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Kurzfassung

Angetrieben durch das starke Wirtschaftswachstum nimmt auch die weltweite Energienachfrage konti-

nuierlich zu. Der massive Verbrauch von fossilen Ressourcen treibt jedoch die Treibhausgasemissionen

unweigerlich in die Ḧohe und f̈ordert somit das Voranschreiten des Klimawandels. Die dringende Not-

wendigkeit einer maßgeblichen Veränderung in diesem Bereich ist daher deutlich gegeben. Um eine

nachhaltige und saubere Energieversorgung zu gewährleisten, muss eine emissionsarme Energietech-

nologie gefunden werden, die gleichzeitig auch Versorgungssicherheit garantieren kann. Letzteres stellt

bei den derzeitig verfügbaren erneuerbaren Technologien vermutlich die größte Herausforderung dar.

Im Gegensatz zu fossilen Brennstoffen, die mehr oder weniger konstant vorhanden sind, sind erneuer-

bare Ressourcen oftmals starken Schwankungen unterlegen und lassen sich auch schwer prognostizie-

ren. Die Wechselwirkungen ausüberscḧussiger und unzureichender Erzeugung sowie eingeschränkten

Speicherm̈oglichkeiten erschweren die Planbarkeit erneuerbarer Energieerzeugung deutlich. Ein weite-

res Hindernis sind die hohen Investitionskosten, die bei erneuerbarenTechnologien anfallen, ẅahrend

fossile Energieerzeugung zu wirtschaftlichen Preisen möglich ist. Diese hohen Kosten könnten aller-

dings nach einer gewissen Laufzeit durch das Ansammeln von Erfahrungswerten und Wissen reduziert

werden. Da die meisten Entscheidungen in der Energieplanung jedoch aufden einhergehenden Ko-

sten basieren und der Planungshorizont oft zu kurzfristig gesetzt ist,um solche Lerneffekte mit zu

ber̈ucksichtigen, werden Investitionen in erneuerbare Energieerzeugung meist wieder in die Zukunft

verschoben, was den möglichen Rahmen alternativer Energieerzeugung stark einschränkt.

Um diese Problematik n̈aher zu untersuchen, befasst sich die vorliegende Doktorarbeit mit einer Reihe

von optimalen Kontrollmodellen, welche die die Entscheidung eines Landesüber die optimale Zusam-

mensetzung eines Portfolios bestehend aus fossiler und erneuerbarerEnergie zur Deckung des eigenen

Energiebedarfes ermitteln. Hierfür wird das Angebot der fossilen Energie als konstant angenommen,

während jenes der erneuerbaren Ressource saisonalen Schwankungen unterliegt. Um die erẅahnte Ko-

stenreduktion durch Lerneffekte in die Modelle mit einzubauen, wird das Konzept der Lernkurve ver-

wendet. Welche Unterschiede sich aus der Berücksichtigung dieser Lerneffekte ergeben, zeigt die Ana-

lyse von drei unterschiedlichen Modellvarianten, wobei in der ersten dieInvestitionskosten unverändert

bleiben, in der zweiten der treibende Aspekt durch Erfahrung gegeben ist, und in der dritten Variante

ein weiterer Faktor in Form von Forschungs- und Entwicklungsprozessen mit eingebunden wird.
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Abstract

Induced by the persistent and rapid economic growth, the worldwide demand for energy services is

constantly increasing. The accompanying abundant use of fossil resources, however, strongly enhances

green house gas emissions boosting the progress of climate change, whichstresses the urgency of miti-

gation policies in this field. The probably biggest challenge along the path towards a more sustainable

energy supply is to find a low-carbon energy technology that simultaneously guarantees energy security.

For renewable energy generation, however, especially the second goal is hard to achieve as, in contrast

to fossil resources, renewable resources strongly fluctuate and areoften hard to predict. Consequently,

the interplay of generated surpluses and shortfalls as well as limited storagepossibilities complicate

proper scheduling of renewable energy generation. Another major issue for renewable energy is given

by the high costs. While conventional energy forms are competitive, renewable energy technology

comes along with high investment costs that strongly restrict their profitability. These high costs would

decline after some time in operation as experience and know-how improve the technical processes and

hence foster the productivity. However, as the basis of energy planning decisions is mostly a matter of

expenses and, in many cases, the planning horizon is too short to take these learning effects into account,

investments for renewable energy technologies are often postponed into the future, which strongly re-

stricts the scope of renewable energy generation.

To address this issue, this thesis deals with optimal control models that consider the energy planning

decision of a small country optimizing a portfolio consisting of fossil and renewable energy to cover the

country’s energy demand. While fossil energy is assumed to be constantlyavailable, renewable energy

is fluctuating seasonally. To include the mentioned effect of cost reductiondue to the accumulation of

experience and knowledge, the concept of the learning curve is applied. To investigate the differences

in the outcome depending on whether the mentioned learning effects are included or not in the decision

process, three different model approaches are analyzed. In the first one the high investment costs of re-

newable energy capital remain unchanged over time, in the second one theyare reduced by a so-called

one-factor learning curve, where accumulated experience reduces costs, and in the third one a so-called

two-factor learning curve is considered, where additionally R&D efforts foster the cost reduction.
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CHAPTER 1

Introduction

Facing the more frequent occurrence of natural disaster as a consequence of climate change, the

rapid economic growth associated with a higher demand for energy services, either in form of

power, heat, or transport, as well as the fact that the energy sector is one of the main contributors

to the constant increase in greenhouse gas emissions (see IPCC, 2014), underlines the urgency of

climate change mitigation policies to induce a restructuring of the current energy supply system.

Therefore, one of the main challenges of the 21st century is to find a way toenable a sustainable,

low-carbon energy supply providing the balance between energy security, economic development,

and environmental protection. This, however, is not at all an easy task as renewable energy tech-

nologies exhibit some properties that strongly complicate a successful inclusion into the system,

especially, if no proper political circumstances are given.

1.1 Challenges of Renewable Energy Supply

The probably most fundamental barrier for a successful inclusion of renewable energy technolo-

gies into the market is given by the high differences in investment costs compared to conventional

energy forms. Whereas, for example, fossil energy is already properly set in the market and, con-

sequently, competitive, the acquisition of new technology capital is very expensive as almost no

experience with this technology exists, necessary work environments have to be adapted, and fur-

ther research is needed to improve the performance. Therefore, in the short run the inclusion of

a new technology would be too costly, as competitiveness with the already existing technologies

is not given. In the long run, of course, the investment costs would decrease while experience

improves the technological processes. In the literature, this effect is referred to as the learning

curve and will be explained in more detail in the subsequent exposition. Whether energy planning
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decisions are made long- or short-sighted can be crucial, because new technologies can only turn

out to be profitable if their whole life-cycle and hence also these learning effects are considered in

the decisions.

A second barrier for a shift towards a more sustainable energy supply isgiven by the fact that the

renewable resources used for energy generation are subject to dailyor seasonal fluctuations, which

complicates proper scheduling, whereas the supply of fossil resources is more or less constant and

predictable.

1.2 The Concepts of Learning

The incentives for developing and improving renewable energy technology have changed during

the last decades. The original driving force has been the rapidly narrowing horizon of depletion of

fossil fuels. However, due to the development of new extraction techniques and the discovery of

new sources, the threats of global warming have become a more important issue. With energy gen-

eration being one of the major sources of greenhouse gas emissions, mitigation policies in form of

investments in renewable energy technology try to reduce the emissions and slow down the global

warming process. The available alternatives of energy generation in the future, however, strongly

depend on structural and technological changes together with the accompanying investment deci-

sions right now, because the development and the diffusion of a new technology is a time-intensive

dynamic process (cf. Harmon, 2000). This underlines the importance of timely planning for en-

ergy technology decisions. As investment costs play a major role for such decisions and since

these costs are very high for renewable technologies compared to the ones of conventional energy

forms, investments are postponed until they get cheaper, hence stronglyrestricting the scale of

alternative energy generation (cf. Rong-Gang, 2013; Berglund andSöderholm, 2006). Therefore,

it is important to consider the whole life span of a new technology for energyplanning decisions in

order to include the diffusion process and the cost reduction that comes along with implementing

the new technology.

In the literature of recent years, some important developments in macroeconomics and energy

economics can be observed, dealing with the issue of technological change. While in previous

modeling approaches technological change, if considered at all, has been included as an exoge-

nous increase in energy conversion efficiency, more recently the aim has been to endogenously

model technological change, especially in form of learning-by-doing effects sometimes also con-

sidered as technological learning (see, for example, Chakravorty et al., 2008, 2011; Messner, 1997;

Reichenbach and Requate, 2012; Köhler et al., 2006).
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1.2.1 Historical Background of the Learning Curve

The concept of the learning curve has been introduced by Wright (1936) who observed that in

an airplane-manufacturing the number of working-hours spent for the production of an airframe

is a decreasing function of the total number of the previously produced airframes of the same

type. In other words, this means that the unit costs of labor declined with experience measured in

cumulative output. However, in case that the rate of output is constant, this would imply that also

the stimulus for learning would appear to be constant as well. Therefore, Arrow (1962) suggests to

use cumulative gross investments in form of cumulative production of capitalgoods as a measure

for experience. This implies that each new machine1 used in production leads to a learning process

with continual incentive, which makes a steady state growth in productivity possible. In 1968, the

learning curve concept has also been applied in the field of strategic management (see BCG, 1970),

and from then on has been used in several areas of research (cf. Kahouli-Brahmi, 2008). To give

an example of application in energy economics, Neij (1997) used the learning curve approach

to analyze prospects of diffusion and application of renewable energy technology with a focus

on wind and photovoltaic. Although there exist concepts with different scopes of application

and aggregation, they are all based on Arrow’s explanation that learning by doing enables cost

reduction and quality improvements (cf. Nemet, 2006).

Given the goal of achieving adequate technology policies to mitigate climate change, the im-

plementation of endogenous technological change via the learning curve inmodels of future en-

ergy and macroeconomic scenarios is essential (see, for example, Grübler and Messner, 1998;

Gerlagh and Van der Zwaan, 2003). The learning curve provides an important tool to measure

the cost-effectiveness of policy decisions to support new technologies. It connects expected future

costs with current investments so that the cost of the new technology depends on earlier devel-

opments reflected by the cumulative capacity. This comes along with the path dependence of

technological competition.

The economic role and the importance of research and development (R&D) for technical pro-

cesses has been investigated intensively in various forms in literature. Just to mention a few

examples, see Cunha-e Sá et al. (2010), Rauscher (2009), Popp (2006), and Grimaud et al. (2011).

Here, R&D is seen as the main driving force of technological change and innovation by generating

new information. Cohen and Levinthal (1989) were among the first to bringup the idea of the dual

1Arrow (1962) considers in his work capital goods with a fixed life time. Therefore, gross investments only incorpo-
rate the purchase of new machines. In case of capital goods depreciating exponentially, however, also the maintenance
of already existing machines would be included in gross investments.
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role of R&D in the sense of not only generating new information but also enhancing the ability

to assimilate and exploit already existing information. With this new aspect, they identify R&D

expenditures as a learning mechanism based on the knowledge propagated in a firm’s environ-

ment. Since then, R&D expenditures have, next to accumulated experience,become an important

learning factor for the cost reduction of technological processes.

In general, one can distinguish between two different learning curve concepts. On the one

hand, there is the one-factor learning curve for which cumulative production of capital goods2 is

considered to be the driving aspect for the accumulation of experience and hence for the reduction

of the investment costs. On the other hand, in the so-called two-factor learning curve, additional

R&D efforts increase knowledge, which additionally contributes to the cost reduction. These two

approaches are presented in more detail in what follows.

1.2.2 One-Factor Learning Curve

The one-factor learning curve empirically quantifies the impact of learning by doing on the pro-

duction costs of an industry or a firm by considering the investment costs asa declining function

of cumulative production of capital goods. In the literature, a variety of different functional forms

modeling this interrelationship can be found, but the probably most common oneis the log-linear

function due to its simplicity and its observed good fit with data. In this case, the progressive

decrease is explained by the so-called progress rate given by

PR= 2−α
,

whereα > 0 is the learning-by-doing coefficient. The progress rate corresponds to the percentage

change in costs, when the cumulative production of capital goods is doubled. Therefore, a progress

rate of 80% means that the costs are reduced to 80% of its previous value when the cumulative

production of capital goods is twice as high. The reduction, in this case of 20%, is referred to as

the learning-by-doing rate and is given by

LDR= 1−PR= 1−2−α
.

2Instead of cumulative production of capital goods, also cumulative output can be used as the driving factor for
the learning effect, as originally suggested by Wright (1936). Both factors are possible approximating measures for
knowledge (cf. Argote et al., 1990). However, in analogy to the approach which we later will use for our model, we
already focus on capital goods.
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The costs are then calculated as

Ct =C0

(
Kt

K0

)−α
, (1.1)

whereCt are the investment costs at timet, Kt is the cumulative production of capital goods at time

t, K0 is its initial level at timet = 0, andC0 are the initial investment costs. This scaling expresses

the fact that for an initially low cumulative production of capital goods, it takes more efforts and

investments in order to produce a given output than for an initially high level (cf. Van der Zwaan

et al., 2002). Taking the logarithm of Equation (1.1) yields an expression which can be estimated

econometrically in order to get an estimate forα , and therefore for the learning-by-doing rateLDR.

This, of course, strongly depends on the type of technology and is crucial for the speed of learning.

A survey on estimates of learning rates for a set of energy technologies can be found in McDonald

and Schrattenholzer (2001). Equation (1.1) is also referred to as the single- or one-factor-learning

curve.

1.2.3 Two-Factor Learning Curve

The one-factor approach with cost development of a technology being afunction of only one in-

dependent variable has a drawback from a methodological point of viewas there exists no other

policy instrument than purchasing in order to accelerate the technological progress (cf. Miketa and

Schrattenholzer, 2004). In the so-called two-factor learning curve, as proposed by Kouvaritakis

et al. (2000), the costs of investments are assumed to decline due to two typesof learning, first

learning by doing induced by the accumulation of experience, and secondlearning by searching as

a result of accumulating knowledge. The quantitative relationship between technological perfor-

mance and R&D expenditures is modeled in the same way as the relation between experience and

cost reduction in the one-factor learning curve representation. Additional to the already introduced

progression ratePRand learning-by-doing rateLDR, a second rate is included for the two-factor

learning curve, which is called learning-by-searching rate and is givenby

LSR= 1−2−β
,

whereβ is the learning-by-searching coefficient. The interpretation is the following. Assume that

there is no accumulated knowledge, then the meaning of theLDR is similar to the one-factor model

describing the percentage cost reduction when cumulative production ofcapital goods doubles.

On the other hand, if there is no cumulative production of capital goods, theLSRreflects the

percentage cost reduction when the stock of knowledge doubles (cf. Miketa and Schrattenholzer,
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2004). To model the cost reduction due to these two learning concepts in a symmetric way, the

costs then are given in form of a Cobb-Douglas-type function as

Ct =C0

(
Kt

K0

)−α(KRt

KR0

)−β
, (1.2)

whereKRt is the stock of knowledge accumulated by R&D efforts at timet andKR0 is the initial

knowledge stock at timet = 0.

1.2.4 Learning Curves in Energy Systems

Especially for the evolution of energy systems, technological learning plays an important role as

the costs are the fundamental measure for the performance of a technology. Consequently, in

order to improve a process and become competitive, experience is essential. A technology will not

evolve unless experience can be accumulated with it (see Barreto and Kypreos, 1999). The same

argument can be found in Wene (2000) where it is additionally stated that theopportunity to gain

experience on the market is crucial for new energy technologies as, otherwise, its availability to

the market is prematurely foreclosed.

To apply the learning curve concept in energy system models, the approach is used where cu-

mulative production of capital goods is the driving factor for learning. The capital goods for energy

technologies are given by the installed capacities. Focusing on renewableenergy technologies, the

fact that the supply of the renewable resource is exogenously determined and consequently, the

cumulative output cannot directly be controlled, points out why cumulative capacity here is the

better measure for experience. Figure 1.1 shows schematically how learning acquires the invest-

ment costs of a renewable technology through cumulative capacity. For a learning-by-doing rate

of 16%, 20%, and 25%, the investment costs for the renewable energy technology are plotted. In

contrast, one can see the investment costs of a conventional energy technology, here fossil en-

ergy taken as example. The so-called break-even point (BE) occurs when the new technology

gets competitive with the conventional one. This means that the collected experience makes the

new technology cost-efficient. As the learning-by-doing rate defines thespeed of learning, this, of

course, happens at a higher cumulative capacity the lower the learning-by-doing rate is. The area

between the renewable and the fossil curve indicates the learning investments necessary to reach

the break-even point. For more details on the idea that renewable energy technologies break even

with fossil energy see Wene (2000).
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Figure 1.1: Break-even points for different learning rates.

1.2.5 Forgetting by Not Doing

In the learning concepts presented so far, cumulative output or gross investments in form of cu-

mulative production of capital goods are considered to be the driving factors for the learning

effect leading to a reduction of investment costs. Because these factorsare non-negative and

non-decreasing quantities, the accumulated experience along the learningprocess is assumed to

be persistent in time and, hence, does not depreciate. This further implies that investment costs

are monotonously decreasing. However, there exist references in theliterature stating that invest-

ment costs do not always decrease over time, indicating that they possibly are not subject to pure

learning. Such kind of negative learning effect, which in the literature is often referred to as orga-

nizational forgetting or forgetting by not doing, could be defined as the loss of knowledge caused

by stopping to perform certain activities (Joosten et al., 1995). This can occur, for example, when

the production process is interrupted. ”Inventions don’t just get adopted once and forever; they

have to be constantly practiced and transmitted, or useful techniques may beforgotten” (Diamond,

1993). Baloff (1970) was among the first providing suggestive empirical evidence of a loss in pro-

duction efficiency when production is paused. Keachie and Fontana (1966) discuss the phenomena

of unlearning between intermittent production runs. They explain this phenomenon with the ar-

gument that in case of large time lags between the production lots, it is reasonable to assume that

one would not follow the same learning curve at the point where one left, but investment costs
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would have been increased back to a higher level again when productionis resumed. Similarly,

also Epple et al. (1991) present a counter-evidence for the hypothesis that knowledge becomes

completely embodied in the technological process. They investigate a model onthe transfer of

knowledge acquired through learning by doing and show with their obtainedresults that not all

knowledge is carried forward from one period to the next. Consequently, this implies that the con-

ventional measure for learning overstates the persistence of learning (see also Argote et al., 1990;

Argote and Epple, 1990). Focusing on the origin of the learning curve theory, the field of airplane-

manufacturing, Benkard (2000) analyzes the dynamics of learning and the role of organizational

forgetting in commercial aircraft production. The good fit of the obtained model results with the

data underlines his assumption that learning can only take place when planesare produced and

unless the production rates are not maintained, the gained experience starts to depreciate. There-

fore, recent production experience seems to be more important for the determination of the current

production efficiency than past production experience.

All these references underline the hypothesis, that experience gainedfrom learning by doing

does not remain forever. However, it is unclear what is the driving force behind this forgetting

process. Benkard (2000) explains the depreciation of experience withthe argument that experi-

ence acquired through learning by doing can be thought as accumulation of human capital and as

periods of decreasing production rates are often accompanied by layoffs, this organizational hu-

man capital depreciates. Additional to highly variable production rates beinga possible reason for

organizational forgetting, also in Argote et al. (1990) it is supposed thatrapid job turn over could

be the major reason, where production workers are replaced by less experienced ones. However,

their obtained model results show that knowledge depreciates more rapidly than the rate of job

turn over which indicates the existence of some other significant factor which could be, beyond

others, technological obsolescence, as they claim. Which aspect is more important for the process

of forgetting further on depends on whether the production is more capital-or labor-intensive (see

Benkard, 2000).

Also in models of energy technologies negative learning effects in form offorgetting can play

an important role. McDonald and Schrattenholzer (2001) say that also in this field, indeed, inter-

ruptions in production and use can cause experience to be lost and unit costs to rise: ”Unlike a fine

wine, a technology design that is left on the shelf does not become better thelonger it sits unused.”

While it is indisputable that the mechanism of forgetting by not doing finds its application in the

R&D factor of the learning curve (see Wene, 2000), it seems reasonableto include it in the cu-

mulative capacity factor as well (see Barreto, 2001). This is especially underlined when following

Benkard (2000) in interpreting experience as human capital, which usuallydepreciates over time.
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1.3 Formulation of the Problem

In order to analyze the challenges and chances of integrating renewableenergy into the energy

system as well as the differences in energy planning decisions when learning effects are included

into the decision process, we consider as a benchmark the energy sectorof a small country. The

representative decision maker of this energy sector has to decide aboutthe composition of a port-

folio consisting of fossil and renewable energy with which the country‘s energy demand should

be covered. In the literature many research papers can be found investigating the supply of a less

pollutive or possibly even carbon free backstop technology, for example Hartley et al. (2010),

Coulomb and Henriet (2011), and Van der Ploeg and Withagen (2012), or the transition to such a

backstop technology as in Greiner et al. (2014) or Heinzel and Winkler (2011). What is however

not included in these approaches is the fact that supply of renewable resources is not constant at

all but strongly fluctuating due to climate or weather conditions. Focusing on solar energy as an

example, we therefore postulate seasonal fluctuations in supply induced by the interplay of sum-

mer and winter. Further on, harvesting of the renewable energy resource is for free, but in order to

use this resource, an appropriate capital is necessary, which accumulates by investments and hence

comes at some costs. In contrast, for the supply of fossil energy it is postulated that the considered

small country does not have own fossil energy resources and, consequently, fossil energy has to

be imported for the current market price from other countries. Given these two different energy

types, the representative energy-sector decision maker is looking for the optimal portfolio compo-

sition such that the energy demand of the country can be covered and no shortfalls occur. Proper

forecasting of the energy demand is of course a really important and difficult issue in the energy

supply sector. However, as the interest of this research rather lies on the qualitative composition of

the portfolio than on proper prognosis methods, we postulate for simplicity thatfull information

about the energy demand that has to be covered is available and no further uncertainties occur.

We also follow Coulomb and Henriet (2011) and assume that it is stationary. Inthe literature, ap-

proaches can be found where the energy demand is considered to be dependent on the electricity

price or on the GDP of the country, see for example Chakravorty et al. (2012). However, we here

follow Messner (1997) and take the energy demand to be exogenously given. This allows us to

focus on the supply side of renewable energy and on how a given demand may lead to an optimal

division of supply between fossil and renewable energy.
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In the first model approach, we consider a problem without including learning effects to see

how the optimal portfolio composition looks like when the initial high investment costsfor renew-

able energy capital remain unchanged over the whole planning period. The energy demand is first

assumed to be constant over the year to clearly see the changes in the portfolio induced by the sea-

sonal fluctuations. Sensitivity analysis then shows how the optimal compositionof the portfolio

changes, when the fossil energy price increases. In a second version, we model the energy demand

seasonally fluctuating as well, where it either reaches its peak in winter due toheating, in summer

due to air conditioning, or both.

Given this basic model approach, we then extend the model by first including a one-factor

learning curve into the objective function. Instead of considering grossinvestments as suggested

by Arrow (1962), we take net investments as the driving factor for the learning-by-doing effect,

in order to simultaneously consider forgetting by not doing. As solar energy is a more capital-

intensive than labor-intensive technology, forgetting then occurs as a result of insufficient mainte-

nance activities. This effect is described in Sturm (1993) where difficulties in maintaining plants

are considered to be a possible reason for negative learning effects innuclear energy. The main

difference between learning by doing based on gross and net investments is given by its econom-

ical interpretation. If the capital stock is assumed to depreciate exponentially, gross investments

imply that experience is not only gained from investments in new machines but also in maintain-

ing already existing machines. In the second approach with net investments,however, only buying

new machines contributes to the learning process. Maintenance of alreadyexisting machines here

is not considered to be an innovative activity providing additional knowledge. Further on, as

net investments can, in contrast to gross investments, also decrease overtime, they allow for the

mechanisms of forgetting by not doing. In this first model extension, multiple solutions occur and

an indifference threshold point separates the areas of attraction. Sensitivity analysis with respect

to the fossil energy price, the learning-by-doing coefficient as well asdifferent intensities of the

supply of the renewable resource give insights how the optimal long-run solution behaves.

In the third approach we additionally introduce learning by searching by including a two-factor

learning curve into the objective function and adding a second state to the model which represents

the state of knowledge. This knowledge stock is accumulated by R&D investmentswhich are

considered as third control, but it also depreciates, describing the forgetting process. Also here,

multiple solutions occur whose areas of attraction are separated in this case by an indifference

threshold curve, and sensitivity analysis with respect to the fossil energy price and the intensity of

the supply of the renewable resource is conducted.
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As we include seasonal fluctuations into the models, we obtain non-autonomous optimal con-

trol problems with infinite horizon. In the first two approaches we have two controls and one state,

while in the third approach we have three controls and two states. Due to the fact that the problem

explicitly depends on time, the analysis differs from the usual steady-state analysis of autonomous

problems.

1.4 Software

The considered optimal control problems are solved with Pontryagin’s maximum principle (see,

for example, Grass et al., 2008). Due to the complexity of the models, however, an analytical solu-

tion is only possible for some special cases, but cannot be found in general. Therefore, numerical

methods are used which are explained in detail in the various chapters. As software for these cal-

culations, MATLABr7.5.0.342 (R2007b) has been used. The application of the shooting method

that is presented and used in Chapters 3 and 4 in the course of the sensitivity analysis is carried

out with CL MATCONT for Matlab,3 see for more details Dhooge et al. (2006). Especially for

the continuation of the optimal paths as well as the calculation of the indifference threshold points

and curves in Chapters 3 and 4, additionally the MATLAB packageOCMat developed by Dieter

Grass has been employed.4

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2 we present and analyzethe basic model where

no learning effects are included. This first model approach as well as the obtained results provide

the fundamental background for the analysis in the subsequent chapters. In Chapter 3 the first

extension of the basic model with a one-factor learning curve is presentedand analyzed, and the

changes in the results compared to the basic model are discussed in detail. InChapter 4 also

the learning-by-searching effect is included into the model in form of a two-factor learning curve

in the objective function. This model, which is extended by an additional control as well as

an additional state, is analyzed and the economic interpretation of the newly obtained results is

presented. Chapter 5 then summarizes and discusses the findings of all three model approaches,

the differences and the economic interpretations as well as important methodological aspects for

non-autonomous optimal control models that have arisen in the course of analyzing the models.

3Download fromhttp://www.matcont.ugent.be/ (accessed 01.06.2014)
4Download fromhttp://orcos.tuwien.ac.at/research/ocmat_software/ (accessed 01.06.2014)
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1.6 Publications

A summarized version of Chapter 2 presenting the first model approach without learning effects

has been published in Moser et al. (2014) together with the co-authors Dieter Grass, Gernot Tra-

gler, and Alexia Prskawetz in the peer-reviewed proceedings of the 9th International Conference

on Large-Scale Scientific Computing 2013 in Sozopol, Bulgaria. Further on, a shortened version

of Chapter 3 has been submitted to a refereed journal together with the co-authors Dieter Grass

and Gernot Tragler.



CHAPTER 2

The Basic Model

This chapter focuses on the formulation and the analysis of the basic model with no learning

effects included. Beyond the obtained results, which will build the fundamental basis for the

investigations in the subsequent chapters, also some theoretical aspects of solving non-autonomous

optimal control models are presented.

2.1 The Model

We consider the energy sector of a small country in which both fossil and renewable energy can

be used as perfect substitutes to cover an exogenously given energydemand. Due to the small

size of the country it is assumed that there are no or at least not enough available fossil resources

so that fossil energy has to be imported from other countries for the current market price. As far

as renewable energy is concerned, generation is possible within the own country. In contrast to

fossil energy, which is assumed to be constantly available, however, the supply of renewable en-

ergy fluctuates seasonally. In order to use this renewable energy resource, capital is necessary for

the energy generation for which investments have to be undertaken. We consider for our model a

representative energy-sector decision maker who chooses the optimal energy portfolio composi-

tion for the whole country. It is postulated that this decision maker has full information about the

energy demand that has to be covered at each point of time. Therefore,he/she decides on the most

cost-effective portfolio consisting of these two energy types that is usedto cover the exogenously

given demand, taking into account the seasonal fluctuations of renewable energy supply and the

import costs of fossil energy. One important implication of the size of the country is, that this rep-

resentative energy-sector decision maker is assumed to be a price taker,and accordingly his/her

decision has no influence on the market price.

13
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We take the considered fossil energy as an aggregate of fossil energy sources (e.g. coal, gas,

etc.), and follow Chakravorty et al. (2006) in focusing on solar energyas renewable resource. To

give an example for the seasonal supply, Figure 2.1a shows the average daily global radiation

in Austria. One can clearly observe the seasonal differences that pose a challenge to a constant

renewable energy supply over the whole year. Of course, saving of renewable energy would be

supportive in the short-run, but as we are rather interested in long-runsolutions and for this time

frame saving possibilities are limited, we follow Chakravorty et al. (2006) in assuming that storage

is not possible and focus only on the change in the portfolio composition. Thismeans that the

generated energy has to be used immediately or otherwise it is lost.

To include these seasonal fluctuations in our model a deterministic time-dependent function is

used,

vR(t) = ν sin2(tπ)+ τ ,

which is plotted in Figure 2.1b. The period length of the seasonal fluctuationsin our case is one

year,τ is the minimal supply in winter, andν is the maximal increment during summer.1 To get

reasonable parameter values we used Austrian data (ZAMG, 2012) for estimation. Note that we

only consider annual fluctuations and do not include daily fluctuations as well as changes due to

weather conditions.

To convert solar radiation into energy, specific capitalKS in form of photovoltaic cells is nec-

essary. This capital is accumulated by investmentsIS(t) and depreciates by a factorδS. The capital

accumulation equation in our model reads as follows:

K̇S(t) = IS(t)−δSKS(t). (2.1)

Given the available capital at each time and the current supply of global radiation, renewable

energy is generated as

ES
(
KS(t), t

)
=
(
ν sin2(tπ)+ τ

)
KS(t)η ,

whereη is the degree of efficiency (cf. Deshmukh and Deshmukh, 2008; Nema etal., 2009).

For common photovoltaic cells that are currently on the market,η is about 20%. Note that this

function explicitly depends on timet, which therefore makes the problem non-autonomous.

Since the representative energy-sector decision maker is assumed to have exact information

about the required energy demandE and no further uncertainties are included, it is postulated

that the demand has to be covered completely by the portfolio of fossilEF(t) and renewable

1As usual, we lett denote the time argument.
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Figure 2.1: (a) Average global radiation per month in Austria.(b) Deterministic function to
describe the varying global radiation over one year,t ∈ [0,1].
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ES(KS(t), t) energy. Shortfalls are not allowed while surpluses are possible. However, as we do

not include the possibility of storage, this implies that surpluses are lost and cannot be further

used.2 This balance is included in the model by the mixed-path constraint

EF(t)+ES
(
KS(t), t

)
−E ≥ 0.

Given these restrictions and the current market pricepF for fossil energy, the representative

energy-sector decision maker determines the most cost-effective solutionby minimizing total ex-

penditures given by investment costs in renewable energy capital and import costs for fossil energy,

C(IS(t),EF(t)) = IS(t)
(

b+cIS(t)
)

+ pFEF(t).

Note that we distinguish between linear investment and quadratic adjustment costs, where the

latter ones arise from installation efforts (cf. Feichtinger et al., 2006; Rasmussen, 2001).

Summing up, we consider a non-autonomous optimal control model with infinite horizon,

two controls representing the capital investments and the imported fossil energy, and one state

describing the capital stock. This cost minimization problem is transformed to theequivalent

maximization problem and, for a discount rater, is given by

max
EF (t), IS(t)

∫ ∞

0
e−rt

(

− IS(t)
(

b+cIS(t)
)

− pFEF(t)

)

dt (2.2)

s.t.: K̇S(t) = IS(t)−δSKS(t), (2.2a)

EF(t)+ES
(
KS(t), t

)
−E ≥ 0, (2.2b)

ES
(
KS(t), t

)
=
(
ν sin2(tπ)+ τ

)
KS(t)η , (2.2c)

EF(t), IS(t)≥ 0. (2.2d)

2In practice, of course, small surpluses generally would be traded on the market. However, in times of great surpluses
as it sometimes occurs around Christmas due to the very low demand, prices often turn negative which also comes along
with great losses. Therefore, we do not include this trading aspect in our model but consider such losses in form of
sunk investment costs.
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2.2 Solution

2.2.1 Canonical System and Necessary First Order Conditions

Let (K∗
S(t),E

∗
F(t), I

∗
S(t)) be an optimal solution of the control problem in (2.2), then according to

Pontryagin’s maximum principlefor infinite time horizon problems (cf. Grass et al., 2008), there

exists a continuous and piecewise continuously differentiable functionλ (t) ∈ R, also known as

theadjoint variableor costate, and a constantλ0 ≥ 0 satisfying for allt ≥ 0

(λ0,λ (t)) 6= 0,

L (K∗
S,E

∗
F , I

∗
S,λ ,λ0,µ1,µ2,µ3, t) = max

EF (t), IS(t)
L (K∗

S,EF , IS,λ ,λ0,µ1,µ2,µ3, t),

whereL defines theLagrangian3 which reads as

L (KS,EF , IS,λ ,λ0,µ1,µ2,µ3, t) = λ0
(
−bIS(t)−cIS(t)

2− pFEF(t)
)
+λ (t)(IS(t)−δSKS(t))

+µ1(t)(EF(t)+(ν sin2(tπ)+ τ)KS(t)η −E)+µ2(t)EF(t)+µ3(t)IS(t),

with µ1(t),µ2(t), andµ3(t) being the piecewise continuousLagrange multipliersfor the mixed-

path constraint and the non-negativity conditions, respectively. Further on, at each point where the

controls are continuous,

λ̇ (t) = rλ (t)−
∂L (K∗

S,E
∗
F , I

∗
S,λ ,λ0,µ1,µ2,µ3, t)

∂KS(t)

is given and the complementary slackness conditions

µ1(t)
(
E∗

F(t)+E∗
S

(
K∗

S(t), t
)
−E

)
= 0 , µ1(t)≥ 0, (2.3)

µ2(t)E
∗
F(t) = 0 , µ2(t)≥ 0, (2.4)

µ3(t)I
∗
S(t) = 0 , µ3(t)≥ 0, (2.5)

3Note that we omit the time argument in the function arguments of the Lagrangian for the ease of exposition.
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have to be satisfied. The necessary first order conditions and the adjoint equation are given as

follows:

∂L

∂ IS(t)
= −λ0b−2λ0cIS(t)+λ (t)+µ3(t) = 0, (2.6)

λ̇ (t) = rλ (t)−
∂L

∂KS(t)
= (r +δS)λ (t)−µ1(t)η

(
ν sin2(tπ)+ τ

)
. (2.7)

Further on, we require the limiting transversality condition

lim
t→∞

λ (t)e−rt = 0 (2.8)

to be satisfied. Note that the Lagrangian is linear inEF(t) and, consequently, a bang-bang solution

occurs whereEF(t) is determined by the switching function

∂L

∂EF(t)
=−λ0pF +µ1(t)+µ2(t)

so that

EF(t) =







∞

singular

0







if
∂L

∂EF(t)







>

=

<







0.

Proposition 1. Without loss of generality we can setλ0 = 1 for the subsequent analysis.

Proof. Let λ0 = 0, then the Lagrangian is also linear inIS(t) and the switching functions for the

two controls and the adjoint equation read as

∂L

∂EF(t)
= µ1(t)+µ2(t), (2.9)

∂L

∂ IS(t)
= λ (t)+µ3(t), (2.10)

λ̇ (t) = (r +δS)λ (t)−µ1(t)η
(
ν sin2(tπ)+ τ

)
. (2.11)

As µ1(t),µ2(t)≥ 0, it follows that in case of no fossil energy,EF(t) = 0, µ1(t) = µ2(t) = 0 has

to hold. ForEF(t) > 0 the complementary slackness condition in (2.4) implies thatµ2(t) = 0.

Moreover, however, alsoµ1(t) = 0 has to hold in this case which is obtained either from the

complementary slackness condition in (2.5) if the mixed-path constraint in (2.2b) is satisfied with

inequality, or from the switching function in (2.9) if it is satisfied with equality. Inall cases, the
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solution of the adjoint equation (2.11) is given by

λ (t) = λ (0)e(r+δS)t .

To satisfy the transversality condition in (2.8),λ (0) = 0 is the only feasible initial value. This,

however, implies thatλ (t) = 0,∀t, which is contradictory to(λ0,λ (t)) 6= 0. Therefore,λ0 > 0 has

to hold and adequate standardization yields

λ̃0 = λ0
1
λ0

= 1,

which proofs the proposition.

The necessary first order conditions and the adjoint equation are then given as follows:

∂L

∂ IS(t)
= −b−2cIS(t)+λ (t)+µ3(t) = 0⇔ IS(t) =

λ (t)+µ3(t)−b
2c

,

λ̇ (t) = (r +δS)λ (t)−µ1(t)η
(
ν sin2(tπ)+ τ

)
,

which yields the canonical system

K̇S(t) =
λ (t)+µ3(t)−b

2c
−δSKS(t) =: f KS(t,KS(t),λ (t),µ3(t)) (2.12)

λ̇ (t) = (r +δS)λ (t)−µ1(t)η
(
ν sin2(tπ)+ τ

)
=: f λ (t,λ (t),µ1(t)). (2.13)

Note that the Lagrangian is concave inIS(t), and linear inEF(t) andKS(t). Further on, the partial

derivatives of the objective function and the dynamics are continuous in their arguments, and the

feasible region is convex. As, additionally, the transversality condition in (2.8) is required to

be satisfied, this implies that for(E∗
F(t), I

∗
S(t),K

∗
S(t)) andλ (t) satisfying Pontryagin’s maximum

principle and for all feasibleKS(·) the limiting transversality condition

lim
t→∞

λ (t)(KS(t)−K∗
S(t))≥ 0

has to hold and(E∗
F(t), I

∗
S(t),K

∗
S(t)) is an optimal solution. Consequently, not only the necessary

but also the sufficient conditions are satisfied for the solutions we obtain in the following analysis.

Proposition 2. A solution path in the interior of the feasible domain of this optimal control prob-

lem can never be optimal.
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Proof. Let (E∗
F(t), I∗S(t)) be a solution of the optimal control problem in (2.2) which satisfies

∀t ∈ (t1, t2) with t1 < t2

(E∗
F(t)+

(
ν sin2(tπ)+ τ

)
K∗

S(t)η −E)> 0, (2.14)

E∗
F(t)> 0, (2.15)

I∗S(t)> 0, (2.16)

with K∗
S(t) andλ ∗(t) being the state and costate, respectively, solving the canonical system. That

means, this solution lies in the interior of the feasible domain of the model (2.2). Then, from the

complementary slackness conditions (2.3)-(2.5) we obtainµ∗
1(t) = µ∗

2(t) = µ∗
3(t) = 0 ∀t ∈ (t1, t2).

As we have shown thatλ0 = 1, it holds for this case that

∂L

∂EF(t)
=−pF < 0.

Consequently, the maximum is reached at the lowest feasible controlEF(t). This, however, implies

that a solution(E∗
F(t), I∗S(t)) that satisfies (2.16)-(2.14) is suboptimal as there always exists a

solution with a lower controlEF(t) and hence a better performance, which proves the proposition.

An important implication of Proposition 2 is that the optimal solution is reached eitherat the

boundary

E∗
F(t)+

(
ν sin2(tπ)+ τ

)
K∗

S(t)η −E = 0

and/or at the boundaryE∗
F(t) = 0. Moreover, despite the fact that we have got a bang-bang solu-

tion for fossil energy,E∗
F(t) is continuous with respect to time, as forE∗

F(t) > 0 the mixed-path

constraint has to be satisfied with equality.

As the proof of Proposition 2 shows, an interior solution with both controlsEF(t), IS(t)> 0

and the mixed-path constraint of (2.2b) satisfied with inequality, can never be optimal as the cost

of inefficient surpluses could immediately be reduced by decreasing the amount of fossil energy

until either the mixed-path constraint is satisfied with equality or the fossil energy amount gets

zero, which both corresponds to boundary cases. Hence, we can completely omit the interior so-

lution and focus on the boundaries of the feasible domain. In total, we can distinguish between

three of them:
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• Thefossilcase: No investments in renewable energy capital are made,

EF(t)> 0,

IS(t) = 0,

EF(t)+ES(KS(t), t)−E = 0.4

• Themixedcase: Both types of energy are used for the coverage,

EF(t),

IS(t)> 0,

EF(t)+ES(KS(t), t)−E = 0.

• Therenewablecase: No fossil energy is used to cover the demand,

EF(t) = 0,

IS(t)> 0,

ES(KS(t), t)−E ≥ 0.

Inserting the corresponding values of the controls and Lagrange multipliers yields the canonical

systems for these boundary cases, which are given for the fossil case by

K̇S(t) = −δSKS(t), (2.17)

λ̇ (t) = (r +δS)λ (t)− pFη
(
ν sin2(tπ)+ τ

)
, (2.18)

for the mixed case by

K̇S(t) =
λ (t)−b

2c
−δSKS(t), (2.19)

λ̇ (t) = (r +δS)λ (t)− pFη
(
ν sin2(tπ)+ τ

)
, (2.20)

and for the renewable case by

K̇S(t) =
λ (t)−b

2c
−δSKS(t), (2.21)

λ̇ (t) = (r +δS)λ (t). (2.22)

Figure 2.2 illustrates these three cases, wheret∗ is some fixed point of time during the year. If

4Note that for the fossil case the generated renewable energyES(KS(t), t) is still included in the energy balance
equation. This is because renewable energy at the beginning of the path could still contribute to the portfolio if there
is an initially positive capital stock. As no further investments are made, however, the capital stock will decline over
time and the contribution of renewable energy gets negligibly small. If, in contrast, the initial capital stock is zero, the
contribution is zero along the whole path.
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the initial capital stock is zero and, furthermore, no investments are made, norenewable energy

is generated at all and the whole energy demand has to be covered by fossil energy. As soon

as capital is accumulated by investments, a mixture of the two energy types is used to cover the

demand, which hence corresponds to the mixed case. If, however, the capital stock gets sufficiently

high so that enough renewable energy can be generated to completely cover the demand, no further

import of fossil energy is necessary. This finally corresponds to the renewable solution.

Figure 2.2: Fossil, mixed, and renewable solutions to cover the given energy demand.

2.2.2 Periodic Solution

The canonical system in (2.12)-(2.13) is not only non-autonomous, butin addition it is also pe-

riodic in t with period length 1, and therefore belongs to a special class of non-autonomous dif-

ferential equation systems, also calledone-periodic differential equations. Due to this periodicity,

the most reasonable candidate for the optimal long-run solution of the problem in (2.2), which is

the solution to which each optimal solution is converging over time, is given by a periodic solution

with the period length of one year.5

5Note that this is in contrast to autonomous optimal control problems where the existence of periodic optimal
solutions only is given under specific necessary and sufficient conditions, see for this Hartl (1993) and Han et al.
(1994).



CHAPTER 2. THE BASIC MODEL 23

In order to find such candidates, we first determine the instantaneous equilibrium points, which

are calculated for the general canonical system in (2.12)-(2.13) as

λ̇ (t) = (r +δS)λ (t)−µ1(t)η
(
ν sin2(tπ)+ τ

)
= 0

⇔ λ IEP(t) =
µ1(t)η

(
ν sin2(tπ)+ τ

)

r +δS

K̇S(t) =
λ (t)+µ3(t)−b

2c
−δSKS(t) = 0

⇔ KIEP
S (t) =

λ IEP(t)+µ3(t)−b
2cδS

=

=
µ1(t)η

(
ν sin2(tπ)+ τ

)

(r +δS)2cδS
+

µ3(t)−b
2cδS

.

Note that the curve of instantaneous equilibrium points is not a trajectory of the canonical system,

unless{K̇IEP
S (t), λ̇ IEP(t))} = {0,0}, ∀t, see Ju et al. (2003). This special case, however, can

not occur in our model approach. We solve the following boundary valueproblem using these

instantaneous equilibrium points as starting solution,

K̇S(t) = f KS(t,KS(t),λ (t),µ3(t)), with KS(0) = KS(1),

λ̇ (t) = f λ (t,λ (t),µ1(t)), with λ (0) = λ (1).

Solving this boundary value problem yields the periodic solution(K∗
S(t),λ ∗(t)) that lies com-

pletely in one of the three boundary cases of the feasible domain. However, it can happen that the

solution at some point leaves the current boundary of the feasible domain before the end of the

period is reached. In this case, one cannot find a closed periodic solution along this boundary, but

one has to switch to the corresponding canonical system of the next feasible boundary to end up

with a periodic solution existing of several arcs. Therefore, a multi-point boundary value problem

has to be solved. At each point of time where the constraints of the currentregion are violated, a

switch to the proper region happens, meaning that the corresponding canonical system is used to

continue the solution. Forn switching timesτ1, . . . ,τn and the boundary pointsτ0 andτn+1, which

satisfy

τ0 := 0< τ1 < τ2 < · · ·< τn−1 < τn < 1=: τn+1,

n+ 1 arcs have to be calculated for which the continuity of the solution with respect to time at
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each switch has to be guaranteed. We introduce an index

ai =







1, for the fossil region,

2, for the mixed region,

3, for the renewable region,

(2.23)

which distinguishes between the canonical systems for the three boundarycases of the feasible

domain described in (2.17)-(2.22) for each arci with i = 1, . . . ,n+1. In what follows, we use for

simplicity the notation

K̇Si (t) = f KS
ai
(t,KSi (t),λi(t),µ3i (t)), t ∈ [τi−1,τi ], (2.24)

λ̇i(t) = f λ
ai
(t,λi(t),µ1i (t)), t ∈ [τi−1,τi ], (2.25)

for n switches along the periodic solution,i = 1, . . . ,n+1, andai ∈ {1,2,3}. For the corresponding

canonical system at arci, it has to hold that

ai 6= ai−1, (2.26)

|ai −ai−1| = 1, (2.27)

which means that switches only can happen between neighboring regions inthe sense that only

one control condition changes at the switch. For the numerical solution of the system, for each arc

i we use a time transformation so that it can be solved with fixed time intervals. This means that,

in order to solve a system of equations as in (2.24)-(2.25),

ẋ(t) = f (t,x(t)), t ∈ [τi−1,τi ], i = 1, . . . ,n+1, τ0 = 0, τn+1 = 1,

we are looking for a time transformationt = T(s) so that

ẏ(s) = f̃ (s,y(s)), s∈ [i−1, i], with y(s) = x(T(s)).

It turns out that the linear transformation

T(s) = (τi − τi−1)(s− i)+ τi (2.28)
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satisfies the required conditions. Hence, in terms of the original dynamics thisyields

ẏ(s) = ẋ(T(s)) =
dx(T(s))

ds
=

dx(T(s))
dT(s)

dT(s)
ds

= f (T(s),y(s))(τi − τi−1).

Using this transformation, we have to solve fori = 1, . . . ,n+1, j = 1, . . . ,n, s∈ [i−1, i],

τ0 = 0, τn+1 = 1 the multi-point boundary value problem

K̇Si (s) = (τi − τi−1) f KS
ai
(T(s),KSi (s),λi(s),µ3i (t)), (2.29)

λ̇i(s) = (τi − τi−1) f λ
ai
(T(s),λi(s),µ1i (t)), (2.30)

0 =
(
KSj (τ j),λ j(τ j)

)
−
(
KSj+1(τ j),λ j+1(τ j)

)
, (2.31)

0 =
(
KSn+1(1),λn+1(1)

)
− (KS1(0),λ1(0)) , (2.32)

0 = c(a j ,a j+1). (2.33)

Equation (2.31) ensures, that the continuity of the state and the costate with respect to time at each

switch is given. As the aim is to find a periodic solution, Equation (2.32) demands that the starting

and the end point coincide. Equation (2.33) finally guarantees that the controls are continuous

with respect to time as well. This condition is dependent on the involved regionsas well as on the

direction of the switch and forj = 1, . . . ,n is given as

c(a j ,a j+1) =







λ j(τ j)−b= 0

ES(KSj (τ j),τ j)−E = 0






if {a j ,a j+1} ∈







{{1,2},{2,1}}

{{2,3},{3,2}}






.

The periodic solution that solves this boundary value problem then is givenby

(K∗
S(t),λ ∗(t)) =

((
K∗

S1
(t),λ ∗

1 (t)
)

0≤t<τ1
,
(
K∗

S2
(t),λ ∗

2 (t)
)

τ1≤t<τ2
, . . . ,

(
K∗

Sn+1
(t),λ ∗

n+1(t)
)

τn≤t<1

)

.

2.2.3 Stability

Due to the periodicity int of the canonical system, its solutions have certain properties that are

useful to determine their asymptotic behavior, which we will show in what follows. To do so, we

first introduce the termPoincaŕe map, following the detailed demonstration in Hale and Koçak

(1991). Let

ẋ= f (t,x), (t,x) ∈ R×R
n
, (2.34)
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be the general notation of a 1-periodic canonical system. Further on, letφ(t, t0,x0) be the solution

of (2.34) through the pointx0 ∈ R
n at timet0. Due to the periodicity, it holds that

φ(t +1, t0+1,x0) = φ(t, t0,x0),

φ(t +1, t0,x0) = φ(t, t0,φ(t0+1, t0,x0)).

We now define a scalar mapping that maps the initial valuex0 at timet0 = 0 to the value of the

solutionφ(1,0,x0) given by

P : Rn 7−→ R
n
, x0 7−→ φ(1,0,x0).

This is the so-called Poincaré map associated with the periodic orbit of the system (2.34) and is

also known astime-oneor period map. Obviously, the initial valuex0 then is a fixed point of this

map. Further on, the Poincaré map is monotone and differentiable with non-negative derivative

(see for this Hale and Koçak, 1991). To illustrate the Poincaré map also graphically, the system

(2.34) can be converted into the equivalent pair of autonomous differential equations,

θ̇ = 1, (2.35)

ẋ = f (θ ,x),

where the first equation is periodic with any period and hence can be seenas differential equation

on the unit circleS1, while the second one is 1-periodic and consequently remains unchangedfor

all θ + k with any integerk. Therefore, the orbits and trajectories of (2.35) can conveniently be

viewed along the cylindrical manifoldX = S
1×R

n. When using the coordinates(t(mod1),x) and

considering in this space the 1-dimensional cross-section

Σ = {(t,x) ∈ X : t = 0},

each orbitL0 of the system (2.35) then crossesΣ transversally (cf. Kuznetsov, 1998), which can

be seen in Figure 2.3. As the initial valuex0 is a fixed point of the Poincaré map, the stability

properties ofφ are the same as ofx0. If φ(t,0,x0) is the solution of the system (2.34), with

φ(0,0,x0) = x0, then

M(t) =
∂φ(t,0,x0)

∂x0
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Figure 2.3: Poincaré map.

is the solution of the boundary value problem

ẏ= J(t)y, y(0) = In, (2.36)

where

J(t) =
∂ f
∂x

(t,φ(t,0,x0))

is the Jacobian matrix of the system (2.34) andIn is then-dimensional identity matrix.M(t) is the

fundamental matrix of the system (2.36) and is given by

M(t) = eJ(t)
.

The differential equation in (2.36) is also called thelinear variational equationabout the solution

φ(t,0,x0), as it describes the system of a perturbationy(t) of the periodic solution,

x(t) = φ(t,0,x0)+y(t).

Differentiating the Poincaré mapP(x0) = φ(1,0,x0) with respect tox0 finally yields the Jacobian

of the Poincaŕe map,

JP =
∂P
∂x0

(x0) =
∂φ(1,0,x0)

∂x0
= M(1) = eJ(1)

.
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Consequently, the perturbationy(t) decreases if all eigenvaluesξ1, . . . ,ξn of JP are within the unit

circle, |ξ |< 1, which implies that the solutionφ(t,0,x0) is asymptotically stable. Further on, the

eigenvalues are independent from the starting valuex0, the periodic orbitL0, andΣ. One can see

that these eigenvalues coincide with the ones of the matrixM(1), which is called themonodromy

matrix. ξ1, . . . ,ξn are also referred to as theFloquet multipliers, and the fundamental matrix can

be represented in the so-calledFloquet form

M(t) = eRtC(t),

whereC(t +1) =C(t) holds andR∈ C
n×n is a constant matrix whose eigenvalues are known

as thecharacteristic exponentsand the Floquet multipliers are given by the eigenvalues of the

matrixeR. For autonomous problems, the monodromy matrix always has 1 as eigenvaluewhich is

called thetrivial Floquet multiplier. The reason for this is that the tangent vector on the periodic

orbit atx0 is an eigenvector of the monodromy matrix with eigenvalue 1 (see Grass et al., 2008).

The same applies also for non-autonomous problems if the canonical systemis transformed to the

(n+1)-dimensional autonomous system of (2.35). Then, also here perturbations along the periodic

orbit have eigenvalue 1 and the eigenvalues of the monodromy matrix are given by 1,ξ1, . . . ,ξn

(see Guckenheimer and Holmes, 1990). If the trivial multiplier is the only eigenvalue of unity,

the periodic solution is also hyperbolic, which implies that its stability can be determined from

the linearization of the Poincaré map and hence from the remainingn eigenvalues (see Hale and

Koçak, 1991).

In order to analyze the dynamic behavior of an obtained periodic solutionΓ(t) of the canonical

system (2.12)-(2.13) with period length 1, we therefore calculate the monodromy matrix as the

fundamental matrix solution of the variational equation

ẏ = J(t)y, (2.37)

y(0) =

(

1 0

0 1

)

,

whereJ(t) is the Jacobian matrix evaluated at the periodic solutionΓ(t),

J(t) =





∂ f KS

∂KS

∂ f KS

∂λ
∂ f λ

∂KS

∂ f λ

∂λ



(Γ(t)) .

For the case of mixed as well as renewable energy supply in the current model, this matrix reads
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as

J(t) =

(

−δS
1
2c

0 r +δS

)

.

Solving the differential equation in (2.37) yields the solution matrix, and therefore the monodromy

matrix

M(1) = eJ(1) =




e−δS er+δS−e−δS

2c(r+2δS)

0 er+δS



 .

For the case where only fossil energy is used, the Jacobian matrix readsas

J(t) =

(

−δS 0

0 r +δS

)

,

which yields the monodromy matrix

Y = M(1) = eJ(1) =




e−δS 0

0 er+δS



 .

Note that in both casesJ(t) only depends on parameters and therefore is independent of the peri-

odic solutionΓ(t). We get for both monodromy matrices the eigenvalues

ξ1 = e−δS, ξ2 = er+δS,

where the corresponding eigenvectors are given by

v1 =

(

1

0

)

, v2 =





1
2c(r+2δS)

1



 ,

in the mixed and renewable case, and by

v1 =

(

1

0

)

, v2 =




0

1



 ,

in the fossil case. The eigenvalues of the monodromy matrix reflect the stabilityof the periodic

solution. Letξi , i = 1, . . . ,n be the eigenvalues of the monodromy matrix and let

n+ := {i : |ξi |< 1}, n− := {i : |ξi |> 1},
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be the sets of eigenvalues indicating stable (n+) and unstable (n−) directions, a periodic solution

Γ(t) is called ofsaddle-typeif

|n+||n−|> 0

holds, which means that at least one of each type has to exist. If|n−|= 0, the periodic solution is

unstable (see Grass et al., 2008). As 0< δS< 1 andr +δS> 0 always holds, the two eigenvalues

satisfyξ1 = e−δS < 1 andξ2 = er+δS > 1. Due to the fact that the Jacobian matrix and therefore

also the monodromy matrix is independent of the state and the control variables, this result implies

that every periodic solution that we can find within one of the boundary regions is of saddle-

type. Further on, as no eigenvalueξi = 1, i ∈ {1,2} occurs, it even is a hyperbolic cycle, which

guarantees that the behavior of the system near this periodic solution can be fully described by its

linearization.

2.2.4 Numerical Continuation of Optimal Paths

In order to calculate a trajectory starting at an initial capital stockKS0, converging towards the

optimal long-run periodic solution and lying completely within one of the boundaries of the feasi-

ble domain, a numerical continuation algorithm is needed. LetΓ(t) = (K∗
S(t),λ ∗(t)) be a periodic

solution of the model, then the goal is to find a solution path(KS(t),λ (t)) which satisfies

0 = KS(0)−KS0, (2.38)

0 = F ′

((

KS(Tp)

λ (Tp)

)

−

(

K∗
S(0)

λ ∗(0)

))

, (2.39)

where the matrixF is spanning the orthogonal complement to the stable eigenspace of the periodic

solution (see Grass, 2012) andTp is the truncation time of the path. The condition in (2.39) guar-

antees that the solution ends on the linearized stable manifold to which the vectorF is orthogonal,

cf. Figure 2.4 (for a more detailed theory on manifolds see Carr, 1982). Given the eigenspace

determined in Section 2.2.3, the orthogonal complement to the stable eigenspacethat is needed

for the boundary value problem described in (2.38)-(2.39) is then calculated as

F =

(

0

1

)

.

We normalize the time interval from[0,Tp] to [0,1]. Similar to the transformation we have
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Figure 2.4: The stable eigenspace of the optimal long-run periodic solution,the orthogonal com-
plement spanned byF , and a starting solution path starting atK1

S(0) = K1
S0

.

used in Section 2.2.2, we here set

T(s) = Tp s, s∈ [0,1], (2.40)

in order to transform a system of the form

ẋ(t) = f (t,x(t)), t ∈ [0,Tp],

to the new system

ẋ(s) =
dx(T(s))

ds
= Tp f (T(s),x(s)), s∈ [0,1].

To find a solution path that satisfies (2.38)-(2.39), the periodic solution is continued stepwise so

that, after a finite number of steps, the target valueKS0 is reached. Starting with the initial value

K1
S0
= K∗

S(0) yields the trivial solutionΓ(t) = (K∗
S(t),λ ∗(t)), which is used as starting solution.

Assume that we haveN steps, then at each stepn= 1, . . . ,N we have to find a solution path

(Kn
S(t),λ n(t)) so that

0 = Kn
S(0)−Kn

S0
, (2.41)

0 = F ′

((

Kn
S(1)

λ n(1)

)

−

(

K∗
S(0)

λ ∗(0)

))

. (2.42)
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A simple strategy to deduce from one starting point(Kn−1
S (0),λ n−1(0),Kn−1

S0
) a prediction of

the next starting point(Kn
S(0),λ n(0),Kn

S0
) is given by linear interpolation (Euler method),







K̂S
n
(0)

λ̂ n(0)

K̂n
S0







=







Kn−1
S (0)

λ n−1(0)

Kn−1
S0







+hn−1vn−1, with ||vn−1||= 1,

wherehn−1 is the(n−1)st step width andvn−1 is the tangential vector which can be approximated

by the secant vector

vn−1 ≈
1

hn−1













Kn−1
S (0)

λ n−1(0)

Kn−1
S0







−







Kn−2
S (0)

λ n−2(0)

Kn−2
S0












.

As at each step the system has 3 unknowns (Kn
S(0), λ n(0), Kn

S0
) but only 2 equations, it is thus

under-determined. Therefore, an additional equation

g(Kn
S(0),λ n(0),Kn

S0
) = 0,

is needed. One possibility is to set

g(Kn
S(0),λ n(0),Kn

S0
) = Kn

S0
− K̂n

S0
,

which means that the predicted target valueK̂n
S0

and consequently alsoKn
S(0) is fixed and the

correspondingλ n(0) has to be found. In geometric terms, this means that a solution is searched

along a 1-dimensional hyperplane which is orthogonal to the chosenKS-coordinate and that this

solution is given by the intersection point of this hyperplane and the solution path. This algorithm

works as long as the solution path is not bending back, as in this case the Jacobian matrix of the

enlarged system is singular in this point. This problem gets obvious in Figure 2.5a. Having this

drawback in mind, we use a slightly adapted version of this algorithm by searching for a solution

along a hyperplane which is not orthogonal to theKS-coordinate but to the secant vectorvn instead,

and runs through the predicted point(K̂S
n
(0), λ̂ n(0), K̂n

S0
). Formally, this is given by the equation

g(Kn
S(0),λ n(0),Kn

S0
) = v′n−1













K̂S
n
(0)

λ̂ n(0)

K̂n
S0







−







Kn
S(0)

λ n(0)

Kn
S0












.
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(a) (b)

Figure 2.5: Algorithm where a solution is searched along a hyperplane orthogonal to(a) theKS-
coordinate,(b) the tangential vector. The latter one allows back-bending of the solution path.

With this method, the Jacobian matrix of the enlarged system does not further get singular and,

hence, back-bending of the solution path causes no problems, see Figure 2.5b. To control the step

width hn, we use simple step width regulation, which means that the step width depends onthe

number of Newton iterations. If this number is high, the step width is reduced, ifit is low, the step

width is increased, and if it is moderate, the step width does not change.

To sum up, we solve at each step the following boundary value problem for s∈ [0,1]:

K̇S(s) = Tp f KS(T(s),KS(s),λ (s),µ3(s)),

λ̇ (s) = Tp f λ (T(s),λ (s),µ1(s)),

0 = Kn
S(0)−Kn

S0
,

0 = F ′

((

Kn
S(1)

λ n(1)

)

−

(

K∗
S(0)

λ ∗(0)

))

,

0 = v′n−1













Kn−1
S (0)

λ n−1(0)

Kn−1
S0







+hn−1vn−1−







Kn
S(0)

λ n(0)

Kn
S0












.

The solution at theN-th step yields the path leading from the initial stateKS0, if feasible, into the

optimal long-run periodic solution.
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2.3 Results

For the numerical analysis we use the parameter values summarized in Table 2.1. Figure 2.6 shows

Interpretation Parameter Value Interpretation Parameter Value
Investment costs b 0.6 Depreciation rate δS 0.03
Adjustment costs c 0.3 Degree of efficiency η 0.2
Energy demand E 2000 Maximal radiation increment ν 4.56
Fossil energy price pF 0.08 Minimal radiation in winter τ 0.79
Discount rate r 0.04

Table 2.1: Parameter values used for the numerical analysis.

the optimal long-run periodic solution that corresponds to the case with both types of energy used

to cover the energy demand. The black arrow marks the starting point in winter. Here, global

radiation is weak and therefore the benefit of the capital stock with respect to renewable energy

generation is low. Also investments are kept on a low level. However, as global radiation goes

up in spring and the benefit of the capital stock increases, investments increase as well in the first

quarter of the year in order to accumulate capital. The capital stock and the renewable energy

generation then grow and reach a peak during summer which coincides with the maximum of

global radiation. Note that investments during the second quarter of the year already decline again

to stop the increase of the capital stock at this peak. In the third quarter of the year, also the

capital stock decreases and renewable energy generation goes down. Finally, in winter, increasing

investments let the capital stock level out at its initial value.

Figure 2.7 shows a phase portrait in the state-control space for this periodic solution. The

trajectories (gray) lead cyclically into the periodic solution (black), where the left one starts at an

initially lower and the right one at an initially higher capital stock. Along the left path one can see

that the periodical investments lead to accumulation of the capital stock over time.However, to

understand this fluctuating investments in more detail, one has to distinguish between investments

for acquisition and investments for maintenance effort. Remember that we have included depreci-

ation in the state equation in (2.1), so over time maintenance activities are necessary to keep the

capital in a good condition. Figure 2.8 shows this aspect in more detail. It depicts the ratio of de-

preciation and total investments to illustrate maintenance activities. While at the beginning of the

path starting at an initially lower capital stock almost all investments are used to accumulate cap-

ital, more and more is invested relatively in maintenance the closer the path comes tothe optimal

long-run periodic solution, in which investments and depreciation are perfectly balanced. Along
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Figure 2.6: Periodic solution (left box), time paths for investments and capitalover one year
(two boxes in the middle) and renewable energy generation (right box) for a fossil energy price
pF = 0.08.

the path starting at the initially higher capital stock, the investment path follows exactly the oppo-

site direction. Here, the initial capital stock is higher than optimal, so no investment for acquisition

are made along the whole path and all investments are used for maintenance only. However, as

the capital stock should decline towards the optimal level, investments are lowerthan depreciation

(underinvestments) and full compensation of depreciation is reached onlyin the optimal long-run

periodic solution.

Considering the proportions of fossil and renewable energy that are used in this scenario to

cover the given energy demand, Figure 2.9 shows that the vast majority ofthe demand is covered

by fossil energy and that the maximal contribution of renewable energy for this parameter set is

very low at about 0.3% during summer only. This comes due to the fact that fossil energy with

pF = 0.08 is comparably cheap and, hence, high investments in renewable energyare too costly

and therefore not worthwhile.
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2.4 Sensitivity Analysis

The results of the scenario presented in Section 2.3 have shown that for the parameter set of Ta-

ble 2.1, the contribution of renewable energy to cover the exogenous energy demand is very low.

These results immediately lead to the question, which mechanisms could foster renewable energy

generation. The fossil energy price is certainly one of the factors that may induce a higher use of

renewable energy. As long as the costs for importing fossil energy are low, investments in renew-

able energy capital are not very profitable. Therefore, the question iswhether an increase in this

price would lead to higher investments in renewable energy capital and, further on, whether there

exists a price limit at which fossil energy is so expensive that the whole demand is covered only

with renewable energy. Considering the interaction of technological improvements for discovery

methods of new fossil resource reservoirs on the one hand and for extraction methods on the other

hand, it is unclear how long fossil resources will be available for energy generation in the future.

Therefore, scarcity alone cannot be seen as the driving force for an increasing fossil energy price.

But considering the historical development as well as the aspect that enforced climate mitigation

policies will sooner or later make fossil energy more costly, an increasing fossil energy price seems

to be a reasonable assumption.

The second aspect that is supposed to have a positive effect on renewable energy generation is

of course the degree of efficiencyη . Technological progress driven by research and development

will possibly enable a more efficient renewable energy generation in the future. Therefore, an

interesting question is how the optimal portfolio in our model changes if renewable energy is

generated with a higher efficiencyη . Could this increase possibly compensate for the higher

investment costs?

To investigate these two aspects we conduct a sensitivity analysis in this section by solving the

optimal control problem for varying parameter values.

2.4.1 Fossil Energy PricepF

First, we focus on the impact of an increasing fossil energy pricepF on the optimal portfolio

composition. To do this, we start with a very low fossil energy price and increase it step by step,

using numerical continuation to investigate how the optimal long-run solution changes. The results

are shown graphically in Figures 2.10-2.14 for increasing values ofpF . In each figure, the box on

the left hand side shows the solution in the state-control space. The two boxes in the middle depict

the time paths for investmentsIS(t) and capital stockKS(t), respectively, and the box on the right

hand side illustrates the composition of the energy portfolio with renewable energy shown as gray
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line, fossil energy as black line, and the energy demand as black dashedline.

To begin with, we solve the problem for a fossil energy pricepF = 0.01. Note that this price

is even lower than in the previous scenario of Section 2.3. Hence, fossil energy here is so cheap

that nothing at all is invested in renewable energy capital and the whole energy demand is covered

by fossil energy in the long run. This corresponds to the case in Section 2.2.1 which we called

the fossil solution. As one can see in Figure 2.10, the optimal long-run solution in KS(t) and

IS(t) coincides with the origin as no investments are made over the year and therefore no capital

stock is accumulated. Note that we assume an initial capital stock of zero, so that no investments

imply no renewable energy generation. But even in case of an initially positive capital stock, zero

investments would lead toKS(t)≈ 0 in the long run as well. The fossil energy amount fully covers

the energy demand in this scenario and therefore, these two lines coincide inthe right box of

Figure 2.10, while renewable energy generation is constantly zero.
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Figure 2.10: Solution for a fossil energy pricepF = 0.01: Fossil solution over the whole year
with zero investmentsIS(t) = 0, zero capital stockKS(t) = 0, no renewable energy generation,
and hence fossil energy imports ofEF(t) = E.

If the fossil energy price is slightly increased, however, renewable energy is used as additional

energy source for the portfolio. AtpF = 0.06785 an interesting aspect can be observed. As al-

ready mentioned in Section 2.3, the benefit of the capital stock with respect torenewable energy

generation is the highest in summer, when global radiation reaches its maximum. Due to the still
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very low fossil energy price, however, a too high capital stock outside of this period is not cost-

effective. Therefore, it is only worthwhile to invest in renewable energy capital shortly before the

summer period to slightly increase renewable energy capital (or to do some maintenance to keep it

in a good condition) in order to optimally utilize the high global radiation at this time. During the

rest of the year, however, investments are again set to zero and the demand is almost completely

covered by the cheaper fossil energy. Hence, for this fossil energy price we find a periodic solu-

tion that consists of three arcs, two with zero investments corresponding to the fossil case, and one

with positive investments corresponding to the mixed case. This is shown in Figure 2.11, where

the black line depicts the arc of the mixed solution with both types of energy usedfor the coverage,

and the black dashed line corresponds to the arcs where no investments are made and almost the

whole demand is covered by fossil energy.6 As the contribution of renewable energy generation

to cover the given energy demand still is very low, the energy balance looks quite similar to the

one in Figure 2.10, where the black dashed line for the energy demand andthe black line for the

fossil energy amount have been identical. Although they are pretty close also in this case, they

are numerically not equal as the zoom in Figure 2.11 shows. The price interval for which this

mixed-arc-solution exists is very small,pF ∈ [0.06785,0.06897].

For a higher fossil energy price, investments are made over the whole year, and they still are

higher shortly before the summer period in order to fully utilize the high global radiation as in

the previous case. Figure 2.12 shows the optimal long-run periodic solutionfor pF = 2.7, which

corresponds completely to the mixed case, meaning that both types of energyare used over the

whole year to cover the demand. In contrast to Figure 2.11, where the renewable energy generation

is so low that it hardly can be seen in the graph, one already can observein Figure 2.12 that the

generation increases with the fossil energy price. More and more investments are made and the

additional fossil energy amount during the summer period is reduced. During the winter period,

however, a high amount of fossil energy is still required due to the low global radiation in this

time.

Increasing the fossil energy price even further leads to an increasedrenewable energy gener-

ation until finally, atpF = 3.9468, it reaches exactly the demand at the peak of global radiation

in summer. At this point, a switch to the complete renewable case happens. Whatis only one os-

culation point at the beginning develops to an interval when the price is increased further. In this

interval, which always is around the point of time of maximal global radiation, the energy demand

6The capital stock of course is not immediately zero if there are no furtherinvestments, but due to the fact that
the capital stock is not very high even during summer and depreciation reduces the stock if there are no investments,
renewable energy generation during the winter months is negligibly low.
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can be covered fully by renewable energy while fossil energy in additionis not further needed.

Figure 2.13 shows this scenario for a fossil energy pricepF = 5.5. At the beginning of the year,

investments increase in order to accumulate enough capital for spring and summer, where global

radiation increases and reaches its maximum. However, as surpluses during summer are not prof-

itable, investments already decrease again during spring in order to avoid atoo high capital stock

during this time. As global radiation still is relatively high in autumn, however, thecapital stock

should also not get too small and, therefore, an increase in investments can be observed over the

summer period. Due to the low global radiation in winter, however, they decrease again in autumn

as a high capital stock is not further profitable there and, finally, at the end of the year they go up

again to accumulate capital for the spring and summer period. Considering theenergy portfolio

in the right box, one can see the surpluses that are generated during thesummer period. As the

possibility of storage is omitted in our approach, these surpluses are lost but the energy supply in

this period is independent of fossil energy. For this scenario we find again a periodic solution that

consists of three arcs, the black parts corresponding to the arcs of the mixed solutions and the gray

one displaying the renewable solution arc in-between.

1959.52
58.4

58.5

58.6

58.7

58.8

58.9

59

59.1

59.2

KS(t)

I
S
(t

) 0 0.5 1
58.4

58.6

58.8

59

59.2

Time t

0 0.5 1

1959.48

1959.52

1959.56

Time t
0 0.5 1

0

500

1000

1500

2000

Time t

IS(t) Energy BalancepF = 5.5

ES(·, ·)

EF (t)

E

KS(t)

Figure 2.13: Periodic solution for a fossil energy pricepF = 5.5 with three arcs: Mixed solutions
with positive investmentsIS(t) and positive fossil energy importsEF(t) (black solid lines), and
renewable solution with positive investmentsIS(t) and zero fossil energy importsEF(t) = 0 (gray
solid line).



CHAPTER 2. THE BASIC MODEL 43

The interval in which renewable energy is sufficient to cover the energydemand increases, the

further the fossil energy price goes up. However, it turns out that thishappens at a decreasing

speed, and during winter fossil energy still is necessary to cover the shortfalls, even if the fossil

energy price is already very high. Figure 2.14 shows the optimal long-run solution for a really

high fossil energy pricepF = 10. One can see that, despite the high surpluses in summer, there is

only little improvement in renewable energy generation in winter.
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renewable solution with positive investmentsIS(t) and zero fossil energy importsEF(t) = 0 (gray
solid line).

To give an insight into how the costs over the whole period vary with the obtained portfolio

compositions of different price scenarios, Figure 2.15 shows the occurring costs for the solutions

at pF = 0.01, pF = 0.068,pF = 2.7, andpF = 5.5. Note that the cost function

C(EF(t), IS(t), t) = IS(t)
(

b+cIS(t)
)

+ pFEF(t)

evaluated along the optimal long-run periodic solution is considered here, and not the accumulated

and discounted costs over the whole time period, as it is given in the objectivefunction. The

advantage of this analysis is that the changes in the costs of the portfolio composition over the

seasons can be shown in more detail. One can see that the pure fossil portfolio at pF = 0.01
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compared to the fossil and mixed portfolio atpF = 0.068 hardly differs in the annual costs as

fossil energy is very cheap and the contribution of renewable energy generation is too low to cause

a remarkable reduction of costs during the summer period. For the portfolio at pF = 2.7, this is

significantly different. Here, a strong decline of the costs during summer can be observed as the

renewable energy generation compensates for the more expensive fossil energy amount. On the

other side, it also points out how expensive the winter gets due to the low global radiation and

the high fossil energy price. This is even worse for the portfolio atpF = 5.5. However, during

summer here the costs drop down even below the cost curve of the portfolioat pF = 2.7, as no

fossil energy is used anymore. This strong reduction underlines on the one hand the cost-reducing

potential of renewable energy if supply is sufficient, while on the other hand, however, it illustrates

the strongly reduced benefit due to the high costs in winter where supply is too low.
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Figure 2.15: Development of the cost function along the optimal long-run periodic solutions for
different fossil energy price scenarios.

2.4.2 Degree of Efficiencyη

To investigate how an increase in efficiency could change the portfolio composition, we conduct

the analogous analysis as in the previous section with respect to the degreeof efficiencyη . For

that purpose, we let the fossil energy price be fixed atpF = 2 and start with an initially low

degree of efficiencyη = 0.1, which is then increased step by step to demonstrate the changes in
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the portfolio composition. The results of this analysis can be seen in Figure 2.16. Figure 2.16a

shows that even for a comparably high fossil energy price, a low efficiency degree of 10% makes

investments in renewable energy capital not profitable. As the output of thegeneration is too low

to compensate for the high investment costs, fossil energy is still used to cover the major share of

the energy demand. If the degree of efficiency is increased up to 25%, as shown in Figure 2.16b, an

improvement in renewable energy generation can be observed. While fossil energy still costs the

same, the investments into renewable energy capital have become more worthwhile as the output

of generation has increased. Finally, Figure 2.16c shows the result foran efficiency of 40%, which

is already very high for photovoltaic cells. One can see, however, that this improvement changes

the situation completely. For this case we can find again a periodic solution consisting of three

arcs, where the arcs in winter and spring correspond to the mixed case and the one in summer

to the renewable case with renewable energy being sufficient for the coverage of the demand.

This extreme scenario was chosen to demonstrate the changes in the solution and to underline the

aspect that improvements in renewable energy technologies’ efficiency indeed could play a major

role along the path towards a more sustainable energy generation in the future.

2.4.3 Combined Effects

The previous two sections have illustrated the impact of a change in the fossilenergy price as well

as in the efficiency of renewable energy technology on the optimal long-run solution. However,

a further interesting aspect is what happens with the portfolio if both changes happen simulta-

neously, and whether these two effects reinforce or dampen each other. In this section we will

focus on this 2-dimensional parameter variation. The sensitivity analysis withrespect to the fos-

sil energy pricepF has shown that there exist price levels at which the optimal long-run solution

changes from a pure one-arc periodic solution to a periodic solution consisting of several arcs.

At the first price boundary, the pure fossil solution changes to a mixed-arc solution with three

arcs, two corresponding to the fossil and one to the mixed case. At the second one, the optimal

long-run periodic solution lies completely at the feasible boundary of the mixedcase, while at the

third one, the pure mixed solution changes to a mixed-arc solution with two arcs corresponding

to the mixed and one to the renewable case. For the analysis of the combined effects we start at

a very low efficiencyη = 0.05, increase it step by step, and derive at each efficiency level these

price boundaries. Figure 2.17 illustrates these results, where the black solid line describes the
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price boundary from the fossil to the mixed solution,7 and the gray solid line the one from the

mixed solution to the combined mixed and renewable solution. For a low level ofη it can be seen

that the region for the mixed solution is very large,8 and the increase in the fossil energy price

that would be necessary to reach the mixed/renewable area would have to be extremely high. As

renewable energy technology here is not efficient enough, also the fossil area is comparatively

large. The higher efficiency gets, however, the smaller is this area and thelower the necessary

price increase has to be to make using renewable energy as additional source profitable. Also the

price boundary for the transition to the mixed/renewable case decreases with efficiency. As the

output of the renewable energy capital grows, renewable energy getsalready sufficient at a lower

fossil energy price. These results show that the two effects reinforceeach other, which underlines

the importance of financial and technological incentives for a cleaner energy supply.
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Figure 2.17: Combined effects with changes in both the fossil energy priceas well as efficiency.

It, of course, does not come at a surprise that an increase in the fossilenergy price as well as an

increase in efficiency improve the profitability of investments into renewable energy capital within

the considered portfolio. However, this sensitivity analysis shows the extent of these changes and

7Note that of course there is in fact also the boundary from the fossil case to the combined case with a fossil and a
mixed arc, but as the price interval in which this transition happens is so small, we omitted this boundary in the figure
for the sake of clarity.

8For the sake of lucidity we had to cut off the second price boundary for these low levels as they are really high. For
the initial value ofη = 0.05 it lies abovepF = 60.
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how they interact. As renewable energy technology has high investment costs, its competitiveness

strongly depends on the price of conventional energy types. These results underline that for ex-

ample penalties on CO2 intensive technologies indeed could be a strong incentive for renewable

energy investments, as they increase this price and therefore support the renewable technology to

penetrate the market. Further on, simultaneous R&D activities might improve the efficiency of

the renewable energy technology and could enforce this aspect to accelerate the process towards a

more sustainable energy generation in the future.

2.5 Fluctuating Energy Demand

So far we have postulated that the energy demand is well known and constant over the whole year.

This, of course, is a strong simplification. In reality, the proper prediction of the exact energy

amount that has to be supplied is one of the biggest challenges of energy trading companies due

to the strong fluctuations between different hours of the day but also between seasons. In middle

and northern European countries for example, the energy demand during the winter months can

be one and a half times as high as the one during summer due to heating, lighting, drying laundry,

etc. This behavior, of course, is exactly reverse to the supply of globalradiation. In countries of

the south, however, an opposite situation can be observed. While the wintermonths there are not

so cold and hence the necessary heating effort is very low, the summer months are so hot that air

conditioning strongly increases the energy demand during this time. This period of high demand

coincides with the high supply of global radiation, which makes it easier to cover it with renewable

energy. Due to the impact of climate change on temperature increase, however, some areas with

a winter peak regime tend to slowly approach a summer peak regime instead, seeIPCC (1998).

Consequently, along the transition the demand can also be a mixture of these twoshapes where

both, a summer peak due to air conditioning and a winter peak due to heating, occur. Also in

Austria, where the winter peak is definitely dominant, the above-average temperatures in summer

especially in recent years have induced a small air conditioning summer peakas well.

To account for such fluctuations in energy demand we extend the model presented in (2.2) by

including an energy demand that is seasonally fluctuating. We still omit, however, daily fluctua-

tions. To model the varying energy demand with a deterministic function, we usea cosine function

given by

E(t) = Ea+
Ea

3
cos(2tπ)

for a country with the peak of energy demand during winter, whereEa is considered to be the
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average annual demand for which we use the level of the fixed energy demand of the previous

approach. The new demand is shown in Figure 2.18a. We further use

E(t) = Ea−
Ea

3
cos(2tπ)

for a country with the peak of energy demand during summer as shown in Figure 2.18b, and finally

E(t) = Ea+
Ea

3
cos(4tπ)

for a country with both peaks as shown in Figure 2.18c.
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Figure 2.18: Seasonally fluctuating energy demand with(a) a peak during the winter period,
(b) a peak during the summer period,(c) both peaks.

Applying the same analysis as in Section 2.4, it turns out that also in case of a fluctuating

energy demand one can find a time interval during summer where renewable energy is sufficient

to cover the demand. However, this happens at different fossil energy prices as compared to our

results in Section 2.4. Figure 2.19 shows the result for a country with a higher demand in winter.

One can see that during the summer period the demand is so low that already ata comparatively

low fossil energy price the energy demand is reached with renewable energy. During winter,

however, the peak is so high that the required amount of fossil energy ishuge even if fossil energy

gets very expensive, due to the low global radiation in these months.

In contrast to this, Figure 2.20 shows the result for a country in the south with a peak during

summer. For the same fossil energy price as used for Figure 2.19, one can easily see that here

renewable energy is far away of being sufficient for the very high demand. Therefore, no such

interval of a pure renewable solution exists for this price. During winter, however, the additional

amount of fossil energy is comparatively low as the demand here goes down.
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Investigating the case with two demand peaks yields a very interesting case. Figure 2.21 shows

the optimal long-run periodic solution for this approach for a fossil energy price pF = 7.5. As one

can see, we no longer have a solution that consists of three arcs but instead of even five arcs.

Starting in winter, the peak caused by heating requires a high amount of fossil energy to cover

the demand while renewable energy generation only contributes little, as it alsois the case in the

other two scenarios. In spring, the energy demand goes down and, as inthe countries having only

the winter peak, at some point of time renewable energy gets sufficient andthe system changes to

the solution using only renewable energy. However, this does not persist for long as the demand

at the summer peak is too high to let renewable energy remaining to be sufficient, so again fossil

energy is needed to cover the shortfalls. In autumn, the summer peak declines again and, as for the

countries having only the winter peak, renewable energy generation is sufficient here. But similar

to spring, the winter peak ends this interval of sufficiency and fossil energy is necessary again to

cover the high demand.
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Figure 2.19: Periodic solution for a fossil energy pricepF = 4 with three arcs, for a seasonally
fluctuating energy demand with a peak during the winter period: Mixed solutions with positive in-
vestmentsIS(t) and positive fossil energy importsEF(t) (black solid lines), and renewable solution
with positive investmentsIS(t) and zero fossil energy importsEF(t) = 0 (gray solid line).
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2.6 Summary

In this chapter we have investigated the impact of the fossil energy price onthe optimal portfolio

composition consisting of fossil and renewable (solar) energy in a small country. We postulated

that the supply of the renewable resource is varying seasonally, and theenergy demand is well

known and constant over the year in the first approach, while in the second one it is assumed to be

seasonally fluctuating.

The sensitivity analysis of this non-autonomous optimal control problem with respect to the

fossil energy pricepF has shown that a higher fossil energy price indeed is an incentive for more

investments in renewable energy capital. However, an autarkic renewableenergy supply is not

possible, as the global radiation during the winter period is too low to be sufficient, no matter how

high the fossil energy price is. While independence on fossil energy can be achieved during some

time interval in summer in which global radiation is high and even surpluses can be generated, the

shortfalls in winter always have to be covered by fossil energy. The potential of solar energy is

even reduced, if the energy demand is postulated to be fluctuating over the year, either with a peak

in winter or in summer.

These results underline one of the major challenges of renewable energygeneration, which is

given by the non-constant supply as well as the high investment costs which make it difficult to

be competitive with the conventional energy types. In our model approach, these investment costs

were kept constant. However, it is well known that in reality there exist some experience effects,

which positively influence renewable energy generation. This means thatthe more renewable

energy is generated, the lower are the costs necessary for renewableenergy capital. This aspect

will be considered as extension of the model in the next chapter.



CHAPTER 3

The Effect of Learning by Doing in Renewable Energy Generation

As already presented in the introduction in Chapter 1, a common approach to include learning

effects into energy planning decision problems is given by the so-called learning curve. In this

chapter the first extension of the basic model analyzed in Chapter 2 will be considered by includ-

ing a one-factor learning curve into the objective function of the optimal control problem. The

obtained results will show that this change indeed causes a remarkable difference in the optimal

long-run solution of the model.

3.1 The Model

Before we extend the basic model with a one-factor learning curve, we first make some assump-

tions about its functional form. While Equation (1.1) only is defined for an initially installed

capacity ofK0 > 0, we extend this approach by allowing also a complete start-up with renewable

energy, meaningK0 = 0. To do so, we follow Berglund and Söderholm (2006) who present a

learning curve formula without explicitly modeling the initially installed capacity. Further on, we

add an additional termε defining the initial investment costs when the cumulative capital stock is

zero, as done in Hartley et al. (2010). The new learning curve then reads as

Ct =C0(K+ ε)−α
.

The cumulative capacity in our model approach is reflected by the capital stock KS(t). Applying

this on the cost function of the model approach presented in Chapter 3 yields the new cost function

Ct = IS(t)(b+cIS(t))(KS(t)+ ε)−α
.
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This specification further implies that a rapid increase in the renewable energy capital stock is

costly, which is relevant for the speed of the economy’s shift to renewable energy generation (cf.

Rasmussen, 2001).

The extended version of the model (2.2) then reads as

max
EF (t), IS(t)

∫ ∞

0
e−rt

(

− IS(t)
(

b+cIS(t)
)(

KS(t)+ ε
)−α

− pFEF(t)

)

dt (3.1)

s.t.: K̇S(t) = IS(t)−δSKS(t), (3.1a)

EF(t)+ES
(
KS(t), t

)
−E ≥ 0, (3.1b)

ES
(
KS(t), t

)
=
(
ν sin2(tπ)+ τ

)
KS(t)η , (3.1c)

EF(t), IS(t)≥ 0. (3.1d)

3.2 Solution

3.2.1 Canonical System and Necessary First Order Conditions

As for the model in the previous approach we use the maximum principle for infinite time horizon

problems (cf. Grass et al., 2008) and consider the Lagrangian

L (KS,EF , IS,λ ,λ0,µ1,µ2,µ3, t) = λ0
(
−(bIS(t)+cIS(t)

2)(KS(t)+ ε)−α − pFEF(t)
)

+λ (t)(IS(t)−δSKS(t))+µ1(t)(EF(t)+(ν sin2(tπ)+ τ)KS(t)η −E)+µ2(t)EF(t)+µ3(t)IS(t),

with λ (t) ∈ R being, again, a continuous and piecewise continuously differentiable function and

a constantλ0 ≥ 0, so that for allt ≥ 0

(λ0,λ (t)) 6= 0,

L (K∗
S,E

∗
F , I

∗
S,λ ,λ0,µ1,µ2,µ3, t) = max

EF (t), IS(t)
L (K∗

S,EF , IS,λ ,λ0,µ1,µ2,µ3, t),

and satisfying the limiting transversality condition in (2.8). As before,µ1(t),µ2(t), and µ3(t)

are the piecewise continuous Lagrange multipliers for the mixed-path constraint in (3.1b) and

the non-negativity constraints, respectively. As the only difference between this model and the

one in Chapter 2 lies within the objective function, we have to consider the samecomplementary

slackness conditions as in (2.3)-(2.5), and also Proposition 1 still holds. Hence, we can set for the
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following λ0 = 1 without loss of generality. The necessary first order conditions then read as

∂L

∂ IS(t)
= −b(KS(t)+ ε)−α −2cIS(t)(KS(t)+ ε)−α +λ (t)+µ3(t) = 0 (3.2)

⇔ IS(t) =
(KS(t)+ ε)α(λ (t)+µ3(t))−b

2c
,

λ̇ (t) = λ (t)r −
∂L

∂KS(t)
= (r +δS)λ (t)−α(b+cIS(t))IS(t)(KS(t)+ ε)−α−1

−µ1(t)η
(
ν sin2(tπ)+ τ

)
. (3.3)

Note that in this model approach only the necessary but not the sufficientconditions are con-

sidered to be satisfied as the satisfaction of the sufficient conditions cannot be generally proven.

Consequently, the solutions that we can find are basically extremal but notnecessarily optimal.

Nevertheless, based on the economic interpretation of these solutions and the comparability to the

results of Chapter 2, it makes sense to assume that they are in fact optimal.1 Due to the linearity of

the Lagrangian inEF(t), the optimal fossil energy amount is determined by the switching function

∂L

∂EF(t)
=−pF +µ1(t)+µ2(t).

As the changed costs for renewable energy capital do not affect the fossil costs in the objective

function, Proposition 2 also applies for this approach and, therefore, we only focus on the three

boundary cases of the feasible domain, given by the fossil case with no investments in renewable

energy capital, the mixed case where both types of energy are used for the coverage, and finally the

renewable case where no more fossil energy is needed in addition to renewable energy. Inserting

the corresponding values for the Lagrange multipliers yields the three different canonical systems.

For the fossil case, it is given by

K̇S(t) = −δSKS(t), (3.4)

λ̇ (t) = λ (t)(r +δS)− pFη
(
ν sin2(tπ)+ τ

)
, (3.5)

1Note, however, that∂ 2L

∂ IS(t)2 = −2c(KS(t)+ ε)−α < 0 holds and, consequently, the Lagrangian is at least strictly

concave with respect toIS(t) and the first order condition (3.2) indeed delivers a maximum.
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for the mixed case by

K̇S(t)=
λ (t)(KS(t)+ ε)α −b

2c
−δSKS(t), (3.6)

λ̇ (t)=α(KS(t)+ ε)−α−1
(

b2− (KS(t)+ ε)2αλ (t)2

4c

)

−pFη
(
ν sin2(tπ)+τ

)
+λ (t)(r+δS), (3.7)

and for the renewable case by

K̇S(t) =
λ (t)(KS(t)+ ε)α −b

2c
−δSKS(t), (3.8)

λ̇ (t) = α(KS(t)+ ε)−α−1
(

b2− (KS(t)+ ε)2αλ (t)2

4c

)

+λ (t)(r +δS). (3.9)

3.2.2 Periodic Solution

To find the periodic solutions of this model, we first calculate the instantaneousequilibrium points,

{KIEP
S (t),λ IEP(t)}. In contrast to Chapter 2, they cannot be calculated analytically for this ap-

proach. We therefore use the numerical results as starting solution for theboundary value problem

that has to be solved for the calculation of a periodic solution consisting of one arc. Denoting the

canonical system generally as

K̇S(t) = f KS(t,KS(t),λ (t),µ3(t)),

λ̇ (t) = f λ (t,KS(t),λ (t),µ1(t)),

this boundary value problem reads as

K̇S(t) = f KS(t,KS(t),λ (t),µ3(t)), with KS(0) = KS(1),

λ̇ (t) = f λ (t,KS(t),λ (t),µ1(t)), with λ (0) = λ (1).

Note that in contrast to the approach in Chapter 2,λ̇ (t) here also depends on the stateKS(t).

For the calculation of a periodic solution consisting of several arcs, we use the linear time

transformationT(s) of (2.28) and solve fori = 1, . . . ,n+ 1, j = 1, . . . ,n, s∈ [i − 1, i], and the

switching times as well as the boundary points,

τ0 := 0< τ1 < τ2 < · · ·< τn−1 < τn < 1=: τn+1,
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the multi-point boundary problem

K̇Si (s) = (τi − τi−1) f KS
ai
(T(s),KSi (s),λi(s),µ3i (t)),

λ̇i(s) = (τi − τi−1) f λ
ai
(T(s),KSi (s),λi(s),µ1i (t)),

0 =
(
KSj (τ j),λ j(τ j)

)
−
(
KSj+1(τ j),λ j+1(τ j)

)
,

0 =
(
KSn+1(1),λn+1(1)

)
− (KS1(0),λ1(0)) ,

0 = c(a j ,a j+1),

whereai defines again the region type, see (2.23). The conditions to guarantee thecontinuity of

the controls with respect to time are given forj = 1, . . . ,n as

c(a j ,a j+1) =







(KSj (τ j)+ ε)αλ j(τ j)−b= 0

ES(KSj (τ j),τ j)−E = 0






if {a j ,a j+1} ∈







{{1,2},{2,1}}

{{2,3},{3,2}}






.

3.2.3 Stability

As in Chapter 2, we calculate the monodromy matrix in order to analyze the dynamicbehavior of

the obtained periodic solutions. Determining the Jacobian matrix for the fossil case yields

J(t) =

(

−δS 0

0 r +δS

)

,

which is equal to the one of the model in Chapter 2 and, therefore, also the monodromy matrix is

the same, given by

M(1) = eJ(1) =




e−δS 0

0 er+δS



 , (3.10)

with the eigenvalues

ξ1 = e−δS < 1, ξ2 = er+δS > 1. (3.11)

This implies that also in the current model approach, every fossil solution that can be found is of

saddle-type. Calculating the Jacobian matrix for the mixed and the renewable case yields

J(t) =




−δS+

α(KS(t)+ε)α−1λ (t)
2c

(KS(t)+ε)α

2c

−
α(KS(t)+ε)−α−2(b2(1+α)+(α−1)(KS(t)+ε)2α λ 2)

4c r +δS−
α(KS(t)+ε)α−1λ (t)

2c



 .
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Note that the Jacobian matrix and, therefore, also the monodromy matrix are nolonger indepen-

dent of the periodic solutionΓ(t), as it has been the case in Chapter 2. Consequently, a general

statement on the stability of the mixed and renewable periodic solutions is not possible in this

approach.

3.2.4 Optimal Paths

The goal in this section is, again, to calculate a trajectory that starts at an initialcapital stockKS0

and leads into the considered optimal long-run periodic solution. While in Section 2.2.4 we have

used a secant method where the solution has been searched orthogonallyto the secant vector, we

will here use a more established method calledMoore-Penrose method. The advantage of this

method compared to the previous one is a better tracking of the solution curve,especially if there

are strong changes in direction. Assume again that we haveN continuation steps and therefore

have to solve at each stepn= 1, . . . ,N the system

0 = Kn
S(0)−Kn

S0
, (3.12)

0 = F ′

((

Kn
S(1)

λ n(1)

)

−

(

K∗
S(0)

λ ∗(0)

))

,

as noted in equations (2.41)-(2.42). In Section 2.2.4 we already have mentioned that this system

is undetermined as we have 3 unknowns, (Kn
S(0), λ n(0), Kn

S0
), but only 2 equations and, therefore,

an additional equation is necessary. While this additional conditiong(·) = 0 has been fixed to

calculate the new starting point of the path in Section 2.2.4, the idea of the Moore-Penrose method

is to adapt this function at every Newton iteration along a continuation step of the discretized

system.

For simplicity, let A(x) denote the undetermined equation system in (3.12), and let

xi = (Kn
S(t),λ n(t)) be the point on the curve we are looking for at thei-th step of the continu-

ation process. Hence,

A(xi) = 0

holds. Consider now then-th step of the Newton method used for searching thisxi , which is given

by

Ax(x
n
i )(x

n+1
i −xn

i ) =−A(xn
i ), (3.13)

where subscripts here denote the partial derivative. As the inverse(Ax(xn
i ))

−1 of such an un-

determined problem does not exist, the Moore-Penrose pseudo inversecould be used. With the
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Moore-Penrose method, however, the calculation of this matrix can be avoided by adding an addi-

tional row vector to the matrixAx(xn
i ). Assume that we have the next predicted point on the curve

given by

x̂i = xi−1+hvi ,

whereh is the step width andvi is the tangent vector (possibly approximated by the secant vector),

as used for the continuation process in Section 2.2.4. If we are looking forthe pointxi on the curve

and in addition require that this is the nearest to ˆxi , we have to solve the minimization problem

min
xi

||xi − x̂i ||

s.t.: A(xi) = 0,

which is equivalent to the solution of the system

A(xi) = 0

w′
i(xi − x̂i) = 0,

wherewi is the tangent vector at pointxi . Then-th step of the Newton method then is given by

solving the extended system

(

Ax(xn
i )

(wn
i )

′

)

(xn+1
i −xn

i ) =

(

−A(xn
i )

0

)

(3.14)

(

Ax(xn
i )

(wn−1
i )

′

)

wn
i =

(

0

1

)

. (3.15)

Equation (3.14) yields a solution of (3.13) under the condition that the vectorbetween two such se-

quent solution points of the Newton method,(xn+1−xn), is orthogonal to the vectorwn
i . Equation

(3.15) assures thatwn
i is a tangential vector toxn

i , and the vector product
〈
wn−1

i ,wn
i

〉
= 1 guarantees

that the direction along the curve is sustained and the vector is normalized. Geometrically, with

the Moore-Penrose method a solution ofA(xi) = 0 is searched in a hyperplane that is orthogonal

to the previous tangent vector, calculated in each iteration step, as one cansee in Figure 3.1. Note

that also here the enlarged Jacobian matrix can be inverted and hence back-bending is no problem

neither. For more details on this method see Allgower and Georg (1997) and Dhooge et al. (2006).
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Figure 3.1: One continuation step with Moore-Penrose method (cf. Dhooge et al., 2006).
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3.3 Results

We start the following analysis by setting the parameters as in Table 3.1. In contrast to the results of

Interpretation Parameter Value Interpretation Parameter Value
Investment costs b 0.6 Depreciation rate δS 0.03
Adjustment costs c 0.3 Initial investment costs ε 1
Energy demand E 2000 Degree of efficiency η 0.2
Fossil energy price pF 0.051 Maximal radiation increment ν 4.56
Discount rate r 0.04 Minimal radiation in winter τ 0.79
LD∗ coefficient α 0.25

∗. . . learning by doing

Table 3.1: Parameter values used for the numerical analysis.

Chapter 2, in this approach we can find even multiple periodic solutions for thecurrent parameter

values . One of them corresponds to the fossil case with zero investmentsIS(t) and a fossil energy

amountEF(t) = E. Two other ones correspond to the mixed case with both controls greater than

zero, where one is with high investment and therefore a high capital stock and the second one is

with lower investments and a lower capital stock close to the fossil periodic solution.

As we have shown analytically in equations (3.10) and (3.11), the fossil solution is always of

saddle-type. To investigate the stability of the other two mixed solutions, we calculate the eigen-

values of the monodromy matrix, which shows that the lower mixed solution is an unstable focus,

while the higher one is also of saddle-type. The solutions are shown in Figure 3.2 and, together

with the corresponding eigenvalues, are summarized in Table 3.2. The time-control paths as well

as the time-state paths for the two periodic solutions being of saddle-type are shown in more detail

in Figure 3.3, where Figure 3.3a corresponds to the fossil energy amountEF(t), Figure 3.3b to the

renewable energy investmentsIS(t), and Figure 3.3c to the renewable energy capital stockKS(t).

Note that, also here, the capital stock is slightly fluctuating over the year, similarto the results

obtained in Chapter 2. In fact, forgetting by not doing already occurs during these fluctuations as

maintenance investments are slightly insufficient in the short-term. However, as these fluctuations

are really small, this forgetting process is negligibly small as well.

Summing up, we have two periodic solutions of saddle-type whose areas of attraction are

probably separated by an indifference threshold point induced by the unstable focus in-between.

Indifference threshold points are points in the state space at which the paths leading into two

different optimal long-run solutions have the same objective value. Therefore, at these points one

is indifferent between these solutions. Indifference threshold points are sometimes also referred to
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as DNSS points and originate from Skiba (1978), Sethi (1977, 1979), Dechert (1983) and Dechert

and Nishimura (1983). For more details on indifference threshold points see also Grass et al.

(2008), Kiseleva and Wagener (2010), and Kiseleva (2011).
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Figure 3.2: The three detected periodic solutions for a fossil energy price pF = 0.051 in the state-
control space.

Solution K∗
S(0) E∗

F(0) I∗S(0) Eigenvalues Objective function (in 103)
Fossil 0.0000 2000.00 0.0000 {0.9704, 1.0725} -2.4500
Low mixed 2.0797 1999.67 0.0623 {1.0182+0.0645i, -2.4491

1.0182-0.0645i}
High mixed 30.6739 1995.15 0.9201 {0.9827, 1.0591} -2.4351

Table 3.2: Multiple periodic solutions forpF = 0.051.

3.3.1 Calculation of the Indifference Threshold Point

Whether such an indifference threshold point exists or one of the two periodic solutions of saddle-

type is dominant, therefore has to be analyzed. While this can rather easily bedone for autonomous

optimal control models, the approach for non-autonomous control models isa little bit different.
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Figure 3.3: Time-control paths for the two detected periodic solutions of saddle-type for a fossil
energy pricepF = 0.051 in(a) fossil energyEF(t), and(b) renewable energy investmentsIS(t), as
well as the time-state paths in(c) renewable energy capitalKS(t).
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Let

H(x(t),u(t),λ (t)) = F(x(t),u(t))+λ (t) f (x(t),u(t))

generally define the current value Hamiltonian of an autonomous optimal control model with

infinite horizon wherex(t) are the states,u(t) are the controls,λ (t) are the costates,F(·, ·) is the

instantaneous objective function andf (·, ·) describes the dynamics. Assume that all the necessary

regularity conditions for applying the maximum principle are satisfied, which are the continuity

of the objective function and the dynamics with respect to the controls and to timeand their

continuous differentiability with respect to the states. Let furtherΩ define the feasible domain,

and let

H0(x(t),λ (t)) = max
u∈Ω

H(x(t),u(t),λ (t))

denote the maximized Hamiltonian. Then, for each trajectory for which there exists a continuous

λ (t) so that

λ̇ (t) = rλ −
∂H
∂x

and H(x∗(t),u∗(t),λ (t)) = max
u∈Ω

H(x∗(t),u(t),λ (t))

are satisfied along with the condition

lim
t→∞

e−rt H0(x(t),λ (t)) = 0,

the value of the objective function is given by

∫ ∞

0
e−rt F(x(t),u(t))dt =

1
r

H0(x(0),λ (0)). (3.16)

For more details on this see Feichtinger and Hartl (1986). The proof, which is also given there, is

built up on the aspect thatdH
dt = ∂H

∂ t + rλ f = rλ f as the partial derivative of the Hamiltonian with

respect to timet is zero for autonomous problems, and that along each trajectory that satisfies the

optimality conditions, the values ofH andH0 coincide.

For a non-autonomous problem, however, the relation in (3.16) does not hold as the partial

derivative of the Hamiltonian with respect to time is non-zero. Consequently,no such relation can

be found, and in order to get the objective values for a given trajectory, we have to calculate it

along the whole path. To do so, we therefore introduce an additional differential equation to the

canonical system, which is given by

ċ(t) = e−rt
(

−IS(t)
(

b+cIS(t)
)(

KS(t)+ ε
)−α

− pFEF(t)

)

, with c(0) = 0, (3.17)
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and include it into the boundary value problem for the continuation process. The last value,c(Tp),

whereTp is the truncation time of the path, yields the objective value. However, as this only is

the objective value for the time interval[0,Tp], we further on have to add the weighted remaining

tail of the periodic solution for[Tp,∞). If Fp(t) is the objective value evaluated along the path at

each point of timet, c(t) is the accumulated objective value along the path given by the solution

of the differential equation in (3.17) on[0, t], andFper(t) is the objective value along the periodic

solution at each point of timet, the total objective valueOV is given by

OV =
∫ Tp

0
e−rt Fp(t)dt+

∫ ∞

Tp

e−rt Fper(t)dt =

= c(Tp)+
∞

∑
i=0

∫ Tp+i+1

Tp+i
e−rt Fper(t)dt =

= c(Tp)+
∞

∑
i=0

e−r(Tp+i)
∫ 1

0
e−rt Fper(t)dt

︸ ︷︷ ︸

=:cper

=

= c(Tp)+e−rTp

∞

∑
i=0

e−ri cper =

= c(Tp)+
e−rTp

1−e−r cper. (3.18)

Hence, we have to add the second term in (3.18) to the so far calculated objective values of the

paths. While for autonomous problems it would be sufficient to evaluate (3.16) along the paths

of the last continuation step and compare these objective function values in order to see whether

an indifference threshold point occurs or one periodic solution is dominant, the comparison of

the objective function values for non-autonomous problems is not time invariant. Therefore, the

objective values at the truncation time of the paths at each continuation step for the current initial

state value have to be considered.

If both periodic solutions are not dominant, an indifference threshold point has to exist in-

between separating the areas of attraction. To investigate this, we continue thetrajectories of both

periodic solutions to each other as far as possible until one of the subsequent 3 cases occurs:

1. The continuation process aborts as the path reaches another boundary of the feasible domain;

2. the path is bending back;

3. the other periodic solution is reached.
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The results of these continuations can be seen in Figure 3.4a. The path starting at the high mixed

periodic solution is bending back while the one starting at the fossil periodic solution gets infea-

sible at some point. Here, the path can be continued into the mixed case. However, this further

continuation is not necessary in the current case as there occurs already a sufficiently large overlap

in the stateKS for the ”pure paths” (i.e. paths lying completely within the same boundary of the

feasible domain as the periodic solution to which they lead). The next step to find the indifference

threshold point is to compare the objective function values along the two paths. For the two peri-

odic solutions of our model approach these final objective value curvesare shown in Figure 3.4b.

The intersection yields the indifference threshold point, which for the current parameter set lies at

KITP
S = 1.6477.

3.3.2 Economic Interpretation of the Indifference ThresholdPoint

The occurrence of an indifference threshold point is an important result of this analysis and is a

consequence of the model extension with learning by doing. While in the firstmodel considered in

Chapter 2 the optimal long-run periodic solution only depends on the current fossil energy price,

it here also depends on the initial capital stock at which the optimization process is started.

Figure 3.5 shows how the indifference threshold point separates the areas of attraction of the

mixed and the fossil periodic solution. If the initial capital stock lies exactly on the indifference

threshold pointKITP
S , the paths to both periodic solutions are equally expensive. Consequently,

the decision maker is indifferent between increasing investmentsIS(t) and moving towards the

mixed periodic solution with a higher capital stock and a lower fossil energy amount during the

summer period on the one hand, and stopping investments and moving towards the fossil periodic

solution on the other hand. If the initial capital stock is higher than the indifference threshold point

KITP
S , it is optimal to move up towards the mixed periodic solution and, if it is lower, the fossil

periodic solution is optimal. The reason for this change lies within the learning-by-doing effect. If

the initial capital stock is high enough, the reduction of the investment costs due to the learning-

by-doing effect can compensate for the cost of additional capital accumulation, and therefore it is

optimal to increase the capital stock which even reinforces this effect, although at a decreasing rate.

If, however, the initial capital stock is low, the learning-by-doing effecton the investment costs

is too weak to sufficiently reduce the high costs. Therefore, it is profitableto reduce investments

and hence the capital stock while increasing the share of fossil energy until, finally, the fossil

optimal periodic solution is reached and the whole demand is covered by fossil energy in the

long run. Note that along this path forgetting by not doing occurs. As no further investments
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Figure 3.4: Search for the indifference threshold point for a fossil energy price pF = 0.051:
(a) Overlap of trajectories leading into the two periodic solutions.(b) Indifference threshold point:
Intersection of the objective function values.
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are made, the accumulation of new capital but also the maintenance of existing capital stops and,

hence, the capital stock decreases. Simultaneously, due to forgetting by not doing investment costs

increase again until, finally, at the fossil solution they are as high as for a complete start-up with

renewable energy. The occurring separation of the areas of attractiondependent on the initial state

is also known as history dependence, as the optimal long-run periodic solution is determined by

the accumulation effort of renewable energy capital in the past.
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Figure 3.5: Indifference threshold point and the separated areas of attraction of the two periodic
solutions for a fossil energy pricepF = 0.051.

This result points out the difficulty of introducing a new energy technology into the market.

While conventional energy types are already competitive and have low prices due to the high

experience accumulated over years, the investment costs for new technologies are very high. As

no experience exists at the beginning, these high investment cost would have to be paid over some

period of time during which the new technology definitely is not profitable, untilfinally at least

some reduction due to accumulated experience is achieved. This aspect underlines the importance

of subsidies and other kind of financial support that is necessary during the start-up period to

help new technologies getting over this barrier. In our model approach, where no such subsidies
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are included, it therefore would never be optimal to start with the renewableenergy technology

from the very beginning. If no experience exists to reduce the initially high investment costs,

fossil energy is always less cost intensive and, as no further restrictions are included such as CO2

performance standards, no switch to a cleaner energy technology wouldhappen. Only, if there

is already a sufficiently high level of experience when optimization is started,further investments

are profitable.

3.3.3 Break-Even Analysis

Figure 1.1 has shown how the investment costs of a new technology decrease due to the effect

of learning by doing. As accumulated experience improves the necessaryprocesses and hence

reduces the financial effort, the technology gets more profitable. However, it can take a long

time until full competitiveness with the conventional technology is achieved, which happens at the

so-called break-even point.

To analyze the extent of the learning-by-doing effect on the investment costs in our model

approach, we compare the costs of renewable energy generation with thefossil energy pricepF by

calculating the investment costs per unit of generated renewable energy (in the following referred

to as unit investment costs) at timet along the path leading into the optimal long-run periodic

solution, given by the term
(
bI∗S(t)+cI∗S(t)

2
)
(K∗

S(t)+ ε)−α
(
ν sin2(tπ)+ τ

)
K∗

S(t)η
. (3.19)

K∗
S(t) andI∗S(t) are the state and the corresponding investments along the optimal path leading into

the optimal long-run periodic solution. The results can be seen in Figure 3.6.As the generation

of renewable energy occurs in the denominator of Equation (3.19) and fluctuates in time along

with the available global radiation, the unit investment costs also vary over theperiod. However,

a clearly decreasing tendency can be observed as soon as capital is accumulated. The black hori-

zontal line in Figure 3.6 shows the fossil energy pricepF . At the beginning of the path, the unit

investment costs are very high. Especially in winter they are almost the eight-fold of the fossil en-

ergy pricepF . The reasons for this are the initially high investment costs of the renewable energy

technology together with the low initial capital stock and hence the low amount ofgenerated re-

newable energy. In summer, however, one can see that the unit investment costs are lower as global

radiation is high and therefore more renewable energy is generated. Very early along the path even

the fossil energy price level is reached during summer. As the path proceeds, investments accu-

mulate new capital and therefore the learning-by-doing effect as well asthe generated renewable

energy increase. This leads to declining unit investment costs both in winter and summer and also
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the margin between them decreases until finally the optimal long-run periodic solution is reached.

Here, the unit investment costs in summer are already far below the fossil energy price level while

in winter they are still above it. However, over the whole year the benefit ofthe portfolio mixture

is high enough to let the combination of fossil and renewable energy be optimal.
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3.4 Sensitivity Analysis

The analysis of the previous section has shown that the learning-by-doing effect can imply history

dependence of the optimal long-run periodic solution. The driving forcefor this dependence is

given by the cost-effectiveness of renewable energy generation withrespect to conventional energy

technologies. However, there are several factors beyond historicalcapital accumulation activities

that influence this cost-effectiveness. First of all, of course, the fossil energy pricepF plays a

major role, reflecting the economic performance of the fossil technology. Further on, it is essential

how strong the cost decreasing influence of the learning-by-doing effect is on the investment costs

of renewable energy. Besides that, also the performance of the renewable energy generation is

important which is determined for example by site-specific factors such as thesupply of global

radiation. To analyze how the obtained results of the previous section change when these factors

vary, we conduct in this section a sensitivity analysis with respect to the fossil energy pricepF , the

learning-by-doing coefficientα , and different sets of the parametersτ andν that determine the

site-specific global radiation intensity.

3.4.1 Fossil Energy PricepF

In the first step, we focus on the influence of the fossil energy price onthe optimal portfolio

composition. Similar to the analysis in Section 2.4 we will use numerical continuation with respect

to the fossil energy pricepF to investigate how the results change when fossil energy gets more

expensive. We start with considering the calculation of the indifference threshold point for a fossil

energy pricepF < 0.051, as at this price some interesting aspects occur.

Calculation of the Indifference Threshold Point for pF < 0.051

For pF = 0.05, Figure 3.7a shows the longest possible continuation of the paths leadinginto the

fossil and the mixed periodic solutions, respectively, both lying completely onthe corresponding

boundary of the feasible domain. Also here, an overlap can be found. However, considering the

objective function values within this interval as shown in Figure 3.7b, one can see that here no

intersection occurs. Consequently, the pure fossil path has to be continued further along the mixed

feasible boundary to obtain the indifference threshold point.

As the continuation process has been aborted because the path gets infeasible, a solution path

consisting of several arcs has to be calculated. Assume again thatN continuation steps are nec-

essary in order to get a path starting at the initial capital stockKS0 and leading into the periodic
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solution. Then, at each stepn = 1, . . . ,N, the number of necessary arcs are defined by the num-

ber of violations of the feasible boundary conditions along the path. LetIn denote the number of

necessary arcs for then-th continuation step and let

τn
0 := 0< τn

1 < τn
2 < · · ·< τn

In−1 < 1=: τn
In

be again the switching times. Similar to Section 2.2.2 where we have searched fora long-term

optimal periodic solution consisting of several arcs, also here the multi-arc solution is defined by

a boundary value problem that guarantees the continuity of the solution with respect to time at

each switch. While we required in Section 2.2.2 that the starting and the end point coincide in

order to get a solution that is periodic, we here have to assure that the starting point and the end

point are equal to the current initial capital stockKn
S0

and the starting point of the periodic solution,

respectively. We use again the following index,

ai =







1, for the fossil region,

2, for the mixed region,

3, for the renewable region,

in order to distinguish between the three different boundary cases of thefeasible domain. Also

here only switches between neighboring regions are feasible. As for thiscontinuation we first have

to transform the interval[0,Tp] to [0,1] with Tp being the truncation time of the path, and then to

[i−1, i] for each arci = 1, . . . , In, we combine the time transformations of (2.28) and (2.40) to

T(s) = Tp((τi − τi−1)(s− i)+ τi) . (3.20)

Then, at each continuation stepn = 1, . . . ,N, a path is searched that consists ofIn arcs and that

solves fori = 1, . . . , In and for j = 1, . . . , In−1 the boundary value problem

K̇Si (s) = Tp(τi − τi−1) f KS
ai
(T(s),KSi (s),λi(s),µ3i (t)), (3.21)

λ̇i(s) = Tp(τi − τi−1) f λ
ai
(T(s),KSi (s),λi(s),µ1i (t)), (3.22)

0 = Kn
Sj
(τ j)−Kn

Sj+1
(τ j), (3.23)

0 = λ n
j (τ j)−λ n

j+1(τ j), (3.24)

0 = c(a j ,a j+1), (3.25)

0 = Kn
S1
(0)−Kn

S0
, (3.26)
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0 = F ′

((

Kn
SIn
(1)

λ n
In(1)

)

−

(

K∗
S(0)

λ ∗(0)

))

, (3.27)

where{K̇Si (s), λ̇i(s)} are the corresponding dynamics of the canonical system for the arci and

(3.25) guarantees again the continuity of the controls with respect to time,

c(a j ,a j+1) =







(KSj (τ j)+ ε)αλ j(τ j)−b= 0

ES(KSj (τ j),τ j)−E = 0






if {a j ,a j+1} ∈







{{1,2},{2,1}}

{{2,3},{3,2}}






.

Figure 3.8a shows the obtained path forpF = 0.05 that consists of three arcs, so hereIN = 3.

The gray line shows the pure fossil path lying completely at the fossil feasible boundary, where

no investments for renewable energy capital are made and the whole energy demand is covered by

fossil energy in the long run. AtKS(t)= 2.432, however, the corresponding Lagrange multiplierµ3

gets negative and hence the fossil path is no longer feasible. Here, the switch happens to the mixed

arc with positive investments in renewable energy and the demand covered by a mixed portfolio

of the two available energy types. This arc can be seen as black line in Figure 3.7a. However, very

soon atKS(t) = 2.455, the investmentsIS(t) gets zero again and a switch back to the fossil feasible

boundary is necessary. Calculating the objective function values for thisextended continuation of

the fossil path finally leads to an intersection with the objective function value of the mixed-path

and hence to an indifference threshold pointKITP
S = 2.4601, as one can see in Figure 3.8b.

The resulting phase portrait can be seen in Figure 3.9, where the indifference threshold point

separates the areas of attraction of the two periodic solutions. Comparing thisresult with the

phase portrait in Figure 3.5, one can see that a slight reduction in the fossil energy pricepF has

induced a shift of the indifference threshold point to the right. Consequently, the historical capital

accumulation effort has to be higher in order to make further investments into renewable energy

capital worthwhile. Otherwise, the cost reducing impact of the learning-by-doing effect is to weak

to make renewable energy profitable in the portfolio and, hence, the whole energy demand is

covered by fossil energy in the long run.

While we had only one long-term optimal periodic solution in Section 2.4 and therefore calcu-

lated the solutions for different fossil energy prices separately in order to analyze the impact of a

changing fossil energy pricepF on the optimal portfolio composition, we here will use numerical

continuation to get all initial points of the periodic solutions as a curve inpF .
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The goal is to find, for each fossil energy pricepF , periodic solutionsΓ(t) = (K∗
S(t),λ ∗(t))

with period length 1, for which it holds that

K∗
S(0) = K∗

S(1),

λ ∗(0) = λ ∗(1).

Hence, for each parameterpF the boundary value problem

K̇S(t) = f KS(t,KS(t),λ (t),µ3(t)),

λ̇ (t) = f λ (t,KS(t),λ (t),µ1(t)),

K∗
S(0)−K∗

S(1) = 0,

λ ∗(0)−λ ∗(1) = 0,

would have to be solved. Instead, however, we transform this boundaryvalue problem into a

finite-dimensional equation system.

We consider for this a sufficiently differentiable perturbation of the 1-periodic differential

canonical system, in the following again generally denoted as ˙x= f (t,x), which is given by

ẋ= F(p, t,x), (3.28)

wherep∈ R is some parameter andF is defined as

F : R×R×R
n : (p, t,x) 7−→ F(p, t,x),

with

F(0, t,x) = f (t,x) and F(p, t +1,x) = F(p, t,x).

Let P (p,x) denote the Poincaré map of the perturbed system in (3.28), then regardless of the

specific form of (3.28) the Poincaré map is a monotone map. Hence, to study local bifurcations of

a solutionφ(t,0,x0) of a 1-periodic system ˙x= f (t,x), a fixed point of the Poincaré mapP(p,x)

in the neighborhood ofx0 for sufficiently small values of the parameterp has to be found (Hale

and Koçak, 1991). To do so, we use a single shooting method. Letφp(t,0,x0) be the solution of

(3.28) at timet with the initial pointx0. Such a solution should be numerically computable by
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using some ordinary differential equation (ODE)-solver. Then, the equation system

φp(1,0,x0)−x0 = 0

has to be solved which can be done by a Newton-like method. If the periodic solution has no

eigenvalue equal to 1 and the hyperplane with the starting values is a transversal cross-section to

the periodic solution, the Newton iterations converge to the periodic solution for any sufficiently

close approximation. In other words, this method is searching for a point onthis hyperplaneΣ
that is a fixed point of the corresponding Poincaré map, as shown in Figure 3.10 whereL0 andLp

denote the periodic orbits, respectively. For further details on this method see Kuznetsov (1998).

Figure 3.10: Shooting method to locate periodic solutions.

Bifurcation Analysis

We now continue the obtained periodic solutions along thepF -axis and investigate how they

change. Note that we always consider in the following the bifurcation of thecanonical system,

not of the optimal system. Therefore, also the changes in the unstable as well as the dominated

periodic solutions are shown. The results can be seen in Figure 3.11, where the starting points

KS(0) of the periodic solutions are plotted as gray line for the fossil solution and asblack line for

the mixed solutions. If the fossil energy price is very low, the optimal long-run periodic solution

is given by the fossil periodic solution as the investment costs into renewableenergy capital are
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so high that they are not profitable and hence no investments at all are madeand the whole energy

demand is covered only with fossil energy in the long run.
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Figure 3.11: Bifurcation diagram of the canonical system with respect to the fossil energy price
pF ≤ 0.07.

Starting at a fossil energy pricepF = 0.0446, there exist also the two mixed periodic solutions,

where the lower one is unstable and the upper one is of saddle-type. The areas of attraction of

the fossil and the upper mixed periodic solutions are separated by indifference threshold points

summarized in the indifference threshold curve plotted as black dotted line. Atthe beginning, it

lies above the unstable mixed long-run solution. As fossil energy in this areastill is comparatively

cheap, the historical efforts of renewable energy capital accumulation have to be comparably high

in order to make further investments in renewable energy capital profitable.If the fossil energy

price further increases, the indifference threshold curve declines due to the fact that renewable

energy capital investments are profitable already at a lower historical capital accumulation effort.

For a fossil energy price 0.0466≤ pF ≤ 0.0501, the fossil path has to be continued to a multiple

arc solution path similar to the one in Figure 3.8a in order to obtain the indifference threshold

point.



80

At pF = 0.0501, the indifference threshold curve intersects with the unstable mixed periodic

solution. From then on, the areas of attraction are separated below this periodic solution, and the

continuation of the fossil path to a multiple arc solution path is not necessary any more to yield the

indifference threshold point. If the fossil energy price further increases, the indifference threshold

curve declines further as investments in renewable energy capital get profitable at a lower initial

capital stock until finally, atpF = 0.0535, it coincides with the fossil periodic solution.

For a fossil energy price 0.0535≤ pF ≤ 0.0679, still all three periodic solutions exist, but the

high mixed one dominates the fossil one, as here fossil energy alone wouldbe too expensive to

cover the demand. Concerning the unstable mixed solution in-between the two periodic solutions

of saddle-type, it is mixed at the beginning but turns into a multi-arc solution with two mixed arcs

and one fossil arc in-between atpF = 0.0612, as investments decline with the fossil energy price

until they finally get zero.

As one can see in Figure 3.11, the fossil solution only exists to some specific fossil energy

price. The reason for this is that the Lagrange multiplierµ3(t) becomes negative. This can easily

be shown by considering the analytical solution of the fossil canonical system in (3.4)-(3.5). To-

gether with the transversality condition which we already have defined in (2.8), the fossil solution

for λ (t) is given by

λ (t) =
pFη

(
(4π2+(r +δS)

2)(ν +2τ)+(r +δS)ν(2π sin(2πt)− (r +δS)cos(2πt))
)

2(r +δS)(4π2+(r +δS)2)
. (3.29)

With the Lagrange multiplier,

µ3(t) = b(KS(t)− ε)−α −λ (t), (3.30)

the fossil energy price at which (3.30) is zero and therefore the pure fossil periodic solution is not

further existent, is given by

p̄F(KS(t), t) =
2b(r +δS)(4π2+(r +δS)

2)(KS(t)+ ε)−α

η ((4π2+(r +δS)2)(ν +2τ)+(r +δS)ν(2π sin(2πt)− (r +δS)cos(2πt)))
.

This price is a function of the stateKS(t) and timet. When the fossil energy pricepF increases, the

first violation ofµ3(t)≥ 0 occurs at a peak of the periodic fluctuations inλ (t). This is because the

derivative of (3.30) with respect toλ (t) is negative. Calculating the timetmax at which this occurs

for the first time and inserting this together withKS(tmax) = 0 into p̄F(·, ·) yields for the current

parameter set the maximal fossil energy price ¯pF max= 0.0678 until which the pure fossil periodic
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solution exits. For higher values ofpF a pure fossil solution is not further feasible. However, a

fossil-mixed solution still can be feasible if the part along which the Lagrangemultiplier would

be negative is replaced by a mixed arc. If the fossil energy pricepF is further increased, however,

the interval in which a fossil arc is not feasible any more increases as welland, as soon as the

Lagrange multiplier is negative already at the minimum of the periodic fluctuationsin λ (t), also

no feasible fossil-mixed solution can be found any more. For the current parameter set this occurs

at p̄F min = 0.069. For a fossil energy pricepF > p̄F min, the optimal long-run periodic solution is

given by the high mixed periodic solution.

Figure 3.12 shows what happens if the fossil energy pricepF increases even above 0.07. As

renewable energy generation progressively gets profitable due to the reduced investment costs by

the accumulated experience as well as compared to the more expensive fossil energy, a strong

increase in renewable energy capital can be observed. However, stillboth energy types are needed

over the whole period in order to cover the given energy demand.

At pF = 0.5613, renewable energy capital is so high that during summer, when global radia-

tion reaches its maximum, the demand even can be covered without fossil energy. At this point,

the feasible boundary of the mixed case is reached and from this fossil energy price on, a peri-

odic solution exists that consists of two mixed arcs and a renewable arc in-between. Along this

mixed/renewable solution, the demand over some time interval in summer is coveredonly by re-

newable energy, while in winter fossil energy still is needed in addition, as already shown in in

the results of Chapter 2. If the fossil energy price raises even further, there is still an increase in

the stock of renewable energy capital, however, obviously at a decreasing rate. The reason for this

is that the marginal benefit of an additional unit of renewable energy capital declines. Remember

the results in Chapter 2 which have shown that along the renewable arc alsosurpluses are gener-

ated that are not used. Therefore, a further increase of the capital stock only is profitable along

the mixed arcs, where there is still potential to decrease the necessary amount of fossil energy

by slightly raising renewable energy generation. But as global radiation at the switching times

separating the arcs gets lower, the closer they are to 0 and 1, more and morerenewable energy

capital would be necessary to induce this effect. In contrast to the model approach in Chapter 2,

here the investment costs of renewable energy capital also decline with a growing capital stock

due to learning by doing, which reduces at least the financial effort for this compensation, but,

nevertheless, this saturation effect is still obvious.

Figure 3.11 further on shows that a turning point occurs atpF = 0.044 in the mixed solution.

To investigate how the optimal vector field changes here, we consider the local behavior of the

monodromy matrix in what follows.
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As we have already mentioned, the stability of a long-term periodic solution is equivalent

to the stability of the fixed point of the corresponding Poincaré map, and a periodic solution is

stable if all eigenvalues (Floquet multipliers)ξ1, . . . ,ξn of the Jacobian of the locally defined map

P : Rn → R
n evaluated at the fixed point are located within the unit circle,|ξ |< 1. Hence, a local

bifurcation occurs when an eigenvalue crosses the unit circle (see forthis Reithmeier, 1991).

Figure 3.13 shows the norm of the eigenvalues of each periodic solution along thepF -axis.

As we already have shown in Section 3.2.3, the monodromy matrix and hence theeigenvalues of

any fossil solution in this model approach are independent of the periodicsolution itself, as no

state nor costate occurs in the Jacobian matrix for this case. Hence, the eigenvalues of the fossil

periodic solution in Figure 3.13 shown in dark gray are constant for varying values of the fossil

energy pricepF and are given byξ1 = e−δS, ξ2 = er+δS. As one eigenvalue lies within and the

other one outside the unit circle, which in Figure 3.13 is plotted as black horizontal line, the fossil

solution is of saddle-type over its whole interval of existence.
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Figure 3.13: Norms of eigenvalues of the obtained periodic solutions for a fossil energy price
pF ≤ 0.07.
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The probably most interesting result can be observed at the fossil energy price pF = 0.044

where an additional pair of mixed periodic solutions occurs. This sudden appearance of a pair

of solutions is also known asfold-bifurcation, see Grass et al. (2008). While below that price

the only periodic solution is given by the fossil one, there exist three periodic solutions beyond

this price. The eigenvalues corresponding to the upper mixed periodic solution are shown in

Figure 3.13 as black line, where again one is lying within and the other one outside the unit circle,

which specifies the solution to be of saddle-type. The lower the fossil energy pricepF , the higher

gets the stable eigenvalue until finally, atpF = 0.044, it crosses the unit circle. The lower mixed

solution whose two eigenvalues are plotted as light gray lines in Figure 3.13 and lie outside the unit

circle, consequently is unstable. At the beginning they are real and hence the lower mixed periodic

solution is an unstable node, but very soon they get complex and the mixed periodic solution turns

into an unstable focus. AtpF = 0.0612, the lower mixed periodic solution turns into a fossil-

mixed solution whose eigenvalues are shown as black dashed line. Also here, the eigenvalues are

complex and their real parts are outside of the unit circle, which specifies this solution as unstable

focus as well.

3.4.2 Learning-by-Doing Coefficientα

As already mentioned at the beginning of this section, not only the fossil energy price plays an

important role for the optimal portfolio composition, but also the reducing impactof the learning-

by-doing effect on the investment costs of renewable energy, which is determined by the learning-

by-doing coefficientα . In the literature, many research papers can be found that investigate the

correct size of the learning-by-doing coefficient for different types of technologies (see, for exam-

ple, McDonald and Schrattenholzer, 2001). However, opinions strongly differ. To analyze how

sensitive the optimal portfolio composition is with respect to different assumptions on the learning-

by-doing coefficient, we here conduct a sensitivity analysis with respect to the learning-by-doing

coefficientα .

For that purpose we keep the fossil energy price constant atpF = 0.05 and use again numerical

continuation in order to calculate the periodic solutions as well as the indifference threshold points

if existent, for a varyingα . The results can be seen in Figure 3.14. For a learning-by-doing

coefficient ofα < 0.2068, which corresponds to a learning-by-doing rate ofLDR< 13.35%, the

optimal long-run periodic solution is always given by the fossil periodic solution. The reason for

this is the fact that the cost-reducing effect of learning by doing is too weak to offset the initially

high investment costs. It therefore is optimal to stop investments immediately and cover the whole
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demand with fossil energy in the long run.

For learning-by-doing coefficientsα > 0.2068, three periodic solutions exist of which one is

the fossil solution and the other two are the two mixed solutions where the higherone is of saddle-

type and the lower one is unstable. Up toα = 0.282, indifference threshold points separate again

the areas of attraction. The economic interpretation of this result is that the historical renewable

energy capital efforts that are necessary in order to make renewable energy investments profitable,

decline with the intensity of the learning-by-doing effect, as a lower initial renewable energy

capital stock then already is sufficient. Untilα = 0.2505, which corresponds to a learning-by-

doing rate ofLDR= 15.94%, the indifference threshold curve lies beyond the unstable mixed

solution. Also here, the path leading into the fossil periodic solution has to be continued to a

mixed-arc path in order to get the indifference threshold point. Forα > 0.2505, the indifference

threshold curve lies below the unstable mixed solution and further declines withα until finally, at

α = 0.282 and hence at a learning-by-doing rateLDR= 17.75%, it coincides with the unstable

mixed solution. For higher learning-by-doing coefficients the mixed periodicsolution dominates

the fossil one as fossil energy is too expensive to be in the portfolio exclusively.

3.4.3 Global Radiation Intensity

So far we have investigated the impact of price and learning-by-doing effects on the optimal port-

folio composition. However, we so far have fixed site-specific aspects concerning the supply of

global radiation. Therefore, an interesting aspect on which we focus inthe following is how the

solutions change when geographical conditions vary.

Figure 3.15 shows the different global radiation scales in Europe for theyear 2007. For the

estimation of the parameter valuesτ andν for the analysis so far, we have used Austrian data,

which lie quite in the middle of the scale as can be seen in Figure 3.15. However,how would the

results of our analysis change if estimations for geological sites higher in thenorth or lower in the

south were used instead? To do so, we use global radiation data for Hamburg (Scenario 1) as an

example of a northern site and for Athens (Scenario 2) as an example for asouthern site, marked

as red circles in Figure 3.15 (source of data see SODA, 2014). Figure 3.16 shows the average

daily global radiation for Hamburg and Athens from 1985-2004. Comparing this with the basic

scenario for which we used global radiation data of Austria as shown in Figure 2.1a, the strong

differences immediately get obvious. While the radiation in winter in Hamburg is less than half the

one in Austria, the radiation in Athens at this time of the year is around 50% higher. In summer,

the global radiation in Athens rises up to around 7 kWh/m2, while in Hamburg it reaches only
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Figure 3.15: Global radiation in Europe.
(Source: http://www.focussolar.de/Maps/RegionalMaps/Europe/Europe,4.Feb.2014)
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(a) (b)

Figure 3.16:(a) Average daily global radiation in Hamburg (Scenario 1).(b) Average daily global
radiation in Athens (Scenario 2).

around 4.3 kWh/m2. Given these data, we estimate the parameter valuesτ andν for these two

new scenarios, respectively. The results are summarized in Table 3.3 together with those of the

basic scenario for Austria. Further on, Figure 3.17 shows the deterministicfunctions for Scenario

1, Scenario 2 and the basic scenario.

τ ν
Basic Scenario 0.79 4.56
Scenario 1 0.21 4.08
Scenario 2 1.35 5.64

Table 3.3: Estimates forτ andν for Scenarios 1 and 2 and the basic scenario for Austria.

In order to investigate the changes in the optimal portfolio composition when site-specific

parameters change, we conduct the same sensitivity analysis with respectto the fossil energy price

pF , as done in Section 3.4.1, and compare the different outcomes.

Sensitivity Analysis for Scenarios 1 and 2

Figure 3.18 shows the results of the sensitivity analysis for Scenarios 1 and 2, respectively, com-

pared to the results we have obtained for the parameters estimated for Austria.

First, we focus on Scenario 1 with a less intensive supply of global radiation. We first can

observe that the qualitative behavior is the same. For a low fossil energy price, only the fossil
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solution exists, while at a specific price level the two mixed solutions, with one being unstable and

the other one being of saddle-type, occur and the areas of attraction areseparated by indifference

threshold points up to a certain level ofpF . However, a look on the price axis makes clear that

remarkable changes concerning the position of the solutions occur. While the first bifurcation

point at which these two additional mixed periodic solutions exists has been atpF = 0.0446 for

the original parameter set, this happens here at a comparably higher pricepF = 0.0609. Although

the intensity of the learning-by-doing effect is the same and therefore the investment costs per unit

capital decline at the same speed, the lower global radiation supply leads to alower renewable

energy generation and hence, to higher investment costs per unit of power. This aspect shifts the

interval, in which the mixed periodic solutions as well as the indifference threshold curve exist,

to the right as the fossil energy price has to be much higher in order to make further investments

cost-effective. Consequently, also the price level at which the high mixedsolution gets dominant

because fossil energy as single source to cover the demand is too expensive, shifts to the right.

For the original parameter set this has happened atpF = 0.0535, while here the price level for this

bifurcation is much higher atpF = 0.0739. Finally, atpF = 0.091, the optimal long-run periodic

solution is given by the high mixed periodic solution only. Furthermore, the slope with which

the high mixed periodic solution increases with the fossil energy price is lowercompared to the

basic scenario for Austria. The reason for this is given by the fact thatdue to the lower global

radiation less renewable energy can be generated and, hence, the optimal renewable energy capital

stock is lower at the same fossil energy price. Additionally, one can see that also the interval gets

larger in which the indifference threshold curve separates the areas ofattraction of the two periodic

solutions being of saddle-type. This is because also the capital stock at which the mixed periodic

solution starts to dominate the fossil one is reached at a comparably higher fossil energy price.

Second, we investigate Scenario 2 with a higher intensity of global radiation.Also for this

case, the qualitative outcome does not change, but again the price boundaries are of special interest.

While the interval, in which all three periodic solutions exist and the area of attraction is separated

by the indifference threshold curve has started atpF = 0.0446 in the original set and atpF = 0.0609

in Scenario 1, one can observe in Figure 3.18 that this here happens already at a comparably lower

price pF = 0.0328. As the supply of global radiation is higher, the investment costs per unit

of power for an equal capital stock here are even lower than for the other two cases. Hence,

investments into renewable energy get profitable already at a lower fossilenergy price. For this

reason, also the indifference threshold curve has shifted to the left. Thehigh mixed solution in

Scenario 2 gets dominant atpF = 0.0449, a price at which in the original set a mixed portfolio just

starts to be an alternative to the pure fossil one, not to mention Scenario 1 where this possibility
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does not exist at all at this price level. Starting atpF = 0.0495, the high mixed solution is the

optimal long-run periodic solution only. Here, the slope with which the high mixedperiodic

solution increases with the fossil energy price is higher compared to the basic scenario for Austria.

Due to the higher global radiation more renewable energy can be generated and hence, a higher

renewable energy capital stock is profitable already at a lower fossil energy price. Consequently,

the interval in which the indifference threshold curve separates the areas of attraction of the two

periodic solutions being of saddle-type gets smaller because the capital stock, at which the mixed

periodic solution with research starts to dominate the fossil one, is reached ata lower fossil energy

price.

Varying the intensity of the site-specific global radiation has shown some interesting aspects.

While in all three cases, the original scenario as well as the two alternative scenarios, the intensity

of the learning-by-doing effect is exactly the same, the outcomes and their possible consequences

for political decisions are completely different. For southern countries theinclusion of renewable

energy into the portfolio happens quite early along the fossil energy priceaxis. While in the case

that the capital stock is below the indifference threshold curve, possible subsidies during the start-

up period could easily help to induce the switch to the mixed portfolio in southern countries, for

the northern countries the fossil energy price first has to increase enough to make such subsidies

even reasonable. Another consequence could be that possible taxes on fossil energy would have

to be much higher in order to induce this shift in northern countries. But as the supply of global

radiation is lower, the profitability will never be the same as the one for the southern countries.

3.5 Summary

In this chapter, we have investigated how accumulated experience can reduce the investment costs

of renewable (solar) energy capital and how different the results canbe if such a learning-by-doing

aspect is included into an energy portfolio planning model. We have extended the non-autonomous

optimal control model of Chapter 2 by including a one-factor log-linear learning curve into the

objective function so that the accumulated renewable energy capital, whichis supposed to reflect

the collected experience, has a diminishing impact on the investment costs. Investigating again

the impact of the fossil energy pricepF on the optimal portfolio composition has shown that there

exist price intervals in which multiple periodic solutions occur, and whose areas of attraction are

separated by an indifference threshold point. Further on, it turns out that these results are not only

sensitive with respect to the fossil energy price but also to the intensity of the learning-by-doing

effect as well as to the geographical site conditions concerning the globalradiation.
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The occurrence of an indifference threshold point yields important aspects for the economic

interpretation of the obtained results. We have seen that whether investmentsinto renewable en-

ergy capital are worthwhile or not may depend on the initial capital stock. Due to this history

dependence, investments into renewable energy generation from the very beginning would never

be optimal in our approach as the initial investment costs would be too high. The level of the

capital stock at which such investments get worthwhile shifts even further up if global radiation is

lower, as for the northern countries, or if the learning-by-doing effect is weaker, meaning that the

learning-by-doing coefficient is assumed to be lower. One important conclusion of these results

is that financial support in form of subsidies during the start-up period of a new technology could

play a major role for the successful introduction of this technology into the market. The prof-

itability, however, strongly depends on the site-specific conditions. Experience in this approach

has been the driving force for the reduced investment costs. But this is not the only source for

technological learning, as we already have mentioned. So far we have completely neglected the

aspect of R&D efforts, which will be the focus of the next chapter.



CHAPTER 4

The Effect of Learning by Searching in Renewable Energy

Generation

This chapter deals with the second aspect of learning which is driven by the accumulation of

knowledge due to R&D efforts. As we have already mentioned in the introduction in Chapter 1,

such learning effects can be included in form of a two-factor learning curve, which will be the

extension of our model in this chapter.

4.1 The Model

To additionally include the aspects of learning by searching, we introduce a second state variable

KR(t), reflecting the stock of knowledge and described by

K̇R(t) = IR(t)−δRKR(t).

IR(t) are the R&D expenditures at timet which increase the stock of knowledge and which are

introduced as third control in our model. Also here, forgetting by not doingoccurs and the knowl-

edge stock depreciates over time with the depreciation rateδR. This loss of knowledge can also be

understood in the sense that R&D expenditures of the past gradually become outdated and hence

their impact declines (cf. Berglund and Söderholm, 2006). Incorporating the fact that knowledge

reduces the investment costs of renewable energy, the correspondingCobb-Douglas-type function

of the two-factor learning curve, as already presented in (1.2), is included into the instantaneous

objective function given by

Ct = IS(t)(b+cIS(t))(KS(t)+ ε1)
−α1 (KR(t)+ ε2)

−α2 ,
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where we distinguish betweenα1 andα2 as the learning-by-doing and learning-by-searching co-

efficients, respectively, as well asε1 andε2 as the initial investment costs and the initial R&D

expenditures when the corresponding stock is zero. This concerns, of course, only the investment

costs for renewable energy. Further on, however, also the R&D expenditures come at some cost,

which are modeled in a similar way using, also here, a linear and a quadratic cost term,

CR&Dt = dIR(t)+eIR(t)
2
,

where the latter one reflects the aspect that a rapid increase in knowledgeis expensive.

To sum up, the adapted optimal control model with three controls and two statesreads as

max
EF (t), IS(t), IR(t)

∫ ∞

0
e−rt

(

− IS(t)
(

b+cIS(t)
)(

KS(t)+ ε1

)−α1
(

KR(t)+ ε2

)−α2

−IR(t)
(

d+eIR(t)
)

− pFEF(t)

)

dt (4.1)

s.t.: K̇S(t) = IS(t)−δSKS(t), (4.1a)

K̇R(t) = IR(t)−δRKR(t), (4.1b)

EF(t)+ES
(
KS(t), t

)
−E ≥ 0, (4.1c)

ES
(
KS(t), t

)
=
(
ν sin2(tπ)+ τ

)
KS(t)η , (4.1d)

EF(t), IS(t), IR(t)≥ 0. (4.1e)

4.2 Solution

4.2.1 Canonical System and Necessary First Order Conditions

To solve the optimal control problem (4.1) we use Pontryagin’s maximum principle for infinite

time horizon problems (cf. Grass et al., 2008) analogously to the previous model approaches and
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consider the Lagrangian given by

L (KS,KR,EF , IS, IR,λ1,λ2,λ0,µ1,µ2,µ3, t) =

λ0
(
−(bIS(t)+cIS(t)

2)(KS(t)+ ε1)
−α1(KR(t)+ ε2)

−α2 − (dIR(t)+eIR(t)
2)− pFEF(t)

)

+λ1(IS(t)−δSKS(t))+λ2(IR(t)−δRKR(t))+µ1(EF(t)+(ν sin2(tπ)+ τ)KS(t)η −E)

+µ2(t)EF(t)+µ3IS(t)+µ4(t)IR(t).

Note that as of here, we will often omit the time argumentt if necessary for the readability of the

expressions. In this approach we have two costates,λ1(t) andλ2(t), both assumed to be continuous

and piecewise continuously differentiable functions, and a constantλ0 ≥ 0, so that for allt ≥ 0

(λ0,λ1(t),λ2(t)) 6= 0,

L (K∗
S,K

∗
R,E

∗
F , I

∗
S, I

∗
R,λ1,λ2,λ0,µ1,µ2,µ3, t) = max

EF , IS, IR
L (K∗

S,K
∗
R,EF , IS, IR,λ1,λ2,λ0,µ1,µ2,µ3, t).

We further require that the limiting transversality conditions

lim
t→∞

λ1(t)e
−rt = 0, (4.2)

lim
t→∞

λ2(t)e
−rt = 0, (4.3)

are satisfied.µ1(t),µ2(t),µ3(t), andµ4(t) are again the piecewise continuous Lagrange multi-

pliers for the mixed-path constraint and the non-negativity conditions, respectively, so that the

complementary slackness conditions

µ1(t)
(
E∗

F(t)+E∗
S

(
K∗

S(t), t
)
−E

)
= 0 , µ1(t)≥ 0,

µ2(t)E
∗
F(t) = 0 , µ2(t)≥ 0,

µ3(t)I
∗
S(t) = 0 , µ3(t)≥ 0,

µ4(t)I
∗
R(t) = 0 , µ4(t)≥ 0.

hold.

Proposition 3. Without loss of generality we can setλ0 = 1 for the subsequent analysis.
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Proof. Similar to the proof for the first model approach in Chapter 2, forλ0 = 0 we get the switch-

ing functions and the adjoint equations

∂L

∂EF(t)
= µ1(t)+µ2(t),

∂L

∂ IS(t)
= λ1(t)+µ3(t),

∂L

∂ IR(t)
= λ2(t)+µ4(t),

λ̇1(t) = (r +δS)λ1(t)−µ1(t)η
(
ν sin2(tπ)+ τ

)
,

λ̇2(t) = (r +δR)λ2(t).

As µ1(t),µ2(t)≥ 0, in case of no fossil energy,EF(t) = 0, it follows thatµ1(t) = µ2(t) = 0. For

EF(t)> 0 the condition
∂L

∂EF(t)
= µ1(t) = 0

has to hold. For both cases, this yields the solution forλ1(t) as

λ1(t) = λ1(0)e
(r+δS)t .

Similarly, the solution forλ2(t) is given by

λ2(t) = λ2(0)e
(r+δR)t .

As the transversality conditions in (4.2)-(4.3) have to hold, the only feasibleinitial valuesλ1(0)=0

andλ2(0) = 0 imply thatλ1(t) = λ2(t) = 0 ∀t. Hence, this is contradictory to the condition that

(λ0,λ1(t),λ2(t)) 6= 0.

The necessary first order conditions then read as

∂L

∂ IS
= −(b+2cIS)(KS+ ε1)

−α1(KR+ ε2)
−α2 +λ1+µ3 = 0 (4.4)

⇔ IS=
(KS+ ε1)

α1(KR+ ε2)
α2(λ1+µ3)−b

2c
,

∂L

∂ IR
= −d+λ2+µ4−2eIR = 0 ⇔ IR =

(
−d+λ2+µ4

2e

)

, (4.5)



CHAPTER 4. THE EFFECT OF LEARNING BY SEARCHING 97

λ̇1 = (r +δS)λ1−

(

b+
1
2
(−b+(KS+ ε1)

α1(KR+ ε2)
α2(λ1+µ3))

)

(4.6)

α1

2c
(KS+ ε1)

−α1−1(KR+ ε2)
α2 (−b+(KS+ ε1)

α1(KR+ ε2)
α2(λ1+µ3))

−ηµ1
(
ν sin2(tπ)+ τ

)
,

λ̇2 = (r +δR)λ2−

(

b+
1
2
(−b+(KS+ ε1)

α1(KR+ ε2)
α2(λ1+µ3))

)

(4.7)

α2

2c
(KS+ ε1)

−α1(KR+ ε2)
α2−1(−b+(KS+ ε1)

α1(KR+ ε2)
α2(λ1+µ3)) .

Similar to the previous model approach described in Chapter 3, also in this approach only the

satisfaction of the necessary and not the sufficient conditions can be guaranteed, and the economic

interpretation of the obtained results is used to justify the assumption that they are in fact optimal.1

Due to the linearity of the Lagrangian inEF(t), also in this approach the optimal fossil energy

amount is determined by the switching function

∂L

∂EF(t)
=−pF +µ1(t)+µ2(t).

As follows from the proof of Proposition 2, also for this extended model version this propo-

sition applies, implying that a solution lying completely in the interior of the feasible domain

with all three controls positive and the mixed-path constraint satisfied with inequality can never be

optimal. The reason for this is again the possibility to reduce costs by reducingthe fossil energy

amount until finally the mixed-path constraint is satisfied with equality or the fossil energy amount

is zero. The proof for this is similar to the one of Proposition 2. We thereforedistinguish again

between the different boundaries of the feasible domain, but this time, as wehave a third control,

we have six instead of three different boundaries: fossil with and withoutresearch, mixed with

and without research, and renewable with and without research. Referring to one of these cases,

we will in the following always mention additionally if research is included, otherwise the already

established terms (fossil, mixed, and renewable) always mean that they arewithout research. The

canonical system is given as follows:

K̇S = A1−δSKS,

K̇R = A2−δRKR,

1In this model approach, however,∂
2L

∂ IS(t)2 = −2c(KS(t)+ ε1)
−α1(KR(t)+ ε2)

α2 < 0 and ∂ 2L

∂ IR(t)2 = −2e< 0 holds

and, therefore, the Lagrangian is at least concave with respect toIS(t) andIR(t) and the first order conditions (4.4) and
(4.5) indeed deliver maxima.
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λ̇1 = (r +δS)λ1+A3+A4,

λ̇2 = (r +δR)λ2+A5,

where

A1 =
(KS+ ε1)

α1(KR+ ε2)
α2λ1−b

2c
,

A3 = −

(

b+
1
2
(−b+(KS+ ε1)

α1(KR+ ε2)
α2λ1)

)

α1

2c
(KS+ ε1)

−α1−1(KR+ ε2)
α2 (−b+(KS+ ε1)

α1(KR+ ε2)
α2λ1) ,

A5 = −

(

b+
1
2
(−b+(KS+ ε1)

α1(KR+ ε2)
α2λ1)

)

α2

2c
(KS+ ε1)

−α1(KR+ ε2)
α2−1(−b+(KS+ ε1)

α1(KR+ ε2)
α2λ1) ,

for all cases with positive investments in renewable energy capital (mixed, mixed with research,

renewable, renewable with research). Otherwise,A1 = A3 = A5 = 0. Further on,

A2 =

(
−d+λ2

2e

)

,

for all cases with research, otherwiseA2 = 0, and finally

A4 =−η pF
(
ν sin2(tπ)+ τ

)
,

for all fossil and mixed cases, both with and without research, otherwise, A4 = 0.

4.2.2 Periodic Solution

Similar to the previous chapters, we calculate the instantaneous equilibrium points,KIEP
S (t), KIEP

R (t),

λ IEP
1 (t), λ IEP

2 (t), as starting solution for the subsequent boundary value problem,

K̇S= f KS(t,KS,KR,λ1,µ3), with KS(0) = KS(1),

K̇R = f KR(t,KR,λ2,µ4), with KR(0) = KR(1),

λ̇1 = f λ1(t,KS,KR,λ1,µ1,µ3), with λ1(0) = λ1(1),

λ̇2 = f λ2(t,KS,KR,λ1,λ2,µ3), with λ2(0) = λ2(1),
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in order to calculate candidates for the optimal long-run periodic solution of the model. For the

calculation of periodic solutions that exist of several arcs, we solve again for i = 1, . . . ,n+ 1,

j = 1, . . . ,n, s∈ [i−1, i], together with the linear time transformationT(s) of (2.28), the switching

timesτi with the boundary pointsτ0 = 0, τn+1 = 1, and an index

ai =







1, for the fossil region with research,

2, for the mixed region with research,

3, for the renewable region with research,

4, for the fossil region,

5, for the mixed region,

6, for the renewable region,

(4.8)

to distinguish between the canonical systems for the six boundary cases ofthe feasible domain,

the multi-point boundary problem

K̇Si (s) = (τi − τi−1) f KS
ai
(T(s),KSi (s),KRi (s),λ1i (s),µ3i (s)),

K̇Ri (s) = (τi − τi−1) f KR
ai

(T(s),KRi (s),λ2i (s),µ4i (s)),

λ̇1i (s) = (τi − τi−1) f λ1
ai
(T(s),KSi (s),KRi (s),λ1i (s),µ1i (s),µ3i (s)),

λ̇2i (s) = (τi − τi−1) f λ2
ai
(T(s),KSi (s),KRi (s),λ1i (s),λ2i (s),µ3i (s)),

0=
(
KSj (τ j),KRj (τ j),λ1 j (τ j),λ2 j (τ j)

)
−
(
KSj+1(τ j),KRj+1(τ j),λ1 j+1(τ j),λ2 j+1(τ j)

)
,

0=
(
KSn+1(1),KRn+1(1),λ1n+1(1),λ2n+1(1)

)
− (KS1(0),KR1(0),λ11(0),λ21(0)) ,

0= c(a j ,a j+1).

Note, however, that the indexai no longer satisfies condition (2.27) claiming that only switches

between neighboring regions are allowed, as now the third control describing the R&D investments

can be chosen independently of the current portfolio composition. However, what still holds is the

fact that a switch from a fossil case (with or without research) to a renewable case (with or without

research) always has to happen over a mixed case (with or without research) as a direct switch is

not possible. The conditions for the continuity of the controls with respect totime are given for

j = 1, . . . ,n as
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c(a j ,a j+1) =







(KSj (τ j)+ ε1)
α1

(KRj (τ j)+ ε2)−α2
λ1 j (τ j)−b= 0

λ2 j (τ j)−d = 0

ES(KSj (τ j),τ j)−E = 0







if {a j ,a j+1} ∈







{{1,2},{4,5},{2,1},

{5,4}}

{{1,4},{2,5},{3,6},

{4,1},{5,2},{6,3}}

{{2,3},{5,6},{3,2},

{6,5}}







.

(4.9)

4.2.3 Stability

In order to investigate the stability of a periodic solutionΓ(t), we have to calculate the monodromy

matrix, as done in the previous chapters. The Jacobian matrix for the fossilcase and the fossil case

with research is given by

J(t) =










−δS 0 0 0

0 −δR 0 ∂ f KR

∂λ2

0 0 r +δS 0

0 0 0 r +δR










(Γ(t)),

where

∂ f KR

∂λ2
=







0, for the fossil case,

1
2e, for the fossil case with research.

The monodromy matrix then is given by

M(1) = eJ(1) =










e−δS 0 0 0

0 e−δR 0 A

0 0 er+δS 0

0 0 0 er+δR










,

where

A=







0 , for the fossil case,

e−δR(er+2δR−1)
(r+2δR)2e , for the fossil case with research.
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Both monodromy matrices have the same eigenvalues given by

ξ1 = e−δS < 1, ξ2 = e−δR < 1, ξ3 = er+δS > 1, ξ4 = er+δR > 1.

This implies that also in the current model approach, every fossil solution but also every fossil

solution with research is of saddle-type. For all the other cases, the Jacobian explicitly depends

on the periodic solution and, therefore, a general statement on the stability isnot possible. The

Jacobian for the mixed case with research reads as

J(t) =













∂ f KS

∂KS
0 ∂ f KS

∂λ1
0

0 −δR 0 (λ2−d)2

2e

∂ f λ1

∂KS

∂ f λ1

∂KR

∂ f λ1

∂λ1
0

∂ f λ2

∂KS

∂ f λ2

∂KR

∂ f λ2

∂λ1
r +δR













(Γ(t)),

where

∂ f KS

∂KS
= −δR+

α1(KS+ ε1)
α1−1(KR+ ε2)

α2λ1

2c
,

∂ f KS

∂λ1
=

(KS+ ε1)
α1(KR+ ε2)

α2

2c
,

∂ f λ1

∂KS
= −

α1
(
b2(1+α1)+(α1−1)(KS+ ε1)

2α1(KR+ ε2)
2α2λ 2

1

)

4c(KS+ ε1)α1+2(KR+ ε2)α2
,

∂ f λ1

∂KR
= −

α1α2
(
b2+(KS+ ε1)

2α1(KR+ ε2)
2α2λ 2

1

)

4c(KS+ ε1)α1+1(KR+ ε2)α2+1 ,

∂ f λ1

∂λ1
= r +δS−

α1(KS+ ε1)
α1−1(KR+ ε2)

α2λ1

2c
,

∂ f λ2

∂KS
= −

α1α2
(
b2+(KS+ ε1)

2α1(KR+ ε2)
2α2λ 2

1

)

4c(KS+ ε1)α1+1(KR+ ε2)α2+1 ,

∂ f λ2

∂KR
= −

α2
(
b2(1+α2)+(α2−1)(KS+ ε1)

2α1(KR+ ε2)
2α2λ1

)

4c(KS+ ε1)−α1(KR+ ε2)α2+2 ,

∂ f λ2

∂λ1
= −

α2λ1

2c(KS+ ε1)−α1(KR+ ε2)1−α2
.
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4.2.4 Optimal Paths

For the calculation of trajectories that lead into a periodic solution, we use again the Moore-

Penrose method, as also done in the previous chapter. For this approach, however, we have an

additional state and an additional control to consider. Assume that we haveagainN continuation

steps. Then, in order to get a trajectory that starts at the initial capital stocks {KS0,KR0}, at each

stepn= 1, . . . ,N the system

0 = Kn
S(0)−Kn

S0
,

0 = Kn
R(0)−Kn

R0
,

0 = F ′



















Kn
S(1)

Kn
R(1)

λ n
1 (1)

λ n
2 (1)










−










K∗
S(0)

K∗
R(0)

λ ∗
1 (0)

λ ∗
2 (0)



















,

has to be solved.

For the calculations of trajectories that consist of multiple arcs, we have again to solve in

addition the marginal conditions guaranteeing the continuity of the paths, as done in Section 3.4.1.

As the numbers of states and controls for this model approach have changed, we will once again

formulate the complete boundary value problem. LetIn denote the number of necessary arcs for

then-th continuation step and let

τn
0 := 0< τn

1 < τn
2 < · · ·< τn

In−1 < 1=: τn
In,

be again the switching times as well as the two boundary points. We use the indexof (4.8) to

distinguish between the six different boundary cases of the feasible domain, and the time transfor-

mation

T(s) = Tp ((τi − τi−1)(s− i)+ τi)

with Tp being the truncation time, as we have done in Section 3.4.1 so thats∈ [i −1, i] for i =

1, . . . , In. Then, at each continuation stepn = 1, . . . ,N, a path is searched that consists ofIn arcs
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and that solves fori = 1, . . . , In and for j = 1, . . . , In−1 the boundary value problem

K̇Si (s) = Tp(τi − τi−1) f KS
ai
(T(s),KSi (s),KRi (s),λ1i (s),µ3i (s)), (4.10)

K̇Ri (s) = Tp(τi − τi−1) f KR
ai

(T(s),KRi (s),λ2i (s),µ4i (s)), (4.11)

λ̇1i (s) = Tp(τi − τi−1) f λ1
ai
(T(s),KSi (s),KRi (s),λ1i (s),µ1i (s),µ3i (s)), (4.12)

λ̇2i (s) = Tp(τi − τi−1) f λ2
ai
(T(s),KSi (s),KRi (s),λ1i (s),λ2i (s),µ3i (s)), (4.13)

0 = Kn
Sj
(τ j)−Kn

Sj+1
(τ j), (4.14)

0 = Kn
Rj
(τ j)−Kn

Rj+1
(τ j), (4.15)

0 = λ n
1 j
(τ j)−λ n

1 j+1
(τ j), (4.16)

0 = λ n
2 j
(τ j)−λ n

2 j+1
(τ j), (4.17)

0 = c(a j ,a j+1), (4.18)

0 = Kn
S1
(0)−Kn

S0
, (4.19)

0 = Kn
R1
(0)−Kn

R0
, (4.20)

0 = F ′



















Kn
SIn
(1)

Kn
RIn

(1)

λ n
1In
(1)

λ n
2In
(1)










−










K∗
S(0)

K∗
R(0)

λ ∗
1 (0)

λ ∗
2 (0)



















, (4.21)

where (4.18) are the same continuity conditions as in (4.9).

4.3 Results

In what follows, we present the results of the numerical analysis of the model for which we set

the parameters as summarized in Table 4.1. Similar to the model approach in Chapter 3, also here

multiple periodic solutions can be found. For the current parameter set, we obtain a fossil solution,

a mixed solution, and a mixed solution with research. The first solution exhibits no investments,

neither in renewable energy capital nor in R&D efforts. Hence, the whole energy demand is

covered by fossil energy in the long run. In the second periodic solution, investments in renewable

energy capital are made and, therefore, both types of energy are used in the portfolio to cover

the demand, while there are still no R&D efforts to improve the renewable energy technology. In

the third periodic solution, however, also R&D investments are positive and, hence, as a positive

knowledge stock reduces the investment costs, more renewable energy capital is affordable, and

therefore more renewable energy can be generated.
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Interpretation Parameter Value Interpretation Parameter Value
Investment costs b 0.6 LS∗2 coefficient α2 0.2
Adjustment costs c 0.3 Depreciation rate ofKS δS 0.03
Linear research costs d 0.3 Depreciation rate ofKR δR 0.02
Non-linear research costs e 0.6 Initial investment costs forKS ε1 1
Energy demand E 2000 Initial research costs forKR ε2 1
Fossil energy price pF 0.047 Degree of efficiency η 0.2
Discount rate r 0.04 Maximal radiation increment ν 4.56
LD∗1 coefficient α1 0.25 Minimal radiation in winter τ 0.79

∗1. . . learning by doing ∗2. . . learning by searching

Table 4.1: Parameter values used for the numerical analysis.

Considering the stability of the obtained periodic solutions, we already have analytically

proven in Section 4.2.3 that the fossil periodic solution always is of saddle-type. For the two

other periodic solutions the numerical calculation of the monodromy matrix showsthat they are of

saddle-type as well. The mixed periodic solution, however, has only a 1-dimensional stable mani-

fold, while the mixed periodic solution with research as well as the fossil periodic solution have a

2-dimensional manifold. The three periodic solutions are plotted in the state space in Figure 4.1,

and their state and control values together with the corresponding eigenvalues are summarized

in Table 4.2. Further on, the time-control and time-state paths for these three periodic solutions

are plotted in Figure 4.2. Note that also the R&D investments as well as the stock ofknowledge

slightly fluctuate over the year in accordance with the investments in renewableenergy capital

so that the slightly higher knowledge stock compensates for the slightly lower renewable energy

capital stock. Moreover, also here the fluctuations in knowledge as well as in renewable energy

capital already imply forgetting by not doing. But similar to the results obtained in Chapter 3, the

fluctuations are so small that this forgetting process is negligibly small as well.

Summing up, we have two periodic solutions of saddle-type with a 2-dimensionalstable man-

ifold whose areas of attraction probably are separated, induced by the periodic solution of saddle-

type in-between with only a 1-dimensional manifold. In contrast to the previous model approach,

however, this separation here is not further given by a single indifference threshold point but by an

indifference threshold curve, as we have two states in the current approach.
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Figure 4.1: The three detected periodic solutions for a fossil energy price pF = 0.047 in the state-
space.

Solution K∗
S(0) K∗

R(0) E∗
F(0) I∗S(0) I∗R(0) Eigenvalues Objective

function
Fossil 0.0000 0.0000 2000.0 0.0000 0.0000 {0.9704, 0.9802, -92.1448

1.0618, 1.0725}

Mixed 4.0612 0.0000 1999.36 0.1218 0.0000 {1.0618, 0.9802, -92.0806
1.0195+0.0390i,
1.0195-0.0390i}

Mixed & 61.0341 3.7120 1990.36 1.8309 0.0743 {0.9513, 0.9824, -90.9825
Research 1.0941, 1.0594}

Table 4.2: Multiple periodic solutions forpF = 0.047.
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Figure 4.2: Time-control paths for the three obtained periodic solutions fora fossil energy price
pF = 0.047 in(a) fossil energy amountEF(t), (b) renewable energy investmentsIS(t), and(c) re-
search investmentsIR(t), as well as time-state paths in(d) renewable energy capitalKS(t), and
(e)knowledgeKR(t).
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4.3.1 Calculation of the Indifference Threshold Curve

An indifference threshold curve in our model approach is a curve that lies in theKS-KR-state space

and separates the areas of attraction of two periodic solutions in the sense that two paths having the

same initial states on the indifference threshold curve and leading into the two periodic solutions,

respectively, have the same objective values. Hence, along this curve one is indifferent between

these two periodic solutions.

In order to investigate whether an indifference threshold curve exists, we first have to find out

if any of the obtained periodic solutions is dominated. To begin with, we focus onthe mixed

periodic solutions with only a 1-dimensional stable manifold. Therefore, we try to calculate a path

that starts at this periodic solution and leads into the mixed periodic solution with research. For

the calculation of the objective values, we enlarge again the canonical system by introducing the

differential equation

ċ(t)=e−rt
(

− IS(t)
(

b+cIS(t)
)(

KS(t)+ ε1

)−α1
(

KR(t)+ ε2

)−α2
− IR(t)

(

d+eIR(t)
)

− pFEF(t)

)

,

as done in Section 3.3.1. The continuation of the path is possible and is plotted in Figure 4.3a,

while Figure 4.3b shows the objective values along the continuation of this path, compared to the

objective value if the decision is to stay in the mixed periodic solution. As one cansee, the path

leading into the mixed periodic solution with research has a better performanceand, consequently,

the mixed periodic solution is dominated. In what follows, we will therefore refer to it as the

dominated periodic solution.

Considering the other two solutions, the fossil and the mixed one with research, we try to

continue a path starting at one periodic solution and leading into the other one as far as possible and

vice versa, until either the continuation process aborts as the path reaches some boundary of the

feasible domain, the path is bending back, or the target value starting at the other periodic solution

is reached. Figure 4.4 shows the resulting paths forpF = 0.046. In this case, the continuation

process stops as both paths reach boundaries of the feasible domain. One can see that there exist

intervals for both states where the paths overlap. Within these intervals we compare the objective

value curves, which is illustrated in Figures 4.5a and 4.5b. As it turns out, none of the two periodic

solutions is dominated by the other and an indifference threshold point occurs, which is determined

by the intersection of these two curves. Given this first indifference threshold point, the goal is

to continue the indifference threshold curve along one of the two states. Todo so, we use this

indifference threshold point as starting solution for solving the boundaryvalue problem presented
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Figure 4.3: Dominance over the mixed periodic solution for a fossil energy price pF = 0.047:
(a) Continued path leading from the mixed periodic solution into the mixed periodic solution with
research.(b) Comparison of the objective values.

in what follows.

Let

y1(t) := (K1
S(t),K

1
R(t),λ 1

1 (t),λ 1
2 (t)), t ∈ [0,T1

p ],

y2(t) := (K2
S(t),K

2
R(t),λ 2

1 (t),λ 2
2 (t)), t ∈ [0,T2

p ],

define the fossil path and the mixed-path with research, respectively, leading into the correspond-

ing periodic solution and starting at the first obtained indifference threshold point. T1
p andT2

p are

the truncation times of these two paths. It holds that

0 = F ′
1(y1(T

1
p )−Γ1(0)), (4.22)

0 = F ′
2(y2(T

2
p )−Γ2(0)), (4.23)

whereFi , i ∈ {1,2}, are the orthogonal complements to the stable eigenspace, respectively, andΓi ,

i ∈ {1,2}, denote the periodic solutions. As both paths start at the indifference point, they have

the same objective value, denoted asOV(·) in the following, so

OV(y1(T
1
p )) = OV(y2(T

2
p )). (4.24)
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Therefore, in order to find another point on the indifference thresholdcurve, another pair of so-

lution paths{ŷ1(t), ŷ2(t)} has to be found that satisfies (4.22)-(4.24) with both having the same

initial state values. Letfai (t,yi(t)) denote in general notation the canonical system for the different

regions according to the introduced index in (4.8),T(s) be the linear time transformation of (3.20)

but this time only for two arcs soi = 1,2, let furtherTp = T1
p +T2

p be the total truncation time,

andτ be the switching time between the two arcs. Further assume thatN continuation steps are

needed in order to continue the indifference threshold curve separatingthe areas of attraction of

the fossil periodic solution and the mixed periodic solution with research, untilit finally reaches

the required state value. Then, at each stepn = 1, . . . ,N, the following boundary value problem

has to be solved,

ẏ1(s) = Tpτ f4(T(s),y1(s)), s∈ [0,1], (4.25)

ẏ2(s) = Tp(1− τ) f2(T(s),y2(s)), s∈ [1,2], (4.26)

0 = yn
1(0){1,2}−yn

2(1){1,2}, (4.27)

0 = OV(yn
1(1))−OV(yn

2(2)), (4.28)

0 = F ′
1 (y

n
1(1)−Γ1(0)) , (4.29)

0 = F ′
2 (y

n
2(2)−Γ2(0)) , (4.30)

0 = yn
1(0){1}−Kn

S0
, or 0= yn

1(0){2}−Kn
R0
. (4.31)

The subscripts in{.} refer to the coordinates of the paths,{KS(t), KR(t), λ1(t), λ2(t)}. As already

mentioned, the continuation takes place along one state, while the other one is left unrestricted.

Therefore, in (4.31) both possibilities are mentioned. For more details on the continuation of the

indifference threshold curve see Grass (2012). Numerically, the problem is solved again with the

Moore-Penrose method. Solving this for the current parameter set yieldsthe indifference threshold

curve, shown in Figures 4.6a and 4.6b.

4.3.2 Economic Interpretation of the Indifference ThresholdCurve

Similar to the interpretation of the indifference threshold point in Chapter 3, also here the indiffer-

ence threshold curve supplies information whether a portfolio with renewable energy is profitable

in the long run or not, depending on the starting point. But while in Chapter 3 thisdecision has

been based only on the initial stock of renewable energy capital, it here also depends on the accu-

mulated stock of knowledge that contributes to the performance of renewable energy generation
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in form of reduced investment costs. The indifference threshold curveis shown in Figures 4.6a

and 4.6b as black dashed line. If the initial states lie beyond this curve, this implies that the stock

of renewable energy capital as well as the stock of knowledge are high enough to compensate for

the initially very high investment costs of the renewable energy technology, and hence a portfolio

of both energy types is profitable in the long run in order to cover the givenenergy demand. If

they lie beneath, the available knowledge and the renewable energy capitalstock are too low and,

hence, due to the still very high investment costs it is better to stop all investmentsand only use

fossil energy in the long run to cover the given energy demand. Note thatalso here the accumula-

tion of new capital, the maintenance of already existing capital, as well as R&D efforts stop and,

consequently, forgetting by not doing in both factors increase again the investment costs. If one

starts exactly on the curve, one is indifferent whether to include renewable energy in the long run

into the portfolio or not.

Further on, one can observe that a marginal reduction in the stock of renewable energy capital

can be compensated by a marginal increase in the stock of knowledge in termsof profitability,

and vice versa. In the extreme case, when the initial stock of renewable energy capital is zero,

one can see that still a portfolio with both energy types can be optimal in the longrun, if the

initial stock of knowledge is high enough. Note that this is in contrast to the results of Chapter 3,

where it turned out that a start with renewable energy generation from the very beginning never

can be optimal. Here, it can be optimal, postulated that at least R&D efforts have already been

done and the accumulated knowledge is high enough to reduce the initially high investment costs.

This, of course, also holds the other way round. If there haven’t been R&D efforts so far, but the

initial stock of renewable energy capital is high enough, it still can be optimalto invest further in

renewable energy capital and, in addition, make R&D investments.

These results underline the fact that not only subsidies for investments intorenewable energy

capital can be helpful for the introduction of a new energy technology intothe market, as suggested

in Chapter 3, but also subsidies for R&D efforts on this field. As investment costs for a new

technology are very high and, hence, the competitiveness with conventional technologies is not

given, subsidizing R&D efforts would increase the stock of knowledge and simultaneously decline

the investment costs a bit, until, finally, a start-up with the new technology is profitable.

4.3.3 Break-Even Analysis

In order to investigate how the investment costs decline along the path leading into the mixed

optimal long-run periodic solution with research, we next conduct a similar analysis as in Sec-
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tion 3.3.3. This time, however, we have two effects that simultaneously reducethe investment

costs of renewable energy. On the one hand, there is the learning-by-doing effect which we have

considered extensively in Chapter 3. On the other hand, we have the learning-by-searching effect

that also contributes to the cost reduction but requires additional R&D investments. To see how

the costs change along such a path when also learning by searching is included, we consider the

investment costs per unit of generated renewable energy (unit investment costs) given by the term

I∗S(t)(b+cI∗S(t))(K
∗
S(t)+ ε1)

−α1(K∗
R(t)+ ε2)

−α2 + I∗R(t)(d+eI∗R(t))
(
ν sin2(tπ)+ τ

)
K∗

S(t)η
, (4.32)

along the mixed-path with research plotted in Figure 4.6.

The result can be seen in Figure 4.7. As the generation of renewable energy occurs in the

denominator of Equation (4.32), the fluctuation in global radiation is also reflected in the unit in-

vestment costs. At the beginning of the path, the unit investment costs are very high as almost no

renewable energy capital is available and also the knowledge stock is verylow. As it gets obvi-

ous in theKS-KR-plane, along the first part of the path, the focus rather lies on accumulation of

knowledge by R&D investments although they come at some cost and cause an initial increase in

the unit investment cost function. This is because the considered learningeffects are only with

respect to investment costs for renewable energy capital, not for R&D efforts. Therefore, in case

the initial point lies above the indifference threshold curve, it is always profitable to first increase

the knowledge stock up to a sufficiently high level to then fully utilize the learningeffect for the

accumulation of renewable energy capital. This is also in accordance with theobserved aspect

that in this model approach with learning in two factors, a complete start-up with renewable en-

ergy generation can be profitable as long as already sufficient knowledge is accumulated. Due

to the learning-by-searching effect, knowledge reduces the high investment costs, so that accu-

mulation of renewable energy capital gets profitable. From then on, also thelearning-by-doing

effect contributes to this decline and a change in the investment regime can beobserved. While

at the beginning R&D investments were dominant, they saturate along the path andinvestments

for renewable energy capital strongly increase, until finally the break-even point, where the unit

investment costs are equal to the fossil energy price, is reached and thepath ends in the optimal

long-run periodic solution. Note, however, that the unit investment costs do not stay at the com-

petitive level of the fossil energy price over the whole year. Similar to the results in Chapter 3,

also here they lie above the fossil energy price in winter and slightly below it insummer.
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4.4 Sensitivity Analysis

As the results of the previous section have shown, also in this approach withboth learning by doing

and learning by searching included into the model, history dependence occurs. However, this time

the analysis was carried out not only with respect to the initially installed renewable energy capital

but also with respected to the initial knowledge stock. Whether it is profitable or not to further

invest in renewable energy generation in order to approach the mixed periodic solution is indicated

by the indifference threshold curve which separates the areas of attraction. This profitability,

of course, is strongly dependent on the competitiveness of the renewable technology with the

conventional one. Similar to the sensitivity analysis of the previous chapters, in this section we

also focus on the investigation of the changes in the optimal portfolio compositionand the shift

of the indifference threshold curve, when the fossil energy pricepF changes. Further on, we use

again the different scenarios of Section 3.4.3 to investigate the changes in the optimal portfolio

composition when the global radiation intensity varies due to different geographical conditions.2

4.4.1 Fossil Energy PricepF

Before we start with the continuation of the periodic solutions along the fossilenergy price axis,

we first consider the calculation of the indifference threshold curve fora slightly lower fossil

energy pricepF = 0.046, which exhibits some specialties.

Calculation of the Indifference Threshold Curve for pF = 0.046

As we have done in Section 4.3.1, we first continue the fossil path and the mixed-path with research

as far as possible. If we get a sufficiently large overlap so that an intersection point of the objective

function values along the paths occurs, we can find a first indifferencethreshold point. With these

first starting solutions we solve the boundary value problem (4.25)-(4.31)in order to calculate the

corresponding indifference threshold curve, first towards theKR-axis and second towards theKS-

axis, respectively. In both directions, however, the continuation process aborts as one of the paths

gets infeasible. Figure 4.8a shows the Lagrange multiplierµ3 along the fossil paths starting at the

so far calculated indifference threshold curve. As one can see, it declines towards zero and hence

the path reaches the feasible boundary of the mixed case with positive investments in renewable

energy capitalIS. We therefore calculate a multi-arc path by continuing the fossil path into the

2As the learning-by-searching effect is identically modeled as the learning-by-doing effect, a sensitivity analysis
with respect to the learning-by-searching coefficient would not provide new insights qualitatively. We therefore neglect
this aspect in the carried out analysis.



116

mixed region. However, very soon investments get zero again and hence, a switch back to the

fossil region happens. The complete path therefore is a multi-arc path consisting of two fossil arcs

and one mixed arc in-between, shown as black line in Figure 4.8a. The resulting path in the state-

control space can be seen in Figure 4.8b. During the continuation of the indifference threshold
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Figure 4.8: Multi-arc path consisting of two fossil arcs and one mixed arc in-between leading into
the fossil periodic solution for a fossil energy pricepF = 0.046: (a) the Lagrange multiplier along
the path,(b) the path in the state-control space.

curve towards theKR-axis, the mixed-path with research gets infeasible as R&D investments get

zero, therefore the Lagrange multiplierµ4 gets positive, and hence the feasible boundary of the

mixed case is reached, as shown in Figure 4.9a. Therefore, also here aswitch happens to the mixed

region, where still investments in renewable energy capital are made, but no further investments

in knowledge accumulation. The resulting path consequently consists of two arcs, one belonging

to the mixed case with research and the second one corresponding to the mixed case (without

research), as shown in Figure 4.9b.

Given these new and corrected paths, the continuation of the indifference threshold point can

be carried on. This time, however, we do not only have to consider the marginal conditions that

guarantee the indifference along the curve, but also the marginal conditions for the continuity of

the multi-arc paths. To demonstrate this in more detail, assume that we have two paths,y1(t) and

y2(t), consisting ofm andk arcs, respectively, and leading with the truncation times ofT1
p and

T2
p into the two periodic solutions, which are denoted asΓ1(t) andΓ2(t) in what follows. Further

on, assume thatN continuation steps are needed for the calculation of the indifference threshold

curve. Then, at each stepn= 1, . . . ,N, we have to consider the time transformationT(s) of (3.20)



CHAPTER 4. THE EFFECT OF LEARNING BY SEARCHING 117

0 1 2 3 4 5

0

5

10

15
x 10

−3

KS(t)

µ
4
(t

)

Mixed

Mixed & Research

(a)

0.5 1 1.5 2 2.5

0

5

10

15

x 10
−3

KS(t)

I R
(t

) Mixed & 
Research

Mixed

(b)

Figure 4.9: Multi-arc path consisting of a mixed arc and a mixed arc with research leading into
the mixed periodic solution with research for a fossil energy pricepF = 0.046: (a) the Lagrange
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and them+k−1 switching times,

τ0 := 0< τ1 < · · ·< τm < τm+1 < · · ·< τm+k−1 < 1=: τm+k,

for which we have to solve forTp = T1
p +T2

p , u= 1, . . . ,m, andv= 1, . . . ,k,

ẏ1u = Tp(τu− τu−1) fau(T(s),y1u(s)), s∈ [u−1,u], (4.33)

ẏ2m+v = Tp(τm+v− τm+v−1) fam+v(T(s),y2m+v(s)), s∈ [m+v−1,m+v], (4.34)

0 = yn
11
(0){1,2}−yn

2m+1
(m){1,2}, (4.35)

0 = OV(yn
1m
(m))−OV(yn

2m+k
(m+k)), (4.36)

0 = F ′
1(y

n
1m
(m)−Γ1(0)), (4.37)

0 = F ′
2(y

n
2m+k

(m+k)−Γ2(0)), (4.38)

0 = yn
11
(0){1}−Kn

S0
, or 0= yn

11
(0){2}−Kn

R0
, (4.39)

0 = yn
1i
(τi)−yn

1i+1
(τi), ∀i = 1, . . . ,m−1 (4.40)

0 = yn
2m+ j

(τm+ j)−yn
2m+ j+1

(τm+ j), ∀ j = 1, . . . ,k−1 (4.41)

0 = c(ai ,ai+1), ∀i = 1, . . . ,m−1 (4.42)

0 = c(am+ j ,am+ j+1), ∀ j = 1, . . . ,k−1, (4.43)
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wherey1u andy2v denote the current arc solution and ˙y1u andẏ2v are the corresponding canonical

system equations, depending on the current region. Note that (4.35)-(4.39) are the same conditions

as in (4.27)-(4.31), while (4.40)-(4.43) correspond to the continuity conditions of (4.14)-(4.18).

Solving this boundary value problem for the calculated paths with multiple arcs yields the

complete indifference threshold curve that is shown in Figure 4.10. The black part of the indif-

ference threshold curve belongs to the region where both paths leading into the periodic solutions

consist of only one arc (pure path), while along the two gray parts one ofthe two involved paths

has several arcs. To illustrate this in more detail, for each part of the indifference threshold curve

a pair of paths is plotted in Figure 4.10.

Continuation of the Periodic Solutions along thepF -Axis

In order to continue the obtained periodic solutions along thepF -axis, we use also here the single

shooting method explained in Section 3.4.1 to find a fixed point of the Poincaré map of the slightly
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perturbed canonical system. Figures 4.11a and 4.11b show the results for the starting pointsK∗
S(0)

andK∗
R(0) of the periodic solutions, respectively. To avoid ambiguity, note that we will consider

the changes of the indifference threshold curve separately later and focus here only on the changes

in the number and the position of the periodic solutions that can be found.

For a fossil energy pricepF < 0.0409 the only long-term periodic solution that exists is the

fossil one, which is of saddle-type. Here, fossil energy is so cheap that neither investments into

renewable energy capital nor into R&D efforts are profitable, and henceit is optimal to cover the

whole energy demand with fossil energy in the long run.

As soon aspF > 0.0409, two additional periodic solutions occur, where both correspond to

the mixed case with research and are of saddle-type, but the higher one has a 2-dimensional sta-

ble manifold while the lower one only has a 1-dimensional one. If the fossil energy price further

increases, the higher mixed periodic solution with research also increasesas investments in both,

renewable energy capital as well as R&D efforts, get more profitable. Incontrast, the lower peri-

odic solution declines until finally atpF = 0.0448 the investments into R&D efforts get zero and

hence a transition to a mixed periodic solution without research occurs, which is also of saddle-

type with a 1-dimensional stable manifold and responsible for the tiny kink in Figure 4.11a. This

periodic solution further decreases inpF until also the investments into renewable energy capital

get zero atpF = 0.063 and a transition to a multi-arc solution with fossil and mixed arcs occurs.

Also this multi-arc solution is of saddle-type and has a 1-dimensional stable manifold.

From Figures 4.11a and 4.11b one can observe that also for this two-factor model, the fossil

solution is only existent up to a specific fossil energy price. Similar to the calculation in Sec-

tion 3.4.1 we will determine this price level in what follows. As the first adjoint equation of this

two-factor model for the fossil case coincides with the adjoint equation of the one-factor model

for the fossil case, the analytical solution forλ1(t) is equal to (3.29), given by

λ1(t) =
pFη

(
(4π2+(r +δS)

2)(ν +2τ)+(r +δS)ν(2π sin(2πt)− (r +δS)cos(2πt))
)

2(r +δS)(4π2+(r +δS)2)
.

The equation for the Lagrange multiplier,

µ3(t) = b(KS(t)− ε1)
−α1(KR(t)− ε2)

−α2 −λ (t), (4.44)

shows that also here the reason for the limited existence of the fossil solutionis given byµ3(t)
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getting negative at some fossil energy price level, which can be calculatedas

p̄F(·) =
2b(r +δS)(4π2+(r +δS)

2)(KS(t)+ ε1)
−α1(KR(t)+ ε2)

−α2

η ((4π2+(r +δS)2)(ν +2τ)+(r +δS)ν(2π sin(2πt)− (r +δS)cos(2πt)))
,

which is a function ofKS(t), KR(t), and timet. As the derivative of (4.44) with respect toλ1 is

negative, similar to Section 3.4.1 the first violation ofµ3 ≥ 0 whenpF is increased occurs at a

peak of the periodic fluctuations ofλ1. Inserting the corresponding time pointtmax together with

KS(tmax) = 0 andKR(tmax) = 0 yields, for the current parameter set, ¯pFtmax
= 0.0678 until which

the fossil solution is feasible. For a higher fossil energy price, however, a fossil-mixed periodic

solution still is feasible, if the part along whichµ3(t) gets negative is again replaced by a mixed arc.

As soon asµ3(t) is already negative at the minimum of the periodic fluctuations ofλ1(t) at some

tmin, also this mixed-arc solution is not further feasible, which happens for theused parameter set

at p̄Ftmin
= 0.0689. For a fossil energy price even beyond this level, the only periodicsolution is

given by the mixed periodic solution with research being of saddle-type.

Figure 4.12 shows what happens if the fossil energy pricepF increases even further. As re-

newable energy generation progressively gets profitable due to the reduced investment costs by

the accumulated experience as well as the accumulated knowledge so far, astrong increase both

in renewable energy capital and the knowledge stock can be observed.Nevertheless, both energy

types still are needed over the whole period in order to cover the given energy demand. Similar to

the results in Section 3.4.1, also here there exists a price level at which renewable energy capital

is so high that during summer, when global radiation reaches its maximum, the demand can even

be covered without fossil energy. This here happens atpF = 0.2301. At this point, the feasible

boundary of the mixed case is reached and, consequently, a optimal long-run periodic solution oc-

curs that consists of two mixed arcs and a renewable arc in-between, where the demand is covered

only by renewable energy. If the fossil energy price increases evenfurther, still both, the renewable

energy capital stock as well as the knowledge stock, increase but obviously at a decreasing rate.

Also here, the reason for this is that the marginal benefit of an additional unit of renewable energy

capital declines due to the generated surpluses over summer, and consequently, also the marginal

benefit of R&D investments decreases.
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Figure 4.12: Sensitivity analysis of the canonical system with respect to a fossil energy price
pF ≥ 0.08, showing(a) KS(0), (b) KR(0).
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Changes in the Indifference Threshold Curve with Respect to the Fossil Energy PricepF

So far we have only considered how the solutions of the canonical systemchange with a varying

fossil energy pricepF but not how the optimal long-run solution changes. To analyze this we

first calculate the indifference threshold curves for different fossilenergy price scenarios and see

how the areas of attraction are separated, which are plotted in Figure 4.13.It gets obvious that

for a low fossil energy price, the initial stocks of knowledge and renewable energy capital have to

be very high, so that the learning-by-doing and learning-by-searching effect are strong enough to

sufficiently reduce the investment costs in order to make further investments inrenewable energy

capital profitable at all. In these scenarios, the introduction of the renewable energy technology

into the market is only possible with appropriately high financial support forexample in form of

subsidies, either for R&D investments or for investments in renewable energycapital. The higher

the fossil energy price, the lower are the necessary initial stocks of knowledge and renewable

energy capital at which further investments in renewable energy generation start to be profitable.

Consequently, a parallel shift of the indifference curve towards the origin occurs. At a fossil energy

price pF = 0.049, however, the mixed periodic solution with research finally gets dominantand

therefore, from here on the areas of attraction are not further separated.

To show these results also in 3 dimensions, we used these calculated indifference threshold

curves to interpolate the indifference threshold surface for the considered fossil energy price inter-

val [0.046,0.049],3 which is plotted in Figure 4.14. The black solid line shows the fossil periodic

solution, while the position of the higher mixed periodic solution can only be indicated by an ar-

row for scaling reasons. The intersection of a 2-dimensional hyperplane in theKS-KR-space for

a specific fossil energy price with the indifference threshold surface then yields the indifference

threshold curve for this case.

Finally, looking at the rather small interval, in which an indifference curve exists, we conclude

that the solution is fairly sensitive with respect to the fossil energy pricepF in that respect.

3Note that the indifference threshold surface in fact exists on the whole interval of [0.04,0.049], but due to reasons
of clarity and accuracy, we only picked out this sub-interval to give a hint how the indifference threshold surface lies
within the 3-dimensional space.
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Figure 4.14: Indifference threshold surface separating the areas ofattraction of the fossil periodic
solution and the mixed periodic solution with research.
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Bifurcation Analysis

Given the previous results, we investigate again the local behavior of the monodromy matrix to

see how the optimal vector field changes along thepF -axis. Figure 4.15 shows again the norms

of the eigenvalues of the obtained periodic solutions. In contrast to the analysis in Chapter 3, we

here have four eigenvalues for each periodic solution. According to thedefinition of stability for

periodic solutions, described in Section 2.2.3, a periodic solution is of saddle-type, if at least one

eigenvalue lies within and one outside the unit circle. As already determined in Section 4.2.3,

every fossil solution that can be found for the current model approach is of saddle-type. In Fig-

ure 4.15, one can see that for the fossil case indeed the norms of two eigenvalues are above and

two below 1. AtpF = 0.0409 again a fold-bifurcation occurs where an additional pair of mixed

periodic solutions with research appears. The higher one is of saddle-type, as two eigenvalues lie

within and two outside the unit circle. At the bifurcation point one eigenvalue crosses the unit

circle. The lower mixed periodic solution with research consequently has only a 1-dimensional

stable manifold, but it is still of saddle-type and is dominated, as we have already mentioned. At

pF = 0.0448, the R&D investments of this dominated mixed periodic solution with research get

zero, and hence it changes to a mixed periodic solution without research,which also has only a

1-dimensional manifold as there are still three eigenvalues (one real and apair of complex eigen-

values) outside and only one inside the unit circle. Note that the one inside theunit circle coincides

with one eigenvalue of the fossil solution. This transition to another canonical system is also the

reason for the small discontinuity in the complex eigenvalues. Finally, also the investments in

renewable energy generation of this dominated mixed periodic solution get zero and it turns into a

mixed/fossil solution atpF = 0.063, which also has a 1-dimensional manifold and is dominated.
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4.4.2 Global Radiation Intensity

To investigate the changes in the bifurcation diagram in Figure 4.11 when the intensity of global

radiation varies, we use again the two scenarios summarized in Table 3.3, where the first one

corresponds to a northern country with a lower supply, and the second one to a southern country

with a higher supply, compared to the original scenario for Austria.

Figure 4.16 shows the obtained results for all three scenarios both forKS(0) andKR(0). Similar

to the results in Section 3.4.3, one can see that the changes in the global radiation intensity also

here induce a shift along thepF -axis, but this time in both states.

The interpretation is the following: In a northern country, where the globalradiation intensity

is lower, less renewable energy can be generated. Therefore, the fossil energy price at which

renewable energy generation gets a considerable alternative and couldbe profitable in case capital

and knowledge are sufficiently available, is higher than in the original scenario for Austria. This

induces a shift to the right and implies that in order to foster renewable energy generation, a higher

financial support for example in form of subsidies would be necessarythan in the basic scenario.

As for this reason the slope with which both states increase with the fossil energy price is lower,

the fossil energy price interval in which the areas of attraction of the two periodic solutions are

separated, is larger than in the original scenario for Austria. In contrast, for a southern country

where the global radiation intensity and therefore the renewable energy generation is higher, the

inclusion of renewable energy into the portfolio is a considerable alternative already at a lower

fossil energy price than in the original scenario. This induces the shift tothe left. Consequently,

the need for financial support is lower and the interval, in which the areasof attraction of the two

periodic solutions are separated, is smaller due to the higher slope with which both states increase

with the fossil energy price.
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4.5 Summary

In addition to the effect of learning by doing we have included in this Chapterthe effect of learning

by searching into the model by using a two-factor log-linear learning curveand adding a second

state and a third control to the considered non-autonomous optimal control model. The representa-

tive energy-sector decision maker therefore does not only decide on the investments into renewable

(solar) energy capital and the fossil energy amount that is bought, butalso on R&D investments

in order to accumulate knowledge and as consequently to reduce in addition investment costs for

renewable energy capital.

The obtained results show that again history dependence occurs due to the learning effects,

but this time not only for the renewable energy capital but also for the knowledge stock. We

have seen from the calculated indifference threshold curves that an initially low renewable energy

capital can be compensated by an initially higher knowledge stock and vice versa, in order to

make further investments in both stocks profitable. Even if one of the two stocks is initially zero,

an investment policy for renewable energy generation still can be profitable as long as the other

initial stock is high enough. This is in contrast to the results of Chapter 3, where investments into

renewable energy generation from the very beginning never would be optimal. If both investment

stocks are too low or maybe even zero, however, also in this approach fossil energy is optimal and

no further investments for renewable energy capital or R&D investments would be made. In this

case, financial support for example in form of subsidies, would play a major role for a successful

introduction of the renewable energy technology into the market, but this time not only support

for investments into renewable energy capital but also for R&D efforts would be helpful during

the start-up period of the new technology.



CHAPTER 5

Discussion and Conclusion

In this thesis we have analyzed three different non-autonomous optimal control models in which

we investigate the optimal composition of a portfolio consisting of fossil and renewable (solar)

energy to cover a given energy demand of a small country, given that the supply of the renewable

source is seasonally fluctuating and the considered representative energy-sector decision maker

acts as price taker. The three model approaches differ in the aspect whether and how learning

effects are included into the energy planning decision. While in Chapter 2 wehave investigated the

optimal composition of the portfolio under the assumption that the investment costsfor renewable

energy generation capital do not change, we have extended the model inChapter 3 by including the

effect of learning by doing and in Chapter 4 additionally the effect of learning by searching in order

to investigate how the portfolio composition changes and what impact the inclusion of learning

effects has on the solution. For both learning effects we have used a log-linear learning curve, for

the learning-by-doing approach with one-factor, and for the learning-by-searching approach with

two factors by including into the model an additional state for knowledge. Sensitivity analysis

with respect to the fossil energy price, the efficiency of the renewable energy technology, the

learning-by-doing coefficient, and geographical differences in the global radiation intensity have

given insights on how the optimal portfolio composition changes and what this implies for possible

policy decisions. As seasonal fluctuations are included into the models, theyare non-autonomous,

and consequently the analysis of these models differs from the usual steady-state analysis and

exhibits some specialties. This chapter will provide a summary of the important findings and

insights of the conducted investigations, considering both methodological aswell as economic

aspects.
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5.1 Methodological Aspects of Non-Autonomous Optimal Control

Models

As the canonical systems considered in this thesis are not only non-autonomous but also 1-

periodic, candidates for the optimal long-run solutions have been given by periodic solutions with

a period of one year, the stability of which is reflected by the eigenvalues ofthe monodromy ma-

trix. In Section 2.2.3 we have introduced the equivalent but more geometric view of the Poincaŕe

map. Here, the first specialty of non-autonomous problems in comparison to autonomous ones

occurs. For autonomous problems the Poincaré map is defined on a hyperplaneΣ of co-dimension

one which is orthogonal to the periodic orbit at the starting pointx0 and, given the Poincaré map as

P : Σ 7−→ Σ, x0 is a fixed point. To get the analogous interpretation for non-autonomous, 1-periodic

problems,

ẋ= f (t,x), f (t +1,x) = f (t,x), (t,x) ∈ R×R
n
,

however, we have seen that the system first has to be transformed into the(n+ 1)-dimensional

autonomous system

θ̇ = 1, (5.1)

ẋ = f (θ ,x),

which lies on the cylindric manifoldX = S
1×R

n with the coordinates(t(mod1),x). In this space,

a 1-dimensional cross-section then can be set as

Σ = {(t,x) ∈ X : t = 0}.

Defining the Poincaré map on this cross-section finally yields the same geometric interpretations

as in the autonomous case. The eigenvalues of the monodromy matrix then coincide with the

eigenvalues of the Poincaré map and therefore reflect the stability of the periodic solution.

Here, a second aspect can be observed that is different between autonomous and non-auto-

nomous problems. As we have explained in Section 2.2.3, the monodromy matrix in the au-

tonomous case always has the trivial eigenvector 1, as perturbations along the periodic orbit have

eigenvalue 1. Due to the time dimension, however, this is not the case for non-autonomous prob-

lems. Only if the system is again transformed to the(n+1)-dimensional autonomous system of

(5.1), this trivial Floquet multiplier occurs.

In Section 3.3.1 we discussed the third specialty of non-autonomous optimal control problems,
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which will be pointed out next. It concerns the calculation of the objective values. We have seen

that for a trajectory solving a non-autonomous system, the relation for autonomous problems given

by
∫ ∞

0
e−rt F(x(t),u(t))dt =

1
r

H0(x(0),λ (0)),

with F(·, ·) being the objective function andH0 being the maximized Hamiltonian, does not hold

as the calculation of the objective values is not time-invariant for non-autonomous problems. In-

stead, we have added an additional differential equation for the objective value function to the

canonical system and solved this system for the necessary boundary value problems. This aspect

of time-dependence is however not only important for the calculation of the objective values but

also for the determination of the indifference threshold point/curve. We have seen that it is not

sufficient to compare only the objective values of the involved trajectories along the path of the

last continuation step, which would be sufficient for autonomous problems,but instead we have to

consider the last objective values of each continuation step. Further on,also the term ˆc has to be

added to the objective value of the path on[0,Tp], including the remaining objective values for the

periodic solution in the interval[Tp,∞) with Tp being the truncation time of the path andr being

the discount rate. This term is given by the weighted objective value of the periodic solution over

one period (cper),

ĉ=
e−rTp

1−e−r cper. (5.2)

5.2 Economic Interpretation of the Results

The results have shown that learning effects indeed have a strong impacton energy planning

decisions. While for the first model in Chapter 2 without learning effects wehave found only

one optimal long-run periodic solution, two periodic solutions occurred in thesecond and third

model where one corresponds to the pure fossil solution and the other one to a mixed portfolio

with both fossil and renewable energy used to cover the given energy demand. In the latter two

cases the areas of attraction are separated by an indifference threshold point/curve, respectively.

The results for the three different model approaches are summarized in Table 5.1. The induced

history dependence in Models 2 and 3 has consequences on the optimal long-run solution in two

respects. First, the separation of the areas of attraction implies that renewable energy generation

from the very beginning never would be optimal, which means that renewableenergy would not

be included into the portfolio, if the initial renewable energy generation capital stock is zero and,

in case of the third model if also no knowledge has been accumulated. In this case, the initial
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Learning by Learning by Multiple periodic Indifference threshold
doing searching solutions point/curve

Model 1 × × × ×
Model 2 X × X X

Model 3 X X X X

Table 5.1: Overview of the considered three different model approaches and their results.

investment costs of renewable energy generation are too high so that it is profitable to use the pure

fossil solution to cover the demand. In contrast, a start-up with renewable energy generation from

the very beginning is possible in the first model approach without learning.

The results of the sensitivity analysis with respect to the fossil energy price highlight another

difference, which is given by the rapidness of adapting renewable energy into the portfolio if

the fossil energy price increases. Although a start-up is possible in the first model, the marginal

increase in renewable energy generation capital with a higher fossil energy price is very low com-

pared to the solutions with a mixed portfolio that lies beyond the indifference threshold point/curve

in the two other model approaches. This means that in the models with learning, as soon as the

indifference threshold point/curve is reached for example due to the support of subsidies, the

adaption of the new technology in the portfolio happens at a much higher speed than in the basic

model, although the fossil energy price is assumed to be the same. The reason for this is given

by the ongoing reduction of investment costs due to the learning effects. This is shown in more

detail in Figure 5.1, where Figure 5.1a depicts the periodic solutions with a mixedportfolio for

the three different model approaches at a fossil energy pricepF = 0.08. While in the first model

approach, very little is invested in renewable energy capital and, consequently, the capital stock is

very low, the investments and hence the capital stock of the mixed periodic solution of the second

model approach are many times larger for the same fossil energy price. Asthe investment costs in

Model 1 stay high over the whole planning period, independent of the efforts in renewable energy

generation, a further increase therefore is not optimal, while in Model 2 these investment costs get

smaller with every additional unit of renewable energy capital that is accumulated.

If also learning by searching is considered, one can see that the investments in renewable

energy capital and the capital stock for Model 3 are even almost three timeslarger than for the

second model approach at the same fossil energy price. This underlines the fact that additional

investments into R&D efforts can strongly foster the success of renewable energy generation.

Although additional costs occur, the even stronger decrease in the investment costs for renewable

energy capital can compensate for this and make further investments profitable.



CHAPTER 5. DISCUSSION AND CONCLUSION 135

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

KS(0)

I
S
(0

) Model 2 

Model 1

Model 3 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time t

Energy Balance

Renewable 
Energy

Fossil 
Energy

Model 1

Model 2

Model 3

(b)

Figure 5.1: Comparison of the mixed portfolio of the three considered model approaches for a
fossil energy pricepF = 0.08: (a) State-control space.(b) Energy balance.



136

Figure 5.1b shows the energy balance for the obtained periodic solutions of the three model

approaches. Also here, it gets obvious that the inclusion of both learningeffects strongly encour-

ages renewable energy generation and plays an important role in the adaption of renewable energy

into the portfolio.

One of the main conclusions of the obtained results is the necessity of support for a successful

adaption into the system during the start-up period of a new renewable energy technology. Here,

the main difference between Model 2 and Model 3 has been the form of support that would be

needed. While in Model 2 subsidizing investments into renewable energy capital would be helpful

to overcome this difficult period, we have seen in Model 3 that also supports for R&D efforts could

compensate for a too small stock in renewable energy capital.

In addition to this aspect, sensitivity analysis with respect to the global radiation intensity

has shown that the effect of such supports and consequently their significance strongly depends

on geographical conditions. As we have concluded from the obtained results in Sections 3.4.3

and 4.4.2, the fossil energy price boundary at which renewable energy is even a considerable

alternative, shifts to the right if global radiation is less intensive. Therefore, in this case subsidies

possibly would have no effect if the fossil energy price lies below this boundary. Only if the fossil

energy price would increase, subsidies would have an impact. On the otherhand, in a region with a

high global radiation intensity, subsidies might be overshooting as this price boundary shifts to the

left and, hence, already at a lower fossil energy price renewable energy generation is profitable.

These aspects underline the difficulty of a proper subsidizing policy, because in practice these

boundaries cannot be determined easily.

Regardless of whether learning effects are included or not, the results of all three model ap-

proaches have shown that even in case of a very high fossil energy price the exclusive coverage

of the energy demand with renewable energy is not possible. Due to the seasonally fluctuating

supply there are always periods of shortfalls in which fossil energy is needed, independent of the

shape of the demand. Of course this also is due to the stringent assumption that storage is not

possible in our model. However, it reflects quite well the current situation onthe markets, where

on the one hand subsidized renewable energy generation keeps down the electricity prices, which

consequently makes conventional energy generation non-economical due to the high commodity

prices, but on the other hand conventional energy forms are needed tocover up in these periods of

shortfalls.
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5.3 Conclusion

The considered models underline the major challenges of a renewable but simultaneously secure

energy supply. In this work we have focused on solar energy, but seasonal fluctuations are also

a big problem for other types of renewable energy as for example hydropower plants. Here, the

seasonal fluctuations are induced by snow melting and dry periods and are also a matter of ge-

ographical aspects. The results of the models have shown that the coverage of the demand only

with renewable (solar) energy for the considered country is not possible. However, combinations

with other renewable sources, which in the case of hydro-pump-storagepower plants for example

would even imply storage possibilities, could of course at least diminish these fluctuations. Nev-

ertheless, technology and policy efforts are not yet sufficient to reach complete independence of

fossil energy sources.

One important aspect is given by a proper subsidy system, which is a delicate issue and if

applied in the wrong way might cause even a counteracting imbalance. What we further on have

seen from the sensitivity analysis with respect to the global radiation intensityis, that such port-

folio combinations and policy decisions always have to be a local issue in the geographical sense,

as a global solution to the energy problem never can cover all these regional specialties. The dif-

ferences in the results obtained due to the inclusion of learning effects into the model have shown

that such aspects of learning are indeed important to be included into energy planning decisions,

because a far-sighted view is crucial for the success of including a newtechnology into the system.

To sum up, a switch to renewable energy is essential to mitigate climate change, but the imple-

mentation has to be planned carefully and far-sighted, while solutions have tobe adapted to local

conditions so that the inclusion into the system can be successful.
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