
Struktur-Erhaltende Manipulation
von Geometrischen 3D Modellen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

BSc. Bernhard Steiner
Matrikelnummer 0825391

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dr.techn. Dipl.-Mediensys.wiss. Przemyslaw Musialski

Wien, 4. September 2014
Bernhard Steiner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Structure-Aware Manipulation of
Geometric 3D Models

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

BSc. Bernhard Steiner
Registration Number 0825391

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dr.techn. Dipl.-Mediensys.wiss. Przemyslaw Musialski

Vienna, 4th September, 2014
Bernhard Steiner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

BSc. Bernhard Steiner
Minciostraße 4/13
1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. September 2014
Bernhard Steiner

v

Acknowledgements

Many thanks to Przemyslaw Musialski who gave me a lot of useful insights during the
development of this framework. Thank you for pushing me in the right direction.

I would also like to thank Michael Wimmer for his helpful comments while writing
my thesis, even when being on vacation.

Thanks to all the people who took part in the user study and allowed me to collect
all the necessary data in less than a week. I also want to thank the Vienna University
of Technology for funding my project, especially the touchscreen notebook for my user
study, via the Förderungsstipendium.

Special thanks to my colleges Silvana Podaras and Simon Wallner for the lot of work
they had with proofreading my thesis and for building me up when I nearly gave up.

vii

Kurzfassung

Durch die in den letzten Jahren steigende Verbreitung von 3D-Druckern und ähnlicher
Hardware, werden Anwender immer öfter mit 3D-Modellierungsaufgaben konfrontiert.
Dies kann besonders für ungeübte Benutzer zu einem Problem werden. Structure-Aware
Shape-Processing bietet genau für solche Anwender die Möglichkeit 3D-Modelle anzu-
passen und zu verändern, ohne mit der Komplexität der 3D-Modellierung vertraut zu
sein. Solche Systeme unterstützen den Anwender dadurch, dass sie die 3D-Inhalte an
User-Änderungen anpassen wobei globale Charakteristika des Modells erhalten bleiben.

In dieser Arbeit wird eine neue Formulierung für Symmetrie in 3D-Geometry gezeigt,
welche die Anordnung der symmetrischen Elemente entlang einer parametrischen Kurve
beschreibt. Um dies umsetzen zu können wird außerdem das Part-Relation Model, welches
als Basis für viele Modellierungs-Programme verwendet wird, so erweitert, dass es mittels
eines Layered-Graphen solche Symmetrien besser darstellen kann. Des weiteren wird
ein Algorithmus gezeigt, welcher mit Hilfe einer Connected-Component-Analyse solche
direkten Relationen findet, die die Verbindung zwischen zwei Teilen des Modells am
besten beschreiben.

Alle diese Algorithmen werden im Anschluss in einem, auf Übertragung basierendem,
Framework umgesetzt, welches sowohl mit einer Maus als auch über einen Touchscreen
bedient werden kann. Um die Qualität dieser Anwendung zu bestätigen wird danach
eine User-Study gezeigt, welche im Speziellen überprüft ob das System von ungeübten
Anwendern bedient werden kann.

ix

Abstract

Inexperienced users get more and more exposed to 3d-modelling applications due to
the wider availability of 3d printers and other such hardware. Structure-aware shape
manipulation is one way to help them adapting and extending 3d models without having
to handle the complexity of a traditional 3d-modelling environment. Such systems support
the user by adapting an object to changes introduced by the user while retaining global
shape characteristics.

This thesis presents a new method for describing symmetries in geometry The method
describes the arrangement of parts in terms of a parametrized curve. Additionally, the
part-relation system used to describe models in structure-aware modelling applications is
extended to a layered graph model that can describe symmetries better. In this thesis,
also an extension for finding better binary relations between adjacent parts is shown,
which uses a connected-component search to identify binary relations that approximate
the connectivity between the parts best.

It is shown how all these methods are implemented in a propagation-based framework,
which can handle user input via mouse and via touchscreen. Using this framework,
a user study is presented, which came to the result that the system is well usable by
inexperienced users.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure-Aware Model Manipulation . 2
1.3 Problem Definition . 4
1.4 Contribution . 5
1.5 Structure of the Work . 5

2 State of the Art 7
2.1 Mesh Deformation . 7
2.2 Controller Based Propagation . 9
2.3 Rule Based Deformation . 13
2.4 Structure Adapting Systems . 17

3 Theoretical Foundations 23
3.1 Structure Definition . 23
3.2 Symmetry and Symmetry Detection . 26
3.3 Parametric Curves . 32
3.4 Quantitative Usability Testing . 37

4 Framework for Structure-Aware Model Manipulation 41
4.1 Overview . 41
4.2 Data Structure . 42
4.3 Model Analysis . 46
4.4 Symmetry on Curves . 55
4.5 Manipulation . 63
4.6 Interaction . 74

5 Results and Evaluation 77

xiii

5.1 Implementation . 77
5.2 User Study . 78
5.3 Results . 84
5.4 Applications . 87

6 Conclusion and Future Work 89
6.1 Synopsis . 89
6.2 Conclusion . 90
6.3 Future Work . 91

A User Study Material 93

Bibliography 105

CHAPTER 1
Introduction

1.1 Motivation

Figure 1.1: Structure-aware shape-manipulation systems are used to adapt 3d models
while retaining global shape characteristics. Reprinted from [BWKS11] and [BWSK12].

In computer graphics, one of the most labor-intensive tasks is the creation of suit-
able digital content for specific application scenarios. While today, rendering is highly
sophisticated and automated, 3d modelling is still a very challenging task due to the
steep learning curve and the amount of manual work required.

From the beginning of digital content creation, methods and applications used have
been very complex, and even after some years of working with them, it can be difficult
to create exactly the result one wants. Since there is more and more digital 3d content
available, users are faced not only with the challenge of creating but also of adapting and
extending existing content. The average user is not interested in learning a traditional
modelling application, since this is a time-consuming task. Moreover, although there
exist several free model databases, e.g., 3D Warehouse1, these models are in general
not perfectly suited to the user’s needs and have to be adapted. This task can be very
challenging for inexperienced users. For this reason, more advanced methods for modelling

1https://3dwarehouse.sketchup.com

1

https://3dwarehouse.sketchup.com

and modifying 3d content are required. Additionally, due to the wide availability of
tablets and other modern hardware, especially these users are becoming the main focus
group of such applications.

Over the last few years, a lot of scientific effort was made in order to develop methods
for editing models by inexperienced users. Structure-aware model-manipulation systems
allow these users to manipulate a model while the system updates the rest of the shape
to fit to the changes made. Such approaches allow manipulating the model on a high
abstraction level, where the user does not have to deal with vertices, edges and faces.
Such algorithms are also required, since in future, there might be a 3d printer in every
household, allowing everyone to fabricate everything at home. Although this is science
fiction at the moment, the scientific community has started to think about this possibility.
In this context, a big advantage of structure-aware model manipulation is that additional
constraints can be enforced on the model. For example, physical stability could be tested,
or only models could be created, which can be fabricated by a given machine.

It can also be interesting for more experienced users to use application-guided design
methods. In game development, level designers can, in most systems, only apply rigid
transformations to a model. In many cases, the level designer is not perfectly satisfied
with the model, and has to send it back to the 3d artist. If structure-aware methods
were present in the level-editor, the level designer would be able to handle minor changes
to the model without having the designer rework it.

One direction to go is the so called structure-aware shape manipulation. These
methods aim at creating variations, or adapting a given input model, while retaining
global features like symmetry and connectivity (see Figure 1.1). Over the last few years, a
lot of different approaches for performing such structural adaptions have been developed,
in order to help the user to design exactly the model that she desires. But the majority
of existing algorithms only try to preserve structural features [CLDD09], [GSMCO09],
or have very limited support for adapting the overall structure of the model to changes
made by the user [BWSK12], where structural changes can only happen along straight
lines and on regular grids. The lack of complex structural adaption in models limits
the amount of possible variations that can be achieved. For example, it is impossible to
adjust the number of basements on a castle tower using only lines or regular grids, since
they are aligned on a circle (see Figure 1.2).

1.2 Structure-Aware Model Manipulation

Most structure-aware model-manipulation applications follow the analyse and edit princi-
ple as shown in Figure 1.3 [GSMCO09, BWSK12, MWZ+13]: First the model is analysed,
and information about the structure of the model is generated. After this, the user can
manipulate the mesh and the system updates the model.

The information generated in the model analysis stage varies from approach to
approach, but in all approaches there is some kind of most primitive structure that is
identified. This can range from voxels, over interesting lines or polygons, to sub-models
that group triangles with similar properties. In addition to this, also the relations

2

Figure 1.2: The number of basements should be increased when the tower changes its
radius.

Figure 1.3: Stages in the general design of a structure-aware model manipulation system.

between these primitive elements (or parts) are identified. Relations can describe physical
connectivity (so-called binary relations) or any other kind of relation, e.g., symmetries,
which are called higher-order relations.

After the analysis stage, the user can modify the model. Whenever changes are

3

introduced, the system tries to adapt the model such that both, the structural features
and the user input, are preserved. This includes modifications of the parts due to binary
relations, but also the enforcement of global constraints like symmetries. This stage
is repeated until the user has performed all necessary changes and a final model is
produced. In our implementation, a propagation-based modification algorithm is used,
which transfers changes through the parts and binary relations. Also, whenever the
pre-conditions for updating a higher-order relation are fulfilled, the global constraints
described by this relation are enforced.

1.3 Problem Definition

The aim of this work is to design a framework that handles, based on the part-relation
model introduced by Mitra et al. [MWZ+13] and Zheng et al.[ZFCO+11], how global
structures in a 3d model should react to changes made by the user. In this work, we will
explicitly target inexperienced users, thus we will assume that the users of our framework
do not have any prior knowledge in the field of 3d modelling.

We want to improve several sub-stages of the general design principle in order to
support a wider variety of structural changes. First of all, we want to identify symmetric
parts in the model that are aligned along a parametrized curve. For this, we have to
find a new formulation for symmetry groups that can cover the positioning along such a
curve as well as the orientation along the Frenet frame of the curve. In the manipulation
stage, we will allow the system to adapt the number of repetitions of the elements in
such a group when the user modifies the model. This method will allow us for example
to adjust the number of basements of the previously mentioned tower without losing the
local arrangement of the components. In addition to this, we will describe a multi-layered
graph structure that is generated from the model, which stores information about the
geometry as well as information about the logical arrangement of parts and how they are
related to each other. Compared to the traditional connectivity graph, this data structure
will allow us to express symmetry groups and their parameters in the same graph as parts
and relations. These techniques will then be integrated in an as-intuitive-as-possible
touch-based framework, where we will use a propagation-based algorithm to update parts,
binary relations and symmetries to changes made by the user. All of these methods
should be designed so that they work in real time, to provide the users with direct
feedback about their interactions.

Using the developed application, a user study should be performed to check if our
application can be intuitively handled by inexperienced users. We also want to find out
if touch interaction is liked more or less by the users than mouse interaction. These
questions will be answered by letting users perform a number of different tasks with our
system, monitoring performance data and asking them which interaction method they
prefer after each task.

4

1.4 Contribution
In the scope of this thesis, we develop an approach for structure-aware modelling based
on the work of Zheng et al. [ZFCO+11]. We extend their method in order to cover a
wider range of possible adaptions in the model. For this we contribute in the following
fields:

• A new formulation for symmetry groups in terms of local arrangement in the
Frenet-frame of a parametrized curve is presented. For this formulation, we prove
that the mathematical body that is constructed by our formulation satisfies the
constraints for a symmetry group, which allows us to apply the whole theory that
is already developed for symmetry groups to our approach.

• A new method for binary relation detection is shown, where connected-component
analysis is applied to an intersection point cloud reducing the number of binary
relations between two parts by finding significant binary relations that approximate
the connectivity.

• A structure-aware model-manipulation framework is presented, which includes both
previously mentioned contributions and shows that it is possible to design a system
based on our theory of symmetries. For this, we extend the part-relation model by
using a layer graph to cover higher-order relations better.

• We present the results of our user study, which tests if our system can be handled
by inexperienced users. We also show how prior knowledge influences the choice of
the preferred interaction method.

1.5 Structure of the Work
This thesis continues with Chapter 2, which gives an overview of the state-of-the-art in
structure-aware shape processing and shows the different approaches that can be used to
build such systems.

Chapter 3 explains the basic concepts that are used in our work, starting with a
description of a general structure that is used in most shape-manipulation systems,
followed by a overview on the theory of parametric curves. After this, we describe how
symmetry is defined and how it can be used in 3d geometry. We also give an overview on
how such symmetries can be identified in geometric models. At the end of this chapter, an
overview on quantitative usability testing is given, which is the basis for our user-study.

Our implementation of the structure-aware model-manipulation framework is pre-
sented in Chapter 4, together with the novel formulation for symmetries on curves. These
algorithms and techniques are evaluated in Chapter 5, where also the user study is
described in detail, and the findings of it are presented. Besides this, some performance
statistics are shown, and the limitations of our system are described.

This thesis ends with a reflection of our work and an outlook on future work in
Chapter 6.

5

CHAPTER 2
State of the Art

Structure-Aware model manipulation deals with how models should be adapted to
influences coming from outside. The methods used vary from approach to approach,
but it is possible to group all methods in two categories: Methods which take an input
and propagate changes through the mesh, and on the other hand approaches, which
construct a constraint system for the whole mesh and try to solve this problem set by
minimizing the error introduced. Beside this, there are some methods, that deal with the
deformation of meshes directly. Most of the current methods follow the analyse and edit
principle: First, the mesh is analysed and constraints are searched, then the user can
edit the model while the system maintains these constraints.

2.1 Mesh Deformation

One approach for transforming geometry are the class of methods that work directly on
this geometry. These techniques are often working without any high-level knowledge
of the model and are only dealing with the local or global geometry itself. Since these
methods are only far related to our approach, they will be discussed very briefly here.

In all these methods, the goal is to find a deformation of a mesh under a given
constraint, which preserves the structure of the geometry. Laplacian coordinates (Sorkine
et al. [SCOL+04]) are describing each vertex as the relative deviation from the centroid
of the vertice’s neighbourhood. When vertices are moved, a linear system of equations
describing these relations is constructed and solved in a least square sense, giving the
final position for each vertex. A non linear iterative extension to this is proposed by
Sorkine and Alexa [SA07] which is called As-Rigid-As-Possible surface deformation. The
non-linearity comes from introducing a shape deformation energy, that adds a global
constraint to the deformation.

Another shape based deformation method called Green Coordinates has been proposed
by Lipman et al. [LLCO08], where the user input is not directly given on the geometry

7

but instead on a control cage. The major advantage here is, that green coordinates can
be given in closed form in 2d and 3d, although the general formulation works also in Rn.

When an underlying skeleton is present in the model, Jacobson et al. [JBK+12] are
showing how the as-rigid-as-possible approach can be improved to run much faster while
resulting in the same quality. Results of all these methods are presented in Figure 2.1
and Figure 2.2.

Figure 2.1: Pure geometric deformation examples: (a) Laplacian Coordinates [SCOL+04],
(b) As-rigid-as-possible [SA07]

Figure 2.2: Pure geometric deformation examples: (a) Green Coordinates [LLCO08], (b)
Fast automated skinning transformation [JBK+12]

As-rigid-as possible and all related approaches tend to deform the model in a non
structure-aware manner when non-uniform scaling is applied. For example, there is, due
to the missing global analysis of the shape, no guarantee that circles and other important
features are preserved during modifications. Such a global analysis in a pure geometric

8

approach is shown by Kraevoy et al. [KSSCO08]: The whole model is embedded in a
protective volumetric grid, where each cell and the underlying geometry is analysed in
terms of vulnerability. In this context, the vulnerability of a cell describes if the geometry
in a cell can be deformed non-uniformly. For each cell three parameters, which describe
the vulnerability along each axis, are calculated. Due to the use of three values per
cell, the algorithm can distinguish between e.g. spheres, which should not be scaled
non-uniformly and cylinders, which can be scaled anisotropically along the height-axis,
but not along the other axis. The vulnerability along each axis is a combination of
the two geometric features slippage and normal curvature. Slippage (as defined by
Gelfand and Guibas [GG04]) estimates how persistent a surface is with respect to a given
transformation type. This can be seen as an indicator if a local patch would stay on the
surface after applying the transformation. In terms of non-uniform scaling, it can be
seen that a surface is only slippable if it’s normal is orthogonal to the scaling axis. Using
slippage alone would not be sufficient, since it does not take the scaling direction into
account. Normal curvature on the other hand predicts how much a surface will bend
when scaling in a given direction is applied. Together, normal curvature and slippage
give a good estimation about the vulnerability in a cell.

When the user changes the control-cage, the algorithm has to update all cells using
the previously calculated parameters. For each cell a scale-only gradient is calculated,
such that they accumulate to the desired transformation. This gradients are then used
to calculate the full per-cell transformation that has to be applied. In this step also the
compatibility between neighbouring cells has to be enforced. For more details about
the calculation we refer to the original paper. In general, this method tends to produce
very good results, as shown in Figure 2.3, where the original model (a) is distorted
by non-uniform scaling (b). In comparison, the non-homogeneous resizing method (c)
preserves a lot more local features. The protective grid used here is shown before (d),
and after the modification (e). Although results of this method are very promising, there
are some situations where the algorithm does not perform well and needs additional user
input to detect the vulnerability correctly.

2.2 Controller Based Propagation

Beside direct mesh manipulation, one of the first and probably the most influencing
work in this field, is the iWires framework by Gal et al. [GSMCO09]. The general idea
here is that most man-made objects can be described by a few interesting curves, the so
called wires. Based on this observation, they present an analyse-and-edit framework that
propagates user changes through the whole model.

In the analyse stage, the system tries to find wires in the input model. Although this
does not apply to general models, most man-made objects contain sharp-creased lines,
which are good candidates for this. These edges lie in general on the intersection of two
smooth surfaces, thus they can be seen as "edges" of the mesh. The final wires are then
found by a greedy algorithm, which starts with a crease edge, that has not served jet as
seed. From this starting point, it walks along adjacent crease edges, choosing always the

9

Figure 2.3: Results of the "Non-homogeneous resize" algorithm. (a) Original model,
(b) Standard non-uniform scaling distorts a lot of features, that are preserved by the
proposed method (c). (d) and (e) are showing the protective grid before and after the
transformation. Reprinted from [KSSCO08].

Figure 2.4: The constraints that iWires takes into account shown on a lego stone model.
Reprinted from [GSMCO09].

edge that would keep the wire planar (if possible) when a crossing is reached. This is
repeated until a closed wire is found, or no further edges could be added.

For each wire a number of parameters are captured: It is detected if the wire is
planar or non-planar. In addition the atomic type, which describes if the wire can be
approximated by a primitive type, has to be determined. In their application they use
lines, (part of) circles, (part of) ellipses, and polynomial curves. If the wire cannot be
approximated by such a structure, it is separated into several sub-wires by splitting at
salient internal angles. When also these sub-wires cannot be approximated, the wire has
no special type attached, and is treated further on as a polyline. For compound wires, an
additional attribute is attached: The angle between the tangent vectors at the connection
points.

When all wires are analysed, iWires searches for wire groups that share a common
property, for example wires that lie on the same plane, wires on parallel planes and wires
that lie on parallel planes and have approximately aligned center of mass (see Figure 2.4).
Symmetries are also considered by testing all pairs of wires for them. All sets where at
least five wires share a symmetry build together a symmetry group.

When all the wires, their relations and the symmetries are identified, editing can

10

start. The user has several possibilities to interact with the system, directly dragging
surfaces or parts of them, deforming wires, or sketch based interaction (Figure 2.5 step 3).
Due to this interactions, the wires will be deformed and previously identified constraints
could eventually be violated. Thus, the system first optimizes the individual wires by
modifying them such that the characteristics of the original shape are preserved, while
the modifications made by the user are also maintained. For example, when the original
wire has been a planar circle, than the system projects the modified wire to the best
fitting plane and constructs a circle that has the same center of mass and radius as the
modified wire. To update the rest of the model, changes made to wires are propagated
to untouched adjacent wires, where the local optimization happens again, followed by
a group optimization step. Group optimization handles all constraints that concerns
multiple wires like symmetry or parallelity (see Figure 2.5 steps 4-7). These steps are
repeated until all wires are updated, or until there exists no further wires that have to
be updated. At the end of the propagation, the surfaces of the mesh are reconstructed
from the wire groups, giving a complete and modified model (Figure 2.5 steps 8-10).

Figure 2.5: Stages of the iWires editing process, starting with a user interaction followed
by propagation and optimization. At the end the final faces are reconstructed. Reprinted
from [GSMCO09].

The iWires paper is important due to two mayor contributions: First, it is the first
work that shows an analyse-and-edit approach for structure-aware shape manipulation.
Second, and more important, this framework produced very good results for man-made
shapes (see Figure 2.6 for results), showing that structure-aware shape editing can be
applied to a wide variety of shapes without any prior knowledge needed.

In the iWires framework, the shape is characterized through a number of 1d controllers,
the wires. These controllers have very limited support for constraining the allowed
modifications. Zheng et al. [ZFCO+11] show in their work, that the usage of 3-dimensional
controllers can improve the quality of a shape modification algorithm. The general
technique used in this work is similar to the pre-described structure: It consists of a
shape analysis stage and an editing stage.

Again, the focus of this work is on man-made objects, thus it assumes, that a model
is composed from several meaningful parts, that can be decomposed and approximated

11

Figure 2.6: Results of the iWires framework. Adapted from [GSMCO09].

by controllers. The authors use a hierarchical segmentation algorithm, which performs
a bottom-up clustering. Starting with the smallest cluster size, this algorithm merges
clusters based on the cost that a merge would introduce. The main difficulty is to
define a cost function for the merging: The function used here does not only consider
the fitting error of different types of primitives, but is also influenced by the boundary
concavity and the boundary length. Since it is computationally heavy to consider all
possible types of controllers in the clustering, only planes, spheres and cylinders are
used. After the decomposition the best fitting controller from the final controller list
is found for each segment. For controllers, Zheng et al. propose to use four different
types: Spheres, Cylinders, Cuboids and generalized Cylinders, since these controllers can
well approximate the models, while still being fairly simple. Figure 2.7 shows the four
controller types and their behaviour under deformation. With exception of the sphere,
all controllers can be modified anisotropically. Each of these controllers has a pre-defined
degree of freedom, which is described by feature curves (marked in yellow). For example,
the sphere has only one degree of freedom (uniform scaling), which is given by a curve
along the equator. Cylinders have two feature curves, one on each side of the cylinder.

As in iWires, it is not enough to know only the decomposition and the controllers. It
is also required to know how these controllers are related to each other. Such relations
like symmetry, parallelism and orthogonality are detected on the level of the feature
curves, but can also be modified by the user to achieve different editing results.

Editing is done by manipulating individual controllers depending on their restrictions.
All types of controllers can be translated and isotropically scaled, some of the controllers
allow also other manipulations, e.g. on the cylinder frustum scaling can be applied along
the cylinder axis. Changes made on controllers are then propagated through the whole
controller structure: Starting from the modified controller, a breadth-first propagation is
performed in a controller-to-controller manner. Whenever the system touches a controller
that depends on more complex relations like parallelism, the algorithm also enforces
these constraints. To ensure that the system reaches a final state and does not produce
loops, each controller in the system is only touched once by the propagation, which is
very similar to the way how iWires [GSMCO09] propagates changes. A stepwise example
of the propagation schema used can be seen in Figure 2.8.

In contrast to iWires, this method does not deal with geometric features, but with

12

Figure 2.7: The four controller types used, and how they can be transformed. Adapted
from [ZFCO+11].

Figure 2.8: Propagation algorithm by Zheng et al. [ZFCO+11] in action. Reprinted from
[ZFCO+11].

approximations instead, thus it has to update the geometry contained in the controllers
after the propagation. For this, a surface-based deformation approach is used, where
virtual edges are constructed between the controller and the geometry. This allows
the system to overcome the problem of geometry that lies on the intersection of two
controllers.

Compared to the iWires framework, this shape manipulation system can handle a
larger number of models, since it does not directly rely on shape features, which can
be problematic in iWires when not enough wires can be found. On the contrary, the
controllers can introduce some problems, especially when the decomposition algorithm
does not produce good clusters. Another problem are self-intersections of controllers
after modification, which are not handled by the system. Results produced by the
"Component-wise Controller" framework are shown in Figure 2.9.

2.3 Rule Based Deformation
In contrast to systems that try to modify a 3d model by directly manipulating its parts,
rule based systems use a grammar that describes how models are composed. Such
procedural modelling frameworks have been used for a while in computer graphics (see

13

Figure 2.9: Results from the "Component-wise Controllers for Structure-Preserving Shape
Manipulation" paper. Adapted from [ZFCO+11].

[Ebe03, MWH+06, PM01]), and their advantages can clearly be seen in the large variety
of shapes they can construct. But when using shape grammars directly, it can be very
hard for the user to generate exactly the result that is wanted. Beside this, it is very time
consuming to specify the rules for a complex model by hand. A near related research field,
the inverse procedural modelling, derives grammars from existing shapes (see [vBM+10]),
but the problem of getting a specific model stays the same.

An approach that should overcome the limitations of such inverse procedural modelling
frameworks has been proposed by Bokeloh et al. [BWS10]: Starting with an input shape,
this method tries to identify shape operations that can be applied to the model while
keeping the result r-similar to the input. R-similarity can be defined as a special type of
local similarity, where for each point in a shape S1 a point in S2 can be found, which has
a similar r-neighbourhood Nr(x) := {y ∈ S|dist(x, y) ≤ r}. The same principle can also
be used to define r-symmetry, specifying that two points and their r-neighbourhood are
symmetric.

All operations that the system can perform are specified using so-called docking sites.
According to Bokeloh et al. docking sites are defined as follows: A set of surface curves
α ⊆ S is called docking site with respect to a transformation T, if the following three
properties hold:

• α is r-symmetric under T

• α partitions the model into two topological disconnected parts Dα and Rα. Dα
contains geometry that is not symmetric under T, and is called a docker for the
docking site α.

• T (α) also partitions the model into two topological disconnected subsets DT (α) and
RT (α). T (α) is called secondary docking site and DT (α) secondary docker.

These docking sites could be identified directly on the triangle mesh, but in practice this
might be inaccurate due to sliver triangles. Thus a voxel-based method is used, which
works with a fixed sampling resolution and gives more stable results.

14

Figure 2.10: (a,b) Definition of docking sites and dockers (c-e) The three operations that
can be applied. Reprinted from [BWS10].

On these docking sites, three operations can be applied: Insertion, where a new docker
is added, deletion where an existing docker is removed, and replacement, that substitutes
a docker by another one. Clearly, this can only work when the docking site splits the
model into two parts (see Figure 2.10 a and b). Examples for these three operations
can be seen in Figure 2.10 c-e. When applying such an operation to the input model, it
has to be checked, that the modified part does not lead to any collisions in the modified
object.

As mentioned before, it is also necessary to ensure that the result is r-similar to the
input: Bokeloh et al. are showing that each operation that does not overlap will create a
r-similar result. The last problem that has to be solved is, that after editing the model
once, the situation might change, thus a formulation has to be found, that ensures the
independence of the shape operations. This can be done by defining a general Chomsky
type-0 grammar. Although this is the most general way, it might be a problem from the
computational point of view. The authors propose to generate a context-free subset of
the grammar, and show then how non context-free grid-based replication rules can be
added to the system.

This whole grammar-based system is presented to the user in an interactive way: The
user can select docking sites, and gets suggestions of dockers that can be modified. Thus
the shape variation constructed can be controlled very easily by the user, allowing for
the generation of exactly the model the user wants (see Figure 2.11a). Figure 2.11b-d
are showing different variations of some input models (red).

When looking at these results, it is easy to see the major limitation: Changes to the
model can only happen in discrete steps by inserting or deleting dockers. Since inserting
(and deleting) uses only translations, but does not deform the parts itself, the fence in
Figure 2.11c will always be aligned on a plane. Milliez et al. [MWCS13] also decompose
an input model into disconnected parts that share a common boundary (which can be
seen as dockers and docking sites), but instead of only applying grammar operations, the
geometry itself is adjusted to changes. For each part in the model, several geometric
representations (so called rest positions) are specified, that can be switched depending
on the local context, which allows to choose the shape that matches the current situation
best. In addition to selecting the best matching shape, the parts can be modified using
an elastic deformation, allowing to exactly match the situation the user specifies. This
deformation is based on the as-rigid-as-possible approach by Sorkine et al. [SA07], which
models elastic shape deformation by minimizing an energy function that specifies the

15

Figure 2.11: (a) When the user selects a docking site, the system displays possible
variations at this site. (b) Automatically derived variations, (c,d) User-generated shape
variations. Figure (a) adapted from the related video, Figure (b-d) adapted from [BWS10].

behaviour of a part. Depending on which rest positions are specified in the system, the
way how a piece of geometry is changed can vary. For example, when just using one rest
position for a straight street part, the object deforms "more elastic" as in the case where
also a corner rest position is available (see Figure 2.12e).

Using the described methodology, the system supports four different shape operations.
The method already described can be seen as a context aware replace operation. Changes
in size can be achieved by stretching and shrinking (which is considered as one operation,
since they are inverse). When the user drags unrelated geometry next to each other,
the algorithm automatically tries to merge them together, forming a new connected
part. In contrast to this, the cut operation allows the user to split up connected parts
into unrelated ones. Note, that in both cases the context changes, and thus a replace
operation might happen too. Figure 2.12 a-d shows these four operations on simple
geometric parts.

This method can be seen as a mixture of two different model manipulation methods:
On one hand, a grammar-like approach is used to decide which rest position is used for
cutting and merging, while on the other hand a geometry manipulation is performed to
adjust the mesh to a specific situation. Results of the "Mutable elastic model" algorithm
are shown in Figure 2.13.

16

Figure 2.12: (a)-(d) Operations that can be applied by the user. (e) Models can behave
differently depending on the available rest configurations. Adapted from [MWCS13].

Figure 2.13: Original model (left) and variation of it produced by the mutable elastic
deformation algorithm (right). Reprinted from [MWCS13].

2.4 Structure Adapting Systems

All of the algorithms presented until here are dealing with how models should be adapted
to changes introduced by the user, but most of them are only modifying existing geometry
without adapting the number of components present in the model. One example for a
structure adapting algorithm has been presented in Section 2.3, but there are a lot more
of them.

Bokeloh et al. [BWKS11] introduces the notion of sliding dockers: In many models
there exists a number of regular patterns. When modifying such meshes, it would be
appropriate to adjust the number of the elements in these patterns to better fit the
changed situation. Again, the system consists of two phases: First the model is analysed
to find symmetry groups. In case of sliding dockers, the system is not directly interested

17

in symmetry groups, but tries to find structures in these groups that can be described by
a generating transformation. Assuming that a symmetry group S is already identified
by the system, a subset P ⊆ S can be taken, together with a transformation T and
a real interval I ∈ Z. If this subset fulfils the requirement T I(P) ⊆ S it is called a
discrete partial 1-parameter pattern. Sliding dockers are then the patterns that can be
decomposed into several subparts and thus allow for changes in the number of elements.
Beside this discrete patterns, the model can also contain continuous partial 1-parameter
patterns, which are defined similar to the discrete case, but with the interval I being a
subset of R. These continuous features are found by using a slippage analysis, as already
described in the work of Kraevoy et al. [KSSCO08]. For better understanding of these
features Figure 2.14 shows examples of them, together with an example of a sliding
docker group.

Figure 2.14: (a) Example of continuous and discrete patterns. (b) Sliding docker groups
are composed of multiple sliding dockers with a common boundary. Adapted from
[BWKS11].

The modification algorithm here is also based on a volumetric representation, but
this time a transformation field is used to describe an elastic transformation for the
underlying surface. This deformation field is found by defining an energy function, that
is minimized by the optimal field f . The energy function used in this approach consists
of four parts: The user constraints Eu, which describe the modification made by the user,
and the base-regularize energy Er are used as in a standard elastic shape deformation
approach. To account for discrete and continuous patterns in the model, the additional
energy terms Ed (discrete) and Ec (continuous) are added. Using this energy terms the
total energy is given as

E = Eu + λrEr + λdEd + λcEc, (2.1)

where the lambdas are algorithmic parameters, which adjust the influence of the different
energy terms. For the definition of Eu and Er have a look in the paper. The more
interesting parts are the energies for continuous and discrete patterns: For both types
the idea is similar: A constraint subspace has to be found, which describes the line or
plane on which the pattern can be extended: Here, only the continuous case is shown,
where for a part P with two translational degrees of freedom T1 and T2 the constraint
subspace for each point on the surface is given as

M(y) = TR
1 T

R
2 (y). (2.2)

18

In this space two tangent vectors t1 and t2 can be found, which are used to define
a quadric QM(y) that penalizes displacements that move the point y away from the
constraint space. The continuous energy function is then given by summing over the k
parts P1 - Pk and their corresponding points q(i)

j , j = 1, ..., ni:

Ec =
k∑
i=1

ni∑
j=1

[
f(d(i)

j)− d(i)
j

]T
QM(q(i)

j)
[
f(d(i)

j)− d(i)
j

]
. (2.3)

where dj is the original distance vector and f(dj) describes the transformed distance
vector. The formulation for discrete patterns can be found similar to this one, for details
please refer to the paper.

At all points in the distance field where a sliding docker is present, the energy system
is modified to only support elastic motion, and an error quadric that constraints the
motion to the direction of the docker group is used. The total energy system is then
minimized to gain a motion field, which solves the constraint set best. In this field for
each sliding docker the stretch factor is calculated, which gives the number of elements
that should optimally be present in the docker group.

Together with some small adaptations to ensure that sliding dockers are never touched
by the as-rigid-as-possible motion, this framework produces very nice results, and is one
of the first systems that deals with repetitions in models. In addition, nearly all results
of the previous algorithms can be achieved with this technique, but the newly added
sliding dockers allow for a much wider range of possible modifications. Results produced
by this algorithm can be seen in Figure 2.15.

Figure 2.15: Results from the sliding dockers approach. Adapted from [BWKS11].

The follow-up work by Bokeloh et al. [BWSK12], called "Algebraic Model for Param-
eterized Shape Editing", improves the method of dealing with repetitions even further by

19

extending the theory to two-dimensional patterns and mixed patterns. In addition, the
volumetric energy field approach is replaced by a new surface-based technique, which
allows for a better formulation of the problem. To achieve this, the whole input geometry
is segmented in patches of different type. The system identifies 6 different kinds of patches:
rigid patches, which describe polygons where no resizing should happen, continuous line
patches, which describe a line-geometry that can be stretched and discrete line patches,
where repetitions of the input geometry can happen. Based on these three primitive cases,
continuous area patches are defined, which describe a polygon where all edge-lines are
continuous line patches. Discrete area patches work the same way, but this time discrete
line patches are used to define the border. The last type of patch is the mixed-case patch,
where continuous as well as discrete line patches are present. All these types of patches
are shown in Figure 2.16 a-f.

Figure 2.16: (a-f) The six patch types that can be used. (g-h) Comparison of the
sliding dockers approach [BWKS11] with the patch approach [BWSK12]. Adapted from
[BWSK12].

Between these patches in the input mesh, adjacencies are searched that are responsible
for holding two surface patches together. All patches and the adjacencies are transformed
into a large system of equations, where area patches are fully defined by the line patches
that describe their boundary. In most cases, this system of equations will be heavily
redundant and underdetermined, which yields a linear subspace that contains the solutions.
Since not all solutions in this system of equations will be valid results, for example lines
with negative length are not wanted, a number of inequalities has to be added to restrict
the system to the desired solutions. Dealing with such large inequality systems is, as
mentioned at the beginning, a big problem in real time applications. To overcome this,
the problem is solved using null-space analysis, where the solutions can be described
by an offset translation in relation to the basis of the kernel of the equation matrix.
This results in general in a much smaller problem size and thus can be solved efficiently.
When a valid solution for the current situation is found, all patterns are adapted. For
continuous patches, this is simply done by scaling the geometry, while for discrete patches
the number of elements is adapted according to the length of the patch. Looking at

20

the patch formulation for the input geometry, it can be noticed that since directions of
line segments are never changed, the general structure of the mesh will be preserved.
In contrast to the sliding docker algorithm (Bokeloh et al. 2011 [BWKS11]), where
as-rigid-as-possible geometry adaptation was used, this results in a much cleaner solution
without any distortions. This behaviour can be seen in Figure 2.16 g and h, where two
models are shown with the same interactions performed. For example, the walls of the
castle are no longer distorted when the patch technique is used. Other results for the
Bokeloh et al. 2012 approach are presented in Figure 2.17, where especially the two
dimensional discrete patch describing the windows of the apartment tower should be
noticed, which was also not possible with the other approaches.

Figure 2.17: Results from the discrete and continuous patch approach. Adapted from
[BWSK12].

A method that uses a similar approach for solving the energy system, but covers a
totally different application field, is proposed by Schulz et al. [SSL+14]. This work shows
how, based on a previously created template database, models can be designed such that
they can be fabricated. The user can, using a design-by-example approach, combine parts
of models from the database to new models. For our work, the most important part is
how these parts or templates can be manipulated to allow a wider variety of producible
shapes. Figure 2.18 (left) shows how the same combination of parts could be modified to
produce different looking results, although the same constructive parts are used. Since
the model here has not only the constraint to look correct, but also has to be physically
stable, only the parameters of the parts can be adjusted. The parts are, in contrast to
previous work, organised in a hierarchical data structure. At every none-leaf node in this
tree, the constraints are given as the stacked vectors of the child nodes.

Since this system targets non-experienced users, there are a lot of methods imple-

21

mented that help the user to construct a model which can be build in real world. For
example, when adding new templates to the model, the system automatically adjusts
the size and snaps the new part to the existing model. Additional parts needed for the
fabrication process are also added automatically, for example, hinges are automatically
added when a door is placed in a shelf. With such structures, the system also checks if
the door can be opened afterwards. When the user has finished the design of his model,
a physical stability test can be performed to ensure that the model will be physically
stable in real world. If this is not the case, the user can modify the object until it satisfies
these constraints. To show that this analysis really works, Schulz et al. show that at
least some of their models can be fabricated, which is shown in Figure 2.18 (right).

Figure 2.18: Left: The same constructive parts can be combined to a variety of different
looking objects. Right: All models created with the "Design and Fabrication by Example"
framework can be fabricated in real world. Adapted from [SSL+14].

22

CHAPTER 3
Theoretical Foundations

This chapter gives an overview over the basic concepts that are used in this thesis. We first
discuss how the general structure of a structure-aware model-manipulation application
can be build up. After this, we give a short introduction to parametric curves, and give
a brief explanation of symmetry and symmetry detection. At the end some theoretical
background information on user studies is presented.

3.1 Structure Definition

When working with structure-aware model manipulation, sooner or later the question
of what structure is will come up. Many man-made objects or natural forms will have
a specific layout or form, which is mainly defined by its functionality and constraints.
Thompson [Tho92] for example describes that horns and shells of animals are often
spirally shaped due to their growth pattern. In man-made objects, such structures are
often more visible, due to the constraints that arise from the costs and the manufacturing
process.

A good definition for structure is given in the Eurographics 2013 STAR [MWZ+13]:
Structure constitutes a collection of parts and how these parts are mutually related. This
definition assumes that every object can be described by a number of parts that are
not necessarily disjoint subsets of the whole shape. These parts are then connected by
relations, which results in a unique composition. The combination of parts and relations
is always unique to a special type of object, for example, many tables share the same
structure. Beside parts and relations, there can also be a number of parameters that
define the behaviour of the element they are attached to. Mitra et al. [MWZ+13] defines
such parameters only on parts, but in this implementation we will also allow relations to
be parametrized.

23

Figure 3.1: An example of a structured shape (a), which is decomposed into parts. Each
part controls a portion of geometry (b), which we call part geometry. The parts (c)
have parameters and a constraint energy that controls the parameters as well as the
decomposition itself. The example shows binary relations (a connectivity graph). In this
particular case, it has a Markovian structure (only neighbors interact). Reprinted from
[MWZ+13].

3.1.1 Parts

As described above, a model is composed of several parts. A part can be seen as a
semantic abstraction that controls the behaviour and thus the visual appearance of a
subset of the model. According to this definition, parts are not necessarily disjoint, but
due to the part detection used (see Section 4.3), they are always disjoint in our application.
In contrast to the traditional definition of a part as a surface patch after segmentation,
parts can here be seen as an abstraction of a shape’s region. This is shown in Figure 3.1,
where a shape is decomposed in several parts. Depending on the application, parts can
be approximated by different representations: Xu et al. [XLZ+10] are using bounding
boxes, Zheng et al. [ZFCO+11] are additionally using generalized cylinders and spheres.
It is also possible to use volumetric approximations [Sha08] or a general shape space.

On each part a set of parameters can be defined, which specify how the part should
react and appear. For many applications, these parameters can be automatically deter-
mined by the choice of parts. Some applications, and also our framework, rely on the
user to specify additional parameters manually. This can range from providing semantic
parts as part of an input template, to our use case, the specification of how parts should
react to changes. [MWZ+13]

3.1.2 Relations

Relations are used to describe how parts are associated to each other. In general two types
of relations are considered: Binary relations and higher-order relations. Binary relations
are always linking two parts together (as also seen in Figure 3.1). For example, physical
connectivity could be expressed by such a binary relation. In contrast, higher-order
relations are describing a correlation between a larger number of elements. Another
option, shown in Figure 3.2, is to group all elements that should behave similarly. This
leads to symmetrical results when manipulating the mesh (Figure 3.2c).

For each relation (binary and higher-order) an energy can be defined that is zero

24

Figure 3.2: Higher-order relations can be used to group parts with similar behaviour.
The four corners are related by a 4-ary symmetry energy (b). When modifying this
object with a structure-preserving shape deformation algorithm, the result will always be
symmetric. Reprinted from [MWZ+13].

for a valid structure. Depending on the application, these constraints can be treated as
hard constraints (all energies have to be zero) or as soft constraints (which results in a
minimization problem). [MWZ+13]

3.1.3 Detection of Parts, Relations and Parameters

Now that we know how parts, relations and parameters are related, the next task is
to identify them in an input model. Assuming, that information about the parts (and
maybe about the parameters) have to be obtained before relation detection makes sense,
we start with the part detection. Methods for detecting parts can be classified in three
categories [MWZ+13]:

User Specification

When no prior knowledge of the model exists, one of the simplest solutions is to let
the user identify the parts. This can be done, for example, by selecting subsets of the
input model, where each subset is then used as a part. Another possible method is,
that the user creates primitive objects, which abstract the real data. In many cases it
is also possible to take information about the model into account. When working with
hand-modelled objects, the scene hierarchy of the input-file might give some information
about the intention the designer had.

Manual parameter specification is often used in procedural modelling, where the user
has to specify the whole scene via a shape grammar. In this context specifying parameters
by hand is the natural interaction. But also in mesh-modelling, parameter specification
by hand takes place, for example by assigning a specific color to parts of the mesh. Our
application will, as described later, also rely on some user specified parameters.

25

Fixed Model

In this class of methods a fixed segmentation model is constructed, which allows the
system to identify parts automatically using this model. iWires [GSMCO09], for example,
identifies significant edges, which is exactly such a model. Identification of objects due to
symmetries or other geometric properties assumes also the use of a fixed model.

Parameter detection using a fixed model happens very often. The arrangement of parts
will in most cases happen by using homogeneous transformations. When approximation
objects are used, the specification of the sizes these boxes and models have happens in a
parametric model. We will see later, that our user interactions will fall in this category,
since we allow the user only to manipulate bounding boxes.

Learning from Data

In contrast to the previous approach, no prior knowledge is used here. The parts and
parameters are learned here by a machine learning technique, which derives a meta-model
from a number of training objects. As always in machine learning, the user can either
interact with the learning system (supervised learning) or the system works without
any additional information, for example, by detecting clusters and finding subsets of the
models that have a similar structure.

Identifying Relations

Identifying relations is challenging, since this strongly depends on the type of relation
and what it should express. A relation can be of unary rank (i.e. symmetry connects
the part to itself), or up to n-ary rank. Often used relations are the ones that connect
two parts, which gives a general graph structure, thus probabilistic graph models can be
used. When the relation describes contacts between parts, it can also be expressed as a
Markov-random field (for more details see [MWZ+13]).

The basic concepts for part detection can also be applied to relation identification:
The user could specify the relations, for example in a modelling tool by specifying a
hierarchy, or by using the same mesh in multiple places, thus identifying a symmetry.
When dealing with physical constraints, like connectivity or stress factors, a priori models
can be used. Bokeloh et al. [BWSK12] uses a machine learning algorithm to identify
repeatable patterns. Another example for learning base relation classification is the whole
field of inverse procedural modelling, where the grammar has to be derived from an input
model automatically.

3.2 Symmetry and Symmetry Detection
Mitra et al. [MPWC13] define symmetry as follows:

A symmetry preserves a certain property (e.g., geometric similarity) of an
object under some operation applied to the object. This notion of invariance
is formalized in an elegant branch of mathematics called group theory. In the

26

context of geometry, we will consider geometric transformations as the sym-
metry operatons, such as reflections, translations, rotations, or combinations
thereof.

Two objects M and N are symmetric, if there exists a transformation T such that
N = T (M). In the mathematical context, all the symmetry operations that can be
applied to a shape form the structure of a group. For a symmetry set S of transformations,
it has to be proven that several axioms are fulfilled in order to form a symmetry group
(to be more concrete, every set that satisfies these properties is a group). The group
operation that is used in this definition is the composition operation.

The axioms are the following: First, there has to exist an identity element. When
working with symmetries, the identity transformation I is always a valid transformation,
since every object stays unchanged when applying an identity transformation. Beside
the identity element, there has to exist an inverse element, meaning that for every
transformation T ∈ S the inverse transformation T−1 has to be part of S. For the inverse
transformation T−1T = TT−1 = I has to hold. Each mathematical group has to have a
closure, thus when a object is symmetric under two transformations T1 and T2, than
the combined transformation T1T2 must also be part of the group. The last property,
that has to be checked, is the associativity. In terms of transformations, this is easy
to proof, since matrix products (and thus all transformations that are represented by
matrices) are by definition associative (see [DGKP08]).

For some simple objects, we can exemplary define such a symmetry group. When
looking at an equilateral triangle, it can be seen, that there exist three unique rotations,
around 120◦, 240◦ and 360◦ = 0◦ (which is also the identity element in this group).
In addition to these rotations, there exist three reflections, one along each altitude.
Together, this six transformations form the dihedral group D3, that is shown in Figure
3.3a. Another group that is very similar to the D3 group is the symmetry-group on a
five-pointed star. This group D5 (Figure 3.3b) consists of repeated application of 72◦
rotations and reflections. Beside the dihedral groups Dn on regular n-gons, there exists a
large number of other groups. Examples are the cyclic group Cn (see Figure 3.3c for the
C3 group) that is generated by rotations around 360◦

n . In 2D, the infinite group O(2),
which is the group with elements that stay symmetric under rotations around arbitrary
angles and reflections (in 2D the only object is the circle, see Figure 3.3d), is a super
group of all the previous described ones. [MPWC13]

Symmetry is a long used concept in art and architecture: The probably most well
known example for symmetry in arts is the "Vitruvian Man" by Leonardo da Vinci
(around 1490), where the symmetries of the human body are shown (Figure 3.4 right).
From the theoretical point of view, the ornaments in the spanish castle Alhambra have
been really important. These ornaments were studied around 1830 by Owen Jones and
Lewis Vuillamy. Later in 1958, Jones published his probably most important work "The
Grammar of Ornament" [Jon68], which described patterns from all epochs all over the
world and defines key principles for the decorative art, also showing how symmetry
is used in this field (see Figure 3.4 left). Building up on this work, a mathematical
classification for 2-dimensional patterns, which are repeatable in one direction, are given

27

Figure 3.3: The dihedral group D3 represents the symmetries of the equilateral triangle
(the colored flags are added to illustrate the transformation), while D5 is the symmetry
group of the five-sided star. The triskelion has three rotational symmetries, but no
reflectional symmetries and is represented by the cyclic group C3. All of these finite
point groups are subsets of the isometry group O(2), which represents the symmetries of
the circle. Adapted from [MPWC13].

by the Frieze groups, where seven basic patterns are identified. When repetition can
happen in two directions, this leads to the definition of wallpaper groups [Fed91], where
seventeen distinct types can occur.

Figure 3.4: Left: Two plates with symmetric ornaments as identified by Jones et al. in
"The Grammar of Ornament", adapted from [Jon68]. Right: The "Vitruvian Man" by
Leonardo da Vinci. Adapted from Wikipedia.

28

3.2.1 Global and Partial Symmetries

Symmetries can be classified according to the type of symmetry used: We differentiate
here between global and partial symmetries, where global symmetries try to map the
whole object to itself. This leads in practice to a lot of simplifications, since we do not
have to solve the segmentation problem. Global symmetry detection algorithms make
also use of the fact, that for these symmetries the centroid of both objects has to be
the same. Additionally, the centroid is also the only center of rotation used. Partial
symmetries are searching for parts of the object which are symmetric. If we consider M
as a subset of the object, then we can use the definition of the symmetry-groups as before,
thus the whole symmetry detection is a segmentation followed by a global symmetry
detection algorithm. One problem with partial symmetries is, that they are often not
forming a complete symmetry group as defined above (Figure 3.5a). When looking at the
steps of a staircase (Figure 3.5b, c), which are in general partial symmetric, we can for
example find a transformation that maps one step to the next one. But we are not able
to find a transformation, except of the identity transformation, which maps the whole
set of steps to itself. This leads us to an adapted formulation for partial symmetries: A
shape S is partial symmetric under a transformation T , when there exist two subsets
M1,M2 ∈ S, which fulfil the property that M1 = T (M2). From this definition it can
be seen, that global symmetries are just a subgroup of partial ones, to be exact, global
symmetries are the one where M1 = M2 = M .

To summarize: Partial symmetries can describe much more cases than global symme-
tries, but they might not fulfil the criterions, which are required for a group structure,
although we could fix this problem by also taking repetitions to infinity of the pattern
into account.

Figure 3.5: Examples for partial symmetries. Reprinted from [MPWC13].

3.2.2 Imperfect Symmetries

Until now, we only considered objects as symmetric, if the matching is perfect. Since
we are dealing in this work mainly with man-made triangle meshes, it can happen due
to imprecise modelling, or due to sampling artefacts of the triangulation process, that
objects, which are considered symmetric by a user, are not symmetric in the mathematical

29

sense. Thus a definition for these imperfect symmetries is required. According to Mitra
et al. [MPWC13], we can achieve this by transforming the original equation M1 = T (M2)
into an optimization problem, using the distance d(M1, T (M2)) between the object and
the transformed object. Imperfect symmetry is given when

d(M1, T (M2)) ≤ t. (3.1)

If the threshold t is set to zero, we get again the definition of perfect symmetry. The
simplest form of a distance measurement would be to take the mean of the distances
between each point in M1 and the nearest neighbour in M2. Many authors proposed
other distance functions, for example, Zabrodsky et al. [ZPA95] replaced the distance
between the nearest points by the distance between a point and the nearest point on the
surface to the other object (in the case of meshes, this results in finding the nearest face
for a given point). Another measurement, which is mainly used in computer vision, but
can also be applied to symmetries, is the Hausdorff distance:

d(M1, T (M2)) = max sup
x∈M1

inf
y∈T (M2)

‖x− y‖, sup
y∈T (M2)

inf
x∈M1

‖x− y‖. (3.2)

The major problem with all this measurements for distances between meshes is, how
the threshold should be defined. A larger threshold will allow for objects to be symmetric
under a higher approximation error, but may instead declare parts as symmetric although
they are different.

Two things should be noted: First, that at the moment where imperfect symmetries
come into play, the algebraic structure is not a group any more. The reason for this
is given by the fact, that the set is not closed with regard to composition any more,
since d(M,T1(M)) < t and d(M,T2(M)) < t can both be below the threshold, while
the composition of both d(M1, T1T2(M2)) can be above it. The second point is, that
the quality and the possibilities that symmetries can describe strongly depends on the
space that is used. Euclidean space (and the so called extrinsic symmetries), which
are also used in our work, are well suited to rigid body transformations, but when for
example working with humans or animals and their non-rigid behaviour (e.g. Figure 3.6)
a better-fitting problem space has to be used. The group of such symmetries is called
intrinsic symmetries.

3.2.3 Symmetry Detection

For the detection of symmetries in arbitrary meshes or in images, a lot of methods have
been proposed. Global symmetries can for example be found using the iterative closest
point methods by Besl et al. [BM92] and Chetverikov et al. [CSSK02]. For every point
in a model the corresponding point in the other model is searched and the motion that
minimizes the distances between corresponding points is calculated. The correspondence
for a point is, in the simplest case, determined by searching for the point with the shortest
distance. This can be improved by using the shortest distance to the surface of the other
model. The ICP algorithm is explained later in Section 4.3.3, since our implementation

30

Figure 3.6: Example where the extrinsic symmetry changes under a non-rigid transfor-
mations. Reprinted from [MPWC13].

is based on this technique. The main limitation of the ICP-technique is, that it can only
search for global symmetries.

Another approach, proposed by Mitra et al. [MGP06], searches for local shape
features in the input 3d geometry (Figure 3.7 left). These features are then matched
against each other, and if two features are matching, the corresponding reflection line
(in case of reflective symmetry) is marked in the so-called transformation space. When
multiple point pairs correspond to the same reflection line, these features build a cluster
in the transformation space (Figure 3.7 middle). These clusters are found by a mean-shift
algorithm, which returns the significant symmetries (Figure 3.7 right). For other types of
symmetries, the algorithm works basically the same, although the transformation space
might be of higher dimension. Since the marked values in transformation space do not
have to match exactly due to the clustering algorithm used, this technique can, beside of
partial symmetries, also find approximative symmetries.

Figure 3.7: Basic transformation space algorithm for reflective symmetries: Matching
shape features are searched (left), and transformed to transformation space (middle).
Clusters in this space correspond to symmetries in the model (right). Reprinted from
[MGP06].

Bokeloh et al. [BWKS11, BWSK12] are using a RANSAC-based detection schema.
Generator transformations are sampled randomly for mesh features and the number of
other features that belong to this transformation are counted. After a high number
of repetitions (up to 500 times,) only the transformation with the highest number of

31

corresponding features is kept. This transformation is then removed from the feature set,
and the algorithm is started again on the reduced set. Using this technique, it is possible
to find global and local symmetries in a mesh, although it is only used for translational
symmetries here. Jain et al. [JTRS12] improved this technique and extended it to
reflective and rotational symmetries.

Beside the methods described in detail here, there exists a large number of other
possible algorithms: Gelfand et al. [GG04] uses slippage analyses to determine symmetries,
Gal et al. [GCO06] shows, how geometric hashing can be used in this application field.
Pauly et al. [PMW+08] propose an approach that also uses transformation spaces to
detect features, but deals explicitly with outliers and missing data, which arise when
working with point clouds. A conceptually different method for symmetry detection is
shown by Berner et al. [BBW+08], where feature graph matching is used as an input
to an ICP-based segmentation method. For more details about symmetry detection
methods, have a look at Mitra et al. [MPWC13].

3.2.4 Further Reading

Since the topic of symmetries has a long term history, we can give here only a short
overview on this topic. For example, there is a strong relationship between geometric
symmetries and the theory of Lie groups. We want to refer the interested reader for
example to the theoretical work by Helgason [Hel79] for more information about this
theory. Also the book "Geometric Symmetries", by Lockwood and MacMillan [LM78],
might give deeper knowledge about the theory. The last work that should be mentioned
here, is the state-of-the-art report by Mitra et al. [MPWC13], which presents beside the
classical theory also a very good overview on application fields.

3.3 Parametric Curves

Since we want to extend the formulation of symmetries by using parametric curves to
describe the local arrangement of parts, we first have to define what parametric curves
are: Many functions and curves can be written in the form x = f(y) or y = f(x), but
when thinking for example about a circle, we will see, that it is impossible to find such a
representation for it. The equation that defines a circle is given by

x2 + y2 = r2, (3.3)

which we could solve for x resulting in the equation x = ±
√
r2 − y2. But when looking

at this in detail, it can be noticed, that these are two separate equations, one defining
the top half of the circle, and a second one that gives the bottom half. Beside this type
of curves, there exists also a large number of curves that cannot be expressed in terms of
x and y only.

For some of these equations, we can solve the problem by using so called parametric
equations, that define both x and y in terms of a new variable t, which is called parameter.

32

Using this formulation, we can define the circle by the following equation:(
x
y

)
= f(t) =

(
sin(t)
cos(t)

)
, (3.4)

where t is going from 0 to 2π. Solving the equation for a special t gives a point in space.
A parametric curve is given as the set of points which are calculated by f(t) for each
possible value of t [PT95]. In our application, we are using three different parametric
curve types. One is the circle that was already explained above, the other ones are Bezier
curves and NURBS.

3.3.1 Bezier Curves

Bezier curves have a long history in computer graphics. They were independently invented
in the beginning of the 1960’s by Pierre Bézier and Paul de Casteljau. Both worked
in the field of computer aided design, and used this representation of curves for their
CAD applications. Similar to polynomials, these curves can be defined for any degree. A
Bezier curve of degree n is defined by using a control-polygon with n+ 1 control points
P0, P1, ..., Pn as follows:

c(t) =
n∑
i=0

Bi,n(t)Pi, (3.5)

where Bi,n(t) is the i-th Bernstein polynomial of degree n and t has to be in [0, 1].
Bernstein polynomials can be defined recursively as

Bi,n(t) = (1− t) ·Bi,n−1(t) + t ·Bi−1,n−1(t)
B0,0(t) = 1,

(3.6)

with Bi,n equals zero for i < 0 or i > n. It is also possible to calculate the Bernstein
polynomial directly using binomial coefficients:

Bi,n =
(
n
i

)
ti(1− t)n−i. (3.7)

Some examples for Bezier curves with varying degree are shown in Figure 3.8.
Bezier curves belong to the class of curves where the control points have global

influence, which means that modifying one control point will change the whole curve.
This property is in general not wanted, but for our application case we will see, that this
is highly desirable. The major problem with Bezier curves is, that they cannot express
the full spectrum of possible curves in space, for example it is impossible to define a
circle using a Bezier curve. [PT95]

3.3.2 NURBS

NURBS, or Non Uniform Rational B-Splines, are a more complex class of curves. To be
more concrete, they are a superclass to Bezier curves. They have also been used very

33

Figure 3.8: Bezier curves of degree 1, 2 and 3. Reprinted from Wikipedia.

successfully in CAD applications and, in contrast to Bezier curves, the control points
only have local influence. Due to additional weighting factors, these curves can express
many more space curves, including circles (see Figure 3.9a). [Pie91]

Figure 3.9: (a) Using NURBS it is possible to create a circle, (b) Two curves with 4
control-points can be joined together, where P0 - P3 define the first curve and P3 - P6
the second one. (a) Reprinted from staffweb.ncnu.edu.tw, (b) Adapted from andrewhar-
vey4.wordpress.com.

Mathematically, NURBS are defined by the following equation:

c(t) =
∑k
i=1Ni,nwiPi∑k
i=1Ni,nwi

, (3.8)

where Pi is again the i-th control point, wi is a weighting factor for Pi and Ni,n is a
b-spline basis function of degree n. Basis functions define in which range control points
should influence the curve, and which influence they have at a given parameter. Examples
for basis functions of degree 1 and 2 are shown in Figure 3.10.

In many application scenarios, it can be helpful not to model the whole model by
using just one curve. Instead, multiple NURBS can be fitted together by using the last
control point of the first curve as a starting point for the second curve. This can be done,
since NURBS (and also Bezier curves) will always go through the first and the last point.
In Figure 3.9b, an example for a stitched NURBS curve is shown, where control points P0

34

Figure 3.10: Linear (top) and quadratic (bottom) B-Spline basis functions. Reprinted
from Wikipedia.

- P3 define the first curve and P3 - P6 the second one. When stitching together multiple
curves, we want to avoid in most cases that the stitching point is visible to the user. The
way how this can be achieved, is mathematically defined by the concept of geometric
continuity [Wer94]. Continuity of a given degree n, commonly written as Cn, specifies,
that the n-th derivative of two curves is the same at the docking site. In practice, three
levels of continuity are used:

C0 continuity (also called positional continuity) defines, that the starting position of
the second curve is equal to the end position of the first curve. As stated before,
this is easy to achieve with NURBS. In this definition only the location plays a
role, due to this, C0 continuity is also given when the two curves meet at an angle.

C1 continuity, or tangent continuity, rules out these sharp edges, by specifying that
the vectors at the joining location of both curves have to point in the same direction
and are parallel. When thinking in terms of illumination, using C0 continuity
will break the highlights due to the sharp edges resulting in the mesh. Using C1
continuity, the highlights will be continuous, but may appear stretched. Since it
will look natural in most cases, it can be sufficient for many applications to only
require tangent continuity.

C2 continuity solves the problem of highlights getting stretched, by not only requiring
the two vectors to be parallel. Additionally, the two tangent vectors also have to
have the same length, which leads to the same scaling of the highlights on both
sides, giving a perfectly smooth curve.

In our application, we require all curves to have at least C1 continuity, since we are
requiring tangent directions of the curve, but not tangent length. Figure 3.9b is also an
example for an at least C1 continuous curve.

3.3.3 Spaces on Curves

On every space curve c(t), we can according to Kreyszig [Kre13] define two vectors of
interest at every point: The tangent vector describes the forward direction of a curve.
When thinking about the curve as the path that a particle moves in space, the speed

35

of this particle at the point specified by the parameter t is given by this tangent vector.
Mathematically speaking this vector is given by the following formula:

c′(t) = d

dt
c(t). (3.9)

The normalized tangent vector e1 is then given as

e1 = c′(t)
‖c′(t)‖ . (3.10)

The second important vector is the normal vector, or sometimes called curvature vector.
It is defined as

e2(t) = e2
‖e2‖

e2 = c′′(t)− 〈c′′(t), e1(t)〉e1(t)
(3.11)

and indicates how much the curve diverges from being a line. The normal vector is
always perpendicular to the tangent vector and spans together with the tangent vector a
plane, which has a second order contact with the curve. This plane is called osculating
plane. Figure 3.11a shows the tangent vector and the normal vector of a curve in 2d.
The vector orthogonal to both, the tangent vector and the normal vector, is called
binormal vector. In 3-dimensional space it can be calculated via the cross-product of
these vectors:

e3 = e1 × e2. (3.12)

Together, these three vectors define the Frenet frame in R3, an orthogonal moving
frame on a curve, which is one of the major tools in differential geometry (see Figure 3.11
for an example of a Frenet frame moving along a curve). In Rn, the Frenet frame consists
of n orthogonal vectors, which can, according to the gram-schmidt orthonormalization
process be calculated as follows:

ej(t) = ej
‖ej‖

ej = c(j)(t)−
j−1∑
i=1
〈c(j)(t), ei(t)〉ei(t).

(3.13)

The initial value for e1 is defined as in Equation 3.9. When working in 3d space, this
formulation can be collapsed exactly to Equations 3.10 and 3.11.

The usage of the Frenet frame is also the reason why we require all our curves to be
at least C1 continuous, in order to have a smooth Frenet frame without discontinuities.
Since we are only using the normalized tangent vector, C2 continuity is not required.

36

Figure 3.11: (a) Tangent and normal vector of a 2D-curve, (b) Frenet frame moving
along a space curve. Reprinted from vjticontrolin.cluster2.hostgator.co.in.

3.3.4 Length of Curves

As already mentioned in the previous section, the tangent vector c′(t) defines the velocity
vector that a particle has when moving along the curve. Jia [Jia13] shows how this vector
can be used to calculate the length of a curve: When looking at the curve, it can be
noticed, that the curve between the parameters t and t+ ∆t can be approximated by a
straight line. Thus the length in the interval [t, t+ ∆t] is given by

‖c(t+ ∆t)− c(t)‖, (3.14)

which can be approximated again using the tangent vector, giving us ‖c′(t)‖∆t. The
length is here calculated by splitting up the curve in a large number of segments, and
then approximating the length in all these segments. The error made by this calculation
will decrease when ∆t gets smaller, thus we would get the exact length when ∆t tends to
zero. Using this knowledge the length of a curve c(t) between the parameters a and b
can be defined as

b∫
a

‖c′(t)‖dt. (3.15)

3.4 Quantitative Usability Testing
Usability testing is being used for a long time in computer science, although in computer
graphics the user is often neglected. Since our work is not only about the beauty of our
framework, but also about how well it fits to the desired target group, a user study is
the good indicator for that. User-based testing, as done here, is an empirical study to
test if a product is usable by real users. This is achieved by letting them perform real
tasks with the application. There are several parameters that can be tested by such a
study: Learnability indicates how well users can cope with the system when they work
with the product for the first time. Efficiency measures how fast users can handle the

37

system, when they are already aware of how the application works. In addition, errors
can be measured by the system. Here not only the fact that the user made an error is
interesting, most of the time it is more important to see if users are aware that they
made a mistake, and if they can solve it or recover from it after the error happened.
Another parameter is how pleased users are when using the framework, which can be
called satisfaction.

When a new application is developed, user testing should be done as often and as
early as possible. The reason for repeating such studies is, that in the first test the users
will be distracted by the worst errors, thus minor ones will probably not be noticed at all.
The better method is to start with a first study, which includes a few users, and then
reworking the application and fix the problems encountered. Afterwards, a second user
test is done, again with a few users, since the major problems are already solved, these
users will now focus on the minor problems that would otherwise be neglected. This
workflow can then be repeated until the application satisfies the desired quality criterias.
According to Nilsen [Nil93], the best results in nearly all situations can be achieved when
each test group consists of 5-8 users, since with this group size already 80-90 percent
of the usability issues can be found. When testing more users at the same time, the
problems-found to number-of-test-users ratio will decrease drastically, leading to not so
well used resources (see Figure 3.12).

Figure 3.12: The optimal ratio between found usability issues and test group size is
between 5 and 8 users. Adapted from [Mus14].

The user study itself should always follow the same plan: Optimally, the study is held
in a quiet room with a computer inside and two or three chairs. Only the participant
(the user that is subject to the study) and the moderator should be present during the
study. Additional observers can follow the process from another room, or if this is not
possible, from the side of the test room. It can also be a good advice to record all user
sessions, since they can then be analysed later for criteria, which were not known during

38

the study.
During the study a lot of data is collected. In general, there are two categories of such

information: Performance data, which can be quantitatively measured (everything that
has a precise measurement), and preference data, which is qualitative (verbal descriptions,
subjective feelings and opinions, preference scales). Both types of data can be analysed,
but depending on its type different methods should be used: Quantitative data can be
analysed by standard statistical methods, for example, mean value calculation, median,
distribution etc. Qualitative data has, depending on the nature of question, to be
reorganized before statistics can be applied. In the top-down approach, several predefined
categories are used and the answers are sorted to them, while in the bottom-up approach
all the answers are grouped and the categories are labelled according to the contained
data. Beside qualifying the data as being either qualitative or quantitative, it can also
be qualified into being either objective or subjective. Objective data is everything, that
can be measured directly e.g. shoe size or yes/no questions. Subjective data contains
everything, that depends on opinions of users and is not measurable. Examples here are
questions that can be answered on a scale or questions that require a textual answer. A
very good matrix that should clarify this, is given by Musialski [Mus14] in Figure 3.13.

The classifications determine which mathematical operations can be applied to the
data. For qualitative data, which is of nominal type (e.g. gender), only equal/unequal
operations should be used. When the data is of ordinal type (qualitative, e.g. scale from
very good to very bad), the data can also be compared using greater/less operations.
Quantitative data, which is given in intervals (temperature, dates), can be added and
subtracted in addition to the comparison operations. The data with the widest number
of possible operations is quantitative data, which is given by a ratio (e.g. age from 0 to
99 years) where also multiplications and divisions are allowed. We will later on use this
knowledge about user-studies and data analysis to present the results of our user study,
which is described in Section 5.2. [Mus14]

39

Figure 3.13: Matrix showing the difference between qualitative/quantitative and objec-
tive/subjective data. Reprinted from [Mus14].

40

CHAPTER 4
Framework for Structure-Aware

Model Manipulation

In this chapter, our framework for structure-aware model manipulation is presented,
starting with an overview of the used multi-layered graph representation, explaining all
necessary components used in our propagation algorithm. Afterwards the algorithms
used for detecting these parts in an input mesh are presented, followed by an description
of the general idea of symmetries in curve spaces and how parameters for them are
calculated. In the next section, the propagation algorithm used for updating the model is
shown. At the end, a short description of the user interactions in our framework is given.

4.1 Overview

Our framework follows the general design principle for structure-aware mesh manipulation
systems: First the model is analysed, and afterwards manipulations made by the user
are handled interactively. A flow diagram showing the various stages of the system is
given in Figure 4.1.

In the model-analysis stage, the parts and binary relations are identified automatically,
giving a connectivity graph that describes how parts and relations are tied together. The
parts are then analysed to find symmetry groups in the model, which are added to the
graph structure as additional layers. In our work, we try to describe the arrangement of
the parts in these symmetry groups by a control curve, which also allows us to repeat
the elements along such a curve. While the detection of symmetry groups happens fully
automatically, the user has to select the type of control curve used. Depending on the
choice of control curve, the system automatically finds all necessary parameters. The
behaviour of objects on such a curve is specified by the user. One can selected whether
parts should only be rearranged when the curve is changed, or if the number of parts is
changed to keep the distance between parts as constant as possible. For both types of

41

Figure 4.1: Flow diagram of the model manipulation framework.

modification behaviour, the system detects all required parameters, like the orientation
of parts to the curve, or the distance between parts, automatically.

When mesh analysis is finished, the user can interact with the system by manipulating
the parts. The resulting changes are propagated through the connectivity graph to modify
other binary relations and parts, such that the overall structure of the model is maintained.
Whenever necessary, higher-order relations are adapted to the changes introduced by
the propagation. For example, the number of elements in such a group can be altered
when the length of the control curve is changed. The system also maintains the position
and the orientation of parts that are controlled by a curve by keeping both of them on
the curve, or in the Frenet frame of the curve. The steps in the modification stage are
repeated, starting with the user interaction, until the user is satisfied with the result.

Before starting with a detailed explanation of the analysis stage, we will describe the
elements of which we compose models in our framework, and how these elements are
stored.

4.2 Data Structure
To store all the informations about an input model, and especially the newly defined
symmetry groups, it is highly desirable to have only one data structure that can describe
the whole model in a unified way.

According to the definition of Mitra et al. [MWZ+13] (see Section 3.1), every model
consists of several parts, which are connected by relations to form a unique composition.
Relations can be grouped in two categories: Binary relations, which describe the physical
connectivity between two parts, and higher-order relations, which handle all constraints
where more than two parts are involved, e.g., the curve symmetries described later.
Relations as well as parts can have parameters, which describe the appearance or the
behaviour of the specific element. An example for such a decomposition of a ladder
model is given in Figure 4.2, where on the left side (a) the original input model is given.
The parts of the model are surrounded by blue boxes in (b), while (c) shows the binary

42

relations between the connected parts with yellow boxes. We will describe in this section
how parts, binary relations and higher-order relation are defined, and how they can be
stored in a unified data structure.

Figure 4.2: Overview on parts and binary relations: (a) Input model, (b) parts, (c) binary
relations

Parts: In our framework, parts are geometric sub-meshes of the input model. We
assume in our application that the input model is pre-segmented by the user, since mesh
segmentation algorithms delivery very good results, and we do not want to contribute in
this field. For every part that is present in the model, a bounding box is defined, which
covers the underlying geometry. We will see in Section 4.3.1 how these boxes can be
calculated. The bounding box is the most important parameter that a part has, since it
defines the three principle axes, along which the part can be scaled or translated. For the
automatic model adaptation, the user can specify along each of these axes whether this
part can only be moved, or if it can change the size. Furthermore, one can specify that
resizing can only happen uniformly along two or three axes. Using this, it is possible to
maintain the circular cross-section in a cylinder by specifying that scaling along both
axes of the cross-section is only allowed by the same scaling factor.

Binary relations: The physical connectivity between exactly two parts is described
by a binary relation. Parts can be connected by multiple binary relations, as we will
see in detail in Section 4.3.2, since parts can overlap in multiple disconnected regions.
A binary relation is fully described by its position in the world and the two parts it
connects. For each part that is connected by a binary relation, the relative position in
the part’s bounding box is stored. When two connected parts are in a valid position,
then the relative orientations in box space describe the same point in world space. When
one part is moved, the world space position of the binary relations changes with it. Since
the two relative orientations no longer describe the same location in world space, the
model has to be adapted to move the two parts again in a valid position. More on how
parts and binary relations are updated is given in Section 4.5.2.

As already mentioned, a binary relation stores its relative position in both bounding
boxes. These parameters can be found by calculating the relative position of the binary
relation along each of the bounding box axes, describing the relative distance between

43

Figure 4.3: Binary relations, marked by yellow boxes, can be oriented relatively between
two sides of the box (a) or with absolute offset to one side (b). The arrows show to which
sides of the bounding box the binary relation is related.

the opposite sides of the bounding box (see Figure 4.3 left). We call this type of binary
from now on relative binary relation. During the development it turned out that although
relative binary relations alone should theoretically be sufficient, this is not the case with
practical models. There can be some problems when two parts are touching, and the
binary relation location is not calculated exactly at the side of the bounding box. This
can happen due to imprecise modelling, but the algorithm used to identify significant
binary relations also tends to produce relations that are slightly moved into the box
when curved surfaces are present. Visually, the problem can be seen when a thin object
is present, since the relative binary relation will, when one box is scaled, tend to move
one part through the other one. This behaviour is shown in Figure 4.4, where in the
initial situation (a), the bounding boxes overlap. When in (b) the blue box is scaled,
the relative orientation of the binary relation is maintained, resulting in the blue box
standing through the orange one.

Figure 4.4: Relative binary relations can produce problems due to imprecise modelling.
(a) Shows the initial model, where a relative relation connects the blue and the orange
box. When the blue box is scaled (b), it can happen that the box is also visible on the
other side of the orange box, since the relative position of the relation is maintained. To
overcome this problem, we can tie the binary relation only to the right side of the blue
box (c), which produces a better looking result.

To overcome this problem, we added a second binary relation type, the so-called

44

absolute binary relations, which are, in contrast to relative ones, tied with an absolute
offset to one side of the bounding box. This type of relation is shown in Figure 4.3b,
where the binary relation is only tied to the left side of the box. This helps to overcome
imprecise locations due to not perfectly aligned geometry, as shown in Figure 4.4c. Binary
relations are identified fully automatically by our implementation, which is described in
Section 4.3.2.

Higher-order relations: A more general concept than binary relations are higher-
order relations, which allow to define relations between more than two parts, such that
each higher-order relation contains a set of parts. In our application this concept is
used to describe curve symmetries: a concept that we explain in more detail in Section
4.4. Symmetric parts are automatically identified by the framework (see Section 4.3.3),
but the user has to specify the type of control curve that should be used for a specific
symmetry group. Similar to parts and binary relations, higher-order relations also have
a number of parameters. These parameters depend mainly on the control curve used,
and are detected automatically, which is presented in detail in Section 4.4.1. In addition
to the control curve and their parameters, the user has to specify in the model analysis
stage whether parts should only be rearranged to stay evenly spaced when the control
curve is modified, or if the number of parts should be adapted to keep a constant distance
between them.

Connectivity graph: As described by Mitra et al. [MWZ+13], the connectivity
graph is an undirected graph, which stores parts and binary relations. Let G = (V,E) be
such a graph, the nodes V represent the parts of the model, while the edges E represent
respective binary relations, linking the two parts the relation connects. The graph that
corresponds to the model from Figure 4.2 is presented in Figure 4.5 on the left side,
where parts are again marked blue and binary relations are given in yellow. We will see
later on, how this connectivity graph is used in the propagation algorithm to determine
in which order parts and binary relations are updated.

Multi-layered graph representation: Since we want to store the information
about parts and binary relations in the same data structure as the higher-order relations,
we have to extend the simple connectivity graph. For this, we will use a multi-layered
graph representation, which was used successfully in other fields of computer science like
for example network routing [XXS05] and feature matching [LLZ10]. A layered graph
consists of a base graph, and some layers {L0, L1, · · · , Ln}, which contain a subset of
the nodes V , connected with layer-specific edges. Thus a layer for the base graph G is
defined as Li = (Vi ⊆ V,Ei).

To describe the structure of a model using a layered graph, our framework uses the
connectivity graph, which is formed by the parts and binary relations as base graph. For
each higher-order relation, we create a layer in the graph, which contains exactly the set
of nodes that the higher-order relation operates on. When describing curve symmetries,
the nodes are given by the parts that are aligned on the control curve. The edges in
each layer define the ordering of the parts along the control curve, thus every part is
connected with its predecessor and successor along the curve. How this order is calculated
is presented in Section 4.4.1, since this strongly depends on the type of control curve

45

Figure 4.5: (left) Graph corresponding to the ladder model. (right) Layered graph with
a higher-order relation grouping the steps.

used.

4.3 Model Analysis

Since only a model without additional information is given as input to our system, we
need to find as many structures in the model as possible in a semi-automatic way. First,
we have to detect parts in the input model, which are the most primitive elements we
are dealing with. Parts can behave in two ways in the propagation algorithm: (1) They
can be restricted to translations, or (2) they can change also their size depending on
the surrounding situation. Due to this, the grouping of triangles into meshes should be
such that triangles with different resize behaviour are never present in the same part.
Since the user can only modify parts, but not triangles directly, a second criterion for
the grouping is that all sub-meshes that should be modified independently are grouped
in different parts. The problem of segmenting meshes is a well-known topic in the
modelling community, and segmentation algorithms delivery very good results (see e.g.
[AKM+06, CGF09]). In our application, we decided to assume that the input geometry
is pre-segmented by the designer. Since most 3d applications have many settings that
are specified per geometry part rather than per vertex, the part hierarchy used in the
modelling application is often sufficient for use in our method.

For each part in the model, we have to find a tight fitting bounding box (see Section
4.3.1). Using these bounding boxes and the underlying geometry, the system detects
binary relations between the parts and stores them together with the parts in the base

46

graph of our data structure (Section 4.3.2). The next step in the model analysis is to
detect symmetries between parts in the input model (Section 4.3.3). Based on these
automatically detected symmetry groups, the user can select which type of curved
symmetry (see Section 4.4) should be present in a group. The user has to select only
which type of control curve should be used, and whether parts should be repeated along
this curve, while the system detects the parameters for these relations automatically.
The algorithms used for this are described in Section 4.4.1.

4.3.1 Bounding Box Calculation

In the first step of the model analysis, we have to compute a bounding box for each
of the geometric parts. The axis of this bounding box will be used to determine the
directions along which a part can be modified. As described beforehand, these directions
are also used to specify how binary relations are related to a part. The first algorithm
we used to calculate bounding boxes was a PCA (principle component analysis) based
approach that treats the input mesh as a point cloud and calculates the eigenvectors of
the centered points. Given a set of points {p0, p1, · · · , pn}, the axis of a bounding box
can be found by first centring the set around its center of mass. This results in a new set
PC with centered points {pc0, pc1, · · · , pcn}, where each point is calculated as follows:

pci = pi −
∑n
j=0 pj

n
. (4.1)

We then perform then a singular value decomposition (SVD) of the matrix containing
the centered point set:

UΣV ∗ =


pc0
pc1
. . .
pcn

 . (4.2)

The directions of the axes for the bounding box can be found as the vectors in the matrix
V that correspond to the three largest singular values in Σ. To determine the size of the
bounding box, the points have to be projected onto each axis, and the minimum and
maximum has to be stored.

In practice, this algorithm works very well when the input mesh has a sufficiently
large number of points and significant directions that can be found. In our application, it
turned out that for example with 8-cornered boxes, the algorithm produces very different
results depending on the orientation of the box. To overcome this, we also tried the
DiTO algorithm by Larsson and Källberg [LK11], where a simple shape (a ditetrahedron)
is constructed from the input mesh, which is then used to derive the orientation of the
bounding box. According to Larsson and Källberg, a ditetrahedron is a mesh consisting
of two irregular tetrahedra connected along a shared interior side. In order to construct
such a structure, a set of extremal points is needed, which can be found by projecting
a subset S of the input vertices P onto a set of given normal directions. The extremal
points are selected as the two vertices in S that have the maximum projected distance.

47

These points are used to construct the so-called large base triangle, by choosing the
extremal point duple with maximum distance between them:

{p0, p1} = max‖aj − bj‖. (4.3)

The triangle is constructed using the points p0, p1, and a third point p2 that has maximum
distance to the line going through p0 and p1. For each of the edges e of this triangle with
surface normal n, one oriented bounding box is generated with the following axes:

u0 = e/‖e‖
u1 = n/‖n‖

u2 = u0 × u1.

(4.4)

To select the best bounding box, the surface area of each of the candidate boxes is
calculated, and the box with the smallest area is chosen. In order to ensure that the
selected bounding box has a good quality, the axis-aligned bounding box is also calculated,
and if the area of the AABB is smaller or equal to the area of the previously generated
OBB, the axis-aligned bounding box is used instead.

This algorithm produces better-fitting bounding boxes than the PCA algorithm in
less time, and in addition looks much more plausible to the user since it finds similar
bounding boxes for similar meshes regardless of the orientation. Figure 4.6 shows results
of the PCA algorithm on the left side and the same scene with the DiTO algorithm on
the right side. The boxes where the difference can be seen best are marked in red.

Figure 4.6: Bounding-box computation with PCA (left) and DiTO (right)

4.3.2 Binary Relation Detection

After all parts and their respective bounding boxes have been found, the next algorithmic
step is to detect binary relations between these parts. A simple solution for this problem
is to check for intersections between the bounding boxes and to compute the position of
the binary relation by taking the center of the intersection region. In most cases, this
solution would give very good results, but there are some problematic configurations:
Assuming we have an object that consists of an outer ring and a cylinder going from one
side of the ring to the other. Since the bounding box of the cylinder would be completely

48

inside the boundings of the ring, our primitive detection would only find one binary
relation in the middle of the cylinder (see Figure 4.7a). This would lead to incorrect
results after manipulating the model, since the cylinder will not be tied to both sides
of the ring. The optimal result we are looking for in this case would be to detect two
binary relations between the parts, one on each end of the cylinder (b).

Figure 4.7: Binary relation detection using bounding box overlap does not work in cases
where more than one relation between two parts is necessary.

Algorithms that can handle this cases will necessarily need to take the geometry
contained in each part into account. For this, we propose a new algorithm that is based
on the contact analysis in the work of Jain et al. [JTRS12]. The difference is that,
instead of using an axis-aligned bounding-box tree, we use an oriented bounding-box tree
[GLM96] for each part in our implementation.

Part Intersection

An oriented bounding-box tree is a tree structure where the root node contains an oriented
bounding box that encapsulates the whole 3d model. We will use this acceleration
structure in future work also for other tasks, so we decided to use PCA bounding boxes
here instead of the DiTo algorithm used for the bounding boxes that are used in the
propagation algorithm. The reason for this is that many algorithms will rely on stable
eigenvalues, and the DiTo algorithm would not calculate these. Since PCA bounding
boxes have some drawbacks, as described in the last section, our implementation does not
only take vertices into account, but instead it generates a dense point cloud on the the
surface of the triangle-mesh. This is also required due to the unequal spacing of vertices
when small and large triangles are present in the mesh. We implemented two methods for
this point-cloud refinement, starting with a very simple one, where we project a grid on

49

each triangle, and generate a new point for each cell that contains parts of the triangle.
The more advanced algorithm accomplishes the task by using Lloyd’s algorihm [Llo82],
but the differences in the bounding-box quality were negligible, so in our final version,
the grid algorithm is used, due to performance considerations.

The resulting point cloud of the refinement algorithm is then used as an input to
the PCA algorithm, which generates the root node bounding box. The tree is built up
recursively by defining a splitting plane that is orthogonal to the longest axis of the
bounding box. The position of the plane is calculated by taking the average over all
points, and letting the plane go through it. The splitting algorithm then tries to partition
the triangles in the node into two groups, one in front of the plane and one behind. If
this is not possible, or does not produce good results, the whole step is performed on
the second-longest axis first, and then on the shortest one. For both child nodes, the
algorithm is called recursively, starting with the calculation of a new bounding box for
the child point cloud. When a node cannot be subdivided along any axis, or when the
number of triangles present is smaller than a specifiable threshold, the tree generation is
finished.

Using this data structure, the binary relation detection works as follows: For each
pair of parts, the two corresponding trees are intersected, following in each level of the
tree all sub-nodes that intersect the other tree. In the end we get a list of intersecting
leaf nodes, and from them a list of triangles that potentially intersect each other. These
triangles are then tested against each other by using the triangle-triangle intersection
algorithm by Möller [M9̈7]. This method calculates the plane equation of both triangle’s,
and first tests whether all points of one triangle lie on the same side of the other triangles
plane. If this is the case, the triangle is marked as non-intersecting and the algorithm can
stop. In all other cases, the intersection line is found and the intervals for each triangle
are calculated.

Binary Relation Clustering

As a result of this step, we get a list of intersection lines between the triangles. Since each
binary relation is defined by one position, we have to derive the positions of significant
binary relations from the line set. The easiest thing would be to represent every line by
several evenly spaced points and use them as relation positions. But this would give a
significant overhead, since we would have to take a large number of binary relations into
account, which would have similar information about the connectivity. The overhead can
be decreased dramatically by running a connected-component search algorithm, which is
easier to design when working with a point cloud than when working with lines, since
there are a lot of fully developed algorithms that can perform what we need. The result
of these algorithms are just a few but very important binary relations. The component
search algorithm in this implementation is based on the DBSCAN-algorithm [EKSX96],
which starts with a list of points and an empty set of components. For each point, we
check the shortest distance to each existing component, and if the distance is smaller
than the threshold, the point is added to the component. If a point is below the threshold
in more than one group, these two groups are joined together, producing one larger

50

component. This algorithm is exemplarily shown in Figure 4.8: At the beginning, (a)
one component is already defined by the first point. A second point is tested (b), and
since the distance is below the threshold, it is added to the component (c). After some
iterations, three components have been identified, and the last point is compared (d).
This point is below the threshold for the orange as well as for the green component. As a
result, these two components form, together with the last point, one big component (e).

Figure 4.8: Five steps in a greedy component-search algorithm. (a) Initial state, (b) second
point is compared to all components, (c) second point is added to the component, (d)
last point is compared to the three components, (e) due to the last point two components
are joined together.

For each cluster that is found by the connected-component search, a binary relation
is created and the relation parameters are determined. This is done by checking along
each axis of the part’s bounding box if the relation position is located in the outer 10% of
it. If this is the case, then the binary relation is marked as an absolute relation and the
absolute offset to the next face is calculated. Otherwise, the binary relation is marked
as relative and the relative orientation between the two faces of the box is calculated.
Parts and binary relations together form the base graph of our data structure, where a
node in the graph corresponds to a part in the model. For each binary relation an edge
is constructed, that connects the parts that should be connected by this relation. This
base graph will in the modification stage serve as basis for the propagation.

51

4.3.3 Symmetry Detection

Beside the detection of parts and their binary relations to each other, we also have to
detect symmetry groups in the input model. As described in Section 3.2, there are two
classes of symmetries, global symmetries and partial symmetries. In our approach, we
only target symmetries between the parts of the mesh, since all our later algorithms work
on these parts and not on the geometry directly. For a closer look on different algorithms
for detecting symmetries (also partial ones) in meshes, please refer to Section 3.2.3. In
our framework, symmetry detection happens in two steps: First, the pair-wise similarity
between parts is detected by testing all parts against each other. Second, these pair-wise
similarities are used to find clusters where all parts are symmetric to each other. The
resulting cluster are then the symmetry groups we are looking for.

Pair-wise Similarity Detection

The general problem that arises when searching for similar parts in a mesh is the problem
of finding a transformation that maps a point set P = {P0, P1, ..., Pi} to another set
Q = {Q0, Q1, ..., Qj}, with not necessarily the same number of points in each set. In
order to identify if two such sets are similar, the error E that occurs when mapping P
with the best possible transformation F to Q, has to be below a threshold. One method
for solving this problem is the iterative closest point algorithm (ICP), proposed by Besl
et al. [BM92], which was improved over the years by many authors (e.g. [CSSK02]). Our
implementation of the ICP algorithm restricts the possible transformations that can be
applied to a point set to translations, rotations and uniform scaling. This is necessary
since we want to find parts in the mesh, which would also look similar to a user. When,
for example, non-uniform scaling is allowed, every box-shaped mesh could be mapped
to every other box, which would lead in the model used in Figure 4.6 to symmetries
between all twelve parts.

When comparing two point sets (P and Q), the first thing that needs to be done is to
transform all points to a space where the comparison can be performed. This can easily
be achieved by centering both point sets around their center of mass p̄ and q̄, similar
to the calculation performed in Equation 4.1. In this transformed space, for each point
in P , a corresponding point in Q has to be detected and the mean squared error for
this configuration has to be calculated. The method for finding point correspondences
in our implementation is simply to find the nearest point in Q, which gives a mapping
C : P → Q. The initial error is then calculated as

err = 1/n
n∑
i=0

(Pi − C(Pi))2. (4.5)

Using the mapping defined above, we have to find the best transformation, which can,
according to Sorkine [Sor09], be computed by calculating a covariance matrix of the two
pre-centered point sets:

S = PQT . (4.6)

52

The optimal rotation can be calculated by performing a singular value decomposition of
S = UΣV T and is then given in matrix form as

R = V


1

1
. . .

1
det(V UT)

U
T . (4.7)

The optimal translation is given by

t = q̄ −Rp̄. (4.8)

Starting with the correspondence calculation, this algorithm has to be performed several
times, until the mean squared error is less or equal than the required threshold, or until
the change in error between two iterations gets too small. If the final error after the last
iteration is below a threshold, the two compared point sets P and Q can be treated as
similar objects.

There are several problematic cases with this simple version of the ICP algorithm.
The most important one is that depending on the initial orientation, there can be a
stable situation between two similar objects although the alignment does not fit well.
This problem occurs especially in cases when there are very few points in each set. For
example, two boxes of similar size that are nearly orthogonal to each other would be
identified as not symmetric, due to the equal forces pushing to both sides. Figure 4.9a
shows the initial situation where the point correspondences are marked with gray arrows.
After the first iteration the two boxes are perfectly 90◦ aligned, and all arrows are of
equal size. Since these forces are cancelling out each other, no rotation is calculated any
more.

Figure 4.9: ICP algorithm producing incorrect results in sparse point sets

As a solution to this problem, our symmetry detection always rotates the bounding
boxes of the mesh such that the longest axis points in the x-direction, the second largest

53

in y-direction, and the shortest along the z-axis. This produces in general better results
and reduces in most cases the required number of iterations in the ICP algorithm, as
long as the bounding boxes for two similar objects are also similar.

Symmetry Group Clustering

The ICP algorithm identifies whether two parts in the model are symmetric to each other.
The next step is to identify groups of objects, so-called symmetry groups, where all objects
that are symmetric are grouped together. We identify these groups by an algorithm
similar to the DBSCAN algorithm, which was used for binary relation clustering. The
algorithm starts with an empty set of groups, and a list of parts that we want to group.
For every part, we test if this part is symmetric to any object in an already existing group.
If this is the case, the part is added to this group, if not, a new group is created. Since we
are dealing with approximative symmetries here, where we mark parts as being symmetric
when the error after the ICP algorithm is below a threshold, it can happen that a part is
symmetric to parts in more than one group. In this case, our implementation joins the
the two groups together, resulting in one large group.

Each symmetry group that has been found is added to our data structure as an
additional layer. In this layer, all the parts that are contained in the symmetry group are
present, together with the parameter that describe this higher-order relation (see Section
4.4.1). In the next section, we will see how the edges in these layers are found.

Another problem with this symmetry detection is that all equal objects in a scene
are marked as being symmetric. For example, if the walls of a castle have two rows of
battlements (one on each side of the wall, see Figure 4.10 left), all these battlements are
symmetric, but we will see in the next section that this is not exactly what we are looking
for. What we want to find are two groups of battlements, each of them constructed on
a line (Figure 4.10 right). At the moment, our system does not take this into account,
since finding related objects is a very active research field, and our contribution is not in
this area.

Figure 4.10: ICP finds all objects that are symmetric to each other, but in many cases
this is not sufficient. In the castle wall example, all basements are symmetric, but should
optimally be in two groups, each spanned by a line

54

4.4 Symmetry on Curves

Symmetry (as described in Section 3.2) is a very helpful theory when dealing with the
structure of meshes. In most of today’s applications, complex symmetric relations are only
considered for maintaining the structure of an object [GSMCO09], [ZFCO+11]. But when
it comes to adaptations, only very limited support is available, mostly 1d-translations
(resulting in objects lying on a line, [BWS10, BWKS11]) and 2d-translations (objects
lying on a grid, [BWSK12]). The approach used here for structural adaption should
extend this to a model which can deal with a wider number of symmetries, while also
working with these simple types.

To achieve this, we introduce so-called control curves for symmetries. The type of
control curve used determines which type of symmetry is used. A control curve is in our
case a parametric curve of the form (x, y, z) = c(t), thus allowing for a large number of
curves to be supported. We define a set of objects {P0, P1, . . . , Pn} to be curve-symmetric
if there exists a control-curve c(t) such that all objects are evenly spaced in the arc-length
parametrized curve space. This means that for each object Pi, the center position can
be found by evaluating the curve at the given parameter, thus Center(Pi) = c(i · δ),
where δ is the distance between two consecutive parts in the group. Assuming arc-
length parametrization, we define a transformation between two objects Pi and Pj as the
geometric transformation that maps from the point c(i · δ) to the point c(j · δ). Since we
are dealing at the moment with translations only, the transformation between these two
objects is a translation from c(i · δ) to c(j · δ), which can also be applied to the vertices
of the objects. We then show that this transformation is a symmetry transformation, i.e.,
the set of the transformations between all pairs of objects forms a symmetry group. We
will from now on use the notion c(i · δ)→ c(j · δ) for a transformation that maps from
the point c(i · δ) to the point c(j · δ). Using the fact that both objects are part of the
set, we can rewrite the formulation by using j = i+ k, resulting in the transformation
Pi → Pi+k := c(i · δ) → c((i + k) · δ). In practice, many curves are limited to a given
parameter range, thus it is also assumed that k · δ is always in a range that does not
exceed the definition space of the curve. We have to check that all four axioms for a
symmetry group are fulfilled to ensure that the structure we have defined here is valid:

Identity element: The identity element I should map an object to itself. In the
case of curve symmetry, this is given by the transformation with k equals 0.
I : c(i · δ)→ c((i+ 0) · δ) = c(i · δ)

Inverse element: Assuming we have a transformation c(i · δ)→ c((i+ k) · δ), then the
inverse transformation c((i+ k) · δ)→ c(i · δ) has to be part of the group. Since we
can define a transformation with k2 = −k, we get c((i+k) ·δ)→ c((i+k+k2) ·δ) =
c((i + k − k) · δ) = c(i · δ), thus the inverse transformation is always part of the
group.

Closure: Like partial symmetries, curve-symmetries have the problem that they exist
mostly in a limited definition space. As before closure is in general not given, but

55

when the definition space of the control curve is extended to infinity, allowing for
an infinite number of repetitions, it can theoretically be achieved.

Associativity: As proven in the theoretical section, all symmetries that can be ex-
pressed by matrices are by definition associative. When looking at the definition
used here, it can be noticed that c(i · δ) → c(j · δ) is just a translation from one
point in space to another one, and can thus be expressed by a matrix. Using this,
the associativity of our definition is also given.

In summary, a curve-symmetric set is a group as long as repetitions to infinity can be
expressed. Straight lines or circles would for example allow for this.

Up to now, we have only considered groups of objects where the positions of the
objects (or rather the centers of the objects) are aligned on a control curve. When
working with general curves, this can behave unintuitively for the user. Therefore, a
more complex formulation is required, which can not only express the location of parts,
but also their orientation. To keep the naming consistent, from now on the definition
that only deals with positions is called translational curve symmetry, and the following
definition is called full curve symmetry. The difference between these two types of curve
symmetries are shown in Figure 4.11, where the same control curve is shown. On the left
side, translational curve symmetry is used, while on the right side, full curve symmetry
is applied.

Figure 4.11: Curve-symmetries: translational curve symmetries (left) versus full curve
symmetry (right).

Orientation on a curve is given by the Frenet frame (see Section 3.3.3). For a curve c(t),
the Frenet frame ec(t) is given by the tangent vector, the normal vector and the binormal
vector. When the parts should not only be moved along the curve, but also be rotated
along the Frenet frame, we need an extended definition for the symmetry transformation.
For positioning, we can keep the transformation defined above, but we add an additional
mapping from the Frenet frame orientation ec(i · δ) to the orientation specified by ec(j · δ).
Since both mappings result in a transformation matrix, one translation matrix and one

56

rotation matrix, we can multiply them to get the final transformation. The symmetry
transformation between Pi and Pj is thus defined as

Pi → Pj := T (i, j)R(i, j)
T (i, j) = c(i · δ)→ c(j · δ)

R(i, j) = ec(i · δ)→ ec(j · δ).
(4.9)

Again, we have to prove, that the group axioms are fulfilled, which is done similarly
to the proofs given for translational curve symmetries. For the identity element, we have
already shown that for a transformation with k = 0, the translation T (i, j) will result in a
identity matrix. The same hold for R(i, j), since ec(i ·δ)→ ec((i+k) ·δ) = ec((i+0) ·δ) =
ec(i · δ). The inverse element can again be found by using a transformation with n2 = −n.
As for translational curve symmetries, the closure is only given when the definition space
of the curve is extended to infinity. Since the resulting transformation for full curve
symmetry is a matrix, associativity is given by definition. Due to these proofs, full curve
symmetry forms again a symmetry group, as long as the definition space is extended to
infinity.

4.4.1 Curve Symmetry Parameter Calculation

Up to now, all steps in the model-analysis are working fully automatic, but for curve
symmetries, the user has to specify additional input. Using the symmetry groups found
in Section 4.3.3, the user can specify how the parts in such a group should be related to
each other. In our framework, the primary method for doing this to specify a control
curve along which the parts should be aligned. The type of curve that should be used
has to be specified by the user, but the system identifies the parameters required for each
type of curve automatically. At the moment, several control curves for curve symmetries
are implemented, primitive ones like lines and circles as well as more complex ones like
Bezier curves and NURBS. In addition to the type of control curve, the user has to
specify how parts should react to changes of the curve. Parts can only be moved and
stay evenly distributed along the curve, or the number of parts can be changed to keep
the distance between them fixed. In both cases, translation-based curve symmetry is as
well supported as full curve symmetry. We show in this section how the parameters of
different control curves are calculated, and then describe how the relative orientation of
parts to the Fourier frame of the curve is found.

Lines

In this most primitive case, all the elements in the group should be aligned on a straight
line. Here, we only need the first and the last part on the control curve, which will then
span the line. These two parts can be found by calculating the length between each
component pair, and choosing the combination with the longest distance between them
as start and end. All other elements are projected on the line and their parameters on
the control curve are evaluated. In the data structure layer that describes the current

57

symmetry group, edges are added between consecutive parts on the line. This is done
by always spanning edges from each part to the part with the next smaller parameter
and to the part with the next bigger parameter. The start and the end part are only
connected to one adjacent part. An example for such a configuration using a line control
curve is shown in Figure 4.12, where the pickets of the fence are aligned on a line. The
control curve is shown as a green line.

Figure 4.12: A fence, where the pickets are aligned on a control line (marked with a
green line)

Circle

In many man-made objects, there exist parts that are oriented along a circle. For this
type of control curve, we need to find the best matching circle for a given set of parts.
Circle detection happens in two steps: First, finding the best plane in which the circle
should lie, then all the parts get projected to this plane and the best circle is found. The
regression plane is calculated by first centering all parts and then computing the SVD.
This is done in a similar way as in the PCA bounding box detection (Equations 4.1 and
4.2). In contrast to the bounding box detection, where we searched for the directions
with the greatest amount of change, we are now looking for the direction with the fewest
changes, which is given by the eigenvector corresponding to the smallest eigenvalue. This
direction is used as a normal vector (n) for the plane we are looking for. After finding
the regression plane, we project all points to this plane:

xproj = x− dot(x, n). (4.10)

Since the center of the original points went through the origin, we can calculate for each
part a circle with the radius given by the distance of the point to the origin. The final
radius for the control circle is then given by averaging over all these part radii. A circle
controller generated by this method is shown in Figure 4.13. The control curve (the
green line) connects all the spokes of the wheel.

Again we have to add edges describing the order along the curve in the data structure’s
layer. In case of circles, we calculate the angle that each element has in the circle. Since
the absolute values of the angles are not important, an arbitrary part can be selected to
have an angle of 0◦. For every part we add two edges to the layer, that connect the part

58

Figure 4.13: A wheel where the spokes are aligned on a control circle (marked with a
green line).

with the two other parts that have the next higher angle and the next lower angle. In
contrast to the line model, where we had a start and an end part, all parts along the
circle are equal, thus the edges are also resulting in a circle in the graph.

Bezier Curves

Bezier curves (as described in Section 3.3) are a special type of parametric curves. Again
we have to find the best-fitting curve for a given set of parts (respectively for a given
number of points defined by the centers of the parts). As an additional user input, we
require the degree that the curve should have. While testing the framework, we observed
that for structures that a user can identify, a maximum degree of four is sufficient,
although we also allow the user to select a larger number.

Looking at the input points, the first information that has to be computed is an
ordering of the points on a control polygon. Since there exists an infinite number of curves
that go through a point set, this ordering will give us a constraint to find a well-usable
curve. The ordering is calculated using a greedy algorithm, which starts with the two
points that have the shortest distance between each other. Using this polygon, always
the point is chosen which has the shortest distance to the a end of the polygon. This
point is than connected to this end and the algorithm is redone until no points are left.
Figure 4.14 shows some steps of this algorithm on a simple point set. This ordering is

59

also used to add the edges in the symmetry group’s layer, since it already defines the
correct ordering along the curve.

Figure 4.14: The greedy algorithm for control-polygon generation: (Left) Initial polygon,
(Middle) Nearest point is joined to the polygon, (Right) Final polygon.

Next, we have to find the control points of the Bezier curve. For this, we define a
system of linear equations of the form Ax = b for each coordinate axis. The matrix is a
degree×#points matrix, which stores along each row the Bernstein polynomial for a
point in the point set, thus forming a basis of the vector space of the polynomials:B1,degree(t1) B2,degree(t1) · · · Bdegree,degree(t1)

...
...

B1,degree(tn) B2,degree(tn) · · · Bdegree,degree(tn)

 . (4.11)

In this matrix, the curve parameter ti for each point on the curve is required. From
the theoretical point of view, we would get the best-fitting curve by using the distance
on the ordering polygon. In our use case, we decided to use an equal spacing instead,
since all algorithms that operate on this controller curve assume that the elements on
the curve are similar to each other and have equal distance in curve space. The matrix
b contains the coordinates of the input point set along the corresponding axis. Solving
this system of equations for all three axes results in a list of control points for a Bezier
curve of the defined degree, which approximates the input point set best. An example of
a Bezier curve control element is shown in Figure 4.15, where the cylinders of the bridge
are oriented on such a curve.

NURBS

The workflow for finding NURBS is generally the same as the one for Bezier curves.
First, the ordering of the input points on the curve is calculated with the greedy polygon-
finding algorithm. Again this ordering is used to add the edges to the layer. The input
points, together with the ordering information, are then handed over to a NURBS-fitting
algorithm, which calculates at first a NURBS curve of the desired order which has the
same number of control points as the input set. This fine-grained curve is then handed
over to a knot removal algorithm, which tries to reduce the number of control points
without producing an error larger than a given threshold. Figure 4.16 shows the same
bridge model as in Figure 4.15, but with a NURBS curve instead of a Bezier curve.

60

Figure 4.15: The orange cylinders of the bridge model are located on a Bezier curve.

Figure 4.16: A bridge model where the cylinders are aligned by a NURBS curve.

Base orientation

Beside the calculation of the control curves, the algorithm also requires the relative
orientation of the curve parts to the coordinate system defined by this curve for handling
full curve symmetries. For example, the part’s x-axis is not necessarily the same as the
x-axis in the curve’s coordinate frame (see Figure 4.17a for an example). When using a
line control curve, this task is trivial, since the coordinate system on a line has the same
orientation in every point, which makes it unnecessary to touch the rotation component
of the part’s transformation matrix. Due to this, we do not need any base orientation
here.

For the other three control curves, the coordinate frame can change over the curve,
so for each part we have to find the matrix Tbase that specifies the necessary rotation
to transform a part from the local coordinate frame defined by the curve to the final
orientation. This transformation is visually shown in Figure 4.17b.

In order to calculate the base transformation, we first have to calculate the Frenet
frame at the location of a part. In case of the circle controller, this is given by using the
vector from the center to the part’s position as z-axis, the normal of the plane in which

61

Figure 4.17: (a) Example where the coordinate system of a part (green) does not overlap
with the coordinate frame of a control curve (black), (b) The transformation Tbase that
maps the curve’s coordinate frame to the part’s coordinate system.

the circle is defined as y-axis, and the cross-product of y and z-axis as the x-axis, giving
us the following matrix:

Tcurve =

· · · (LocationBox − center)× normal · · ·
· · · normal · · ·
· · · LocationBox − center · · ·

 . (4.12)

When looking at this formulation, it can be seen that for the circle c, this corresponds to
the tangent (see Equation 3.10)

t = c′, (4.13)
the normal (see Equation 3.11)

n = n̄∥∥∥n̄∥∥∥ , n̄ = c′′ − 〈c′′, t〉t (4.14)

and the binormal (or bitangent, see Equation 3.12)

b = t× n. (4.15)

This also gives us the solution for the local coordinate frame on a general curve, which is
used in our implementation for Bezier curves and NURBS (for more details see Section
3.3.3):

Tcurve =

· · · t · · ·
· · · n · · ·
· · · b · · ·

 . (4.16)

Using this definition for the transformation matrix Tcurve and the rotation matrix of the
part Rbox, the base-matrix Tbase that performs the transformation from curve frame to
final position can be calculated:

Tbase = RboxT
′
curve. (4.17)

62

4.5 Manipulation

As described above, the framework consists of two stages, model analysis and model
manipulation, which is repeated until the user is satisfied with the result. In the model-
analysis stage, we have calculated bounding boxes for each part and identified binary
relations that connect the parts together. Symmetry groups were also identified by the
framework and the user specified which type of control curve should be used and how
parts should behave when the curve is changed. For all of these curved symmetries, the
parameters were identified automatically by the system. In this section, we will show the
manipulation stage and describe how user interactions are handled by the system, and
how these changes are propagated through the whole model. At the beginning of each
interaction step, the user modifies one part by manipulating its bounding box (Section
4.5.1), then the whole model is updated by using a propagation-based distribution
algorithm, which is based on the work of Zheng et al. [ZFCO+11] (Section 4.5.2).
In this propagation scheme, the user modification is distributed using a breadth-first
algorithm through the base graph. This propagation through the connectivity graph
also modifies parts that are part of higher-order relations. Due to this changes, the
control curves of these higher-order relations are modified. When all requirements for
updating a higher-order relation are fulfilled, this relation is modified to fit into the
changed environment. The update of higher-order relations is described in Section 4.5.4,
where also the preconditions for each type of higher-order relation are explained.

4.5.1 User Manipulation

Users can manipulate the bounding box of parts in different ways. They can move them
in space, scale them along their axes, or rotate them around their centers. When a
part is selected by the user, it displays handles that allow the user to manipulate it.
For translation and scaling, arrows are displayed on each side of the bounding box, for
rotations, a ring-controller is displayed (see Figure 4.18).

In the translation and in the rotation mode, the manipulations made by the user
can be applied directly to the mesh, e.g., moving a translation arrow some units away
will move the model in the same way. When manipulating the mesh in scale mode, this
is no longer working. The user should have the impression of moving one side of the
box (see Figure 4.19), but applying the scaling to the part directly would not only move
the chosen side, but also the opposite side. This problem can be solved by applying a
translation factor (t) in addition to the scale factor (s). Assume that the user drags a
scale arrow for a distance x on the right side of the box. To decrease the complexity of
the calculation, we transform all relevant values to the box space beforehand by using
the inverse matrix of the normalized box axis

TWorld→Box =

· · · BoxX · · ·
· · · BoxY · · ·
· · · BoxZ · · ·


−1

. (4.18)

63

Figure 4.18: The user can manipulate a part of the model by dragging the arrows, or by
rotation the ring controller.

In box space, the scaling and translation factors for the specific axis are given by

t = x

2
s = 2 · extent+ x

2 · extent .
(4.19)

When these factors are applied to the bounding box, and to the underlying geometry,
the modification will look, as if the user had dragged one side of the box. When the
modification has happened on the opposite side of the box, the scaling factors stays the
same, but the translation factor is given by t = −x/2.

4.5.2 Overview of Propagation Algorithm

Everytime the user has modified a part of the model, the other parts of the model have
to be adapted to these changes. In general, there are two categories of methods that
can achieve such results. On the one hand, there are methods that construct a global
system of equations and minimize this system in a least squares sense. Examples for
this are the work by Bokeloh et al. [BWKS11, BWSK12], Cabral et al. [CLDD09] und
Xu et al. [XWY+09]. The major problem of these methods is that in the end, a large
system of (often non-linear) equations has to be solved, which can, especially for large

64

Figure 4.19: Dragging a scale-arrow should look for the user as if he drags only one side
of the box.

models, be a big performance bottleneck. The other class of methods tries to propagate
changes starting from the modified source part through the whole mesh step-by-step (see
[GSMCO09] and [ZFCO+11]). For more details see Section 2.

Our approach follows the propagation-based idea: Starting from the part that the
user has modified, we perform a breadth-first search through our base graph. In this
graph, all parts of the model are stored as nodes, together with the binary relations
that are described by the edges. The result of the breadth-first search is an ordered
list of parts and binary relations that have to be updated. To avoid endless loops, we
touch every object only once. The propagation starts at the first element of the list, and
updates this object by keeping it as near as possible to the original, while fulfilling all
constraints given by already manipulated objects. Since our parts are always connected
by binary relations, we have two types of elements, parts and binary relations, that have
to be updated. Every binary relation is constrained by the parts it connects and every
part is constrained by the relations that are connected to it. This updating process is the
basis for modifications to higher-order relations. As we already know, each higher-order
relation is controlled by a parametric curve on which the parts are aligned. Due to
changes to parts that are contained in such a higher-order relation, the control curve
of this relation might change, and thus this relation has to be updated. We will show
here first how the propagation through the base graph is handled, which updates parts
and binary relations. Then, we give a short example of such a propagation process and
show an extension of the used algorithm to support rotations. At the end, we show how
higher-order relations are updated by the framework.

Our first implementation performed the propagation every time a part was modified,
thus the propagation algorithm had to run multiple times during a drag operation. The
big advantage of this was that the user had immediate feedback on how the model reacts.
During the conception phase for the user study, we found out, that users have a lot of
troubles with the delay that can happen in the propagation of more complex models.
Due to this we added a second interaction mode, where propagation happens when the
mouse is released or when the touch interaction ends.

65

4.5.3 Connectivity Graph Propagation

Binary Relation Modification

Binary relations are more easy to update than parts, since they always connect exactly
two parts together. When a binary relation has to be updated, two cases can happen:
The first case is that one of the connected parts is already updated, while the other is
not. In the second case, both parts are already updated.

When only one part is updated, the optimal location (l) of the binary relation is
calculated using the relation’s type, the offset information (o) and the bounding box
(axis a, center c and extents e) of the updated part. Depending on the type of relation,
different formulas have to be used: When the binary relation is a relative one, then the
optimal location is given by

li∈{x,y,z} = c+ ai · ei · (2 · oi − 1). (4.20)

In case of an absolute relation this location is found by the following equation

li∈{x,y,z} = c+ ai · (ei − oi) · s, (4.21)

where side s is defined as

s =
{

1 if bound to maximum side
−1 if bound to minimum side.

(4.22)

The final location can then be achieved by summing up the result of all three axis.
In the case where both connected parts are already updated, the best locations are

calculated for each of the two parts using Formulas 4.20 - 4.22. The final result is then
given by averaging these two values, which minimizes the error that is made by this
calculation.

Part Modification

Due to the varying number of binary relations and the additional constraints, resolving
parts is a bit more complicated than resolving binary relations. We construct a system
of linear equations for each part, which holds all the necessary constraints for this object,
and solve the system using a least-squares solver. Least-squares solving is necessary due
to the fact that the constraints in the system could contradict, and we want to have the
solution with the smallest error. The system of equations will be always solved for six
unknown variables: Three translation factors (tx,y,z) and three scaling factors (sx,y,z). To
keep the system uniquely solvable, we have to define at least six equations. In order to
simplify the calculations, in this chapter we again transform all positions into the space
of the box (see Section 4.5.1 for details).

As described in Section 4.2, for each axis of a part one can specify whether it should
only move, or if it can stretch along this direction. Depending on this configuration,

66

different constraints have to be added to the system. In case of translation only, we first
have to add an equation to the system to disable scaling and fix the scale-factor to 1

sd = 1. (4.23)

For each already updated binary relation connected to the part, an additional equation
has to be added, that constraints the box to move in a way such that the location of the
binary relation fulfils the relation type and the offset

relationBoxd + td = relationLocationd. (4.24)

In this equation, relationLocation is the location of the binary relation and relationBox
is the location where the binary relation would be located in the current configuration of
the box. relationBox can be computed using the formulas for optimal binary relation
locations in Section 4.5.3. Note, that all of the equations in this chapter can be used
along each axis of the bounding box. Thus d can be replaced by x, y or z.

When not only translation but also scaling is allowed along an axis, we have to specify
a constraint that transforms the box in location and size so that the binary relation
constraints again fulfil the current location of the binary relation

relationBoxd · sd + td = relationLocationd. (4.25)

It can easily be seen that if only one binary relation is updated, the scaling factor would
never be used, since translation only would also lead to an error of zero. In most cases,
this is not what we want, so if there is just one updated binary relation, we have to add
more constraints to the system. The same situation occurs if all the binary relations
present in the calculation are grouped on one side of the box. This happens when there
are only absolute relations bound to the maximum and relative relations with a offset
greater than 0.5, or if all absolute relations are bound to the minimum and all relative
relation offsets are below 0.5. The best-working solution we found to overcome this
problem was a similar approach to the one used for the box modification: We constrained
the opposite side such that it tries to keep its location. Opposite side is here defined as
the side where no binary relations are located. Since we are calculating in box space,
this side can be found for each main axis separately. The equation that has to be added
is then

extend · side · sd + td = extend · side, (4.26)

where side is defined as in Equation 4.22.
When the system of equations is fully set up, it can be solved by any appropriate

solver, returning the translation and scaling factors that should be applied to this part.

Example

To better visualize the propagation algorithm, Figure 4.20 shows an exemplary propa-
gation through the ladder model, where each step shows the propagation for one depth
layer in the breadth-first list. The user drags the part marked in red from the input

67

model (1) a bit to the left (2). According to the breadth-first search in the connectivity
graph, the next elements that have to be updated are the four binary relations (yellow
boxes) connecting the steps of the ladder with the modified part. Since these binary
relations are at this time only constrained by the red part, they are translated to lie again
on this part (3). In step (4), the four steps are adapted to fit to the already modified
binary relation from step (3). Due to user configuration, the steps can only be translated,
thus they are moved to the modified binary relation positions. After adapting the steps,
the binary relations located on the left side also have to be modified. In step (5), these
relations are moved to be located at the left side of the corresponding step. The last
adaptation that happens is the adjustment of the left-most part, which has to fit to all
four binary relations. The final model after all steps is shown in sub-figure (6).

Extension to rotations

Although this is not implemented in our framework, in some cases it might be helpful if
parts could not only be moved and stretched, but also be rotated. We will give a short
overview on how the propagation schema has to be adapted. For simplicity, only the
two-dimensional case is shown, but extension to 3d would work in an analogous way.

In our implementation, the systems of equations for parts always search for six
unknown parameters (three translations and three scaling factors). In 2D, we would have
the following system of equations for each binary relation, where we are searching for
two translations and two scaling-factors:(

relationBoxx
relationBoxy

)(
sx
sy

)
+
(
tx
ty

)
=
(
relationLocationx
relationLocationy

)
. (4.27)

If the number of updated binary relations is too low for solving the system of equations
uniquely, the unconstrained sides of the box are fixed, as also done when no rotations are
available. When the system should be able to handle rotations, in the 2D-case, we get
one additional unknown variable, the angle α that specifies how much the box is rotated.
To include rotations in the system of equations, we have to multiply the whole equation
by a rotation matrix R(α):(

cos(α) −sin(α)
sin(α) cos(α)

)[(
relationBoxx
relationBoxy

)(
sx
sy

)
+
(
tx
ty

)]
=
(
relationLocationx
relationLocationy

)
.

(4.28)

Since we are now using sine and cosine terms in our system of equations, we end up with
a system of non-linear equations that is ways harder to solve than our previous system.

The second and more important problem that comes up when using rotations is, that
now multiple solutions for the same binary relation locations would perfectly satisfy
the constraints. In Figure 4.21 two solutions with equal quality are given for an input
situation. Producing different results for the same input situation is, when working with
users, never a good idea. In the optimal case, the system should provide exactly the
solution that the user expects. When thinking about the 3d situation, the problem gets

68

Figure 4.20: Step-wise example of the propagation algorithm.

69

even more complicated, since the third dimension further increases the number of possible
solutions.

Figure 4.21: With rotations enabled, different solutions can be produced for an input
situation.

The best idea we came up for this problem is to restrict the system in a way that we
are not searching for 5 unknown variables any more. For example, we could leave out
the whole translation term, because with rotations and scaling alone, every two fixed
binary relation situation can be solved. When there are more than two already updated
relation, the whole problem vanishes, since we then have 6 equations for five variables,
and the system can be solved exactly.

4.5.4 Higher-Order Relation Propagation

The higher-order relations that were identified in Section 4.4.1 also have to be evaluated
and updated in the modification process. During the propagation of parts and binary
relations, the position of parts that are contained in higher-order relations are modified.
According to these changes, the control curve is adapted, and the parts have to be
repositioned. Changes already made to parts by the propagation algorithm are overwritten
by the higher-order relation adaptation. During the propagation process, the system
checks after the updating of each part if there are any higher-order relations that can
also be updated. When the pre-conditions, which are specific to each type of control
curve, are fulfilled, then the higher-order relation is updated immediately.

The steps that are necessary to update a higher-order relation depend strongly on
the control curve that is used, but the general workflow is always the same: First, the
control curve is updated and afterwards, the constraints that are defined for this element
are enforced.

The simplest control curve for updating is the line controller: Since a line is always
uniquely defined by two points, this controller is updated when both the first and the
last element of the parts it handles are updated. The new line is then defined by the
vector between these two parts.

Bezier curves and NURBS are updated when the propagation through the whole
model is finished. For Bezier curves, updating consists of setting the first control point
to the position of the starting part, and setting the last control point to the position of
the ending part. Due to the global control of Bezier curves, modifying only the first and

70

the last control point influences the whole curve, thus giving more plausible results when
modifying it. NURBS, in contrast to Bezier curves, have only local influence, which is a
big advantage in most cases (e.g. designing meshes). In our application scenario, this
means that moving the starting part of such a curve will only modify a small part of the
curve, which can look implausible to the user. This behaviour can be seen in Figure 4.22
(top line), where only the last node of a NURBS curve of order five is transformed.

Figure 4.22: Different algorithms for updating NURBS. Top: Only the last control point
is adapted, Bottom: All control points are adapted with a weighted motion vector.

Since we always want to produce results that the user expects, we have to come up
with a more complex algorithm: When one end of the curve is moved, we determine the
motion vector (tmotion), which is the vector between the last position of the corresponding
part and the new location. All control points (ci) of the NURBS curve (c) are updated
by adding the weighted motion vector to them. The weighting factors are determined by
the square root of the normalized curve distance to the modification point:

ci = wi · tmotion

wi =
√
curveDistance(modified, i)

curveLength(c) .
(4.29)

For the definition of curveDistance and curveLength have a look at Section 3.3. Using
this modification behaviour, the whole curve is influenced when one end is moved, as can
be seen in the bottom line of Figure 4.22, giving better results for the user.

The circle controller can be updated when all elements it controls are updated. Since
it is possible that some parts are never touched by the propagation algorithm, this
controller is also updated when the propagation is finished. The algorithms for updating

71

the circle are the same as for the detection (see Section 4.4.1). This results in a circle
that has the smallest error for a given set of modified parts.

After updating the controllers, the constraints on these controllers have to be applied.
There are two types of constraints that are implemented in our framework: reposition
parts on curve and repeat.

Position Element on Curve

This class of constraints ensures that all parts that are controlled by a curve are always
positioned evenly spaced on this curve. Repositioning can, depending on the settings
the user chooses, only modify the position of the elements, or it can also orient the
parts in the Frenet frame of curve. When updating the positions, we have to find points
on the curve that are evenly spaced. Since NURBS and Bezier curves are not always
parametrized by arc-length, especially when multiple curves are fitted together, the curve
parameter has to be calculated from the curve length. The mathematically exact solution
for calculating the distance on a curve is to calculate the following integral:

length(c) =
b∫
a

c′(t)dt. (4.30)

In most cases, such integrals are hard to solve, and not suited for real-time applications.
Our solution is to calculate the position on the curve with small step size and store an
array containing the length between consecutive polygon points. This gives us a piecewise
linear polygon that approximates the curve. When the length between two parameters is
searched, we only have to look up the two positions in the length array and sum up the
length between them. In most cases, the start and end limits will not fall exactly on a
polygon point, thus the first and the last position is calculated on the polygon by linear
interpolation.

Updating the position itself is then done by querying the curve at the so found
parameter, and moving the center of the part’s bounding box to the curve position.
Orientation is a bit more complex: First, the local frame of the curve (Tcurve) is evaluated
at the curve parameter where the part should be located. This is done in a similar way
as in the base-orientation detection (Section 4.4.1). When applying the orientation to the
part, we first have to extract the scaling matrix (Boxscale) from the part’s transformation
matrix, which is given by the length of the rows in the matrix. The resulting matrix
is a matrix where the scaling factors are located at the diagonal elements. The final
transformation is then calculated by

Tfinal = Boxscale · Tbase · Tcurve ·Boxrotation. (4.31)

Tbase is the base transformation matrix that was calculated in the detection stage,
allowing the parts to have another alignment than the curve frame. The difference
between modification with orientation and without orientation can be seen in Figure
4.23, where the same user input is updated without orientation adaptation on the left
side, and with orientation adaptation enabled on the right side.

72

Figure 4.23: NURBS curve modification, without orientation adaptation (left) and with
adaptation enabled (right).

Repeat Elements on Curve

In the previous section, the parts that are controlled by a curve were moved according to
the changes of the curve. But regardless of how the curve is transformed, the number of
parts stays the same. The second constraint class solves exactly this problem: According
to the length of the curve, new elements are inserted and old elements are deleted.
In addition to the base orientation matrices, this constraint holds a scalar value that
describes the optimal distance (d) between elements on the curve. Whenever the curve
changes, the constraint first checks the new length of the control curve, and then calculates
the optimal number of parts that should be placed on it:

OptimalCount = round

(
CurveLength

d
+ 1

)
. (4.32)

When the optimal element count is not the same as the actual element count, this group
has to be adapted. In the case where less elements are required, elements are removed
from the model. To keep the curve well defined, the first and the last element are never
removed. In the other case, where elements have to be added, this is done by copying
one of the currently present elements. For such newly created elements, an additional
binary relation detection is performed, since these elements should also be connected to
the rest of the model.

Note that every time the number of objects is changed, an update to the base graph
is required, since new binary relations have to be added, and deleted ones have to be
removed. In addition, the layer that corresponds to this symmetry group has to be
updated to reflect the new ordering along the curve. After updating the element count,
the workflow is the same as in the positioning case: For all elements, the new positions
and optionally the orientations are evaluated, and the elements are moved on the curve.
Figure 4.24 shows the same modifications as in Figure 4.22, but this time with repeating
enabled.

73

Figure 4.24: NURBS curve modification with repeating and orientation adaptation.

4.6 Interaction

We implemented two input methods for manipulating models in the framework. The
first input device that can be used is the mouse: Users can rotate the camera around a
fixed center via clicking and dragging the right mouse button. The rotation center can
be changed by holding down the SHIFT-key and clicking and dragging the right mouse
button. When scrolling with the mouse wheel, the camera moves closer to the object,
or further away. This type of camera is commonly called orbit camera and is similar
to the camera model implemented in most 3d modelling tools, e.g., Blender and Maya.
Mathematically speaking, the camera is located on a sphere around the center point,
where the azimuthal angle (θ) and polar angle (ϕ) can be modified as well as the radius
(r). Together, these three parameters form a spherical coordinate system (r, θ, ϕ), which
is shown in Figure 4.25.

Figure 4.25: The orbit camera is located in the spherical coordinate system (r, θ, ϕ)

When using the touch input, our second interaction method, the camera is modelled
in the same way, but the interaction is a little bit different: When one finger touches
the screen and is moved, the angles of the camera-coordinate system are changed, thus

74

rotating the camera. The center point can be moved by touching the screen with two
fingers and moving them parallelly. When the distance between the two fingers is
changing, the camera is zooming.

Interactions with the model are quite similar in both interaction methods. The user
can select parts by either touching or left clicking them. The handles displayed can then
be moved by a drag-operation with the left mouse button, or with one finger on the
touchscreen. During the user-study it turned out that this interaction of first selecting
and then moving with arrows did work, but could be improved. For example, some users
suggested that moving parts by click-and-drag directly would be more intuitive, especially
with a touchscreen. In addition, scaling could be done by touching the part with two
fingers and moving them away from each other, which would also allow for rotations. For
more details about how well mouse and touch interaction were accepted by the users,
have a look at the results of the user study in Section 5.2.

75

CHAPTER 5
Results and Evaluation

This section describes the implementation of our framework. After this, the user study
is shown that we did at the end of our work to check if untrained users can handle the
system. After this, selected results of our framework are presented, together with example
application scenarios where the framework could be used. In addition to this, we will
also describe the limitations of our current implementation and show some performance
measurements.

5.1 Implementation

All the algorithms described in this thesis are implemented in a C#/WPF (Windows
Presentation Foundation1) framework. For some specialized tasks, like rendering, we rely
on external libraries, which are described here briefly. In general, our implementation
follows the Model-View-ViewModel (MVVM) software-engineering pattern that Microsoft
recommends to use when writing WPF applications for Windows. Even though WPF
already has a very good 3d rendering support in its core implementation, we decided
to use the Helix 3D Toolkit2. This framework is a high-level abstraction of the DirectX
API, which is exposed to C# via the SharpDX library3. The reason why we preferred
the Helix Toolkit over WPF 3D is that it has fewer limitations in terms of, e.g., number
of objects that can be drawn at the same time. Besides this, the Helix Toolkit has more
technical flexibility for possible future work.

For most mathematical tasks, the framework uses the MATLAB API for performing
the calculations, which is especially helpful in the development process, since it offers very
good debugging support. Another big advantage of MATLAB as computation backend is
its library of fully tested, high-performance algorithms. Using Matlab allowed us to try

1http://msdn.microsoft.com/de-de/library/ms754130(v=vs.110).aspx
2http://helixtoolkit.codeplex.com/
3http://sharpdx.org

77

http://msdn.microsoft.com/de-de/library/ms754130(v=vs.110).aspx
http://helixtoolkit.codeplex.com/
http://sharpdx.org

out different algorithms and ways of solving problems, without having to search for a
new library that supports the required functionality everytime. Although the Matlab-
API performs very well, we may in future replace it by other libraries, since the data
transfer between our application and Matlab is becoming more and more a bottleneck.
Besides this math framework, our program uses an external library for handling NURBS
cures. The SISL library4, which is developed by the SINTEF group5, an independent,
non-commercial organisation, can perform everything required for our implementation,
starting from curve fitting, over curve complexity reduction, to measurements and Frenet
frames. Since this library is written in C, we implemented a wrapper, that exposes the
library’s functionality to C#.

Parts of the binary relation detection, especially the bounding-box creation and
the oriented bounding-box trees, were developed during the Master’s thesis project by
Sebastian Sippl at the Vienna UT. The library written by him offers the possibility to
intersect two bounding box trees and their underlying geometry and returns a list of
contact points, which we use as input to our binary relation reduction algorithm.

Up till now, we have only seen how the algorithms in our framework are working.
On top of these algorithms, our system also provides the user with a user interface for
configuring the input model (see Figure 5.1). For the user-study (see Section 5.2), we
added an additional interface that only contains the elements for working with the model,
but hides all configuration interfaces (Figure 5.2).

5.2 User Study

The user study was designed following the principles given in Section 3.4. Our main
goal was to test if inexperienced users are able to work with the system. Beside this,
we also wanted to see if the users like the mouse interaction or the touch interaction
better. Some tasks and questions were also designed to check if users like Bezier curves
or NURBS with our adaptation method more.

We performed the user study on a SONY notebook with touchscreen. When a user
starts the study, we first introduce him to the system by explaining the interaction
methods via mouse and touchscreen first. For this, we used the very simple ladder model,
where also the basic behaviour (adaptation to the user input) was shown. The study
itself consists of nine small tasks, ranging from basic interactions to complex models.

Task 1 introduces basic selection and translation behaviour to the user by giving
a simple task, where an object should only be moved. Task 2 adds resizing to the
interaction. Both tasks can be solved without turning the camera. In Task 3, the user
has to rotate the camera for the first time, otherwise the task is not solvable since the
objects in the scene are positioned behind each other in the initial situation. These basic

4http://www.sintef.no/Informasjons--og-kommunikasjonsteknologi-IKT/
Anvendt-matematikk/Fagomrader/Geometri/Prosjekter/The-SISL-Nurbs-Library/
SISL-Homepage/

5http://www.sintef.no/

78

http://www.sintef.no/Informasjons--og-kommunikasjonsteknologi-IKT/Anvendt-matematikk/Fagomrader/Geometri/Prosjekter/The-SISL-Nurbs-Library/SISL-Homepage/
http://www.sintef.no/Informasjons--og-kommunikasjonsteknologi-IKT/Anvendt-matematikk/Fagomrader/Geometri/Prosjekter/The-SISL-Nurbs-Library/SISL-Homepage/
http://www.sintef.no/Informasjons--og-kommunikasjonsteknologi-IKT/Anvendt-matematikk/Fagomrader/Geometri/Prosjekter/The-SISL-Nurbs-Library/SISL-Homepage/
http://www.sintef.no/

Figure 5.1: Screenshot of the Structure-Aware Manipulation of Geometric 3D Models
framework

Figure 5.2: Screenshot of the user study mode.

79

tasks (Task 1-3) are only designed to teach the user how the system can be controlled.
Due to this, the performance results of these tasks have not been used in our evaluation.

Starting with Task 4, the user has to work with more complex models, consisting of
multiple connected elements and some higher-order relations. These tasks are designed
to always test one specific feature. Task 4 presents line control curves to the users, where
the elements (the red spheres, see Figure 5.3 left) are repeated when the user enlarges
the model. Task 5 also tests repeating behaviour, but this time, a circle control curve is
used, and the user has to manipulate the view to see the results of his interactions (see
Figure 5.3 right). In Task 6 and Task 7, the same input model is given to the user with
the same task to perform, but one time the elements are connected via a Bezier curve
and the other time using a NURBS curve. For these two tasks, the user has to choose
which type of behaviour seems more intuitive to him. This question is mainly asked to
find out, whether it is necessary to support the more complex NURBS, or if Bezier curves
alone would be sufficient. In the last two tasks, Task 8 and Task 9, the users has to
deal with complex objects. In these tasks, the user had to modify an input model such
that it looks similar to a target model. The goal here is to test if the users can figure out
how to modify complex models to get a specific result. The models used for those tasks
are shown in Figure 5.4, together with the target model that should be modelled.

Figure 5.3: For Task 4 and Task 5, two models with repeatable control curves were used.
In Task 4 (left), the red spheres are aligned on a line, in Task 5 (right), the purple boxes
are aligned on a circle. The task here is to modify the models, until the number of
repeatable parts has changed to a specific number.

Every user had to perform all tasks twice, one time using the mouse controls, and one
time with touch interaction. The order in which mouse and touch interaction was given,
was randomized for every user. Also, the order in which Task 6 and Task 7 were shown
was randomized to ensure valid results. After performing each task twice, the question
"Did you prefer mouse interaction or touch interaction more for this task" had to be
answered. Furthermore, the time it took the user to solve the task was noted and the
number of retries was also counted. After performing all tasks, five general questions were
given to the users, on the one hand to check for their prior knowledge in 3d modelling
and touch interaction, and on the other hand to get general feedback about the system.
The questions that were used are the following:

1. How much experience do you have with touch devices (tablets, notebooks/PCs,

80

Figure 5.4: Task 8 (top) and Task 9 (bottom) were used to test if complex models can
be handled by the users. In both tasks, the user had to modify the input model (left) to
produce the target model (right).

mobile phones)? Answers ranging from 5 (very much) to 1 (none)

2. How much experience do you have with modelling applications (Blender/Maya/AutoCAD)?
Answers ranging from 5 (very much) to 1 (none)

3. How much do you like the framework? Answers ranging from 5 (Liked it a lot) to 1
(Don’t like it)

4. After all tasks: Would you prefer to use the mouse input or the touch input?
Possible answers: Mouse only - Mouse more preferred - Both equal - Touch more
preferred - Touch only

The detailed questionary for users together with the task descriptions can be found
in Appendix A.

5.2.1 Results

We performed the user study with 11 participants, ranging from users that have absolutely
no experience with modelling systems to users that use 3d modelling in their daily work
(6 of the 11 participants answered the question about their modelling experience with
three or higher). The same holds for the experience regarding touch input, where five of
the 11 users had experience of three or less. Not surprising, this prior knowledge leads to
very different results in the choice of the preferred input method: Users that have high
experience with modelling tend to choose the mouse input more often (68.52% over all
tasks) than users without prior knowledge (57.78%), see Figure 5.5 (left). This might be
due to the fact that the trained participants use the same mouse input method as in our
task also in the modelling tools they use in their work. Similar observations can also be
made about the experience with touch input devices: It is more likely that experienced

81

users feel comfortable with the touch interaction (only 35.56% preferred mouse input over
all tasks) while users without touch input experience tend to choose mouse input more
often (55.56% preferred mouse input over all tasks), which is shown in Figure 5.5 (right).

Figure 5.5: Users that have prior knowledge in modelling tend to select mouse input
more often. The same holds for users without touch experience.

One of the most interesting facts we found out during the user study is that the
acceptance of touch input gets higher the more complex and free the tasks are (see
Figure 5.6). In the first three tasks, where the user had to move an object as exactly as
possible to a target, most users prefer the mouse input, while in the last two assignments,
where precision is not that important, the gap between mouse and touch input preference
is not that high. This fact was also confirmed by the users in their comments, where
they told us that touch interaction allowed them to work more easily in tasks where
approximate results are desired, but mouse input allowed them to manipulate the objects
more accurately.

The general low acceptance rate of touch input over the whole user study is the biggest
problem that we currently have with our system, and might also be the reason why no
user chose the "Touch more preferred" or the "Touch only" choice in the last question
(see Figure 5.7 left). According to user comments, there are two major reasons for that:
First, the touch interaction with the arrow controller did not work out very well for the
users. Especially participants that have a lot of touch input experience found it very
unintuitive that they had to move an object by dragging the arrows instead of dragging
the object itself. Scaling would, according to the participants, also be more intuitive if
it could be performed by touching the object with two fingers and moving them away
from each other. The second reason is that for users with less touch experience, the
latency introduced by touch input devices felt unintuitive. Since this is a problem that
would occur with every application when it is used by such users, this is not considered
as problem by us.

The more promising results of the study are that all eleven users were able to
accomplish all tasks, although we did not answer any questions regarding the way how

82

Figure 5.6: For tasks where exact modelling is necessary, the touch input acceptance is
much lower than for tasks with more freedom.

Figure 5.7: Histogram of the answers of the last two questions.

to solve the assignment during the study. Nearly all users were also able to complete
the tasks without resetting the model (only two users used this option in 5 assignments
in total). We interpret this as an indicator that the framework is very stable at the
moment and allows the users to solve their problems within the system. This is also
confirmed by the users who told us that they were able to predict very easily how models
will react to their interactions after the first three tasks. While performing the tasks, the
learning effect was clearly visible and can also be seen in the time measurements (Figure
5.8). When users perform a task for the second time, they are (with few outliers) able to
complete the task much faster. On average, the users are twice as fast in the second try
(red bars) than they were in the first try (blue bars).

The question whether Bezier curves or NURBS with scale adaptation are better suited
for our system did not lead to a significant preference: 6 users chose Bezier curves, while
5 users selected NURBS curves. Since it seems not make any difference for the user if
Bezier curves are used instead of NURBS, we might drop the support for NURBS curves
in the future.

In general, our feeling during the study, which is also shown in the results of the "How

83

Figure 5.8: Average time it took the users to solve the tasks. Blue bars show the first
attempt, red ones the second try.

much do you like the framework?" question (see Figure 5.7 right) is that the system is
very well accepted by the users, regardless of their prior knowledge. This shows, that our
way of designing such user-based systems is clearly on the correct path.

5.3 Results

We have implemented the presented techniques in a framework for structure-aware model
manipulation, which allows the user to modify a given input model while the systems
maintains and adapts shape features. To test our system, we designed and segmented
models from the internet and from related-work papers. We specified five test models with
varying complexity, which can be seen in Figure 5.9 and are described in Table 5.1. Since
we have not implemented an automatic shape-segmentation method, all these models
were manually segmented before they were used in our system. For all these models
we were able to obtain good looking editing results without holes or other errors, as
demonstrated in Figure 5.10. Our shape-analysis stage is able to identify the symmetries
in all models correctly (although in some cases, the objects with the same generating
transformation had to be selected manually, see Section 4.3.3).

Figure 5.9: Test models used in our framework.

84

model parts vertices symmetries symm. detection binay relation detection
fence 14 134 3 0.04 sec. 0.01 sec.
bench 21 1944 3 0.23 sec. 0.20 sec.
bed 48 14230 2 1.53 sec. 2.44 sec.
car 62 1387 6 0.38 sec. 0.45 sec.

castle 192 2096 19 2.02 sec. 1.77 sec.

Table 5.1: Performance statistics for our test models. In addition the number of parts,
the number of vertices and the number of symmetry groups in the model are shown.

5.3.1 Performance

For most input models, our model analysis stage, which detects symmetry groups and
binary relations, runs in a few seconds. Since the detection of symmetry groups is only
necessary when starting to work on a new model, we did not optimize these algorithms.
The binary relation detection, which is called whenever the model is changed, is at the
moment the biggest bottleneck in our system when working with models that have a large
number of parts. Time measurements from our test system (Intel i7x64 with 1.8GHz
dual core, 16GB memory, NVIDIA Geforce GT 735M) are shown in Table 5.1.

Another and more general performance problem is the usage of Matlab as mathemat-
ical back-end. When a lot of data has to be transferred between our application and
Matlab, this can stall the whole application for some time. At the moment this can only
be noticed when working with small models, since with large models the binary relation
detection itself is too slow.

5.3.2 Limitations

Although our framework for structure-aware model manipulation produces very good
results with a lot of input models, there are some limitations that should be mentioned:
The first and probably most important one is, that at the moment no segmentation stage
is implemented, thus our framework only performs well when the model is pre-segmented
by the user. A similar problem arises with the detection of curve-symmetric relations.
At the moment, only the detection of symmetric parts is done automatically, while the
type of control curve as well as the behaviour of the parts in these groups have to be
specified by the user.

During our development, it turned out, that the propagation-based algorithm itself is
also a limitation of our system. It is very hard to add global constraints like reflective
symmetry between multiple parts in this formulation. The second problem is that the
propagation algorithm can fail in some situations. Failures mainly happen when there are
circles in the connectivity graph and the parts in the circle have different resize behaviours.
An example for a propagation where the algorithm fails is shown in Figure 5.11. Here,
the boxes are connected to the adjacent spheres. Green boxes indicate that they can be
scaled while the blue box can only be translated. In the step-wise propagation, it can

85

Figure 5.10: Editing results of the test models. The original model is always shown in
red.
86

Figure 5.11: Step-wise visualization of a situation where the propagation fails. Green
boxes can be scaled while blue boxes can only be translated. When the user modifies
the model (b), the upper and the lower box are adjusted differently (d), and the last
iteration can not be solved since the binary relations contradict (e).

be seen that in step (d), the upper and the lower box are adjusted differently due to
their configuration. In step (e), the two binary relations for the left box contradict, since
there is no configuration for this box where it can touch both adjacent spheres. Since
the system always tries to minimize the error that would be introduced by an editing
operation, the box is placed in the middle between the two spheres.

Binary relation detection can also be problematic when there is more than one binary
relation required between two overlapping objects. When, for example, one box should
propagate changes to its size to the next box, it is necessary to have at least four binary
relations, two for each direction. At the moment, our connected-component search would
only find one relation for this situation. Figure 5.12 shows in 2d how an object reacts
when there is only one binary relation (left), or when there are two of them (left).

5.4 Applications

Structure-aware model-manipulation systems can be used in a wide variety of applications.
As shown by Schulz et al. [SSL+14], one possible scenario is to support users by designing
models that can be fabricated later on. Especially with the growing availability of 3d
printers for untrained users, such systems become more important. Since these users
will not be able to generate models by their own, application-supported modification of
models from internet databases will allow them to use this hardware efficiently.

87

Figure 5.12: Models can behave differently depending on the choice of binary relations.
(a) When only one relation is present (as in our implementation) changes in size are not
propagated to nearby objects. (b) Using two binary relations make it possible to do this.

Another field where frameworks like ours can be used are games. When thinking for
example about the next Sims-like game, it would be interesting to allow the user not
only to place furnitures in their homes, but also give them the ability to modify these
models. A wardrobe, for example, could be stretchable and adjust the number of doors
it has to the size that the user specifies. Other games like roller-coaster construction
games could also benefit from these methods. But there are not only opportunities for
the gamers through such a system: Artists and level-designers could also take advantage
of such a system. These two production stages are at the moment the most expensive
parts when producing a AAA-game. Using structure-aware methods, this work could be
sped up, thus reducing the costs.

88

CHAPTER 6
Conclusion and Future Work

6.1 Synopsis
In this thesis, we presented a framework for structure-aware model manipulation. The
framework consists of two main stages: analysis and modification, and we contribute to
both of them. A model in our framework is a 3d geometric shape that is composed of parts
that are connected by one or more relations. We identified two types of such relations,
binary relations, which describe physical connections between parts, and higher-order
relations, which are used to form symmetry groups. In this work, we developed a new
algorithm for finding well-defined binary relations in 3d models by pairwise intersecting
the geometry contained in the parts. This process is sped up by using oriented bounding-
box trees for faster intersection testing. The resulting point cloud of overlap points is
then refined using a greedy algorithm, which finds connected components and describes
each component by a binary relation. Higher-order relations are found by an iterative
closest-point algorithm (ICP), where a pre-transformation step is used that rotates the
part until the axes of the bounding boxes overlap. This transformation improves the
quality of the found results, since less situations are produced where stable forces appear
in unmatched state.

For handling higher-order relations, we presented a novel way of defining symmetries
on curves. This formulation covers a wider range of identifiable patterns in 3d models,
while allowing all previous definitions for symmetry to be covered by our method. Our
framework supports different types of control curves for curve symmetries: Straight lines,
circles, Bezier curves and NURBS curves. We show for all of them how their parameters
can be found automatically from a symmetry group. For each part that is related to such
a control curve, the system also identifies the relative orientation to the Frenet frame of
the curve.

Our application allows the user to modify the model by moving and resizing parts
using the mouse or a touchscreen. Changes made by the user are propagated through the
connectivity graph of the object in a breadth-first manner, touching every part only once.

89

This work shows how parts and binary relations have to be updated according to changed
neighbouring parts, also giving an overview on how this propagation could be extended
to support rotations. Higher-order relations are updated whenever the pre-conditions for
them are fulfilled. For objects in such relations, we implemented two different behaviours:
They can stay equally spaced on the curve, or they can be repeated to keep the distance
between two parts as fixed as possible. Both techniques can either only modify the
position of the affected parts, or they can also adapt the orientation based on the relative
orientation and the changed Frenet frame.

In order to test the usability and to find out which input method is preferred by the
users, we performed a user study at the end of our work. Every user had to do each
task twice and select the preferred input method. Beside this, we also measured the
time each user needed for a task. By evaluating the results of the study we found out
that our system is in general very well accepted by the users, although there is space
for improvements, especially for the touchscreen controls. Another finding is that touch
interaction is better accepted by untrained users than by experienced ones, which is,
regarding our target group, very good. At the end of this work, results and performance
statistics for our framework are shown, also describing the limitations the system currently
has.

6.2 Conclusion

The main target of this work was to develop a structure-aware model-processing system
that explicitly targets untrained users, allowing them to easily modify 3d geometry
via a touchscreen. This target was generally met, although some minor problems were
identified. Our user study documents that the system is usable by our target group since
all users were able to perform the given tasks. It turned out, that the interaction method
via touchscreen was not that well accepted by the users, although all users were able to
perform the tasks also with this interaction method.

The novel formulation for symmetries presented in this work allows us to describe
more complex symmetries than lines and regular grids. The implementation in our
framework shows that our method of defining curve symmetries performs well in such
a structure-aware model processing system. One of the biggest challenges during the
development was to set up a stable propagation-based algorithm, since small changes in
the propagation order can cause the model to react totally unintuitive, or to be broken
after an interaction. Especially when repeat behaviour is used, this gets more important,
since newly inserted parts will influence further propagation immediately.

Another point we found out is that finding stable binary relations in the input model
is one of the most important tasks in such a framework. Using badly placed binary
relations can easily break the whole system by moving parts in a way that is unpredictable
by the user, thus making the application unusable. Our method for finding good binary
relations is a first approach to this problem field, although a lot of work can be done
here. We also found out that using a propagation-based algorithm performs very well
with simple constraints, but when more complex constraints should be added to the

90

system, it might be better to use another approach like a global system of equations,
since integrating them here produces a lot of problems especially in the ordering of the
update propagation.

The use of structure-aware shape manipulation will, due to better methods developed,
increase in the future. Especially when inexperienced users have to manipulate 3d
geometry, which is the case when working with 3d printers etc., such a system might be
the best way to produce good-looking results that satisfy the application constraints. We
presented here one possible implementation of such a system, making improvements in
the use of repeatable patterns on curves and in the binary relation detection, which gives
us the ability to produce a large number of good-looking results in very short time.

6.3 Future Work
There are a lot of improvements that we will hopefully be able to add in the future:
Regarding the touchscreen interaction, it might improve the interaction quality when
the users could drag the objects directly while arrows are used at the same time to scale
these objects, as implemented in the Microsoft 3D Builder1. The user interface could also
be improved by displaying the arrows always at the same size, regardless of the distance
to the part, by displaying point sprites instead of real geometry. Another option would
be to use the touch gestures described by Au et al. [ATF12], which allow the user to
manipulate parts by selecting the manipulation axis.

From the algorithmic point of view, the whole system could be reformulated to use a
global system of equations instead of the propagation-based technique. This will allow
us to integrate constraints like parallelity or coplanarity in our system more easily. The
detection of patterns in the input geometry can also be improved to identify such patterns
automatically and assign the correct control curve to it. Here we might be able to
benefit from the usage of finite elements. An algorithm that automatically finds out
which resizing behaviour should be assigned to a part would also be highly desirable.
Another interesting topic would be to extend the theory of symmetries on curves to two
dimensions, which would allow us to use two-dimensional patterns, for example on a
sphere or on a Bezier patch.

The binary relation detection, especially the connected-component search, is also a
topic where we want to make improvements. For example, binary relations could be
derived from the connectivity point cloud by grouping binary relations that are not only
specially near, but also by the constraints they express. This would reduce problems
when two objects require more than one binary relations between them, e.g., allowing
the propagation of size changes between two objects.

1http://apps.microsoft.com/windows/de-at/app/3d-builder/
75f3f766-13b3-45e9-a62f-29590d5781f2

91

http://apps.microsoft.com/windows/de-at/app/3d-builder/75f3f766-13b3-45e9-a62f-29590d5781f2
http://apps.microsoft.com/windows/de-at/app/3d-builder/75f3f766-13b3-45e9-a62f-29590d5781f2

APPENDIX A
User Study Material

On the following pages, the materials for the user study are shown, starting with the
questionnaire for participants, followed by the task descriptions for the users. For more
details, refer to Section 5.2.

93

Questionary for a User
Task1
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task2
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task3
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task4
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task5
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task6
Time required:_______________________/______________________

Number of retries:____________________/______________________

Preferred Interaction: Mouse Input Touch Input

Preferred Interaction: Mouse Input Touch Input

Preferred Interaction: Mouse Input Touch Input

Preferred Interaction: Mouse Input Touch Input

Preferred Interaction: Mouse Input Touch Input

Preferred Interaction: Mouse Input Touch Input

Task7
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task8
Time required:_______________________/______________________

Number of retries:____________________/______________________

Task10
Time required:_______________________/______________________

Number of retries:____________________/______________________

After Study-Questions
How much experience do you have with touch input devices (Tablets, PCs, Mobile-Phones)?

How much experience do you have with modelling applications (Blender/Maya/AutoCAD)?

How much do you liked the framework?

After all tasks: Would you prefer to use the mouse input or the touch input

Preferred Interaction: Mouse Input Touch Input

More natural model Task 6 (Bezier) Task 7 (NURBS)

Preferred Interaction: Mouse Input Touch Input

Prefered Interaction: Mouse Input Touch Input

Very much None

Very much None

Liked it a lot Don’t like it

Mouse Touch

Task 1
Initial Situation

Task
Move the red box to the green box so that the two boxes touch:

Task 2
Initial Situation

Task
Move and scale the red box, so that it perfectly covers the green ellipsoid:

Task 3
Initial Situation

Task
Move and scale the red box, so that it perfectly covers the green ellipsoid. In this task you will have to

move the camera.

 Front View Side View

Task 4
Initial Situation

Task
Enlarge the model until it has exactly six spheres:

Task 5
Initial Situation

Task
Enlarge the model until it has exactly 12 violet boxes

 Front View

 Top View

Task 6
Initial Situation

Task
Modify the model until you have a feeling for it’s behavior, then try to achieve the following result

Task 7
Initial Situation

Task
Modify the model until you have a feeling for it’s behavior, then try to achieve the following result

Task 8
Initial Situation

Task
Modify the bed by moving and scaling only the red part to achieve the following result:

 Front View Side View

Task 9
Initial Situation

Task
Modify the model to achieve the following result:

Bibliography

[AKM+06] Marco Attene, Sagi Katz, Michela Mortara, Giuseppe Patané, Michela
Spagnuolo, and Ayellet Tal. Mesh segmentation-a comparative study. In
Shape Modeling and Applications, 2006. SMI 2006. IEEE International
Conference on, page 7. IEEE, 2006. 46

[ATF12] Oscar Kin-Chung Au, Chiew-Lan Tai, and Hongbo Fu. Multitouch gestures
for constrained transformation of 3d objects. In Computer Graphics Forum,
volume 31, pages 651–660. Wiley Online Library, 2012. 91

[BBW+08] Alexander Berner, Martin Bokeloh, Michael Wand, Andreas Schilling, and
H-P Seidel. A graph-based approach to symmetry detection. In Proceedings
of the Fifth Eurographics/IEEE VGTC conference on Point-Based Graphics,
pages 1–8. Eurographics Association, 2008. 32

[BM92] Paul J Besl and Neil D McKay. Method for registration of 3-D shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics and
Photonics, 1992. 30, 52

[BWKS11] Martin Bokeloh, Michael Wand, Vladlen Koltun, and Hans-Peter Seidel.
Pattern-aware shape deformation using sliding dockers. ACM Transactions
on Graphics (TOG), 30(6):123, 2011. 1, 17, 18, 19, 20, 21, 31, 55, 64

[BWS10] Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. A connection
between partial symmetry and inverse procedural modeling. ACM Transac-
tions on Graphics, 29(4):104–114, July 2010. 14, 15, 16, 55

[BWSK12] Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun.
An algebraic model for parameterized shape editing. ACM Transactions on
Graphics, 31(4):1–10, 2012. 1, 2, 19, 20, 21, 26, 31, 55, 64

[CGF09] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. A benchmark
for 3D mesh segmentation. In ACM Transactions on Graphics (TOG),
volume 28, page 73. ACM, 2009. 46

[CLDD09] Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, and George Dret-
takis. Structure-Preserving Reshape for Textured Architectural Scenes.
Computer Graphics Forum, 28(2):469–480, April 2009. 2, 64

105

[CSSK02] Dmitry Chetverikov, Dmitry Svirko, Dmitry Stepanov, and Pavel Krsek.
The trimmed iterative closest point algorithm. In Pattern Recognition, 2002.
Proceedings. 16th International Conference on, volume 3, pages 545–548.
IEEE, 2002. 30, 52

[DGKP08] B. Drmota, G. Gittenberger, M. Karigl, and A. Panholzer. Mathematik für
Informatik (2nd Edition). Heldermann Verlag, Germany, 2008. 27

[Ebe03] David S Ebert. Texturing & modeling: a procedural approach. Morgan
Kaufmann, 2003. 14

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996. 50

[Fed91] E S Fedorov. The symmetry of regular systems of figures. Zap. Mineralog.
Obsc.(2), 28:1–146, 1891. 28

[GCO06] Ran Gal and Daniel Cohen-Or. Salient geometric features for partial
shape matching and similarity. ACM Transactions on Graphics (TOG),
25(1):130–150, 2006. 32

[GG04] Natasha Gelfand and Leonidas J Guibas. Shape segmentation using local
slippage analysis. In Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, pages 214–223. ACM, 2004. 9,
32

[GLM96] Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. OBBTree: A hierar-
chical structure for rapid interference detection. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, pages
171–180. ACM, 1996. 49

[GSMCO09] Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel Cohen-Or. iWIRES: An
Analyze-and-Edit Approach to Shape Manipulation. ACM Transactions on
Graphics, 28(3):1, 2009. 2, 9, 10, 11, 12, 26, 55, 65

[Hel79] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces,
volume 80. Academic press, 1979. 32

[JBK+12] Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga
Sorkine. Fast automatic skinning transformations. ACM Transactions on
Graphics, 31(4):1–10, July 2012. 8

[Jia13] Yan-Bin Jia. Parametric Curves, 2013. 37

[Jon68] Owen Jones. The grammar of ornament. B. Quaritch, 1868. 27, 28

106

[JTRS12] Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel.
Exploring Shape Variations by 3D-Model Decomposition and Part-based
Recombination. Computer Graphics Forum, 31(2pt3):631–640, May 2012.
32, 49

[Kre13] Erwin Kreyszig. Differential Geometry. Courier Dover Publications, 2013.
35

[KSSCO08] Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-Or. Non-
homogeneous resizing of complex models. In ACM Transactions on Graphics
(TOG), volume 27, page 111. ACM, 2008. 9, 10, 18

[LK11] Thomas Larsson and Linus Källberg. Fast Computation of Tight-Fitting
Oriented Bounding Boxes. In Game Engine Gems 2, pages 3–19. A K
Peters, Ltd., 2011. 47

[LLCO08] Yaron Lipman, David Levin, and Daniel Cohen-Or. Green coordinates. In
ACM Transactions on Graphics (TOG), volume 27, page 78. ACM, 2008.
7, 8

[Llo82] Stuart Lloyd. Least squares quantization in PCM. Information Theory,
IEEE Transactions on, 28(2):129–137, 1982. 50

[LLZ10] Liang Lin, Xiaobai Liu, and Song-Chun Zhu. Layered graph matching with
composite cluster sampling. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(8):1426–1442, 2010. 45

[LM78] Edward Harrington Lockwood and Robert Hugh Macmillan. Geometric
symmetry. CUP Archive, 1978. 32

[M9̈7] Tomas Möller. A fast triangle-triangle intersection test. Journal of graphics
tools, 2(2):25–30, 1997. 50

[MGP06] Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. Partial and approximate
symmetry detection for 3D geometry. ACM Transactions on Graphics,
25(3):560, 2006. 31

[MPWC13] Niloy J Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. Symmetry
in 3d geometry: Extraction and applications. In Computer Graphics Forum,
volume 32, pages 1–23. Wiley Online Library, 2013. 26, 27, 28, 29, 30, 31,
32

[Mus14] Przemyslaw Musialski. Quantitative Usability Testing (in a Nutshell).
Technical report, 2014. 38, 39, 40

[MWCS13] A. Milliez, M. Wand, M.-P. Cani, and H.-P. Seidel. Mutable elastic models
for sculpting structured shapes. Computer Graphics Forum, 32(2pt1):21–30,
May 2013. 15, 17

107

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van
Gool. Procedural modeling of buildings, volume 25. ACM, 2006. 14

[MWZ+13] Niloy J Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, and Martin
Bokeloh. Structure-Aware Shape Processing. In EUROGRAPHICS 2013 -
State of the Art Reports. Eurographics Association, 2013. 2, 4, 23, 24, 25,
26, 42, 45

[Nil93] Jakob Nilsen. Usability engineering. San Francisco: Morgan Kaufmann,
1:993, 1993. 38

[Pie91] Les Piegl. On NURBS: a survey. IEEE Computer Graphics and Applications,
11(1):55–71, 1991. 34

[PM01] Yoav I H Parish and Pascal Müller. Procedural modeling of cities. In Pro-
ceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 301–308. ACM, 2001. 14

[PMW+08] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut Pottmann, and
Leonidas J. Guibas. Discovering structural regularity in 3D geometry. ACM
Transactions on Graphics, 27(3):43–52, August 2008. 32

[PT95] Les Piegl and Wayne Tiller. Curve and Surface Basics. Springer, 1995. 33

[SA07] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In
Symposium on Geometry processing, volume 4, 2007. 7, 8, 15

[SCOL+04] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian
Rössl, and H-P Seidel. Laplacian surface editing. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages
175–184. ACM, 2004. 7, 8

[Sha08] Ariel Shamir. A survey on mesh segmentation techniques. In Computer
graphics forum, volume 27, pages 1539–1556. Wiley Online Library, 2008.
24

[Sor09] Olga Sorkine. Least-squares rigid motion using svd. Technical notes, 120:3,
2009. 52

[SSL+14] Adriana Schulz, Ariel Shamir, David I W Levin, Pitchaya Sitthi-Amorn, and
Wojciech Matusik. Design and Fabrication by Example. ACM Transactions
on Graphics (Proceedings SIGGRAPH 2014), 33(4), 2014. 21, 22, 87

[Tho92] D Wentworth Thompson. On growth and form: the complete revised edition.
Dover, New York. Vandiver, R. and Goriely, A.(2008). Tissue tension and
axial growth of cylindrical structures in plants and elastic tissues. Europhys.
Lett.(EPL), 84:58004, 1992. 23

108

[vBM+10] Ondrej Št’ava, Bedrich Beneš, R Měch, Daniel G Aliaga, and Peter Krištof.
Inverse Procedural Modeling by Automatic Generation of L-systems. In
Computer Graphics Forum, volume 29, pages 665–674. Wiley Online Library,
2010. 14

[Wer94] Josie Wernecke. The inventor mentor: programming object-oriented 3d
graphics with open inventorTM, release 2. Addison-Wesley, 1994. 35

[XLZ+10] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong, and
Zhi-Quan Cheng. Style-content separation by anisotropic part scales. In
ACM Transactions on Graphics (TOG), volume 29, page 184. ACM, 2010.
24

[XWY+09] Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne,
Falai Chen, and Baining Guo. Joint-aware manipulation of deformable
models. ACM Transactions on Graphics, 28(3):1, July 2009. 64

[XXS05] Chunsheng Xin, Bo Xie, and Chien-Chung Shen. A novel layered graph
model for topology formation and routing in dynamic spectrum access
networks. In New Frontiers in Dynamic Spectrum Access Networks, 2005.
DySPAN 2005. 2005 First IEEE International Symposium on, pages 308–
317. IEEE, 2005. 45

[ZFCO+11] Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, and
Chiew-Lan Tai. Component-wise Controllers for Structure-Preserving Shape
Manipulation. Computer Graphics Forum, 30(2):563–572, April 2011. 4, 5,
11, 13, 14, 24, 55, 63, 65

[ZPA95] Hagit Zabrodsky, Shmuel Peleg, and David Avnir. Symmetry as a continuous
feature. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
17(12):1154–1166, 1995. 30

109

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Structure-Aware Model Manipulation
	Problem Definition
	Contribution
	Structure of the Work

	State of the Art
	Mesh Deformation
	Controller Based Propagation
	Rule Based Deformation
	Structure Adapting Systems

	Theoretical Foundations
	Structure Definition
	Symmetry and Symmetry Detection
	Parametric Curves
	Quantitative Usability Testing

	Framework for Structure-Aware Model Manipulation
	Overview
	Data Structure
	Model Analysis
	Symmetry on Curves
	Manipulation
	Interaction

	Results and Evaluation
	Implementation
	User Study
	Results
	Applications

	Conclusion and Future Work
	Synopsis
	Conclusion
	Future Work

	User Study Material
	Bibliography

