatsa® in this scenario to
cover the given energy demand, Figure 2.9 shows that the vast majotity demand is covered
by fossil energy and that the maximal contribution of renewable energyifo parameter set is
very low at about 0.3% during summer only. This comes due to the fact thsit Bmergy with
pr = 0.08 is comparably cheap and, hence, high investments in renewable emergo costly
and therefore not worthwhile.
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Figure 2.7:(a) Phase portrait for a fossil energy pripe = 0.08 showing the trajectories (gray)

leading into the optimal long-run periodic solution (blacit)) Zoom
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Figure 2.8: Maintenance investments along the solution paths leading into tbdipeolution

for a fossil energy pricggr = 0.08: Share of total investments along the path from an initially
lower capital stock as well as underinvestments along the path for an initialghigpital stock,
respectively.
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Figure 2.9:(a) Energy demand and optimal long-run fossil energy amount for a fassigg price
pr = 0.08. (b) Coverage of the energy demand with renewable energy in percent.
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2.4 Sensitivity Analysis

The results of the scenario presented in Section 2.3 have shown thag foartameter set of Ta-
ble 2.1, the contribution of renewable energy to cover the exogenougyethemand is very low.
These results immediately lead to the question, which mechanisms could fosteabd® energy
generation. The fossil energy price is certainly one of the factors thaindace a higher use of
renewable energy. As long as the costs for importing fossil energyarénestments in renew-
able energy capital are not very profitable. Therefore, the questiwhagher an increase in this
price would lead to higher investments in renewable energy capital atldefum, whether there
exists a price limit at which fossil energy is so expensive that the whole midisaovered only
with renewable energy. Considering the interaction of technological inepnents for discovery
methods of new fossil resource reservoirs on the one hand andifacgsn methods on the other
hand, it is unclear how long fossil resources will be available for gngemeration in the future.
Therefore, scarcity alone cannot be seen as the driving forcefimiceeasing fossil energy price.
But considering the historical development as well as the aspect tlatedfclimate mitigation
policies will sooner or later make fossil energy more costly, an increasssil Energy price seems
to be a reasonable assumption.

The second aspect that is supposed to have a positive effect avatdaenergy generation is

of course the degree of efficiengy Technological progress driven by research and development

will possibly enable a more efficient renewable energy generation in theefu Therefore, an
interesting question is how the optimal portfolio in our model changes if replewenergy is
generated with a higher efficienay. Could this increase possibly compensate for the higher
investment costs?

To investigate these two aspects we conduct a sensitivity analysis in thisxdggsolving the
optimal control problem for varying parameter values.

2.4.1 Fossil Energy Pricepg

First, we focus on the impact of an increasing fossil energy ppic®n the optimal portfolio
composition. To do this, we start with a very low fossil energy price anceas® it step by step,
using numerical continuation to investigate how the optimal long-run solutiamgesa The results
are shown graphically in Figures 2.10-2.14 for increasing valugs ofn each figure, the box on
the left hand side shows the solution in the state-control space. The twe othe middle depict
the time paths for investmenitg(t) and capital stocks(t), respectively, and the box on the right
hand side illustrates the composition of the energy portfolio with renewabtgyeskown as gray
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line, fossil energy as black line, and the energy demand as black dasted

To begin with, we solve the problem for a fossil energy pige= 0.01. Note that this price
is even lower than in the previous scenario of Section 2.3. Hence, fossgehere is so cheap
that nothing at all is invested in renewable energy capital and the whalgyethemand is covered
by fossil energy in the long run. This corresponds to the case in SecBah\&hich we called
the fossil solution. As one can see in Figure 2.10, the optimal long-run solirti&s(t) and
Is(t) coincides with the origin as no investments are made over the year and teearefoapital
stock is accumulated. Note that we assume an initial capital stock of zera@tsmtimvestments
imply no renewable energy generation. But even in case of an initially pesitigital stock, zero
investments would lead t6s(t) ~ 0 in the long run as well. The fossil energy amount fully covers
the energy demand in this scenario and therefore, these two lines coindige liight box of
Figure 2.10, while renewable energy generation is constantly zero.

pr = 0.01 . Is(t) Energy Balance
2000
0.8 1 05 Ep(t) = E
1800¢
0.6 1
0 1600¢
0.4 1=
05 1400f
0.2
_1 L
= 0 05 1 1200
o x 1 Time t
0 1 L
. o Esm
-0.2¢ ] 800¢
—0.4f ] 05 600l
-0.6f 10 4007
—08l 1 -05 200¢
Eg(Ks(t),t)
-1 : -1 0 ‘
-1 0 10 05 10 05 1
Ks(t) Time t

Figure 2.10: Solution for a fossil energy pripg = 0.01: Fossil solution over the whole year
with zero investments$s(t) = 0, zero capital stocks(t) =0, no renewable energy generation,
and hence fossil energy importsif (t) = E.

If the fossil energy price is slightly increased, however, renewalt#eggris used as additional
energy source for the portfolio. Air = 0.06785 an interesting aspect can be observed. As al-
ready mentioned in Section 2.3, the benefit of the capital stock with respestéwable energy
generation is the highest in summer, when global radiation reaches its maxinuaio fhe still
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very low fossil energy price, however, a too high capital stock outsidhi® period is not cost-
effective. Therefore, it is only worthwhile to invest in renewable epeapital shortly before the
summer period to slightly increase renewable energy capital (or to do somenaaine to keep it
in a good condition) in order to optimally utilize the high global radiation at this timeir@uhe
rest of the year, however, investments are again set to zero and thadlenamost completely
covered by the cheaper fossil energy. Hence, for this fossil gnaige we find a periodic solu-
tion that consists of three arcs, two with zero investments corresponding fiosiil case, and one
with positive investments corresponding to the mixed case. This is shown ireRidld, where
the black line depicts the arc of the mixed solution with both types of energyfoste: coverage,
and the black dashed line corresponds to the arcs where no investmeentadge and almost the
whole demand is covered by fossil enefgps the contribution of renewable energy generation
to cover the given energy demand still is very low, the energy balance lpaike similar to the
one in Figure 2.10, where the black dashed line for the energy demantexbtack line for the
fossil energy amount have been identical. Although they are pretty clegérathis case, they
are numerically not equal as the zoom in Figure 2.11 shows. The pricedhfer which this
mixed-arc-solution exists is very smatly € [0.067850.06897.

For a higher fossil energy price, investments are made over the whaleayekthey still are
higher shortly before the summer period in order to fully utilize the high glohdiation as in
the previous case. Figure 2.12 shows the optimal long-run periodic sofotigig = 2.7, which
corresponds completely to the mixed case, meaning that both types of emergged over the
whole year to cover the demand. In contrast to Figure 2.11, where tb@able energy generation
is so low that it hardly can be seen in the graph, one already can ohsdfigure 2.12 that the
generation increases with the fossil energy price. More and more investiaie made and the
additional fossil energy amount during the summer period is reducedndpte winter period,
however, a high amount of fossil energy is still required due to the low glatakation in this
time.

Increasing the fossil energy price even further leads to an increapedable energy gener-
ation until finally, atpg = 3.9468, it reaches exactly the demand at the peak of global radiation
in summer. At this point, a switch to the complete renewable case happensisdht one os-
culation point at the beginning develops to an interval when the price isasedefurther. In this
interval, which always is around the point of time of maximal global radiatiametiergy demand

6The capital stock of course is not immediately zero if there are no fuitlivestments, but due to the fact that
the capital stock is not very high even during summer and depreciatilices the stock if there are no investments,
renewable energy generation during the winter months is negligibly low.
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Figure 2.11: Periodic solution for a fossil energy pre= 0.068 with three arcs: Mixed solution
with positive investmentss(t) and positive fossil energy imports:(t) (solid line), and fossil
solution with zero investmentg(t) = 0 and fossil energy imports & (t) = E (dashed line).
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Figure 2.12: Periodic solution for a fossil energy prige= 2.7: Mixed solution with positive

investmentss(t) and positive fossil energy impork: (t) over the whole year.
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can be covered fully by renewable energy while fossil energy in addgiot further needed.
Figure 2.13 shows this scenario for a fossil energy ppiee= 5.5. At the beginning of the year,
investments increase in order to accumulate enough capital for springiamdes, where global
radiation increases and reaches its maximum. However, as surpluseggurimer are not prof-
itable, investments already decrease again during spring in order to asamchagh capital stock
during this time. As global radiation still is relatively high in autumn, howeverctigtal stock
should also not get too small and, therefore, an increase in investmarnite cbserved over the
summer period. Due to the low global radiation in winter, however, they dseragain in autumn
as a high capital stock is not further profitable there and, finally, at thetthe year they go up
again to accumulate capital for the spring and summer period. Consideriegengy portfolio
in the right box, one can see the surpluses that are generated durisigntineer period. As the
possibility of storage is omitted in our approach, these surpluses are tabebenergy supply in
this period is independent of fossil energy. For this scenario we fiashagperiodic solution that
consists of three arcs, the black parts corresponding to the arcs of ted saibutions and the gray
one displaying the renewable solution arc in-between.
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Figure 2.13: Periodic solution for a fossil energy prige= 5.5 with three arcs: Mixed solutions
with positive investmentss(t) and positive fossil energy imporg:=(t) (black solid lines), and
renewable solution with positive investmeig§) and zero fossil energy impork: (t) = 0 (gray
solid line).
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The interval in which renewable energy is sufficient to cover the ergggyand increases, the
further the fossil energy price goes up. However, it turns out thathigpens at a decreasing
speed, and during winter fossil energy still is necessary to cover tirifals, even if the fossil
energy price is already very high. Figure 2.14 shows the optimal longelutian for a really
high fossil energy pricgr = 10. One can see that, despite the high surpluses in summer, there is
only little improvement in renewable energy generation in winter.
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Figure 2.14: Periodic solution for a fossil energy prige= 10 with three arcs: Mixed solutions
with positive investmentss(t) and positive fossil energy imporg:=(t) (black solid lines), and
renewable solution with positive investmeig&) and zero fossil energy imporEs:(t) = 0 (gray
solid line).

To give an insight into how the costs over the whole period vary with the aidgportfolio
compositions of different price scenarios, Figure 2.15 shows the meguwosts for the solutions
atpg = 0.01, pr = 0.068, pr = 2.7, andpg = 5.5. Note that the cost function

C(Er (1), (1), t) = Is(t) (b+cls(t) ) + PrEF (1)

evaluated along the optimal long-run periodic solution is considered hetead the accumulated
and discounted costs over the whole time period, as it is given in the objdégticion. The
advantage of this analysis is that the changes in the costs of the portfolimsiimp over the
seasons can be shown in more detail. One can see that the pure fosiligat pr = 0.01
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compared to the fossil and mixed portfolio gt = 0.068 hardly differs in the annual costs as
fossil energy is very cheap and the contribution of renewable enemgrgtion is too low to cause
a remarkable reduction of costs during the summer period. For the porttgho-a 2.7, this is
significantly different. Here, a strong decline of the costs during sumnmebeabserved as the
renewable energy generation compensates for the more expensilef@gy amount. On the
other side, it also points out how expensive the winter gets due to the lowlgiatiation and
the high fossil energy price. This is even worse for the portfoliprat= 5.5. However, during
summer here the costs drop down even below the cost curve of the podfgio= 2.7, as no
fossil energy is used anymore. This strong reduction underlines omgéhlkeand the cost-reducing
potential of renewable energy if supply is sufficient, while on the othed Haowever, it illustrates
the strongly reduced benefit due to the high costs in winter where supply lievto
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Figure 2.15: Development of the cost function along the optimal long-rundgie solutions for
different fossil energy price scenarios.

2.4.2 Degree of Efficiency)

To investigate how an increase in efficiency could change the portfolio @sitign, we conduct
the analogous analysis as in the previous section with respect to the dégféieiencyn. For
that purpose, we let the fossil energy price be fixegat= 2 and start with an initially low

degree of efficiency; = 0.1, which is then increased step by step to demonstrate the changes in
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the portfolio composition. The results of this analysis can be seen in Figuse Bidure 2.16a
shows that even for a comparably high fossil energy price, a low effigidegree of 10% makes
investments in renewable energy capital not profitable. As the output gktieration is too low
to compensate for the high investment costs, fossil energy is still usedeo tt@/major share of
the energy demand. If the degree of efficiency is increased up to Z58fapavn in Figure 2.16b, an
improvement in renewable energy generation can be observed. Wlslednsrgy still costs the
same, the investments into renewable energy capital have become more hilertisrthe output
of generation has increased. Finally, Figure 2.16c shows the resat ffficiency of 40%, which
is already very high for photovoltaic cells. One can see, however, tisatibrovement changes
the situation completely. For this case we can find again a periodic solutioistiog®f three
arcs, where the arcs in winter and spring correspond to the mixed cdsbenne in summer
to the renewable case with renewable energy being sufficient for trexage of the demand.
This extreme scenario was chosen to demonstrate the changes in the soldtioruaderline the
aspect that improvements in renewable energy technologies’ efficietiegdrcould play a major
role along the path towards a more sustainable energy generation in the futur

2.4.3 Combined Effects

The previous two sections have illustrated the impact of a change in thedossgy price as well

as in the efficiency of renewable energy technology on the optimal lomgeolution. However,

a further interesting aspect is what happens with the portfolio if both @shgppen simulta-
neously, and whether these two effects reinforce or dampen each athihis section we will
focus on this 2-dimensional parameter variation. The sensitivity analysigegfiect to the fos-

sil energy pricepr has shown that there exist price levels at which the optimal long-run solution
changes from a pure one-arc periodic solution to a periodic solutioristioigsof several arcs.

At the first price boundary, the pure fossil solution changes to a mikedaution with three
arcs, two corresponding to the fossil and one to the mixed case. At tbadgeoe, the optimal
long-run periodic solution lies completely at the feasible boundary of the naixee, while at the
third one, the pure mixed solution changes to a mixed-arc solution with two aresponding

to the mixed and one to the renewable case. For the analysis of the comlettd ek start at

a very low efficiencyn = 0.05, increase it step by step, and derive at each efficiency level these
price boundaries. Figure 2.17 illustrates these results, where the blédtkis® describes the
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Figure 2.16: Periodic solution for different degrees of efficiency
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price boundary from the fossil to the mixed solutioand the gray solid line the one from the
mixed solution to the combined mixed and renewable solution. For a low levgltafan be seen
that the region for the mixed solution is very lafyand the increase in the fossil energy price
that would be necessary to reach the mixed/renewable area would hazexarémely high. As
renewable energy technology here is not efficient enough, also #isé¢ &ea is comparatively
large. The higher efficiency gets, however, the smaller is this area anidwke the necessary
price increase has to be to make using renewable energy as additiorea poafitable. Also the
price boundary for the transition to the mixed/renewable case decreétbhesfficiency. As the
output of the renewable energy capital grows, renewable energwpigessly sufficient at a lower
fossil energy price. These results show that the two effects reinéacie other, which underlines
the importance of financial and technological incentives for a clearezggisupply.
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Figure 2.17: Combined effects with changes in both the fossil energy asieell as efficiency.

It, of course, does not come at a surprise that an increase in thedioerily price as well as an
increase in efficiency improve the profitability of investments into renewaldeggreapital within
the considered portfolio. However, this sensitivity analysis shows thatext¢hese changes and

"Note that of course there is in fact also the boundary from the fossiltoathe combined case with a fossil and a
mixed arc, but as the price interval in which this transition happens is sk, syecomitted this boundary in the figure
for the sake of clarity.

8For the sake of lucidity we had to cut off the second price boundary é&settow levels as they are really high. For
the initial value ofn = 0.05 it lies abovepr = 60.
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how they interact. As renewable energy technology has high investm&st ite competitiveness
strongly depends on the price of conventional energy types. Thesksrenderline that for ex-

ample penalties on CQntensive technologies indeed could be a strong incentive for renewable

energy investments, as they increase this price and therefore supprehtwable technology to
penetrate the market. Further on, simultaneous R&D activities might improvefibiersfy of
the renewable energy technology and could enforce this aspect lerate¢he process towards a
more sustainable energy generation in the future.

2.5 Fluctuating Energy Demand

So far we have postulated that the energy demand is well known and comata the whole year.
This, of course, is a strong simplification. In reality, the proper predictiothe® exact energy
amount that has to be supplied is one of the biggest challenges of ermiimgtcompanies due
to the strong fluctuations between different hours of the day but alseebateeasons. In middle
and northern European countries for example, the energy demandg) doginvinter months can
be one and a half times as high as the one during summer due to heating, lighting laundry,
etc. This behavior, of course, is exactly reverse to the supply of glald#tion. In countries of
the south, however, an opposite situation can be observed. While the wiotghs there are not
so cold and hence the necessary heating effort is very low, the summérgrasa so hot that air
conditioning strongly increases the energy demand during this time. Thiglpgeriagh demand
coincides with the high supply of global radiation, which makes it easier ter¢dbwith renewable
energy. Due to the impact of climate change on temperature increase,dipg@we areas with
a winter peak regime tend to slowly approach a summer peak regime instedBC€2¢1998).
Consequently, along the transition the demand can also be a mixture of theskapas where
both, a summer peak due to air conditioning and a winter peak due to heatig, @dso in
Austria, where the winter peak is definitely dominant, the above-average rtatm@s in summer
especially in recent years have induced a small air conditioning summegapee|.

To account for such fluctuations in energy demand we extend the madamied in (2.2) by
including an energy demand that is seasonally fluctuating. We still omit, howaaiéy fluctua-
tions. To model the varying energy demand with a deterministic function, wa ossine function
given by

E(t)=Ea+ % cog2tm)

for a country with the peak of energy demand during winter, whgrés considered to be the
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average annual demand for which we use the level of the fixed energgri of the previous
approach. The new demand is shown in Figure 2.18a. We further use

E(t)=Ea— %cos(Ztn)

for a country with the peak of energy demand during summer as shown ireR2diB8b, and finally

E
E(t) =Ea+ 5"" cog4tm)

for a country with both peaks as shown in Figure 2.18c.
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Figure 2.18: Seasonally fluctuating energy demand \{aha peak during the winter period,
(b) a peak during the summer peridd) both peaks.

Applying the same analysis as in Section 2.4, it turns out that also in case uftaating
energy demand one can find a time interval during summer where renewelotgy és sufficient
to cover the demand. However, this happens at different fossil gipeices as compared to our
results in Section 2.4. Figure 2.19 shows the result for a country with arhigmeand in winter.
One can see that during the summer period the demand is so low that alreadgraparatively
low fossil energy price the energy demand is reached with renewablgyenBuring winter,
however, the peak is so high that the required amount of fossil enengiggeseven if fossil energy
gets very expensive, due to the low global radiation in these months.

In contrast to this, Figure 2.20 shows the result for a country in the soitithavpeak during
summer. For the same fossil energy price as used for Figure 2.19, nreas#y see that here
renewable energy is far away of being sufficient for the very high a@eind herefore, no such
interval of a pure renewable solution exists for this price. During wintandver, the additional
amount of fossil energy is comparatively low as the demand here goes dow
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Investigating the case with two demand peaks yields a very interesting égsee E.21 shows
the optimal long-run periodic solution for this approach for a fossil gnprige pr = 7.5. As one
can see, we no longer have a solution that consists of three arcs buadirgteven five arcs.
Starting in winter, the peak caused by heating requires a high amountsiif éagrgy to cover
the demand while renewable energy generation only contributes little, as isdls®case in the
other two scenarios. In spring, the energy demand goes down andhasciountries having only
the winter peak, at some point of time renewable energy gets sufficiethamsgstem changes to
the solution using only renewable energy. However, this does not pfnsleng as the demand
at the summer peak is too high to let renewable energy remaining to be suffstieagain fossil
energy is needed to cover the shortfalls. In autumn, the summer peak deajaia and, as for the
countries having only the winter peak, renewable energy generatioffigent here. But similar
to spring, the winter peak ends this interval of sufficiency and fossiiggrie necessary again to
cover the high demand.
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Figure 2.19: Periodic solution for a fossil energy prige= 4 with three arcs, for a seasonally
fluctuating energy demand with a peak during the winter period: Mixed so8niuth positive in-
vestmentds(t) and positive fossil energy impori: (t) (black solid lines), and renewable solution
with positive investmentks(t) and zero fossil energy imporE: (t) = 0 (gray solid line).
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Figure 2.20: Periodic solution for a fossil energy prige= 4, for a seasonally fluctuating energy
demand with a peak during the summer period: Mixed solution with positive invasiigé ) and

positive fossil energy importSe (t) (black solid line) over the whole year.

pr=1.5 Is(t Energy Balance
‘ s(t) 3000 9y
67.4}
| 67
67.2 Ve 2500}
67 \/
66.8" 66 2000F
666/ 0 o5 1
~ Ime 1500+
0 L
~ 664 Ks(t)
66.2¢
1000}
sl 2216 PN
I 1 2215.9
65.8 500/
65.6 {22158, N
I I O I
2215.8 22159 2216 0 05 1 0 05 1
Ks(t) Time t Time t

Figure 2.21: Periodic solution for a fossil energy prige= 7.5 with five arcs for a seasonally
fluctuating energy demand with both, a winter and a summer peak: Mixed salutitnpositive
investmentss(t) and positive fossil energy imporE: (t) (black solid lines), and renewable solu-
tions with positive investmentg(t) and zero fossil energy imporE: (t) = 0 (gray solid lines).
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2.6 Summary

In this chapter we have investigated the impact of the fossil energy pritteearptimal portfolio
composition consisting of fossil and renewable (solar) energy in a smatitigo We postulated
that the supply of the renewable resource is varying seasonally, arehéingy demand is well
known and constant over the year in the first approach, while in thendemn® it is assumed to be
seasonally fluctuating.

The sensitivity analysis of this non-autonomous optimal control problem w#hect to the
fossil energy priceor has shown that a higher fossil energy price indeed is an incentive fir mo
investments in renewable energy capital. However, an autarkic reneeadtgy supply is not
possible, as the global radiation during the winter period is too low to be ieufficio matter how
high the fossil energy price is. While independence on fossil enemypeachieved during some
time interval in summer in which global radiation is high and even surplusesecgerterated, the
shortfalls in winter always have to be covered by fossil energy. Thengial of solar energy is
even reduced, if the energy demand is postulated to be fluctuating overaheither with a peak
in winter or in summer.

These results underline one of the major challenges of renewable eyesrggation, which is
given by the non-constant supply as well as the high investment costh wiaike it difficult to
be competitive with the conventional energy types. In our model appyttae$e investment costs
were kept constant. However, it is well known that in reality there existesexperience effects,
which positively influence renewable energy generation. This meanghb&ahore renewable
energy is generated, the lower are the costs necessary for renexaablgy capital. This aspect
will be considered as extension of the model in the next chapter.



CHAPTER 3

The Effect of Learning by Doing in Renewable Energy Generation

As already presented in the introduction in Chapter 1, a common approactiuddgrearning
effects into energy planning decision problems is given by the so-calledingacurve. In this
chapter the first extension of the basic model analyzed in Chapter 2 wilrisedzred by includ-
ing a one-factor learning curve into the objective function of the optimatrobproblem. The
obtained results will show that this change indeed causes a remarkablewmii# in the optimal
long-run solution of the model.

3.1 The Model

Before we extend the basic model with a one-factor learning curve, stariske some assump-
tions about its functional form. While Equation (1.1) only is defined for an ihjtimstalled
capacity ofKg > 0, we extend this approach by allowing also a complete start-up with renewable
energy, meanindio = 0. To do so, we follow Berglund ando8erholm (2006) who present a
learning curve formula without explicitly modeling the initially installed capacity.tferon, we

add an additional terra defining the initial investment costs when the cumulative capital stock is
zero, as done in Hartley et al. (2010). The new learning curve thels Bsa

G =Co(K+€)C.

The cumulative capacity in our model approach is reflected by the capitl Isgdt). Applying
this on the cost function of the model approach presented in Chapter 8 theldew cost function

G = Is(t) (b+cls(t)) (Ks(t) +&) 7.
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This specification further implies that a rapid increase in the renewablgyenapital stock is
costly, which is relevant for the speed of the economy’s shift to renlewetergy generation (cf.
Rasmussen, 2001).

The extended version of the model (2.2) then reads as

max /o et (— Ig(t)(b+ cls(t)> (Kg(t)+s> - pFEp(t)>dt (3.1)
st Ks(t) = Is(t) — dsKs(t), (3.1a)
Er (t) + Es(Ks(t),t) —E >0, (3.1b)
Es(Ks(t),t) = (vsiré(tm) + 1)Ks(t)n, (3.1c)
Er(t),Is(t) > 0. (3.1d)
3.2 Solution

3.2.1 Canonical System and Necessary First Order Conditian

As for the model in the previous approach we use the maximum principle foitenfime horizon
problems (cf. Grass et al., 2008) and consider the Lagrangian

Z(Ks,Er,Is,A, Ao, U1, ta, H3,t) = Ao (—(bls(t) +cls(t)®) (Ks(t) + €)@ — prEr (1))
+A () (Is(t) — BsKs(t)) + pa (t) (Er (1) + (VSir?(tm) + T)Ks(t)n — E) + pia(t)Er (1) + pa(t) s(b),

with A (t) € R being, again, a continuous and piecewise continuously differentiabi¢idarand
a constanig > 0, so that for alt >0

(A0, A(1)) # O,
L(KS,EE,1S,A, Ao, L, Ho, U3, t) = Epiﬂﬁﬁgg('(g’&"S’A’)‘O’“l’“z’“3’t)’
and satisfying the limiting transversality condition in (2.8). As befqug(t), ux(t), and us(t)
are the piecewise continuous Lagrange multipliers for the mixed-path ciostrg3.1b) and
the non-negativity constraints, respectively. As the only differen¢edmn this model and the
one in Chapter 2 lies within the objective function, we have to consider the samglementary
slackness conditions as in (2.3)-(2.5), and also Proposition 1 still holelsce{ we can set for the
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following A = 1 without loss of generality. The necessary first order conditions #exhas

(;jg) = —b(Ks(t) +&)"9 — 2clg(t) (Ks(t) + €)@ + A (t) + ps(t) = 0 (3.2)
o lg(t) = (Ks(t) +£)"(/\Zit) +Hs(t) —b
A = A@)r— % — (1 4 85)A (t) — a (b+ cls(t)ls(t) (Ks(t) +-£) a1
—pa(t)n (vsirf(tm) +1). (3.3)

Note that in this model approach only the necessary but not the suffmewlitions are con-
sidered to be satisfied as the satisfaction of the sufficient conditions tca@m@nerally proven.
Consequently, the solutions that we can find are basically extremal buegessarily optimal.
Nevertheless, based on the economic interpretation of these solutionsarudrtharability to the
results of Chapter 2, it makes sense to assume that they are in fact opbmalto the linearity of
the Lagrangian ife (t), the optimal fossil energy amount is determined by the switching function

0%
OEg(t)

= —pr + Ha(t) + p2(t).

As the changed costs for renewable energy capital do not affeatdbit €osts in the objective
function, Proposition 2 also applies for this approach and, therefarenly focus on the three
boundary cases of the feasible domain, given by the fossil case witlvestinents in renewable
energy capital, the mixed case where both types of energy are used tmrage, and finally the
renewable case where no more fossil energy is needed in addition tealgieeenergy. Inserting
the corresponding values for the Lagrange multipliers yields the threeafiffeanonical systems.

For the fossil case, it is given by

)\(t) = )\(t)(r+65)—ppn(vsinz(tn)Jrr), (3.5)

INote, however, that(% = —2c(Ks(t) + €)% < 0 holds and, consequently, the Lagrangian is at least strictly

concave with respect tig(t) and the first order condition (3.2) indeed delivers a maximum.



for the mixed case by

Ke(t) = A (t)(Ks<t2)C+ £)"—b SKs(t). 36
A (t)=a(Ks(t) + 8)_a_l< b? — (KS(t)L;; E)ZUA (t)z) —PEN (V Sinz(tr[)—{—'[) +A(t)(r+0s), (3.7)

and for the renewable case by
Koty = AMOKSWTETZD 5, (3.8)

2C

At) = a(Ks(t)+g) ot <b2 — (Ks(t) +£)2*A(t)?

4c

> FAQ)(r + ). (3.9)

3.2.2 Periodic Solution

To find the periodic solutions of this model, we first calculate the instantaresplilibrium points,
{KEP(t),A'EP(t)}. In contrast to Chapter 2, they cannot be calculated analytically for this ap
proach. We therefore use the numerical results as starting solution footinelary value problem
that has to be solved for the calculation of a periodic solution consistingeo&nmn Denoting the
canonical system generally as

Ks(t) = £5s(t,Ks(t), A (1), pa(t)),
A(t) = FA(t,Ks(t), A (1), pa(t)),

this boundary value problem reads as

Ks(t) = fS(t,Ks(t),A (1), pa(t)),  with Ks(0) = Ks(1),
A(t) = FA(t,Ks(t), A (1), pa(t)), with A (0) = A (1).

Note that in contrast to the approach in Chaptex @) here also depends on the stitst).

For the calculation of a periodic solution consisting of several arcs, weheslinear time
transformationT (s) of (2.28) and solve foi =1,...,n+1, j=1,...,n, s€ [i — 1,i], and the
switching times as well as the boundary points,

T0:=0< <2< <Tn1 <Th <1=iTnyy,
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the multi-point boundary problem

Ks(9) = (1i—11)f5(T(9),Ks(8),Mi(S), s (1)),

() = (Ti—Ti1)f2(T(9),Ks (), Ai(S), by, (1)),
0 = (Ks(1)),2i(1))) = (Ks 1 (1)), Aj4a(T))) ,
0 = (Ks.,(1),An:1(1)) — (Ks,(0),A1(0)),
0 = c(a,a5+1),

whereg; defines again the region type, see (2.23). The conditions to guaranteentireuity of
the controls with respect to time are givenfoe 1,....,nas

 [ms@m+eoeam-b=o) [{L22u
c(aj,aj+1) = if {aj,aj11} € :
ES(KSj(Tj)aTj)_EZO {{273}7{372}}

3.2.3 Stability

As in Chapter 2, we calculate the monodromy matrix in order to analyze the dybaimwior of
the obtained periodic solutions. Determining the Jacobian matrix for the fesslyaelds

- 0
VO (e ,
0 r+ds
which is equal to the one of the model in Chapter 2 and, therefore, also thedmmmy matrix is
the same, given by

e® 0
M(1) =W = , (3.10)
0 €&+
with the eigenvalues
Gl=e®<l &H=dT5>1 (3.11)

This implies that also in the current model approach, every fossil solutaircém be found is of
saddle-type. Calculating the Jacobian matrix for the mixed and the reneveesselgields

H)+&) At Ks(t)+€)®
. _5S+ 5) U) (s(z)c«f)
t)= _a(Ks(t)+&) 2 (P(1+a)+ (0*1)(Ks(t)+€)2")\2) ®+€) A |

4c r +5S 2c
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Note that the Jacobian matrix and, therefore, also the monodromy matrix évager indepen-

dent of the periodic solutiofi(t), as it has been the case in Chapter 2. Consequently, a general
statement on the stability of the mixed and renewable periodic solutions is ngibleom this
approach.

3.2.4 Optimal Paths

The goal in this section is, again, to calculate a trajectory that starts at an ¢apighl stockKs,
and leads into the considered optimal long-run periodic solution. While in ®e2t4 we have
used a secant method where the solution has been searched orthogotiadlgecant vector, we
will here use a more established method caléabre-Penrose methodThe advantage of this
method compared to the previous one is a better tracking of the solution egpaxially if there
are strong changes in direction. Assume again that we Rasentinuation steps and therefore
have to solve at each step=1,...,N the system

0 = KI(0)-KZ, (3.12)
_ e[ (%MDY _ (Ks(0)
AN(1) A*(0)) )

as noted in equations (2.41)-(2.42). In Section 2.2.4 we already have mashtizat this system
is undetermined as we have 3 unknow&(0), A"(0), Kg), but only 2 equations and, therefore,
an additional equation is necessary. While this additional condgien= 0 has been fixed to
calculate the new starting point of the path in Section 2.2.4, the idea of the Nheom®se method
is to adapt this function at every Newton iteration along a continuation stepediitretized
system.

For simplicity, let A(x) denote the undetermined equation system in (3.12), and let
X = (Kg(t),A"(t)) be the point on the curve we are looking for at thié step of the continu-
ation process. Hence,

A(x)=0

holds. Consider now theth step of the Newton method used for searchingxhighich is given
by
AGD (X =x) = ~AX), (3.13)

where subscripts here denote the partial derivative. As the iny&ga"))~1 of such an un-
determined problem does not exist, the Moore-Penrose pseudo imeersebe used. With the
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Moore-Penrose method, however, the calculation of this matrix can besavbidadding an addi-
tional row vector to the matriRy(x"). Assume that we have the next predicted point on the curve
given by

% =X—1+hv,

whereh is the step width and is the tangent vector (possibly approximated by the secant vector),
as used for the continuation process in Section 2.2.4. If we are lookitiggf@ointx; on the curve
and in addition require that this is the nearest;tave have to solve the minimization problem

min||xi—>2i||
Xi

s.t.A(x) =0,

which is equivalent to the solution of the system

wherew; is the tangent vector at poirt. Then-th step of the Newton method then is given by
solving the extended system

AX(Xin) N+l __ N . _A(Xin)
e - ()

Ax(X) (O
(50} - (0. aso

Equation (3.14) yields a solution of (3.13) under the condition that the vbetareen two such se-
quent solution points of the Newton methd@#*! — x"), is orthogonal to the vectar’. Equation
(3.15) assures that is a tangential vector tg', and the vector produ«étrv{‘f{vv}“} =1 guarantees
that the direction along the curve is sustained and the vector is normalizedne&ecally, with
the Moore-Penrose method a solutionAgk;) = 0 is searched in a hyperplane that is orthogonal
to the previous tangent vector, calculated in each iteration step, as oseecankFigure 3.1. Note
that also here the enlarged Jacobian matrix can be inverted and hehdednaing is no problem
neither. For more details on this method see Allgower and Georg (1997)tzoabp et al. (2006).
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W l'j

Figure 3.1: One continuation step with Moore-Penrose method (cf. Dhaade 2006).
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3.3 Results

We start the following analysis by setting the parameters as in Table 3.1.thastto the results of

Interpretation Parameter| Value || Interpretation Parameter| Value
Investment costs b 0.6 || Depreciation rate Os 0.03
Adjustment costs c 0.3 || Initial investment costs £ 1
Energy demand E 2000 || Degree of efficiency n 0.2
Fossil energy price Pe 0.051 || Maximal radiation increment v 4.56
Discount rate r 0.04 || Minimal radiation in winter T 0.79
LD* coefficient a 0.25

... learning by doing

Table 3.1: Parameter values used for the numerical analysis.

Chapter 2, in this approach we can find even multiple periodic solutions fautinent parameter
values . One of them corresponds to the fossil case with zero investrg@gntsnd a fossil energy
amountEg (t) = E. Two other ones correspond to the mixed case with both controls greater tha
zero, where one is with high investment and therefore a high capital stactha second one is
with lower investments and a lower capital stock close to the fossil perioditiaalu

As we have shown analytically in equations (3.10) and (3.11), the fodsti@ois always of
saddle-type. To investigate the stability of the other two mixed solutions, welatddhe eigen-
values of the monodromy matrix, which shows that the lower mixed solution isstahla focus,
while the higher one is also of saddle-type. The solutions are shown ineg=&yRrand, together
with the corresponding eigenvalues, are summarized in Table 3.2. The tmrelquaths as well
as the time-state paths for the two periodic solutions being of saddle-typlecava 81 more detail
in Figure 3.3, where Figure 3.3a corresponds to the fossil energy afBp(nf Figure 3.3b to the
renewable energy investmenggt), and Figure 3.3c to the renewable energy capital skagk).
Note that, also here, the capital stock is slightly fluctuating over the year, simithe results
obtained in Chapter 2. In fact, forgetting by not doing already occurisiglthese fluctuations as
maintenance investments are slightly insufficient in the short-term. Howevéirese fluctuations
are really small, this forgetting process is negligibly small as well.

Summing up, we have two periodic solutions of saddle-type whose aredtaiftian are
probably separated by an indifference threshold point induced byristahie focus in-between.
Indifference threshold points are points in the state space at which the leatling into two
different optimal long-run solutions have the same objective value. Tdrereat these points one
is indifferent between these solutions. Indifference threshold poiatsanetimes also referred to
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as DNSS points and originate from Skiba (1978), Sethi (1977, 19bhé&rt (1983) and Dechert
and Nishimura (1983). For more details on indifference threshold poietailse Grass et al.
(2008), Kiseleva and Wagener (2010), and Kiseleva (2011).

1
0.9 High mixed .
(saddle)
0.8 .
L . 0.93 |
0.7 Low mixed
n I 0.92
0.6- (unstable) |
. 0.07 0.91
X 05+ i
2 0.065 30.674 30.678
0.4 0.06 1
0.3l 0.055 |
2.08 2.082
0.2F .
0.1- .
o ¥—— Fossil (saddle) .
| | | | | | |
0 5 10 15 20 25 30
Ks(t)

Figure 3.2: The three detected periodic solutions for a fossil energg prie- 0.051 in the state-
control space.

Solution K&(0) E£(0) 15(0) Eigenvalues | Objective function (in 18)

Fossil 0.0000 | 2000.00| 0.0000| {0.9704, 1.0725 -2.4500

Low mixed 2.0797 | 1999.67| 0.0623| {1.0182+0.0645i, -2.4491
1.0182-0.0645;

High mixed || 30.6739| 1995.15| 0.9201| {0.9827, 1.059}1 -2.4351

Table 3.2: Multiple periodic solutions fqsr = 0.051.

3.3.1 Calculation of the Indifference Threshold Point

Whether such an indifference threshold point exists or one of the tviodiesolutions of saddle-
type is dominant, therefore has to be analyzed. While this can rather eaddypbdéor autonomous
optimal control models, the approach for non-autonomous control modeldtie bit different.
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Figure 3.3: Time-control paths for the two detected periodic solutions aflsdype for a fossil
energy pricepr = 0.051 in(a) fossil energyEr (t), and(b) renewable energy investmengst), as
well as the time-state paths (o) renewable energy capitik(t).
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Let
H(x(t),u(t), A (t)) = F(x(t),u(t)) + A () f (x(t), u(t))

generally define the current value Hamiltonian of an autonomous optimalotontdel with
infinite horizon where(t) are the statesy(t) are the controls) (t) are the costates;(-,-) is the

instantaneous objective function ahd, -) describes the dynamics. Assume that all the necessary

regularity conditions for applying the maximum principle are satisfied, whiettlag continuity
of the objective function and the dynamics with respect to the controls and toatitheheir
continuous differentiability with respect to the states. Let furtQedefine the feasible domain,
and let

HO(x(t),A (1)) = maxH (x(t),u(t),A(t))

ueQ
denote the maximized Hamiltonian. Then, for each trajectory for which thésesexcontinuous
A(t) so that

)\(t):r/\—?j( and  H(X*(t),u"(t), A (t)) = maxH (x"(t),u(t), A (t))

ueQ

are satisfied along with the condition

lim e " HO(x(t),A (1)) = 0,

t—o0
the value of the objective function is given by

/0 e (x(t), u(t))dt = %HO(X(O),)\ (0)). (3.16)

For more details on this see Feichtinger and Hartl (1986). The prooffvidhilso given there, is
built up on the aspect th;%},(j = %—T +rAf =rAf asthe partial derivative of the Hamiltonian with
respect to time is zero for autonomous problems, and that along each trajectory thatesatiei
optimality conditions, the values &f andH® coincide.

For a non-autonomous problem, however, the relation in (3.16) doesoftbah the partial
derivative of the Hamiltonian with respect to time is non-zero. Consequaatkich relation can
be found, and in order to get the objective values for a given traject@yhave to calculate it
along the whole path. To do so, we therefore introduce an additionatatitial equation to the
canonical system, which is given by

) =e <—Is(t) <b+cls(t)) (Ks(t) +g) peEr (t)> ., withc(0)=0,  (3.17)
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and include it into the boundary value problem for the continuation prodésslast valueg(T,),
whereT, is the truncation time of the path, yields the objective value. However, as tlyisson
the objective value for the time intervdl, Tp], we further on have to add the weighted remaining
tail of the periodic solution fofTp, ). If Fy(t) is the objective value evaluated along the path at
each point of time, c(t) is the accumulated objective value along the path given by the solution
of the differential equation in (3.17) d0,t], andFye((t) is the objective value along the periodic
solution at each point of timi the total objective valu@V is given by

)
oV = /0 "e M Eyt)dt+ [ & " Fper(t)dt =
p
Tp+i+1

= c(Tp) +Z;/ & " Fper(t)dt =
Tp+i

= o(Ty) + e‘r<Tp+‘)/ e M Fpe(t)dt =
(Tp) i; A per(t)

=Cper

= C(Tp) + eﬁer %eﬁrl Cper =
i=

e—er
= c(Tp)+ = Cper. (3.18)

Hence, we have to add the second term in (3.18) to the so far calculatedivabjealues of the
paths. While for autonomous problems it would be sufficient to evaluate)(alé6g the paths
of the last continuation step and compare these objective function valuesdeinto see whether
an indifference threshold point occurs or one periodic solution is dorpitiaem comparison of
the objective function values for non-autonomous problems is not time imtarfderefore, the
objective values at the truncation time of the paths at each continuation stiye frurrent initial

state value have to be considered.

If both periodic solutions are not dominant, an indifference thresholdt pais to exist in-
between separating the areas of attraction. To investigate this, we contintegebtories of both
periodic solutions to each other as far as possible until one of the sudge®joases occurs:

1. The continuation process aborts as the path reaches another lyoiritlarfeasible domain;
2. the path is bending back;

3. the other periodic solution is reached.
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The results of these continuations can be seen in Figure 3.4a. The pétigsidthe high mixed
periodic solution is bending back while the one starting at the fossil periotlitign gets infea-
sible at some point. Here, the path can be continued into the mixed case. étptinw further
continuation is not necessary in the current case as there occudyarsafficiently large overlap

in the stateKs for the "pure paths” (i.e. paths lying completely within the same boundary of the
feasible domain as the periodic solution to which they lead). The next steltthérindifference
threshold point is to compare the objective function values along the two. gaghshe two peri-
odic solutions of our model approach these final objective value careeshown in Figure 3.4b.
The intersection yields the indifference threshold point, which for theeatiparameter set lies at
KEP =1.6477.

3.3.2 Economic Interpretation of the Indifference ThresholdPoint

The occurrence of an indifference threshold point is an importanttresthis analysis and is a
consequence of the model extension with learning by doing. While in thefirdel considered in
Chapter 2 the optimal long-run periodic solution only depends on the ¢dossil energy price,
it here also depends on the initial capital stock at which the optimization mostarted.

Figure 3.5 shows how the indifference threshold point separates thg afrattraction of the
mixed and the fossil periodic solution. If the initial capital stock lies exactly enitidifference
threshold poinK{ P, the paths to both periodic solutions are equally expensive. Consequently
the decision maker is indifferent between increasing investmig(tisand moving towards the
mixed periodic solution with a higher capital stock and a lower fossil enemguat during the
summer period on the one hand, and stopping investments and moving toveafossihperiodic
solution on the other hand. If the initial capital stock is higher than the indifies threshold point
KLTP, it is optimal to move up towards the mixed periodic solution and, if it is lower, tisifo
periodic solution is optimal. The reason for this change lies within the learniriping effect. If
the initial capital stock is high enough, the reduction of the investment costtodhe learning-
by-doing effect can compensate for the cost of additional capitahagiation, and therefore it is
optimal to increase the capital stock which even reinforces this effectuglthat a decreasing rate.
If, however, the initial capital stock is low, the learning-by-doing effetthe investment costs
is too weak to sufficiently reduce the high costs. Therefore, it is profitatdeduce investments
and hence the capital stock while increasing the share of fossil enatdyfinally, the fossil
optimal periodic solution is reached and the whole demand is covered L dossgy in the
long run. Note that along this path forgetting by not doing occurs. As nibduinvestments
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(a) Overlap of trajectories leading into the two periodic solutigb3 Indifference threshold point:
Intersection of the objective function values.
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are made, the accumulation of new capital but also the maintenance of exegpite) stops and,
hence, the capital stock decreases. Simultaneously, due to forgettingdiyimg investment costs
increase again until, finally, at the fossil solution they are as high as fomplete start-up with
renewable energy. The occurring separation of the areas of attrdefi@mdent on the initial state
is also known as history dependence, as the optimal long-run perioditogsols determined by
the accumulation effort of renewable energy capital in the past.

0.9r
0.8
0.7r
0.6
= 051

0.4

0.3

0.2r

0.1

1
: Indifference Treshold Point

o

| Fossil

0 pITP _ 10 15 20 25 30
KITP = 1.6447 st

Figure 3.5: Indifference threshold point and the separated areasaiftin of the two periodic
solutions for a fossil energy prigg- = 0.051.

This result points out the difficulty of introducing a new energy technolotyy ine market.
While conventional energy types are already competitive and have lowspdige to the high
experience accumulated over years, the investment costs for new legibsare very high. As
no experience exists at the beginning, these high investment cost waeltihze paid over some
period of time during which the new technology definitely is not profitable, dintlly at least
some reduction due to accumulated experience is achieved. This aspedings the importance
of subsidies and other kind of financial support that is necessaiggdtite start-up period to
help new technologies getting over this barrier. In our model approduireano such subsidies
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are included, it therefore would never be optimal to start with the reneveat@egy technology
from the very beginning. If no experience exists to reduce the initially highstment costs,
fossil energy is always less cost intensive and, as no further testdgare included such as GO
performance standards, no switch to a cleaner energy technology wapieen. Only, if there
is already a sulfficiently high level of experience when optimization is staueitier investments
are profitable.

3.3.3 Break-Even Analysis

Figure 1.1 has shown how the investment costs of a new technology sleaea to the effect
of learning by doing. As accumulated experience improves the necgasagsses and hence
reduces the financial effort, the technology gets more profitable. Howdwan take a long
time until full competitiveness with the conventional technology is achievedshwiappens at the
so-called break-even point.

To analyze the extent of the learning-by-doing effect on the investrmasts én our model
approach, we compare the costs of renewable energy generation witlssi@nergy priceor by
calculating the investment costs per unit of generated renewable enethg following referred
to as unit investment costs) at timelong the path leading into the optimal long-run periodic

solution, given by the term
(blg(t) +clg(t)?) (K(t) +&)
(vsir?(tm) + T)K§(t)n

(3.19)

K&(t) andl4(t) are the state and the corresponding investments along the optimal path le&aling in
the optimal long-run periodic solution. The results can be seen in FigureA3.he generation
of renewable energy occurs in the denominator of Equation (3.19) aciidhes in time along
with the available global radiation, the unit investment costs also vary overettied. However,
a clearly decreasing tendency can be observed as soon as capitalnsuéated. The black hori-
zontal line in Figure 3.6 shows the fossil energy pnige At the beginning of the path, the unit
investment costs are very high. Especially in winter they are almost the eightffthe fossil en-
ergy pricepg. The reasons for this are the initially high investment costs of the renewadigye
technology together with the low initial capital stock and hence the low amouggradrated re-
newable energy. In summer, however, one can see that the unit invéstietnare lower as global
radiation is high and therefore more renewable energy is generatgdeafty along the path even
the fossil energy price level is reached during summer. As the pathgascevestments accu-
mulate new capital and therefore the learning-by-doing effect as wtlleagenerated renewable
energy increase. This leads to declining unit investment costs both in wirdesuanmer and also
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the margin between them decreases until finally the optimal long-run perialdiios is reached.
Here, the unit investment costs in summer are already far below the fosgilygorice level while
in winter they are still above it. However, over the whole year the benefiteoportfolio mixture
is high enough to let the combination of fossil and renewable energy be dptima
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Figure 3.6: Investment costs per unit of generated renewable eneryy the path leading into
the mixed optimal long-run periodic solution for a fossil energy ppee= 0.051.
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3.4 Sensitivity Analysis

The analysis of the previous section has shown that the learning-byg-effect can imply history
dependence of the optimal long-run periodic solution. The driving féocehis dependence is
given by the cost-effectiveness of renewable energy generatiomaesipiect to conventional energy
technologies. However, there are several factors beyond histogpéhl accumulation activities
that influence this cost-effectiveness. First of all, of course, theilfesergy pricepg plays a
major role, reflecting the economic performance of the fossil technolagihér on, it is essential
how strong the cost decreasing influence of the learning-by-doiegté$f on the investment costs
of renewable energy. Besides that, also the performance of the releegreergy generation is
important which is determined for example by site-specific factors such asigpy of global
radiation. To analyze how the obtained results of the previous sectiogehamen these factors
vary, we conduct in this section a sensitivity analysis with respect to tisd &ogergy pricepg, the
learning-by-doing coefficientr, and different sets of the parameterand v that determine the
site-specific global radiation intensity.

3.4.1 Fossil Energy Pricepr

In the first step, we focus on the influence of the fossil energy pricéheroptimal portfolio
composition. Similar to the analysis in Section 2.4 we will use numerical continuatibmegpect

to the fossil energy priceg to investigate how the results change when fossil energy gets more
expensive. We start with considering the calculation of the indiffererrestiold point for a fossil
energy pricepe < 0.051, as at this price some interesting aspects occur.

Calculation of the Indifference Threshold Point for pr < 0.051

For pr = 0.05, Figure 3.7a shows the longest possible continuation of the paths leattirtbe
fossil and the mixed periodic solutions, respectively, both lying completeth@rorresponding
boundary of the feasible domain. Also here, an overlap can be fouodevér, considering the
objective function values within this interval as shown in Figure 3.7b, onesea that here no
intersection occurs. Consequently, the pure fossil path has to be cahfumther along the mixed
feasible boundary to obtain the indifference threshold point.

As the continuation process has been aborted because the path gaibliefessolution path
consisting of several arcs has to be calculated. Assume agaiN tattinuation steps are nec-
essary in order to get a path starting at the initial capital skagkand leading into the periodic
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solution. Then, at each step=1,...,N, the number of necessary arcs are defined by the num-
ber of violations of the feasible boundary conditions along the pathlla#note the number of
necessary arcs for threth continuation step and let

:=0<T << - <7 ;<1=7]

be again the switching times. Similar to Section 2.2.2 where we have searchedbfay-term
optimal periodic solution consisting of several arcs, also here the multisartan is defined by
a boundary value problem that guarantees the continuity of the solution egiffect to time at
each switch. While we required in Section 2.2.2 that the starting and the entdcpainide in
order to get a solution that is periodic, we here have to assure that ttiegstasint and the end
point are equal to the current initial capital stdtk and the starting point of the periodic solution,
respectively. We use again the following index,

1, for the fossil region
8 = { 2, for the mixed region
3, for the renewable regign
in order to distinguish between the three different boundary cases ¢éadkédle domain. Also
here only switches between neighboring regions are feasible. As faathiguation we first have

to transform the intervgD, Ty] to [0, 1] with Ty, being the truncation time of the path, and then to
[i —1,i] foreach ard = 1,...,1,, we combine the time transformations of (2.28) and (2.40) to

T(s)=Tpo((i—T—1)(sS—1)+T). (3.20)

Then, at each continuation step=1,...,N, a path is searched that consistdpércs and that
solves fori =1,...,I,and forj =1,...,1,— 1 the boundary value problem

Ks(s) = To(ti—Ti-1) (T (9),Kg(8), Ai(S), Ha (1)), (3.21)
Ai(s) = To(ti—Tii1)fa(T(s),Ks(),Ai(s), (1)), (3.22)
0 = Kg(1))—Kg,, (1)), (3.23)
0 = AMT)-Ala(T), (3.24)
0 = c(aj,aj+1), (3.25)
0 = K2(0)—K&, (3.26)
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o _ F,<<Kgn<1>>_<r<§<0>>>7 (3.27)
A ) \Ao

where{Ks (s), }\i(s)} are the corresponding dynamics of the canonical system for thieasat
(3.25) guarantees again the continuity of the controls with respect to time,

c(a).ai,1) = (Ksy (1) +)7Aj(1j) ~b=0] _ I ray 2|
P BstKs (1), 1) —E =0 T 2332

Figure 3.8a shows the obtained path ppr= 0.05 that consists of three arcs, so hkre= 3.
The gray line shows the pure fossil path lying completely at the fossil fiealsdundary, where
no investments for renewable energy capital are made and the wholg deengnd is covered by
fossil energy in the long run. As(t) = 2.432, however, the corresponding Lagrange multigliger
gets negative and hence the fossil path is no longer feasible. Hergyitble Bappens to the mixed
arc with positive investments in renewable energy and the demand coweeethixed portfolio
of the two available energy types. This arc can be seen as black line ireEgla. However, very
soon ag(t) = 2.455, the investmentg(t) gets zero again and a switch back to the fossil feasible
boundary is necessary. Calculating the objective function values foettésded continuation of
the fossil path finally leads to an intersection with the objective function vdltieeanixed-path
and hence to an indifference threshold p&§t® = 2.4601, as one can see in Figure 3.8b.

The resulting phase portrait can be seen in Figure 3.9, where the iediffethreshold point
separates the areas of attraction of the two periodic solutions. Comparingeshis with the
phase portrait in Figure 3.5, one can see that a slight reduction in tHedoesgy pricepr has
induced a shift of the indifference threshold point to the right. Conggfyu¢he historical capital
accumulation effort has to be higher in order to make further investmentsenéwvable energy
capital worthwhile. Otherwise, the cost reducing impact of the learnindeyg effect is to weak
to make renewable energy profitable in the portfolio and, hence, the whelgyedemand is
covered by fossil energy in the long run.

While we had only one long-term optimal periodic solution in Section 2.4 andftrerealcu-
lated the solutions for different fossil energy prices separately irr dod@nalyze the impact of a
changing fossil energy prige- on the optimal portfolio composition, we here will use numerical
continuation to get all initial points of the periodic solutions as a curvg-in
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The goal is to find, for each fossil energy pripe, periodic solutions™ (t) = (K&(t),A*(t))
with period length 1, for which it holds that

A*(0)=A7(2).
Hence, for each parametpg the boundary value problem

Ks(t) = T5S(t, Ks(t), A (1), ps(t)),
At) = FA(t,Ks(t), A (t), (1)),
K$(0) —K&(1) =0,
A*(0)—A*(1) =0,

would have to be solved. Instead, however, we transform this bournddurg problem into a
finite-dimensional equation system.

We consider for this a sufficiently differentiable perturbation of the lgpiir differential
canonical system, in the following again generally denotex-ad (t, x), which is given by

=F(p,t,x), (3.28)
wherep € R is some parameter arkdis defined as
F:RxRxR": (pt,x)— F(p,t,X),

with
F(O,t,x) = f(t,x) and F(p,t+1,x)=F(p,t,x).

Let P (p,x) denote the Poincarmap of the perturbed system in (3.28), then regardless of the
specific form of (3.28) the Poindamap is a monotone map. Hence, to study local bifurcations of
a solutiong(t, 0,Xp) of a 1-periodic system = f(t,x), a fixed point of the PoincérmapP (p, x)

in the neighborhood afg for sufficiently small values of the parametehas to be found (Hale
and Kogak, 1991). To do so, we use a single shooting methodgl(&0,%o) be the solution of
(3.28) at timet with the initial pointxy. Such a solution should be numerically computable by
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using some ordinary differential equation (ODE)-solver. Then, thatgusystem

has to be solved which can be done by a Newton-like method. If the periollitom has no
eigenvalue equal to 1 and the hyperplane with the starting values is a trealsu®ss-section to
the periodic solution, the Newton iterations converge to the periodic solutraanfosufficiently
close approximation. In other words, this method is searching for a poitttismyperplane
that is a fixed point of the corresponding Poiricarap, as shown in Figure 3.10 whégeandL
denote the periodic orbits, respectively. For further details on this met®Hgznetsov (1998).

Figure 3.10: Shooting method to locate periodic solutions.

Bifurcation Analysis

We now continue the obtained periodic solutions along pheaxis and investigate how they
change. Note that we always consider in the following the bifurcation o€dmenical system,
not of the optimal system. Therefore, also the changes in the unstabldl @s\tree dominated
periodic solutions are shown. The results can be seen in Figure 3.1fle theestarting points
Ks(0) of the periodic solutions are plotted as gray line for the fossil solution aitbak line for
the mixed solutions. If the fossil energy price is very low, the optimal longperiodic solution
is given by the fossil periodic solution as the investment costs into renewabhgy capital are
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so high that they are not profitable and hence no investments at all areamdtige whole energy
demand is covered only with fossil energy in the long run.

70 ) : iy
' Areasof | Mixed solution
| attraction are ' is dominant
601 . separated |
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s l |
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Figure 3.11: Bifurcation diagram of the canonical system with respecietéotsil energy price
pr < 0.07.

Starting at a fossil energy prigg = 0.0446, there exist also the two mixed periodic solutions,
where the lower one is unstable and the upper one is of saddle-type.r8dsed attraction of
the fossil and the upper mixed periodic solutions are separated by iedifferthreshold points
summarized in the indifference threshold curve plotted as black dotted lintheAteginning, it
lies above the unstable mixed long-run solution. As fossil energy in thisstilda comparatively
cheap, the historical efforts of renewable energy capital accumulatiantb be comparably high
in order to make further investments in renewable energy capital profitélilee fossil energy
price further increases, the indifference threshold curve declinegalthe fact that renewable
energy capital investments are profitable already at a lower historiciélcapcumulation effort.
For a fossil energy price.0466< pg < 0.0501, the fossil path has to be continued to a multiple
arc solution path similar to the one in Figure 3.8a in order to obtain the indifferémeshold
point.
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At pr = 0.0501, the indifference threshold curve intersects with the unstable mixextijoe
solution. From then on, the areas of attraction are separated below tioidipaolution, and the
continuation of the fossil path to a multiple arc solution path is not necessamaue to yield the
indifference threshold point. If the fossil energy price further insesathe indifference threshold
curve declines further as investments in renewable energy capitalajéaple at a lower initial
capital stock until finally, apg = 0.0535, it coincides with the fossil periodic solution.

For a fossil energy price.0535< pr < 0.0679, still all three periodic solutions exist, but the
high mixed one dominates the fossil one, as here fossil energy alone eutb expensive to
cover the demand. Concerning the unstable mixed solution in-between thetwdip solutions
of saddle-type, it is mixed at the beginning but turns into a multi-arc solution witintixed arcs
and one fossil arc in-between pt = 0.0612, as investments decline with the fossil energy price
until they finally get zero.

As one can see in Figure 3.11, the fossil solution only exists to some spedfit €nergy
price. The reason for this is that the Lagrange multipligt) becomes negative. This can easily
be shown by considering the analytical solution of the fossil canonicaésyin (3.4)-(3.5). To-
gether with the transversality condition which we already have defined i)y {BeBfossil solution
for A (t) is given by

_PEN (412 + (r + 85)) (v +21) + (r + Ss)v(2msin(27t) — (r + Js) cog 27t )))

AWM 2(r + 3s) (412 + (r + 55)2)

(3.29)
With the Lagrange multiplier,
Ha(t) = b(Ks(t) — &)~ —A(t), (3.30)

the fossil energy price at which (3.30) is zero and therefore the pgs#l periodic solution is not
further existent, is given by

2b(r + 3s) (AT + (r + &s)?) (Ks(t) + €)@

PR = (e (T a2 (v 20) + -+ B9v(@nsin2rt) — (1 + 35)cos )

This price is a function of the stakgs(t) and timet. When the fossil energy prige: increases, the
first violation of u3(t) > 0 occurs at a peak of the periodic fluctuationd ift). This is because the
derivative of (3.30) with respect tb(t) is negative. Calculating the timigaxat which this occurs
for the first time and inserting this together wkR(tmax) = 0 into pg(-,-) yields for the current
parameter set the maximal fossil energy pipge,,, = 0.0678 until which the pure fossil periodic
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solution exits. For higher values @i a pure fossil solution is not further feasible. However, a
fossil-mixed solution still can be feasible if the part along which the Lagramgkiplier would
be negative is replaced by a mixed arc. If the fossil energy poicis further increased, however,
the interval in which a fossil arc is not feasible any more increases asamg)las soon as the
Lagrange multiplier is negative already at the minimum of the periodic fluctuaitiohét ), also
no feasible fossil-mixed solution can be found any more. For the curegabnpeter set this occurs
at prmin = 0.069. For a fossil energy prigg= > prmin, the optimal long-run periodic solution is
given by the high mixed periodic solution.

Figure 3.12 shows what happens if the fossil energy ppicéncreases even abovedd. As
renewable energy generation progressively gets profitable due tedheead investment costs by
the accumulated experience as well as compared to the more expensiveresgy, a strong
increase in renewable energy capital can be observed. Howevdrpthilknergy types are needed
over the whole period in order to cover the given energy demand.

At pr = 0.5613, renewable energy capital is so high that during summer, whenl giatia-
tion reaches its maximum, the demand even can be covered without fosgiy.eAgethis point,
the feasible boundary of the mixed case is reached and from this fossgyeprice on, a peri-
odic solution exists that consists of two mixed arcs and a renewable artwedre Along this
mixed/renewable solution, the demand over some time interval in summer is cavayduay re-
newable energy, while in winter fossil energy still is needed in addition)raady shown in in
the results of Chapter 2. If the fossil energy price raises even futtiene is still an increase in
the stock of renewable energy capital, however, obviously at a d@oge@te. The reason for this
is that the marginal benefit of an additional unit of renewable energyataeclines. Remember
the results in Chapter 2 which have shown that along the renewable asuafdoses are gener-
ated that are not used. Therefore, a further increase of the capitél anly is profitable along
the mixed arcs, where there is still potential to decrease the necessarptashdossil energy
by slightly raising renewable energy generation. But as global radiatitireaswitching times
separating the arcs gets lower, the closer they are to 0 and 1, more andemenable energy
capital would be necessary to induce this effect. In contrast to the mopiedagh in Chapter 2,
here the investment costs of renewable energy capital also decline witdwangrcapital stock
due to learning by doing, which reduces at least the financial effoithie compensation, but,
nevertheless, this saturation effect is still obvious.

Figure 3.11 further on shows that a turning point occurgrat 0.044 in the mixed solution.
To investigate how the optimal vector field changes here, we consider thiebecavior of the
monodromy matrix in what follows.
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Figure 3.12: Sensitivity analysis of the canonical system with respect ¢ssil £nergy price
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As we have already mentioned, the stability of a long-term periodic solutionuivadgnt
to the stability of the fixed point of the corresponding Poigcarap, and a periodic solution is
stable if all eigenvalues (Floquet multipliei), .. ., &, of the Jacobian of the locally defined map
P:R" — R" evaluated at the fixed point are located within the unit cirndé< 1. Hence, a local
bifurcation occurs when an eigenvalue crosses the unit circle (s#agdreithmeier, 1991).

Figure 3.13 shows the norm of the eigenvalues of each periodic soluting #ie pr-axis.

As we already have shown in Section 3.2.3, the monodromy matrix and henegémvalues of
any fossil solution in this model approach are independent of the pesotlition itself, as no
state nor costate occurs in the Jacobian matrix for this case. Hence, thesdigs of the fossil
periodic solution in Figure 3.13 shown in dark gray are constant forivgmyalues of the fossil
energy pricepr and are given by, = e %, & = &1%. As one eigenvalue lies within and the
other one outside the unit circle, which in Figure 3.13 is plotted as black mailZine, the fossil
solution is of saddle-type over its whole interval of existence.

1.08[ |
A
1.06[- — -
4 Mixed Fossil/Mixed
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c 1o4r Mixed ,
S (unstable focus)
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Figure 3.13: Norms of eigenvalues of the obtained periodic solutions fossil fenergy price
pe < 0.07.
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The probably most interesting result can be observed at the fossgyepgce pr = 0.044
where an additional pair of mixed periodic solutions occurs. This suddpeagiance of a pair
of solutions is also known a®ld-bifurcation see Grass et al. (2008). While below that price
the only periodic solution is given by the fossil one, there exist three giersmlutions beyond
this price. The eigenvalues corresponding to the upper mixed perioditosolare shown in
Figure 3.13 as black line, where again one is lying within and the other onidetite unit circle,
which specifies the solution to be of saddle-type. The lower the fossifjgpeice pg, the higher
gets the stable eigenvalue until finally, @t = 0.044, it crosses the unit circle. The lower mixed
solution whose two eigenvalues are plotted as light gray lines in Figure 3dl&amtside the unit
circle, consequently is unstable. At the beginning they are real ane tieetower mixed periodic
solution is an unstable node, but very soon they get complex and the mistedipsolution turns
into an unstable focus. Apr = 0.0612, the lower mixed periodic solution turns into a fossil-
mixed solution whose eigenvalues are shown as black dashed line. Atsdheeeigenvalues are
complex and their real parts are outside of the unit circle, which specifgesdlution as unstable
focus as well.

3.4.2 Learning-by-Doing Coefficienta

As already mentioned at the beginning of this section, not only the fossijgipeice plays an
important role for the optimal portfolio composition, but also the reducing impittie learning-
by-doing effect on the investment costs of renewable energy, whigtesrdined by the learning-
by-doing coefficientr. In the literature, many research papers can be found that investigate the
correct size of the learning-by-doing coefficient for different typétechnologies (see, for exam-
ple, McDonald and Schrattenholzer, 2001). However, opinions diratiffier. To analyze how
sensitive the optimal portfolio composition is with respect to different assungdio the learning-
by-doing coefficient, we here conduct a sensitivity analysis with réspehbe learning-by-doing
coefficienta.

For that purpose we keep the fossil energy price constait 4t0.05 and use again numerical
continuation in order to calculate the periodic solutions as well as the inditfertareshold points
if existent, for a varyinga. The results can be seen in Figure 3.14. For a learning-by-doing
coefficient ofa < 0.2068, which corresponds to a learning-by-doing rate@R < 13.35%, the
optimal long-run periodic solution is always given by the fossil periodiatsm. The reason for
this is the fact that the cost-reducing effect of learning by doing is tokueaffset the initially
high investment costs. It therefore is optimal to stop investments immediately eecthe whole
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demand with fossil energy in the long run.

For learning-by-doing coefficients > 0.2068, three periodic solutions exist of which one is
the fossil solution and the other two are the two mixed solutions where the lighés of saddle-
type and the lower one is unstable. Upate= 0.282, indifference threshold points separate again
the areas of attraction. The economic interpretation of this result is that tloeidas renewable
energy capital efforts that are necessary in order to make renewadlgyanvestments profitable,
decline with the intensity of the learning-by-doing effect, as a lower initiabwexble energy
capital stock then already is sufficient. Undil= 0.2505, which corresponds to a learning-by-
doing rate ofLDR = 15.94%, the indifference threshold curve lies beyond the unstable mixed
solution. Also here, the path leading into the fossil periodic solution has te@bénoed to a
mixed-arc path in order to get the indifference threshold point.dFor0.2505, the indifference
threshold curve lies below the unstable mixed solution and further declinesrwittil finally, at
o = 0.282 and hence at a learning-by-doing raf2R = 17.75%, it coincides with the unstable
mixed solution. For higher learning-by-doing coefficients the mixed perisaligtion dominates
the fossil one as fossil energy is too expensive to be in the portfolio Eixely.

3.4.3 Global Radiation Intensity

So far we have investigated the impact of price and learning-by-doiegtefbn the optimal port-
folio composition. However, we so far have fixed site-specific aspectserning the supply of
global radiation. Therefore, an interesting aspect on which we foctigifollowing is how the
solutions change when geographical conditions vary.

Figure 3.15 shows the different global radiation scales in Europe foyehe2007. For the
estimation of the parameter valuesaandv for the analysis so far, we have used Austrian data,
which lie quite in the middle of the scale as can be seen in Figure 3.15. Howeverould the
results of our analysis change if estimations for geological sites higher irottie or lower in the
south were used instead? To do so, we use global radiation data for Hp(Slmenario 1) as an
example of a northern site and for Athens (Scenario 2) as an exampladaitizern site, marked
as red circles in Figure 3.15 (source of data see SODA, 2014). FiglBesBows the average
daily global radiation for Hamburg and Athens from 1985-2004. Comgatiis with the basic
scenario for which we used global radiation data of Austria as shown uré-g.1a, the strong
differences immediately get obvious. While the radiation in winter in Hamburgsshes half the
one in Austria, the radiation in Athens at this time of the year is around 50%hisheummer,
the global radiation in Athens rises up to around 7 kWh/mhile in Hamburg it reaches only
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Figure 3.15: Global radiation in Europe.
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Figure 3.16:(a) Average daily global radiation in Hamburg (Scenario(b). Average daily global
radiation in Athens (Scenario 2).

around 4.3 kWh/rA Given these data, we estimate the parameter valsesl v for these two
new scenarios, respectively. The results are summarized in Table 3tBeogédth those of the
basic scenario for Austria. Further on, Figure 3.17 shows the determiftistiions for Scenario
1, Scenario 2 and the basic scenario.

T v
Basic Scenarid| 0.79 | 4.56
Scenario 1 0.21| 4.08
Scenario 2 1.35| 5.64

Table 3.3: Estimates far andv for Scenarios 1 and 2 and the basic scenario for Austria.

In order to investigate the changes in the optimal portfolio composition wherss#efic
parameters change, we conduct the same sensitivity analysis with resthexfossil energy price
Pr, as done in Section 3.4.1, and compare the different outcomes.

Sensitivity Analysis for Scenarios 1 and 2

Figure 3.18 shows the results of the sensitivity analysis for Scenariod 2,aaspectively, com-
pared to the results we have obtained for the parameters estimated for Austria

First, we focus on Scenario 1 with a less intensive supply of global radiaiige first can
observe that the qualitative behavior is the same. For a low fossil energgy pnly the fossil
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solution exists, while at a specific price level the two mixed solutions, with oimg lmstable and
the other one being of saddle-type, occur and the areas of attractisagarated by indifference
threshold points up to a certain level p. However, a look on the price axis makes clear that
remarkable changes concerning the position of the solutions occur. Wailérsh bifurcation
point at which these two additional mixed periodic solutions exists has begn-at0.0446 for
the original parameter set, this happens here at a comparably higheppre8.0609. Although
the intensity of the learning-by-doing effect is the same and thereforewdstinent costs per unit
capital decline at the same speed, the lower global radiation supply leadswerarenewable
energy generation and hence, to higher investment costs per unit ef.pblais aspect shifts the
interval, in which the mixed periodic solutions as well as the indifference hbtdscurve exist,
to the right as the fossil energy price has to be much higher in order to mekeif investments
cost-effective. Consequently, also the price level at which the high nsigkdion gets dominant
because fossil energy as single source to cover the demand is toserpeahifts to the right.
For the original parameter set this has happengs at 0.0535, while here the price level for this
bifurcation is much higher gt = 0.0739. Finally, atpr = 0.091, the optimal long-run periodic
solution is given by the high mixed periodic solution only. Furthermore, theeshith which
the high mixed periodic solution increases with the fossil energy price is loampared to the
basic scenario for Austria. The reason for this is given by the factdhatto the lower global
radiation less renewable energy can be generated and, hence, thd opienable energy capital
stock is lower at the same fossil energy price. Additionally, one can stelfiwathe interval gets
larger in which the indifference threshold curve separates the ara#isaattion of the two periodic
solutions being of saddle-type. This is because also the capital stockcht thk mixed periodic
solution starts to dominate the fossil one is reached at a comparably higkgefwergy price.

Second, we investigate Scenario 2 with a higher intensity of global radiafitsn for this
case, the qualitative outcome does not change, but again the pricedbigsrate of special interest.
While the interval, in which all three periodic solutions exist and the area eictitin is separated
by the indifference threshold curve has startepkat 0.0446 in the original set and gt = 0.0609
in Scenario 1, one can observe in Figure 3.18 that this here happesdyaditea comparably lower
price pr = 0.0328. As the supply of global radiation is higher, the investment costs per u
of power for an equal capital stock here are even lower than for ther dtvo cases. Hence,
investments into renewable energy get profitable already at a lower évesil)y price. For this
reason, also the indifference threshold curve has shifted to the lefthifhemixed solution in
Scenario 2 gets dominantpt = 0.0449, a price at which in the original set a mixed portfolio just
starts to be an alternative to the pure fossil one, not to mention Scenarierg tis possibility
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does not exist at all at this price level. Startingpat= 0.0495, the high mixed solution is the
optimal long-run periodic solution only. Here, the slope with which the high mpedodic
solution increases with the fossil energy price is higher compared to tieedoagario for Austria.
Due to the higher global radiation more renewable energy can be gaharatehence, a higher
renewable energy capital stock is profitable already at a lower fos=igjgmprice. Consequently,
the interval in which the indifference threshold curve separates the afedtraction of the two
periodic solutions being of saddle-type gets smaller because the capitalatadich the mixed
periodic solution with research starts to dominate the fossil one, is reachdalatr fossil energy
price.

Varying the intensity of the site-specific global radiation has shown somestieg aspects.
While in all three cases, the original scenario as well as the two alternaémasgos, the intensity
of the learning-by-doing effect is exactly the same, the outcomes and trssilye consequences
for political decisions are completely different. For southern countriegtiesion of renewable
energy into the portfolio happens quite early along the fossil energy axise While in the case
that the capital stock is below the indifference threshold curve, possibgdies during the start-
up period could easily help to induce the switch to the mixed portfolio in soutrmmtdes, for
the northern countries the fossil energy price first has to increasghrio make such subsidies
even reasonable. Another consequence could be that possible tefessib energy would have
to be much higher in order to induce this shift in northern countries. Buteasujply of global
radiation is lower, the profitability will never be the same as the one for the egutiountries.

3.5 Summary

In this chapter, we have investigated how accumulated experience care theé investment costs
of renewable (solar) energy capital and how different the resultbe@rsuch a learning-by-doing
aspectis included into an energy portfolio planning model. We have exd¢he@on-autonomous
optimal control model of Chapter 2 by including a one-factor log-lineamiearcurve into the
objective function so that the accumulated renewable energy capital, igrgcipposed to reflect
the collected experience, has a diminishing impact on the investment coststigating again
the impact of the fossil energy prigg on the optimal portfolio composition has shown that there
exist price intervals in which multiple periodic solutions occur, and whosasaséattraction are
separated by an indifference threshold point. Further on, it turns autitbse results are not only
sensitive with respect to the fossil energy price but also to the intensityedé#ining-by-doing
effect as well as to the geographical site conditions concerning the ghutiation.
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The occurrence of an indifference threshold point yields importareasgor the economic
interpretation of the obtained results. We have seen that whether invesintermsnewable en-
ergy capital are worthwhile or not may depend on the initial capital stocke Ouhis history
dependence, investments into renewable energy generation from yhieegeénning would never
be optimal in our approach as the initial investment costs would be too high. Véleolethe
capital stock at which such investments get worthwhile shifts even furthéiglobal radiation is
lower, as for the northern countries, or if the learning-by-doing éfeeweaker, meaning that the
learning-by-doing coefficient is assumed to be lower. One importaniusinn of these results
is that financial support in form of subsidies during the start-up petiednew technology could
play a major role for the successful introduction of this technology into théehafThe prof-
itability, however, strongly depends on the site-specific conditions. keqer in this approach
has been the driving force for the reduced investment costs. But thi the only source for
technological learning, as we already have mentioned. So far we haygetely neglected the
aspect of R&D efforts, which will be the focus of the next chapter.



CHAPTER 4

The Effect of Learning by Searching in Renewable Energy
Generation

This chapter deals with the second aspect of learning which is driveneébgpdtumulation of
knowledge due to R&D efforts. As we have already mentioned in the introduiti€hapter 1,
such learning effects can be included in form of a two-factor learnimgegswhich will be the
extension of our model in this chapter.

4.1 The Model

To additionally include the aspects of learning by searching, we introdueecad state variable
Kr(t), reflecting the stock of knowledge and described by

K(t) = Ir(t) — &RK(t).

Ir(t) are the R&D expenditures at timewhich increase the stock of knowledge and which are
introduced as third control in our model. Also here, forgetting by not doowyrs and the knowl-
edge stock depreciates over time with the depreciationdat€his loss of knowledge can also be
understood in the sense that R&D expenditures of the past gradualljnbematdated and hence
their impact declines (cf. Berglund andderholm, 2006). Incorporating the fact that knowledge
reduces the investment costs of renewable energy, the corresp@ubbgDouglas-type function
of the two-factor learning curve, as already presented in (1.2), is intlide the instantaneous
objective function given by

G = Ig(t) (b+clg(t)) (Ks(t) + 81)_01 (Kr(t) + 82)_a2 ,
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where we distinguish between anda, as the learning-by-doing and learning-by-searching co-
efficients, respectively, as well & and &, as the initial investment costs and the initial R&D
expenditures when the corresponding stock is zero. This concérm,ize, only the investment
costs for renewable energy. Further on, however, also the R&D dipess come at some cost,
which are modeled in a similar way using, also here, a linear and a quadrsttiteo,

CR&Dt =d |R(t) + eIR(t)Z,

where the latter one reflects the aspect that a rapid increase in knovidesigeensive.

To sum up, the adapted optimal control model with three controls and two statds as

—ap

max /0 Tt <— Is(t) <b+cls(t)) (Kg(t) +£1) o <KR(t) +£2>

EF (t) IS(t)> IR(t)

“IR(Y) (d+e|R(t)) ~ peEr (t)> dt (4.1)
st Ks(t) = Is(t) — sKs(t), (4.1a)
Kr(t) = Ir(t) — &RKR(t), (4.1b)

Er (t) + Es(Ks(t),t) —E >0, (4.1¢c)
Es(Ks(t),t) = (vsiré(tm) + 1)Ks(t)n, (4.1d)

Er (t)7IS(t)7IR(t) > 0. (416)

4.2 Solution

4.2.1 Canonical System and Necessary First Order Conditian

To solve the optimal control problem (4.1) we use Pontryagin’s maximumiptanéor infinite
time horizon problems (cf. Grass et al., 2008) analogously to the previousl mpproaches and
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consider the Lagrangian given by

Z(Ks,Kr, Er, Is, IR, A1, A2, Ao, U, M2, p3, 1) =

2o (—(bls(t) +cls(t)?)(Ks(t) + &)~ (Kr(t) + £2) % — (dIr(t) + elr(t)?) — peEe (1))
+A1(Is(t) — BsKs(t)) + A2(Ir(t) — SRKR(1)) + pa(Er (t) + (VSir? (t7r) + T)Ks(t)n — E)
+H2(t)Er (1) + usls(t) + Ha(t)Ir().

Note that as of here, we will often omit the time argumieifihecessary for the readability of the
expressions. In this approach we have two costaigs), andA,(t), both assumed to be continuous
and piecewise continuously differentiable functions, and a conagantO, so that for alt > 0

(Ao, A1(t),A2(t)) # O,
ZL(Ks, KR, EF, 15, 1R, A1, A2, Ao, H1, U2, U3, t) = max ZL(Kg, K&, Er, ls,Ir,A1,A2, Ao, H1, k2, Uz, t).
F.ls IR

We further require that the limiting transversality conditions

lim Mt)e ™t =0, (4.2)
lim Az (t)e ™t =0, (4.3)

are satisfied.us (1), p2(t), us(t), and py(t) are again the piecewise continuous Lagrange multi-
pliers for the mixed-path constraint and the non-negativity conditionpentisely, so that the
complementary slackness conditions

pa(t) (EE() +ES(KS(),t)—E) = 0 , pw(t) >0,
p(EF(t) = 0, p(t) 20,
ps(t)ls(t) = 0 , ps(t) =0,
Ha)IR(t) = 0 , pa(t) 20

hold.

Proposition 3. Without loss of generality we can skt= 1 for the subsequent analysis.
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Proof. Similar to the proof for the first model approach in Chapter 2 fpoe 0 we get the switch-
ing functions and the adjoint equations

07

) Ha(t) + piz(t),
s = M0+ (),
S = A0 s,
halt) = (1 SMa(t) — pa(t)n (vire(tm + 7).
Aa(t) = (r+3R)Az(t).

As 1 (t), Uo(t) > 0, in case of no fossil energig(t) = 0, it follows thatp; (t) = up(t) = 0. For

Er(t) > O the condition

07

EIE0) = () =0

has to hold. For both cases, this yields the solution\i¢t) as
A1(t) = A1(0)el ),
Similarly, the solution foiAz(t) is given by
Aa(t) = A(0)e R,

As the transversality conditions in (4.2)-(4.3) have to hold, the only feaisitbiel valuesA;(0) =0
andA2(0) = 0 imply thatA4(t) = A2(t) = 0 Vt. Hence, this is contradictory to the condition that
()‘07/\1(07)\2(0) # 0. L]

The necessary first order conditions then read as

0%
i —(b+2cls)(Ks+&1) " (Kr+ €2) "+ A1+ 3 =0 (4.4)
o e (Kst )™ (Kr+ )™ (A1 + Ha) —b
S 2c )
% = —d+A+m—-2ek=0 < IR—<_d+;2+u4>, (4.5)
o e
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b= (4 8h - (b4 (b (K e)® (ke e (h+ 1)) @9
%(Ks-I-gl)_al_l(KR-I-gz)az(—b+(Ks+81)01(KR+€2)02(/\1+H3))
—npa (vsiré(tm) + 1),

b = (148~ (b4 3Dt (Ks e (Ket 2% (b + ) @7)
az

20 (Ks+ &)~ (Kr+ £2)% 1 (—b+ (Ks+ &1) ™ (Kr+ &2) "2 (A1 + i3)) -

Similar to the previous model approach described in Chapter 3, also in thisaapponly the
satisfaction of the necessary and not the sufficient conditions cardbargeed, and the economic
interpretation of the obtained results is used to justify the assumption that thigyfact optimaft
Due to the linearity of the Lagrangian Ee(t), also in this approach the optimal fossil energy
amount is determined by the switching function

07

FEF (D) = —Pr + Ha(t) + p2(t).

As follows from the proof of Proposition 2, also for this extended modedive this propo-
sition applies, implying that a solution lying completely in the interior of the feasiblaailo
with all three controls positive and the mixed-path constraint satisfied witlualiégican never be
optimal. The reason for this is again the possibility to reduce costs by redingrfgssil energy
amount until finally the mixed-path constraint is satisfied with equality or thél frssrgy amount
is zero. The proof for this is similar to the one of Proposition 2. We therefstinguish again
between the different boundaries of the feasible domain, but this time, haweea third control,
we have six instead of three different boundaries: fossil with and withesgarch, mixed with
and without research, and renewable with and without researchrriRgfto one of these cases,
we will in the following always mention additionally if research is included, otlisevthe already
established terms (fossil, mixed, and renewable) always mean that thejttawat research. The
canonical system is given as follows:

Ks = Ar—0dKs,
Kr = Ax—3rKg,

Lin this model approach, howeve{;‘f:(—f’;z = —20(Ks(t) + &) T (Kr(t) + €)% < 0 and%‘é{;2 = —2e < 0 holds

and, therefore, the Lagrangian is at least concave with respigt f@andIr(t) and the first order conditions (4.4) and
(4.5) indeed deliver maxima.



98

M o= (r+8)M+As+A,
Ay = (r+&R)A2+As,

where
A — (Ks+ €1)"(Kr+ &)%A1—b
1 2c )
1 az ap
Az = — b+§(—b—|—(Ks+£1) (Kr+ &2)2A1)
a
?é(Ks+£1)_al_l(KR+£2)az(—b-i-(Ks+51)al(KR+£2)azA1),
1
As = —<b+2(—b+(Ks+€1)al(KR+€2)azf\1)>
az

?C(Ks+ £1) U(Kr+ €)% (—b+ (Ks+ £1) " (Kr + £2)%2A1),

for all cases with positive investments in renewable energy capital (mixe@&dmikh research,
renewable, renewable with research). Otherwdger Az = As = 0. Further on,

. —d+A;
Az—( e >,

for all cases with research, otherwisg= 0, and finally

As= —npe(vsiré(tm +1),

for all fossil and mixed cases, both with and without research, otherijse 0.

4.2.2 Periodic Solution

Similar to the previous chapters, we calculate the instantaneous equilibriuts, gt (t), K{EP (1),
MEP(t), AJEP(1), as starting solution for the subsequent boundary value problem,

Ks= fKs(t,Ks,Kgr, A1, U3), with Ks(0) = Ks(1),
Kr = FRR(t,Kr, A2, Ha), with Kgr(0) = Kr(1),
Ay = At Ks, Kr, A1, 1, 13),  With Ay
Ao = 22(t,Ks, Kr, A1, A2, t3),  with A,
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in order to calculate candidates for the optimal long-run periodic solutioneofrtbdel. For the
calculation of periodic solutions that exist of several arcs, we solvindgai =1,...,n+1,
i=1,...,n,s€[i—1,i], together with the linear time transformatidis) of (2.28), the switching
timest; with the boundary points; = 0, 1,1 = 1, and an index

1, for the fossil region with research

2, for the mixed region with research

3, for the renewable region with research
4, for the fossil region

5, for the mixed region

k6, for the renewable regign

to distinguish between the canonical systems for the six boundary caties fefasible domain,
the multi-point boundary problem

Ks(8) = (T — Ti-1) f35(T(9), K5 (9), KR (), A1, (5), K5, (9)),
(8) = (T — Ti-1) 3 (T(5), Kr (9), A2, (8), 14y (9)),

My(8) = (T — T-1) FH(T(9), Ks (8), Kr (8), A, (9), 1 (9), i3, (9)),

M2 (8) = (11— Ti1) f22(T(5), K (9), KR (S), A1, (8), A2 (), 143 (9)),

0= (Ks; (1), Kr, (Tj), A1, (1)), A2 () — (KSJ+1 rJ KR (T5), A (T7), A2 (T5))
0= (K1 (1), KRy 1(1),A1,,4(2), Az,5 (1)) — (K (0), Kry (0), A1, (0), A2, (0)) ,

0=c(aj,aj+1)-

Note, however, that the index no longer satisfies condition (2.27) claiming that only switches
between neighboring regions are allowed, as now the third controlidiegrthe R&D investments
can be chosen independently of the current portfolio composition. Henwetat still holds is the
fact that a switch from a fossil case (with or without research) to avabke case (with or without
research) always has to happen over a mixed case (with or withoarech¥@s a direct switch is
not possible. The conditions for the continuity of the controls with respetitni® are given for
j=1,...,nas
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(Ks (1) +&1)™

(KRJ- (Tj) + &) 02

Alj('[j)—bzo

{{1.2},{4,5},{2,1},

{5,4}}
{{1,4},{2,5},{3,6},

o(8):8542) =4 2, (1)~ d =0 a8} € (4,1},{5,2},{6,3}}
{{2,3},{5,6}.{3.2},
ES(KSj(Tj>?Tj)_E:O {6>5}}
(4.9)
4.2.3 Stability

In order to investigate the stability of a periodic solutloft), we have to calculate the monodromy
matrix, as done in the previous chapters. The Jacobian matrix for thedaseiand the fossil case
with research is given by

—0s O 0 0

0 -& o0 U=
Jt) = 2 | (r),
(t) 0 0 r+& O (F(t))
0 0 0 r+d

where
0 for the fossil case

dfKr
022 Zie, for the fossil case with research

The monodromy matrix then is given by

gts 0
gt

where
for the fossil case

A 0 ’
) e R(E@2R-1)

iz for the fossil case with research
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Both monodromy matrices have the same eigenvalues given by

This implies that also in the current model approach, every fossil solutibalbo every fossil

=e%<1,

=%,

=51

s = [+0R - 1.

solution with research is of saddle-type. For all the other cases, thbidaaxplicitly depends

on the periodic solution and, therefore, a general statement on the stabiliy possible. The

Jacobian for the mixed case with research reads as

where

9

)

K K
dee 0 =0
0 N 0 (AZEed)Z
J(t) =
T TOR
JKg KR oA
A 2 2
JfKs ot al(Ks—l— El)alfl(KR—l- 82)0!2)\1
0K5 2c
AR (Ks+€1)" (Kr + &2)*
(9/\1 2c ’
dfh a1 (b?(1+ ap) + (a1 — 1) (Ks+ €1)?% (Kr+ £2)?%2A2)
JKs B 4C( Ks+ 81)a1+2(KR + 52)0!2
afM ai1d» (bz + (Ks+ 81)20’1(KR+ 82)20{2)\12)
0KR B 4—C(K5+81)a1+1(KR+€2>0’2+1
dfh f+ O o1 (Ks+ 81)0(1_1(KR+ 82)0’2)\1
dAl 2c ’
afr 102 (bz + (Ks+ 81)20'1(KR+ 82)20{2)\12)
JKs B 4C(Ks+81)al+1(KR+£2)a2+1
dfh a2 (B?(1+4 02) + (a2 — 1) (Ks+ £1)?%1 (Kr + £2)292A1)
JKR B 4C(Ks—|— E]_)fal(KR + £2)a2+2
0f)‘2 az)\l
oM - 2c(Ks+ &) (Kr+&2)1-02”

)
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4.2.4 Optimal Paths

For the calculation of trajectories that lead into a periodic solution, we use #ga Moore-
Penrose method, as also done in the previous chapter. For this appnoasver, we have an
additional state and an additional control to consider. Assume that wealgairgN continuation
steps. Then, in order to get a trajectory that starts at the initial capitalssfég Kg, }, at each
stepn=1,...,N the system

2w (Ko
o _ | |WO|_ [ ||

HEVE I PHE

M) \xo

has to be solved.

For the calculations of trajectories that consist of multiple arcs, we have &maolve in
addition the marginal conditions guaranteeing the continuity of the pathspasm8ection 3.4.1.
As the numbers of states and controls for this model approach haveethamg will once again
formulate the complete boundary value problem. ll;edlenote the number of necessary arcs for
then-th continuation step and let

H=0<T << <7 ;<1l=1],

be again the switching times as well as the two boundary points. We use theah{es) to
distinguish between the six different boundary cases of the feasibleidcana the time transfor-
mation

T(s)=Tp((Ti—Ti—1)(s—1)+T)

with Ty, being the truncation time, as we have done in Section 3.4.1 s théit— 1,i] for i =
1,...,lI5. Then, at each continuation stap=1,...,N, a path is searched that consistdpércs
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and that solves far=1,...,lI,and forj = 1,...,I,— 1 the boundary value problem

Ks(9) = To(ti—1i-1)f53(T(9),Ks(9),Kr(9):A1(8), K3 (9)), (4.10)

Kr(s) = To(Ti—Ti-1) f4*(T(9),Kr (), A2 (8), Ha(9)), (4.11)

M(8) = To(ti— i) fRH(T(8). K (9), KR (9),A1,(9) i, (9), 13 (9)),  (4.12)

Mo (s) = To(ti— T 1)T2(T(3),Ks(S), Kr (8),A1,(9), A5 (9), ks (9)), (4.13)

0 = Kg(rj)—Kg_,(T)), (4.14)

0 = Kg (1)) —Kg,(Tj), (4.15)

0 = AL(T)—AL (7)), (4.16)

0 = A3(1) -2z, (1)), (4.17)

0 = c(aj,aj+1), (4.18)

0 = K&(0)—Kg, (4.19)

0 = KB(0)—Kg, (4.20)
Kg, (1) Ks(0)

0 - F K&, (1) Kz(0) ’ (4.21)
Ag, (1) A1(0)
Az (1) A3(0)

where (4.18) are the same continuity conditions as in (4.9).

4.3 Results

In what follows, we present the results of the numerical analysis of theehiodwhich we set
the parameters as summarized in Table 4.1. Similar to the model approach intGhagde here
multiple periodic solutions can be found. For the current parameter sehtaim @ fossil solution,
a mixed solution, and a mixed solution with research. The first solution exhibitsvestments,
neither in renewable energy capital nor in R&D efforts. Hence, the whodegy demand is
covered by fossil energy in the long run. In the second periodic solutieastments in renewable
energy capital are made and, therefore, both types of energy addrutige portfolio to cover
the demand, while there are still no R&D efforts to improve the renewable gtezgnology. In
the third periodic solution, however, also R&D investments are positive amt,eh as a positive
knowledge stock reduces the investment costs, more renewable eaeital s affordable, and
therefore more renewable energy can be generated.
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Interpretation Parameter Value || Interpretation Parameter Value
Investment costs b 0.6 || LS*Z coefficient as 0.2
Adjustment costs c 0.3 || Depreciation rate oks ds 0.03
Linear research costs d 0.3 || Depreciation rate oKg OoRr 0.02
Non-linear research costs e 0.6 || Initial investment costs foKg & 1
Energy demand E 2000 || Initial research costs fdfr & 1
Fossil energy price Pr 0.047 || Degree of efficiency n 0.2
Discount rate r 0.04 || Maximal radiation increment Y 4.56
LD*1 coefficient aq 0.25 || Minimal radiation in winter T 0.79
1. ..learning by doing 2. .. learning by searching

Table 4.1: Parameter values used for the numerical analysis.

Considering the stability of the obtained periodic solutions, we already healyteally
proven in Section 4.2.3 that the fossil periodic solution always is of sagigke- For the two
other periodic solutions the numerical calculation of the monodromy matrix sthawthey are of
saddle-type as well. The mixed periodic solution, however, has only a Indioral stable mani-
fold, while the mixed periodic solution with research as well as the fossil gergmlution have a
2-dimensional manifold. The three periodic solutions are plotted in the state sp&igure 4.1,
and their state and control values together with the corresponding eigesnare summarized
in Table 4.2. Further on, the time-control and time-state paths for these thrieeip solutions
are plotted in Figure 4.2. Note that also the R&D investments as well as the stknkwfedge
slightly fluctuate over the year in accordance with the investments in renewabtgy capital
so that the slightly higher knowledge stock compensates for the slightly l@memable energy
capital stock. Moreover, also here the fluctuations in knowledge as wail enewable energy
capital already imply forgetting by not doing. But similar to the results obtainedhap@r 3, the
fluctuations are so small that this forgetting process is negligibly small as well.

Summing up, we have two periodic solutions of saddle-type with a 2-dimenstaidé man-
ifold whose areas of attraction probably are separated, induced betioglic solution of saddle-
type in-between with only a 1-dimensional manifold. In contrast to the previmadel approach,
however, this separation here is not further given by a single indiféeréhreshold point but by an
indifference threshold curve, as we have two states in the curreraagpr
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3.5 Mixed & Research 4
(saddle)
3t _ i
Mixed
o5l (saddle) 3.712 i
1
\% 2r 0 61.034  61.042
N
15l 4.061 4.064 |
1+ Fossil |
(saddle)
0.5 ]
Ok\ x | | | | | i
0 10 20 30 40 50 60
Ks(t)

Figure 4.1: The three detected periodic solutions for a fossil energy mrie- 0.047 in the state-

space.
Solution Ks(0) | Kg(0) EZ(0) 15(0) [4(0) Eigenvalues | Objective
function
Fossil 0.0000| 0.0000|| 2000.0|| 0.0000| 0.0000| {0.9704, 0.9802, -92.1448
1.0618, 1.0725
Mixed 4.0612| 0.0000| 1999.36|| 0.1218| 0.0000| {1.0618, 0.9802, -92.0806
1.0195+0.0390i,
1.0195-0.039Gi
Mixed & || 61.0341| 3.7120|| 1990.36|| 1.8309| 0.0743| {0.9513, 0.9824, -90.9825
Research 1.0941, 1.0594

Table 4.2: Multiple periodic solutions fqe = 0.047.
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Figure 4.2: Time-control paths for the three obtained periodic solutiona fossil energy price
pr = 0.047 in(a) fossil energy amourtg(t), (b) renewable energy investmenigt), and(c) re-
search investmentg(t), as well as time-state paths (d) renewable energy capit#ls(t), and
(e) knowledgeKg(t).
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4.3.1 Calculation of the Indifference Threshold Curve

An indifference threshold curve in our model approach is a curve trsitlitheKs-Kr-state space
and separates the areas of attraction of two periodic solutions in the satisetipaths having the
same initial states on the indifference threshold curve and leading into theetvealic solutions,
respectively, have the same objective values. Hence, along this auevis ondifferent between
these two periodic solutions.

In order to investigate whether an indifference threshold curve existéiyst have to find out
if any of the obtained periodic solutions is dominated. To begin with, we focuh®mixed
periodic solutions with only a 1-dimensional stable manifold. Therefore,ye tralculate a path
that starts at this periodic solution and leads into the mixed periodic solution giganeh. For
the calculation of the objective values, we enlarge again the canonitahspy introducing the
differential equation

a.

e(t)=e" (— Is(t) (b+ cls(t)> <Ks(t) + £1>701<KR(t) + 82)7 ~Ir() <d +eIR(t)) — peEr (t)),

as done in Section 3.3.1. The continuation of the path is possible and is plottéglie B.3a,

while Figure 4.3b shows the objective values along the continuation of thisquattpared to the
objective value if the decision is to stay in the mixed periodic solution. As onseanthe path
leading into the mixed periodic solution with research has a better perforraad¢ceonsequently,
the mixed periodic solution is dominated. In what follows, we will thereforerréd it as the

dominated periodic solution.

Considering the other two solutions, the fossil and the mixed one with réseaectry to
continue a path starting at one periodic solution and leading into the othes teress possible and
vice versa, until either the continuation process aborts as the path sesmihe boundary of the
feasible domain, the path is bending back, or the target value starting ahtrgperiodic solution
is reached. Figure 4.4 shows the resulting pathspfoe= 0.046. In this case, the continuation
process stops as both paths reach boundaries of the feasible domainai©see that there exist
intervals for both states where the paths overlap. Within these intervalsmgace the objective
value curves, which is illustrated in Figures 4.5a and 4.5b. As it turns onig oithe two periodic
solutions is dominated by the other and an indifference threshold pointpeduich is determined
by the intersection of these two curves. Given this first indifferencestimie point, the goal is
to continue the indifference threshold curve along one of the two stateslo o, we use this
indifference threshold point as starting solution for solving the boundane problem presented
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Figure 4.3: Dominance over the mixed periodic solution for a fossil enerigg pr = 0.047:
(a) Continued path leading from the mixed periodic solution into the mixed periodit@okyith
research(b) Comparison of the objective values.

in what follows.

Let
yit) = (K§(),Kx(t),AL(t),A2(1), te[0,Tl,
y2(t) = (Ké(wvKFZE(t)v)‘J?(t)v)‘ZZ(t))’ te [07Tp2 s

define the fossil path and the mixed-path with research, respectivalindgiato the correspond-
ing periodic solution and starting at the first obtained indifference thiesuint. Tpl andTp2 are
the truncation times of these two paths. It holds that

0 = F(ya(Ty)—T1(0)), (4.22)
0 = F(y2(TZ) —T2(0)), (4.23)

whereR, i € {1,2}, are the orthogonal complements to the stable eigenspace, respectiddly, a
i € {1,2}, denote the periodic solutions. As both paths start at the indifferencé gogéy have
the same objective value, denoted®4(-) in the following, so

OV(y1(Ty)) = OV(y2(Tg)). (4.24)
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Figure 4.4: Overlap of trajectories leading into the two periodic solutions fossil energy price
pr = 0.047.
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Figure 4.5: Indifference threshold point for a fossil energy ppee= 0.047: Intersection of the
objective function values along tlfa) Ks-axis, (b) Kr-axis.



110

Therefore, in order to find another point on the indifference threstwtde, another pair of so-
lution paths{yi(t),y2(t)} has to be found that satisfies (4.22)-(4.24) with both having the same
initial state values. Let; (t,yi(t)) denote in general notation the canonical system for the different
regions according to the introduced index in (4B)s) be the linear time transformation of (3.20)
but this time only for two arcs sb= 1,2, let furtherT, = T|[.4,1+T|O2 be the total truncation time,
andt be the switching time between the two arcs. Further assuméthantinuation steps are
needed in order to continue the indifference threshold curve sepathérayeas of attraction of
the fossil periodic solution and the mixed periodic solution with research, itfitially reaches

the required state value. Then, at each stepl,... N, the following boundary value problem
has to be solved,

yi(s) = Tptfa(T(s),y1(9)), se[0,1], (4.25)
y2(s) = Tp(1—1)F2(T(s),¥2()), se[1,2], (4.26)
0 = yj(0 ){12} Y2(D) {1235 (4.27)
0 = OV(Y](1))-0V(y5(2)), (4.28)
0 = F{(ﬂ(l)—rl(o))» (4.29)
0 = F3(y2(2)—T2(0)), (4.30)
0 = y’l‘(O){l}—Kg), or 0=V{(0 ){2} (4.31)

The subscripts iq.} refer to the coordinates of the patk&s(t), Kr(t), A1(t), A2(t)}. As already
mentioned, the continuation takes place along one state, while the other orteuisrésstricted.
Therefore, in (4.31) both possibilities are mentioned. For more details orotiimaation of the
indifference threshold curve see Grass (2012). Numerically, thdgois solved again with the
Moore-Penrose method. Solving this for the current parameter set thieldwifference threshold
curve, shown in Figures 4.6a and 4.6b.

4.3.2 Economic Interpretation of the Indifference ThresholdCurve

Similar to the interpretation of the indifference threshold point in Chapter 8 hedee the indiffer-
ence threshold curve supplies information whether a portfolio with renevesiergy is profitable
in the long run or not, depending on the starting point. But while in Chapter i#uision has
been based only on the initial stock of renewable energy capital, it herel@fgends on the accu-
mulated stock of knowledge that contributes to the performance of retewaérgy generation
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Figure 4.6:(a) Indifference threshold curve separating the areas of attraction obsisd peri-
odic solution and the mixed and research periodic solution for a fossifjgmpeice pr = 0.047,
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in form of reduced investment costs. The indifference threshold darskown in Figures 4.6a
and 4.6b as black dashed line. If the initial states lie beyond this curve, this ntipdiethe stock
of renewable energy capital as well as the stock of knowledge are hmigh to compensate for
the initially very high investment costs of the renewable energy technolagyhence a portfolio
of both energy types is profitable in the long run in order to cover the gavemgy demand. If
they lie beneath, the available knowledge and the renewable energy stmitabre too low and,
hence, due to the still very high investment costs it is better to stop all investarghtsnly use
fossil energy in the long run to cover the given energy demand. Notaldmhere the accumula-
tion of new capital, the maintenance of already existing capital, as well as Ri&Rse$top and,
consequently, forgetting by not doing in both factors increase again tkestment costs. If one
starts exactly on the curve, one is indifferent whether to include reriewealergy in the long run
into the portfolio or not.

Further on, one can observe that a marginal reduction in the stockeMiabite energy capital
can be compensated by a marginal increase in the stock of knowledge inakepritability,
and vice versa. In the extreme case, when the initial stock of renewablgyecapital is zero,
one can see that still a portfolio with both energy types can be optimal in therlomgf the
initial stock of knowledge is high enough. Note that this is in contrast to thétsesf Chapter 3,
where it turned out that a start with renewable energy generation fremetty beginning never
can be optimal. Here, it can be optimal, postulated that at least R&D efforesdieaady been
done and the accumulated knowledge is high enough to reduce the initially égtriment costs.
This, of course, also holds the other way round. If there haveni B&D efforts so far, but the
initial stock of renewable energy capital is high enough, it still can be optioialest further in
renewable energy capital and, in addition, make R&D investments.

These results underline the fact that not only subsidies for investmentemgwable energy
capital can be helpful for the introduction of a new energy technologytlimarket, as suggested
in Chapter 3, but also subsidies for R&D efforts on this field. As investmestscfor a new
technology are very high and, hence, the competitiveness with convehtemhnologies is not
given, subsidizing R&D efforts would increase the stock of knowledgesiamultaneously decline
the investment costs a bit, until, finally, a start-up with the new technology idatotei

4.3.3 Break-Even Analysis

In order to investigate how the investment costs decline along the path leattntpénmixed
optimal long-run periodic solution with research, we next conduct a similalyais as in Sec-
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tion 3.3.3. This time, however, we have two effects that simultaneously ratiedavestment
costs of renewable energy. On the one hand, there is the learningiiy-effect which we have
considered extensively in Chapter 3. On the other hand, we have thenlgdny-searching effect
that also contributes to the cost reduction but requires additional R&Dtimes¢s. To see how
the costs change along such a path when also learning by searching dedhale consider the
investment costs per unit of generated renewable energy (unit invdstosts) given by the term

15(t) (b+clg(t)) (Kg(t) + £1) " (KR(t) + &2) "% + Ig(t) (d +elx(t))
(vsirf(tm) + T)K§(t)n

) (4.32)

along the mixed-path with research plotted in Figure 4.6.

The result can be seen in Figure 4.7. As the generation of renewablgyesezurs in the
denominator of Equation (4.32), the fluctuation in global radiation is alsccteflén the unit in-
vestment costs. At the beginning of the path, the unit investment costsrarkigk as almost no
renewable energy capital is available and also the knowledge stock isovenAs it gets obvi-
ous in theKs-Kgr-plane, along the first part of the path, the focus rather lies on accunulatio
knowledge by R&D investments although they come at some cost and caustahimicrease in
the unit investment cost function. This is because the considered leafiéngs are only with
respect to investment costs for renewable energy capital, not for R&Itef Therefore, in case
the initial point lies above the indifference threshold curve, it is alwagfitable to first increase
the knowledge stock up to a sufficiently high level to then fully utilize the leareifect for the
accumulation of renewable energy capital. This is also in accordance witthdegved aspect
that in this model approach with learning in two factors, a complete start-up aniwable en-
ergy generation can be profitable as long as already sufficient knggviedaccumulated. Due
to the learning-by-searching effect, knowledge reduces the hightinees costs, so that accu-
mulation of renewable energy capital gets profitable. From then on, aldeatmng-by-doing
effect contributes to this decline and a change in the investment regime absbeved. While
at the beginning R&D investments were dominant, they saturate along the paithvagstnents
for renewable energy capital strongly increase, until finally the bexakr point, where the unit
investment costs are equal to the fossil energy price, is reached apdtthends in the optimal
long-run periodic solution. Note, however, that the unit investment castetistay at the com-
petitive level of the fossil energy price over the whole year. Similar to tealt®in Chapter 3,
also here they lie above the fossil energy price in winter and slightly belowsitnmmer.
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4.4 Sensitivity Analysis

As the results of the previous section have shown, also in this approachatlittearning by doing
and learning by searching included into the model, history dependengesottowever, this time
the analysis was carried out not only with respect to the initially installed reilevenergy capital
but also with respected to the initial knowledge stock. Whether it is profitabiteoto further
invest in renewable energy generation in order to approach the mixiedligesolution is indicated
by the indifference threshold curve which separates the areas oftiattraclhis profitability,
of course, is strongly dependent on the competitiveness of the releeteaibnology with the
conventional one. Similar to the sensitivity analysis of the previous chajiettsis section we
also focus on the investigation of the changes in the optimal portfolio compoaitidrthe shift
of the indifference threshold curve, when the fossil energy puicehanges. Further on, we use
again the different scenarios of Section 3.4.3 to investigate the changes aptimal portfolio
composition when the global radiation intensity varies due to different gebgral conditions.

4.4.1 Fossil Energy Pricepr

Before we start with the continuation of the periodic solutions along the fessiigy price axis,
we first consider the calculation of the indifference threshold curveafslightly lower fossil
energy pricepr = 0.046, which exhibits some specialties.

Calculation of the Indifference Threshold Curve for pg = 0.046

As we have done in Section 4.3.1, we first continue the fossil path and thdpath with research

as far as possible. If we get a sufficiently large overlap so that anéutéra point of the objective
function values along the paths occurs, we can find a first indiffergmeshold point. With these
first starting solutions we solve the boundary value problem (4.25)-(#h3kYer to calculate the
corresponding indifference threshold curve, first towardik@xis and second towards thg-

axis, respectively. In both directions, however, the continuation peoaborts as one of the paths
gets infeasible. Figure 4.8a shows the Lagrange multipiealong the fossil paths starting at the
so far calculated indifference threshold curve. As one can see lihegtowards zero and hence
the path reaches the feasible boundary of the mixed case with positivénieves in renewable
energy capitals. We therefore calculate a multi-arc path by continuing the fossil path into the

2As the learning-by-searching effect is identically modeled as the leahyirtping effect, a sensitivity analysis
with respect to the learning-by-searching coefficient would not peomilv insights qualitatively. We therefore neglect
this aspect in the carried out analysis.
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mixed region. However, very soon investments get zero again and ,hemseétch back to the
fossil region happens. The complete path therefore is a multi-arc patistbog®f two fossil arcs
and one mixed arc in-between, shown as black line in Figure 4.8a. Thamgsath in the state-
control space can be seen in Figure 4.8b. During the continuation of tifeiadce threshold

x 10"
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0.015f al
8 = Mixed—>
= 0.01f S
3 ~
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Figure 4.8: Multi-arc path consisting of two fossil arcs and one mixed abetneen leading into
the fossil periodic solution for a fossil energy prige = 0.046: (a) the Lagrange multiplier along
the path(b) the path in the state-control space.

curve towards th&g-axis, the mixed-path with research gets infeasible as R&D investments get
zero, therefore the Lagrange multipligg gets positive, and hence the feasible boundary of the
mixed case is reached, as shown in Figure 4.9a. Therefore, alsodwitetahappens to the mixed
region, where still investments in renewable energy capital are madeplfutther investments

in knowledge accumulation. The resulting path consequently consists ofta&oame belonging

to the mixed case with research and the second one corresponding to tltkaabes (without
research), as shown in Figure 4.9b.

Given these new and corrected paths, the continuation of the indiffetereshold point can
be carried on. This time, however, we do not only have to consider theémaaapnditions that
guarantee the indifference along the curve, but also the marginal corsditiothe continuity of
the multi-arc paths. To demonstrate this in more detail, assume that we have tao/pairand
y2(t), consisting ofm andk arcs, respectively, and leading with the truncation time§,§ofind
TF? into the two periodic solutions, which are denoted a&) andl»(t) in what follows. Further
on, assume thatl continuation steps are needed for the calculation of the indifferencentiides
curve. Then, at each step=1,...,N, we have to consider the time transformatios) of (3.20)
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Figure 4.9: Multi-arc path consisting of a mixed arc and a mixed arc with relséeading into
the mixed periodic solution with research for a fossil energy ppice- 0.046: (a) the Lagrange
multiplier along the path(b) the path in the state-control space.

and them+ k— 1 switching times,
Tp:=0<T1 < <TM< 1 < < Tmk—1 < 1 =: Tk,

for which we have to solve fof, = Tp1+Tp2, u=1....mandv=1... Kk,

Vi, = Tp(tu—Tu-1)fa,(T(8), y1(9), seu-1.u, (4.33)
Yomw = Tp(Tmiv— Tmiv-1) fan, (T(9),¥2,,, (), s€[mM+v—1m+V], (4.34)
0 = V1,02 —Y5,., (M2, (4.35)
0 = OV(y’{m(m)) OV(ySmk(er K)), (4.36)
0 = Fiy1,(m—T1(0)), (4.37)
0 = F2’(y’2‘m+k(m+ k) —T2(0)), (4.38)
0 = yTl(O){l} — Kg), or 0= yTl(O){z} — KSO, (4.39)
0 = yi(n)-yi, (1), Vi=1...,m-1 (4.40)
0 = ygmﬂ.(rmj) —ygmﬂﬂ(rmﬂ), Vi=1,....,k—1 (4.41)
0 = c(a,a+1), Vi=1,....m-1 (4.42)
0 = c(amtjam+j+1), Vi=1,...,k—1, (4.43)
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Figure 4.10: Indifference threshold curve for a fossil energy ppice- 0.046 along which multi-
arc solution paths occur.

wherey,, andy,, denote the current arc solution ayg andy,, are the corresponding canonical
system equations, depending on the current region. Note that (4.38)}are the same conditions
as in (4.27)-(4.31), while (4.40)-(4.43) correspond to the continuitgitmms of (4.14)-(4.18).

Solving this boundary value problem for the calculated paths with multiple aetdsythe
complete indifference threshold curve that is shown in Figure 4.10. Thok plart of the indif-
ference threshold curve belongs to the region where both paths leatbrthérperiodic solutions
consist of only one arc (pure path), while along the two gray parts otteedfvo involved paths
has several arcs. To illustrate this in more detail, for each part of theenglifte threshold curve
a pair of paths is plotted in Figure 4.10.

Continuation of the Periodic Solutions along thepg-Axis

In order to continue the obtained periodic solutions alongah@xis, we use also here the single
shooting method explained in Section 3.4.1 to find a fixed point of the P&@meap of the slightly
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perturbed canonical system. Figures 4.11a and 4.11b show the restiis $tarting point&s(0)
andKy(0) of the periodic solutions, respectively. To avoid ambiguity, note that we wiikier
the changes of the indifference threshold curve separately later emslliere only on the changes
in the number and the position of the periodic solutions that can be found.

For a fossil energy prices < 0.0409 the only long-term periodic solution that exists is the
fossil one, which is of saddle-type. Here, fossil energy is so chestmtither investments into
renewable energy capital nor into R&D efforts are profitable, and hi¢ieeptimal to cover the
whole energy demand with fossil energy in the long run.

As soon aspg > 0.0409, two additional periodic solutions occur, where both correspond to
the mixed case with research and are of saddle-type, but the higheasreZdimensional sta-
ble manifold while the lower one only has a 1-dimensional one. If the fossiiggrprice further
increases, the higher mixed periodic solution with research also increagegestments in both,
renewable energy capital as well as R&D efforts, get more profitableorirast, the lower peri-
odic solution declines until finally gt = 0.0448 the investments into R&D efforts get zero and
hence a transition to a mixed periodic solution without research occurshigaso of saddle-
type with a 1-dimensional stable manifold and responsible for the tiny kink inr&igiila. This
periodic solution further decreasespp until also the investments into renewable energy capital
get zero afpr = 0.063 and a transition to a multi-arc solution with fossil and mixed arcs occurs.
Also this multi-arc solution is of saddle-type and has a 1-dimensional stableaitanif

From Figures 4.11a and 4.11b one can observe that also for this ttes-facdel, the fossil
solution is only existent up to a specific fossil energy price. Similar to the ledilon in Sec-
tion 3.4.1 we will determine this price level in what follows. As the first adjoiniagpn of this
two-factor model for the fossil case coincides with the adjoint equationeobtie-factor model
for the fossil case, the analytical solution for(t) is equal to (3.29), given by

_PEN (412 + (r + 85)?) (v +21) + (r + Ss)v(2msin(2mt) — (r + ds) cog 27t ) ))

A1(t) 2(r + ) (412 + (r + 55)2)

The equation for the Lagrange multiplier,
H3(t) = b(Ks(t) — £1) " (Kr(t) —&2) = A(t), (4.44)

shows that also here the reason for the limited existence of the fossil solsitiiven by ps(t)
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Figure 4.11: Bifurcation diagram of the canonical system with respectféssil energy price
pr < 0.08, showinga) Ks(0), (b) Kr(0).
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getting negative at some fossil energy price level, which can be calcuaated

() = 2b(r + 35) (41 + (r + 35)%) (Ks(t) + &1) " (Kr(t) + &2)
Pri) = n ((4m2 + (r 4+ 3s)?) (v +21) + (r + ds)v(2msin(2mt) — (r + ds) cog2mt)))’

which is a function ofKs(t), Kr(t), and timet. As the derivative of (4.44) with respect 4q is
negative, similar to Section 3.4.1 the first violationtef > 0 whenpg is increased occurs at a
peak of the periodic fluctuations @f. Inserting the corresponding time potptx together with
Ks(tmax) = 0 andKg(tmax) = O yields, for the current parameter spi, _ = 0.0678 until which
the fossil solution is feasible. For a higher fossil energy price, howeviossil-mixed periodic
solution still is feasible, if the part along whigh(t) gets negative is again replaced by a mixed arc.
As soon agu3(t) is already negative at the minimum of the periodic fluctuation; @f) at some
tmin, @lso this mixed-arc solution is not further feasible, which happens farsbd parameter set
atpr; . = 0.0689. For a fossil energy price even beyond this level, the only persmdition is
given by the mixed periodic solution with research being of saddle-type.

Figure 4.12 shows what happens if the fossil energy ppicéncreases even further. As re-
newable energy generation progressively gets profitable due to theegtihvestment costs by
the accumulated experience as well as the accumulated knowledge sstfan@increase both
in renewable energy capital and the knowledge stock can be obs@&tgedrtheless, both energy
types still are needed over the whole period in order to cover the givengydemand. Similar to
the results in Section 3.4.1, also here there exists a price level at whickalgleecnergy capital
is so high that during summer, when global radiation reaches its maximum, thedeaaeven
be covered without fossil energy. This here happeng=at 0.2301. At this point, the feasible
boundary of the mixed case is reached and, consequently, a optimallopg#iodic solution oc-
curs that consists of two mixed arcs and a renewable arc in-betweerg thkedlemand is covered
only by renewable energy. If the fossil energy price increasesfevtrer, still both, the renewable
energy capital stock as well as the knowledge stock, increase butushyiat a decreasing rate.
Also here, the reason for this is that the marginal benefit of an additioitadfurenewable energy
capital declines due to the generated surpluses over summer, anduaEmbealso the marginal
benefit of R&D investments decreases.
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Changes in the Indifference Threshold Curve with Respect to the &ssil Energy Pricepg

So far we have only considered how the solutions of the canonical syg$tenge with a varying
fossil energy pricepe but not how the optimal long-run solution changes. To analyze this we
first calculate the indifference threshold curves for different fassiirgy price scenarios and see
how the areas of attraction are separated, which are plotted in Figureld d&ts obvious that
for a low fossil energy price, the initial stocks of knowledge and reidsvanergy capital have to
be very high, so that the learning-by-doing and learning-by-seayaiffact are strong enough to
sufficiently reduce the investment costs in order to make further investmergisdwable energy
capital profitable at all. In these scenarios, the introduction of the rdsieveaergy technology
into the market is only possible with appropriately high financial supporétample in form of
subsidies, either for R&D investments or for investments in renewable enapital. The higher
the fossil energy price, the lower are the necessary initial stocks aflkdge and renewable
energy capital at which further investments in renewable energy gerestart to be profitable.
Consequently, a parallel shift of the indifference curve towards tiggnavccurs. At a fossil energy
price pr = 0.049, however, the mixed periodic solution with research finally gets domaraht
therefore, from here on the areas of attraction are not furtheraepar

To show these results also in 3 dimensions, we used these calculated emdiéfehreshold
curves to interpolate the indifference threshold surface for the carsidi@ssil energy price inter-
val [0.046,0.049,2 which is plotted in Figure 4.14. The black solid line shows the fossil periodic
solution, while the position of the higher mixed periodic solution can only be iteticay an ar-
row for scaling reasons. The intersection of a 2-dimensional hyperphatheKs-Kgr-space for
a specific fossil energy price with the indifference threshold surfaee ¥elds the indifference
threshold curve for this case.

Finally, looking at the rather small interval, in which an indifference cumists, we conclude
that the solution is fairly sensitive with respect to the fossil energy picim that respect.

3Note that the indifference threshold surface in fact exists on the wholesahiaf [0.04,0.049, but due to reasons
of clarity and accuracy, we only picked out this sub-interval to give &ltndav the indifference threshold surface lies
within the 3-dimensional space.
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Bifurcation Analysis

Given the previous results, we investigate again the local behavior of thedramy matrix to
see how the optimal vector field changes alongpheaxis. Figure 4.15 shows again the norms
of the eigenvalues of the obtained periodic solutions. In contrast to thgs@énisn Chapter 3, we
here have four eigenvalues for each periodic solution. According tddfieition of stability for
periodic solutions, described in Section 2.2.3, a periodic solution is of saguleif at least one
eigenvalue lies within and one outside the unit circle. As already determinedciin® 4.2.3,
every fossil solution that can be found for the current model appr@aof saddle-type. In Fig-
ure 4.15, one can see that for the fossil case indeed the norms of twvaiges are above and
two below 1. Atpr = 0.0409 again a fold-bifurcation occurs where an additional pair of mixed
periodic solutions with research appears. The higher one is of saqleay two eigenvalues lie
within and two outside the unit circle. At the bifurcation point one eigenvalosses the unit
circle. The lower mixed periodic solution with research consequently higsaot+dimensional
stable manifold, but it is still of saddle-type and is dominated, as we havealglreantioned. At

pr = 0.0448, the R&D investments of this dominated mixed periodic solution with reseatch g
zero, and hence it changes to a mixed periodic solution without reseenath also has only a
1-dimensional manifold as there are still three eigenvalues (one real@aidaf complex eigen-
values) outside and only one inside the unit circle. Note that the one insidaithwrcle coincides
with one eigenvalue of the fossil solution. This transition to another carlasystem is also the
reason for the small discontinuity in the complex eigenvalues. Finally, also ¥aetiments in
renewable energy generation of this dominated mixed periodic solutionmgedazd it turns into a
mixed/fossil solution apr = 0.063, which also has a 1-dimensional manifold and is dominated.
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4.4.2 Global Radiation Intensity

To investigate the changes in the bifurcation diagram in Figure 4.11 whentémesity of global
radiation varies, we use again the two scenarios summarized in Table 3.8 thkefirst one
corresponds to a northern country with a lower supply, and the secwntba southern country
with a higher supply, compared to the original scenario for Austria.

Figure 4.16 shows the obtained results for all three scenarios bdtl({@randKg(0). Similar
to the results in Section 3.4.3, one can see that the changes in the glob@bnaidiznsity also
here induce a shift along thg--axis, but this time in both states.

The interpretation is the following: In a northern country, where the gloddibtion intensity
is lower, less renewable energy can be generated. Therefore, g$iedoergy price at which
renewable energy generation gets a considerable alternative andequidfitable in case capital
and knowledge are sufficiently available, is higher than in the originalest®for Austria. This
induces a shift to the right and implies that in order to foster renewablgyggeneration, a higher
financial support for example in form of subsidies would be necegharyin the basic scenario.
As for this reason the slope with which both states increase with the fossijyepece is lower,
the fossil energy price interval in which the areas of attraction of the twiogie solutions are
separated, is larger than in the original scenario for Austria. In cdnfaasa southern country
where the global radiation intensity and therefore the renewable energyragion is higher, the
inclusion of renewable energy into the portfolio is a considerable alteenatready at a lower
fossil energy price than in the original scenario. This induces the shiftetéeft. Consequently,
the need for financial support is lower and the interval, in which the axeatsraction of the two
periodic solutions are separated, is smaller due to the higher slope with witftkthtes increase
with the fossil energy price.
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4.5 Summary

In addition to the effect of learning by doing we have included in this Chaipgeeffect of learning
by searching into the model by using a two-factor log-linear learning camadeadding a second
state and a third control to the considered non-autonomous optimal conttel.nite representa-
tive energy-sector decision maker therefore does not only decide émvsstments into renewable
(solar) energy capital and the fossil energy amount that is boughgléwion R&D investments
in order to accumulate knowledge and as consequently to reduce in addvigstnment costs for
renewable energy capital.

The obtained results show that again history dependence occurs dweléathing effects,
but this time not only for the renewable energy capital but also for the laume stock. We
have seen from the calculated indifference threshold curves that atlyridia renewable energy
capital can be compensated by an initially higher knowledge stock and wvisa,via order to
make further investments in both stocks profitable. Even if one of the twossiedhitially zero,
an investment policy for renewable energy generation still can be prefigablong as the other
initial stock is high enough. This is in contrast to the results of Chapter J;enheestments into
renewable energy generation from the very beginning never woulgtieal. If both investment
stocks are too low or maybe even zero, however, also in this approssihdoergy is optimal and
no further investments for renewable energy capital or R&D investmentkivbeumade. In this
case, financial support for example in form of subsidies, would playjarmale for a successful
introduction of the renewable energy technology into the market, but this titnentyw support
for investments into renewable energy capital but also for R&D effortslavbea helpful during
the start-up period of the new technology.



CHAPTER B

Discussion and Conclusion

In this thesis we have analyzed three different non-autonomous optimi@bktmodels in which
we investigate the optimal composition of a portfolio consisting of fossil andwable (solar)
energy to cover a given energy demand of a small country, given taautbply of the renewable
source is seasonally fluctuating and the considered representatigy-seetor decision maker
acts as price taker. The three model approaches differ in the aspetitevtand how learning
effects are included into the energy planning decision. While in Chaptetriaweinvestigated the
optimal composition of the portfolio under the assumption that the investmentfoostmewable
energy generation capital do not change, we have extended the m@idepiter 3 by including the
effect of learning by doing and in Chapter 4 additionally the effect ofliearby searching in order
to investigate how the portfolio composition changes and what impact the intlasiearning
effects has on the solution. For both learning effects we have usediaéaglearning curve, for
the learning-by-doing approach with one-factor, and for the learbjrgearching approach with
two factors by including into the model an additional state for knowledge siféty analysis
with respect to the fossil energy price, the efficiency of the renewaldegg technology, the
learning-by-doing coefficient, and geographical differences in tblead radiation intensity have
given insights on how the optimal portfolio composition changes and what thigesripr possible
policy decisions. As seasonal fluctuations are included into the modelsartaepn-autonomous,
and consequently the analysis of these models differs from the usudysteede analysis and
exhibits some specialties. This chapter will provide a summary of the importatibdm and
insights of the conducted investigations, considering both methodologicaélass economic
aspects.
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5.1 Methodological Aspects of Non-Autonomous Optimal Control
Models

As the canonical systems considered in this thesis are not only non-autasdbut also 1-
periodic, candidates for the optimal long-run solutions have been giwpeitiodic solutions with
a period of one year, the stability of which is reflected by the eigenvaluggahonodromy ma-
trix. In Section 2.2.3 we have introduced the equivalent but more geomedvicof the Poinca
map. Here, the first specialty of non-autonomous problems in comparisaridnoamous ones
occurs. For autonomous problems the Poi@caap is defined on a hyperplabef co-dimension
one which is orthogonal to the periodic orbit at the starting pajrind, given the Poincamap as
P:2+—— %, xpis afixed point. To get the analogous interpretation for non-autonomepes;jddic
problems,
x=f(t,x), f(t+1,x)=f(tx), (t,x)eRxR"

however, we have seen that the system first has to be transformed ir(to-1B-dimensional
autonomous system

6 = 1, (5.1)
x = f(6,%),

which lies on the cylindric manifolk = S x R" with the coordinategt(modL), x). In this space,
a 1-dimensional cross-section then can be set as

Z={(t,x) e X:t=0}.

Defining the Poinca map on this cross-section finally yields the same geometric interpretations
as in the autonomous case. The eigenvalues of the monodromy matrix themeaoinit the
eigenvalues of the Poindamap and therefore reflect the stability of the periodic solution.

Here, a second aspect can be observed that is different betwesmewous and non-auto-
nomous problems. As we have explained in Section 2.2.3, the monodromy matrig auth
tonomous case always has the trivial eigenvector 1, as perturbationgsth®periodic orbit have
eigenvalue 1. Due to the time dimension, however, this is not the case fautonemous prob-
lems. Only if the system is again transformed to the- 1)-dimensional autonomous system of
(5.1), this trivial Flogquet multiplier occurs.

In Section 3.3.1 we discussed the third specialty of non-autonomous optimediqaroblems,
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which will be pointed out next. It concerns the calculation of the objectalaes. We have seen
that for a trajectory solving a non-autonomous system, the relation for@utmrs problems given
by

e RO, udt = THx(0).A(0)),

with F(-,-) being the objective function artd® being the maximized Hamiltonian, does not hold
as the calculation of the objective values is not time-invariant for non-antons problems. In-
stead, we have added an additional differential equation for the olgedivue function to the
canonical system and solved this system for the necessary bouradaeyproblems. This aspect
of time-dependence is however not only important for the calculation oftifextive values but
also for the determination of the indifference threshold point/curve. We bagn that it is not
sufficient to compare only the objective values of the involved trajectotasyahe path of the
last continuation step, which would be sufficient for autonomous problem#stead we have to
consider the last objective values of each continuation step. Furthatsonthe ternt has to be
added to the objective value of the path[0rily], including the remaining objective values for the
periodic solution in the intervdll,, «) with T, being the truncation time of the path antieing
the discount rate. This term is given by the weighted objective value ofdhiedic solution over

one period €per),

R e T

5.2 Economic Interpretation of the Results

The results have shown that learning effects indeed have a strong impastergy planning
decisions. While for the first model in Chapter 2 without learning effectshaxge found only
one optimal long-run periodic solution, two periodic solutions occurred irséw®nd and third
model where one corresponds to the pure fossil solution and the oteép@mixed portfolio
with both fossil and renewable energy used to cover the given energamd. In the latter two
cases the areas of attraction are separated by an indifference ttrpshit/curve, respectively.
The results for the three different model approaches are summarizedblie 3.1. The induced
history dependence in Models 2 and 3 has consequences on the optigralitosolution in two
respects. First, the separation of the areas of attraction implies that tdaesmergy generation
from the very beginning never would be optimal, which means that renewaklgy would not
be included into the portfolio, if the initial renewable energy generation dagtdek is zero and,
in case of the third model if also no knowledge has been accumulated. Inages the initial
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Learning by | Learning by | Multiple periodic | Indifference threshold
doing searching solutions point/curve
Model 1 X X X X
Model 2 v X v v
Model 3 v v v v

Table 5.1: Overview of the considered three different model appesaahd their results.

investment costs of renewable energy generation are too high so thatotifalpe to use the pure
fossil solution to cover the demand. In contrast, a start-up with renewabtgyegeneration from
the very beginning is possible in the first model approach without learning.

The results of the sensitivity analysis with respect to the fossil energg pighlight another
difference, which is given by the rapidness of adapting renewableyemeto the portfolio if
the fossil energy price increases. Although a start-up is possible in gheniidel, the marginal
increase in renewable energy generation capital with a higher fossijyepece is very low com-
pared to the solutions with a mixed portfolio that lies beyond the indifferenestiotd point/curve
in the two other model approaches. This means that in the models with learsisgpma as the
indifference threshold point/curve is reached for example due to theoduppsubsidies, the
adaption of the new technology in the portfolio happens at a much highed $pan in the basic
model, although the fossil energy price is assumed to be the same. The feats is given
by the ongoing reduction of investment costs due to the learning effects.isTéhown in more
detail in Figure 5.1, where Figure 5.1a depicts the periodic solutions with a rpoefblio for
the three different model approaches at a fossil energy jprice 0.08. While in the first model
approach, very little is invested in renewable energy capital and, coestyg the capital stock is
very low, the investments and hence the capital stock of the mixed periodtosadd the second
model approach are many times larger for the same fossil energy pritke Awestment costs in
Model 1 stay high over the whole planning period, independent of tieeteih renewable energy
generation, a further increase therefore is not optimal, while in Modelstimvestment costs get
smaller with every additional unit of renewable energy capital that is aclatetl

If also learning by searching is considered, one can see that the inmstmeenewable
energy capital and the capital stock for Model 3 are even almost three langes than for the
second model approach at the same fossil energy price. This undahiméact that additional
investments into R&D efforts can strongly foster the success of renewablgye generation.
Although additional costs occur, the even stronger decrease in thénmam@scosts for renewable
energy capital can compensate for this and make further investmentsigeofita
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Figure 5.1b shows the energy balance for the obtained periodic solufiting three model
approaches. Also here, it gets obvious that the inclusion of both leaeffixts strongly encour-
ages renewable energy generation and plays an important role in theaddpenewable energy
into the portfolio.

One of the main conclusions of the obtained results is the necessity of stgsuccessful
adaption into the system during the start-up period of a new renewablgyerehnology. Here,
the main difference between Model 2 and Model 3 has been the formppbsuthat would be
needed. While in Model 2 subsidizing investments into renewable energgloapuld be helpful
to overcome this difficult period, we have seen in Model 3 that also stgpforR&D efforts could
compensate for a too small stock in renewable energy capital.

In addition to this aspect, sensitivity analysis with respect to the global radiatiensity
has shown that the effect of such supports and consequently theficsigoe strongly depends
on geographical conditions. As we have concluded from the obtairsedtsen Sections 3.4.3
and 4.4.2, the fossil energy price boundary at which renewable ei®m®ven a considerable
alternative, shifts to the right if global radiation is less intensive. Theeefa this case subsidies
possibly would have no effect if the fossil energy price lies below thisidary. Only if the fossil
energy price would increase, subsidies would have an impact. On thehatiarin a region with a
high global radiation intensity, subsidies might be overshooting as this prigedary shifts to the
left and, hence, already at a lower fossil energy price renewalelggigeneration is profitable.
These aspects underline the difficulty of a proper subsidizing policyausecin practice these
boundaries cannot be determined easily.

Regardless of whether learning effects are included or not, the re$ullistoree model ap-
proaches have shown that even in case of a very high fossil engogytpe exclusive coverage
of the energy demand with renewable energy is not possible. Due to thensdlg fluctuating
supply there are always periods of shortfalls in which fossil energgéslad, independent of the
shape of the demand. Of course this also is due to the stringent assumptistothge is not
possible in our model. However, it reflects quite well the current situatiotm@markets, where
on the one hand subsidized renewable energy generation keeps goeladtricity prices, which
consequently makes conventional energy generation hon-economé&#d the high commaodity
prices, but on the other hand conventional energy forms are neededaoup in these periods of
shortfalls.
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5.3 Conclusion

The considered models underline the major challenges of a renewabienbitaseously secure
energy supply. In this work we have focused on solar energy, lasosal fluctuations are also
a big problem for other types of renewable energy as for example Ipaer plants. Here, the
seasonal fluctuations are induced by snow melting and dry periods aralsara matter of ge-
ographical aspects. The results of the models have shown that thagewdrthe demand only
with renewable (solar) energy for the considered country is not dessitowever, combinations
with other renewable sources, which in the case of hydro-pump-stpager plants for example
would even imply storage possibilities, could of course at least diminish thegadtions. Nev-
ertheless, technology and policy efforts are not yet sufficient tdhreamplete independence of
fossil energy sources.

One important aspect is given by a proper subsidy system, which is atdebsae and if
applied in the wrong way might cause even a counteracting imbalance. VeéHattiwer on have
seen from the sensitivity analysis with respect to the global radiation intdasityat such port-
folio combinations and policy decisions always have to be a local issue irettwraphical sense,
as a global solution to the energy problem never can cover all theseabgjuecialties. The dif-
ferences in the results obtained due to the inclusion of learning effects emtndtel have shown
that such aspects of learning are indeed important to be included intoygriarming decisions,
because a far-sighted view is crucial for the success of including aawmology into the system.

To sum up, a switch to renewable energy is essential to mitigate climate chahges mple-
mentation has to be planned carefully and far-sighted, while solutions héreeadapted to local
conditions so that the inclusion into the system can be successful.
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