

Diplomarbeit

Master's Thesis

Vergleichende Analysen zum Nachweis von Kopfplattenstößen: Genaue und Vereinfachte Komponentenmethode

ausgeführt zum Zwecke der Erlangung des akademischen Grades einer Diplom-Ingenieurin unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr.techn. Josef Fink Univ. Ass. Dipl.-Ing. Klaus Hackl

E212 Institut für Tragkonstruktionen Forschungsbereich für Stahlbau

eingereicht an der Technischen Universität Wien Fakultät für Bauingenieurwesen von

Tahira Karim Bhatti, BSc 0625585

Untere Augartenstraße 23/1/1, A-1020 Wien

12. November 2014

Tahira Karim Bhatti Untere Augartenstraße 23/1/1 A-1020 Wien

Ich erkläre hiermit an Eides statt, dass ich Tahira Karim Bhatti geb. 31.05.1986 die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht und angeführt. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Diese Arbeit stimmt mit der vom Begutachter beurteilten Arbeit überein

Wien, am 12. November 2014	
	Tahira Karim Bhatti

Keine Schuld ist dringender als die, Danke zu sagen. Marcus Tullius Cicero

Ich bedanke mich bei Herrn Univ. Prof. Dipl.-Ing. Dr. techn. Josef Fink für die Möglichkeit, meine Diplomarbeit am Institut für Tragkonstruktionen im Forschungsbereich Stahlbau zu verfassen. Ganz besonders bedanken möchte ich mich bei meinem Betreuer Dipl.-Ing. Klaus Hackl für seine tatkräftige Unterstützung und sehr kompetente Begleitung über die gesamte Arbeitszeit. Danke für die geduldige Beantwortung aller komplexen Fragen und den Blick fürs Wesentliche.

An dieser Stelle möchte ich mich ebenfalls ganz herzlich bei meinen Eltern bedanken, die mir das Studium überhaupt ermöglicht haben und die für mich immer eine Stütze waren. Natürlich gilt mein inniger Dank auch meinen Geschwistern, Freunden und Kommilitonen die mich während meines Studiums und vor allem in der Zeit, in der diese Arbeit entstanden ist, unterstützt haben. Vielen lieben Dank für euer allseits offenes Ohr und eure motivierenden Worte.

Kurzfassung

In der Praxis hat die Optimierung der Stützen- und Riegelquerschnittsausnutzung den Vorzug vor der Optimierung von Knotenpunkten. Alle Tragwerksberechnungen zielen auf eine hohe und somit ökonomische Ausnutzung der Querschnitte ab. Rahmenknoten werden in Tragwerksberechnungen hauptsächlich vereinfacht betrachtet. Infolgedessen werden Anschlüsse streng in starre oder gelenkige Anschlüsse eingeteilt. Der große Bereich zwischen starrem und gelenkigem Anschluss - der nachgiebige Anschluss - wird zumeist nicht näher in Betracht gezogen. Die ÖNORM EN 1993-1-8 gibt dafür die sogenannte Komponentenmethode, ein Berechnungsmodell, welches die Nachgiebigkeit eines Anschlusses mitberücksichtigt, an. Die Komponentenmethode liefert die Beanspruchbarkeit und die Verformbarkeit eines Anschlusses und ermöglicht somit bereits in der Phase der Tragwerksberechnung die Einbindung der Effekte aus der Detailausbildung des Anschlusses. Der nachgiebige Anschluss ermöglicht durch seine Eigenschaft der Rotationskapazität eine wirtschaftlichere Bemessung des Tragsystems.

Der Schwerpunkt der vorliegenden Arbeit liegt darin, einen Vergleich zwischen dem genauen und dem vereinfachten Verfahren der Komponentenmethode zu ziehen. Diese Arbeit soll einen Einblick in die Grundlagen der Komponentenmethode geben und zeigen, inwieweit sich die Ergebnisse beider Verfahren unterscheiden. Die grundlegende Fragestellung lautet: Reicht eine vereinfachte Berechnung für die Bemessung von nachgiebigen Anschlüssen aus? Oder sind die Ergebnisse der vereinfachten Berechnung zu sehr auf der "sicheren Seite" und somit im Widerspruch zur Wirtschaftlichkeit der Komponentenmethode?

Abstract

The optimisation of column and beam cross sections utilisation is given preference to the optimisation of joints in the field. All analysis of structures aim at high respectively economical utilisation of the cross sections. Joints in frames are mainly calculated in a simple manner in the analysis of structure. Consequently connections are strictly divided into rigid and articulated connections. The large range between rigid and articulated connections - the semi-rigid connection - is commonly not taken into consideration. The ÖNORM EN 1993-1-8 specifies the *method of components* - a computational model that factors in the flexibility of a connection. The *method of components* accounts the capacity to withstand stress and the deformability of a connection and allows for the incorporation of the effects from the degsin of the connection in the stage of analysis of structures. The semi-rigid connection enables due to its rotation capacity ability a more economic assessment of the supporting structure.

The emphasis of the work at hand is in the comparison of the exact and the simplified mode of the *method of components*. This thesis provides an understanding in the foundation of the *method of component* and shall exemplify the difference in the outcome of both calculation modes. The primary question is as follows: Is the simplified mode sufficient for the design of semi-rigid connections? Or are the results of the simplified mode leaning to much on the "safe side" and thus in opposition to the economical aspect of the *method of component*?

Inhaltsverzeichnis

Αŀ	bildu	ıngsverzeichnis	V
Ta	belle	nverzeichnis	VI
1.	Einle	eitung	1
	1.1.	Allgemeines	1
	1.2.	Zielsetzung	3
	1.3.	Begriffe	4
	1.4.	Biegemomententragfähige Stützen-Träger Anschlüsse	4
2.	Star	nd der Technik	7
	2.1.	Komponentenmethode	7
		2.1.1. Momententragfähigkeit eines Stützen-Träger Anschlusses	10
		2.1.2. Rotationssteifigkeit eines Stützen-Trägeranschlusses	14
	2.2.	T-Stummel Modell	17
	2.3.	Klassifizierung von Anschlüssen	22
		2.3.1. Klassifizierung nach der Beanspruchbarkeit des Anschlusses	23
		2.3.2. Klassifizierung nach der Rotationssteifigkeit des Anschlusses	23
		2.3.3. Klassifizierung nach der Rotationskapazität des Anschlusses	24
		2.3.4. Anschlussmodelle für die Tragwerksberechnung	25
	2.4.	Vereinfachtes Verfahren	26
	2.5.	Auswirkungen von verformbaren Verbindungen	27
	2.6.	Ausblick	28
3.	Verg	gleich	29
	3.1.	Anwendungsbeispiel	29
		3.1.1. Angaben und Beschreibung des Anwendungsbeispiels	29
		3.1.2. Berechnung mittels der Genauen Komponentenmethode	31
		3.1.3. Berechnung mittels der Vereinfachten Komponentenmethode	54
		3.1.4. Excelberechnungsprogramm	59
	3.2.	Ergebnisse weiterer Anwendungsbeispiele	60
		3.2.1. Anschluss A	60
		3.2.2. Anschluss B	68

In halts verzeichn is

	3.2.3. Anschluss C	75
4.	Erkenntnisse	83
Α.	Datenblätter des Anwendungsbeispieles (aus dem Excelberechnungsprogramm)	i
В.	Übersicht der Grundkonfigurationen	xxvii
C.	Diagramme weiterer untersuchter Anschlüsse	xxx
	C.1. Anschluss D	xxxi
	C.2. Anschluss E	XXXV
	C.3. Anschluss F	xxxix

Abbildungsverzeichnis

1.1.	Beispiel eines Rahmentragwerks	1
1.2.	Momentenverlauf unter Berücksichtigung der Anschlusssteifigkeit [1] \dots	2
1.3.	Kosteneffizienz von Anschlüssen [1]	3
1.4.	Beispiel eines geschraubten Stirnplatten Stützen-Träger Anschlusses ohne	
	Aussteifung	5
2.1.	Federmodell eines Stützen-Trägeranschlusses [2]	7
2.2.	Darstellung der Grundkomponenten eines Stützen-Trägeranschlusses [2]	9
2.3.	T-Stummel bei Träger-Stützen-Verbindungen mit Stirnplatten [3]	12
2.4.	Ermittlung der Momententragfähigkeit	13
2.5.	Versagensmodi T-Stummel [2, adaptiert]	19
2.6.	geometrische Abmessungen eines äquivalenten T-Stummelflansches [4, Bild 6.2]	20
2.7.	Momenten-Rotations-Charakteristik eines Anschlusses [5]	22
2.8.	Klassifizierung nach der Beanspruchbarkeit (links) oder Rotationssteifigkeit	
	$(rechts) \ eines \ Anschlusses \ [5] \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	24
2.9.	Klassifizierung nach der Rotationskapazität eines Anschlusses [5]	25
2.10.	Vereinfachte Berechnung von geschraubten Anschlüssen mit überstehender	
	Stirnplatte [4]	27
2.11.	Stützen-Trägeranschluss mit 4 Schrauben pro Schraubenreihe [2]	28
3.1.	Anwendungsbeispiel mit Abmessungsbezeichnungen	30
3.2.	Darstellung der zu untersuchenden Bereiche bei Querzugbeanspruchung des	
	Stützensteges	33
3.3.	Darstellung der zu untersuchenden Bereiche bei Biegebeanspruchung des Stüt-	
	zenflansches	36
3.4.	geometrische Größen für ein Stirnblech schmaler als der Stützenflansch	
	[4, Bild 6.8 a, adaptiert] (links) und für den T-Stummel [4, Tab. 6.2, adaptiert]	
	(rechts)	36
3.5.	Darstellung der zu untersuchenden Bereiche bei Biegebeanspruchung der Stirn-	
	platte	41
3.6.	T-Stummel der überstehenden Stirnplatte für $SR1~[4,~\mathrm{Bild}~6.10,~\mathrm{adaptiert}]~$	42
3.7.	T-Stummel Modell zwischen zwei Trägerflanschen für $SR2$ [4, Tab. 6.10,	
	adaptiert]	42

3.8.	$\alpha\text{-Wert}$ für das ausgesteifte Stirnblech [4, Bild 6.11, adaptiert]	46
3.9.	Darstellung der zu untersuchenden Bereiche bei Zubeanspruchung des Träger-	
	steges	49
3.10.	Excelberechnungsprogramm für Stützen-Trägeranschlüsse	59
3.11.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Stahlgüte der Stütze	61
3.12.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der	
	Stütze	62
3.13.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte	63
3.14.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des	
	Trägers und der Stirnplatte	64
3.15.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte	65
3.16.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der	
	Stütze, des Trägers und der Stirnplatte	66
3.17.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Blechstärke der Stirnplatte	67
3.18.	Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der	
	Stirnplatte	68
3.19.	Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Stahlgüte der Stütze	69
3.20.	Anschluss B - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der	
	Stütze	70
3.21.	Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte	71
3.22.	Anschluss B - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des	
	Trägers und der Stirnplatte	72
3.23.	Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
	Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte	73
3.24.	Anschluss B - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
	pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der	
	Stütze, des Trägers und der Stirnplatte	73

3.25. Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
Abhängigkeit von der Blechstärke der Stirnplatte	74
3.26. Anschluss B - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der	
Stirnplatte	75
3.27. Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
Abhängigkeit von der Stahlgüte der Stütze	77
3.28. Anschluss C - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der	
Stütze	77
3.29. Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte	78
3.30. Anschluss C - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des	
Trägers und der Stirnplatte	79
3.31. Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte	80
3.32. Anschluss C - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der	
Stütze, des Trägers und der Stirnplatte	80
3.33. Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in	
Abhängigkeit von der Blechstärke der Stirnplatte	81
3.34. Anschluss C - Momententragfähigkeit ${\cal M}_{j,Rd}$ des Anschlusses im Verhältnis zur	
pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der	
Stirnplatte	82

Tabellenverzeichnis

2.1.	Uberblick der einzelnen Komponenten eines Stützen-Trägeranschlusses [6]	8
2.2.	Überblick aller Steifigkeitskoeffizienten der Grundkomponenten eines Stützen-	
	Trägeranschlusses	14
2.3.	Darstellung von l_{eff} für einen nicht ausgesteiften Stützenflansch [2]	21
2.4.	Anschlussmodelle für die Tragwerksberechnung [5]	26
3.1.	Teilsicherheitsbeiwerte	29
3.2.	Materialkennwerte S235	29
3.3.	Berechnungsangaben Anschluss $HEA~360/HEB~280~\dots$	30
3.4.	Anschluss A - Variationen	61
3.5.	Anschluss B - Variationen	69
3.6.	Anschluss C - Variationen	76

1. Einleitung

Dieses Kapitel bietet eine Einleitung zur Thematik der vorliegenden Arbeit. Des Weiteren wird die Zielsetzung beschrieben und es werden wesentliche Begriffe definiert.

1.1. Allgemeines

Große Hallen, wie sie im Industriebau oder auch im Veranstaltungsbereich benötigt werden, werden größtenteils mit einem Tragwerk aus Stahl realisiert. Es werden hohe Anforderungen an Hallentragwerke gestellt, wie zum Beispiel eine große Spannweite. Der somit große stützenfreie Bereich ist ein wesentliches Kriterium für eine optimale Nutzung von Hallenbauwerken. Um die benötigten Spannweiten zu ermöglichen, kommen Rahmenkonstruktionen als geeignetes Tragwerksystem zum Einsatz. Bestandteile jeder Rahmenkonstruktion (horizontal verschieblich oder unverschieblich) sind Stützen (engl. column) und Riegel bzw. Träger (engl. beam) (vgl. Abbildung 1.1). Der Knotenpunkt (engl. joint) in Stütze und Riegel dient der Koppelung der beiden Rahmenelemente und muss in seiner konstruktiven Ausbildung dem statischen System des Tragwerks genügen. Dieser Anschluss kann in unterschiedlichen Ausführungen gestaltet werden. Dabei werden hauptsächlich geschraubte und geschweißte Anschlüsse unterschieden.

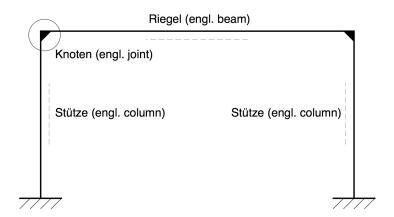


Abbildung 1.1.: Beispiel eines Rahmentragwerks

Dadurch, dass einzelne Anschlüsse in mehrfacher gleicher Ausführung innerhalb eines Bauwerks zum Einsatz kommen können, können durch die wirtschaftliche Konstruktion jedes Anschlusses, die Gesamtkosten eines Bauwerkes immens beeinflusst werden.

Aber nicht nur im Hallenbau bzw. Stahlhochbau sind solche Anschlüsse zu finden. Der Freileitungsbau entlang von Bahngleisen, benötigt in gewissen Abständen immer wieder die gleichen Rahmenkonstruktionen in Form von Versorgungsmasten. Ebenso entlang von Autobahnen, lassen sich Überkopfweg- und Ausfahrtswegweiser finden, die ebenfalls durch eine Rahmenkonstruktion realisiert werden. Hier steckt ein großes Potential für wirtschaftliches Planen.

In der Praxis hat die Optimierung der Stützen- und Riegelquerschnittsausnutzung den Vorzug vor der Optimierung von Knotenpunkten. Alle Tragwerksberechnungen zielen auf eine hohe und somit ökonomische Ausnutzung der Querschnitte ab. Rahmenknoten werden in Tragwerksberechnungen hauptsächlich vereinfacht betrachtet. Infolgedessen werden Anschlüsse streng in starre oder gelenkige Anschlüsse eingeteilt. Der große Bereich zwischen starrem und gelenkigem Anschluss - der nachgiebige Anschluss - wird zumeist nicht näher in Betracht gezogen. Die ÖNORM EN 1993-1-8 [4] gibt dafür die sogenannte Komponentenmethode, ein Berechnungsmodell, welches die Nachgiebigkeit eines Anschlusses mitberücksichtigt, an.

Die Komponentenmethode liefert die Beanspruchbarkeit und die Verformbarkeit eines Anschlusses und ermöglicht somit bereits in der Phase der Tragwerksberechnung die Einbindung der Effekte aus der Detailausbildung des Anschlusses (vgl. Abbildung 1.2). Der nachgiebige Anschluss ermöglicht durch seine Eigenschaft der Rotationskapazität eine wirtschaftlichere Bemessung des Tragsystems. Demungeachtet sind die Kosten für die Herstellung eines nachgiebigen Anschlusses geringer, als die eines starren oder gelenkigen Anschlusses (vgl. Abbildung 1.3).

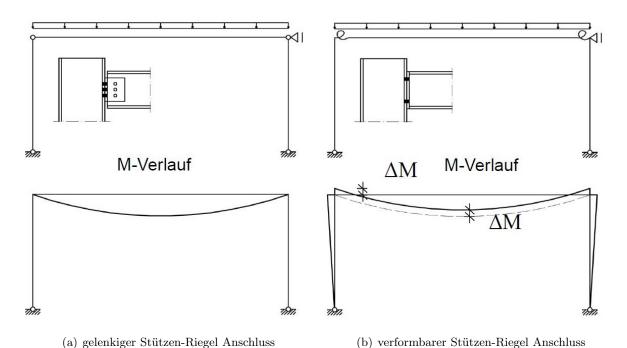


Abbildung 1.2.: Momentenverlauf unter Berücksichtigung der Anschlusssteifigkeit [1]

Die Kernaussage lautet, dass die Wirtschaftlichkeit einer Konstruktion durch die Optimierung ihrer Querschnitte <u>und</u> ihrer Anschlüsse beeinflusst wird.

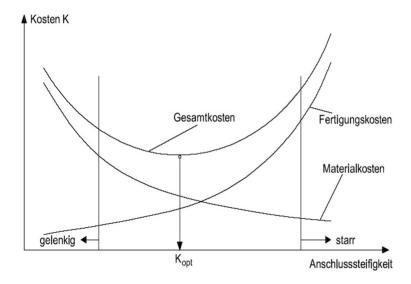


Abbildung 1.3.: Kosteneffizienz von Anschlüssen [1]

1.2. Zielsetzung

Die Zielsetzung besteht darin, die Genaue und die Vereinfachte Komponentenmethode zu vergleichen. Die Genaue Komponentenmethode ist in ihrer vollständigen Form und all ihren Grundkomponenten ein sehr umfangreiches Berechnungsverfahren. Schon am Beginn der vorliegenden Arbeit im Abschnitt 1.1 Allgemeines wird auf den großen Vorteil der Komponentenmethode eingegangen. Durch die Anwendung von verformbaren bzw. teiltragfähigen Knoten, ist ein neuer Aspekt des wirtschaftlichen Planens gegeben.

Es soll untersucht werden in wie weit die Anwendung des vereinfachten Verfahrens sich von der genauen Berechnung unterscheidet. Das vereinfachte Verfahren stellt der Ingenieurin und dem Ingenieur einen deutlich geringeren Aufwand in Rechnung, als die Genaue Komponentenmethode. Ziel der vorliegenden Arbeit ist es, einen Vergleich zwischen der Genauen und der Vereinfachten Komponentenmethode zu ziehen. Es stellt sich somit die Frage, ob die Berechnung eines nachgiebigen Stützen-Trägeranschlusses mittels der Vereinfachung generell ausreichend ist.

Aus diesem Grund wird ein Beispiel im Abschnitt 3.1 Anwendungsbeispiel eines Stützen-Trägeranschlusses mittels beider Varianten berechnet. Es werden alle Berechnungsschritte und Zwischenwerte detailliert angegeben, um den Aufwand beider Verfahren vergleichen zu können. Die Ergebnisse der Momententragfähigkeit und der Rotationssteifigkeit des Anschlusses die durch das genaue und das vereinfachte Verfahren berechnet werden, werden direkt

miteinander verglichen. Somit ist eine prozentuelle Abweichung der Ergebnisse ermittelbar.

Um eine generelle Aussage über die Abweichung der Ergebnisse der beiden Verfahren treffen zu können, werden anhand eines Excelprogramms unterschiedliche Anschlüsse berechnet. Im Abschnitt 3.2 Ergebnisse weiterer Anwendungsbeispiele erfolgt die Darstellung und Interpretation der Ergebnisse der untersuchten Anschlüsse anhand von Diagrammen.

Abschnitt 4 Erkenntnisse fasst alle gewonnen Informationen aus dem Vergleich zusammen.

1.3. Begriffe

Es werden im Weiteren einige wesentliche Begriffe definiert, deren Verständnis bzw. Unterscheidung von einander für folgende Betrachtungen in dieser Arbeit erforderlich ist. Die Definitionen sind aus ÖNORM EN 1993-1-8 [4] entnommen.

Grundkomponente: Teil eines Anschlusses, der zu einem, oder mehreren Kennwerten des Anschlusses beiträgt 1

Verbindung: konstruktiver Punkt, an dem sich zwei oder mehrere Bauteile treffen; für die Berechnung und Bemessung besteht die Verbindung aus einer Anordnung von Grundkomponenten, die für die Bestimmung der Kennwerte der Verbindung für die Übertragung der Schnittgrößen notwendig sind

Anschluss bzw. Knoten: Bereich, in dem zwei oder mehrere Bauteile miteinander verbunden sind; für die Berechnung und Bemessung besteht der Anschluss aus der Anordnung aller Grundkomponenten, die für die Bestimmung der Kennwerte des Anschlusses bei der Übertragung der Schnittgrößen zwischen den angeschlossenen Bauteilen notwendig sind

Rotationskapazität: Winkel um den sich der Anschluss bei vorgegebenem Moment ohne Versagen verformen kann

Rotationssteifigkeit: Moment um in einem Anschluss die Winkelverformung $\phi=1$ zu erzeugen

1.4. Biegemomententragfähige Stützen-Träger Anschlüsse

Im Stahlhochbau werden hauptsächlich biegesteife Stützen-Trägeranschlüsse ausgeführt. Es können folgende Ausführungsarten unterschieden werden [3]:

¹Eine Grundkomponente ist nicht zwangsläufig mit einer geometrischen Teilstruktur gleichzusetzen, da für eine Grundkomponente zusätzlich die Belastungsart berücksichtigt werden muss.

- Stützen mit Trägeranschlüssen auf einer oder auf beiden Seiten (Rand- oder Innenknoten)
- geschweißte Anschlüsse oder geschraubte Stirnplattenanschlüsse mit bündigen oder überstehenden Stirnplatten
- gleiche oder unterschiedliche Trägerhöhen
- mit oder ohne Aussteifung des Stützensteges

Geschraubte Stirnplatten Anschlüsse mit überstehender Stirnplatte ohne Aussteifung des Stützenstegs

Im Rahmen dieser Diplomarbeit wird speziell auf geschraubte Stirnplattenanschlüsse mit überstehender Stirnplatte von gewalzten H- oder I-Querschnitten ohne Aussteifung des Stützensteges eingegangen. Die Abbildung 1.4 zeigt ein ausgewähltes Beispiel einer solchen Verbindung.

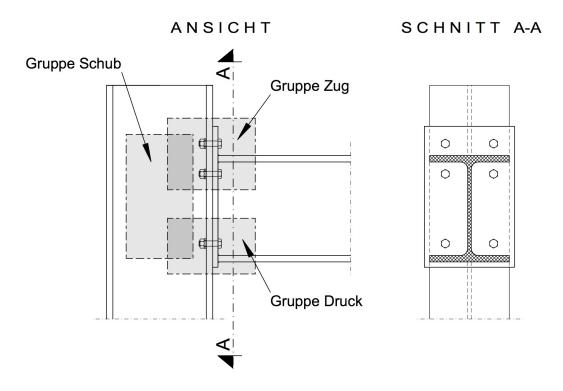


Abbildung 1.4.: Beispiel eines geschraubten Stirnplatten Stützen-Träger Anschlusses ohne Aussteifung

Alle statischen Schnittgrößen wie Moment, Normal- und Querkraft am Knoten müssen bei einem biegemomententragfähigen Stützen-Trägeranschluss aufgenommen und übertragen werden.

Die ÖNORM EN 1993-1-8 [4] liefert im Kapitel Anschlüsse mit H- oder I-Querschnitten das unter dem Namen Komponentenmethode bekannte Berechnungsverfahren zur Bestimmung der Kenndaten von verschiedenen Anschlüssen von Stützen-Trägeranschlüssen. Die Komponentenmethode verlangt, dass all jene Komponenten, die für die Kraftübertragung im Knoten nötig sind, separat untersucht werden. Dabei wird für jede Komponente eine Grenztragfähigkeit und eine Verformbarkeit bestimmt. Für einen Anschluss nach Abbildung 1.4 müssen folgende Grundkomponenten untersucht werden:

- Stützensteg mit Schubbeanspruchung
- Stützensteg mit Beanspruchung durch Querdruck
- Stützensteg mit Beanspruchung durch Querzug
- Stützenflansch mit Biegebeanspruchung
- Stirnplatte mit Biegbeanspruchung
- Trägerflansch und -steg mit Druckbeanspruchung
- Trägersteg mit Zugbeanspruchung

Die Komponente, die im Vergleich zu allen anderen Komponenten die geringste Tragfähigkeit besitzt, ist für die Grenztragfähigkeit des Anschlusses ausschlaggebend. Im Abschnitt 2.1 der vorliegenden Arbeit wird auf die Komponentenmethode ausführlich eingegangen.

2. Stand der Technik

In diesem Kapitel erfolgt die Beschreibung der Grundlagen für die Ermittlung der Momententragfähigkeit und der Rotationssteifigkeit eines Stützen-Trägeranschlusses mit geschraubter überstehender Stirnplatte ohne Aussteifung des Stützensteges anhand der Komponentenmethode. Dazu werden alle wesentlichen Grundkomponenten und das T-Stummel Modell erläutert. Zuzüglich wird auf die unterschiedlichen Möglichkeiten der Klassifizierung von Anschlüssen und den Auswirkungen von verformbaren Verbindungen eingegangen.

2.1. Komponentenmethode

Für die Bemessung von Anschlüssen mit H- oder I-Querschnitten gibt die ÖNORM EN 1993-1-8 [4] die sogenannte Komponentenmethode vor. Der Grundgedanke hinter der Komponentenmethode ist jener, dass ein Anschluss in eine Anzahl von Grundkomponenten zerlegt wird. Für jede Komponente lässt sich, auf Basis von Traglastversuchen und numerischen Berechnungen, eine eigene Ersatzfeder mit zugehöriger Steifigkeit berechnen. Jeder Anschluss wird durch ein Federmodell beschrieben (siehe Federmodell Abbildung 2.1). Anhand der verschiedenen Komponenten lässt sich eine Gesamtaussage über den Anschluss und das Momenten-Rotationsverhalten dieses Knotens, treffen.

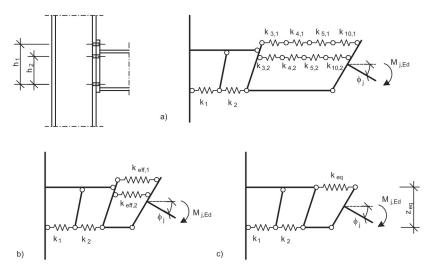
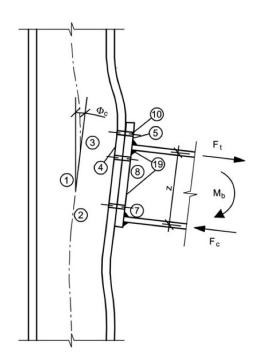



Abbildung 2.1.: Federmodell eines Stützen-Trägeranschlusses [2]

Die ÖNORM EN 1993-1-8 [4] gibt insgesamt 20 verschiedene Grundkomponenten von Anschlüssen, welche in [4, Tab.6.1] aufgelistet sind, vor. Die Grundkomponenten eines Anschlüsses werden in Schub-, Druck- und Zugzone unterschieden. In Abbildung 1.4 ist ein Stützen-Trägeranschluss mit den drei verschiedenen Zonen dargestellt. Die Zonenzugehörigkeit jeder Komponente ist von der Lage im Knoten und der Art der Lastabtragung abhängig. Alle wesentlichen Komponenten eines Stützen-Trägeranschlusses mit einer Stirnplattenverbindung sind in Tabelle 2.1 aufgelistet. Ihre Position am Anschluss ist ebenfalls der Abbildung 2.2 zu entnehmen. (Literatur: [5], [7], [8])

Tabelle 2.1.: Überblick der einzelnen Komponenten eines Stützen-Trägeranschlusses [6]

Komponente (Deutsch)	Komponente (Englisch)	Tragfähig- keit	Gruppe	Kapitel-Nr. in [4]
Stützensteg mit Beanspruchung durch Schub	column web shear (CWS)	$V_{wp,Rd}$	Schub	6.2.6.1
Stützensteg mit Beanspruchung durch Querdruck	column web compression (CWC)	$F_{c,wc,Rd}$	Druck	6.2.6.2
Stützensteg mit Beanspruchung durch Querzug	column web tension (CWT)	$F_{t,wc,Rd}$	Zug	6.2.6.3
Stützenflansch mit Biegebeanspruchung	column flange bending (CFB)	$F_{f,cf,Rd}$	Zug	6.2.6.4
Stirnplatte mit Biegebeanspruchung	end plate bending (EPB)	$F_{t,ep,Rd}$	Zug	6.2.6.5
Trägerflansch und -steg mit Druckbeanspruchung	beam flange compression (BFC)	$F_{c,fb,Rd}$	Druck	6.2.6.7
Trägersteg mit Zugbeanspruchung	beam web tension (BWT)	$F_{t,wb,Rd}$	Zug	6.2.6.8

- (1) Stützensteg auf Schub (CWS)
- (2) Stützensteg auf Druck (CWC)
- (3) Stützensteg auf Zug (CWT)
- (4) Stützengurt auf Biegung (CFB)
- (5) Stirnplatte auf Biegung (EPB)
- 7 Trägersteg und -flansch auf Druck (BFC)
- (8) Trägersteg auf Zug (BWT)
- (10) Schrauben auf Zug
- (19) Schweißnähte

Abbildung 2.2.: Darstellung der Grundkomponenten eines Stützen-Trägeranschlusses [2]

Im Rahmen der Komponentenmethode werden folgende Indizes eingeführt:

$c\dots$	column (Stütze)	wc	web column (Stützensteg)
$b\dots$	beam (Träger)	fc	flange column (Stützenflansch)
f	flange (Flansch)	$wb\dots$	web beam (Trägersteg)
$w\dots$	web (Steg)	$fb\dots$	flange beam (Trägerflansch)
ep	end plate (Stirnplatte)		
$c\dots$	compression (Druck)		

Die Anzahl der horizontalen Schraubenreihen ist nach Belieben wählbar. Es gilt jedoch zu beachten, dass bei der Anwendung der *Komponentenmethode* nach ÖNORM EN 1993-1-8 nur Schraubenreihen mit jeweils zwei Schrauben zulässig sind.

Für Stützen-Trägeranschlüsse mit I- bzw. H-Profilen sind die im folgenden angeführten Ausführungen mittels der Komponentenmethode erfassbar:

• geschraubt

t...

- Stirnplatte/Anschlusswinkel

tension (Zug)

- zwei Schrauben pro Reihe

- geschweißt
- mit/ohne Stützenstegaussteifung (Quer- oder Diagonalsteife, Blechverstärkungen)
- Trägervoute

Im Rahmen der vorliegenden Arbeit werden nur Ausführungen mit geschraubten überstehenden Stirnplatten ohne Stützenstegaussteifungen und ohne Trägervoute behandelt.

Im Folgenden werden in den Abschnitten 2.1.1 Momententragfähigkeit eines Stützen-Träger Anschlusses und 2.1.2 Rotationssteifigkeit eines Stützen-Trägeranschlusses die einzelnen Komponenten eines Stützen-Trägeranschlusses getrennt für Momententragfähigkeit und Rotationssteifigkeit des Anschlusses behandelt.

2.1.1. Momententragfähigkeit eines Stützen-Träger Anschlusses

Stützensteg mit Schubbeanspruchung (CWS)

Der Stützensteg wird nur durch Schub beansprucht, wenn die Verbindung einseitig ist, wie es zum Beispiel der Fall bei einem Randknoten ist. Bei einem Innenknoten, welcher einer zweiseitigen Verbindung entspricht, tritt eine Schubbeanspruchung nur auf, wenn die Beanspruchung asymmetrisch ist.

Der Stützenstegwiderstand gegen Schub lässt sich mit Formel (2.1) berechnen. A_{vc} bezeichnet die vorhandene Schubfläche der Stütze.

$$F_{wp,Rd} = \frac{0.9 \ f_{y,wc} \ A_{vc}}{\sqrt{3} \ \gamma_{M0}} \tag{2.1}$$

Im Abschnitt 6.2.6.1(1) der ÖNORM EN 1993-1-8 [4] wird darauf hingewiesen, dass die Komponentenmethode nur anwendbar ist, wenn die Schlankheit des Stützenstegs mit $\frac{d_c}{t_{wc}} \le 69 \varepsilon$ begrenzt ist und somit Schubbeulen ausgeschlossen ist. Eine Erhöhung der Tragfähigkeit des Stützenstegs gegenüber Schub kann durch optionale Stegbleche oder Steifen erreicht werden. (Literatur: [2], [4], [7], [9])

Stützensteg mit Beanspruchung durch Querdruck (CWC)

Um die Tragfähigkeit des Stützenstegs gegenüber Druck zu bestimmen, müssen die Faktoren ω und ρ einbezogen werden. Der Abminderungsbeiwert ω ist von der Verbindungskonfiguration abhängig. ω dient der Berücksichtigung von eventuell möglichen Interaktionseffekten mit der Schubbeanspruchung im Stützenfeld. Dabei muss zwischen einseitigen oder zweiseitigen Verbindungen, sowie zwischen gleich- oder gegenläufigem Momentenverlauf unterschieden werden. Bei einer Druckspannung können im Blech lokale Beulerscheinungen auftreten. Um

die Schlankheit des Stegbleches zu berücksichtigen wird ρ , ein Abminderungsbeiwert für Plattenbeulen, benötigt. Die effektive Breite b_{eff} kann mit einer Lastausbreitung von 1:2,5 bestimmt werden. Überschreiten die Längsdruckspannungen $\sigma_{com,ED}$ den Wert 0,7 $f_{y,wc}$, dann ist die Tragfähigkeit mit dem Beiwert k_{wc} abzumindern. Die Tragfähigkeit eines nicht ausgesteiften Stützenstegbleches gegenüber Querdruck kann mit Formel (2.2) ermittelt werden. (Literatur: [4], [7])

$$F_{c,wc,Rd} = \frac{\omega k_{wc} \rho b_{eff} t_{wc} f_{yk}}{\gamma_{M1}}$$
(2.2)

Stützensteg mit Beanspruchung durch Querzug (CWT)

Die Beanspruchbarkeit nicht ausgesteifter Stützenstege bei einer Belastung durch Querzug kann mit Formel (2.3) analog zu (2.2) berechnet werden.

$$F_{t,wc,Rd} = \frac{\omega b_{eff} t_{wc} f_{yk}}{\gamma_{M0}}$$
 (2.3)

Eine Zugbeanspruchung wirkt im Gegensatz zu einer Druckbeanspruchung stabilisierend und schließt das Beulen des Stützenstegbleches aus. Der Abminderungsfaktor ρ aus Formel (2.2) entfällt. Für geschraubte Verbindungen entspricht die effektive Breite b_{eff} der effektiven Länge l_{eff} des äquivalenten T-Stummels des dazugehörigen biegebeanspruchten Stützenflansches. (Literatur: [4], [7])

Stützenflansch mit Biegebeanspruchung (CFB)

Für die Ermittlung der Tragfähigkeit der Komponente Stützenflansch mit Biegebeanspruchung wird das Modell des äquivalenten T-Stummels herangezogen. Die Abbildung 2.3 zeigt die, durch eine Zugbeanspruchung infolge einer negativen Momentenbeanspruchung, zu erwartende Ausbildung des T-Stummels im Stützenflansch und im Stirnblech. Dabei kann der T-Stummel sowohl aus einzelnen Reihen als auch aus mehreren Schraubenreihen (Schraubengruppen) bestehen. Dieses Modell wird im Abschnitt 2.2 T-Stummel Modell näher erläutert.

Stirnblech mit Biegebeanspruchung (EPB)

Die Tragfähigkeit des Stirnblechs infolge Biegebeanspruchung erfolgt analog zur Komponente Stützenflansch mit Biegebeanspruchung. Es kommt ebenfalls das in Abschnitt 2.2 T-Stummel Modell erläuterte Modell des äquivalenten T-Stummels zur Anwendung.

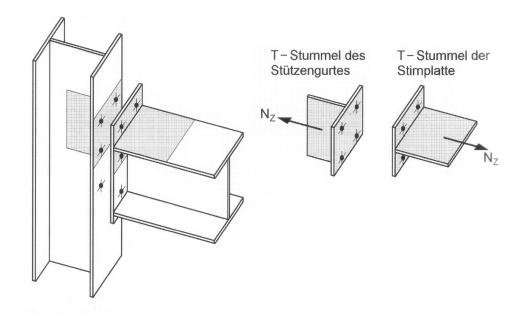


Abbildung 2.3.: T-Stummel bei Träger-Stützen-Verbindungen mit Stirnplatten [3]

Trägerflansch und -steg mit Druckbeanspruchung (BFC)

Nach [4, Bild 6.15] kann der Druckpunkt für einen geschraubten Stirnplattenanschluss mit überstehender Stirnplatte in der Achse der Mittelebene des Druckflansches angenommen werden. Somit ergibt sich die Tragfähigkeit des Trägerflansches und -stegs mit Formel (2.4) zu: (Literatur: [4], [7])

$$F_{c,fb,Rd} = \frac{M_{b,Rd}}{h_b - t_{fb}} \tag{2.4}$$

Trägersteg mit Zugbeanspruchung (BWT)

Die Tragfähigkeit des Trägersteges bei einer Zugbeanspruchung wird anhand von Formel (2.5) ermittelt. Die effektive Breite b_{eff} des Trägersteges entspricht der effektiven Länge l_{eff} des äquivalenten T-Stummels der biegebeanspruchten Stirnplatte. (Literatur: [4], [7])

$$F_{t,wb,Rd} = \frac{b_{eff} t_{wb} f_{yk}}{\gamma_{M0}} \tag{2.5}$$

Ermittlung der Momententragfähigkeit des Anschlusses

Die Tragfähigkeit eines nachgiebigen Anschlusses ist abhängig vom Tragverhalten der einzelnen Grundkomponenten. Dazu müssen für die Ermittlung der Momententragfähigkeit eines

Anschlusses mittels der Komponentenmethode, die zuvor berechneten Komponenten (siehe Tabelle 2.1) in Zug-, Druck- und Schubkomponenten eingeteilt werden.

Die Grenztragfähigkeit $F_{t,min,Rd}$ der Zugkomponenten wird mit der Grenztragfähigkeit der Druck- und Schubkomponente $F_{c,min,Rd}$ verglichen. Wird im Vergleich festgestellt, dass die Grenztragfähigkeit der Druck- und Schubkomponente kleiner ist als die Summe der Grenztragfähigkeiten aller auf Zug beanspruchten Schraubenreihen $F_{Ti,Rd}$, muss die Tragfähigkeit der Schraubenreihe, welche den kleinsten Hebelarm aufweist, abgemindert werden. In diesem Fall würde ein Versagen durch Druck bzw. durch Schub zuerst eintreten. Durch die Abminderung der Tragfähigkeit der Schraubenreihe wird das horizontale Gleichgewicht zwischen Zug- und Druckkraft gewährleistet. (Literatur: [2], [8])

Die Momententragfähigkeit $M_{j,Rd}$ des Anschlusses kann durch das Produkt von Kraft und Hebelarm, wie in Abbildung 2.4 dargestellt, mit Gleichung (2.6), berechnet werden.

$$M_{j,Rd} = \sum_{i} h_i F_{Ti,Rd} \tag{2.6}$$

Mit

 $h_i \dots$ Hebelarm der Schraubenreihe i zum Druckpunkt

 $F_{Ti,Rd}$... Grenzzugkraft der Schraubenreihe i aus den Komponenten der Zuggruppe

i ... Nummer der Schraubenreihe

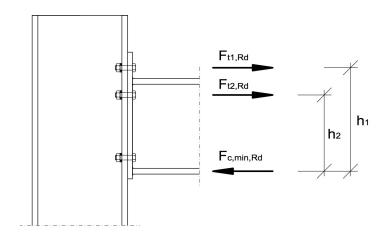


Abbildung 2.4.: Ermittlung der Momententragfähigkeit

 $^{^2}j...$ joint

2.1.2. Rotationssteifigkeit eines Stützen-Trägeranschlusses

Für die Ermittlung der Rotationssteifigkeit eines Stützen-Trägeranschlusses wird ein Gesamtfedermodell zu Hilfe genommen. Jede Grundkomponente des Anschlusses wird im Gesamtfedermodell durch eine Wegfeder mit definierter Steifigkeit erfasst. Das entsprechende Federmodell für den Fall eines geschraubten Anschlusses mit überstehender Stirnplatte und ohne Stützenstegaussteifung ist in Abbildung 2.1 dargestellt.

Alle für den Fall eines Stützen-Trägeranschluss mit überstehender Stirnplatte wesentlichen Steifigkeitskoeffizienten k_i sind in Tabelle 2.2 aufgelistet.

Tabelle 2.2.: Überblick aller Steifigkeitskoeffizienten der Grundkomponenten eines Stützen-Trägeranschlusses

Komponente (Deutsch)	Komponente (Englisch)	Steifigkeits- koeffizient
Stützensteg mit Beanspruchung durch Schub	column web shear (CWS)	k_1
Stützensteg mit Beanspruchung durch Querdruck	column web compression (CWC)	k_2
Stützensteg mit Beanspruchung durch Querzug	$\begin{array}{c} {\rm column\ web\ tension} \\ {\rm (CWT)} \end{array}$	k_3
Stützenflansch mit Biegebeanspruchung	column flange bending (CFB)	k_4
Stirnplatte mit Biegebeanspruchung	end plate bending (EPB)	k_5
Schrauben mit Zugbeanspruchung		k_{10}

Die Steifigkeit der Wegfedern k_i lässt sich für alle Grundkomponenten mittels [4, Tab. 6.11] berechnen. Steifigkeitskoeffizienten k_i von Grundkomponenten, die eine besonders hohe Steifigkeit aufweisen, also $k_i \triangleq \infty$, haben einen vernachlässigbaren Einfluss auf die Anfangssteifigkeit. Aus diesem Grund können die Steifigkeitskomponenten k_i der Grundkomponenten Trägerflansch und -steg mit Druckbeanspruchung (BFC) und Trägersteg mit Zugbeanspruchung (BWT) sowie der Einfluss der Schweißnähte vernachlässigt werden.

Es werden im Rahmen dieser Arbeit die Formeln zur Berechnung aller Steifigkeitskoeffizienten k_i angegeben. Für Herleitungen und Hintergründe dazu wird auf [9] verwiesen.

Stützensteg mit Schubbeanspruchung (CWS)

Für die Grundkomponente Stützensteg mit Schubbeanspruchung wird der Steifigkeitskoeffizient k_1 definiert. Anhand von Gleichung (2.7) lässt sich der Steifigkeitskoeffizient ermitteln. Mit A_{vc} geht die Schubfläche des Stützenstegs und mit β der Übergangsfaktor ein. Näherungswerte für den Übergangsfaktor β sind in [4, Tab. 5.4] angegeben.

$$k_1 = \frac{0,38 \, A_{vc}}{\beta \, z} \tag{2.7}$$

Stützensteg mit Beanspruchung durch Querdruck (CWC)

Die Verformung des Stützensteges hängt von der wirksamen Breite $b_{eff,c,wc}$, der Dicke des Stützensteges t_{wc} und der Höhe des Stützensteges d_c ab. Die zugehörige Steifigkeit kann mit Formel (2.8) berechnet werden.

$$k_2 = \frac{0.7 \, b_{eff} \, t_{wc}}{d_c} \tag{2.8}$$

Stützensteg mit Beanspruchung durch Querzug (CWT)

Analog zu (2.8) ergibt sich der Steifigkeitskoeffizient k_3 mit Formel (2.9) zu:

$$k_3 = \frac{0.7 \, b_{eff} \, t_{wc}}{d_c} \tag{2.9}$$

Stützenflansch mit Biegebeanspruchung (CFB)

Mit der effektiven Länge l_{eff} , der Dicke des Stützenflansches t_{fc} sowie m (die geometrische Größe m entspricht der selben, wie für den äquivalenten T-Stummel nach Abschnitt 2.2 T-Stummel Modell in Abbildung 2.6), wird der Steifigkeitskoeffizient k_4 nach Gleichung (2.10) für eine Biegebeanspruchung des Stützenflansches berechnet.

$$k_4 = \frac{0.9 \, l_{eff} \, t_{fc}^3}{m^3} \tag{2.10}$$

Stirnblech mit Biegebeanspruchung (EPB)

Analog zur Formel (2.10) wird die Berechnung des Steifigkeitskoeffizienten k_5 durch eine Beanspruchung des Stirnbleches auf Biegung, nach Gleichung (2.11) ermittelt.

$$k_5 = \frac{0.9 \, l_{eff} \, t_p^3}{m^3} \tag{2.11}$$

Schrauben mit Zugbeanspruchung

Der Koeffizient k_{10} , der die Beanspruchung von nicht vorgespannten Schrauben auf Zug, berücksichtigt, wird anhand der Gleichung (2.12) ermittelt. A_s bezeichnet den Spannungsquerschnitt und L_b die Dehnlänge der Schraube.

$$k_{10} = 10 \frac{A_s}{L_b} \tag{2.12}$$

Ermittlung der Rotationssteifigkeit

Die elastische Anfangssteifigkeit $S_{j,ini}^3$ kann mit Gleichung (2.13) berechnet werden.

$$S_{j,ini} = \frac{M_j}{\phi_j} = \frac{E z^2}{\sum_{i} \frac{1}{k_i}}$$
 (2.13)

Mit

 $E \dots$ Elastizitätsmodul

 $z\ldots$ Hebelarm zwischen dem Druckpunkt und der Achse der Schraubenreihe

 k_i ... Steifigkeit der Wegfedern der Grundkomponenten

Nur bei linearem Verhalten kann die elastische Anfangssteifigkeit $S_{j,ini}$ zur Beschreibung der Anschlusssteifigkeit herangezogen werden, dh. bei elastischer Schnittgrößenermittlung. Für nichtlineares Verhalten ist die Berechnung der Sekantensteifigkeit S_j nach Gleichung (2.14) nötig. Ein nichtlineares Verhalten der Momenten-Rotationscharakteristik liegt vor, wenn für die Momentenbeanspruchung $2/3 M_{j,Rd} < M_{j,Ed} \le M_{j,Rd}$ gilt.

$$S_{j} = \frac{1}{\mu} S_{j} = \frac{E z^{2}}{\mu \sum_{i} \frac{1}{k_{i}}}$$
 (2.14)

 $^{^3}ini...$ initial

Das Steifigkeitsverhältnis μ lässt sich mit $\psi = 2,7$ für geschraubte Stirnplatten, wie folgt nach Gleichung (2.15) bestimmen:

$$\mu = \left(\frac{1,5 \ M_{j,Ed}}{M_{j,Rd}}\right)^{\psi} \tag{2.15}$$

Die Koeffizienten $k_{3,i}$, $k_{4,i}$, $k_{5,i}$ und $k_{10,i}$ sind in der Zugzone für jede Schraubenreihe i hintereinander, also in Serie geschaltet. Diese Koeffizienten werden durch die Gleichung (2.16) zu einer sogenannten effektiven Federsteifigkeit $k_{eff,i}$ zusammengefasst (vlg. Abbildung 2.1 b).

$$\frac{1}{k_{eff,i}} = \frac{1}{k_{3,i}} + \frac{1}{k_{4,i}} + \frac{1}{k_{5,i}} + \frac{1}{k_{10,i}}$$
(2.16)

Die effektiven Federsteifigkeiten $k_{eff,i}$ der einzelnen Schraubenreihen sind parallel geschaltet und werden zur äquivalenten Federsteifigkeit k_{eq} zusammengefasst. Es wird angenommen, dass alle Verformungen in der Achse der Schraubenreihe proportional zum Abstand der Schraubenreihe zum Druckpunkt sind. Diese Annahme lässt eine Definition des äquivalenten Hebelarms z_{eq} und der äquivalenten Federsteifigkeit k_{eq} (vgl. Abbildung 2.1 c) nach Gleichung (2.17) und (2.18) zu. Die Berechnung der Anschlusssteifigkeit erfolgt wieder nach den Formeln (2.13) und (2.14). (Literatur: [5])

$$z_{eq} = \frac{\sum_{i} k_{eff,i} h_{i}^{2}}{\sum_{i} k_{eff,i} h_{i}}$$
 (2.17)

$$k_{eq} = \frac{\sum_{i} k_{eff,i} h_i}{z_{eq}} \tag{2.18}$$

Die berechnete Anschlusssteifigkeit des Knotenpunktes, geht in die Modellbildung der Tragwerksberechnung als Drehfeder zwischen Träger und Stütze ein.

Die Knotenpunktausbildung ist bereits in der Phase der Tragwerksberechnung zu berücksichtigen. Damit im weiteren Verlauf der Anschluss als starr, gelenkig oder als nachgiebig klassifiziert werden kann. Auf die Arten der Klassifizierung eines Anschlusses wird in Abschnitt 2.3 Klassifizierung von Anschlüssen der vorliegenden Arbeit näher eingegangen. (Literatur: [4], [5], [9])

2.2. T-Stummel Modell

Das Modell des äquivalenten T-Stummels wird für die Ermittlung der Tragfähigkeit und Steifigkeit der Grundkomponenten von nicht ausgesteiften bzw. ausgesteiften geschraubten

Verbindungen verwendet. Konkret können folgende Bauteile mit Zugbeanpruchung untersucht werden:

- Stützenflansch mit Biegebeanspruchung
- Stirnplatte mit Biegebeanspruchung
- Flanschwinkel mit Biegebeanspruchung
- Fußplatte mit Biegebeanspruchung infolge Zugbeanspruchung

Für den Stützen-Trägeranschluss heißt dies, dass die Komponenten Stützenflansch mit Biegebeanspruchung (CFB) und Stirnplatte mit Biegebeanspruchung (EPB) mit Hilfe des Modells des äquivalenten T-Stummels berechnet werden. (Literatur: [4], [8])

In Abhängigkeit der Abmessungen von Schraubendurchmesser und Stützenflansch- bzw. Stirnblechdicke können Abstützkräfte Q entstehen. Diese Abstützkräfte Q und die Zugtragkraft $F_{T,Rd}$ stehen mit den Schraubenkräften $F_{t,Rd}$ im Gleichgewicht. Es können drei verschiedene Versagensmodi auftreten.

Modus 1: Vollständiges Plastizieren des T-Stummelflansches

Das vollständige Fließen des T-Stummelflansches (vgl. Abbildung 2.5) ist charakteristisch für Anschlüsse mit sehr dünnen Blechen. Die Zugbeanspruchung führt im T-Stummelflansch zu einer Fließgelenkkette. Es tritt dabei kein Versagen der Schrauben ein. (Literatur: [8], [10])

Die Grenztragfähigkeit wird mit Hilfe des Arbeitssatzes durch Gleichung (2.19) bestimmt.

$$F_{T,1,Rd} = \frac{4 M_{pl,1,Rd}}{m} \tag{2.19}$$

Modus 2: Plastizieren des T-Stummelflansches und Schraubenversagen

Wenn der T-Stummel nach Modus 2 versagt, dann auf Grund des Versagens der Schraube nach dem Ausbilden eines Fließgelenkes im T-Stummelflansch. Das heißt, die Schrauben versagen bevor es zum vollständigen Fließen des Flansches kommt (vgl. Abbildung 2.5). (Literatur: [8], [10])

Die Gleichung (2.20) liefert die Grenztragfähigkeit des Versagensmodus 2.

$$F_{T,2,Rd} = \frac{2 M_{pl,2,Rd} + n \sum F_{t,Rd}}{m + n}$$
 (2.20)

Modus 3: Schraubenversagen

Der Versagensmodus 3 ist durch Zugversagen der Schrauben charakterisiert. Vorallem bei Stützenflanschen bzw. Stirnplatten, deren Dicke im Verhältnis zum Schraubendurchmesser sehr groß ist, tritt Versagensmodus 3 ein. Die biegebeanspruchte Platte kann als starr

angenommen werden. Die daraus zu erwartende Starrkörperverschiebung führt zum alleinigen Versagen der Schrauben. Im T-Stummelflansch tritt kein Fließen des Grundmaterials auf. Der T-Stummelflansch verhält sich elastisch (vgl. Abbildung 2.5). (Literatur: [8], [10])

Die Grenztragfähigkeit des Versagensmodus 3 ist mit Gleichung (2.21) berechenbar.

$$F_{T,3,Rd} = \sum F_{t,Rd}$$
 (2.21)

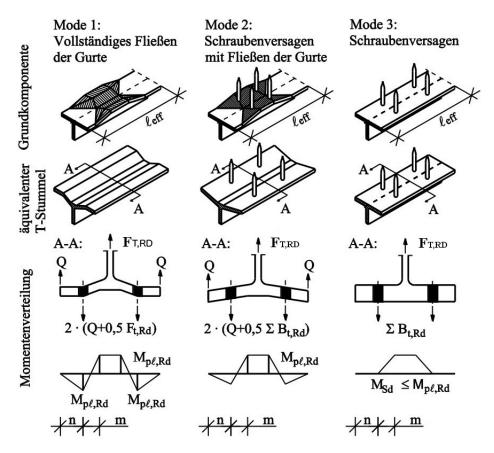


Abbildung 2.5.: Versagensmodi T-Stummel [2, adaptiert]

Für die Gleichungen (2.19) und (2.20) gilt:

$$M_{pl,1,Rd} = \frac{0.25 \sum l_{eff,1} t_f^2 f_y}{\gamma_{M0}}$$
 (2.22)

$$M_{pl,2,Rd} = \frac{0.25 \sum l_{eff,2} t_f^2 f_y}{\gamma_{M0}}$$
 (2.23)

Mit:

 $t_f \dots$ T-Stummelflanschdicke

 f_y ... Streckgrenze des Materials

 γ_{M0} ... Teilsicherheitsbeiwert für das Material

 $l_{eff,1}$ bzw. $l_{eff,2}$... effektive Länge des äquivalenten T-Stummels für Modus 1 bzw.

Modus 2

m ... geometrische Abmessung (vgl. Abbildung 2.6)

 $n \dots e_{min}$ jedoch $n \leq 1,25 m$ (vgl. Abbildung 2.6)

 $\sum F_{t,Rd}$... Summe der Grenzzugkräfte der Schrauben im äquivalenten

T-Stummel; das Mögliche Durchstanzen des T-Stummelbleches ist zu zubeachten, dh. wird die Durchstanzkraft maßgebend, gilt

 $F_{t,Rd} \triangleq B_{p,Rd}$

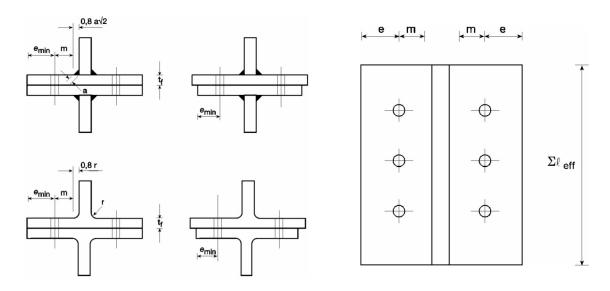


Abbildung 2.6.: geometrische Abmessungen eines äquivalenten T-Stummelflansches [4, Bild 6.2]

Zoetemeijer untersuchte in seiner Arbeit [11] anhand von Bauteilversuchen an nicht ausgesteiften Stützengurten die effektiven Längen und die zugehörigen Fließlinienmodelle. Die Fließmuster sind in Abhängigkeit von eventuell auftretenden Abstützkräften zu bestimmen. Es werden zwei verschiedene Fließmuster unterschieden. Zum Einen gibt es das nicht kreisförmige - non-circular pattern (nc) und zum Anderen das kreisförmige - circular pattern (cp) (vgl. Tabelle 2.3). Aus diesen Versuchen und numerischen Berechnungen wurden die anzusetzenden effektiven Längen l_{eff} ermittelt, die der Fließlinienlängen der biegebeanspruchten Bleche entsprechen. Für die effektive Länge $l_{eff,1}$ des Modus 1 ist die kleinste effektive Länge der Fließmuster nc und cp maßgebend. Wohingegen für die effektive Länge $l_{eff,2}$ des Versagens-

modus 2 nur das Fließmuster nc maßgebend ist.

In den Tabellen 6.4, 6.5 und 6.6 der ÖNORM EN 1993-1-8 [4] sind getrennt für ausgesteifte und nicht ausgesteifte Stützenflansche, sowie für Stirnbleche Angaben zu den effektiven Längen zu finden. Die Tabellen liefern Angaben zu den effektiven Längen für:

- die isolierte Betrachtung jeder Schraubenreihe
- die Betrachtung als Schraubengruppe. Die Einzellängen l_{eff} pro Schraubenreihe werden aufsummiert.

In Tabelle 2.3 werden die effektiven Längen eines nicht ausgesteiften Stützenflansches, sowie die Fließmuster nc und cp dargestellt.

Tabelle 2.3.: Darstellung von l_{eff} für einen nicht ausgesteiften Stützenflansch [2]

Lage	$\begin{array}{c} \text{Individuell} \\ \ell_{\text{eff,cp}} & \ell_{\text{eff,nc}} \end{array}$		Gruppenbetrachtung $\ell_{ m eff,cp}$ $\ell_{ m eff,nc}$	
innere Schrauben- reihe	2•π•m	4•m+ 1,25•e	2•р	p
randnahe Schrauben-	2•π•m	4•m+ 1,25•e	π•m+p	2*m+ 0,625*e +0,5*p
reihe	π•m+ 2•e ₁	2•m+ 0,625·e +e	2•e ₁ +p	e ₁ +p

Versagensart 1: $\ell_{eff,1} = min (\ell_{eff,cp}; \ell_{eff,nc})$

Versagensart 1: $\ell_{\text{eff,1}} = \min \left(\sum \ell_{\text{eff,cp}} ; \sum \ell_{\text{eff,nc}} \right)$

Versagensart 2: $\ell_{eff,2} = \ell_{eff,nc}$

Versagensart 2: $\ell_{eff,2} = \sum \ell_{eff,nc}$

mit e₁ = senkrechter Abstand der randnahen Schrauben zum freien Rand

Der Bemessungswert der Zugtragfähigkeit $F_{T,Rd}$ eines T-Stummelflansches ergibt sich aus dem Minimum der Tragfähigkeiten der einzelnen Modi.

$$F_{T,1,Rd} = \frac{4 M_{pl,1,Rd}}{m}$$

$$F_{T,3,Rd} = \frac{2 M_{pl,2,Rd} + n \Sigma F_{t,Rd}}{m + n}$$

$$F_{T,3,Rd} = \Sigma F_{t,Rd}$$

$$(2.24)$$

2.3. Klassifizierung von Anschlüssen

Durch die Anwendung der Komponentenmethode ist es möglich, dass Anschlüsse nicht mehr nur als gelenkig oder starr, sondern auch als verformbar definiert werden können. Für die Tragwerksberechnung ist diese lokale Information wesentlich und geht anhand der Momenten-Rotations-Charakteristik (Beispiel für eine Momenten-Rotations-Charakteristik siehe Abbildung 2.7 c) entscheidend in das statische Modell mit ein.

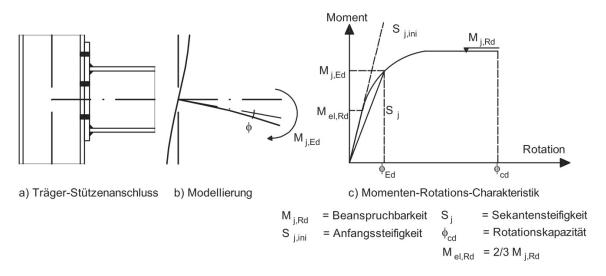


Abbildung 2.7.: Momenten-Rotations-Charakteristik eines Anschlusses [5]

Mit Stützen-Trägeranschlüssen werden drei wesentliche Kenngrößen in Zusammenhang gebracht, diese sind:

- Die Momententragfähigkeit des Anschlusses. Sie gibt das vom Anschluss maximal übertragbare Moment an, bevor es zum Versagen des Anschlusses kommt. Das Nachweisverfahren bzw. die Querschnittklassen bestimmen, ob es sich dabei um die plastische Momententragfähigkeit $M_{j,Rd}$ oder die elastische Momententragfähigkeit $M_{el,Rd}$ handelt.
- Die Steifigkeit des Anschlusses, entspricht der Steigung der Tangente in der Momenten-Rotations-Charakteristik (vgl. Abbildung 2.7 c). Hier wird ebenfalls in Abhängigkeit vom Nachweisverfahren zwischen elastischer Anfangssteifigkeit $S_{j,ini}$ und der Sekantensteifigkeit S_j unterschieden. Anhand der Steifigkeit kann die Verformbarkeit des Anschlusses beschrieben werden.
- Die Rotationskapazität ϕ_{cd} entspricht der maximalen aufnehmbaren Verdrehung. Die maximale Verdrehung entspricht jener Verdrehung im Anschluss, die vor dem Versagen auftritt. Für eine Schnittgrößenermittlung unter Ausnutzung plastischer Reserven ist eine genügende Rotationskapazität wesentlich.

Anhand dieser drei Kenngrößen, können Anschlüsse nach drei verschiedenen Arten klassifiziert werden:

- Klassifizierung nach der Beanspruchbarkeit des Anschlusses
- Klassifizierung nach der Rotationssteifigkeit des Anschlusses
- Klassifizierung nach der Rotationskapazität des Anschlusses

2.3.1. Klassifizierung nach der Beanspruchbarkeit des Anschlusses

Nach [1] und [4] kann ein Anschluss als volltragfähig, gelenkig oder teiltragfähig klassifiziert werden, indem seine Momententragfähigkeit $M_{j,Rd}$ mit den Momententragfähigkeiten der angeschlossenen Bauteile verglichen wird (vgl. Abbildung 2.8). Dabei gelten die Momententragfähigkeiten der angeschlossenen Bauteile direkt beim Anschluss. Im folgenden werden alle drei Begriffe erläutert.

volltragfähig: Volltragfähige Anschlüsse weisen eine Momententragfähigkeit $M_{j,Rd}$ auf, die größer ist als die der angeschlossenen Bauteile $M_{pl,Rd}$. Werden die Schnittgrößen plastisch berechnet, so bilden sich die plastischen Gelenke nur im Bauteil aus. Eine Gelenkbildung im Anschluss ist ausgeschlossen.

teiltragfähig: Bei einem teiltragfähigen Anschluss ist die Momententragfähigkeit $M_{j,Rd}$ kleiner als die der angeschlossenen Bauteile. Somit ist $M_{j,Rd}$ maßgebend für die Ermittlung der Schnittgrößen und die Bemessung. Die Bildung der plastischen Gelenke erfolgt im Anschlussbereich und demzufolge ist eine hinreichend große Rotationskapazität ϕ_{cd} erforderlich.

gelenkig: Ein gelenkiger Anschluss muss in der Lage sein, die auftretenden Schnittkräfte zu übertragen, ohne dass größere Momente erzeugt werden, welche unzulässige Auswirkungen auf die angeschlossenen Bauteile oder das Gesamttragwerk haben könnten. Der Anschluss selbst besitzt keine bedeutende Momententragfähigkeit $M_{j,Rd}$. Der gelenkige Anschluss lässt uneingeschränkt Rotationen zu. In der Tragwerksberechnung kann der Anschluss als ein ideales Gelenk betrachtet werden.

2.3.2. Klassifizierung nach der Rotationssteifigkeit des Anschlusses

Ein Anschluss kann je nach vorhandener Rotationssteifigkeit als starr, gelenkig oder verformbar klassifiziert werden (vgl. Abbildung 2.8). Im folgenden werden alle drei Begriffe erläutert. Die folgenden Ausführungen sind an [1] und [4] angelehnt.

starr: Es handelt sich um einen starren Anschluss, wenn angenommen werden kann, dass der Anschluss eine ausreichend große Rotationssteifigkeit besitzt, sodass auftretende Rotationen vernachlässigt werden können.

verformbar/nachgiebig: Als verformbare bzw. nachgiebige Anschlüsse gelten all jene, die nicht als gelenkig oder starr eingestuft werden können. Vorhandene Rotationen haben einen Einfluss auf die Schnittgrößenverteilung und müssen beachtet werden. Mittels einer Drehfeder, die eine konstante Rotationssteifigkeit besitzt kann das Anschlussverhalten modelliert werden.

gelenkig Ein gelenkiger Anschluss ist in der Lage, Rotationen zuzulassen und auftretende Schnittkräfte zu übertragen, ohne dass größere Momente erzeugt werden, welche unzulässige Auswirkungen auf die angeschlossenen Bauteile oder das Gesamttragwerk haben können. In der Tragwerksberechnung kann ein gelenkiger Anschluss als ein ideales Gelenk modelliert werden.

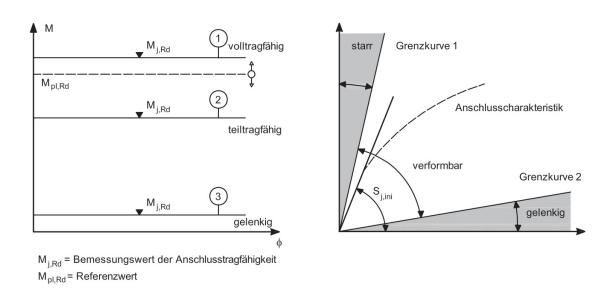


Abbildung 2.8.: Klassifizierung nach der Beanspruchbarkeit (links) oder Rotationssteifigkeit (rechts) eines Anschlusses [5]

2.3.3. Klassifizierung nach der Rotationskapazität des Anschlusses

Die Klassifizierung eines Anschlusses nach der Rotationskapazität erfolgt für die Querschnitte in drei verschiedenen Klassen. Die Klasse 1, Klasse 2 sowie Klasse 3 werden im folgenden dargelegt (vgl. Abbildung 2.9). (Literatur: [1], [4])

Klasse 1: Alle Querschnitte, die der Klasse 1 zugeordnet werden können, weisen eine ausreichende Rotationskapazität auf, welche für eine plastische Beanspruchbarkeit nötig ist. Ein plastisches Gelenk kann sich im Anschluss auf Grund der Verformbarkeit ausbilden.

Dabei entstehen keine Verluste der plastischen Beanspruchbarkeit und eine Umlagerung der Schnittgrößen kann stattfinden.

Klasse 2: Diese Querschnitte können plastisch beansprucht werden. Eine innere Umlagerung von Kräften bis zur plastischen Anschlusstragfähigkeit ist angesichts plastischer Verformungen einzelner Komponenten möglich. Im Vergleich zu Klasse 1 Querschnitten weisen jedoch Querschnitte der Klasse 2 eine geringere Verformbarkeit auf. Aus diesem Grund ist nach dem Erreichen der plastischen Momentenbeanspruchbarkeit keine weitere Rotation mehr möglich.

Klasse 3: Für diese Querschnitte gilt: Sind verformungsarme und spröde Komponenten wie beispielsweise Schweißnähte oder Schrauben maßgebend für die Tragfähigkeit des Anschlusses, dann sind innere plastische Umlagerungen im Anschluss nicht möglich. Folglich erreicht der Anschluss nur eine elastische Momententragfähigkeit und weist keine Rotationskapazität auf. Es ist nur eine linear-elastische Beanspruchung möglich.

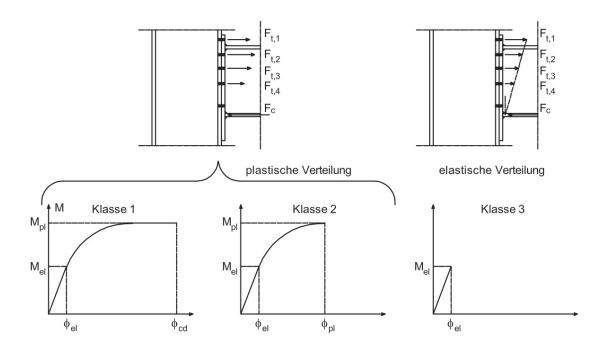


Abbildung 2.9.: Klassifizierung nach der Rotationskapazität eines Anschlusses [5]

2.3.4. Anschlussmodelle für die Tragwerksberechnung

In Abhängigkeit der Tragwerksberechnung wird ein Anschluss nach Beanspruchbarkeit und/oder Rotationssteifigkeit klassifiziert.

Soll die Tragwerksberechnung elastisch erfolgen, dh. alle Schnittgrößen sind im System nur von der Steifigkeit der einzelnen Bauteile abhängig, dann ist eine Klassifizierung nach der

Rotationssteifigkeit anzuwenden.

Ist eine ausreichende Rotationskapazität vorhanden, dann kann eine plastische Tragwerksberechnung erfolgen. Zu beachten ist, ob nicht eventuell auftretende Systemverformungen Auswirkungen auf das System haben. Wenn keine Auswirkungen aus dem verformten System zu beachten sind, dann kann eine starr-plastische Tragwerksberechnung erfolgen. In diesem Fall ist die Schnittgrößenverteilung im Gesamtsystem nur von der Tragfähigkeit der einzelnen Bauteile abhängig und die Klassifizierung erfolgt nach der Beanspruchbarkeit. Für den Fall dass Einflüsse aus dem verformten System, wie beispielsweise Einflüsse aus der Theorie II. Ordnung, zu beachten sind, muss das Berechnungsverfahren elastisch-plastisch für das Tragwerk gewählt werden. Die Schnittgrößenverteilung ist im Gesamtsystem von der Beanspruchbarkeit und der Rotationssteifigkeit abhängig. Aus diesem Grund müssen beide Kennwerte für eine Klassifizierung herangezogen werden. Diese Art von Anschlüssen wird mit dem Begriff nachgiebiger Anschluss bezeichnet. Der nachgiebige Anschluss fasst alle unterschiedlichen Kombinationen von starren, verformbaren, voll- und teiltragfähigen Anschlüssen zusammen. Bei teiltragfähigen Anschlüssen muss bei einer Fließgelenkbildung bei plastischer Tragwerksberechnung, unabhängig von dem angewandten Verfahren, der Anschluss auf eine genügende Rotationskapazität überprüft werden.

Tabelle 2.4 liefert eine Zusammenfassung über die Einteilung der Klassifizierungsverfahren in Abhängigkeit des verwendeten Berechnungsverfahren, sowie das zu verwendende Anschlussmodell für die Tragwerksberechnung.

Berechnungs-Klassifizierung der Klassifizierung der Anschlüsse verfahren Anschlüsse nach elastisch Steifigkeit gelenkig starr verformbar Beanspruchbarkeit starr-plastisch gelenkig volltragfähig teiltragfähig biegesteif nachgiebig elastisch -Steifigkeit und starr + volltragfähig gelenkig verformbar + volltragfähig plastisch Beanspruchbarkeit verformbar + teiltragfähig starr + teiltragfähig Anschlussmodell für die Tragwerksberechnung M = 0 und $\phi \neq 0$ $M \neq 0$ und $\phi = 0$ $M \neq 0$ und $\phi \neq 0$

Tabelle 2.4.: Anschlussmodelle für die Tragwerksberechnung [5]

2.4. Vereinfachtes Verfahren

Laut Abschnitt 6.2.7.1 (8) der ÖNORM EN 1993-1-8 [4] ist eine Vereinfachung der Komponentenmethode unter bestimmten Umständen erlaubt. Für einen Stützen-Trägeranschluss

mit überstehender Stirnplatte und mit nur zwei Schraubenreihen in der Zugzone, kann die Biegetragfähigkeit des Anschlusses nach Abbildung 2.10 geführt werden.

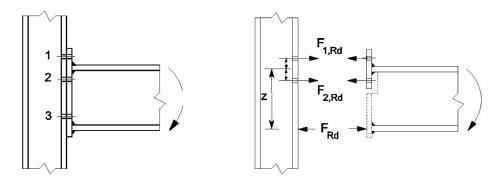


Abbildung 2.10.: Vereinfachte Berechnung von geschraubten Anschlüssen mit überstehender Stirnplatte [4]

Für jede Grundkomponente wird nur die resultierende Zugkraft $F_{t,Rd,G}$ beider Schraubenreihen als Gruppe ermittelt. Voraussetzung für das vereinfachte Verfahren ist, dass die Beanspruchbarkeit F_{Rd} nicht größer ist als 3,8 $F_{t,Rd}$ ($F_{t,Rd}$ entspricht dem Bemessungswert der Zugtragfähigkeit einer Schraube). Ist diese Bedingung erfüllt, kann die gesamte Zugzone der Stirnplatte als eine Grundkomponente herangezogen werden. Weisen beide Schraubenreihen in der Zugzone den gleichen Abstand vom Trägerflansch, der unter Zugbeanspruchung steht, auf, kann dieser Teil der Stirnplatte als ein äquivalenter T-Stummel betrachtet werden, um $F_{1,Rd}$ zu bestimmen. $F_{2,Rd}$ kann mit $F_{1,Rd}$ gleichgesetzt werden. F_{Rd} ergibt sich zu $2F_{1,Rd}$.

Die Ermittlung der Rotationssteifigkeit $S_{j,ini}$ ist ebenfalls mit der *Vereinfachten Komponentenmethode* möglich, indem der inneren Schraubenreihe die gleiche Steifigkeit zugeordnet wird, wie der äußeren Schraubenreihe.

2.5. Auswirkungen von verformbaren Verbindungen

Wie im Abschnitt 2.3 Klassifizierung von Anschlüssen dieser Arbeit erläutert wurde, werden Verbindungen nach Beanspruchbarkeit und Rotationsteifigkeit klassifiziert. Für starre Anschlüsse gilt es den Knoten derart auszubilden, dass Verformungen einen vernachlässigbaren Einfluss auf die Schnittgrößenverteilung des Tragwerks haben.

Im Gegensatz zu starren Verbindungen haben verformbare bzw. nachgiebige Verbindungen einen nicht vernachlässigbaren Einfluss auf die Schnittgrößenverteilung und auf die Gesamtverformungen des Tragwerks. Da sich Verformungen auf die Gebrauchstauglichkeit und die Schnittgrößenverteilung auf die Tragfähigkeit des Tragwerks auswirken, wird jede Änderung von Verformung und Schnittgrößenverteilung substanziell.

Verformbare bzw. nachgiebige Verbindungen haben zwei wesentliche Auswirkungen auf das Tragwerk:

- jegliche Reduzierung von lokalen Steifigkeiten führt bei statisch unbestimmten Systemen zu Schnittgrößenumlagerungen
- es kommt zur Zunahme der Verformungen des Tragwerks

Die oben angeführten Effekte haben bei unausgesteiften Stützen-Trägeranschlüssen eine besondere Bedeutung. Unausgesteifte Stützen-Trägeranschlüsse müssen sich schon vor Erreichen ihrer Grenztragfähigkeit stark verformen.

Abbildung 2.7 c zeigt die Momenten-Rotations-Charakteristik eines nicht ausgesteiften Stützen-Trägeranschlusses. Das Verhalten ist nichtlinear. In Abhängigkeit der Belastung $M_{j,Ed}$, verändert sich die Steifigkeit S_j des Anschlusses. Beim Aufbringen, also zu Beginn, der Belastung herrscht die Anfangssteifigkeit $S_{j,ini}$ vor. Steigt die Belastung weiter an, beginnt die Steifigkeit abzunehmen. Bei Erreichen der Grenztragfähigkeit $M_{j,Rd}$ ist keine Steifigkeit des Anschlusses mehr gegeben und es kommt zum Versagen. (Literatur: [3])

2.6. Ausblick

Die Anwendbarkeit der Komponentenmethode auf vier Schrauben pro Schraubenreihe ist aktuell Gegenstand der Forschung im Bereich der Komponentenmethode. Im Zuge eines AiF-Forschungsprojektes, werden Versuche in Kooperation mit den Forschungseinrichtungen TU Dortmund, RWTH Aachen und FH Köln, durchgeführt. Schmidt entwickelte anhand der Auswertungen der Versuche in seiner Dissertation [2] ein mechanisches Modell für den um 2 Schrauben erweiterten Anschluss pro Schraubenreihe. In Abbildung 2.11 ist ein Stützen-Trägeranschluss mit 4 Schrauben pro Schraubenreihe dargestellt.

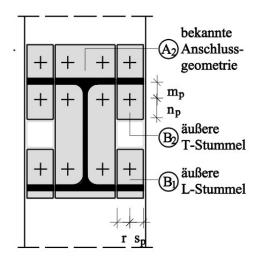


Abbildung 2.11.: Stützen-Trägeranschluss mit 4 Schrauben pro Schraubenreihe [2]

3. Vergleich

In diesem Kapitel erfolgt der Vergleich der Genauen und der Vereinfachten Komponentenmethode. Dazu werden die Ergebnisse für die Momententragfähigkeit und die Rotationssteifigkeit von unterschiedlichen Anschlüssen mittels beider Verfahren ermittelt und gegenübergestellt.

3.1. Anwendungsbeispiel

Es wird ein Anwendungsbeispiel eines Stützen-Trägeranschlusses anhand der ÖNORM EN 1993-1-8 [4] und der in dieser geregelten Komponentenmethode berechnet. Abschnitt [4, 6.2.6] regelt alle Tragfähigkeiten der Grundkomponenten. Die Steifigkeitskoeffizienten sind in [4, Tab. 6.11] festgelegt. Anschließend wird der gleiche Anschluss mittels der Vereinfachten Komponentenmethode [4, 6.2.7.1(8)] berechnet, wodurch ein Vergleich beider Verfahren möglich ist. Zusätzlich wird dieses Anwendungsbeispiel anhand eines Excelberechnungsprogramms berechnet. Die Berechnungen sind mit Hilfe von [4],[6] und [9] durchgeführt worden.

3.1.1. Angaben und Beschreibung des Anwendungsbeispiels

Es ist ein einseitiger Stützen-Trägeranschluss (vgl. Abbildung 3.1) eines Hallenrahmens gegeben. Der Anschluss von Stütze und Träger erfolgt über eine geschraubte Stirnplattenverbindung. Der Stützensteg ist nicht ausgesteift. Für die Stütze wird ein HEA~360 Profil gewählt. Für den angeschlossenen Träger ein HEB~280 Profil. Stütze, Träger sowie Stirnplatte werden mit der Stahlgüte S~235 ausgeführt. Es werden M16~(8.8) Schrauben für den Anschluss verwendet. Die vorhandene Längsdruckspannung in der Stütze $\sigma_{com,Ed}$ ist kleiner als $0,7~f_{y,wc}$. Alle Berechnungsangaben, darunter auch Werte aus Profiltabellen, sind in den Tabellen 3.1, 3.2 und 3.3 zusammengefasst.

Tabelle	3.1.:	Teil	siche	rheits	beiwerte

γ_{M0}	1,00		f_y	$235\mathrm{N/mm^2}$
γ_{M1}	1,00		E	$210~000\mathrm{N/mm^2}$
γ_{M2}	1,25		ε	1,0

Tabelle 3.2.: Materialkennwerte S235

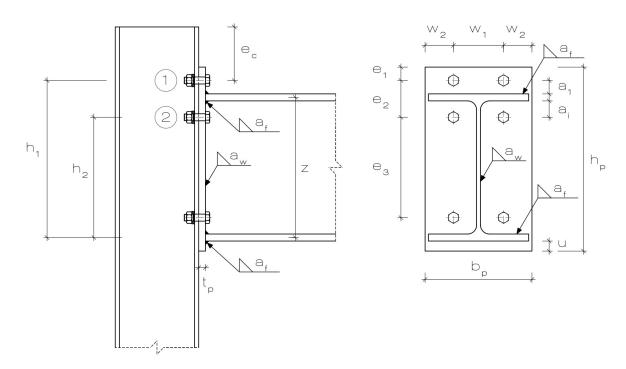


Abbildung 3.1.: Anwendungsbeispiel mit Abmessungsbezeichnungen

Tabelle 3.3.: Berechnungsangaben Anschluss $HEA\ 360/HEB\ 280$

Stütz	e HEA 360	Träge	er HEB 280	S	Stirnplatte	Schrauben M16 (8.8)		
f_{yc}	$235~\mathrm{N/mm^2}$	f_{yb}	$235~\mathrm{N/mm^2}$	f_{yp}	$235~\mathrm{N/mm^2}$	f_{ub}	$800~\mathrm{N/mm^2}$	
h_c	$350~\mathrm{mm}$	h_b	$280~\mathrm{mm}$	h_p	$340~\mathrm{mm}$	d_0	16 mm	
b_c	$300~\mathrm{mm}$	b_b	$280~\mathrm{mm}$	b_p	$280~\mathrm{mm}$	A_s	$1,57~\mathrm{cm}^2$	
t_{wc}	10 mm	t_{wb}	$10,5~\mathrm{mm}$	t_p	$25~\mathrm{mm}$	e_1	$25~\mathrm{mm}$	
t_{fc}	17,5 mm	t_{fb}	18 mm	u	0 mm	e_2	87.5 mm	
r_c	27 mm	r_b	24 mm	a_f	6 mm	e_3	$155~\mathrm{mm}$	
A_c	$142{,}80~\mathrm{cm}^2$	A_b	$131{,}40~\mathrm{cm}^2$	a_w	3 mm	e_c	$300~\mathrm{mm}$	
A_{vc}	$48{,}96~\mathrm{cm}^2$	A_{vb}	$41{,}09~\mathrm{cm}^2$			a_1	35 mm	
$W_{el,y,c}$	$1891~\mathrm{cm}^3$	$W_{el,y,b}$	$1376~\mathrm{cm}^3$			a_i	34,5 mm	
						w_1	200 mm	
						w_2	40 mm	
						d_{UL}^{4}	8 mm	
						e^5	$26{,}24~\mathrm{mm}$	
						s^6	24 mm	

 $^{^4\}mathrm{Blechst\"{a}rke}$ der Unterlagsscheibe

⁵Eckmaß einer Schraube ⁶Schlüsselweite

3.1.2. Berechnung mittels der Genauen Komponentenmethode

Im Folgenden wird die Anwendbarkeit der Komponentenmethode geprüft, sowie alle Tragfähigkeiten und Steifigkeiten der Grundkomponenten (vgl. Tabelle 2.1) berechnet.

Anwendbarkeit der Komponentenmethode

Nach [4, 6.2.6.1 (1)] ist die Anwendbarkeit des Bemessungsverfahrens auf die Schlankheit des Stützenstegs beschränkt.

Ermittlung der Stützensteghöhe d_c :

$$d_c = h_c - 2(t_{fc} + r_c) = 350 - 2(17.5 + 27) = 261,00 \, mm$$
 (3.1)

Mit $\varepsilon = 1$ für S235 und d_c aus (3.1) wird die Anwendungsbedingung des Verfahrens überprüft:

$$\frac{d_c}{t_{wc}} \le 69 \varepsilon$$

$$\frac{261}{10} \le 69 \cdot 1$$

$$26, 1 \le 69 \checkmark$$

$$(3.2)$$

Die Bedingung (3.2) ist erfüllt, das Verfahren ist somit für die Bemessung zulässig.

1) Stützensteg mit Beanspruchung durch Schub (CWS)

1.1) Berechnung der Tragfähigkeit

Die Berechnung der Tragfähigkeit der Grundkomponente Stützensteg mit Beanspruchung durch Schub (CWS) ist im Abschnitt [4, 6.2.6.1] geregelt. Nach Formel (2.1) besitzt die Komponente folgende Tragfähigkeit:

$$F_{wp,Rd} = \frac{0.9 \ f_{y,wc} \ A_{vc}}{\sqrt{3} \ \gamma_{M0}} = \frac{0.9 \cdot 235 \cdot 4896}{\sqrt{3} \cdot 1.0} \cdot 10^{-3} = \underbrace{\frac{597,85 \ kN}{2000 \ kn}}_{=0.500 \ kn}$$
(3.3)

1.2) Berechnung der Steifigkeit

Für den einseitigen Anschluss gilt nach [4, Tab. 5.4] $\beta = 1, 0$. Die Steifigkeit der Komponente ergibt mit z (Hebelarm nach [4, Bild 6.15 d]) nach Formel (2.7) zu:

$$z = h_b - t_{fb} = 280 - 18 = 262,00 \, mm \tag{3.4}$$

$$k_1 = \frac{0.38 \ A_{vc}}{\beta \ z} = \frac{0.38 \cdot 4896}{1.0 \cdot 262} = \frac{7.101 \ mm}{2.500}$$
 (3.5)

2) Stützensteg mit Beanspruchung durch Querdruck (CWC)

2.1) Berechnung der Tragfähigkeit

Die effektive Breite $b_{eff,c,wc}$ lässt sich für eine geschraubte Stirnblechverbindung nach [4, 6.2.6.2 (1)] berechnen.

$$b_{eff,c,wc} = t_{fb} + 2\sqrt{2} a_f + 5(t_{fc} + s) + min(u^7 - a_f \sqrt{2} + t_p; 2t_p) =$$

$$= 18 + 2\sqrt{2} \cdot 6 + 5(17,5 + 27) + min(0 - 6\sqrt{2} + 25; 2 \cdot 25) =$$

$$= 273,99 mm$$
(3.6)

Die Abminderung infolge Plattenbeulen erfolgt mit dem Abminderungsbeiwert ρ . ρ ist abhängig von der Schlankheit $\overline{\lambda}_p$, diese ergibt sich mit der geometrischen Größe d_c aus Formel (3.1) und der effektiven Breite $b_{eff,c,wc}$ aus Formel (3.6) nach [4, (6.13 c)] zu:

$$\overline{\lambda_p} = 0.932 \sqrt{\frac{b_{eff,c,wc} d_c f_{y,wc}}{E t_{wc}^2}} = 0.932 \sqrt{\frac{273.99 \cdot 261 \cdot 235}{210000 \cdot 10^2}} = 0.843$$
 (3.7)

Für $\overline{\lambda_p} > 0.72$ gilt nach [4, (6.13 b)]:

$$\rho = \frac{\overline{\lambda_p} - 0.2}{\overline{\lambda_p}^2} = \frac{0.843 - 0.2}{0.843^2} = 0.912 \tag{3.8}$$

Es folgt die Ermittlung des Abminderungsbeiwertes ω für die Interaktion mit der Schubbeanspruchung, für $\beta = 1,0$ nach [4, Tab. 6.3]:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1,3\left(\frac{b_{eff,c,wc} t_{wc}}{A_{vc}}\right)^2}} = \frac{1}{\sqrt{1 + 1,3\left(\frac{273,99 \cdot 10}{4896}\right)^2}} = 0,843$$
 (3.9)

Eine Abminderung infolge Stützenbeanspruchung nach [4, 6.2.6.2 (2)] ist ebenfalls zu beachten. Laut Angabe herrscht $\sigma_{com,Ed} < 0,7 f_{y,wc}$ in der Stütze vor, somit gilt:

$$k_{wc} = 1,0 \tag{3.10}$$

Die Berechnung der Tragfähigkeit erfolgt nach (2.2) mit den Werten aus den Formeln (3.6), (3.8), (3.9) und (3.10).

⁷u... siehe Abbildung 3.1

$$F_{c,wc,Rd} = \frac{\omega \ k_{wc} \ \rho \ b_{eff,c,wc} \ t_{wc} \ f_{y,wc}}{\gamma_{M1}} = \frac{0,843 \cdot 1,0 \cdot 0,912 \cdot 273,99 \cdot 10 \cdot 235}{1,00} \cdot 10^{-3}$$

$$= \underline{494,86 \ kN}$$
(3.11)

2.2) Berechnung der Steifigkeit

Der Steifigkeitskoeffizient k_2 für die Beanspruchung des Stützensteges mit Querdruck nach Formel (2.8) ergibt sich mit der effektiven Breite $b_{eff,c,wc}$ aus Gleichung (3.6) zu:

$$k_2 = \frac{0.7 \ b_{eff,c,wc} \ t_{wc}}{d_c} = \frac{0.7 \cdot 273,99 \cdot 10}{261} = \frac{7,348 \ mm}{260}$$
(3.12)

3) Stützensteg mit Beanspruchung durch Querzug (CWT)

Die Tragfähigkeit eines nicht ausgesteiften Stützenstegs für Beanspruchung durch Querzug wird nach [4, 6.2.6.3] bestimmt.

Es ist zu beachten, dass die Tragfähigkeit von der Versagensform abhängt. Dh. die Schraubenreihe 1 und Schraubenreihe 2 (im weiteren Verlauf der Rechnung mit SR1 und SR2 abgekürzt) müssen als individuelle Schraubenreihen einzeln und als Teil einer Schraubengruppe für die Übertragung der Zugkraft untersucht werden (vgl. Abbildung 3.2). Werden SR1 und SR2 individuell betrachtet, so ist die einzelne Schraubenreihe für die Übertragung der Zugkraft verantwortlich. Die Gruppenbetrachtung berücksichtigt alle beiden Schraubenreihen für die Zugübertragung.

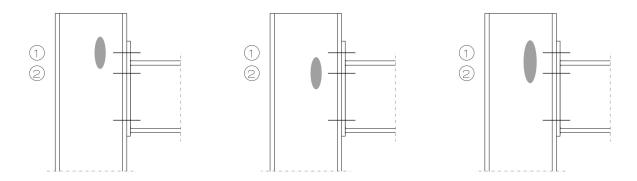


Abbildung 3.2.: Darstellung der zu untersuchenden Bereiche bei Querzugbeanspruchung des Stützensteges

Im Stützensteg sind beide Schraubenreihen der Zugzone als $\ddot{A}u\beta$ ere Schraubenreihen anzusehen. Aus diesem Grund entsprechen die Ergebnisse der Individuellen Betrachtung von SR1 denen der Individuellen Betrachtung von SR2.

Bei geschraubten Verbindungen wird die wirksame Breite $b_{eff,t,wc}$ mit der wirksamen Länge $l_{eff,t,fc}$ des äquivalenten T-Stummels der Komponente Stützenflansch mit Biegebeanspruchung (CFB) gleichgesetzt.

3.1) Berechnung der Tragfähigkeit

3.1.1) Individuelle Betrachtung - SR1

Die effektive Breite $b_{eff,t,wc,SR1}$, die für den Abminderungsbeiwert ω zur Berücksichtigung der Interaktion mit der Schubbeanspruchung benötigt wird, kann nach [4, 6.2.6.3 (3)] mit der maßgebenden effektiven Länge $l_{eff,t,fc}$ aus den Gleichungen (3.31) und (3.35) gleichgesetzt werden. $b_{eff,t,wc,SR1}$ entspricht somit dem Minimum aus :

$$b_{eff,t,wc,SR1} = min (l_{eff,t,fc,1,SR1}; l_{eff,t,fc,2,SR1}) = min (356, 10; 356, 10) = 356, 10 mm$$

$$(3.13)$$

Es folgt die Ermittlung des Abminderungsbeiwerts infolge Schubbeanspruchung nach [4, Tab. 6.3]:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3 \left(\frac{b_{eff,t,wc,SR1} t_{wc}}{A_{vc}}\right)^2}} = \frac{1}{\sqrt{1 + 1.3 \left(\frac{356,10 \cdot 10}{4896}\right)^2}} = 0,770$$
 (3.14)

Die Tragfähigkeit von SR1 ergibt nach Formel (2.3) zu:

$$F_{t,wc,Rd,SR1} = \frac{\omega \ b_{eff,t,wc} \ t_{wc} \ f_{y,wc}}{\gamma_{M0}} = \frac{0,770 \cdot 356,10 \cdot 10 \cdot 235}{1,0} \cdot 10^{-3} = \underbrace{644,16 \ kN}_{\underline{\underline{}}}$$
(3.15)

3.1.2) Individuelle Betrachtung - SR2

Die Tragfähigkeit von SR2 entspricht der von SR1 aus Gleichung (3.15).

$$F_{t,wc,Rd,SR2} = F_{t,wc,Rd,SR1} = \underline{\underline{644,16 \ kN}}$$
 (3.16)

3.1.3) Gruppenbetrachtung - G

Die effektive Breite $b_{eff,t,wc,G}$ für die Schraubengruppe wird aus der Summe der effektiven Längen $l_{eff,t,fc,G,SR1}$ (maßgebende Länge aus den Gleichungen (3.44) und (3.50)) und $l_{eff,t,fc,G,SR2}$ (maßgebende Länge aus den Gleichungen (3.46) und (3.52)) beider Schraubenreihen berechnet.

$$b_{eff,t,wc,G,SR1} = min (l_{eff,t,fc,1,G,SR1}; l_{eff,t,fc,2,G,SR1})$$

$$= min (221,80; 221,80) = 221,80 mm$$
(3.17)

$$b_{eff,t,wc,G,SR2} = min (l_{eff,t,fc,1,G,SR2}; l_{eff,t,fc,2,G,SR2})$$

$$= min (221,80; 221,80) = 221,80 mm$$
(3.18)

$$b_{eff,t,wc,G} = b_{eff,t,wc,G,SR1} + b_{eff,t,wc,G,SR2}$$

$$= 221,80 + 221,80 = 443,60 mm$$
(3.19)

Berechnung des Abminderungsbeiwert ω infolge Schubbeanspruchung mit der effektiven Breite der Gruppenbetrachtung aus Gleichung (3.19) nach [4, Tab. 6.3]:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1,3\left(\frac{b_{eff,t,wc,G} t_{wc}}{A_{vc}}\right)^2}} = \frac{1}{\sqrt{1 + 1,3\left(\frac{443,60 \cdot 10}{4896}\right)^2}} = 0,696$$
 (3.20)

Berechnung der Tragfähigkeit für die Gruppe G mit den Werten aus den Gleichungen (3.20) und (3.19) nach Formel (2.3):

$$F_{t,wc,Rd,G} = \frac{\omega \ b_{eff,t,wc,G} \ t_{wc} \ f_{y,wc}}{\gamma_{M0}} = \frac{0,696 \cdot 443,60 \cdot 10 \cdot 235}{1,0} \cdot 10^{-3} = \frac{725,05 \ kN}{200}$$
(3.21)

3.2) Berechnung der Steifigkeit

Der Steifigkeitskoeffizient k_3 wird für beide Schraubenreihen nach Formel (2.9) berechnet. Dabei wird die kleinste effektive Breite von SR1 und SR2 aus der Individuellen- und Gruppenbetrachtung maßgebend.

$$k_{3,SR1} = \frac{0.7 \ b_{eff,t,wc,G,SR1} \ t_{wc}}{d_c} = \frac{0.7 \cdot 221.8 \cdot 10}{261} = \frac{5.949 \ mm}{200}$$
(3.22)

$$k_{3,SR2} = \frac{0.7 \ b_{eff,t,wc,G,SR2} \ t_{wc}}{d_c} = \frac{0.7 \cdot 221.8 \cdot 10}{261} = \frac{5.949 \ mm}{200}$$
 (3.23)

4) Stützenflansch mit Biegebeanspruchung (CFB)

Die Tragfähigkeit der Komponente Stützenflansch mit Biegebeanspruchung (CFB) lässt sich anhand des Modelles des äquivalenten T-Stummels berechnen. Dieses Modell ist in [4, 6.2.6.4.1] geregelt. Abbildung 3.3 stellt die zu untersuchenden Fälle dar.

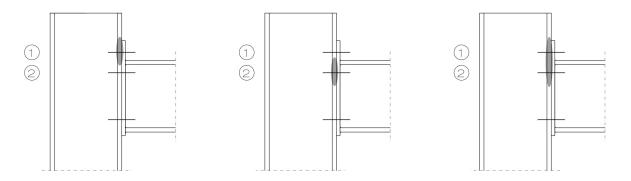


Abbildung 3.3.: Darstellung der zu untersuchenden Bereiche bei Biegebeanspruchung des Stützenflansches

4.1) Berechnung der Tragfähigkeit

Entsprechend Abbildung 3.4 werden die geometrischen Größen e, m, e_{min} und n berechnet:

$$e = \frac{b_c}{2} - \frac{w_1}{2} = \frac{300}{2} - \frac{200}{2} = 50 \, mm \tag{3.24}$$

$$e_{min} = \frac{b_p}{2} - \frac{w_1}{2} = \frac{280}{2} - \frac{200}{2} = 40 \, mm$$
 (3.25)

$$m = \frac{b_c}{2} - \frac{t_{wc}}{2} - 0.8 r_c - e = \frac{300}{2} - \frac{10}{2} - 0.8 \cdot 27 - 50 = 73,40 mm$$
 (3.26)

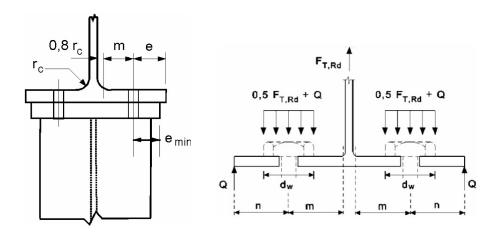


Abbildung 3.4.: geometrische Größen für ein Stirnblech schmaler als der Stützenflansch [4, Bild 6.8 a, adaptiert] (links) und für den T-Stummel [4, Tab. 6.2, adaptiert] (rechts)

$$n = min(e_{min}; 1, 25 m) = min(40; 1, 25 \cdot 73, 40) = 40 mm$$
 (3.27)

Berechnung der Grenzzugkraft einer M16 (8.8) Schraube nach [4, Tab. 3.4]:

$$F_{t,Rd} = \frac{0.9 \ f_{ub} \ A_s}{\gamma_{M2}} = \frac{0.9 \cdot 800 \cdot 157}{1,25} = 90,43 \ kN \tag{3.28}$$

Es folgt die Kontrolle, ob der Grenzwiderstand der Schraube auf Durchstanzen des Stützenflansches nach [4, Tab. 3.4] ausreichend groß ist:

$$B_{fc,p,Rd} = \frac{0.6 \pi d_m t_{fc} f_u}{\gamma_{M2}} = \frac{0.6 \pi 25, 12 \cdot 17, 5 \cdot 360}{1,25} \cdot 10^{-3}$$

$$= 238,64 kN \ge F_{t,Rd} = 90,43 kN \checkmark$$
(3.29)

Mit d_m als rechnerischem Durchmesser des Schraubenkopfes:

$$d_m = \frac{e+s}{2} = \frac{26,24+24}{2} = 25,12 \, mm \tag{3.30}$$

4.1.1) Individuelle Betrachtung - SR1

SR1 entspricht im Stützenflansch nach [4] einer Äußeren Schraubenreihe. Für die drei unterschiedlichen Modi des äquivalenten T-Stummels aus [4, Tab. 6.2] und der effektiven Längen aus [4, Tab. 6.4] ergeben sich folgende Tragfähigkeiten:

Modus 1

$$l_{eff,t,fc,1,SR1} = min (2 \pi m ; 4 m + 1,25 e)$$

$$= min (2 \pi 73,4 ; 4 \cdot 73,4 + 1,25 \cdot 50) = 356,10 mm$$
(3.31)

Es folgt die Kontrolle, ob der Randabstand e_c ausreichend groß ist nach [4] und in Anlehnung an [6]:

$$l_{eff,t,fc,1,SR1} = min (\pi m + 2 e_c; 2 m + 0.625 e + e_c)$$

$$= min (\pi 73.4 + 2.300; 2.73.4 + 0.625.50 + 300)$$

$$= min (830.59; 480.05)$$

$$= 480.05 mm > 356.10 mm \checkmark$$
(3.32)

$$M_{pl,1,SR1} = \frac{l_{eff,t,fc,1,SR1} t_{fc}^2 f_y}{4 \gamma_{M0}} = \frac{356,1 \cdot 17,5^2 \cdot 235}{4 \cdot 1.0} \cdot 10^{-6} = 6,41 \, kNm$$
 (3.33)

$$F_{t,fc,1,Rd,SR1} = \frac{4 M_{pl,1,SR1}}{m} = \frac{4 \cdot 6,41}{73,4 \cdot 10^{-3}} = 349,16 kN$$
(3.34)

Modus 2

$$l_{eff,t,fc,2,SRA} = 4 m + 1,25 e = 4.73,4 + 1,25.50 = 356,10 mm$$
(3.35)

Es folgt die Kontrolle, ob der Randabstand e_c ausreichend groß ist nach [4] und in Anlehnung an [6]:

$$l_{eff,t,fc,2,SR1} = 2 m + 0.625 e + e_c = 2.73,4 + 0.625.50 + 300$$

$$= 478,05 mm > 356,10 mm \checkmark$$
(3.36)

$$M_{pl,2,SR1} = \frac{l_{eff,t,fc,2,SR1} t_{fc}^2 f_y}{4 \gamma_{M0}} = \frac{356,1 \cdot 17,5^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 6,41 \ kNm$$
 (3.37)

$$F_{t,fc,2,Rd,SR1} = \frac{2 M_{pl,2,SR1} + n \sum F_{t,Rd}}{m + n} = \frac{2 \cdot 6,41 + 40 \cdot 10^{-3} \cdot 2 \cdot 90,43}{(73,4 + 40) \cdot 10^{-3}}$$

$$= 176,80 \, kN$$
(3.38)

Modus 3

Mit $F_{t,Rd}$ aus Gleichung (3.28).

$$F_{t,fc,3,Rd,SR1} = \sum F_{t,Rd} = 2.90,43 = 180,86 \, kN$$
 (3.39)

Die maßgebende Tragfähigkeit von SR1 für eine Individuelle Betrachtung ergibt sich aus dem Minimum der Tragfähigkeiten der drei Modi (3.34), (3.38) und (3.39).

$$F_{t,fc,Rd,SR1} = min \begin{cases} F_{t,fc,1,Rd,SR1} = 349,16 \ kN \\ F_{t,fc,2,Rd,SR1} = 176,80 \ kN \\ F_{t,fc,3,Rd,SR1} = 180,86 \ kN \end{cases} = \underline{176,80 \ kN}$$
(3.40)

4.1.2) Individuelle Betrachtung - SR2

SR2 ist ebenfalls als eine $Au\beta$ ere Schraubenreihe anzusehen. Demzufolge entsprechen die effektiven Längen denen von SR1. Daraus ergibt sich analog zu den Gleichungen (3.31) bis (3.40) die gleiche Tragfähigkeit wie für SR1.

$$F_{t,fc,Rd,SR2} = \underline{176,80 \, kN} \tag{3.41}$$

4.1.3) Gruppenbetrachtung - G

Die Gruppenbetrachtung erfolgt analog zur Individuellen Betrachtung, die effektiven Längen von SR1 und SR2 sind jedoch nach [4, Tab. 6.4] als Äußere Schraubenreihe und Teil einer Gruppe von Schraubenreihen zu berechnen.

$$p \triangleq e_2 = 87,50 \, mm \tag{3.42}$$

$$e_1 \triangleq e_c = 300 \, mm \tag{3.43}$$

Modus 1

$$l_{eff,t,fc,1,G,SR1} = min (\pi m + p; 2 m + 0,625 e + 0,5 p)$$

$$= min (\pi \cdot 73, 4 + 87,5; 2 \cdot 73, 4 + 0,625 \cdot 50 + 0,5 \cdot 87,5)$$

$$= min (318,10; 221,80) = 221,80 mm$$
(3.44)

Es folgt die Kontrolle, ob der Randabstand e_c ausreichend groß ist nach [4] und in Anlehnung an [6]:

$$l_{eff,t,fc,1,G,SR1} = min (2 e_c + p ; e_c + 0,5 p)$$

$$= min (2 \cdot 300 + 87,5 ; 300 + 0,5 \cdot 87,5)$$

$$= min (687,5 ; 343,75) = 343,75 mm > 221,80 mm \checkmark$$
(3.45)

$$l_{eff,t,fc,1,G,SR2} = l_{eff,t,fc,1,G,SR1} = 221,80 \, mm$$
 (3.46)

$$l_{eff,t,fc,1,G} = l_{eff,t,fc,1,G,SR1} + l_{eff,t,fc,1,G,SR2}$$

$$= 221,80 + 221,80 = 443,6 mm$$
(3.47)

$$M_{pl,1,G} = \frac{l_{eff,t,fc,1,G} t_{fc}^2 f_y}{4 \gamma_{M0}} = \frac{443,6 \cdot 17,5^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 7,98 \ kNm$$
 (3.48)

$$F_{t,fc,1,Rd,G} = \frac{4 M_{pl,1,G}}{m} = \frac{4 \cdot 7,98}{73.4 \cdot 10^{-3}} = 434,95 kN$$
(3.49)

Modus 2

$$l_{eff,t,fc,2,G,SR1} = 2 m + 0,625 e + 0,5 p$$

$$= 2 \cdot 73,4 + 0,625 \cdot 50 + 0,5 \cdot 87,5 = 221,80 mm$$
(3.50)

Es folgt die Kontrolle, ob der Randabstand e_c ausreichend groß ist nach [4] und in Anlehnung an [6]:

$$l_{eff,t,fc,2,G,SR1} = e_c + 0.5 p = 300 + 0.5 \cdot 87.5 =$$

$$= 343.75 mm > 221.80 mm \checkmark$$
(3.51)

$$l_{eff,t,fc,2,G,SR2} = l_{eff,t,fc,2,G,SR1} = 221,80 \ mm$$
 (3.52)

$$l_{eff,t,fc,2,G} = l_{eff,t,fc,2,G,SR1} + l_{eff,t,fc,2,G,SR2}$$

$$= 221,80 + 221,80 = 443,6 mm$$
(3.53)

$$M_{pl,2,G} = \frac{l_{eff,t,fc,2,G} t_{fc}^2 f_y}{4 \gamma_{M0}} = \frac{443,6 \cdot 17,5^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 7,98 \, kNm \tag{3.54}$$

$$F_{t,fc,2,Rd,G} = \frac{2 M_{pl,2,G} + n \sum F_{t,Rd}}{m + n} = \frac{2 \cdot 7,98 + 40 \cdot 10^{-3} \cdot 4 \cdot 90,43}{(73,4 + 40) \cdot 10^{-3}}$$

$$= 268,36 \, kN$$
(3.55)

Modus 3

Mit $F_{t,Rd}$ aus Gleichung (3.28).

$$F_{t,fc,3,Rd,G} = \sum F_{t,Rd} = 4.90,43 = 361,73 \, kN$$
 (3.56)

Die maßgebende Tragfähigkeit bei einer Gruppenbetrachtung beider Schraubenreihen ergibt sich aus dem Minimum der Tragfähigkeiten der drei Modi (3.49), (3.55) und (3.56).

$$F_{t,fc,Rd,G} = min \begin{cases} F_{t,fc,1,Rd,G} = 434,96 \ kN \\ F_{t,fc,2,Rd,G} = 268,36 \ kN \\ F_{t,fc,3,Rd,G} = 362,73 \ kN \end{cases} = \underbrace{\underline{268,36 \ kN}}_{(3.57)}$$

4.2) Berechnung der Steifigkeit

Der Steifigkeitskoeffizient k_4 wird für beide Schraubenreihen nach [4, Tab. 6.11] berechnet. Dabei wird die kleinste effektive Länge von SR1 und SR2 aus der *Individuellen*- und der *Gruppenbetrachtung* maßgebend.

$$l_{eff,t,fc,SR1} = min(l_{eff,t,fc,1,SR1}; l_{eff,t,fc,1,G,SR1})$$

$$= min(356, 10; 221, 80) = 221, 80 mm$$
(3.58)

$$l_{eff,t,fc,SR2} \triangleq l_{eff,t,fc,SR1} = 221,80 \, mm$$
 (3.59)

$$k_{4,SR1} = \frac{0.9 \ l_{eff,t,fc,SR1} \ t_{fc}^3}{m^3} = \frac{0.9 \cdot 221,80 \cdot 17,5^3}{73,4^3} = \underbrace{\frac{2,705 \ mm}{221,80 \cdot 17,5^3}}_{\text{max}} = \underbrace{\frac{2,705 \ mm}{2,705 \ mm}}_{\text{max}}$$
(3.60)

$$k_{4,SR2} = \frac{0.9 \ l_{eff,t,fc,SR2} \ t_{fc}^3}{m^3} = \frac{0.9 \cdot 221,80 \cdot 17,5^3}{73,4^3} = \underline{2,705 \ mm} \tag{3.61}$$

5) Stirnplatte mit Biegebeanspruchung (EPB)

Die Tragfähigkeit der Komponente Stirnblech auf Biegebeanspruchung (EPB) ist nach Abschnitt [4, Tab. 6.6] zu berechnen. Der Trägerflansch erlaubt keine Gruppenbildung der Schraubenreihen, aus diesem Grund werden die Schraubenreihen nur individuell betrachtet (vgl. Abbildung 3.5). SR1 befindet sich im überstehenden Teil der Stirnplatte, für diese Schraubenreihe muss laut Norm ein gesondertes T-Stummel Modell nach Abbildung 3.6 angesetzt werden. Das T-Stummelmodell von SR2 bildet sich nach Abbildung 3.7 aus. Es sind somit für diese Komponente zwei unterschiedliche T-Stummel zu berechnen.

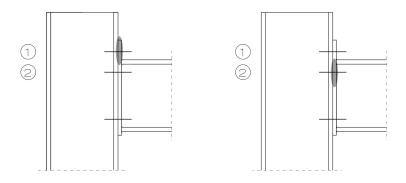


Abbildung 3.5.: Darstellung der zu untersuchenden Bereiche bei Biegebeanspruchung der Stirnplatte

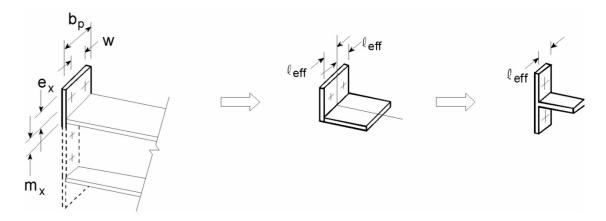


Abbildung 3.6.: T-Stummel der überstehenden Stirnplatte für SR1 [4, Bild 6.10, adaptiert]

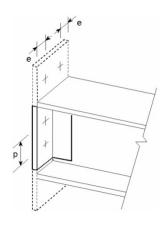


Abbildung 3.7.: T-Stummel Modell zwischen zwei Trägerflanschen für SR2 [4, Tab. 6.10, adaptiert]

5.1) Berechnung der Tragfähigkeit

5.1.1) Individuelle Betrachtung - SR1

Ermittlung der geometrischen Größen nach Abbildung 3.6:

$$m_x = a_1 - 0.8 \ a_f \sqrt{2} = 35 - 0.8 \cdot 6 \cdot \sqrt{2} = 28.21 \ mm$$
 (3.62)

$$e_x \triangleq e_1 = 25 \, mm \tag{3.63}$$

$$w \triangleq w_1 = 200 \, mm \tag{3.64}$$

$$e \triangleq w_2 = 40 \, mm \tag{3.65}$$

Die Grenzzugkraft einer M16 (8.8) Schraube entspricht nach Gleichung (3.28):

$$F_{t,Rd} = 90,43 \, kN \tag{3.66}$$

Es folgt die Kontrolle, ob der Grenzwiderstand der Schraube auf Durchstanzen der Stirnplatte nach [4, Tab. 3.4] ausreichend groß ist:

$$B_{ep,p,Rd} = \frac{0.6 \pi d_m t_p f_u}{\gamma_{M2}} = \frac{0.6 \pi 25, 12 \cdot 10 \cdot 360}{1,25} \cdot 10^{-3}$$

$$= 136, 39 kN \ge F_{t,Rd} = 90, 43 kN \checkmark$$
(3.67)

Mit d_m als rechnerischem Durchmesser des Schraubenkopfes aus Gleichung (3.30).

Die Berechnung der effektiven Länge für SR1 erfolgt nach [4, Tab. 6.6] für eine Äußere Schraubenreihe neben Trägerzugflansch.

Modus 1

$$l_{eff,t,ep,1,SR1} = min \begin{cases} 2 \pi m_x \\ \pi m_x + w \\ \pi m_x + 2 e \\ 4 m_x + 1,25 e_x \\ e + 2 m_x + 0,625 e_x \\ 0,5 b_p \\ 0,5 w + 2 m_x + 0,625 e_x \end{cases}$$

$$= min \begin{cases} 2 \cdot \pi \cdot 28,21 \\ \pi \cdot 28,21 + 200 \\ \pi \cdot 28,21 + 2 \cdot 40 \\ 4 \cdot 28,21 + 1,25 \cdot 25 \\ 40 + 2 \cdot 28,21 + 0,625 \cdot 25 \\ 0,5 \cdot 280 \\ 0,5 \cdot 200 + 2 \cdot 28,21 + 0,625 \cdot 25 \end{cases}$$

$$= min \begin{cases} 177,25 \\ 288,62 \\ 168,62 \\ 144,09 \\ 112,05 \\ 140 \\ 172,05 \end{cases}$$

$$= 112,05 mm$$

$$M_{pl,1,SR1} = \frac{l_{eff,t,ep,1,SR1} t_p^2 f_y}{4 \gamma_{M0}} = \frac{112,05 \cdot 25^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 4,11 \, kNm$$
 (3.69)

$$F_{t,ep,1,Rd,SR1} = \frac{4 M_{pl,1,SR1}}{m_x} = \frac{4 \cdot 4,11}{28,21 \cdot 10^{-3}} = 583,34 kN$$
 (3.70)

Modus 2

$$l_{eff,t,ep,2,SR1} = min \begin{cases} 4 m_x + 1,25 e_x \\ e + 2 m_x + 0,625 e_x \\ 0,5 b_p \\ 0,5 w + 2 m_x + 0,625 e_x \end{cases}$$

$$= min \begin{cases} 4 \cdot 28,21 + 1,25 \cdot 25 \\ 40 + 2 \cdot 28,21 + 0,625 \cdot 25 \\ 0,5 \cdot 280 \\ 0,5 \cdot 200 + 2 \cdot 28,21 + 0,625 \cdot 25 \end{cases}$$

$$= min \begin{cases} 144,09 \\ 112,05 \\ 140,00 \\ 172,05 \end{cases} = 112,05 mm$$

$$M_{pl,2,SR1} = \frac{l_{eff,t,ep,2,SR1} \ t_p^2 \ f_y}{4 \ \gamma_{M0}} = \frac{112,05 \cdot 25^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 4,11 \ kNm \eqno(3.72)$$

$$F_{t,ep,2,Rd,SR1} = \frac{2 M_{pl,2,SR1 + e_x 2 F_{t,Rd}}}{m_x} = \frac{2 \cdot 4,11 + 25 \cdot 10^{-3} \cdot 2 \cdot 90,43}{(28,21 + 25) \cdot 10^{-3}}$$

$$= 239,61 kN$$
(3.73)

Modus 3

Mit $F_{t,Rd}$ aus Gleichung (3.28).

$$F_{t,ep,3,Rd,SR1} = \sum F_{t,Rd} = 2.90,43 = 180,86 \, kN$$
 (3.74)

Die maßgebende Tragfähigkeit von SR1 für eine Individuelle Betrachtung ergibt sich aus dem Minimum der Tragfähigkeiten der drei Modi (3.70), (3.73) und (3.74).

5.1.2) Individuelle Betrachtung - SR2

Ermittlung der geometrischen Größen nach Abbildung 3.7 und [4, Bild 6.11]:

$$e = w_2 = 40 \, mm \tag{3.76}$$

$$m = m_1 = \frac{w_1}{2} - \frac{t_{wb}}{2} - 0.8 \ a_w \sqrt{2} = \frac{200}{2} - \frac{10.5}{2} - 0.8 \cdot 3 \cdot \sqrt{2} = 91.36 \ mm$$
 (3.77)

$$m_2 = e_2 - a_1 - t_{fb} - 0.8 \ a_f \sqrt{2} = 87.5 - 35 - 18 - 0.8 \cdot 6 \cdot \sqrt{2} = 27.71 \ mm$$
 (3.78)

$$e_{min} = \frac{b_p}{2} - \frac{w_1}{2} = \frac{280}{2} - \frac{200}{2} = 40 \, mm$$
 (3.79)

$$n = min (e_{min}; 1, 25 m) = min (40; 1, 25 \cdot 91, 36)$$

= $min (40; 1114, 2) = 40 mm$ (3.80)

Die Berechnung der effektiven Länge für SR2 erfolgt nach [4, Tab. 6.6] für eine innere Schraubenreihe neben Trägerzugflansch. SR2 trägt die Zugkräfte in zwei Richtungen ab, dies erhöht die Tragfähigkeit dieser Schraubenreihe. Die Erhöhung wird mittels des α -Werts berücksichtigt. Mit den Eingangswerten λ_1 und λ_2 wird anhand des Diagramms [4, Bild 6.11] der α -Beiwert ermittelt (siehe Abbildung 3.8).

$$\lambda_1 = \frac{m}{m+e} = \frac{91,36}{91.36+40} = 0,695 \tag{3.81}$$

$$\lambda_2 = \frac{m_2}{m + e} = \frac{27,71}{91,36 + 40} = 0,211 \tag{3.82}$$

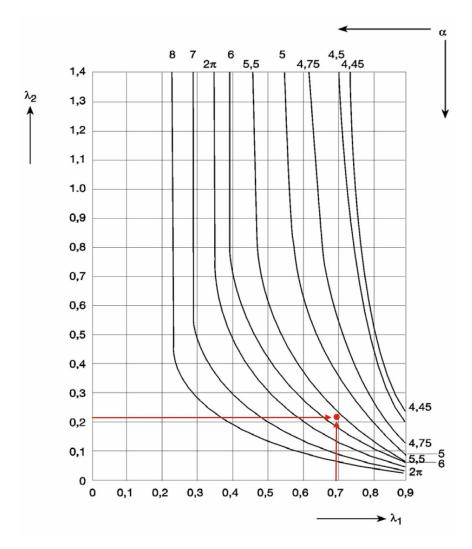


Abbildung 3.8.: α -Wert für das ausgesteifte Stirnblech [4, Bild 6.11, adaptiert]

$$\Rightarrow \quad \alpha \cong 5,75 \tag{3.83}$$

Modus 1

$$l_{eff,t,ep,1,SR2} = min(2 \pi m ; \alpha m) = min(2 \pi 91,36 ; 5,75 \cdot 91,36)$$

$$= min(574,03 ; 525,30) = 525,30 mm$$
(3.84)

$$M_{pl,1,SR2} = \frac{l_{eff,t,ep,1,SR2} t_p^2 f_y}{4 \gamma_{M0}} = \frac{525,30 \cdot 25^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 19,29 \ kNm$$
 (3.85)

$$F_{t,ep,1,Rd,SR2} = \frac{4 M_{pl,1,SR1}}{m} = \frac{4 \cdot 19,29}{91,36 \cdot 10^{-3}} = 844,53 kN$$
 (3.86)

Modus 2

$$l_{eff,t,p,2,SR2} = \alpha \ m = 5,75 \cdot 91,36 = 525,30 \ mm$$
 (3.87)

$$M_{pl,2,SR2} = \frac{l_{eff,t,ep,2,SR2} t_p^2 f_y}{4 \gamma_{M0}} = \frac{525,30 \cdot 25^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 19,29 \, kNm$$
 (3.88)

$$F_{t,ep,2,Rd,SR2} = \frac{2 M_{pl,2,SR2} + n \ 2 F_{t,Rd}}{m + n} = \frac{2 \cdot 19, 29 + 40 \cdot 2 \cdot 10^{-3} \cdot 90, 43}{(91,36 + 40) \cdot 10^{-3}}$$

$$= 348.75 \ kN$$
(3.89)

Modus 3

Mit $F_{t,Rd}$ aus Gleichung (3.28).

$$F_{t,ep,3,Rd,SR2} = \sum F_{t,Rd} = 2.90,43 = 180,86 \, kN$$
 (3.90)

Die maßgebende Tragfähigkeit von SR2 für eine Individuelle Betrachtung ergibt sich aus dem Minimum der Tragfähigkeiten der drei Modi (3.86), (3.89) und (3.90).

$$F_{t,ep,Rd,SR2} = min \begin{cases} F_{t,ep,1,Rd,SR2} = 844,53 \ kN \\ F_{t,ep,2,Rd,SR2} = 348,75 \ kN \\ F_{t,ep,3,Rd,SR2} = 180,86 \ kN \end{cases} = \underbrace{\frac{180,86 \ kN}{180,86 \ kN}}$$
(3.91)

5.2) Berechnung der Steifigkeit

Der Steifigkeitskoeffizient k_5 wird für SR1 und SR2 nach [4, Tab. 6.11] berechnet. Dabei wird die kleinste effektive Länge von SR1 aus Modus 1 und Modus 2 maßgebend.

$$l_{eff,t,ep,SR1} = min(l_{eff,t,ep,1,SR1} ; l_{eff,t,ep,2,G,SR1})$$

$$= min(112,05 ; 112,05) = 112,05 mm$$
(3.92)

$$k_{5,SR1} = \frac{0.9 \ l_{eff,t,ep,SR1} \ t_p^3}{m_x^3} = \frac{0.9 \cdot 112.05 \cdot 25^3}{28.21^3} = \underline{70.174 \ mm}$$
 (3.93)

$$l_{eff,t,ep,SR2} = min(l_{eff,t,ep,2,SR1}; l_{eff,t,ep,2,G,SR1})$$

$$= min(525,30; 525,30) = 525,30 mm$$
(3.94)

$$k_{5,SR2} = \frac{0.9 \ l_{eff,t,ep,SR2} \ t_p^3}{m^3} = \frac{0.9 \cdot 525, 3 \cdot 25^3}{91,36^3} = \underbrace{\frac{9.689 \ mm}{2000 \ mm}}$$
(3.95)

6) Trägerflansch und -steg mit Druckbeanspruchung (BFC)

Diese Komponente wird in [4, 6.2.6.7] behandelt.

6.1) Berechnung der Tragfähigkeit

Die elastische Biegetragfähigkeit des Trägers ergibt sich zu:

$$M_{c,el,Rd} = \frac{W_{y,el,b} f_{yb}}{\gamma_{M0}} = \frac{1376000 \cdot 235}{1,0} \cdot 10^{-6} = 323,36 \ kNm \tag{3.96}$$

Es folgt die Berechnung der Tragfähigkeit nach Formel (2.4) mit der elastischen Biegetragfähigkeit des Trägers aus (3.96):

$$F_{c,fb,Rd} = \frac{M_{c,el,Rd}}{h_b - t_{fb}} = \frac{323,36}{(280 - 18) \cdot 10^{-3}} = \underbrace{\frac{1234,20 \, kN}{=}}_{=======}$$
(3.97)

6.2) Berechnung der Steifigkeit

Anmerkung 4 aus [4, Tab. 6.11] besagt, dass der Steifigkeitskoeffizient für die Grundkomponente Trägerflansch und -steg mit Druckbeanspruchung (BFC) als unendlich groß angenommen werden darf. Daher muss diese Komponente bei der Berechnung der Rotationssteifigkeit nicht berücksichtigt werden.

$$k_7 = \infty \tag{3.98}$$

7) Trägersteg mit Zugbeanspruchung (BWT)

Diese Komponente ist nur für SR2 wesentlich, da an dieser Stelle Zuglasten über den Steg übertragen werden (vgl. Abbildung 3.9). Nach Abschnitt [4, 6.2.6.8] wird die Tragfähigkeit wie folgt bestimmt.

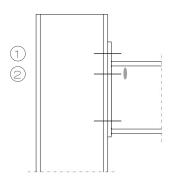


Abbildung 3.9.: Darstellung der zu untersuchenden Bereiche bei Zubeanspruchung des Trägersteges

7.1) Berechnung der Tragfähigkeit

7.1.1) Individuelle Betrachtung - SR2

 $b_{eff,t,wb}$ entspricht der maßgebenden effektiven Länge der betrachteten Schraubenreihe der Komponente Stirnblech mit Biegebeanspruchung (EPB) aus Gleichung (3.94).

$$b_{eff,t,wb,SR2} = l_{eff,t,p,SR2} = 525,30 \, mm$$
 (3.99)

Es folgt die Berechnung der Tragfähigkeit nach Formel (2.5) mit der effektiven Breite aus Gleichung (3.99):

$$F_{t,wb,Rd,SR2} = \frac{b_{eff,t,wb,SR2} \ t_{wb} \ f_{y,wb}}{\gamma_{M0}} = \frac{525,30 \cdot 10,5 \cdot 235}{1,0} = \underline{1296,17 \ kN}$$
(3.100)

7.2) Berechnung der Steifigkeit

Anmerkung 4 aus [4, Tab. 6.11] besagt, dass für die Grundkomponente Trägersteg mit Zugbeanspruchung (BWT) der Steifigkeitskoeffizient als unendlich groß angenommen werden darf. Daher muss diese Komponente bei der Berechnung der Rotationssteifigkeit nicht berücksichtigt werden.

$$k_8 = \infty \tag{3.101}$$

8) Schrauben mit Zugbeanspruchung

8.1) Berechnung der Steifigkeit

Es ist an dieser Stelle anzumerken, dass Schrauben mit Zugbeanspruchung ein wesentlicher Faktor im Gesamtfedermodell (vgl. Abbildung 2.1) sind. Die Steifigkeit wird für beide

Schraubenreihen mit der Dehnlänge L_b und dem Spannungsquerschnitt A_s der Schraube berechnet.

Die Dehnlänge L_b einer M16-Schraube ergibt sich aus der Summe der Stützenflanschdicke t_{fc} , der Stirnblechdicke t_p , der Stärke der Unterlagsscheibe d_{UL} sowie aus dem Mittelwert der Höhe der Schraubenmutter m und der Schraubenkopfhöhe k.

$$L_b = t_{fc} + t_p + d_{UL} + 0.5 (m + k)$$

$$= 17.5 + 25 + 8 + 0.5(12 + 10) = 61.50 mm$$
(3.102)

$$k_{10,SR1} = 1.6 \frac{A_s}{L_b} = 1.6 \frac{157}{61,50} = 4,085 \, mm$$
 (3.103)

$$k_{10,SR2} = 1.6 \frac{A_s}{L_b} = 1.6 \frac{157}{61,50} = 4,085 \ mm$$
 (3.104)

9) Ermittlung der Momententragfähigkeit

Gruppe Zug

Grenztragfähigkeit SR1 - individuelle Betrachtung

Komponente		Tragfähigkeit	
Stützenflansch mit Biegebeanspruchung	$F_{t,fc,Rd,SR1}$	176,80 kN	maßgebend
Stützensteg mit Beanspruchung durch Querzug	$F_{t,wc,Rd,SR1}$	$644{,}16~\mathrm{kN}$	
Stirnplatte mit Biegebeanspruchung	$F_{t,ep,Rd,SR1}$	$180,\!86~\mathrm{kN}$	
	$\mathbf{F_{t,Rd,SR1}}$	$176,\!80~\mathrm{kN}$	
Grenztragfähigkeit SR2 - individuelle Betrachtung			
Komponente		Tragfähigkeit	
Komponente Stützenflansch mit Biegebeanspruchung	$F_{t,fc,Rd,SR2}$	Tragfähigkeit 176,80 kN	maßgebend
·	$F_{t,fc,Rd,SR2}$ $F_{t,wc,Rd,SR2}$		
Stützenflansch mit Biegebeanspruchung		176,80 kN	
Stützenflansch mit Biegebeanspruchung Stützensteg mit Beanspruchung durch Querzug	$F_{t,wc,Rd,SR2}$	176,80 kN 644,16 kN	

Grenztragfähigkeit G
 - Gruppenbetrachtung

Komponente		Tragfähigkeit	-
Stützenflansch mit Biegebeanspruchung	$F_{t,fc,Rd,G}$	$268{,}36~\mathrm{kN}$	maßgebend
Stützensteg mit Beanspruchung durch Querzug	$F_{t,fc,wc,Rd,G}$	$725{,}05~\mathrm{kN}$	
	F _t pd C	268.36 kN	

Es folgt die Kontrolle in Anlehnung an [6], ob die Tragfähigkeit der Schraubengruppe kleiner ist als jene der isolierten Schraubenreihen:

$$F_{t,Rd,SR1} + F_{t,Rd,SR2} \le F_{t,Rd,G}$$
 (3.105)
 $176,80 \ kN + 176,80 \ kN \le 268,36 \ kN$
 $353,6 \ kN > 268,36 \ kN$

Die Tragfähigkeit der Schraubengruppe ist kleiner als die Summe der Tragfähigkeiten aus der isolierten Betrachtung. Aus diesem Grund wird die Tragfähigkeit von SR2 abgemindert.

$$F_{t,Rd,SR1}* = F_{t,Rd,SR1} = 176,80 \ kN$$
 (3.106)

$$F_{t,Rd,SR2}* = F_{t,Rd,G} - F_{t,Rd,SR1} =$$

$$F_{t,Rd,SR2}* = 268,36 \ kN - 176,80 \ kN = 91,56 \ kN$$
(3.107)

Für den Fall, dass die Bedingung in Gleichung (3.105) erfüllt ist, sind die Tragfähigkeiten der Schraubenreihen nicht abzumindern. Demgemäß gilt dann: $F_{t,Rd,SR1}* \triangleq F_{t,Rd,SR1}$ und $F_{t,Rd,SR2}* \triangleq F_{t,Rd,SR2}$.

Gruppe Druck und Schub

Komponente	Tragfähigkeit				
Stützensteg mit Beanspruchung durch Schub Stützensteg mit Beanspruchung durch	$F_{wp,Rd}$	597,85 kN 494,86 kN	maßgebend		
Querdruck	$F_{c,wc,Rd}$	494,00 KN	masgebend		
Trägerflansch und -steg mit Druck-	$F_{c,fb,Rd}$	$1234{,}20~\mathrm{kN}$			
beanspruchung					
	${ m F_{c.Rd}}$	494,86 kN			

Es folgt die Kontrolle ob eine weitere Abminderung notwendig ist:

$$F_{t,Rd,SR1} * + F_{t,Rd,SR2} * < F_{c,Rd}$$
 (3.108)
 $176,80 \ kN + 91,56 \ kN < 494,86 \ kN$ \checkmark
 $268,36 \ kN < 494,86 \ kN $\checkmark$$

Die Bedingung in Gleichung (3.108) ist erfüllt und somit ist keine weitere Abminderung mehr nötig. Für den Fall, dass eine Abminderung nötig ist, ist diese analog zu den Formeln (3.106) und (3.107) zu führen.

$$h_1 = h_b + \frac{t_{fb}}{2} = 280 - \frac{18}{2} + 35 = 306,00 \, mm$$
 (3.109)

$$h_2 = h_b - \frac{t_{fb}}{2} + a_1 - e_2 = 280 - \frac{18}{2} + 35 - 87,5 = 218,50 \, mm$$
 (3.110)

$$M_{j,Rd} = F_{t,Rd,SR1} * h_1 + F_{t,Rd,SR2} * h_2$$

$$= 176, 80 \cdot 306, 00 \cdot 10^{-3} + 91, 56 \cdot 236, 50 \cdot 10^{-3}$$

$$= 74, 11 \text{ kNm}$$
(3.111)

Die Berechnungen der Genauen Komponentenmethode ergeben eine Momententragfähigkeit von $M_{j,Rd} = 74,11 \ kNm$. Die maßgebende Versagensart in diesem Anwendungsbeispiel ist die Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB). Es lässt sich durch entsprechende Maßnahmen, wie beispielsweise die Verstärkung des Stützenflansches durch zusätzliche Bleche, die Tragfähigkeit dieser Komponente steigern. Dies hat zur Folge, dass das aufnehmbare Grenzmoment des Anschlusses größer wird.

11) Ermittlung der Rotationssteifigkeit

Die Rotationssteifigkeit des Anschlusses wird anhand der zuvor ermittelten Steifigkeitskoeffizienten und dem Federmodell nach Abbildung 2.1 berechnet.

Es folgt die Berechnung der effektiven Federsteifigkeit k_{eff} für beide Schraubenreihen nach (2.16), des äquivalenten Hebelarms z_{eq} nach (2.17) und der äquivalenten Federsteifigkeit k_{eq} nach (2.18):

$$k_{eff,SR1} = \frac{1}{\frac{1}{k_{3,SR1}} + \frac{1}{k_{4,SR1}} + \frac{1}{k_{5,SR1}} + \frac{1}{k_{10,SR1}}}$$

$$= \frac{1}{\frac{1}{5,949} + \frac{1}{2,705} + \frac{1}{70,174} + \frac{1}{4,085}} = 1,255 \, mm$$
(3.112)

$$k_{eff,SR2} = \frac{1}{\frac{1}{k_{3,SR2}} + \frac{1}{k_{4,SR2}} + \frac{1}{k_{5,SR2}} + \frac{1}{k_{10,SR2}}}$$

$$= \frac{1}{\frac{1}{5,949} + \frac{1}{2,705} + \frac{1}{9,689} + \frac{1}{4,085}} = 1,129 \, mm$$
(3.113)

$$z_{eq} = \frac{k_{eff,SR1} h_{SR1}^2 + k_{eff,SR2} h_{SR2}^2}{k_{eff,SR1} h_{SR1} + k_{eff,SR2} h_{SR2}}$$

$$= \frac{1,255 \cdot 306^2 + 1,129 \cdot 218,50^2}{1,255 \cdot 306 + 1,129 \cdot 218,50} = 271,78 mm$$
(3.114)

$$k_{eq} = \frac{k_{eff,SR1} \ h_{SR1} + k_{eff,SR2} \ h_{SR2}}{z_{eq}}$$

$$= \frac{1,255 \cdot 306 + 1,129 \cdot 218,50}{218,50} = 2,320 \ mm$$
(3.115)

Anpassung des Steifigkeitskoeffizienten k_1 aus Gleichung (3.5) an den Abstand der Zugwegfeder z_{eq} .

$$k_{1,eq} = \frac{0.38 \ A_{vc}}{\beta \ z_{eq}} = \frac{0.38 \cdot 4896}{1.0 \cdot 271.78} = 6.846 \ mm \tag{3.116}$$

Die Rotationsteifigkeit des Anschlusses ergibt sich nach Formel (2.13) zu:

$$S_{j,ini} = \frac{E z_{eq}^2}{\frac{1}{k_{eq}} + \frac{1}{k_2} + \frac{1}{k_{1,eq}}} = \frac{210000 \cdot 271,78^2}{\frac{1}{2,320} + \frac{1}{7,348} + \frac{1}{6,846}} \cdot 10^{-9}$$
(3.117)

= 21,753 MNm/rad

Die Anfangsrotationsteifigkeit des Anschlusses entspricht nach der Genauen Komponentenmethode $S_{j,ini} = 21,754 \, MNm/rad$.

3.1.3. Berechnung mittels der Vereinfachten Komponentenmethode

Die Ergebnisse einiger Grundkomponenten der Vereinfachten Komponentenmethode entsprechen denen des genauen Verfahrens. Grundsätzlich wird zur Vereinfachung auf eine Individuelle Betrachtung der Schraubenreihen verzichtet und nur die Gruppenbetrachtung herangezogen. Beiden Schraubenreihen werden die gleichen Steifigkeitskoeffizienten $k_{i,SR1}$ von SR1 zugeordnet.

1) Stützensteg mit Beanspruchung durch Schub (CWS)

Das vereinfachte Verfahren liefert für die Komponente Stützensteg mit Beanspruchung durch Schub (CWS) die gleichen Ergebnisse für Tragfähigkeit und Steifigkeit. Aus den Gleichungen (3.3) und (3.5) folgt:

$$F_{wp,Rd} = 597,85 \, kN \tag{3.118}$$

$$k_1 = \underline{7,101 \ mm} \tag{3.119}$$

2) Stützensteg mit Beanspruchung durch Querdruck (CWC)

Diese Komponente ist ebenfalls ident zur genauen Berechnung. Für die Tragfähigkeit und Steifigkeit ergeben sich die gleichen Werte aus Gleichung (3.11) und (3.12):

$$F_{c,wc,Rd} = \underline{494,86 \ kN} \tag{3.120}$$

$$k_2 = 7,348 \, mm \tag{3.121}$$

3) Stützensteg mit Beanspruchung durch Querzug (CWT)

Das vereinfachte Verfahren ist für diese Komponente ebenfalls ident zur genauen Berechnung. Es wird jedoch nur die Gruppenbetrachtung berücksichtigt. Die Tragfähigkeit und Steifigkeit ergeben sich nach den Gleichungen (3.21), (3.22) und (3.23) zu:

$$F_{t,wc,Rd,G} = \underline{725,05 \, kN} \tag{3.122}$$

$$k_{3,SR1} = \underline{5,949 \ mm} \tag{3.123}$$

4) Stützenflansch mit Biegebeanspruchung (CFB)

Die vereinfachte Ermittlung der Tragfähigkeit dieser Komponenten ist ebenfalls ident zur genauen Berechnung. Es wird jedoch nur die *Gruppenbetrachtung* berücksichtigt. Die Tragfähigkeit und Steifigkeit ergeben sich nach den Gleichungen (3.57) und (3.60) zu:

$$F_{t,fc,Rd,G} = \underline{268,36 \ kN} \tag{3.124}$$

$$k_{4,SR1} = \underbrace{2,705 \, mm}_{} \tag{3.125}$$

5) Stirnplatte mit Biegebeanspruchung (EPB)

Die vereinfachte Berechnung dieser Komponente berücksichtigt nur die $\ddot{A}u\beta$ ere Schraubenreihe SR1 und ist ident zur genauen Berechnung. Es wird jedoch die effektive Länge, auf Grund des Miterfassens von SR2, verdoppelt. Der T-Stummel ist somit doppelt so lang.

Modus 1

Mit $l_{eff,t,ep,1,SR1}$ aus Gleichung (3.68).

$$l_{eff,t,ep,1,G} = 2 l_{eff,t,ep,1,SR1} = 2 \cdot 112,05 = 224,10 mm$$
 (3.126)

$$M_{pl,1,G} = \frac{l_{eff,t,ep,1} \ t_p^2 \ f_y}{4 \ \gamma_{M0}} = \frac{224,10 \cdot 25^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 8,23 \ kNm \tag{3.127}$$

$$F_{t,ep,1,Rd,G} = \frac{4 M_{pl,1,G}}{m_x} = \frac{4 \cdot 8,23}{28,21 \cdot 10^{-3}} = 1166,69 kN$$
(3.128)

Mit m_x aus Gleichung (3.62).

Modus 2

Mit $l_{eff,t,ep,2,SR1}$ aus Gleichung (3.71).

$$l_{eff,t,ep,2,G} = 2 l_{eff,t,ep,2,SR1} = 2 \cdot 112,05 = 224,10 mm$$
 (3.129)

$$M_{pl,2,G} = \frac{l_{eff,t,ep,2,G} t_p^2 f_y}{4 \gamma_{M0}} = \frac{224,10 \cdot 25^2 \cdot 235}{4 \cdot 1,0} \cdot 10^{-6} = 8,23 \, kNm \tag{3.130}$$

$$F_{t,ep,2,Rd,G} = \frac{2 M_{pl,2,G} + e_x 4 F_{t,Rd}}{m_x} = \frac{2 \cdot 8,23 + 25 \cdot 10^{-3} \cdot 4 \cdot 90,43}{(28,21 + 25) \cdot 10^{-3}}$$

$$= 479,22 kN$$
(3.131)

Mit m_x aus Gleichung (3.62).

Modus 3

Mit $F_{t,Rd}$ aus Gleichung (3.28).

$$F_{t,f_{c,3,Rd,G}} = \sum F_{t,Rd} = 4 \cdot 90,43 = 361,73 \ kN$$
 (3.132)

$$F_{t,ep,Rd,G} = min \begin{cases} F_{t,ep,1,Rd,G} = 1166,96 \ kN \\ F_{t,ep,2,Rd,G} = 479,22 \ kN \\ F_{t,ep,3,Rd,G} = 361,73 \ kN \end{cases} = \underbrace{1361,73 \ kN}_{(3.133)}$$

Der Steifigkeitskoeffizient $k_{5,SR1}$ entspricht der genauen Berechnung für SR1 aus Gleichung (3.93):

$$k_{5,SR1} = \underline{70,174 \ mm} \tag{3.134}$$

6) Trägerflansch und -steg mit Druckbeanspruchung (BFC)

Die Ergebnisse des vereinfachten Verfahrens für diese Komponente entsprechen denen der genauen Berechnung. Die Tragfähigkeit und Steifigkeit ergeben sich nach den Gleichungen (3.97) und (3.101) zu:

$$F_{c,fb,Rd} = \underline{1234, 20 \, kN} \tag{3.135}$$

$$k_7 = \infty \tag{3.136}$$

7) Trägersteg mit Zugbeanspruchung (BWT)

Die Tragfähigkeit der Komponente *Trägersteg mit Zugbeanspruchung* ist für die vereinfachte Berechnung nicht nötig, da das Modell des vereinfachten Verfahrens vorsieht, dass alle Zugkräfte über den Trägergurt eingeleitet werden.

8) Schrauben mit Zugbeanspruchung

Die Steifigkeit für Schrauben mit Zugbeanspruchung entspricht der genauen Berechnung aus Gleichung (3.103):

$$k_{10,SR1} = 4,085 \, mm \tag{3.137}$$

9) Ermittlung der Momententragfähigkeit

Gruppe Zug

Grenztragfähigkeit G - Gruppenbetrachtung

	$\mathbf{F_{t,Rd,G}}$	$268,\!36~\mathrm{kN}$	
Stirnplatte mit Biegebeanspruchung	$F_{t,ep,Rd,G}$	361,73 kN	
Stützensteg mit Beanspruchung durch Querzug	$F_{t,wc,Rd,G}$	$725{,}05~\mathrm{kN}$	
Stützenflansch mit Biegebeanspruchung	$F_{t,fc,Rd,G}$	$268{,}36~\mathrm{kN}$	maßgebend
Komponente		Tragfähigkeit	;

Gruppe Druck und Schub

Komponente		Tragfähigkeit	
Stützensteg mit Beanspruchung durch Schub	$F_{wp,Rd}$	597,85 kN	
Stützensteg mit Beanspruchung durch	$F_{c,wc,Rd}$	$494{,}86~\mathrm{kN}$	maßgebend
Querdruck			
Trägerflansch und -steg mit Druckbe-	$F_{c,fb,Rd}$	$1234{,}20~\mathrm{kN}$	
anspruchung			
	F. p. 1	494.86 kN	

Damit die Gleichgewichtsbedingung im Anschluss erfüllt ist, wird die maßgebende Tragfähigkeit ermittelt:

$$F_{Rd} = min(F_{t,Rd,G}; F_{c,Rd}) = min(268,36; 494,86) = 268,36 kN$$
 (3.138)

Es folgt die Kontrolle, ob die Voraussetzungen für die vereinfachte Berechnung erfüllt sind:

$$F_{Rd} < 3,8 \ F_{t,Rd}$$
 (3.139)
 $268,36 \ kN < 3,8 \cdot 90,43$
 $268,36 \ kN < 343,63 \checkmark$

Die Bedingung in (3.139) ist erfüllt. Mit der geometrischen Größe $z=262,00\,mm$ (Abstand Druckgurt und Zuggurt des Trägers) lässt sich die Momententragfähigkeit des Anschlusses mittels der $Vereinfachten\ Komponentenmethode$ berechnen.

$$M_{j,Rd} = F_{Rd} z = 268, 36 \cdot 262 \cdot 10^{-3} = 70, 31 \text{ kNm}$$
 (3.140)

Die Berechnungen der Vereinfachten Komponentenmethode ergeben eine Momententragfähigkeit von $M_{j,Rd} = 70,31~kNm$ - eine Abweichung von -5,13% vom Ergebnis der Genauen Komponentenmethode. Die maßgebende Versagensart bleibt auch bei der vereinfachten Berechnung die Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB).

11) Ermittlung der Rotationssteifigkeit

Die Rotationssteifigkeit des Anschlusses wird anhand der zuvor ermittelten Steifigkeitskoeffizienten und dem Federmodell nach Abbildung 2.1 berechnet.

$$k_{eff,SR1} = 1,255 \, mm \tag{3.141}$$

$$k_{eq} = 2 k_{eff,SR1} = 2 \cdot 1,255 = 2,510 mm$$
 (3.142)

$$S_{j,ini} = \frac{E z^2}{\frac{1}{k_{eq}} + \frac{1}{k_2} + \frac{1}{k_1}} = \frac{210000 \cdot 262^2}{\frac{1}{2,510} + \frac{1}{7,348} + \frac{1}{7,101}} \cdot 10^{-9}$$
(3.143)

= 21,346 MNm/rad

Die Anfangsrotationsteifigkeit des Anschlusses entspricht nach der Genauen Komponentenmethode $S_{j,ini} = 21,346 \, MNm/rad$. Das vereinfachte Verfahren weicht lediglich -0,62% vom genauen Verfahren ab.

3.1.4. Excelberechnungsprogramm

Im Rahmen der Projektarbeit des Masterstudienplans des Bauingenieurwesenstudiums (Kennzahl E 066 505) wurde von der Verfasserin der vorliegenden Arbeit ein Excelberechnungsprogramm für die Berechnung und Bemessung von Stützen-Trägeranschlüssen mit geschraubter überstehender Stirnplatte (ohne Aussteifung) nach ÖNORM EN 1993-1-8 [4] erstellt. Die Abbildung 3.10 zeigt die Oberfläche des Programms.

Abbildung 3.10.: Excelberechnungsprogramm für Stützen-Trägeranschlüsse

Der Anwender des Programms kann unterschiedlichste Stützen-Trägeranschlusskonfigurationen berechnen lassen. Die Wahl der Profile von Stütze und Träger, Informationen zur Stirnplattengeometrie und Schrauben sind anzugeben bzw. einzustellen. Das Programm berechnet anhand der Eingabedaten die Momententragfähigkeit und die Rotationssteifigkeit des Anschlusses nach der Genauen und Vereinfachten Komponentenmethode. Die α -Kurven des Diagrammes für die Ermittlung des α -Wertes wurden für das Berechnungsprogramm

anhand der Formeln für λ_1 und λ_2 nach [9] implementiert. Das Diagramm nach [4] wurde mit Hilfe von Versuchen kalibriert. Die Formeln nach [9] sind eine Annäherung an diese Kurven. Aus diesem Grund weichen die implementierten α -Kurven des Berechnungsprogramms geringfügig von den α -Kurven nach [4] ab. Die aufwendigen Berechnungen der Komponentenmethode für einen Anschluss nach Abschnitt 3.1 Anwendungsbeispiel bleiben dem Anwender erspart.

Das Berechnungsbeispiel aus Abschnitt 3.1 Anwendungsbeispiel wurde ebenfalls mit Hilfe des Excelprogramms berechnet. Im Anhang A der vorliegenden Arbeit sind alle Datenblätter der Berechnung des Anwendungsbeispiels aus dem Excelberechnungsprogramm beigefügt.

Die Ergebnisse des Programms sind ident mit den Ergebnissen der Handrechnung der genauen Berechnung aus Abschnitt 3.1.2 Berechnung mittels der Genauen Komponentenmethode und der vereinfachten Berechnung aus Abschnitt 3.1.3 Berechnung mittels der Vereinfachten Komponentenmethode.

3.2. Ergebnisse weiterer Anwendungsbeispiele

Um einen qualitativen Vergleich zwischen genauem und vereinfachtem Verfahren zu ziehen, ist mehr als nur ein Anwendungsbeispiel von Nöten. Aus diesem Grund werden unterschiedliche Kombinationen von Stützen-Trägeranschlüssen anhand des Berechnungsprogrammes berechnet. Die Ergebnisse werden in Tabellen und Diagrammen aufbereitet.

Es wird eine Grundkonfiguration eines Anschlusses gewählt und Parameter wie die Stahlgüte von Stütze, Träger und Stirnblech sowie Stirnblechdicke werden variiert. Die Variation der Parameter beeinflussen die Ergebnisse der Momententragfähigkeit und der Rotationssteifigkeit des Anschlusses.

Die Ergebnisse der Anschlüsse A, B und C werden im Folgenden ausführlich betrachtet. Die Ergebnisse weiterer untersuchter Anschlüsse sind im $Anhang\ C$ beigefügt.

3.2.1. Anschluss A

Die Grundkonfiguration von Anschluss A entspricht jener des Beispiels aus Abschnitt 3.1 Anwendungsbeispiel. In Tabelle 3.4 sind alle Variationen der Konfiguration (genaue Details über Schraubenabstände sind der Tabelle B.1. im Anhang B zu entnehmen) und deren Ergebnisse aufgelistet.

Tabelle 3.4.: Anschluss A - Variationen

		Stütze		Träger		Stirnplatte			Schrauben		Genaues Verfahren		Vereinfachtes Verfahren		Abweichung		
		Profil	Güte	Profil	Güte	Güte	h_{p}	b_p	$t_{ m p}$	DN	Güte	$ m M_{j,Rd}$	$S_{j,ini}$	$ m M_{j,Rd}$	$S_{ m j,ini}$	$\mathbf{M}_{\mathrm{j,Rd}}$	$\mathbf{S}_{\mathbf{j},\mathrm{ini}}$
		-	-	-	-	1	[mm]	[mm]	[mm]	1	-	[kNm]	[MNm/rad]	[kNm]	[MNm/rad]	[%]	[%]
Α	1	HEA 360	S235	HEB 280	S235	S235	340	280	20	M16	8.8	74,11	21,499	70,31	21,366	-5,13	-0,62
Α	2	HEA 360	S275	HEB 280	S235	S235	340	280	20	M16	8.8	79,70	21,499	76,59	21,366	-3,90	-0,62
Α	3	HEA 360	S355	HEB 280	S235	S235	340	280	20	M16	8.8	90,17	21,499	89,14	21,366	-1,14	-0,62
Α	4	HEA 360	S450	HEB 280	S235	S235	340	280	20	M16	8.8	94,86	21,499	Bed.n.erf. ⁸	Bed.n.erf. ⁸	-	-
Α	5	HEA 360	S235	HEB 280	S275	S275	340	280	20	M16	8.8	74,11	21,499	70,31	21,366	-5,13	-0,62
Α	6	HEA 360	S235	HEB 280	S355	S355	340	280	20	M16	8.8	74,11	21,499	70,31	21,366	-5,13	-0,62
Α	7	HEA 360	S235	HEB 280	S450	S450	340	280	20	M16	8.8	74,11	21,499	70,31	21,366	-5,13	-0,62
Α	8	HEA 360	S275	HEB 280	S275	S275	340	280	20	M16	8.8	79,70	21,499	76,59	21,366	-3,90	-0,62
Α	9	HEA 360	S355	HEB 280	S355	S355	340	280	20	M16	8.8	90,17	21,499	89,14	21,366	-1,14	-0,62
Α	10	HEA 360	S450	HEB 280	S450	S450	340	280	20	M16	8.8	94,86	21,499	Bed.n.erf. ⁸	Bed.n.erf. ⁸	-	-
Α	11	HEA 360	S235	HEB 280	S235	S235	340	280	10	M16	8.8	50,86	17,497	48,91	19,029	-3,83	8,76
Α	12	HEA 360	S235	HEB 280	S235	S235	340	280	15	M16	8.8	70,94	20,550	70,31	21,000	-0,89	2,19
Α	13	HEA 360	S235	HEB 280	S235	S235	340	280	20	M16	8.8	74,11	21,499	70,31	21,366	-5,13	-0,62
Α	14	HEA 360	S235	HEB 280	S235	S235	340	280	25	M16	8.8	74,11	21,753	70,31	21,346	-5,13	-1,87
Α	15	HEA 360	S235	HEB 280	S235	S235	340	280	30	M16	8.8	74,11	21,742	70,31	21,204	-5,13	-2,47

Variation der Stahlgüte der Stütze

Die Diagramme in Abbildung 3.11 zeigen die Momententragfähigkeit und die Rotationssteifigkeit von $Anschluss\ A$ in Abhängigkeit der Stahlgüte der Stütze. Die Stahlgüte des Trägers und der Stirnplatte variiert nicht, sie bleibt bei $S\ 235$ fixiert.

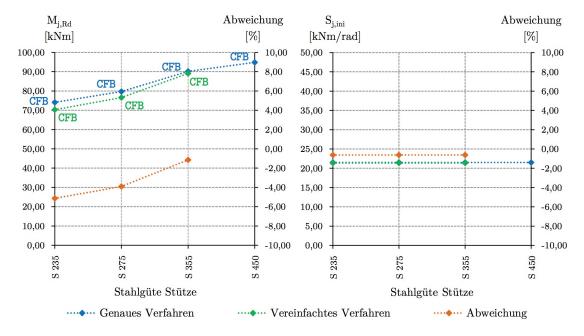


Abbildung 3.11.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze

 $^{^8}$ Die Anwendungsbedingung für die $Vereinfachte\ Komponentenmethode$ ist nicht erfüllt.

Die Stahlgüte der Stütze ist maßgebend für die Größe der Momententragfähigkeit $M_{j,Rd}$, da für beide Berechnungsverfahren und für jede Variation der Stahlgüte, die Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB) die kleinste und somit maßgebende Tragfähigkeit besitzt. In dieser und allen folgenden Abbildungen wird die maßgebende Grundkomponente mit ihrer Kurzbezeichnung in den Diagrammen angegeben. Die Abweichung der Ergebnisse des vereinfachten Verfahrens zu denen des genauen Verfahrens werden mit steigender Stützenstahlgüte zunehmend geringer. Die Abweichung des vereinfachten Verfahrens vom genauen liegt bei maximal -5,13 %.

Die Rotationssteifigkeit $S_{j,ini}$ bleibt von der Änderung der Stützenstahlgüte unbeeinflusst. Die Abweichungen der Ergebnisse der Steifigkeit anhand der Vereinfachten Komponentenmethode betragen konstant -0,62 % gegenüber den Ergebnissen der Genauen Komponentenmethode.

Das Diagramm in Abbildung 3.12 zeigt die Ergebnisse der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses beider Berechnungsverfahren im Verhältnis zur plastischen Tragfähigkeit $M_{pl,Rd,b}$ des Trägers. Es ist lediglich eine vernachlässigbar kleine Abweichung der vereinfachten zur genauen Berechnungsmethode zu erkennen.

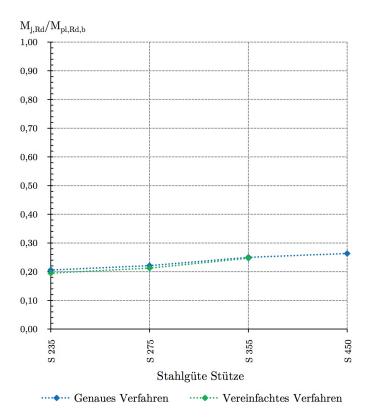


Abbildung 3.12.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze

Die Bedingung für das Vereinfachte~Komponentenverfahren ist für die Stütze mit der Stahlgüte S450 nicht erfüllt. Aus diesem Grund enthalten die Kurven der vereinfachten Berechnung in

den Abbildungen 3.11 und 3.12 keinen Eintrag für den Achsenpunkt S450.

Variation der Stahlgüte des Trägers und der Stirnplatte

Die Diagramme in Abbildung 3.13 zeigen die Momententragfähigkeit und Rotationssteifigkeit von $Anschluss\ A$ in Abhängigkeit der Stahlgüte des Trägers und der Stirnplatte. Die Stahlgüte der Stütze variiert nicht, sie bleibt bei $S\ 235$ fixiert.

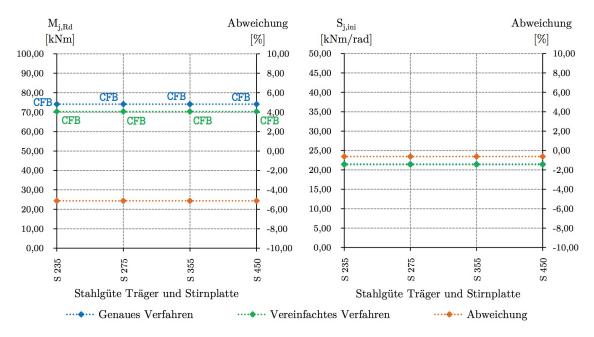


Abbildung 3.13.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Die Erhöhung der Stahlgüte von Träger und Stirnplatte hat keinen Einfluss auf die Momententragfähigkeit und die Rotationssteifigkeit des Anschlusses. Dies leitet sich davon ab, dass die Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB) die maßgebende Tragfähigkeit aufweist. Eine Erhöhung der Stahlgüte von Träger und Stirnplatte von S235 aud S450 ändert dadurch nichts an der Momententragfähigkeit des Anschlusses. Die Abweichungen der Ergebnisse des vereinfachten Verfahrens liegen somit bei konstant -5,13 % für $M_{j,Rd}$ bzw. -0,62 % für $S_{j,ini}$.

Das Verhältnis der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ zeigt in Abbildung 3.14, dass auch bei der Erhöhung der Stahlgüte des Trägers und der Stirnplatte, nur eine minimale Abweichung beider Berechnungsverfahren vorhanden ist. Auf Grund dessen, dass die maßgebende Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB) ist und eine Erhöhung der Stahlgüte des Trägers und der Stirnplatte keinen Einfuss auf $M_{j,Rd}$ haben, die plastische Tragfähigkeit des Trägers jedoch gleichzeitig ansteigt, sind die Kurven in Abbildung 3.14 im Gegensatz zu den Kurven in Abbildung 3.12 stetig fallend.

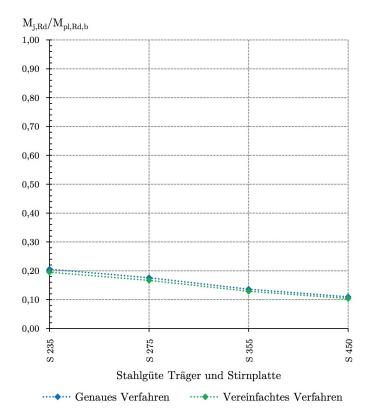


Abbildung 3.14.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Variation der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Die Diagramme in Abbildung 3.15 zeigen die Momententragfähigkeit und Rotationssteifigkeit von Anschluss A in Abhängigkeit der Stahlgüte der Stütze, des Trägers und der Stirnplatte.

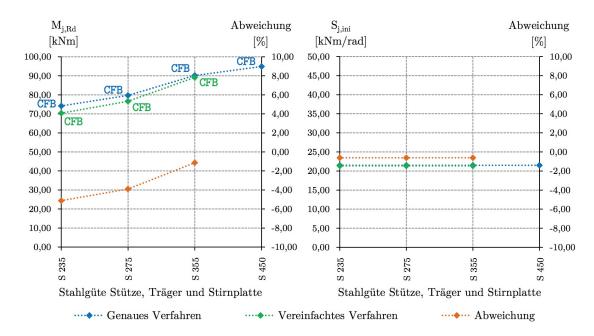


Abbildung 3.15.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Die Erhöhung der Stahlgüte aller drei Bauteile zeigt eine signifikante Steigerung der Momententragfähigkeit $M_{j,Rd}$ von 74,11 kN für S 235 auf 94,86 kN für S 450. Für beide Verfahren ist die maßgebende Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB). Bei einer Stahlgüte von S 450 ist die Bedingung für die Anwendung der Vereinfachten Komponentenmethode nicht erfüllt. Die Rotationssteifigkeit bleibt auch weiterhin von der Änderung der Stahlgüte der Bauteile unbeeinflusst. Die Abweichungen der Ergebnisse der Vereinfachten Komponentenmethode liegen maximal bei -5,13 % für $M_{j,Rd}$ bzw. bei -0,62 % für $S_{j,ini}$ in Bezug zu jenen der Genauen Komponentenmethode.

Das Verhältnis der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ zeigt in Abbildung 3.16, dass nur eine vernachlässigbar kleine Abweichung der vereinfachten zur genauen Berechnung vorhanden ist.

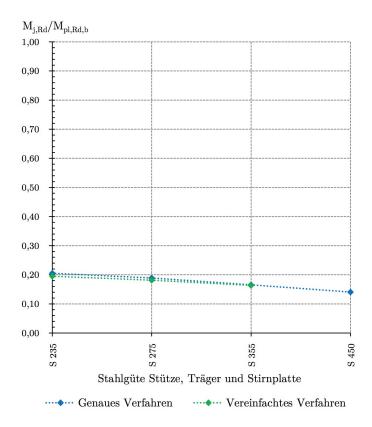


Abbildung 3.16.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Variation der Blechstärke der Stirnplatte

Die Diagramme in Abbildung 3.17 zeigen die Momententragfähigkeit und Rotationssteifigkeit von $Anschluss\ A$ in Abhängigkeit der Blechstärke der Stirnplatte. Die Stahlgüte aller drei Bauteile beträgt S 235.

Der Verlauf von $M_{j,Rd}$ zeigt ganz deutlich, dass die Stärke der Stirnplatte einen wesentlichen Einfluss auf die maßgebende Grundkomponente und somit auf die Tragfähigkeit des Anschlusses besitzt. Bei der sehr dünnen Stirnplatte von 10 mm ist die Grundkomponente Stirnblech mit Biegebeanspruchung (EPB) diejenige die zuerst versagt und ist somit für beide Berechnungsverfahren die maßgebende Komponente. Zwischen der Stirnblechstärke von 10 mm und 15 mm wechselt die maßgebende Grundkomponente zu Stützenflansch mit Biegebeanspruchung (CFB). Die Abweichungen des vereinfachten Verfahrens für $M_{j,Rd}$ werden nicht größer als -5,13 %.

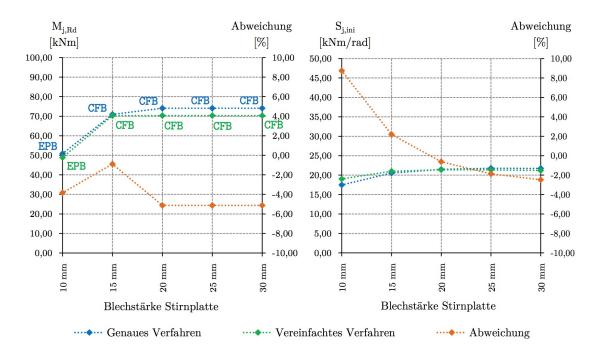


Abbildung 3.17.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Blechstärke der Stirnplatte

Im Gegensatz zur Variation der Stahlgüte, hat die Variation der Blechstärke der Stirnplatte einen großen Einfluss auf die Rotationssteifigkeit des Anschlusses. Mit Zunahme der Blechstärke nimmt auch $S_{j,ini}$ zu. Die Kurve der Ergebnisse von Anschluss A für $S_{j,ini}$ weist zwischen der Blechstärke 10 cm und 30 mm einen steigenden Verlauf auf. Interessant ist, dass das vereinfachte Verfahren für die Blechdicken 10 mm und 15 mm eine höhere Rotationssteifigkeit liefert als das genaue Verfahren. Die maximale Abweichung des vereinfachten Verfahrens tritt bei der Blechstärke vom 10 mm mit $8,76\,\%$ auf.

Der Vergleich der Verhältnisse der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ zeigt in Abbildung 3.18, dass sich die Ergebnisse des vereinfachten Verfahrens nahezu ideal an die Ergebnisse des genauen Verfahrens annähern.

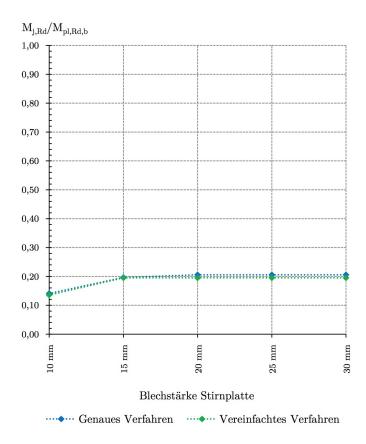


Abbildung 3.18.: Anschluss A - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der Stirnplatte

3.2.2. Anschluss B

Die Tabelle 3.5 listet alle untersuchten Variationen von Anschluss B einem HEB 300/HEB 300 Anschluss auf (genaue Details über Schraubenabstände sind der Tabelle B.1. im Anhang B zu entnehmen).

Tabelle 3.5.: Anschluss B - Variationen

		Stütz	e	Träge	er		Stirnp	olatte		Schra	uben	Genaues `	Verfahren	Vereinfachte	es Verfahren	Abwei	chung
		Profil	Güte	Profil	Güte	Güte	h_{p}	b_p	$t_{ m p}$	DN	Güte	$ m M_{j,Rd}$	$S_{j,ini}$	$ m M_{j,Rd}$	$S_{j,ini}$	$\mathbf{M}_{\mathrm{j,Rd}}$	$\mathbf{S}_{\mathbf{j},\mathrm{ini}}$
		-	-	-	-	-	[mm]	[mm]	[mm]	-	-	[kNm]	$[\mathrm{MNm/rad}]$	[kNm]	[MNm/rad]	[%]	[%]
В	1	HEB 300	S235	HEB 300	S235	S235	415	300	20	M20	8.8	119,91	32,915	118,36	31,496	-1,29	-4,31
В	2	HEB 300	S275	HEB 300	S235	S235	415	300	20	M20	8.8	125,41	32,915	125,37	31,496	-0,03	-4,31
В	3	HEB 300	S355	HEB 300	S235	S235	415	300	20	M20	8.8	136,40	32,915	125,57	31,496	-7,94	-4,31
В	4	HEB 300	S450	HEB 300	S235	S235	415	300	20	M20	8.8	137,97	32,915	125,57	31,496	-8,99	-4,31
В	5	HEB 300	S235	HEB 300	S275	S275	415	300	20	M20	8.8	121,65	32,915	118,39	31,496	-2,68	-4,31
В	6	HEB 300	S235	HEB 300	S355	S355	415	300	20	M20	8.8	122,18	32,915	118,39	31,496	-3,10	-4,31
В	7	HEB 300	S235	HEB 300	S450	S450	415	300	20	M20	8.8	122,18	32,915	118,39	31,496	-3,10	-4,31
В	8	HEB 300	S275	HEB 300	S275	S275	415	300	20	M20	8.8	127,15	32,915	125,37	31,496	-1,40	-4,31
В	9	HEB 300	S355	HEB 300	S355	S355	415	300	20	M20	8.8	141,62	32,915	139,31	31,496	-1,63	-4,31
В	10	HEB 300	S450	HEB 300	S450	S450	415	300	20	M20	8.8	155,07	32,915	Bed.n.erf.9	Bed.n.erf.9	-	-
В	11	HEB 300	S235	HEB 300	S235	S235	415	300	10	M20	8.8	59,23	21,532	47,08	21,822	-20,51	1,35
В	12	HEB 300	S235	HEB 300	S235	S235	415	300	15	M20	8.8	109,92	29,990	104,45	29,148	-4,98	-2,81
В	13	HEB 300	S235	HEB 300	S235	S235	415	300	20	M20	8.8	119,91	32,915	118,36	31,496	-1,29	-4,31
В	14	HEB 300	S235	HEB 300	S235	S235	415	300	25	M20	8.8	122,18	33,890	118,39	32,224	-3,10	-4,92
В	15	HEB 300	S235	HEB 300	S235	S235	415	300	30	M20	8.8	122,18	34,153	118,39	32,379	-3,10	-5,19

Variation der Stahlgüte der Stütze

Die Diagramme in Abbildung 3.19 zeigen die Momententragfähigkeit und Rotationssteifigkeit von $Anschluss\ B$ in Abhängigkeit der Stahlgüte der Stütze. Die Stahlgüte des Trägers und der Stirnplatte variiert nicht, sie bleibt bei S235 fixiert.

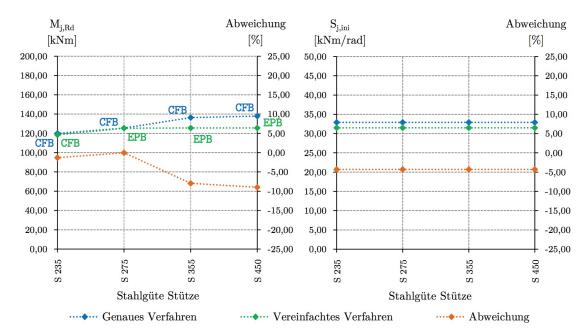


Abbildung 3.19.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze

⁹Die Anwendungsbedingung für die Vereinfachte Komponentenmethode ist nicht erfüllt.

Die maßgebende Grundkomponente des genauen Berechnungsverfahrens ist die Komponente Stützenflansch mit Biegebeanspruchung (CFB). Aus diesem Grund steigt die Tragfähigkeit des Anschlusses signifikant von 119,91 kNm auf 122,18 kNm für die Änderung der Stahlgüte der Stütze von S235 auf S450 an. Interessanterweise ist aber für die vereinfachte Berechnung ab S275 die Grundkomponente Stirnblech mit Biegebeanspruchung (EPB) maßgebend. Die Abweichung der Ergebnisse des vereinfachten Verfahrens zu jenen des genauen Verfahrens beträgt hier maximal -8,99%.

Die Stahlgüte hat keinen Einfluss auf die Rotationssteifigkeit des Anschlusses. Aus diesem Grund bleiben die Abweichungen der Ergebnisse des vereinfachten Verfahrens auf konstant -4,31%.

Das Diagramm in Abbildung 3.20 zeigt die Ergebnisse der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses beider Berechnungsverfahren im Verhältnis zur plastischen Tragfähigkeit $M_{pl,Rd,b}$ des Trägers. Für die Stahlgüten S235 und S275 ist eine beinahe ideale Annäherung gegeben. Ab der Stahlgüte S355 für die Stütze ist eine kleine Abweichung der Vereinfachten von der Genauen Komponentenmethode zu erkennen.

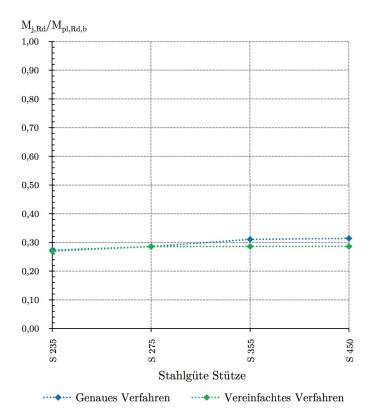


Abbildung 3.20.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze

Variation der Stahlgüte des Trägers und der Stirnplatte

Die Berechnungen der Genauen Komponentenmethode ergeben, dass die Momententragfähigkeit des Anschlusses minimal miterhöht wird mit der Erhöhung der Stahlgüte des Trägers und der Stirnplatte, obwohl die maßgebende Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB) bleibt (vgl. Abbildung 3.21). Dieser Effekt tritt durch eine unterschiedliche Gewichtung der maßgebenden Grenzzugkraft der Schraubenreihen $F_{Ti,Rd}$ in Erscheinung (die Hebelarme h_i bleiben unverändert)(vgl. Formel (2.6)). Die Momententragfähigkeit des vereinfachten Berechnungsverfahrens weicht maximal um -3,10 % von der des genauen Verfahrens ab.

Die Rotationssteifigkeit bleibt für alle Variationen der Stahlgüte konstant. Das vereinfachte Verfahren ergibt eine um -4,31 % geringere Steifigkeit als das genaue Verfahren.



Abbildung 3.21.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Das Verhältnis der Ergebnisse der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses beider Berechnungsverfahren im Verhältnis zur plastischen Tragfähigkeit $M_{pl,Rd,b}$ des Trägers ist in Abbildung 3.22 dargestellt. Es ist eine nahezu perfekte Anpassung der Kurve der Vereinfachten an die der Genauen Komponentenmethode gegeben.

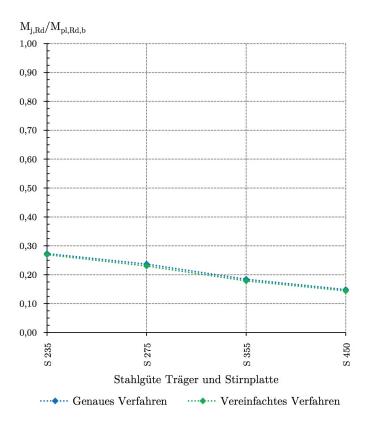


Abbildung 3.22.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Variation der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Die Erhöhung der Stahlgüte aller drei Bauteile zeigt eine signifikante Steigerung der Momententragfähigkeit $M_{j,Rd}$ von 119,91 kN für $S\,235$ auf 155,07 kN für $S\,450$ (vgl. Abbildung 3.23). Für beide Verfahren ist die maßgebende Grundkomponente Stützenflansch mit Biegebeanspruchung (CFB). Bei einer Stahlgüte von $S\,450$ ist die Bedingung für die Anwendung der Vereinfachten Komponentenmethode nicht erfüllt. Beide Kurven der Momententragfähigkeit $M_{j,Rd}$ verlaufen parallel. Die Ergebnisse der vereinfachten Berechnungen für $M_{j,Rd}$ weichen maximal -1,63% von den genauen Berechnungen ab.

Die Rotationssteifigkeit $S_{j,ini}$ bleibt auch weiterhin von der Änderung der Stahlgüte unbeeinflusst. Hier beträgt die maximale Abweichung der vereinfachten Berechnungen von denen der genauen Berechnungen -3,10 %.

Das Diagramm in Abbildung 3.24 zeigt den annähernd gleichen Verlauf der Momententragfähigkeit $M_{j,Rd}$ beider Kurven im Verhältnis zur plastischen Tragfähigkeit $M_{pl,Rd,b}$ des Trägers.

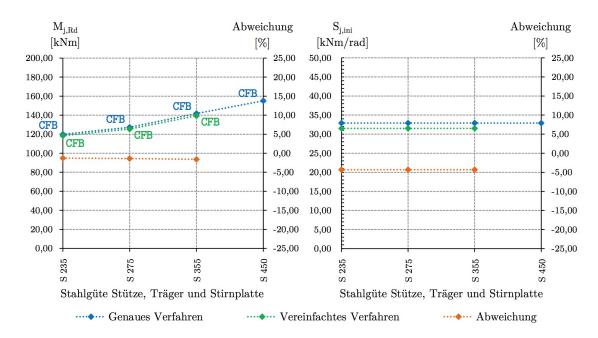


Abbildung 3.23.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

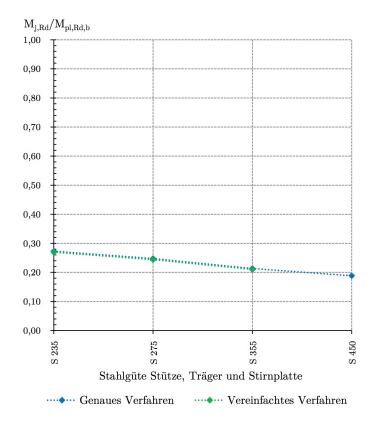


Abbildung 3.24.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Variation der Blechstärke der Stirnplatte

Die Stärke der Stirnplatte hat auch auf die Tragfähigkeit und Steifigkeit von Anschluss B einen wesentlichen Einfluss (vgl. Abbildung 3.25). Für sehr dünne Stirnplatten wird für beide Verfahren die Grundkomponente Stirnblech mit Biegbeanspruchung (EPB) maßgebend. Ab einer Dicke von 20 mm wird die Komponente Stützenflansch mit Biegebeanspruchung (CFB) ausschlaggebend. Beide Berechnungsverfahren liefern einen annähernd parallelen Verlauf der Momententragfähigkeitskurven. Die Abweichungen der Momententragfähigkeit sind im Bereich der dünnen Blechdicken mit -20,51 % sehr groß, fallen aber mit zunehmender Blechdicke sehr stark ab.

Dünne Stirnblechdicken machen den Anschluss weicher. Dementsprechend steigt die Rotationsteifigkeit des Anschluss mit der Dicke der Stirnplatte. Die Kurven der Rotationssteifigkeit zeigen ebenfalls für beide Berechnungsverfahren den gleichen Verlauf. Nur bei der Plattenstärke von 10 mm ergeben die Berechnungen des vereinfachten Verfahrens eine höhere Steifigkeit als die der genauen Berechnungen.

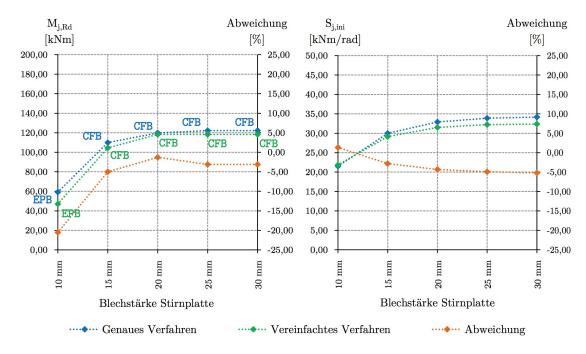


Abbildung 3.25.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Blechstärke der Stirnplatte

Die Abbildung 3.26 zeigt, dass die Ergebnisse der Momententragfähigkeit des Anschlusses aus dem vereinfachten Verfahren im Verhältnis zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ für die Stirnplattendicken 10 mm und 15 mm eine kleine Abweichung aufweisen. Ab 20 mm Blechstärke ist jedoch eine nahezu perfekte Übereinstimmung gegeben.

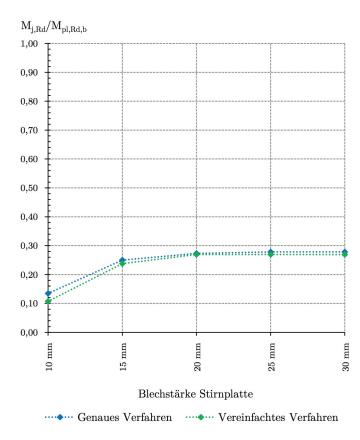


Abbildung 3.26.: Anschluss B - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der Stirnplatte

3.2.3. Anschluss C

Die Tabelle 3.6 listet alle untersuchten Variationen von $Anschluss\ C$ einem $HEA\ 400/HEB\ 200$ Anschluss auf (genaue Details über Schraubenabstände sind der Tabelle B.1. im $Anhang\ B$ zu entnehmen).

Tabelle 3.6.: Anschluss C - Variationen

		Stütz	e	Träge	er		Stirnp	latte		Schra	auben	Genaues '	Verfahren	Vereinfachte	es Verfahren	Abwei	chung
		Profil	Güte	Profil	Güte	Güte	h_p	b_p	$t_{\rm p}$	DN	Güte	${ m M_{j,Rd}}$	$S_{j,ini}$	$ m M_{j,Rd}$	$S_{ m j,ini}$	$ m M_{j,Rd}$	$\mathbf{S}_{\mathbf{j}, \mathrm{ini}}$
		-	-	-	-	-	[mm]	[mm]	[mm]	-	-	[kNm]	[MNm/rad]	[kNm]	[MNm/rad]	[%]	[%]
С	1	HEA 400	S235	HEB 200	S235	S235	280	220	20	M27	8.8	108,50	16,034	102,71	14,831	-5,34	-7,50
С	2	HEA 400	S275	HEB 200	S235	S235	280	220	20	M27	8.8	124,06	16,034	117,12	14,831	-5,59	-7,50
С	3	HEA 400	S355	HEB 200	S235	S235	280	220	20	M27	8.8	137,40	16,034	133,86	14,831	-2,58	-7,50
С	4	HEA 400	S450	HEB 200	S235	S235	280	220	20	M27	8.8	137,40	16,034	133,86	14,831	-2,58	-7,50
С	5	HEA 400	S235	HEB 200	S275	S275	280	220	20	M27	8.8	108,50	16,034	102,71	14,831	-5,34	-7,50
С	6	HEA 400	S235	HEB 200	S355	S355	280	220	20	M27	8.8	108,50	16,034	102,71	14,831	-5,34	-7,50
С	7	HEA 400	S235	HEB 200	S450	S450	280	220	20	M27	8.8	108,50	16,034	102,71	14,831	-5,34	-7,50
С	8	HEA 400	S275	HEB 200	S275	S275	280	220	20	M27	8.8	124,52	16,034	117,12	14,831	-5,94	-7,50
С	9	HEA 400	S355	HEB 200	S355	S355	280	220	20	M27	8.8	143,55	16,034	137,70	14,831	-4,08	-7,50
С	10	HEA 400	S450	HEB 200	S450	S450	280	220	20	M27	8.8	161,24	16,034	157,15	14,831	-2,54	-7,50
С	11	HEA 400	S235	HEB 200	S235	S235	280	220	10	M27	8.8	45,41	13,830	39,29	13,149	-13,48	-4,92
С	12	HEA 400	S235	HEB 200	S235	S235	280	220	15	M27	8.8	99,81	15,562	88,40	14,486	-11,43	-6,91
С	13	HEA 400	S235	HEB 200	S235	S235	280	220	20	M27	8.8	108,50	16,034	102,71	14,831	-5,34	-7,50
С	14	HEA 400	S235	HEB 200	S235	S235	280	220	25	M27	8.8	108,50	16,190	102,71	14,937	-5,34	-7,74
С	15	HEA 400	S235	HEB 200	S235	S235	280	220	30	M27	8.8	108,50	16,240	102,71	14,964	-5,34	-7,86

Variation der Stahlgüte der Stütze

Die Diagramme in Abbildung 3.27 zeigen die Momententragfähigkeit und die Rotationssteifigkeit von $Anschluss\ C$ in Abhängigkeit der Stahlgüte der Stütze. Die Stahlgüte des Trägers und der Stirnplatte variiert nicht, sie bleibt bei $S\ 235$ fixiert.

Die maßgebende Grundkomponente beider Berechnungsverfahren ist für die Stahlgüten S 235, S 275 und S 355 die Komponente Stützensteg mit Beanspruchung durch Querdruck (CWC). Für die Stahlgüte S 450 wird die Komponente Trägerflansch und -steg mit Druckbeanspruchung (BFC) maßgebend. Die Tragfähigkeit des Anschlusses steigt signifikant mit der Höhe der Stahlgüte der Stütze an. Die Abweichung des vereinfachten zum genauen Verfahren beträgt hier maximal -5,59 %.

Die Rotationssteifigkeit bleibt für alle Variationen der Stahlgüte konstant. Die Abweichung der Ergebnisse der Rotationssteifigkeit aus der vereinfachten Berechnung beträgt -7,50% gegenüber jenen der genauen Berechnung.

Das Diagramm in Abbildung 3.28 zeigt die Ergebnisse der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses beider Berechnungsverfahren im Verhältnis zur plastischen Tragfähigkeit $M_{pl,Rd,b}$ des Trägers. Im Vergleich zu den Anschlüssen A und B ist eine höhere Abweichung zu erkennen. Jedoch ist der Verlauf beider Kurven nahezu parallel.

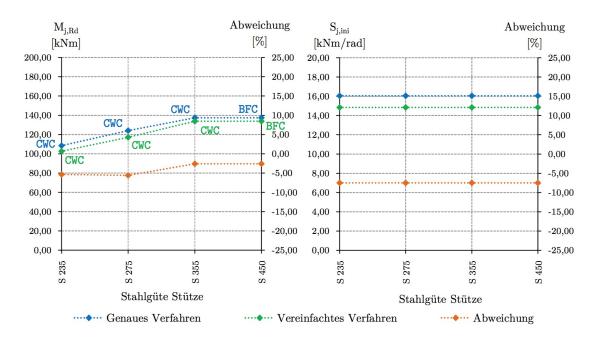


Abbildung 3.27.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze

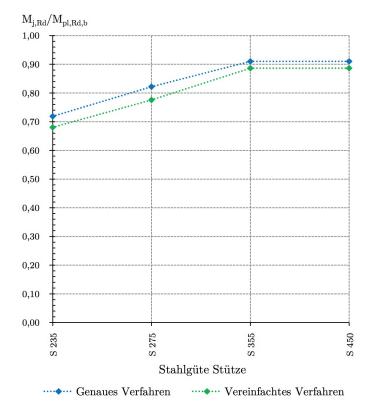


Abbildung 3.28.: Anschluss C
 - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl
. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze

Variation der Stahlgüte des Trägers und der Stirnplatte

Die Diagramme in Abbildung 3.29 zeigen die Momententragfähigkeit und die Rotationssteifigkeit von $Anschluss\ C$ in Abhängigkeit der Stahlgüte des Trägers und der Stirnplatte. Die Stahlgüte der Stütze variiert nicht, sie bleibt bei S 235 fixiert.

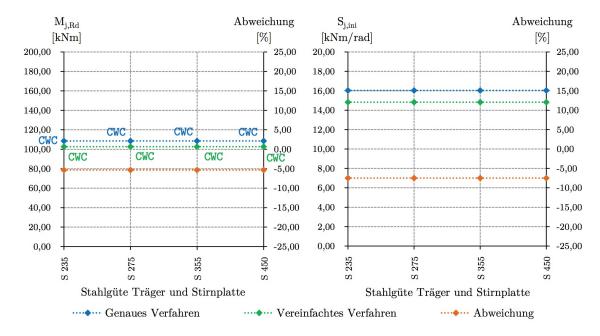


Abbildung 3.29.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Die Erhöhung der Stahlgüte von Träger und Stirnplatte hat keinen Einfluss auf die Momententragfähigkeit und die Rotationssteifigkeit des Anschlusses. Dies ist darauf zurück zu führen, dass die maßgebende Grundkomponente Stützensteg mit Beanspruchung durch Querdruck (CWC) ist. Die Rotationssteifigkeit bleibt von der Änderung der Stahlgüte von Träger und Stirnplatte unbeeinflusst. Die Abweichung der Ergebnisse der vereinfachten zur genauen Berechnung liegt bei konstant -5,34 % für $M_{j,Rd}$ bzw. -7,50 % für $S_{j,ini}$.

Das aufgetragene Verhältnis der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ in Abhängigkeit der Stahlgüte in Abbildung 3.30 zeigt, dass eine geringe Abweichung zwischen beiden Methoden vorhanden ist. Der Ablauf des vereinfachten Berechnungsverfahrens ist jedoch ident zur genauen Berechnung.

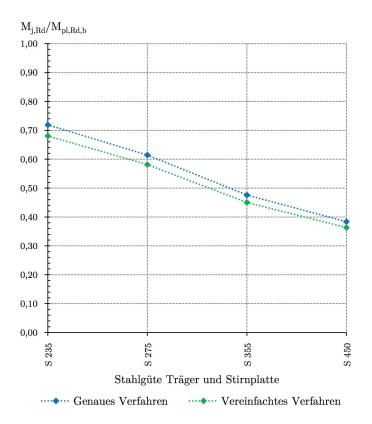


Abbildung 3.30.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Variation der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Die Diagramme in Abbildung 3.31 zeigen die Momententragfähigkeit und Rotationssteifigkeit von $Anschluss\ C$ in Abhängigkeit der Stahlgüte der Stütze, des Trägers und der Stirnplatte.

Die Erhöhung der Stahlgüte aller drei Bauteile zeigt eine signifikante Steigerung der Momententragfähigkeit $M_{j,Rd}$ von 108,50 kN für S 235 auf 161,24 kN für S 450. Für beide Verfahren ist die maßgebende Grundkomponente Stützensteg mit Beanspruchung durch Querdruck (CWC). Die Rotationssteifigkeit $S_{j,ini}$ bleibt auch weiterhin von der Änderung der Stahlgüte unbeeinflusst. Die Abweichung der Ergebnisse der Vereinfachten zur Genauen Komponentenmethode liegen bei maximal -5,94 % für $M_{j,Rd}$ bzw. -7,50 % für $S_{j,ini}$.

Das Verhältnis der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ zeigt in Abbildung 3.32, dass eine kleine Abweichung vorhanden ist. Der Verlauf der Ergebnisse des vereinfachten Berechnungsverfahrens ist parallel zu jenen des genauen Berechnungsverfahrens.

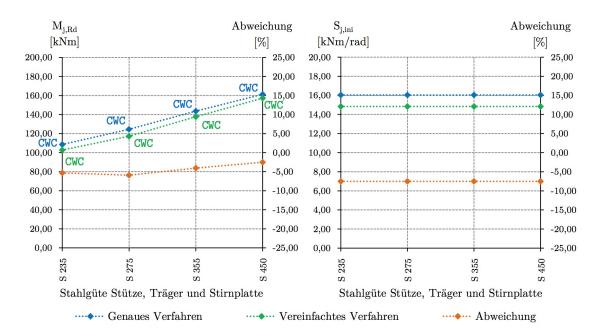


Abbildung 3.31.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

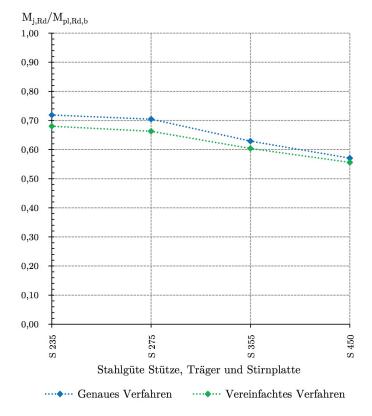


Abbildung 3.32.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Variation der Blechstärke der Stirnplatte

Die Diagramme in Abbildung 3.33 zeigen die Momententragfähigkeit und Rotationssteifigkeit von $Anschluss\ C$ in Abhängigkeit der Blechstärke der Stirnplatte. Die Stahlgüte der Stütze, des Trägers und der Stirnplatte wird nicht variiert, sie bleibt bei S235 fixiert.

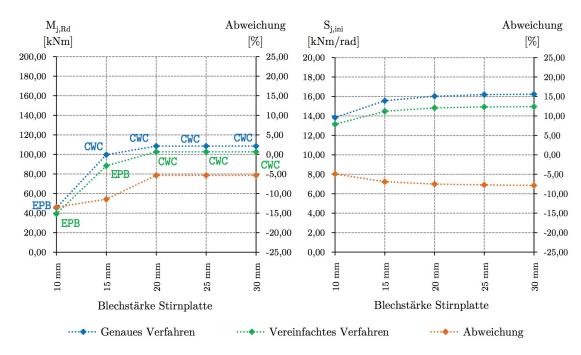


Abbildung 3.33.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Blechstärke der Stirnplatte

Die Blechstärke der Stirnplatte hat einen großen Einfluss auf die maßgebenden Grundkomponenten des Anschlusses und somit auf die Momententragfähigkeit. Bei der sehr dünnen Stirnplatte von 10 mm ist die Grundkomponente Stirnblech mit Biegebeanspruchung (EPB) diejenige, die zuerst versagt und ist somit die maßgebende Komponente. Ab einer Blechstärke von 15 mm wechselt die maßgebende Grundkomponente der Genauen Komponentenmethode auf Stützensteg mit Beanspruchung durch Querdruck (CWC). Die Grundkomponente Stützensteg mit Beanspruchung durch Querdruck (CWC) wird bei der vereinfachten Berechnung erst ab einer Blechstärke von 20 mm maßgebend. Die Abweichungen des vereinfachten Verfahrens für $M_{j,Rd}$ sind maximal -13,48 %.

Mit Zunahme der Blechstärke nimmt die Rotationsteifigkeit des Anschlusses zu. Die Kurve der Ergebnisse von Anschluss C für $S_{j,ini}$ weist zwischen den Blechdicken 10 mm und 30 mm einen steigenden Verlauf auf. Die maximale Abweichung der vereinfachten Berechnung tritt bei der Blechdicke von 30 mm mit -7,86 % auf.

Der Vergleich der Verhältnisse der Momententragfähigkeit $M_{j,Rd}$ des Anschlusses zur plastischen Tragfähigkeit des Trägers $M_{pl,Rd,b}$ zeigt in Abbildung 3.34, dass eine kleine Abweichung vorhanden ist. Der Verlauf des vereinfachten Berechnungsverfahrens ist näherungsweise parallel zu jenen des genauen Berechnungsverfahrens.

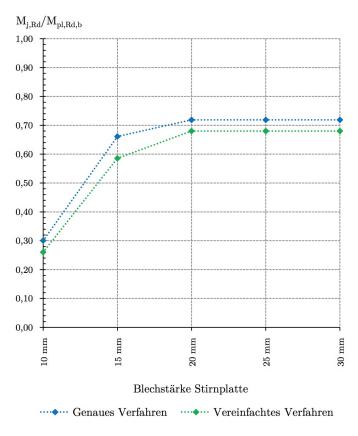


Abbildung 3.34.: Anschluss C - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der Stirnplatte

4. Erkenntnisse

Die Zielsetzung der vorliegenden Arbeit war, einen Vergleich der Genauen und der Vereinfachten Komponentenmethode für einseitige Stützen-Trägeranschlüsse zu führen. Der Vergleich wurde im Abschnitt 3 Vergleich anhand der Berechnung unterschiedlicher Stützen-Trägeranschlüsse mittels beider Verfahren ausgeführt. Die Ergebnisse, die die Verfahren für die Momententragfähigkeit und die Rotationssteifigkeit der Anschlüsse ergaben, wurden direkt miteinander verglichen. Auf diese Weise war eine prozentuelle Abweichung des vereinfachten zum genauen Verfahren ermittelbar. Anhand des direkten Vergleichs, war die Gewinnung einiger aufschlussreicher Feststellungen möglich.

Die bedeutendste Erkenntnis ist jene, dass trotz unterschiedlich großem Aufwand beider Berechnungsverfahren, die Ergebnisse beider Verfahren sehr nah beieinander liegen. Grundsätzlich liefert das genaue Verfahren höhere Tragfähigkeiten und somit eine wirtschaftlichere Bemessung des Anschlusses. Die Ergebnisse der vereinfachten Berechnung ergaben für die Momententragfähigkeit des Anschlusses für alle untersuchten Anschlüsse (siehe auch Grundkonfigurationen D-F in Anhang B bzw. Anhang C) einen niedrigeren Wert als die der genauen Berechnung und lagen dadurch wie Ingenieurinnen und Ingenieure zu sagen pflegen "auf der sicheren Seite". Die untersuchten Fälle zeigen, dass für konstruktiv sinnvolle Anschlüsse, die Ergebnisse der Vereinfachten Komponentenmethode eine maximale Abweichung der Momententragfähigkeit von lediglichen -5,19 % aufweisen. Im Gegensatz zur Momententragfähigkeit liefert die Vereinfachte Komponentenmethode nicht immer einen niedrigeren Wert für die Rotationssteifigkeit des Anschlusses. Die maximale Abweichung der Rotationssteifigkeit für konstruktiv sinnvolle Anschlüsse liegt bei ca. -7,86 %. Ein wesentlicher Vorteil der Komponentenmethode (genaues und vereinfachtes Verfahren) ist jener, dass anhand der Berechnungen stets klar ersichtlich ist, welche Grundkomponente für die Tragfähigkeit des Anschlusses maßgebend ist. Dadurch lassen sich geeignete Maßnahmen treffen, die eine Anpassung an die geforderten Bedingungen erlauben. Für den Großteil der untersuchten Konfigurationen gilt, dass für beide Verfahren jeweils die gleichen Grundkomponenten für die Tragfähigkeit des Anschlusses maßgebend waren.

Es lässt sich das folgende Fazit ziehen, dass die Vereinfachte Komponentenmethode ein durchaus mehr als ausreichend genaues Bemessungsverfahren ist. Für Computerprogramme, mit deren Hilfe sich möglichst effizient ein geeigneter Anschluss ermitteln lässt, ist die Genaue Komponentenmethode ein ideales Bemessungsverfahren. Für eine "händische" Ermittlung der

Momententragfähigkeit und der Rotationssteifigkeit eines Anschlusses, ist die Genaue Komponentenmethode sehr umfangreich und erfordert einen hohen Aufwand für Ingenieurinnen und Ingenieure. Die Komponentenmethode ermöglicht die Herstellung von steifenlosen nachgiebigen Anschlüssen. Wodurch große Einsparungen auf der Seite des Stahlbauers, durch den Wegfall von Kosten für das Verschweißen von Steifen, entstehen. Aber in Wirklichkeit findet, in Abhängigkeit der Stückzahl eines Anschlusses, eine Kostenumlagerung statt. Die Kosten die auf Seiten der Stahlbauer eingespart werden, fallen auf der Ingenieurseite, auf Grund des hohen Aufwands der Bemessung der nachgiebigen Anschlüsse, an. Für eine hohe Stückzahl eines Anschlusses ist eine Bemessung des Anschlusses anhand der Komponentenmethode trotz des Mehraufwandes auf der Ingenieurseite wirtschaftlich gesehen indessen vorteilhafter. Für einen einzigen Anschluss bzw. eine geringe Anzahl von gleichen Anschlüssen ist der Mehraufwand der Komponentenmethode nicht rentabel.

A. Datenblätter des Anwendungsbeispieles (aus dem Excelberechnungsprogramm)

Das Berechnungsbeispiel eines HEA 360/HEB 280 Stützen-Trägeranschlusses, welches im Abschnitt 3.1 Anwendungsbeispiel berechnet wurde, wurde ebenfalls mit Hilfe des in Abschnitt 3.1.4 Excelberechnungsprogramm beschrieben Berechnungsprogramm berechnet. Die Datenblätter die das Programm liefert, sind im folgenden angefügt.

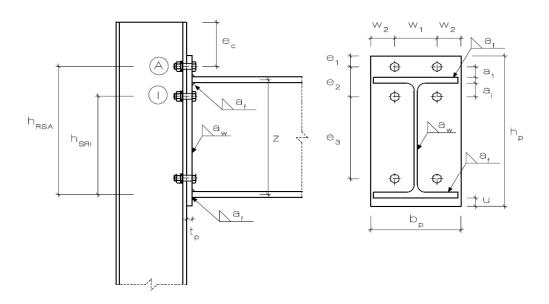
15:30:13 08.11.2014

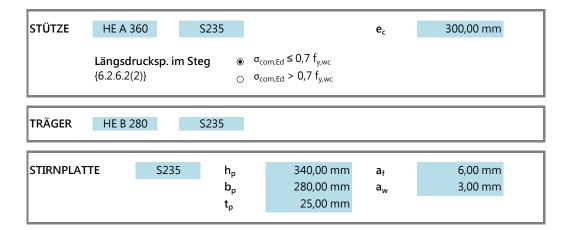
Berechnung und Bemessung von einseitigen Stützen-Träger Anschlüssen ohne zusätzliche Stützenstegverstärkung

Berechnungsarten: genaues Verfahren nach EUROCODE 3 - Teil 1-8 angenähertes Verfahren

Tahira Bhatti
DA
Anschluss A
HEA360/HEB280

HINWEIS: Dieses Berechnungsprogramm ist nur für <u>einseitige</u> Stützen-Träger Anschlüsse mit <u>verschraubten Stirnblechen</u> und <u>ohne Stützenstegverstärkung</u> anwendbar.

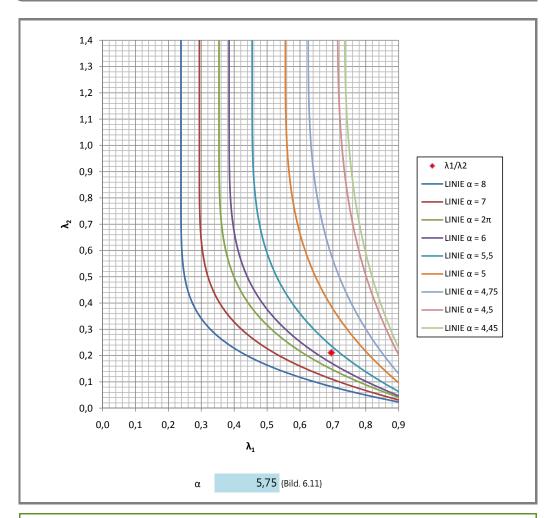



14:19:15 28.10.2014

EINGABEDATEN

Teilsicherheitsbeiwerte γ_{M0} 1,00

 γ_{M1} 1,00 γ_{M2} 1,25



14:19:15 28.10.2014

SCHRAUBEN	M16	8.8			
		e_1	25,00 mm	a_1	35,00 mm
		\mathbf{e}_2	87,50 mm	a_i	34,50 mm
		\mathbf{e}_3	155,00 mm	w_{1}	200,00 mm
				\mathbf{W}_{2}	40,00 mm
				_	

BEDINGUNG: 6.2.6.1 (1) Die Andwendbarkeit des Bemessungsverfahren in 6.2.6.1 (2) bis 6.2.6.1 (14) ist auf des Schlankheiten des Stützenstegs d_c/t_{wc} <= 69 ϵ begrenzt!

 $d_c / t_{wc} \leq 69 \varepsilon$ $26,10 \leq 69,00$

Bedingung erfüllt!

14:19:15 28.10.2014

ÜBERSICHT ALLER EINGANGSWERTE

E 210000 N/mm²

STÜTZE	HE A 360	TRÄGER	HE B 280
$f_{y,c}$	235 N/mm ²	$f_{y,b}$	235 N/mm ²
ϵ_{c}	1,00	ϵ_{b}	1,00
h_c	350,00 mm	h _b	280,00 mm
b_c	300,00 mm	b_b	280,00 mm
t_{wc}	10,00 mm	t _{wb}	10,50 mm
t_fc	17,50 mm	t_fb	18,00 mm
r_c	27,00 mm	r _b	24,00 mm
A_c	142,80 cm ²	A_b	131,40 cm ²
A_{vc}	48,96 cm ²	A_vb	41,09 cm ²
$I_{yy,c}$	33090,00 cm⁴	$I_{yy,b}$	19270,00 cm ⁴
$I_{zz,c}$	7887,00 cm⁴	$I_{zz,b}$	6595,00 cm ⁴
$W_{el,y,c}$	1891,00 cm ³	$W_{el,y,b}$	1376,00 cm ³
$W_{el,z,c}$	525,80 cm ³	$W_{el,z,b}$	471,00 cm ³
$W_{pl,y,c}$	2088,00 cm ³	$W_{pl,y,b}$	1534,00 cm ³
$W_{pl,z,c}$	802,30 cm ³	$W_{pl,z,b}$	717,60 cm ³
d_c	261,00 mm	Z	262,00 mm

STIRNPL	ATTE
----------------	------

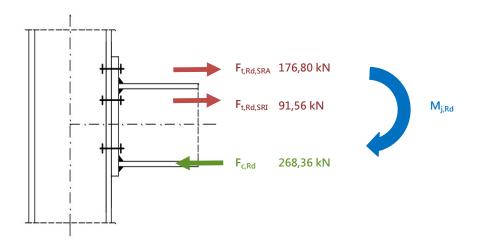
t _{y,p}	235 N/mm ²
h _p	340,00 mm
b_p	280,00 mm
tp	25,00 mm
u	0,00 mm
a_f	6,00 mm
a_w	3,00 mm

SCHRAUBEN	M16
f_{ub}	800 N/mm ²
d	16,00 mm
A_s	1,57 cm ²
e_1	25,00 mm
e_2	87,50 mm
e_3	155,00 mm
e_c	300,00 mm
a_1	35,00 mm
a _i	34,50 mm
W_1	200,00 mm
W ₂	40,00 mm
k	10,00 mm
m	12,00 mm
d_{m}	25,12 mm

8.8

14:19:15 28.10.2014

ERGEBNISSE


Genaues Verfahren nach EUROCODE 3 - Teil 8

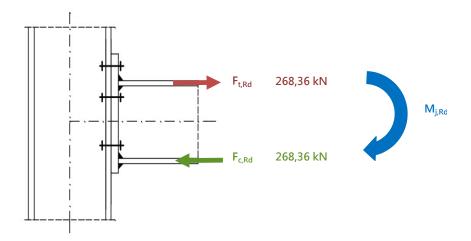
Das ermitttelte Ergebnis bezieht sich auf die Träger-Stützen Anschlüsse beinhaltenden Kapitel 5 und 6 des Eurocode 3, Teil 1.8.

Durch Addition der Momentenbeiträge der einzelen Schraubenreihen ergibt sich für den Anschluss mit dem unverstärkten Stützensteg folgende Momententragfähigkeit:

Momententragfähigkeit des Anschlusses Anfangsrotationsfähigkeit des Anschlusses $\begin{matrix} M_{j,Rd} \\ S_{j,ini} \end{matrix}$

74,11 kNm 21,753 MNm/rad

14:19:15 28.10.2014


Vereinfachtes Verfahren

Für das angenäherte Verfahren wird für die Einzelkomponenten nur die resultierende Zugkraft $F_{t,Rd,G}$ beider Schraubenreihen ermittelt. Diese darf jedoch, als Voraussetzung dieser Näherung, den Wert der 3,8-fachen Zugtragfähigkeit $F_{t,Rd}$ einer Einzelschraube nicht überschreiten.

Bedingung für genähertes Verfahren erfüllt!

Das resultierende Kräftepaar liefert folgende Momententragfähigkeit:

Momententragfähigkeit des Anschlusses - Näherung Anfangsrotationsfähigkeit des Anschlusses - Näherung $M_{j,Rd}$ $S_{j,ini}$ 70,31 kNm 21,346 MNm/rad

14:19:15

28.10.2014

ZUSAMMENFASSUNG ZWISCHENERGEBNISSE: BERECHNUNG NACH EUROCODE 3 - Teil 1-8

Momententragfähigkeit und Knotensteifigkeit

	Ubersicht aller berechneten Komponententragfähigkeiten und -steifigkeiten	nententrag	ıfähigkeite	n und -stei	figkeiten		
Komp. 1	Stützensteg mit Schubbeanspruchung	CWS	global	F _{wp,Rd}	597,85 kN	k ₁	7,101 mm
Komp. 2	Stützensteg mit Beanspruchen durch Querdruck	CWC	global	F _{c,wc,Rd}	494,86 kN	k ₂	7,348 mm
				F _{t,wc,Rd,SRA}	644,16 kN	k _{3,SRA}	5,949 mm
Komp. 3	Stützensteg mit Beanspruchen durch Querzug	CWT	lokal	F _{t,wc,Rd,SRI}	644,16 kN	k _{3,SRI}	5,949 mm
				F _{t,wc,Rd,G}	725,05 kN		
				F _{t,fc,Rd,SRA}	176,80 kN	K _{4,SRA}	2,705 mm
Komp. 4	Stützenflansch mit Biegebeanspruchung	CFB	lokal	F _{t,fc,Rd,SRI}	176,80 kN	$k_{4,SRI}$	2,705 mm
				F _{t,fc,Rd,G}	268,36 kN		
J cmc/	a series of a seri	CDD	10101	F _{t,ep,Rd,SRA}	180,86 kN	k _{5,SRA}	70,174 mm
collip. 3		9	IOKal	F _{t,ep,Rd,SRI}	180,86 kN	k _{5,SRI}	9,689 mm
Komp. 6	Trägerflansch und -steg mit Druckbeanspruchung	BFC	global	F _{c,fb,Rd}	1234,20 kN	k ₇	8
Komp. 7	Trägersteg mit Zugbeanspruchung	BWT	lokal	F _{t,wb,Rd}	1296,17 kN	k ₈	8
	Soundaineadairt Immachier					k _{10,SRA}	4,085 mm
	Scillaubell IIII Zugocarispi uci urig					k _{10,SRI}	4,085 mm

	Schraubenreihe A (LOKAL)	(AL)			
Komp. 4	Stützenflansch mit Biegebeanspruchung	CFB	lokal	$\mathbf{F}_{t,fc,Rd,SRA}$	176,80 kN
Komp. 3	Stützensteg mit Beanspruchen durch Querzug	CWT	lokal	F _{t,wc,Rd,SRA}	644,16 kN
Komp. 5	Stirnblech mit Biegebeanspruchung	EPB	lokal	F _{t,ep,Rd,SRA}	180,86 kN
	maßgebende Grenztragfähigkeit (ZUG) Schraubenreihe A (lokal)	A (lokal)		F _{t,Rd,SRA}	176,80 kN

	Schraubenreihe I (LOKAL)	(AL)			
Komp. 4	Stützenflansch mit Biegebeanspruchung	CFB	lokal	F _{t,fc,Rd,SRI}	176,80 kN
Komp. 3	Stützensteg mit Beanspruchen durch Querzug	CWT	lokal	F _{t,wc,Rd,SRI}	644,16 kN
Komp. 5	Stirnblech mit Biegebeanspruchung	EPB	lokal	F _{t,ep,Rd,SRI}	180,86 kN
Komp. 7	Trägersteg mit Zugbeanspruchung	BWT	lokal	F _{t,wb,Rd}	1296,17 kN
	maßgebende Grenztragfähigkeit (ZUG) Schraubenreihe I (lokal)	e I (lokal)		F _{t,Rd,SRI}	176,80 kN

14:19:15

28.10.2014

	Schraubengruppe G (LOKAL)	AL)						
Komp. 4	Stützenflansch mit Biegebeanspruchung	CFB	lokal	F _{t,fc,Rd,G}	268,36 kN			
Komp. 3	Stützensteg mit Beanspruchen durch Querzug	CWT	lokal	F _{t,wc,Rd,G}	725,05 kN		ABMINDERUNG	เบทด
	maßgebende Grenztragfähigkeit (ZUG) Schraubengruppe G (lokal)	G (lokal)		F _{t,Rd,G}	268,36 kN		< F _t Rd,SRA + F _{t,Rd,SRI}	353,59 kN
						Die T	Die Tragfähigkeit der inneren Schrauben muss abgemindert werden!	ren Schrauben muss werden!
							F*tRd,SRA	176,80 kN
							F* _{t,Rd,SRI}	91,56 kN

ung n	Keine Abminderung						
2	≥ F*t,Rd,SRA + F*t,Rd,SRI	494,86 kN	F _{c,Rd}		0	maßgebende globale Grenztragfähigkeit (DRUCK)	
UNG	ABMINDERUNG	1234,20 kN	F _{c,fb,Rd}	global	BFC	Trägerflansch und -steg mit Druckbeanspruchung	Komp. 6
		494,86 kN	F _{c,wc,Rd}	global	CWC	Stützensteg mit Beanspruchen durch Querdruck	Komp. 2
		N3 58'265	F _{wp,Rd}	global	CWS	Stützensteg mit Schubbeanspruchung	Komp. 1
					u	Globale Komponenten	

	176,80 kN trd,SRA	h _{SRA} 306,00 mm	F** _{t,Rd,SRI} 91,56 kN	h _{SRI} 218,50 mm	Mj. Rd 74,11 kNm
Ermittlung Momententragfähigkeit	Verteilung (abgeminderte) Grenztragfähigkeit der Schraubenreihe A	Hebelsarm Schraubenreihe A	Verteilung (abgeminderte) Grenztragfähigkeit der Schraubenreihe A	Hebelsarm Schraubenreihe I	Momententragfähigkeit des Anschlusses

Ermittlung Anfangsrotationssteifigkeit		
Ersatzwegfeder Schraubenreihe A	k eff,SRA	1,255 mm
Ersatzwegfeder Schraubenreihe I	$k_{\rm eff,SRI}$	1,129 mm
Hebelsarm Schraubenreihe A	hsra	306,00 mm
Hebelsarm Schraubenreihe I	hsRI	218,50 mm
Abstand zu k _{eq}	Zeq	271,78 mm
Anpassung k ₁ an z _{eq}	k_{1eq}	6,846 mm
Zugwegfeder	k_{eq}	2,321 mm
Anfangsrotationssteifigkeit des Anschlusses	S _{j,ini}	S _{j,ini} 21,75 MNm/rad

14:19:15

28.10.2014

ZUSAMMENFASSUNG ZWISCHENERGEBNISSE: ANGENÄHERTE BERECHNUNG Momententragfähigkeit und Knotensteifigkeit

	Übersicht aller berechneten Komponententragfähigkeiten und -steifigkeiten - Näherung	tragfähigk	eiten und	-steifigkeit	ten - Näherung		
Komp. 1	Stützensteg mit Schubbeanspruchung	CWS	global	F _{wp,Rd}	597,85 kN	k ₁	7,101 mm
Komp. 2	Stützensteg mit Beanspruchen durch Querdruck	CWC	global	Fc,wc,Rd	494,86 kN	^Z Y	7,348 mm
				F _{t,wc,Rd,SRA}	ı.	k _{3,SRA}	5,949 mm
Komp. 3	Stützensteg mit Beanspruchen durch Querzug	CWT	lokal	$F_{t,wc,Rd,SRI}$	ı.	k3,sru	
				F _{t,wc,Rd,G}	725,05 kN		
				F _{t,fc,Rd,SRA}	1	K _{4,SRA}	2,705 mm
Komp. 4	Stützenflansch mit Biegebeanspruchung	CFB	lokal	F _{t,fc,Rd,SRI}	1	K _{4,SRI}	
				F _{t,fc,Rd,G}	268,36 kN		
Z cmc/	Ctiral Local Control C	CDD	Ichal	F _{t,ep,Rd,SRA}	361,73 kN	k _{5,SRA}	70,174 mm
c.dillp.		9 1	ONA	F _{t,ep,Rd,SRI}	1	ks,srı	
Komp. 6	Trägerflansch und -steg mit Druckbeanspruchung	BFC	global	F _{c,fb,Rd}	1234,20 kN	k ₇	8
Komp. 7	Trägersteg mit Zugbeanspruchung	BWT	lokal	F _{t,wb,Rd}	1	k ₈	8
	Schrauban mit Zuchansansundan					$k_{10,SRA}$	4,085 mm
	Scillauber IIII Zugbeansplaching					k _{10,SRI}	

	Schraubengruppe G (LOKAL) - Näherung	Näherung			
Komp. 4	Stützenflansch mit Biegebeanspruchung	CFB	lokal	F _{t,fc,Rd,G}	268,36 kN
Komp. 3	Stützensteg mit Beanspruchen durch Querzug	CWT	lokal	F _{t,wc,Rd,G}	725,05 kN
Komp. 5	Stirnblech mit Biegebeanspruchung	EPB	lokal	F _{t,ep,Rd,A}	361,73 kN
maßg	maßgebende Grenztragfähigkeit (ZUG) Schraubenreihe A (lokal) - Näherung	al) - Näheru	ng	F _{t,Rd,G}	268,36 kN

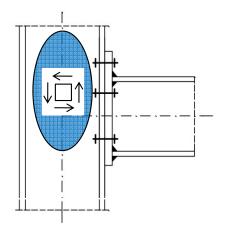
	Globale Komponenten - Näherung	erung			
Komp. 1	Stützensteg mit Schubbeanspruchung	CWS	global	F _{wp,Rd}	597,85 kN
Komp. 2	Stützensteg mit Beanspruchen durch Querdruck	CWC	global	F _{c,wc,Rd}	494,86 kN
Komp. 6	Trägerflansch und -steg mit Druckbeanspruchung	BFC	global	F _{c,fb,Rd}	1234,20 kN
	maßgebende globale (DRUCK) Grenztragfähigkeit - Näherung	erung		F _{c,Rd}	494,86 kN

14:19:15

28.10.2014

Gleichgewicht - Näherung				
maßgebende Grenztragfähigkeit (ZUG) Schraubenreihe A (lokal) - Näherung	FtRd,G	F _{t Rd,G} 268,36 kN		
maßgebende globale (DRUCK) Grenztragfähigkeit - Näherung	F _{c,Rd}	F _{c,Rd} 494,86 kN	KONTROLLE VORAUSSETZUNG	NOSSETZUNG
maßgebende Komponente für das Gleichgewicht - Näherung	F _{Rd}	268,36 kN	> 3,8·F _{t,Rd}	3,8·F _{t,Rd} 343,64 kN
			Bedingung erfüllt - Näherungsberechnung zulässig!	erungsberechnung y!

Ermittlung Momententragfähigkeit - Näherung		
Verteilung (abgeminderte) Grenztragfähigkeit der Schraubenreihe A	F_{Rd}	268,36 kN
Hebelsarm (Abstand Druckgurt und Zuggurt des Trägers)	h	262,00 mm
Momententragfähigkeit des Anschlusses - Näherung	MjRd	Mj.Rd 70,31 kNm


14:19:15 28.10.2014

KOMPONENTE 1: $F_{wp,Rd}$ EN 1993-1-8 6.2.6.1: Stützensteg mit Schubbeanspruchung (CWS)

γμο	1,00
β	1,00

STÜTZE	HE A 360
$f_{y,wc}$	235 N/mm ²
A_{vc}	4896,00 mm ²

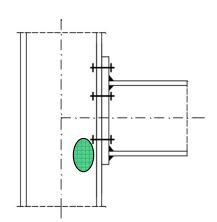
TRÄGER	HE B 280
h_b	280,00 mm
t_{fb}	18,00 mm
Z	262,00 mm

TRAGFÄHIGKEIT STEIFIGKEIT

 $\mathbf{F}_{\text{wp,Rd}}$

597,85 kN {Formel 6.7} 7,101 mm {Tab. 6.11}

14:19:15 28.10.2014


KOMPONENTE 2: Fc,wc,Rd

EN 1993-1-8 6.2.6.2: Stützensteg mit Beanspruchung durch Querdruck (CWC)

γмо	1,00
γм1	1,00
β	1,00

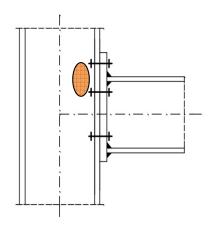
STÜTZE	HE A 360
$f_{y,wc}$	235 N/mm ²
E	210000 N/mm ²
h_c	350,00 mm
t_{wc}	10,00 mm
t_fc	17,50 mm
s =r _c	27,00 mm
A_{vc}	4896,00 mm ²
d_{c}	261,00 mm

STIRNPLATTE

t _p	25,00 mm
$a_p = a_f$	6,00 mm
	0.00 mm

effektive Breite:	$b_{\text{eff,c,wc}}$	273,99 mm {Formel 6.11}
Plattenschlankheitsgrad:	λ_{p}	0,834 {Formel 6.13c}
Abminderungsbeiwert Stegbeulen:	ρ	0,912 {Formel 6.13a,b}
Abminderungsbeiwert Schubbeanspr.:	$\omega = \omega_1$	0,843 {Tab. 6.3}
Abminderung Stützenbeanspr.:	k_{wc}	1,00 {Formel 6.14}

TRAGFÄHIGKEIT F_{c,wc,Rd} 494,86 kN (Formel 6.9) STEIFIGKEIT k₂ 7,348 mm (Tab. 6.11)



14:19:15 28.10.2014

KOMPONENTE 3: $F_{t,wc,Rd}$ EN 1993-1-8 6.2.6.3: Stützensteg mit Beanspruchung durch Querzug (CWT)

γмо	1,00
β	1,00

STÜTZE	HE A 360
$f_{y,wc}$	235 N/mm ²
h_{c}	350,00 mm
t_{wc}	10,00 mm
t_fc	17,50 mm
r_{c}	27,00 mm
A_{vc}	4896,00 mm ²
d_c	261,00 mm

EINZELBETRACHTUNG - SCHRAUBEN REIHE A (SRA)

effektive Breite SRA:	$b_{\text{eff,t,wc,SRA}}$	356,10 mm {6.2.6.3(3)}
Abminderungsbeiwert Schubbeanspr. SRA:	$\omega = \omega_1$	0,770 {Tab. 6.3}
TRAGFÄHIGKEIT SRA	$\mathbf{F}_{t,wc,Rd,SRA}$	644,16 kN {Formel 6.15}
STEIFIGKEIT SRA	k _{3,SRA}	5,949 mm {Tab. 6.11}

EINZELBETRACHTUNG - SCHRAUBEN REIHE I (SRI)

effektive Breite SRI:	$b_{\text{eff,t,wc,SRI}}$	356,10 mm {6.2.6.3(3)}
Abminderungsbeiwert Schubbeanspr. SRI:	$\omega = \omega_1$	0,770 {Tab. 6.3}
TRAGFÄHIGKEIT SRI	$\mathbf{F}_{t,wc,Rd,SRI}$	644,16 kN {Formel 6.15}
STEIFIGKEIT SRI	k _{3,SRI}	5,949 mm {Tab. 6.11}

14:19:15

28.10.2014

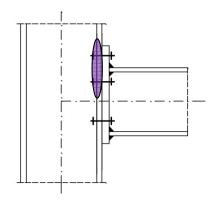
GRUPPENBETRACHTUNG G (=SRA + SRI)

effektive Breite G - SRA: $b_{eff,t,wc,G,SRA}$ 221,80 mm (6.2.6.3(3)) effektive Breite G - SRI: $b_{eff,t,wc,G,SRI}$ 221,80 mm (6.2.6.3(3))

effektive Breite G: $b_{\text{eff,t,wc,G}} \hspace{1cm} 443,\!60 \text{ mm}$

Abminderungsbeiwert Schubbeanspr.: $\omega = \omega_1$ 0,696 {Tab. 6.3}

TRAGFÄHIGKEIT G F_{t,wc,Rd,G} 725,05 kN {Formel 6.15}


14:19:15 28.10.2014

KOMPONENTE 4: F_{t,fc,Rd}

EN 1993-1-8 6.2.6.4: Stützenflansch mit Biegebeanspruchung (CFB)

γмо	1,00
γм2	1,25
β	1,00

STÜTZE	HE A 360
$f_{y,fc}$	235 N/mm ²
h_{c}	350,00 mm
b _c	300,00 mm
t_{wc}	10,00 mm
t_fc	17,50 mm
r _c	27,00 mm
A_{vc}	4896,00 mm ²

STIRNPLATTE

o_p 280,00 mm

SCHRAUBEN	M16	8.8
f _u 80	00 N/mm²	
A _s 15	7,00 mm²	

ABSTÄNDE

W_1	200,00 mm
e _c	300,00 mm
e ₂ = p	87,50 mm

е	50,00 mm {Bild 6.8a,b}
e_{min}	40,00 mm
m	73,40 mm {Bild 6.8a,b}
n	40.00 mm {Tab. 6.2}

Grenzzugkraft einer Schraube:

 $F_{t,Rd}$

90,43 kN {Tab. 3.4}

14:19:15 28.10.2014

EINZELBETRACHTUNG - SCHRAUBEN REIHE A (SRA)

Μ	od	us	1:

effektive Länge Modus 1 - SRA: $I_{eff,t,fc,1,SRA}$ 356,10 mm {Tab. 6.4} Fließmoment Modus 1 - SRA: $M_{pl,1,Rd,RSA}$ 6,41 kNm {Tab. 6.2}

Tragfähigkeit Modus 1 - SRA: $F_{t,fc,1,Rd,SRA}$ 349,16 kN {Tab. 6.2}

Modus 2:

effektive Länge Modus 2 - SRA: $I_{eff,t,fc,2,SRA}$ 356,10 mm {Tab. 6.4} Fließmoment Modus 2 - SRA: $M_{pl,2,Rd,RSA}$ 6,41 kNm {Tab. 6.2}

Tragfähigkeit Modus 2 - SRA: $F_{t,fc,2,Rd,SRA}$ 176,80 kN {Tab. 6.2}

Modus 3:

Tragfähigkeit Modus 3 - SRA: $F_{t,fc,3,Rd,SRA}$ 180,86 kN {Tab. 6.2}

TRAGFÄHIGKEIT SRA F_{t,fc,Rd,SRA} 176,80 kN

STEIFIGKEIT SRA $k_{4,SRA}$ 2,705 mm {Tab. 6.11}

EINZELBETRACHTUNG - SCHRAUBEN REIHE I (SRI)

Modus 1:

effektive Länge Modus 1 - SRI: $I_{eff,t,fc,1,SRI}$ 356,10 mm {Tab. 6.4} Fließmoment Modus 1 - SRI: $M_{pl,1,Rd,RSI}$ 6,41 kNm {Tab. 6.2}

 $Tragfähigkeit\ Modus\ 1\ -\ SRI: \qquad \qquad F_{t,fc,1,Rd,SRI} \qquad \qquad 349,16\ kN\ \{ Tab.\ 6.2 \}$

Modus 2:

effektive Länge Modus 2 - SRI: $I_{eff,t,fc,2,SRI}$ 356,10 mm {Tab. 6.4} Fließmoment Modus 2 - SRI: $M_{pl,2,Rd,RSI}$ 6,41 kNm {Tab. 6.2}

 $Tragfähigkeit\ Modus\ 2\ -\ SRI: \qquad \qquad F_{t,fc,2,Rd,SRI} \qquad \qquad 176,80\ kN\ \{ Tab.\ 6.2 \}$

Modus 3:

 $Tragfähigkeit\ Modus\ 3\ -\ SRI: \qquad \qquad F_{t,fc,3,Rd,SRI} \qquad \qquad 180,86\ kN\ \{ Tab.\ 6.2 \}$

TRAGFÄHIGKEIT SRI F_{t,fc,Rd,SRI} 176,80 kN

STEIFIGKEIT SRI $k_{4,SRI}$ 2,705 mm (Tab. 6.11)

14:19:15 28.10.2014

GRUPPENBETRACHTUNG G (=SRA + SRI)

Modus 1:		
effektive Länge Modus 1 - G - RSA:	$I_{eff,t,fc,1,G,SRA}$	221,80 mm {Tab. 6.4}
effektive Länge Modus 1 - G -SRI:	$I_{eff,t,fc,1,G,SRI}$	221,80 mm {Tab. 6.4}
effektive Länge Modus 1 - G:	$I_{\rm eff,t,fc,1,G}$	443,60 mm {Tab. 6.4}
Fließmoment Modus 1 - G:	$M_{pl,1,Rd,G}$	7,98 kNm {Tab. 6.2}
Tragfähigkeit Modus 1 - G:	$F_{t,fc,1,Rd,G}$	434,95 kN {Tab. 6.2}
Modus 2:		
effektive Länge Modus 2 - G - RSA:	$I_{eff,t,fc,2,G,SRA}$	221,80 mm {Tab. 6.4}
effektive Länge Modus 2 - G -SRI:	l _{eff,t,fc,2,G,SRI}	221,80 mm {Tab. 6.4}
effektive Länge Modus 2 - G:	l _{eff,t,fc,2,G}	443,60 mm {Tab. 6.4}
Fließmoment Modus 2 - G:	$M_{pl,2,Rd,G}$	7,98 kNm {Tab. 6.2}
Tragfähigkeit Modus 2 - G:	$\mathbf{F}_{t,fc,2,Rd,G}$	268,36 kN {Tab. 6.2}
Modus 3:		
Tragfähigkeit Modus 3 - G:	$F_{t,fc,3,Rd,G}$	361,73 kN {Tab. 6.2}
TRAGFÄHIGKEIT G	$\mathbf{F}_{t,fc,Rd,G}$	268,36 kN

14:19:15 28.10.2014

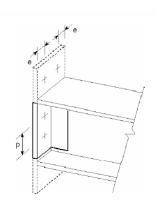
KOMPONENTE 5: $F_{t,ep,Rd}$ EN 1993-1-8 6.2.6.5: Stirnblech mit Biegebeanspruchung (EPB)

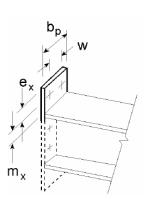
γмо	1,00
γ _{M2}	1,25
β	1,00

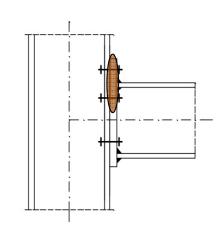
STÜTZE	HE A 360
b _c	300,00 mm

TRÄGER	HE B 280	
t _{wb}	10,50 mm	
t _{fb}	18,00 mm	

STIRNPLATTE


f_{yp}	235 N/mm ²
b_p	280,00 mm
t_p	25,00 mm
a_{f}	6,00 mm
a _w	3,00 mm




800 N/mm² 157,00 mm²

ABSTÄNDE

$e = w_2$	40,00 mm
e_2	87,50 mm
$w = w_1$	200,00 mm
$e_x = e_1$	25,00 mm
e_{min}	40,00 mm
a_1	35,00 mm
m	91,36 mm
m_2	27,71 mm
n	40,00 mm
m.,	28.21 mm

14:19:15 28.10.2014

Grenzzugkraft einer Schraube:	F _{t,Rd}	90,43 kN {Tab. 3.4}
SCHRAUBEN REIHE A (SRA)		
Modus 1:		
effektive Länge Modus 1 - SRA:	I _{eff,t,p,1,SRA}	112,05 mm {Tab. 6.6}
Fließmoment Modus 1 - SRA:	$M_{pl,1,Rd,RSA}$	4,11 kNm {Tab. 6.2}
Tragfähigkeit Modus 1 - SRA:	$F_{t,ep,1,Rd,SRA}$	583,34 kN {Tab. 6.2}
Modus 2:		
effektive Länge Modus 2 - SRA:	I _{eff,t,p,2,SRA}	112,05 mm {Tab. 6.6}
Fließmoment Modus 2 - SRA:	$M_{pl,2,Rd,RSA}$	4,11 kNm {Tab. 6.2}
Tragfähigkeit Modus 2 - SRA:	$F_{t,ep,2,Rd,SRA}$	239,61 kN {Tab. 6.2}
Modus 3:		
Tragfähigkeit Modus 3 - SRA:	F _{t,ep,3,Rd,SRA}	180,86 kN {Tab. 6.2}
TRAGFÄHIGKEIT SRA	F _{t,ep,Rd,SRA}	180,86 kN
STEIFIGKEIT SRA	k _{5,SRA}	70,174 mm {Tab. 6.11}

14:19:15 28.10.2014

SCHRAUBEN REIHE I (SRI)

	λ_1	0,695 {Bild 6.11}
	λ_2	0,211 {Bild 6.11}
	α	5,750 {Bild 6.11}
Modus 1:		
effektive Länge Modus 1 - SRI:	$I_{\rm eff,t,p,1,SRI}$	525,30 mm {Tab. 6.6}
Fließmoment Modus 1 - SRI:	$M_{\text{pl,1,Rd,RSI}}$	19,29 kNm {Tab. 6.2}
Tragfähigkeit Modus 1 - SRI:	$F_{t,ep,1,Rd,SRI}$	844,53 kN {Tab. 6.2}
Modus 2:		
effektive Länge Modus 2 - SRI:	$I_{\rm eff,t,p,2,SRI}$	525,30 mm {Tab. 6.6}
Fließmoment Modus 2 - SRI:	$M_{pl,2,Rd,RSI}$	19,29 kNm {Tab. 6.2}
Tragfähigkeit Modus 2 - SRI:	$F_{t,ep,2,Rd,SRI}$	348,75 kN {Tab. 6.2}
Modus 3:		
Tragfähigkeit Modus 3 - SRI:	$F_{t,ep,3,Rd,SRI}$	180,86 kN {Tab. 6.2}
TRAGFÄHIGKEIT SRI	F _{t,ep,Rd,SRI}	180,86 kN
STEIFIGKEIT SRI	k _{5,SRI}	9,689 mm {Tab. 6.11}

14:19:15 28.10.2014

KOMPONENTE 5: F_{t,ep,Rd}

Vereinfachte Berechnung: Stirnblech mit Biegebeanspruchung (EPB)

 $\begin{array}{ccc} \gamma_{\text{M0}} & & 1,\!00 \\ \\ \gamma_{\text{M2}} & & 1,\!25 \\ \\ \beta & & 1,\!00 \end{array}$

STÜTZE HE A 360

TRÄGER HE B 280

STIRNPLATTE

 $\begin{array}{lll} f_{yp} & 235 \ N/mm^2 \\ b_p & 280,00 \ mm \\ t_p & 25,00 \ mm \\ a_t & 6,00 \ mm \end{array}$

SCHRAUBEN M16 8.8

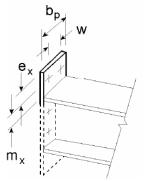
f_u 800 N/mm² A_s 157,00 mm²

ABSTÄNDE

 $e_x = e_1$ 25,00 mm $w = w_1$ 200,00 mm a_1 35,00 mm m_x 28,21 mm

F_{t,Rd} 90,43 kN {Tab. 3.4}

SCHRAUBENREIHE A (SRA)


Grenzzugkraft einer Schraube:

Modus 1:

effektive Länge Modus 1 - SRA: $I_{eff,t,p,1,SRA}$ 224,10 mm {Tab. 6.6} Fließmoment Modus 1 - SRA: $M_{pl,1,Rd,SRA}$ 8,23 kNm {Tab. 6.2}

Tragfähigkeit Modus 1 - SRA: $F_{t,ep,1,Rd,SRA}$ 1166,69 kN {Tab. 6.2}

14:19:15 28.10.2014

Modus 2:

effektive Länge Modus 2 - SRA: $I_{eff,t,p,2,SRA}$ 224,10 mm {Tab. 6.6} Fließmoment Modus 2 - SRA: $M_{pl,2,Rd,SRA}$ 8,23 kNm {Tab. 6.2}

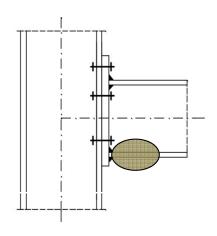
Tragfähigkeit Modus 2 - SRA: $F_{t,ep,2,Rd,SRA} \qquad \qquad 479,22 \text{ kN } \text{ \{Tab. 6.2\}}$

Modus 3:

 $\label{eq:final_radiation} \textit{Tragf\"{a}higkeit} \;\; \textit{Modus 3 - SRA:} \qquad \qquad \textit{F}_{t,ep,3,Rd,SRA} \qquad \qquad \textit{361,73 kN} \;\; \{\textit{Tab. 6.2}\}$

TRAGFÄHIGKEIT SRA F_{t,ep,Rd,SRA} 361,73 kN

STEIFIGKEIT SRA $k_{5,SRA}$ 70,174 mm {Tab. 6.11}


14:19:15 28.10.2014

KOMPONENTE 6: F_{c,fb,Rd}

EN 1993-1-8 6.2.6.7: Trägerflansch und -steg mit Druckbeanspruchung (BFC)

β 1,00

STÜTZE	HE A 360
TRÄGER	HE B 280
$f_{y,b}$	235 N/mm ²
h_b	280,00 mm
t_{fb}	18,00 mm
$W_{el,v,b,Rd}$	1376 cm ³

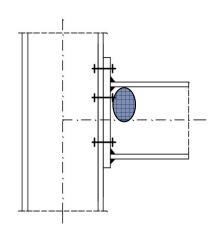
Biegetragfähigkeit: $M_{c,b,Rd}$ 323,36 kNm

TRAGFÄHIGKEIT $F_{c,fb,Rd}$ 1234,20 kN {Formel 6.21} STEIFIGKEIT k_7 ∞ {Tab. 6.11}

14:19:15 28.10.2014

KOMPONENTE 7: $F_{t,wb,Rd}$

EN 1993-1-8 6.2.6.8: Trägersteg mit Zugbeanspruchung (BWT)


STÜTZE	HE A 360	
t_fc	17,50 mm	

TRÄGER	HE B 280		
$f_{y,b}$	235 N/mm ²		
t_{wb}	10,50 mm		

STIRNPLATTE

b _p	280,00 mm			
t _p	25,00 mm			

SCHRAUBEN	M16	8.8
d.	16.00 mm	

SCHRAUBEN REIHE I (SRI)

effektive Breite - SRI: b_{eff,t,wb,SRI} 525,30 mm {Tab. 6.6}

TRAGFÄHIGKEIT $F_{t,wb,Rd} \qquad 1296,17 \text{ kN } \text{ Formel 6.22}$ STEIFIGKEIT $k_8 \qquad \infty \qquad \text{ {Tab. 6.11} }$

14:19:15 28.10.2014

SCHRAUBEN MIT ZUGBEANSPRUCHUNG

Steifigkeit

β 1,00

STÜTZE HE A 360

t_{fc} 17,50 mm

TRÄGER HE B 280

STIRNPLATTE

25,00 mm

SCHRAUBEN M16 8.8

 $\begin{array}{ccc} A_s & 157,00 \text{ mm}^2 \\ d_s & 8,00 \text{ mm} \\ k & 10,00 \text{ mm} \\ m & 12,00 \text{ mm} \end{array}$

STEIFIGKEIT

Dehnlänge L_b 61,50 mm {Tab. 6.6}

STEIFIGKEIT $k_{10,SRA}$ 4,085 mm (Tab. 6.11)

k_{10,SRI} 4,085 mm

B.	Übersicht	der Grui	ndkonfigu	urationen	

xxvii

Tabelle B.1.: Grundkonfigurationen

Profil Güte e	G _{com,Ed}	Profil G			on and marce	2000				ž	CIIIauben	211	-		Оспап	Genaues vertanten	vereimac	vereimacines vertainen	Abweiging	ginii
300 300 300 300 300 300 300 300 300 300	Commission		Gute	Güte h,	p,	t,	ar a _w	Z D Z	Güte	e1	ව	e ₃	W ₁	W ₂	Mind	Simi	M_{iBd}	Siini	Mi.Bd	Simi
300	$[{ m N/mm}^2]$			[mm]	[mm]	[mm]	-	-		7	-	J [r	Į.	[mm]	[kNm]	[MNm/rad]	[kNm]	[MNm/rad]	[%]	[%]
300	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	5235 5235	35 340	280	20	9	3 M16	8.8	25 8	87,5	155 35	5 200	40 5,75	5 74,11	11 21,499	10,31	31 21,366	-5,13	-0,62
000	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S235 S235	35 340	280	20	9	3 M16	8.8	25 8	87,5 1	155 35	5 200	40 5,75	5 79,70	70 21,499	99 76,59	59 21,366	-3,90	-0,62
200		HEB 280 S	S235 S235	35 340	280	20	9	3 M16	8.8	25 8	87,5	155 39	35 200	40 5,75			89,14	14 21,366	-1,14	-0,62
S450 300 oc	ocom,Ed ≤ 0,7 fy,wc		S235 S235	35 340	280	20	9	3 M16	8.8	25 8	87,5 1	155 35	5 200	40 5,75	5 94,86	86 21,499	99 Bed.n.erf.	: Bed.n.erf.	_	_
300	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S275 S275	75 340	280	20	9	3 M16	8.8	25 8	87,5 1	155 35	5 200	40 5,75	5 74,11	11 21,499	10,31		-5,13	-0,62
S235 300 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S355 S355	55 340	280	20	9	3 M16	8.8	25 8	87,5 1	155 35	5 200	40 5,75	5 74,11	11 21,499	70,31	31 21,366	-5,13	-0,62
S235 300 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S450 S450	50 340	280	20	9	3 M16	8.8	25 8	87,5	155 35	5 200	40 5,75	5 74,11	11 21,499	16,07	31 21,366	-5,13	-0,62
S275 300 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S275 S275	75 340	280	20	9	3 M16	8.8	25 8	87,5	155 39	35 200	40 5,75	5 79,70	70 21,499	99 76,59	59 21,366	-3,90	-0,62
S355 300 ac	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S355 S355	55 340	280	20	9	3 M16		25 8		155 35	5 200	40 5,75	5 90,17	17 21,499	89,14	14 21,366	-1,14	-0,62
300	+		S450 S450	50 340	280	20	9	3 M16				155 35	5 200				99 Bed.n.erf.	Bed	1	_
S235 300 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S235 S235	35 340	280	10	9	3 M16	8.8	25 8	87,5 1	155 35	5 200	40 5,75	5 50,86	17,497	148,91	91 19,029	-3,83	8,76
S235 300 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S235 S235	35 340	280	15	9	3 M16	8.8	25 8	87,5	155 33	35 200	40 5,75	5 70,94	94 20,550	10,31	31 21,000	-0,89	2,19
300	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S235 S235	35 340	280	20	9	3 M16	8.8	25 8	87,5	155 39	35 200	40 5,75	5 74,11	11 21,499	70,31	31 21,366	-5,13	-0,62
S235 300 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S235 S235	35 340	280	25	9	3 M16	8.8	25 8	87,5 1	155 33	35 200	40 5,75	5 74,11	11 21,753	53 70,31	31 21,346	-5,13	-1,87
S235 300 ac	ocom,Ed ≤ 0,7 fy,wc	HEB 280 S	S235 S235	35 340	280	30	9	3 M16	8.8	25 8	87,5	155 39	35 200	40 5,75	5 74,11	11 21,742		31 21,204	-5,13	-2,47
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S235 S235	35 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'2 09	119,91	32,915	.5 118,36	31,496	-1,29	-4,31
140	_	HEB 300 S	S235 S235	1	300	20	7	5 M20			119 1		50 180	09	0 125,41		.5 125,37	37 31,496		-4,31
S355 140 oc	_	HEB 300 S	S235 S235		300	20	7	5 M20	8.8	40	119 1	162 50	50 180	09		40 32,915	.5 125,57			-4,31
140	+	HEB 300 S	S235 S235		300	20	7		8.8	40	119 1	162 50	50 180	06'5 09		32,915		31,496	-8,99	-4,31
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S275 S275	75 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 121,65	.65 32,915	.5 118,39	31,496	-2,68	-4,31
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S355 S355	55 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'9 09	0 122,18	18 32,915	.5 118,39	31,496	-3,10	-4,31
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S450 S450	50 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 122,18	32,915	.5 118,39	31,496	-3,10	-4,31
S275 140 oc	≤ 0,7 fy,wc	HEB 300 S	S275 S275	75 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 127,15	32,915	.5 125,37	31,496	-1,40	-4,31
S355 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S355 S355	55 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 141,62	.62 32,915	.5 139,31	31,496	-1,63	-4,31
S450 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S450 S450	50 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 155,07	.07 32,915	.5 Bed.n.erf.	. Bed.n.erf.	1	-
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S235 S235	35 415	300	10	7	5 M20	8.8	40	119 1	162 50	50 180	06'9 09	0 59,23	23 21,532	32 47,08	38 21,822	-20,51	1,35
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S235 S235	35 415	300	15	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 109,92	92 29,990	104,45	15 29,148	-4,98	-2,81
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S235 S235	35 415	300	20	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	119,91	32,915	.5 118,36	31,496	-1,29	-4,31
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 300 S	S235 S235	35 415	300	25	7	5 M20	8.8	40	119 1	162 50	50 180	06'9 09	0 122,18	18 33,890	118,39	32,224	-3,10	-4,92
S235 140 oc	ocom,Ed ≤ 0,7 fy,wc	нев 300 s	S235 S235	35 415	300	30	7	5 M20	8.8	40	119 1	162 50	50 180	06'5 09	0 122,18	.18 34,153	118,39	32,379	-3,10	-5,19
S235 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S235 S235	35 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 108,50	.50 16,034	102,71	14,831	-6,91	-7,50
S275 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S235 S235	35 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 124,06	16,034	117,12	14,831	-7,87	-7,50
S355 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S235 S235	35 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 137,40	40 16,034	133,86	36 14,831	-4,07	-7,50
S450 60 oc	ocom,Ed ≤ 0,7 fy,wc	нев 200 ѕ	S235 S235	35 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 137,40	40 16,034	133,86	36 14,831	-2,58	-7,50
S235 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S275 S275	75 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 108,50	50 16,034	102,71	71 14,831	-6,91	-7,50
S235 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200	S355 S355	55 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 108,50	50 16,034	102,71	71 14,831	-6,91	-7,50
S235 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S450 S450	50 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 108,50	50 16,034	102,71	71 14,831	-6,91	-7,50
S275 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S275 S275	75 280	220	20	S	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 124,52	52 16,034	117,12	14,831	-8,24	-7,50
S355 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S355 S355	55 280	220	20	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 143,55	55 16,034	137,70	70 14,831	-6,27	-7,50
S450 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S450 S450	50 280	220	20	2	5 M27	8.8	40	75 1	110 30	0 100	50 7,10	0 161,24	24 16,034	157,15	14,831	-4,65	-7,50
S235 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S235 S235	35 280	220	10	2	5 M27	8.8	40	75 1	110 30	30 100	50 7,10	0 45,41	41 13,830	39,29	13,149	-13,67	-4,92
S235 60 ac	+	HEB 200 S	S235 S235	35 280	220	15	2	5 M27	8.8	40	75 1	110 30	30 100	20		.81 15,562	52 88,40	14,486	-5,96	-6,91
S235 60 oc	+	HEB 200 S	S235 S235	35 280	220	20	2	5 M27	ω ω.	40	75 1	110 30	30 100	50 7,10	1	50 16,034		71 14,831	-6,94	-7,50
S235 60 oc	ocom,Ed ≤ 0,7 fy,wc	HEB 200 S	S235 S235	35 280	220	25	2	5 M27	8.8	40	75 1	110 30	30 100	20	0 108,50	50 16,190	102,71	14,937	-6,75	-7,74
9	fy wc	HFB 200 S235	235 5235			30	Ľ		α	40			30 100	50					-6.59	-7.86

ⁱ Die Anwendungsbedingung der Vereinfachten Komponentenmethode ist nicht erfüllt.

8	S. S.	iii.	-4,67	-4,67	-4,67	-4,67	-4,67	_	1	-4,67	1	1	-2,38	-3,90	-4,46	-4,67	1	98'0-	98'0-	98'0-	-0,86	98'0-	-0,86	-0,86	-0,86	-0,86	-0,86	3,80	0,25	-0,86	-1,29	-1,49	1,04	1,04	1,04	1,04	1,04	1.04	1,04	1,04	1	14,52	6,19	2,67	1,04	0,23
Aberrate	M. z.	14.1j,Rd	-9,53	-9,53	-9,53	-9,53	-6,42	_	-	-6,42	1	1	-23,80	-19,98	-13,51	-9,53	1	-5,18	-3,45	-1,50	-1,74	-5,18	-5,18	-5,18	-3,44	-1,50	-1,74	-14,80	-5,18	-5,18	-5,18	-5,18	-0,85	-0,17	-0,52	-0,52	-1,30	-1.99	09'0-	-0,17	1	-11,88	-11,88	-0,57	-0,85	-1,99
Tombolomory	Vendanien S	MNm/rad	76,261	76,261	76,261	76,261	76,261	Bed.n.erf.	Bed.n.erf.	76,261	Bed.n.erf.	Bed.n.erf.	40,727	63,373	72,744	76,261	Bed.n.erf.	40,865	40,865	40,865	40,865	40,865	40,865	40,865	40,865	40,865	40,865	36,183	39,890	40,865	41,095	41,077	179,778	179,778	179,778	179,778	179,778	179.778	179,778	179,778	Bed.n.erf.	147,046	170,856	177,553	179,778	180,515
Venciale chates Vencel	M.s.	M.j,Rd [kNm]	221,05	221,05	221,05	221,05	238,06	Bed.n.erf.	Bed.n.erf.	238,06	Bed.n.erf.	Bed.n.erf.	57,24	128,78	185,06	221,05	Bed.n.erf.	111,42	130,39	162,44	172,23	111,42	111,42	111,42	130,39	162,44	172,23	88,94	111,42	111,42	111,42	111,42	596,46	641,43	653,64	653,64	596,46	596,46	641,43	731,37	Bed.n.erf.	141,03	317,31	546,10	596,46	596,46
		Ujini MNm/radl	666'62	666'62	666'62	666'62	666'62	1966,67	1 666'62	666'62	1 666'62	1 666'62	41,719	65,943	76,139	666'62	81,323	41,218	41,218	41,218	41,218	41,218	41,218	41,218	41,218	41,218	41,218	34,857	39,790	41,218	41,632	41,698	177,923	177,923	177,923	177,923	177 923	177.923	177,923	177,923		128,402	160,896	172,939	177,923	180,100
Company Vambels	M.s.		1,34	244,34	244,34	244,34	254,39	274,50	275,92	254,39	274,50	275,92	75,12	160,93	213,96	244,34	270,33	117,51	135,05	164,92	175,28	117,51	117,51	117,51	135,04	164,92	175,28	104,39	117,51	117,51	117,51	117,51	601,59	642,53	657,03	657,03	604,33	608,59	645,27	732,62	800'008	160,04	360,09	549,23	601,59	608,59
	5	ر ا	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,20	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	7,25	6,35	6,35	6,35	6,35	6,35	6.35	6,35	6,35	6,35	6,35	6,35	6,35	6,35	6,35
_	W	m ₂		85 7	85 7	85 7	85 7	85 7	85 7	85 7	85 7	85 7	85 7	85 7	85 7	85 7	85	75 7	75 7	75 7	75 7	75	75 7	75 7	75 7	75 7	75 7	75 7	75 7	75 7		75 7	9 09	_	_		09		_	9 09	9 09	9 09	9 09	_		09
2000	m.		_	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	200	200	200	200	200	200	200	200	200	200	200	200	200	200
zanenga ma	ď	[mm]	50	50	50	50	50	50	50	50	50	50	50	50	50	50	20	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40		40
	magn e	c3 [mm]	251	251	251	251		251	251	251	251	251	251	251	251	251	251	320	320	320	320	320	320	320	320	320	320	320	320			320	508	508	508	508	508	508	508	508	508	508	508	508	508	508
Cohmunican	SCIII &	[mm]		119	119	119	119	119	119	119	119	119	119	119	119	119	119	100	100	100	100	100	100	100	100	100	100	100	100	100		100	111	111			111			111	111	111	111			111
	ď	[mm]	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	45	45	45	45	45	45	45		45	45	45			45
9	Ciito	one .	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	80.	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	ω ω.	80	8.00	8.8	8.8	ω ω.	80.	οο α οο α	0 00	80.	8.8	8.8	8.8	8.8	ω ω.	8.8	8.8
	N	LII '	M24	M24	M24	M24	M24	M24	M24	M24	M24	M24	M24	M24	M24	M24	M24	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M30	M30	M30	M30	M30	M30	M30	M30	M30	M30	M30	M30	M30	M30
	ď	^{ca} w [mm]		5	5	5	5	5	5	5	5	5	5	5	5	5	5	3	3	3	3	3	3	3	3	3	3	Э	3	3	Э	33	8	ω			ο α			00	00	8	8		ω	00
: : :	ď	ſr			5 5	5	5	5 5	5 5	5 2	5	5	0 5	5	0 5	5	0 2	9 0	9 0	9 0	9 0	9 0	9 0	9 0	9 c	9 0	9 0	9 0	9	9 0		9 0	5 8	2			ω α				8	8 0	8			8
Grimmletto.	Thrace C	l fmm	-	0 25	0 25		0 25	0 25	0 25	0 25	0 25	0 25	0 10	0 15	0 20	0 25	0 30	0 20	0 20	0 20	0 20	0 20	0 20	0 20	0 20	0 20	0 20	0 10	0 15			0 30	0 25	0 25			0 25					0 10	0 15			0 30
T Citi		l [mm]		5 320	5 320			5 320	5 320	5 320	5 320	5 320	5 320	5 320	5 320	5 320	5 320	0 300	008 0	0 300	0 300	0 300	0 300	0 300	0 300	0 300	0 300	0 300	0 300			0 300	55 320				55 320					55 320	55 320			5 320
	-	mm]			5 495		.5 495	5 495	0 495	.5 495	5 495	0 495	15 495	5 495	15 495	15 495	15 495	15 540	540	540	5 540	.5 540	5 540	0 540	.5 540	5 540	0 540	5 540	5 540	5 540		5 540	7		_	_	-	. 1	1	1	1	7	_			15 755
	Güto		5 S235	5 S235	5 S235			5 8355	0 \$450	5 S275	5 S355	0 \$450	5 S235	5 S235	5 S235	5 S235	5 S235	5 5235	5 5235	5 5235	5 5235	5 S275	5 S355	0 \$450	5 S275	5 S355	0 \$450	5 S235	5 523				5 5275 5 5355					5 S235	5 S235		5 S235	5 523				
	Giito	100	5235	523	5235	523	527	535	545	5275	5355	S45	523	523	523	523	523	5235	5235	5235	5235	5275	5355	S450	5275	5355	S45	5235	5235	5235	523	523	523	523	S 23	5235	5275			5355		5235	5235		5235) \$23
E	Drofil	1 1011	HEB 360		HEB 360			HEB 360 S355	HEB 360 S450	HEB 360	HEB 360	HEB 360 S450	HEB 360 S235	HEB 360 S235		HEB 360 S235	HEB 36(HEA 450	HEA 450	HEA 450	HEA 450	HEA 450	HEA 450	HEA 450	HEA 450	HEA 450	HEA 450 S450	HEA 450	HEA 450		HEA 450 S235	HEA 45(HEB 65(HEB 650 S275					HEB 650	HEB 650		HEB 650	HEB 65(
,		Com,Ed	σcom,Ē		ocom,Ed ≤ 0,7 fy,wc	σ com,Ed \leq 0,7 fy,wc			σ com,Ed \leq 0,7 fy,wc	100 ocom,Ed ≤ 0,7 fy,wc		ocom,Ed ≤ 0,7 fy,wc	100 acom,Ed ≤ 0,7 fy,wc HEB 360 S235	140 ocom,Ed ≤ 0,7 fy,wc HEA 450	140 ocom,Ed ≤ 0,7 fy,wc	σ com,Ed \leq 0,7 fy,wc	σ com,Ed $\leq 0,7$ fy,wc	ocom,Ed ≤ 0,7 fy,wc	ocom,Ed ≤ 0,7 fy,wc	σ com,Ed \leq 0,7 fy,wc	σ com,Ed ≤ 0 ,7 fy,wc	σ com,Ed \leq 0,7 fy,wc	σ com,Ed $\leq 0,7$ fy,wc	S235 140 ccom,Ed ≤ 0,7 fy,wc HEA 450 S235	300 ccom,Ed ≤ 0,7 fy,wc HEB 650 S235 S235	σ com,Ed \leq 0,7 fy,wc	ocom,Ed ≤ 0,7 fy,wc	ocom,Ed ≤ 0,7 fy,wc	GCOM, Ed < 0,7 fy, wc		ocom,Ed ≤ 0,7 fy,wc	ocom,Ed ≤ 0,7 fy,wc		ocom,Ed ≤ 0,7 fy,wc		σ com,Ed $\leq 0,7$ fy,wc	σ com,Ed \leq 0,7 fy,wc	F 15 HEB 650 S235 300 ccom,Ed < 0,7 fy,wc HEB 650 S235 S235								
Chita		c [mm]			100	100	100	100				100	100	100	100	100				140	140	140	140	140	140	140	140		140	140	140	140				300	300				300	300			300	300
	Ciito	anne -	S235	S275	S355	S450	S235	S235	S235	S275	S355	S450	S235	S235	S235	S235	S235	\$235	S275	S355	S450	S235	S235	S235	S275	S355	S450	S235	S235	S235			S235	S275	S355	S450	5235	5235	S275	5355	S450	S235	S235	S235	S235	S235
	Drofil		1 HEM 280		HEM 280			HEM 280		8 HEM 280	нЕМ 280	10 HEM 280	HEM 280	HEM 280			D 15 HEM 280	1 HEA 260	2 HEA 260	HEA 260	HEA 260	HEA 260	HEA 260	HEA 260	HEA 260	HEA 260	10 HEA 260	HEA 260	HEA 260			E 15 HEA 260	1 HEB 650				HEB 650					HEB 650	HEB 650		HEB 650	HEB 650
					3	4	5	9			6		11	D 12 H	D 13 H	14 H	15			3	4	2	9	7	8	6		11	12	E 13	E 14	15		7	3	4	2	2	00	6	10	11	12	13	14	12
				Δ	О					Δ	Ω	Ω	۵		۵	Ω		Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Е	Ш	Ш	Ш	Ш	Ш	Ш	F	ш	ш	ш	т	. ш	ш	ш	Н	ш	Ш	ш	ш	ш

 i Die Anwendungsbedingung der Vereinfachten Komponentenmethode ist nicht erfüllt.

C.	Diagramme	weiterer	untersuc	hter
	Anschlüsse			

C.1. Anschluss D

Variation der Stahlgüte der Stütze

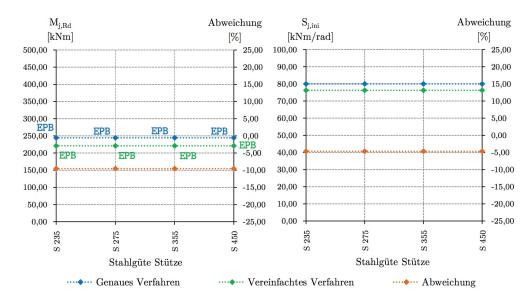


Abbildung C.1.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze

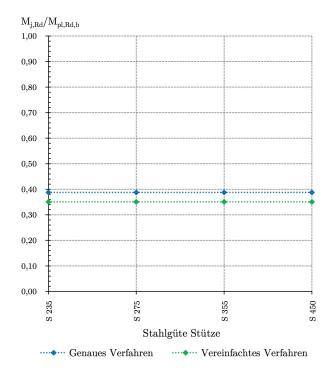


Abbildung C.2.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze

Variation der Stahlgüte des Trägers und der Stirnplatte

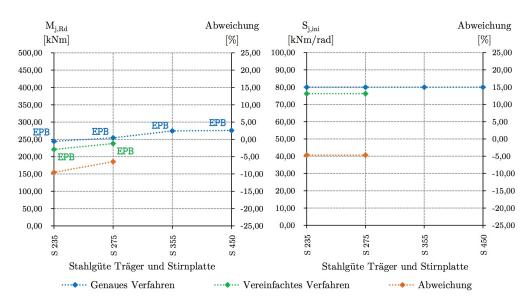


Abbildung C.3.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

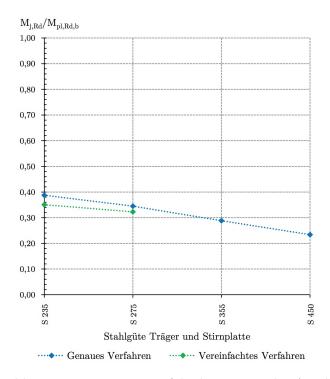


Abbildung C.4.: Anschluss D
 – Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl
. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Variation der Stahlgüte der Stütze, des Trägers und der Stirnplatte

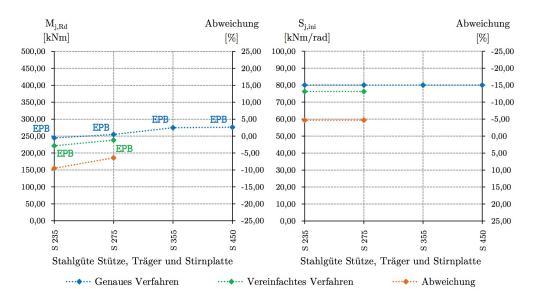


Abbildung C.5.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

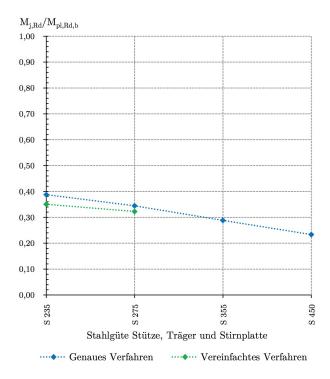


Abbildung C.6.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Variation der Blechstärke der Stirnplatte

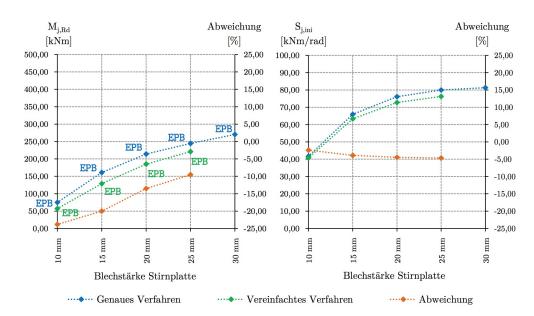


Abbildung C.7.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Blechstärke der Stirnplatte

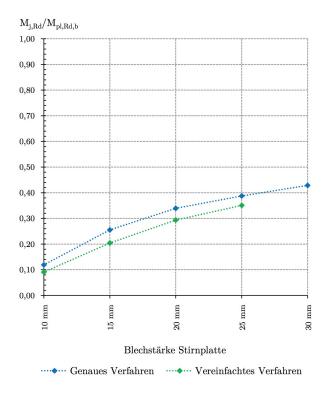


Abbildung C.8.: Anschluss D - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der Stirnplatte

C.2. Anschluss E

Variation der Stahlgüte der Stütze

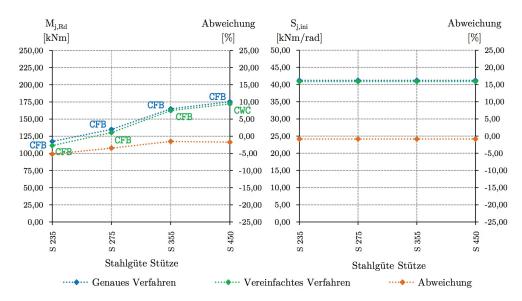


Abbildung C.9.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze

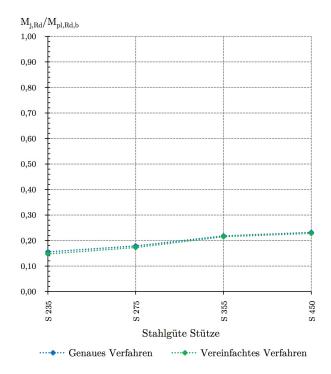


Abbildung C.10.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze

Variation der Stahlgüte des Trägers und der Stirnplatte

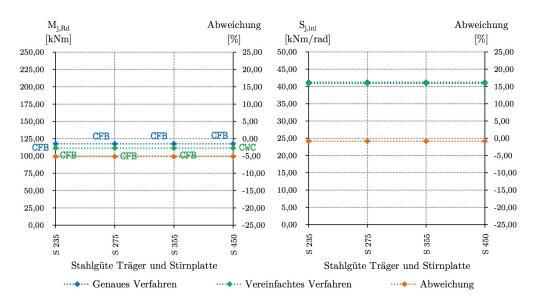


Abbildung C.11.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

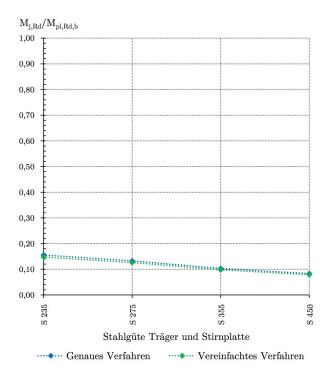


Abbildung C.12.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Variation der Stahlgüte der Stütze, des Träger und der Stirnplatte

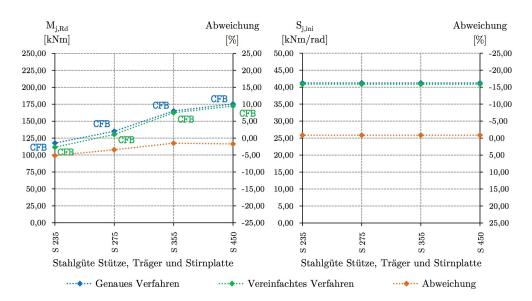


Abbildung C.13.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

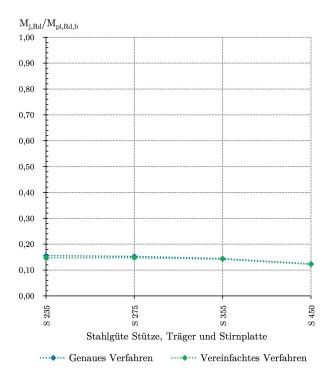


Abbildung C.14.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Variation der Blechstärke der Stirnplatte

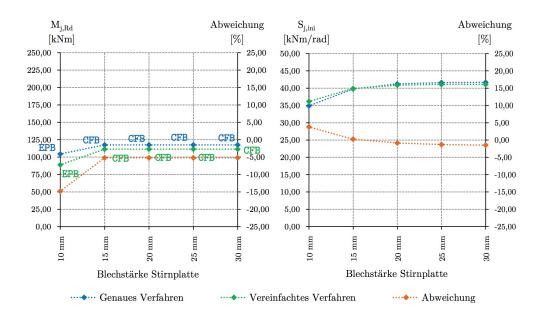


Abbildung C.15.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Blechstärke der Stirnplatte

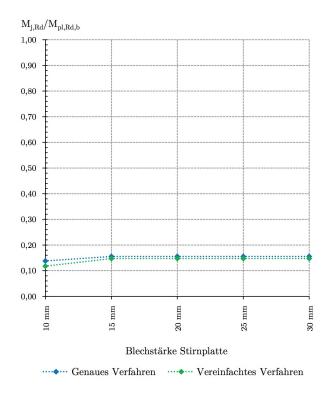


Abbildung C.16.: Anschluss E - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der Stirnplatte

C.3. Anschluss F

Variation der Stahlgüte der Stütze

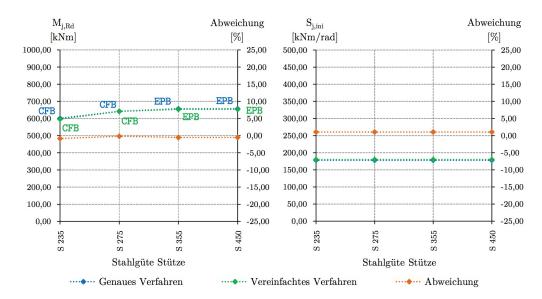


Abbildung C.17.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze

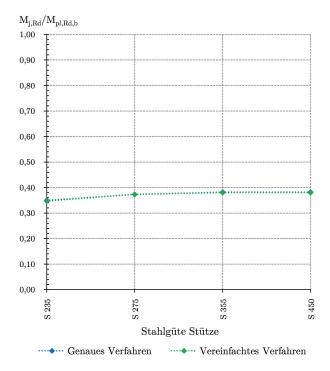


Abbildung C.18.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze

Variation der Stahlgüte des Trägers und der Stirnplatte

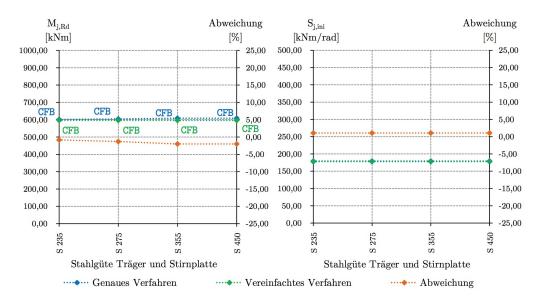


Abbildung C.19.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

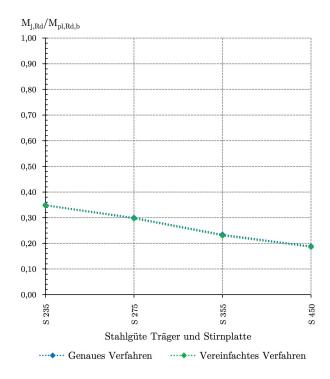


Abbildung C.20.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte des Trägers und der Stirnplatte

Variation der Stahlgüte der Stütze, des Trägers und der Stirnplatte

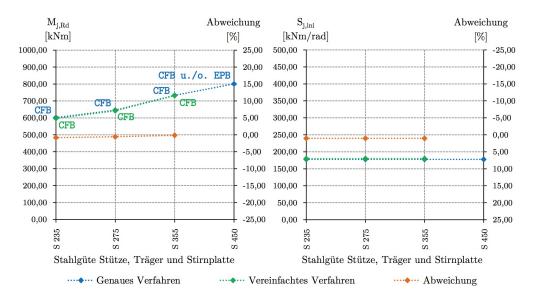


Abbildung C.21.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

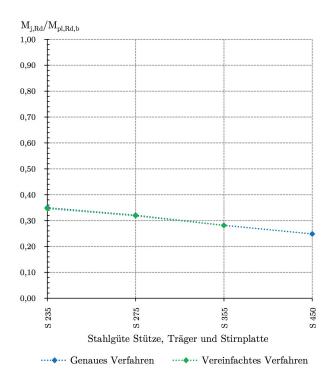


Abbildung C.22.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Stahlgüte der Stütze, des Trägers und der Stirnplatte

Variation der Blechstärke der Stirnplatte

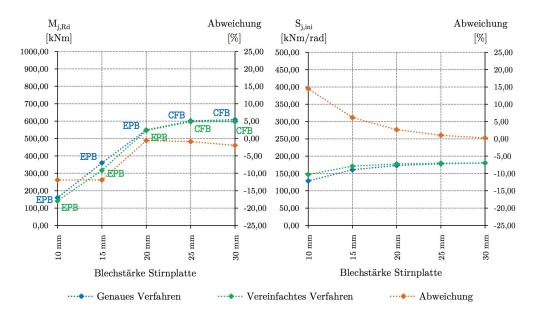


Abbildung C.23.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ und Rotationssteifigkeit $S_{j,ini}$ in Abhängigkeit von der Blechstärke der Stirnplatte

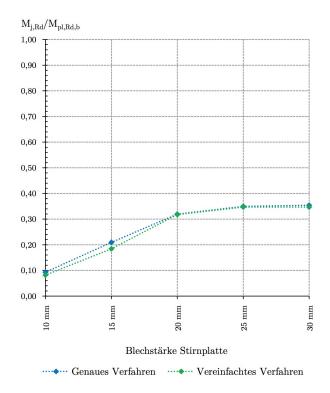


Abbildung C.24.: Anschluss F - Momententragfähigkeit $M_{j,Rd}$ des Anschlusses im Verhältnis zur pl. Tragfähigkeit $M_{pl,Rd,b}$ des Trägers in Abhängigkeit von der Blechstärke der Stirnplatte

Literaturverzeichnis

- [1] Ungermann, D. und Schneider, S. Momententragfähige Verbindungen nach DIN EN 1993-1-8 (EC3-1-8). In *Eurocode 3 Rechenbeispiele*. FH München, TU München, Universität der Bundeswehr München, 2014.
- [2] Schmidt, B. Zum Tragverhalten von geschraubten momententragfähigen Stirnplattenverbindungen mit 4 Schrauben in jeder Schraubenreihe. PhD thesis, TU Dortmund, 2008.
- [3] Kindmann, R. und Stracke, M. Verbindungen im Stahl- und Verbundbau. Bauingenieur-Praxis. Ernst & Sohn, Berlin, 2. edition, 2009.
- [4] ÖNORM EN 1993-1-8 Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-8: Bemessung von Anschlüssen.
- [5] Schneider, S. und Ungermann, D. Geschraubte Anschlüsse und Verbindungen nach DIN EN 1993-1-8. Stahlbau 79, Heft 11, 2010.
- [6] Unterweger, H. Berechnung und Bemessung von Anschlüssen (Knoten). In Eurocode 3 Rechenbeispiele. FH München, TU München, Universität der Bundeswehr München, 2012.
- [7] Schwarzlos, A. Erweiterung der Komponentenmethode nach EC 3-1.8 um die Interaktion der Schnittgrößen Biegemoment und Normalkraft. PhD thesis, Technische Universität Cottbus, 2005.
- [8] Rölle, L. Das Trag- und Verformungsverhalten geschraubter Stahl- und Verbundknoten bei vollplastischer Bemessung und in außergewöhnlichen Bemessungssituationen. PhD thesis, Universität Stuttgart, 2013.
- [9] Wagenknecht, G. Stahlbau-Praxis nach Eurocode 3 Band 3 Komponentenmethode. Beuth Verlag, 2014.
- [10] Rybinski, M. Komponentenmethode für Ankerplatten mit Kopfbolzen unter einachsiger Beanspruchung. PhD thesis, Universität Stuttgart, 2014.
- [11] Zoetemeijer, P. A design method for the tension side of statically loaded bolted beam-to-column connections. *Heron Vol. 20, Bericht 1*, 1974.
- [12] Gockel, T. Form der wissenschaftlichen Ausarbeitung. Springer-Verlag, Heidelberg, 2008.