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Kurzfassung

Im Stromnetz der Zukunft wird Erneuerbare Energie eine große Rolle spielen, um dem Klimawan-
del entgegen zu wirken und die Emission von Treibhausgasen zu reduzieren. Mit dem vermehrten
Einsatz von volatilen Energieträgern wie Wind und Photovoltaik steigt auch der Bedarf an Spei-
chersystemen. Neben effizienteren und kostengünstigeren Batterien ist auch die Entwicklung von
dazugehöriger Leistungselektronik, wie zum Beispiel Batteriewechselrichter, essentiell. Das Testen
solcher Leistungselektronik ist zeitintensiv und teuer. Batterien müssen zwischen Experimenten
langwierig ge- bzw. entladen werden, was Laborzeit beansprucht und dadurch Geld kostet. Au-
ßerdem sind oft unterschiedliche Batterietypen, -spannungen und -kapazitäten notwendig. Eine
Lösung dieses Problems ist es, echte Batterien durch emulierte zu ersetzen. Diese bestehen aus
einem Echtzeitcomputer, der das Verhalten der Batterie anhand eines internen Batteriemodells
berechnet, sowie aus einem Leistungsverstärker, der die berechnete Batteriespannung in eine reale
Spannung umwandelt. Damit können verschiedene Batterietypen modelliert, bzw. deren Span-
nung, Kapazität und der Ladezustand beliebig vorgegeben werden. Diese Arbeit beschäftigt sich
mit der Entwicklung eines solchen Batterie-Emulators. Hierfür wird ein passendes Batteriemo-
dell entwickelt, dessen Parametrisierung zuerst diskutiert und danach mithilfe realer Messungen
aus einem standardisierten Fahrzyklus validiert. Anschließend wird das Batteriemodell auf ein
Echtzeitsystem portiert und der Batterie-Emulator implementiert. Mithilfe einer Kombination
aus konstanter Last und programmierbarer Stromquelle werden die Messungen des Fahrzyklus
reproduziert und so der Batterie-Emulator verifiziert. Dabei erreicht der Batterie-Emulator eine
Übereinstimmung von 95% im Vergleich zu den Messungen. Der entwickelte Batterie-Emulator
kommt am Forschungsprüfstand des Austrian Institute of Technology zum Einsatz und ermöglicht
dort schnellere und reproduzierbare Tests von Batteriewechselrichtern, Ladesäulen von Elektro-
fahrzeugen u.v.m., ohne die jeweilige Batterie kaufen zu müssen.
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Abstract

Renewable energy will play an important role in the grid of the future in order to fight climate
change and reduce greenhouse gas emissions. The increased use of volatile energy sources like wind
and photovoltaic goes along with an enlarged demand of battery energy storage systems. Besides
more efficient and cost-effective batteries, the development of battery related power electronics
like battery inverters is vital. The test of such power electronics is time-consuming and expensive.
Batteries have to be charged and discharged between experiment, a protracted procedure that
costs time and hence also money. Furthermore, various battery types with different voltages and
capacities are necessary. A solution to this problem is replacing a real with an emulated battery.
These consist of a real time system that computes the behavior of the battery on the basis of
an internal battery model, and of a power amplifier that converts the calculated battery voltage
into a real voltage. That way various battery types can be modeled, as well as whose voltage,
capacity and state of charge can be set arbitrary. This work deals with the development of such a
battery emulator. Therefore a suitable battery model is developed, its parametrization discussed
and afterwards validated by means of measurements form a standardized driving cycle. Then, the
battery model is ported onto a real time system and the battery emulator is implemented. The
measurements of the driving cycle are reproduced with a combination of a constant load and a
programmable current source in order to verify the battery emulator. Here, the battery emulator
achieves accuracy of 95% in comparison to the measurements. The developed battery emulator
is deployed at the research test bed of the Austrian Institute of Technology and makes faster,
more cost-effective and reproducible tests of battery related power electronics possible without
the need of buying the particular batteries.
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For a successful technology,
reality must take precedence over public relations,

for nature cannot be fooled.

Richard Feynman
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Nomenclature & Abbreviatons

ADC Analog to Digital Converter
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FTP Federal Test Procedure

HIL Hardware-in-the-Loop

HuT Hardware under Test

ITM Ideal Transformer Model

KiBaM Kinetic Battery Model

LiFePO4 Li-ion battery with a lithium iron phosphate cathode

MSM Modified Shepherd Model

NiCd Nickel-cadmium battery

NiMH Nickel-Metal Hydride battery

OCV Open Circuit Voltage

PHIL Power Hardware-In-the-Loop

PV Photovoltaic

Q Capacity of a battery

RMS Root Mean Squared

RTS Real Time System

SoC State of Charge
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1 Introduction

For decades the structure of the electric power supply system had been the same: mainly few
big power plants burning coal or gas, fissioning uranium or water power plants, which fed into
the transmission grid. But this situation changed a lot in recent years. Renewable energy, like
photovoltaic and wind power plants, now plays an important role and will even splay a more
important role in the energy mix of countries like Germany and Austria, and even China [IEA14,
IEC11, Eur13]. Therefore the reasons are various. They could be

• ecological reasons like climate change, the global warming, the 2°C target [Eur13], or the
Europe 2020 targets [5],

• political reasons like the nuclear phase out after the Fukushima nuclear disaster [13] as well
as the general refusal of nuclear energy in public, or the independence of imports of fossil
fuels from other countries with politically unstable conditions,

• or economic reasons, because Renewable energy can be more economic than conventional
fossil or nuclear power plants [Fra13, Dep13].

1.1 Need of Storage Systems

With the increased use of volatile energy sources like wind and photovoltaic also comes an in-
creased need of storage systems, because the generation needs to fit the consumption at any time.
These storage systems could be mechanical storage like pump storage, flywheels, compressed air
energy storage, thermal energy storage, chemical storage like hydrogen storage, power to gas or
electrochemical like batteries or supercapacitors [IEA14]. The technologies can be categorized by
storage technology, power, energy, discharge duration, number of cycles, response time, efficiency,
investment costs per kW, etc. Batteries can be ranked in this classification with power up to
a few MW, discharge durations from minutes up to hours, which means that the work both as
power storage and energy storage, response time of a few seconds and an efficiency – depending
on the cell technology – above 90% [IEA14, Pol08, IEC11].

A typical application for households is the combination of a photovoltaic system (PV) in combi-
nation with a battery energy storage system (BESS) with lead-acid or lithium batteries. These
combinations are used to maximize the in-house consumption – the batteries are charged about
noon when the sun is shining and the PV produces more than currently consumed, while the
batteries are discharged during the evening and night. This makes on the one hand sense in an
economical point of view and on the other hand helps the grid to reduce the deviation between
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peak and base load [IEC11, Zha13]. The battery inverter of a BESS is one of the most important
factors when it comes to the overall efficiency of a battery. A modern inverter dealing with PV
and a battery has to meet certain requirements like reducing the power fed in to the grid as
a function of the grid frequency, pass fault ride through test, or controlling the reactive power
according to the real power [VDE13]. All these requirements have to work with various irradiated
PV power, at distinct states of charge of the battery with different loads, where the behavior of
the inverter maybe varies for each use case. And in all these cases, the MPPP-tracker (maximum
power point) of the PV as well as the other power electronics should work efficient. There are a
lot of further use cases a BESS system can be tested for. Some of them are for example

• Can the system recognize islanding?

• Can the BESS operate in islanding mode?

• Is the BESS black start capable? And if yes; under which circumstances?

• Can the battery inverter handle different battery types and voltages and does the efficiency
defer for them?

Another system that remained similar for decades and will change in the next years is the indi-
vidual motor car traffic. Cars with combustion engines have been the primary used technology on
the market, but now electric vehicles edge into the market and will play an important role in the
future [IEA13, Eur10]. Vehicles and charging stations will also interact with the grid to reduce
the strain of the grid. This creates a demand for intelligent charging stations and so intelligent
battery related power electronics.

So battery system will play a greater role in the next years and thus also battery related power
electronics. These power electronics have to be tested and certified, which is very extensive and
time consuming, because there are various test cases. Batteries have to be charged or discharge,
either full, or to a certain state of charge after a test before the next test can start. This is
time consuming and also increases costs because the laboratory environment is used without
any practical benefits. The batteries themselves are expensive and probably various batteries
with different technologies, voltages and capacities are necessary. Also the tests are not exactly
reproducible because some internal battery procedures are not reversible.

1.2 Replacing Batteries with Emulated Batteries

Power Hardware-in-the-Loop (PHIL) simulations of battery systems could significantly reduce
the time and costs of battery inverter and power system testing. The idea behind such PHIL
simulations is to replace a real battery with an emulated battery. This emulated battery is built
out of a bidirectional power source, controlled by a real time system (RTS) which computes
a battery model. Outwards, this setup behaves like a battery, with the advantage that the
voltage/current-behavior is freely settable (within the hardware limits of the power source and
the RTS). This approach has a few advantages.

• The battery state can be set arbitrary. So the charging and discharging to a desired state
of charge can be omitted. This saves time and money.

• The battery voltage and capacity can be set arbitrary too. So there is no need to buy
different batteries with various cell technologies, voltages and capacity, which reduces the
costs.
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• The tests are reproducible. Also tests like short circuit experiments are possible which
maybe would destroy a real battery.

• Not only the battery side can be emulated. The research test bed of AIT’s Energy Depart-
ment, where the developed battery emulator will be installed (cf. Section 1.4.2), already
has a PV and a grid simulator. So the complete environment of a battery inverter can be
emulated.

But as always, there are also some disadvantages.

• First of all, there is a need for a battery model, which implies an additional effort to create,
test and validate the model.

• A battery model can never exactly reproduce the behavior of the corresponding real battery.
So there is limited accuracy and depending on the area of application, the accuracy of the
model can be too low. Also, there are always some effects which are not represented in the
model. These can be negligible, because they are not focus of the domain, e.g. long term
capacity fading or a temperature rise when the focus is on transient simulations in a range
of some minutes. But it is also possible, that there is no existing model at all, which meets
the demands.

• Every model has its parameters which have to be determined. This procedure can be time
consuming and extensive. A wrong parametrization also reduces the possible maximum
accuracy of a model.

• Beside the controlled power source, which converts the set value of the battery model in
real voltages adds an additional error.

Although there are some drawbacks, a Power Hardware-in-the-Loop setup to emulate a battery
is a promising approach to increase the efficiency of battery related power electronics developing,
testing and certifying. Hence, this work identifies a suitable battery model, verify it and then
implement a PHIL setup to build an emulated battery. Before defining the problem statement,
the concept of Power Hardware-in-the-Loop is examined more detailed.

1.3 Power Hardware-in-the-loop Simulations

Power Hardware-in-the-Loop simulations are a special type of Hardware-in-the-Loop (HIL) sim-
ulations. Hence, this term has to be explained before. A HIL simulation is a simulation to test
or certify a real hardware (hardware under test, HuT). The rest of the system, where this HuT
normally operates, is simulated on a computer (see Fig. 1.1a). Typically, the simulation computer
is connected via analog-to-digital and digital-to-analog converter (ADC and DAC), but digital
I/Os or buses are also possible. Since the simulation computer and the hardware under test form
a loop by each reading the input values, processing them, setting the output values, this kind of
setup is called Hardware-in-the-Loop simulation.

A typical application is the test of an airplane’s controller, which is then called Controller
Hardware-in-the-Loop (CHIL). A dynamic model of the airplane is computed and the simulated
values of sensors are the inputs of the flight controller. Using a HIL simulation, the controller’s
behavior at a stall or an engine failure can be analyzed without having an actual airplane in the
air and risking destroying it.
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(a) Scheme of a HIL simulation

Simulator

DAC ADC

Sensors
Power

interface

Power Hardware 
under Test

Low-level 
Signal

Power

(b) Scheme of a PHIL simulation

Figure 1.1: Scheme of a HIL and a PHIL simulation [RSB08]

The example of the airplane controller shows that the simulation computer often has to be a
real time system. ADCs and DACs are driven with a synchronous clock with the sampling
frequency fs. The simulation has to satisfy the hard real time criteria. This means that reading
and processing input values, calculating a model step and writing the output data to the DACs
must not take longer than Ts = 1

fs
. This circumstance is shown in Fig. 1.2.
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Figure 1.2: Hard real time criteria

At a PHIL simulation, the HuT is not a controller but a power electronic device. This creates
the need for a power amplifier and sensors which measure the power signals (see Fig. 1.1b). From
a control point of view, the power amplification equals an additional control loop [SKLL14].
This control loop impacts the stability and can cause instabilities which require additional fil-
ters [VLF11]. There are several interface algorithms which implement the power interface between
the RTS and the Power HuT. A good comparison of different interface algorithms can be found in
[RSB08] and [JGV+11]. This work uses the ideal transformer model, because it is one of the sim-
plest and showed good performance. Therefore no other interface algorithms were investigated.
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Ideal Transformer Model

The ideal transformer model (ITM) is one of the most conventional and straightforward methods
in PHIL simulations [RSB08]. The principle of the ITM is shown in Fig. 1.3. The connection
between the power HuT and the rest of the system is cut and a combination of a controlled
current and a controlled voltage source is inserted. The rest of the system, together with its

AmplifierReal Time System

v

i i

Ideal Transformer Model

v
Power 

Hardware 
under Test

Virtual Rest 
of System

Power 
Hardware 
under Test

Rest of 
System

Figure 1.3: Ideal transformer model

connected controlled source is modeled and then simulated on the real time system. A voltage
source controlled by the RTS amplifies the set value from the simulation, while the measured
current is fed back into the RTS. Depending on the impedances of the virtual rest of the system,
the Power HuT, the dead times in the system, and the amplifier, the ITM can cause instabilities.
Further information about this issue can be found in [RSB08, VLF11, JGV+11].

The configuration shown in Fig. 1.3 is named voltage-ITM, because the HuT is driven by a
controlled voltage source and the virtual rest of the system terminated with a controlled current
source. In some use cases, the HuT is driven by a current source, while the simulated counterpart
is a voltage source. This setup is then called current-ITM [RSB08].

1.4 Problem Statement and Methodology

1.4.1 Problem Statement

The aim of this work is to build a PHIL capable battery emulator. This battery emulator has to
consist of a bidirectional power source and a real time system that computes a battery model and
controls the power source based on the output of the battery model. The power source should
be capable of battery voltages up to a few hundred volts with a power up to 20 kW.

The model’s output is the battery voltage, and its input the current of the power source. To
calculate the voltage, the battery model also has to determine the battery’s state of charge,
because the voltage depends on it. The battery model also has to represent the polarization of
charge carriers inside the battery. This polarization can be described in good approximation with
a PT1-element. Effects like the heating of the battery due to internal losses or long time effects
should not be considered since the typical duration of a PHIL simulation in this domain is in the
range of seconds to an hour.

The battery model should be easy to parametrize and as generic as possible. At best, only
data sheet values and experienced data should be necessary to parametrize a model. So the
parametrization effort is minimized, being aware that this will decrease the accuracy.
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The existing OPAL-RT real time system (see Section 1.4.2) has to be used for this work, where
one core of it is available for calculating the battery model. In future applications the emulated
battery will be part of a bigger PHIL simulation with an emulated AC grid. The AC grid
emulation requires a step size of 10 µs. Hence, the execution time of the battery model must be
below 10 µs. This is a very crucial requirement.

The work focuses on the modeling and parametrization of a Li-ion polymer battery, because only
measurement data of such a battery were available for this work. Further information is given in
Section 1.4.3.

1.4.2 Cooperation with the Austrian Institute of Technology

This work is performed in cooperation with the Energy Department of the Austrian Institute of
Technology (AIT). The AIT provided all the hardware used in this work. The battery emulator
will part of the Research Test Bed of the SmartEST Laboratory of AIT [2]. A principle structure
of the test bed is shown in Fig. 1.4. The test bed can emulate the complete environment of a PV

Grid 
Emulator

Grid

Progr. RLC-Load

PV Emulator

Battery Emulator

Hardware 
under Test

Figure 1.4: Structure of AIT’s Research Test Bed with the battery emulator as future extension

inverter with grid emulation, a PV emulator and controllable resistive, capacitive and inductive
loads. The battery emulator will extend the existing setup to be able to test also battery inverters
or other battery related power electronics like charging stations for electric vehicles.

Out of this work resulted two conference papers which cover the principle ideas and results of
this thesis

• Selection and Implementation of a Generic Battery Model for PHIL Applications [SKLL13],
presented at the 39th “Annual Conference of the IEEE Industrial Electronics Society”
(IECON 2013), and

• Power Hardware-in-the-Loop Implementation and Verification of a Real Time Capable Bat-
tery Model [SKLL14], presented at the 23rd”IEEE International Symposium on Industrial
Electronics” (ISIE 2014).

.
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1.4.3 Used Data Base

For this work measurements of an EiG ePLB C020 Li-ion battery were used. This is a Li-ion
polymer battery with a Li[NiCoMn]O2 based cathode, a capacity of 20 Ah and a nominal voltage
of 3.65 V. Its data sheet can be found in Fig. A.4 on page 96.

The measurements were conducted by the Mobility Department of the Austrian Institute of
Technology for the work of [ECKF13]. These are measurements from the repeatedly applied
FTP-72 (federal test procedure, [4]) driving cycle on a fully charged battery until the battery
was completely discharged. The FTP-72 driving cycle is a standardized driving schedule which
simulates the drive through an urban area with acceleration, braking and frequent stops and shown
in Fig. 1.5. The maximum speed is 91.25 km/h and the average speed is 31.5 km/h. In [ECKF13]

0 200 400 600 800 1000 1200 1400
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Figure 1.5: FTP-72 driving cycle

battery power values were calculated out of the speed values, which were then transformed into
current set values for the battery current. This current profile is shown in Fig. 4.5 in Section 4.3.

Beside the FTP-72 driving cycle measurements, also a measured open circuit voltage curve and
a parametrization of an equivalent electrical circuit (EEC) model (cf. Section 2.6) was available.
With this data the EEC model can be validated against the measurements and compared with
other models.

Unfortunately no other measurement data were available and also there was no possibility to
perform own measurements on the same or other batteries. So the work can only rely on this
data and is therefore focused on the modeling of Li-ion batteries. A possible extension to lead-acid
batteries is always kept in mind.

1.4.4 Methodology

To accomplish the above demands, several steps have to be done in this work

1. First, a literature research about battery modeling is done in order to find a suitable PHIL
battery model.

2. Then the suitable battery models are parametrized.

3. Afterwards, the models are implemented in Simulink and validated in a pure software
simulation against the measurement.

7
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4. The next step is to build the hardware setup and perform all the preparatory work so that
the battery model can be executed on the real time system, which processes the current
measurement and sets the terminal voltage of the power source.

5. Finally the PHIL simulations are conducted and their results discussed.

6. The work will finish with a conclusion and an outlook.

Before the work will continue with a state of the art analysis of battery modeling, some terms
are defined.

1.5 Terminology and Definitions

Battery

A battery consists of one or more chemical cells, connected in series (to increase voltage) or
in parallel (to increase capacity). Batteries can be divided in primary batteries and secondary
batteries, where primary batteries can only be discharged once, whereas secondary batteries can
be discharged and charged several times. Typical secondary battery technologies are lead-acid,
Li-ion, NiMH (Nickel metal hydride) and so forth. In this work only secondary batteries are
covered, so the term battery is used as a synonym for a secondary battery.

State of Charge

The state of charge (SoC) is defined as the ratio of the currently available charge Qavailable of the
battery to total charge Q (total capacity ) of the battery (in percent or p.u.). So SoC = 1 for a
completely charged battery and SoC = 0 for an empty battery. A few models to calculate the
SoC can be found in Section 2.4.

Current direction

In this work the battery is seen as a source, so the sign of the current is positive when the current
flows out of the battery (discharge) and vice versa.

Battery Lifetime

In this work the battery lifetime is defined as the time to discharge a fully charged battery
(typically some hours). So the State of Charge decreases from one to zero. It has to be mentioned
that the term also has other usages, e.g. the time until a battery is at the end of its life cycle
because of too many charge and discharge cycle (which can be more than 1000 for modern Li-ion
polymer batteries, cf. Fig A.4 on page 96).

C-rate

The C-rate describes the battery current normalized to its capacity. This gives the possibility
to compare batteries with different capacities. A current of 1C is the current which discharges
a battery in one hour. For example, for a battery with a capacity of 15 Ah, 1C equates to 15 A,
2C to 30 A, 0.5C to 7.5 A and so on.

8



Introduction

Rate Capacity Effect

The usable capacity of a battery depends on the discharge current and is lower for higher currents.
For more details see Section 2.4.1.

Recovery Effect

During periods of very low or no discharge, a battery can regain the not usable capacity which
was “lost” due to the Rate Capacity Effect. This effect is called Recovery Effect [JH08]. Its
principle is shown in Fig. 1.6. The electro-active species needs time to diffuse to the electrodes.

charged state before recovery after recovery discharged state

electrode electrolyte electro-active species

Figure 1.6: Recovery Effect illustrated by the model of Rakhmatov and Vrudhula [JH09, RV01]

If the discharge current is too high, they cannot diffuse in time, the voltage breaks down and
the battery seems to be empty. After the recovery time the electro-active species is uniform
distributed again, the battery voltage rose and the battery can be discharged further on.
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2 State of the Art Analysis of Battery
Modeling

Beginning with a classification of different types of battery models, this chapter will give a short
discussion about battery modeling related to Hardware-in-the-Loop (HIL) and Power Hardware-
in-the-Loop (PHIL) simulations. Since there are no satisfying papers about this topic, the chapter
continuous with a broad literature review about battery modeling and discusses the models with
the focus on the needs and boundary conditions of a generic PHIL battery model.

2.1 Classification of battery models

Battery modeling is always a trade off between four criteria [RVR03]:

• Accuracy: How accurate can the model predict the battery variables of interest in compar-
ison to measured quantities and experimental data?

• Computation complexity: How long does it take to calculate one model cycle and how much
memory is used?

• Configuration effort: How many parameters does the model have, which effort is needed to
parametrize it and does the model require knowledge of the battery chemistry?

• Analytical insight: Does the model provide qualitative understanding of the battery inter-
nals and behavior and is this insight useful for the specific application?

According to this classification the wanted battery model can be characterized as follows:

• Computation complexity : The computation time for one step should be below 10 µs at the
present OPAL RT real time system. This is a very strict requirement and thus stands on
first position.

• Configuration effort: The battery model should be as generic as possible and in the best
case only data sheet values should be necessary to parametrize the model. This work will
discuss other ways for parametrization (see Chapter 3), but using only data sheet values is
the preferred method.

10
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• Accuracy: The above two criteria limit the accuracy of the battery model. Of course, the
model should be as accurate as possible, but the low computation time is more important.
It is enough to have a maximum relative error of about 10%.

• Analytical insight: An analytical insight is nice to have, but not important. Chemical
insights like charge carrier density distribution are not necessary. More important is that
it is easy to roughly guess the model output for a given input.

There are various types of battery models modeling diverse characteristics with different com-
plexity according to varying applications. Literature reviewed showed, that there are various
classifications of battery models (e.g. [RVR03, TSK12, LK11, JH09]). Derived from these clas-
sifications, this work has its own, which is a mix of those in the literature, because none of the
existing ones matched the focus of this work enough. This works distinguish between

• electrochemical models which model the chemical processes in the battery, such as the charge
carrier density,

• models to calculate the state of charge respectively the battery lifetime,

• generic models, which are mathematical models without modeling the chemical internals of
a battery,

• equivalent electrical circuit (EEC) models which uses a network of electrical circuit compo-
nents to model the battery.

An overview of some generic battery models is shown in [HB11]. Beside of generic models, a good
overview of several types of battery models can be found in [JH09] and [RVR03].

2.2 PHIL Applications with Battery Models

While there is a vast amount of literature about battery modeling, battery models with a focus
on Hardware-in-the-Loop and especially Power Hardware-in-the-Loop have been rarely discussed
in the literature before. This was one of the main motivations of this work. Still there are a few
papers which deal with topics that are related to the focus of this work.

• He et al. [HLK10] used a HIL system to develop and verify a SoC prediction of embedded
battery algorithms. They used a real cell and compared it with the results of an EEC
model. So their approach is different to this work, where a battery should be emulated. He
et al. also did not discuss the computation effort and execution time.

• Edrington et al [EVH+10] built a PHIL setup and used a simplified version of the Shepherd
Model (see Section 2.5.3) which was simplified in order to avoid an algebraic loop. Their
paper has in principle the same focus than this work, but it is more a proof of concept.
The battery model is too simple and issues like accuracy and computation time are not
discussed.

• Yoo et al. [YCC+12] uses a HIL simulation of a DC microgrid with a multi-agent system
as hardware. The microgrid is simulated with the Simulink SimPowerSystems toolbox
including its battery model. The authors neither discuss the battery model, nor mention
the step time of the HIL simulation.

11
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• Song et al. [SKJ+13] used a HIL simulation to validate their equivalent electrical circuit
model (see Section 2.6). The authors used the control area network bus (CAN) to charge
and discharge the battery in a HIL simulation and then compared the measurements to a
battery model.

• Pebriyanti [Peb13] had a quite similar focus to the one of this work. He developed an equiv-
alent electrical circuit model to test a battery management system. The battery model is
implemented in Simulink and executed on an xPC target computer with an execution time
of ≈ 12 µs. The model was parametrized with an extensive series of impedance spectroscopes
from 1 mHz to 1 Hz at different states of charge.

2.3 Electrochemical Models

Electrochemical (also called physical) models are the most exact models above the examined mod-
els. Typically six coupled differential equations, with some of them partial differential equations,
are used to model characteristics like current density or charge carrier concentration. There is a
freely available Fortran implementation called DUALFOIL [7], which is often used as a reference
to determine how accurate another battery model is [RVR03].

Electrochemical models have a high computational effort, which is too high for the real time
conditions with a step size below 10 µs and the computation power of current real time hard-
ware. Furthermore, electrochemical models have a lot of parameters (more than 50 according
to [RVR03]), so their configuration effort is also high and exact knowledge of the battery is
needed. This does not fulfill the constraint of a easy configurable battery model. Thus, electro-
chemical models are no longer considered in this work. Further information about electrochemical
battery models can be found in [CKC+10, DVM12, DDFS08, GWDW02, LCP12, Mar11, RBAI11,
SW06, SM13, SRW07].

2.4 Models Determining State of Charge and Battery Lifetime

Exact information about the current state of charge and remaining battery lifetime is important
for a lot of applications, especially for mobile ones. This section discusses models which calculate
the battery lifetime or the state of charge.

2.4.1 Peukert Model

A simple model to calculate the battery lifetime L is the Peukert Model [DS06]. It is named
after its explorer Wilhelm Peukert, who found in the beginning of the 20th century the empirical
equation

L =
a

Ib
· (1 A)b−1 , (2.1)

with I as a constant battery current and the two parameters a and b. The parameter a is Q for
an ideal battery and close to Q for a real battery. For a real battery the parameter b is always
greater than 1 which implies that the lifetime and also the usable capacity L · I depends on the
current and is lower for higher discharge current. This effect is called Rate Capacity Effect or
Peukert Effect. The term (1 A)b−1 is only a correction term to achieve a time as unit for L. Li-ion
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batteries have a b close to the ideal value 1, while b is around 1.1− 1.25 for gel and 1.2− 1.6 for
flooded lead-acid batteries [3].

One has to mention that the term L · I is only the usable capacity and the battery is not really
empty, but has an “unavailable capacity”. The battery still can be discharged, but with very
small currents. This can be explained by the Kinetic Battery Model (see Section 2.4.4).

The Peukert equation can be extended for variable currents i [JH09] to

L =
a(

1
L

´ L
0 i(τ) dτ

)b . (2.2)

Beside the fact that this is a nonlinear implicit equation in L and hence difficult to solve, Equa-
tion 2.2 would imply that all current waveforms with the same mean value would have the same
lifetime. This is amongst other things not valid due to the Recovery Effect (see Section 1.5). So
the Peukert model is only suitable for general estimations of the battery lifetime considering the
Rate Capacity Effect.

2.4.2 Diffusion Model of Rakhmatov and Vrudhula

Unlike the Peukert model, Rakhmatov and Vrudhula’s model [RV01] is not empirical but deduced
from Fick’s laws of diffusion. Their model equation is

α =

ˆ L

0

i(τ)√
L− τ dτ + 2

∞∑
m=1

ˆ L

0

i(τ)√
L− τ exp

(
−β

2m2

L− τ

)
dτ (2.3)

with the two parameters α = νFA
√
πDC∗ρ (L) and β = w√

D
. L is the lifetime, D is the

diffusion constant of the diffusion process in the cell, ν the number of electrons involved in the
electrochemical reaction at the electrode, F the Faraday’s constant, A the area of the electrode
surface, w the length of the one-dimensional diffusion, C∗ is the concentration at t = 0 and
ρ (L) = 1 − C(x=0,L)

C∗ . The model equation describes a relationship between battery current and
lifetime and covers both Rate Capacity as well as Recovery Effect. In addition, Equation 2.3 can
be transformed in an equation describing the SoC [JH09].

However, the equation cannot be used in practice because it contains an infinite sum. This
issue can be solved by discretising the integral and replacing the infinite sum with a finite one.
Rakhmatov and Vrudhula did this in their paper until m = 10 at a staircase-shaped current which
is implicitly discretised. The average error of their model was smaller than 1% in comparison to
a simulation with DUALFOIL. Since the parametrization of the model is difficult and the model
is too computational expensive to use it for calculating the SoC, it is not further used in this
work.

2.4.3 Coulomb Counting

In good approximation the SoC can be calculated via the integral over the battery current i:

SoC = SoCinit −
1

Q

ˆ t

0
i(τ) dτ (2.4)
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This method is called Coulomb Counting and the most common way of determining the state of
charge. There are some extensions for this simple method. One of them is the Kinetic Battery
Model which is described in Section 2.4.4. To consider self discharge, Equation 2.4 is extended to

SoC = SoCinit −
ˆ t

0
(i(τ)− iselfdisc(τ)) dτ. (2.5)

When charging a lead-acid battery not all of the current is used for charging. A part of it fissions
water molecules into hydrogen and oxygen. This effect is called gassing. Gassing is modeled
similar to self discharge

SoC = SoCinit −
ˆ t

0
(i(τ)− igassing(τ)) dτ. (2.6)

Of course these two effects can be combined. Another possibility is to use a charge and discharge
efficiency. Therefore an efficiency η is introduced:

SoC = SoCinit −
ˆ t

0
η i(τ) dτ. (2.7)

η is less or equal 1 and usually dependent on the current direction (charging or discharging), but
can also be a function of the SoC or the temperature [GLD02].

2.4.4 Kinetic Battery Model

The Kinetic Battery Model (KiBaM) is an enhanced model to calculate the SoC of a bat-
tery [MM93]. The name is derived from its use of a kinetic process to describe the battery
behavior. It was developed as an abstract model, but Jongerden and Haverkort [JH09] proved,
that it is a first order approximation of the Diffusion Model of Rakhmatov and Vrudhula (see
Section 2.4.2 and [RV01]). The KiBaM covers the Rate Capacity Effect as well as the Recovery
Effect. The KiBaM originally was developed as a discharge model and extended by [WC10] for
charging.

The basic idea of the KiBaM is to separate the total charge Q of the battery into two charge wells:
one for the available charge y1 and one for the bound charge y2 (see Fig. 2.1). Two differential

1 – c c 

k 

y
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h
1
 

y
2

h
2

i
out

 

i
in
 

Figure 2.1: Kinetic Battery Model [JH09, WC10]
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equations describe the charge in the wells

ẏ1 = −iout(t) + k (h2 − h1) (2.8)

ẏ2 = iin(t)− k (h2 − h1) (2.9)

with the initial conditions

y1(0) = cQinit (2.10)

y2(0) = (1− c) Qinit. (2.11)

The heights of the wells are given by h1 = y1
c and h2 = y2

1−c . The model inputs iin(t) and iout(t)
are defined as

iin(t) =

{
−i(t) i(t) < 0

0 else
(2.12)

as well as

iout(t) =

{
i(t) i(t) > 0

0 else.
(2.13)

The model has two parameters c and k, where c is between 0 and 1 and represents the partitioning
of the charge in the two wells. It depends on the battery technology and is smaller in lead-acid
batteries than in Li-ion batteries [KQ11]. This means that Li-ion batteries have a bigger available
charge well, which correspondents with a smaller Rate Capacity Effect (b closer to 1 in the Peukert
Model, Section 2.4.1). The parameter k describes how fast charge can flow between the two wells.
The constant

k′ :=
k

c (1− c) (2.14)

is related to the diffusion rate and the inverse time constant of the Recovery Effect (cp. Equa-
tion 2.20 and 2.21).

According to [JH09] the unavailable charge is given by

Qunavailable = (1− c) (h2 − h1) . (2.15)

With Equation 2.15 the SoC can be calculated

SoC =
Qavailable

Q
=
Q−Qunavailable

Q
=

=
1

Q
(y1 + y2 − (1− c) (h2 − h1)) =

=
1

Q

(
y1 + y2 − (1− c) y2

(1− c) + (1− c) y1

c

)
=

=
1

Q

1

c
y1. (2.16)

The coordinate transformation

γ = y1 + y2 (2.17)

δ = h2 − h1 (2.18)
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transforms Equation 2.8 and 2.9 into two separated differential equations

γ̇ = −i(t) (2.19)

δ̇ =
1

1− ciin(t) +
1

c
iout(t)− k′ δ. (2.20)

Now the SoC can be easily written as

SoC =
1

Q
(γ − (1− c) δ) =

=
1

Q

(
−
ˆ t

0
i(τ)dτ +Qinit − (1− c) δ

)
=

= SoCinit −
1

Q

ˆ t

0
i(τ)dτ − 1

Q
(1− c) δ (2.21)

which is the Coulomb Counting Equation 2.4 extended by the term − 1
Q (1− c) δ.

2.4.5 Stochastic Models

Another possibility to describe the characteristics of a battery are stochastic models [JH08, JH09,
RVR03]. Stochastic models are abstract models which model discharging and effects like the
Recovery Effect as stochastic processes. They use Markov Chains with about 106 states (see
Fig. 2.2). When charging or discharging a battery, the state in the Markov Chain is changed

0 1 ... N–1 N

Ns

1

a0 a0 a0

a1 a1 a1a1

Figure 2.2: Markov Chain [JH09]

according to specific rules. State changes can also take place with a battery current equals to zero
which gives a possibility to model the Recovery Effect. Stochastic models have been developed to
estimate the life time for pulsed discharge of a battery where they have an average error of about
1% in comparison to electrochemical models. Though, it is unclear how well stochastic models
perform for arbitrary currents. Also stochastic models need more computational performance
than simple Coulomb Counting or the KiBaM. Thus they are not used in this work.

2.5 Generic Models

A big group of models are generic or mathematical models. Their equations are empirical and
the parameters have, beside of the capacity Q, no physical relevance or equivalent. The models
are built up of at least to two equations. The first describes the SoC as a function of the battery
current i. This can be done by Coulomb Counting or a more complex model like the KiBaM. The
other equation describes the voltage v as a function of the current i and state of charge SoC.
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2.5.1 Unnewehr Universal Model

One of the simplest models is the Unnewehr Universal model [HB11]. Its model equation is:

v = E0 +K SoC −R i (2.22)

with the parameters E0, K and R. The term E0 + K SoC models a linear open circuit volt-
age (OCV), whereas R can be seen as internal resistor of the battery. Unnewehr also made R
dependent on the SoC and suggested

R = R0 +KR SoC, (2.23)

with the two empirical constants R0 and KR.

The Unnewehr Universal model is only valid in the middle SoC-region, where the open circuit
voltage curve is flat and can be approximately described as a line. Hence, the Unnewehr Universal
model is not suited as a model for this work.

2.5.2 Nernst Model

The Nernst model is mentioned several times in the literature (e.g. [HB11] or [ZQD09]) where it
is referenced direct or indirect to the homepage of Thermoanalytics [10]. But at the homepage is
no evidence of the model or its author. The model equation is

v = E0 + c1 ln(SoC) + c2 ln(1− SoC)−R i (2.24)

with the parameters E0, c1, c2 and R. The Nernst model has its name probably from the Nernst
equation which relates the electrode potential to the reaction quotient of the chemical reaction
in the electrode [12]:

Ecell = Ecell,0 −
RT

z F
lnQ (2.25)

where Ecell,0 is the standard cell potential, R the universal gas constant, T the temperature in
Kelvin, z the number of moles of electrons transferred in the cell, F the Faraday constant and Q
the reaction quotient. The voltage of a cell is the difference of the two potentials of the electrodes:

v = Ecathode − Eanode. (2.26)

The step from Equation 2.26 and 2.25 to 2.24 and replacing the two reaction quotients by SoC
and 1−SoC was not found in the literature. The Nernst model describes the open circuit voltage
qualitative correct since the voltage drops when the battery is almost empty, is then quite flat
when the SoC is between 0.3 and 0.7 and rises when the battery is almost full.

The Nernst model does not consider dynamic effects. Hence it is not a suitable model for this
work. But it is a feasible open circuit voltage model for equivalent electrical circuit models (see
Section 2.6).

2.5.3 Shepherd Model

The Shepherd Model [She65b, She65a] is a model which was developed for constant discharge of
a battery. Its equation is

v = E0 −R i−K
Q

Q− it i+Ae
−B it

Q (2.27)
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with the constant parameters E0, R, K, A, B. The variable it is defined as

it :=

ˆ t

0
i(τ)dτ. (2.28)

Shepherd named the term K Q
Q−it i polarization voltage vp which he deduced from the unbalanced

current density distribution at the electrodes. Together with R it models a state of charge

dependent internal resistor which increases hyperbolic for decreasing SoC. The term Ae
−B it

Q

models the gain of open circuit voltage when the SoC increases. Shepherd also suggested to add
C · it to the equation if the open circuit voltage model is not accurate enough. Although the
model was developed more than 50 years ago, Li and Ke [LK11] described it as “the best known
voltage-current model for constant-current discharge”.

Shepherd developed his model for batteries which are fully charged. So Equation 2.28 should be
adapted to

it :=

ˆ t

0
i(τ)dτ + itinit (2.29)

when modeling batteries which are partially discharged. Comparing the Equations 2.4 and 2.29
gives

it = Q (1− SoC) (2.30a)

itinit = Q (1− SoCinit). (2.30b)

Now Equation 2.27 can be rewritten as

v = E0 −R i−K
1

SoC
i+Ae−B(1−SoC). (2.31)

Since the Shepherd Model does consider dynamic effects, the model is not accurate enough for this
work. But it is the basis of the Modified Shepherd Model which will be described in Section 2.5.5.

2.5.4 Zheng Model

Zheng et al. [ZQD09] developed a battery model from the measurement of an OCV curve and
the battery voltage response to a current pulse.

The authors divided the battery voltage in three parts.

1. An open circuit voltage voc,which is a function of the SoC. As OCV model they used a
combination of Unnewehr Universal, Nernst und Shepherd Model:

voc = c0 + c1 ln(SoC) + c2 ln(1− SoC) + c3
1

SoC
+ c4 SoC (2.32)

which is according to the authors a valid model between 0.02 ≤ SoC ≤ 0.98. The OCV
model has a maximal error of 2 V which is less than 0.7%. The voltage drop ∆VSoC in
Fig. 2.3 is caused by a decrease of the SoC during the discharge pulse, resulting in a lower
OCV.

2. An ohmic drop voltage vΩ, caused by the internal ohmic resistance of the battery (∆VΩ in
Fig. 2.3) and calculated by:

vΩ = RΩ · i. (2.33)
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Figure 2.3: Current step response of the battery in [ZQD09]

3. A dynamic voltage called polarization voltage vp. Zheng et al. model it with an exponential
function. Following equation describes the polarization voltage for the discharge pulse of
Fig. 2.3:

vp(t) = vp(t0) e
− t−t0

τ2 +Rp i

(
1− e

− t−t0
τ1

)
. (2.34)

Their paper also consists of a general equation for the polarization voltage, but own Mat-
lab/Simulink simulations were not able to reproduce the measured voltage response with
this equation. A valid general equation would be

v̇p =
1

τ
(Rp i− up) (2.35)

with

τ =

{
τ1 i < 0

τ2 else
. (2.36)

Although their general equation, or its description, is not correct, the polarization effect is a very
important dynamic battery effect. It shows that the battery voltage is not only a function of
the instantaneous current, but also from the past and it needs at least one ordinary differential
equation to model the dynamic effects of a battery. The polarization effect is also considered in
the Modified Shepherd Model and in equivalent electrical circuit models (see Section 2.6).
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2.5.5 Modified Shepherd Model

Tremblay et al. [TDD07, OD09] enhanced the Shepherd Model for modeling not only constant
discharge, but also charge and dynamic current. The equation of the so called Modified Shepherd
Model (MSM) is

v = E0 −R i−K
Q

Q− it it−Rpoli
∗ +Ae−B̃it (2.37)

with B̃ = B
Q . They added the term K Q

Q−it it to better represent the SoC-OCV characteristics and

extended K Q
Q−it to Rpol. The so called polarization resistance depends on the current direction

and given by

Rpol =

{
K Q

Q−it i∗ > 0, discharge

K Q

it−λ̃Q i∗ < 0, charge
(2.38)

The polarization resistance models the rapidly voltage increase when the battery reaches the full
charge. When the battery is charged, the polarization resistance increases until the battery is
almost fully charged. This can be described by:

Rpol = K
Q

it− λ̃Q
(2.39)

which is valid for lead-acid and Li-ion batteries. Experiments have shown, that λ̃ ≈ 0.1 [OD09].

The variable i∗ stands for the low pass filtered current i. Tremblay et al. use without further
comments a simple first order low pass filter with the differential equation

τ
di∗

dt
+ i∗ = i. (2.40)

Substituting it with SoC, Equation 2.37 can be rewritten as

v = E0 −R i−KQ
1

SoC
−Rpol i

∗ +Ae−B(1−SoC) (2.41)

where the constant E0 +KQ is merged to one constant E0, and

Rpol =

{
K 1

SoC i∗ > 0

K 1
λ−SoC i∗ < 0

(2.42)

with λ ≈ 1.1.

The authors explicitly mention some model assumptions respectively simplifications. They are
valid also for the other generic models described above, but their authors didn’t mention them
explicitly:

• The internal resistance R is constant during charge and discharge and independent of the
amplitude of the current. This is not true for real batteries, as for example shown in
[LBK11], but still yield good results. Considering these issues would also increase the
configuration effort a lot. Beside this the polarization resistance also can be counted to the
internal resistance leading to a SoC- and current direction dependent internal resistance.
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• The capacity is independent of the current rate. Thus, the Rate Capacity Effect is not
considered. A possible solution would be replacing Coulomb Counting with the KiBaM
(see Section 2.4.4), which covers the Rate Capacity and the Recovery Effect.

• The batteries behavior is not affected by temperature. This is a common simplification.

• The self discharge of the battery is not represented. As mentioned in Section 2.4.3 this
could be considered by an additional current in the Coulomb Counting formula.

• The battery hast no memory effect. This is a valid assumption for lead-acid and Li-ion
batteries, but not for NiMH and NiCd batteries [OD09].

On the whole, the MSM fulfills the requirements of this work for a battery model: it seems not
too computational expensive, with i∗ the model considers dynamic effects, the model has only a
few parameters whose parametrization effort seems sufficiently low. Therefore the MSM will be
used and analyzed further on in this work.

2.5.6 Neural Networks

A complete different approach to model the behavior of batteries are artificial neural networks
[CBT11, LWY09, TC08]. Neural networks use measurement data to teach the model the behavior
of the battery. After this learning phase neural network behaves similar to the battery. The
quality of the model depends on the size of the network, e.g. [CBT11] used 9600 knots, and the
type of learning data.

Although there are some papers about this, modeling batteries with neural networks seems not
very common. Neural networks for modeling batteries have a few disadvantages. For example,
it is very difficult to predict the behavior of the model for a specific battery current, because
the neural network is almost a black box. There is no intuitive understanding of the model.
Also subsequent extensions like temperature dependency are complex to implement. Another
disadvantage is the high memory requirement like almost 10000 knots for a constant discharge.
Therefore neural networks will not be considered any more in this work.

2.5.7 Charge-Discharge Hysteresis

A battery voltage has a small charge-discharge hysteresis. For Li-ion batteries this can be ne-
glected, whereas the voltage hysteresis can play a role for lead-acid, NiMH (Nickel metal hydride)
and NiCd (Nickel Cadmium) batteries [OD09]. The authors use the equation

v̇hys (t) = c0 |i| (−vhys (t) + c1h) (2.43)

with the parameters c0 and c1 and h = 1 for charge and h = 0 for discharge. The voltage
vhys replaces the term Ae−B(1−SoC) at the MSM. Some other hysteresis models can be found
in [HLP12]. As this work uses only measurement data from a Li-ion battery, hysteresis effects
are not longer considered.
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2.6 Equivalent Electrical Circuit Models

Since batteries are used in electrical circuits, it’s an obvious approach to model a battery with
electrical circuit components. These so called equivalent electrical circuit (EEC) models are widely
used, discussed, analyzed and extended in the literature. EEC models have the advantage, that
they offer an intuitive understanding of how the battery voltage will react for a given current.
Also such a battery model can be easily implemented within the Simulink SimPowerSystems
Toolbox, in SPICE (Simulation Program with Integrated Circuit Emphasis) models or other
common simulation environments.

The simplest way would be the combination of an ideal voltage source and an internal resistor
(see Fig 2.4a). This is only valid at a small area around an operating point near SoC ≈ 0.5,

voc

Ri

(a) Simplest model

voc(SoC )

Ri

(b) R-int model

voc(SoC )

Ri,d

Ri,c

(c) Different charge and dis-
charge behavior

Figure 2.4: Various EEC models

where the SoC vs. OCV-curve is quite flat. To increase the model accuracy the constant voltage
source has to be replaced by a state of charge dependent one (see Fig. 2.4b). The combination of
a voltage source and an internal resistance is sometimes called “R-int”-model. The calculation
of the SoC can either be done by a mathematical model like the Coulomb Counting or via an
electrical circuit. Therefore a capacitor CQ with the capacity Q is charged and discharged with
the battery current i (see Fig. 2.5). Its voltage is

vCQ = vCQ,init −
1

CQ

ˆ t

0
i(τ) dτ (2.44)

which is equal to the SoC and equivalent to Coulomb Counting (cf. Equation 2.4). Constant self
discharge can be modeled with a resistor RSD parallel to CQ.

The SoC-OCV relationship can result either from a look-up table with measurements or a math-
ematical model. Using a mathematical model, EEC models are equivalent to some of the generic
models described above. For example the Nernst model and its corresponding Equation 2.24 can
be directly transformed into an EEC model.

 iCQRSD SoC

Figure 2.5: Modeling of SoC calculation in an EEC model
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Batteries have slightly different behavior, depending on whether the battery is charged or dis-
charged. Adding diodes for a charge and discharge branch can cope with this issue (see Fig. 2.4c),
as for example shown in [HB11].

Batteries have dynamics effects like the polarization effect or diffusion. These effects are modeled
with one or more RC-elements (see Fig. 2.6). The RC-elements are sometimes assigned to elec-

voc(SoC )

Ri R1

C1

(a) EEC model with one RC-
element

voc(SoC )

Ri(SoC ) R1(SoC )

C1(SoC )

(b) EEC model with SoC-
dependent component values

voc(SoC )

Ri R1

C1

R2

C2

(c) EEC model with two RC-elements

Figure 2.6: Various dynamic EEC models

trochemical effect of the battery: The first RC-element models the polarization effect, whereas
the second represents diffusion [HLK10]. Of course, more RC-elements increase the accuracy
(cf. Fig. 2.6c), but also increase the calibration effort and the computation time. [ECKF13] and
[HLP12] come to the conclusion, that the additional effort to parametrize a second or a third
RC-element is often not worth the comparatively small gain in accuracy. In this work, where
the low execution time and easy parametrization are demanding requirements, EEC models with
more than one RC-element are not longer evaluated. Of course, a charge/discharge dependency
can also be implemented for models with RC-elements as it is for example done in [LBK11].

A higher impact on the accuracy of the model is achieved by making the resistor and capacitor
value not constant but dependent on the SoC (see Fig. 2.6b). Strictly speaking, the models are no
equivalent electrical circuits any more, because there are no resistors and capacitors whose values
are a function of an online calculated value, but this is not an issue because the circuit is anyway
only a simulation model. Similar to the OCV, the SoC dependency can be implemented by look-
up table [ECKF13] or using mathematical functions [LBK11, CRM06, ZCSA10, TSK12, KK08].
Fig. 2.7 exemplarily shoes the component values of the ePLB C020b Li-ion battery mentioned in
Section 1.4.3.

The next subsections will present three EEC models, beginning with a very detailed one, then an
easier one and finally a hybrid battery model which uses the KiBaM instead of the usually used
Coulomb Counting.
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Figure 2.7: Component values as function of the SoC of a ePLB C020 Li-ion battery

2.6.1 Lam’s Model

Lam et al. [LBK11] developed a circuit based battery model for modeling the LiFePO4 battery
of an electric vehicle (EV). They proposed an EEC model with two RC-elements (cp. Fig. 2.6c)
whose values depend on the SoC. They neglected self discharge since this effect is very low for
the investigated LiFePO4 battery. Their OCV equation is

voc = a1e−a2SoC + a3 + a4SoC + a5e−
a6

1−SoC (2.45)

which was considered as temperature independent. Lem et al. modeled the resistors and capac-
itors to be dependent on SoC, current direction, C-rate and temperature. The internal resistor
was modeled with

Ri (SoC) = b1SoC
4 + b2SoC

3 + b3SoC
2 + b4SoC + b5 (2.46)

with different parameters bi for charge and discharge. For temperatures above 20 ◦C, Equa-
tion 2.46 is extended to

Ri,high (SoC, T ) =
(
b1SoC

4 + b2SoC
3 + b3SoC

2 + b4SoC + b5
)
bt1e

bt2
T−bt3 (2.47)

where T is the temperature in Kelvin and again with different parameters bti for charging and
discharging. For temperatures below 20 ◦C, Equation 2.46 is extended to

Ri,low (SoC, T ) =
(
bt1T

3 + bt2T
2 + bt3T + bt4

)
SoC4+

+ b2SoC
3 + b3SoC

2 + b4SoC + bt5e
bt6

T−bt7 . (2.48)

The C-rate dependency for high temperatures is modeled by

Rı́,high,C (SoC, T,Crate) ={
Rı́,high (SoC, T ) (gi1dCrate

gi2d + gi3d) discharge

Ri,high (SoC, T ) (gi1c (Crate
gi2c − 1)SoC + Crate

gi3c) charge
(2.49)

with similar formulas for low temperature. This leads to 47 parameters for the SoC dependency,
117 additional parameters for the temperature dependency and six for the C-rate. Fig. 2.8 shows
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the values of the component values for charge and discharge and exemplary the temperature
dependency of the internal resistor. The equations in the paper and the according parameters,
which are the basis of Fig. 2.8, do not exactly reproduce the figures from the papers, but the
principle statements of the figures are the same.
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Figure 2.8: Resistor and Capacity values of the Lam model for various conditions [LBK11]

With this model, the battery voltage has a maximum error of 11 mV for a single cell (0.3% of
the nominal voltage 3.3 V ) at normal ambient temperature for both, charge and discharge. The
error rises a little bit for low and high temperatures, but remains still quite small. It is obvious
that even the 47 parameters for the SoC dependency are far too much for a “generic” battery
model. But the model can be kept in mind as a reference. Also the OCV-model (Equation 2.45)
is a useful model which will be used further on in this work.
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2.6.2 Chen and Rincón-Mora’s Model

Chen and Rincón-Mora [CRM06] developed a model for a TCL PL-383562 polymer Li-ion battery.
The also proposed an EEC model with two RC-elements, but no temperature dependency and
less parameters than Lam [LBK11]. Their OCV-model is

voc = c0e−c1SoC + c2 + c3SoC + c4SoC
2 + c5SoC

3. (2.50)

The parameters were extracted during discharge, but in contrast to [LBK11] also used for charge.
All their resistors and capacities are modeled with an equation in the form of

x = a0e−a1SoC + a2. (2.51)

Fig. 2.9 shows the according component values. It is worth mentioning that although the resistors
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Figure 2.9: Resistor and Capacity values of Chen and Rincón-Mora’s model [CRM06]

and capacitors are changing with different state of charges, the time constants τi = RiCi are in
good approximation independent of the SoC. With SoC dependent resistors and capacitors
according to Equation 2.51, their maximum error is 30 mV (0.8% of the nominal voltage 3.7 V),
which is more than two times higher than Lam’s battery model but still very accurate.

2.6.3 Kim and Qiao’s Model

Kim an Qiao [KQ11] proposed a hybrid battery model. They used Rincón-Mora’s model but
used the KiBaM instead of Coulomb Counting and added a polynomial for Ri (SoC). The hybrid
model has 26 parameters; five more than the one from Chen and Rincón-Moras. The authors
test their model with constant and pulsed discharge. The hybrid model shows its benefit at
consecutive time where the unavailable charge is not negligible any more and small changes of
the SoC have a higher impact on the batter voltage. As a result of the hybrid model predicts the
runtime more accurate. A quantitative comparison of the errors is not done in the paper. They
only mentioned, that the maximum error stayed below 1%.
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2.7 Comparison of EEC and Generic Models

Generic mathematical models and EEC models have a different background and approach, but
also show some similarities. Every EEC model has beside of the circuit its correspondent (differ-
ential) equations. This section will compare this equations with the generic models discussed in
Section 2.5.

Some of the generic models, like the Unnewehr Universal, the Nernst and the Shepherd Model,
can be directly transformed into an EEC model. They have the form

v = voc (SoC)−R i (2.52)

which is also the equation of an EEC model with an internal resistor and no RC-element.

An EEC model with one RC-element has the differential equation

τ v̇1 + v1 = R1 i (2.53)

with τ = R1C1. This can be compared with the MSM and the Zheng model. The polarization
voltage for discharge of the MSM is

τ v̇p + vp = K
1

SoC
i (2.54)

and Zheng et al. used
τ v̇p + vp = Rp i (2.55)

with different τ for charge and discharge. So the structures of the models are quite similar. The
MSM can be transformed into an EEC model with SoC-dependent component values and Zheng’s
model into one with SoC and current direction dependent components. If the PT1-filter for i∗ of
the MSM is replaced by a second order filter, the model would behave like an EEC model with
2 RC-elements.

As already mentioned above, are EEC models whose components are functions of calculated
variables strictly speaking no electrical circuits any more, but rather mathematical models with
the background of an EEC model, although they are still called EEC models in the literature. So
from a mathematical point of view EEC models are a subcategory of generic models.

Every mentioned model has a part which describes the OCV-SoC relationship. To compare the
models their parameters are marked with pari > 0 with an ascending i from 1 to 14. The values
of these parameters are inconsiderable, since only the structure of the models are compared.
Fig. 2.10 shows the OCV curve of the ePLB C020 Li-ion battery whose measurements will be
used further on in this work to validate and evaluate the battery models. The figure shows, that
a OCV curve typically has three parts.

1. The first part is usual operating area of a battery. There the OCV curve is quite flat, so
the battery behaves more like an ideal voltage source. The area is approximately at a SoC
between 0.3 and 0.7. To represent this flat part, most of the models (Unnewehr Universal,
Shepherd, Zheng, MSM, Lam, Chen and Rincón-Mora) the term

par1 + par2 · SoC. (2.56)

Only the Nernst model has this flat part implicit in its combination par3 · ln (SoC) + par4 ·
ln (1− SoC). Hence it is not suitable for battery with a very flat middle OCV-SoC curve.
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Figure 2.10: Open circuit voltage curve of a “ePLB C020” Li-ion battery

2. The OCV shows a significant break down when the SoC is going to zero. The models have
different approaches for this break down. The Nernst model has

par3 · ln (SoC) ; (2.57)

the Shepherd and Modified Shepherd Model

− par5 ·
1

SoC
; (2.58)

Zheng the combination of them

par6 · ln (SoC)− par7 ·
1

SoC
; (2.59)

while Lam and Chen/Rincón-Mora

− par8 · e−par9·SoC . (2.60)

This shows a lower limit of the Nernst, Shepherd, modified Shepherd and Zheng model,
because

lim
SoC→0

voc (SoC) = −∞, (2.61)

which is obviously not true for a real battery. So either every parametrization of the model
has to be checked for an lower limit (Zheng et al. mention SoC > 0.02) or the equation has
to be forced to zero by

voc,corr (SoC) = voc (SoC) ·
(
1− e−c0·SoC

)
(2.62)

with a sufficiently big constant c0 > 0. This works not for every possible parametrization
of the models, because the voltage can go below zero for SoC > 0, but it works for every
parametrization of a real battery found in the literature.
The limit for Lam and Chen/Rincón-Mora is

lim
SoC→0

voc (SoC) = par1 − par8 6= 0. (2.63)

Theoretically this is not correct, since a totally empty battery would have zero voltage, but
practically this is a valid assumption. The tested ePLB C02 Li-ion battery, whose OCV
curve is shown in Fig. 2.10, has voc

(
SoC = 10−7

)
= 2.7 V.
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3. The third part is the increase of the OCV when the SoC is getting closer to one. Nernst
and Zheng model this with the term

par9 · ln (1− SoC) (2.64)

which is also going to infinity for SoC → 1. This cannot be corrected by multiplying the
equation with a term. So there is an upper limit of the model. Zheng et al. mention
SoC < 0.98. The Shepherd and Modified Shepherd Model has

par10e−par11(1−SoC); (2.65)

Lam has
par12e−

par13
1−SoC ; (2.66)

and Chen/Rincón-Mora use a polynom

−par13 · SoC2 + par14 · SoC3.

This three models have a definite reasonable value for SoC = 1. So there are no problems
at the modeling.

So not all the models give reasonable values at the boundaries where the SoC is close to 0 and
1. Which of them is the most accurate model will show Chapter 3.

2.8 Summary of the Literature Review

Battery models have not been analyzed before in order to investigate their usability for PHIL
simulations with easy to parametrize model. So this was done in this work. Electrochemical
models are the most accurate, but too computation intense for current real time systems and
the restraint of an execution time below 10 µs. In contrast, some the discussed generic and EEC
models are suitable for the given problem. These models consist of two parts. First the calculation
of the SoC and second a part which has as output the battery voltage as a function of the current
and SoC.

Coulomb Counting is a simple and effective way to calculate the SoC of a battery which basically
integrates the current over time. A possible extension of it is the KiBaM which extends Coulomb
Counting by a first order ordinary differential equation and then covers also the Rate Capacity
as well as the Recovery Effect.

Out of the generic models, the modified Shepherd is the most promising one. It fulfills the
requirements and will be used in this work. Also the EEC models with one RC-element seem
promising. Resistor and Capacitor values as function of the SoC increase the accuracy, but also
the parametrization effort. Further analysis will clarify if the additional effort is worth the gain
in accuracy. In the next sections the Modified Shepherd Model and various EEC models will be
parametrized and afterward compared with measurements of a battery.
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Every model has its parameters and a model is only as good as its parametrization, because
no matter how accurate a model could be, it is useless if the model is wrongly parametrized.
Contrary, as mentioned in Section 1.4 and 2.1, the configuration effort of the model should be as
low as possible since the focus of this work is a generic battery model. With the class of equivalent
electrical circuit (EEC) models and the Modified Shepherd Model (MSM) two suitable models
were presented in Chapter 2. This chapter will discuss their parametrization using two different
ways.

There are several ways to parametrize a battery model. One is using only data sheet values
and experience values. This is of course the least accurate method, but it needs no existing
hardware, no experiments, and is hence a generic and cost-effective method. As mentioned at
the requirements of the battery model, this would be the preferred method. An analysis will be
done in this chapter to see how accurate it is and if this method is sufficiently accurate.

Another method is using experiments dedicated for the parametrization of a battery model.
These could be for example the extraction of an open circuit voltage (OCV) curve, applying
single current pulses until the battery is empty. This needs the existence of the battery under
test, a programmable source and load, and measurement equipment, which is on the one hand
very cost-intensive. But on the other side it is the most accurate way.

A third method is using (existing) measurements of complex waveforms, e.g. standardized driving
cycles, and then applying optimization algorithms to extract the parameters out of these mea-
surements. This takes a much higher configuration effort than using dedicated parametrization
measurements. But if the measurements are already available, this method could be more accu-
rate than using only data sheets. An additional advantage is, that no expensive measurement
equipment is necessary. Parametrization using this method was not found during the literature
research. So it is not clear if this approach is expedient and since parametrization is not the main
focus of this work, this method is not further discussed in this work.

3.1 Parametrization Using Dedicated Measurements

Parametrization with dedicated experiments is the most accurate way but it has the drawback
that the battery itself and expensive measurement equipment are necessary. An EEC model
consists of a state of charge (SoC) dependent voltage source and resistors as well as capacitors.
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The voltage source can be parametrized with an OCV-curve or a constant discharge curve of the
battery, while the passive components can be parametrized with the response to a current step.
If the resistors and capacitors are modeled with a SoC-dependency, the current step has to be
conducted at various states of charge. The MSM can be parametrized in a similar way.

3.1.1 Parametrization of the OCV of an EEC Model

The SoC vs. OCV curve can be determined by discharging a fully charged battery with short
current pulses. The amplitude of the current pulses should be low and the length short to avoid
the Rate Capacity Effect, while the duration between two pulses should be long to take the
Recovery Effect into account.

The literature review (c.f. Chapter 2) revealed a few different OCV-models, which are possible
equations for the SoC-OCV dependency:

• Nernst model (Equation 2.24):

voc = E0 + c1 ln(SoC) + c2 ln(1− SoC) (3.1)

• Zheng model (Equation 2.32):

voc = c0 + c1 ln(SoC) + c2 ln(1− SoC) + c3
1

SoC
+ c4 SoC (3.2)

• OCV part of the Modified Shepherd Model (Equation 2.41):

voc = E0 −KQ
1

SoC
+Ae−B(1−SoC) (3.3)

• Lam model (Equation 2.45):

voc = a1e−a2SoC + a3 + a4SoC + a5e−
a6

1−SoC (3.4)

• Chen and Rincón-Mora (Equation 2.50):

voc = c0e−c1SoC + c2 + c3SoC + c4SoC
2 + c5SoC

3. (3.5)

The parameters to fit the model with the measurement can be determined by solving the opti-
mization problem

min
x

N∑
k=1

(rk (x))2 = min
x
‖r (x)‖2 (3.6)

with
rk = vmeas,k (SoCk)− vmodel,k (SoCk,x) . (3.7)

where N is the number of measurements, x is a vector containing the parameters of the model
and rk is the error between the measured value vmeas,k at point SoCk and the value provided by
the OCV model vmodel,k.

There are several algorithms to solve this non linear least squares problem and several programs
which implement these algorithms. For this work Matlab and the Matlab Curve Fitting Toolbox
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Figure 3.1: Fitting an OCV curve with different OCV models

with the algorithm Trust-Region and the setting Robust on was used. As already mentioned in
Section 1.4.3, the input data are the measured OCV curve of an ePLB C020 Li-ion battery. The
result of the fitting process is shown in Fig. 3.1a.

The figure shows, that the various OCV models are in principle able to emulate the measurements
and in the overall range the difference are hardly recognizable. Hence, Fig. 3.1b and Fig. 3.1c
shows zooms of the edges of the SoC range. While all models are quite accurate at the middle
flat part of the curve (0.2 < SoC < 0.7), they get inaccurate at the boundary areas. As discussed
in Section 2.7, the Nernst and Zheng model tend to ±∞ when SoC → 0 and SoC → 1.

Also the OCV part of MSM tends to −∞ when SoC → 0. This issue can be coped by adding an
additional parameter SoC0 leading to

voc = E0 −KQ
1

SoC + SoC0
+Ae−B(1−SoC). (3.8)
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This model can fit the OCV curve better and the parameter SoC0 can also be inserted into the
MSM leading to

v = E0 −R i−KQ
1

SoC + SoC0
−Rpol i

∗ +Ae−B(1−SoC) (3.9)

with Rpol from Equation 2.42 and i∗ from Equation 2.40. This model is from now on called ex-
tended Modified Shepherd Model (eMSM). The corresponding open circuit voltage model
is also shown in Fig. 3.1.

Beside an optical analysis which OCV is the best, it is possible to define a function whose value
is an indicator of how well the model fits the measurements. A common number is the coefficient
of determination, denoted R2. It is defined as

R2 := 1−
∑N

k=1 (yk − fk)2∑N
k=1 (yk − ȳ)2

, (3.10)

where N is the number of measured data values, yk are the measured values, fk the predicted
and ȳ is the mean value of the measurements. If the model exactly matches the measurements
R2 would be 1, while fitting just with the mean value will lead to 0. Table 3.1 shows the R2

values of the fitting. The OCV-part of the eMSM has the highest R2-value and is hence the most

Model R2 # of parameters

Nernst 0.9804 3
Zheng 0.9939 5
MSM 0.9723 4
eMSM 0.9986 5
Lam 0.997 6
Chen 0.9984 6

Table 3.1: R2-values of different OCV models

accurate. It is even better than the Lam and Chen-model who have one more coefficient. This
means not, that the eMSM is more accurate than the other presented models for every battery
and every cell technology, but for the tested Li-ion polymer battery. Hence, it will be usesd as
OCV-model in this work further on. The resulting parameters of each model determined in the
fitting can be found in the Appendix B.

3.1.2 Parametrization of the Passive Components on an EEC Model

The values of the resistors and capacitor(s) of an EEC model can be determined by analyzing
the voltage response to either one discharge pulse, if only one parameter value is necessary, or
to a pulsed discharge if a parametrization with SoC dependency is desired. Fig. 3.2 shows the
pulsed discharge of the in this work used ePLB C020 Li-ion battery (cf. Section 1.4.3). For
an easier understanding the OCV is subtracted from the battery voltage to see only the voltage
that is modeled with the internal resistance and the RC-element. Fig, 3.2 shows that the internal
resistance is higher for lower SoC while the time constant τ = R1C1 is roughly constant. There are
several ways of extracting the parameters out of these measurement. Two of them are described
subsequently.
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Figure 3.2: Pulsed discharge of an ePLB C020 Li-ion battery

3.1.2.1 Determining the Component Values using an Optimization Algorithm

The first way is to use the data as input data of a model and run an optimization algorithm
to determine the parameters. This is the same type of problem as Equation 3.6, but with the
current as an input instead of the state of charge. The optimization was done with the Parameter
Estimation feature of Matlab/Simulink. Fig. 3.3 contains the result of this parametrization
process for a current step at an initial SoC ≈ 0.5. It shows that the model closely matches the
measurements. It confirms the statement from [ECKF13], that one RC-element is accurate enough
to model the examined Li-ion polymer battery. The optimization process gives the following values
for the parameters:

Ri = 1.723 mW

R1 = 1.612 mW

C1 = 65.268 kF
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Figure 3.3: Comparison of voc − v of a discharge current step of a Li-ion battery

This procedure can be done for each current step leading to a look-up table for SoC-dependent
component values. Fig. 2.7 already showed this look-up table and Section 3.1.2.3 discusses math-
ematical models that fit the look-up table values.

This method to parametrize the model can also be used to parametrize an EEC model with two
or more RC-elements, models with different values for charging and discharging, or models whose
component values depend on the current rate or the temperature. This leads to multidimensional
look-up tables and massively increases the configuration effort. Instead of look-up tables, the
component values can also be determined by functions of SoC, current direction, current rate,
temperature, etc like it is done by Lam et al. [LBK11] in Section 2.6.1.

3.1.2.2 Determining the Component Values with Pen and Paper

Another possibility to determine the values of the parameters is to measure voltages and time
constants on a printed sheet with a ruler and then calculate the parameters. This method should
only be done for EEC models with one RC-element because it is very difficult to precisely extract
more than one time constant manually out of a graph like Fig. 3.3. In theory this method can be
used for EEC models with SoC- and current amplitude dependent components, but in practice
this makes no sense since the effort is just too high in comparison to the method described in
Section 3.1.2.1.

Analyzing Fig. 3.3, the immediate voltage step for the 20 A current pulse is 0.0341 V, so

Ri =
0.0341 V

20 A
= 1.705 mW. (3.11)

Metering the time constant τ1 = R1C1 gives τ1 = 112.5 s (vs. 105.21 s with the Simulink
parametrization). At the end of the step (300 s) the RC-element has a voltage of 0.03 V. The
transient voltage is

v (t) = i R1

(
1− e−

t
τ

)
, (3.12)
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so

R1 =
0.03 V

20 A
(

1− e−
300 s
112.5 s

) = 1.644 mW (3.13)

and

C1 =
τ1

R1
= 68.422 kF. (3.14)

The error between the two methods is less than 5% of the parameter values, which is quite
accurate for metering with a pen and a ruler.

3.1.2.3 Mathematical Models for the Passive Components

A parametrization with a pulsed discharge of the battery, like described in Section 3.1.2.1 leads
to look-up tables for the values of the resistors and capacities at different states of charge. These
look-up tables can be fitted with various mathematical functions.

The simplest fit is to calculate the mean value of the look-up table values resulting in an EEC
model with constant component values. Calculating the mean values gives:

Ri = 1.740 mW

R1 = 1.716 mW

C1 = 59.455 kF

which are only slightly different (1% for the internal resistance and 3% for the time constant τ)
than the values extracted at a single discharge step at SoC = 0.5. So, parametrizing over the
full SoC range and then calculating the average of the values is an unnecessarily high effort in
comparison to performing just one discharge pulse in the middle SoC range. A possible extension
would be a weighted average that is adapted to a particular application. For example, weighting
values at lower state of charges less than other values, because a battery is typically rarely used
in this operating point.

Beside a constant value, there are almost endless mathematical functions possible that try to fit
the look-up table values. Some have been tested within this work. The result of the fitting with
the Matlab Curve Fitting Toolbox is shown in Table 3.2 and the according parameters of each
fit are listed in Appendix B. The most common approach, fitting with a polynomial, leads to the
best fit. So polynomials as mathematical model for the component values are used in Chapter 4
where the models are validated.

Model
R2 value for
Ri R1 C1

linear 0.52 0.53 0.13
polynomial, 4th order 0.88 0.79 0.75
c0 + c1 · SoCc2 0.63 0.62 0.40
c0 + c1 · ec2·SoC 0.77 0.53 0.23
c0 · ec1·SoC + c2 · ec3·SoC 0.78 0.62 0.69

Table 3.2: R² value of various functions fitting the SoC look-up table
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3.1.3 Parametrization of the Extended Modified Shepherd Model

The eMSM can be parametrized quite similar to an EEC model. For the sake of an easier
understanding, the Equations 3.9, 2.42 and 2.40 are written again:

v = E0 −R i−KQ
1

SoC + SoC0
−Rpol i

∗ +Ae−B(1−SoC) (3.15)

Rpol =

{
K 1

SoC i∗ > 0

K 1
λ−SoC i∗ < 0

(3.16)

τ
di∗

dt
+ i∗ = i. (3.17)

The parameters E0, K, SoC0, A and B of the eMSM can be determined in the same way as the
OCV of a EEC model as described in Section 3.1.1. The parameter λ can be assumed to be 1.1
as mentioned in [OD09]. The parameters R and τ can be parametrized with a pulsed discharged
as described in Section 3.1.2 so:

R = Ri = 1.723 mW (3.18)

and
τ = R1C1 = 105.21 s. (3.19)

3.2 Parametrization Using Data Sheet Values

The parametrization of a battery model using only data sheet values and experience values has
the advantage that there is no need for expensive batteries and measurement equipment. The
drawback is the lower accuracy and that not all parameters can be determined. Data sheets always
contain discharge profiles for constant current with various C-rates. Fig. 3.4 shows extracted data
of discharge curves for constant discharge at various C-rates of the in this work used ePLB C020
Li-ion polymer battery (data sheet in Fig A.4 on page 96).

For constant discharge the equation of an EEC model with one RC-element is reduced to

vmodel = voc (SoC)− (Ri +R1) i (3.20)

and for the eMSM to

vmodel = E0 −
(
R−K 1

SoC

)
i−KQ

1

SoC + SoC0
+Ae−B(1−SoC). (3.21)

This means that it is not possible to determine the parameter C1 of an EEC model as well as the
spreading between Ri and R1 with the data provided in the data sheet. A possible solution of
this problem would be using experience values or a literature research about parametrizations of
batteries with the same cell technology. Another solution would be combining the two presented
parametrization methods and use the measurement of a current step response to determine Ri, R1

and C1, while the OCV parameter are determined using data sheet information. This combines
the advantages and disadvantages of both methods, since the time consuming measurement of an
OCV-curve is not necessary.
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Figure 3.4: Battery voltage of a discharge of a Li-ion battery for various C-rates

The same applies for the parameter τ of the eMSM. A literature review showed, that R1 and C1

vary more for different batteries and cell technologies than the time constant τ . Also τ depends
less on the SoC than R1 and C1. So using the parameters from other batteries seems to be
more appropriate for the eMSM than for the EEC. Hence, this parametrization method is not
applicable respectively recommended for EEC models, but for the eMSM.

To parametrize the parameters of the eMSM, the numeric values have to be extracted out of the
graph of the data sheet. There are several programs available to do this, e.g. GetData Graph
Digitizer1 or DataThief 2. The next step is to determine the parameters of a battery model such
that the model fits the curve as accurately as possible. This problem is again an optimization
problem in the form of Equation 3.6.

In Fig. 3.4 the abscissa shows the capacity at constant discharge, which is equivalent to the depth
of discharge (DoD) in percent where

SoC = 1−DoD.

For constant i and unknown R the parametrization is not unique since E0 and R i are both
independent of SoC. A way to cope this issue is to use the AC impedance at 1 kHz < 3 mW

mentioned at the data sheet. Fig. 3.5 shows the measured discharge profiles compared to the
discharge modeled with the eMSM. The parameter vector x = [E0,K, SoC0, A,B] was determined
using the Matlab Curve Fitting Toolbox and a discharge profile with a C-rate of 0.5C. The
figures shows, that the model is capable of modeling the constant discharge of the battery at a
C-rate of 0.5C, but gets inaccurate for discharges with other C-rates.

Another way to deal with this under-determined optimization problem and is to use several
discharge profiles, which led to an optimization problem in the form of

min
x

M∑
l=1

Nl∑
k=1

(vdata sheet,k,l (SoCk, il)− vmodel,k,l (SoCk, il,x))2 (3.22)

1GetData Graph Digitizer, http://getdata-graph-digitizer.com/
2DataThief, http://datathief.org/
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Figure 3.5: Measured discharge curves at various C-rates and eMSM parametrized with a single discharge
curve at 0.5C

where M are the numbers of discharge profiles and il is the current of discharge profile l which
has Nl extracted points. The parameter vector x additionally contains the resistor R. Fig. 3.6
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Figure 3.6: Measured discharge curves at various C-rates and eMSM parametrized with a all discharge
curves according to Equation 3.22

shows a parametrization obtained by solving the optimization problem of Equation 3.22. The
figure shows the limits of the model where SoC → 0 and SoC → 1. At these areas the model
and the measurements differ. Nevertheless, the parametrization has an overall R2 of 0.999 which
is quite accurate. Since other data and another fitting are used than in the fitting of the OCV
curve in Section 3.1.1, the R2 cannot be compared.
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Table 3.3 shows a comparison of the parameters for the three presented ways of parametrization.
The parameters E0, A and B are comparatively similar, while K, SoC0 and R differ. Analyzing

Parameter
Parametrization using

measurements
(Section 3.1)

one data sheet
curve

multiple data
sheet curves

E0 3.490 3.503 3.508
R 1.723 · 10−3 3 · 10−3 3.249 · 10−3

K 4.209 · 10−4 2.406 · 10−4 2.302 · 10−4

SoC0 0.010 0.001 0.001
A 0.692 0.656 0.653
B 2.395 2.244 2.296
τ 105.21 - -

Table 3.3: Comparison eMSM’s parameters for different ways of parametrization (parameters without
units)

the model equation, the results of the parameter estimation (cf. Equation 3.21) show that this
three parameters affect each other and the optimization probably stopped in a local maximum.
Increasing R in the term (

R−K 1

SoC

)
i

leads to a lower K when minimizing the residuum r of the optimization and a decreased K in
the term

KQ
1

SoC + SoC0

leads to a decreased SoC0. The time constant was estimated based on a short literature review
to

τest = 100 s.

In summary, EEC models and the eMSM can be fully parametrized using simple measurement like
an OCV-curve and the response to a current pulse. Therefore measurement equipment and power
electronic for controlled discharge is necessary. A cheaper and faster, but less accurate method
is to use only data which are available from data sheets. This method cannot determine all pa-
rameters, so experience values or data from literature review are necessary. The parametrization
using data sheet values is only recommended for the eMSM where it has an error of a few percent
in comparison to the parametrization by measurements.

3.3 Parametrization of the Kinetic Battery Model

The Kinetic Battery Model (KiBaM) has two parameters: the capacity ration c (0 < c < 1),
which describes the distribution between the two charge wells and k, which is related to the time
constant for balancing processes between the two wells. Kim et al. [KQ11] proposed to discharge
a full battery with a very high current to get the parameter c. For i → ∞ only the charge well
y1 will be emptied and the withdrawn charge is equal to y1 (0) and c = y1(0)

Q . Then k can be
determined as the only parameter left by discharging the battery with various discharge currents.
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Discharging the battery with very high current close to a short circuit will damage or even destroy
the battery [KHHM12]. Therefore this parametrization method is not recommended.

The model can be parametrized in another way. According to the Recovery Effect, the SoC and
the open circuit voltage increases after a discharge pulse. The voltage increase behaves according
to the KiBaM like a PT1-term with the time constant

τ =
1

k′
=
c (1− c)

k
.

This time constant is in the range of 20 minutes for a Li-ion polymer battery and 5 minutes for
a lead-acid battery [KQ11]. The time constant can be extracted from the voltage measurement
of this discharge pulse. The voltage shows also the polarization effect (modeled by an RC-
term in an EEC model), but since their time constants differ by more than a decade, they can
be distinguished. After determining the parameter k′, the parameter c can be extracted from
discharge profiles with different C-rates using a least squares optimization. Kim et al. [KQ11]
parametrized the KiBaM for a 860 mAh Li-ion polymer cell and a 1.2 Ah lead-acid battery and
got c = 0.925, and c = 0.6 respectively.

Unfortunately, for this work there were no measurements available which would give the possibility
to parametrize a KiBaM for the used Li-ion battery. So it will be only parametrized by “trial
and error” in Section 4.3.2.4 to show the influences of the Rate Capacity Effect, but is then not
considered any more.

3.4 Scaling a Battery Model

A single battery cell has a voltage in the range of a few volts. Typical applications like home
storage systems or electric vehicles operate at a voltage a couple of dozen higher. So several cells
are connected in series to increase the battery voltage. Also several cells are often connected
parallel to increase the capacity of the battery.

If the parametrization of the battery was not done for the whole battery pack, but only for a
single cell, the battery model has to be scaled to a desired voltage and capacity. For testing and
simulation issues it can also make sense to create a battery with a specific voltage and capacity
which has no physical equivalent.

Let vdes be the desired battery voltage and Qdes the desired capacity. Then two factors can be
defined:

scalev :=
vdes

v
, (3.23)

scaleQ :=
Qdes

Q
. (3.24)

For real batteries the two factors can only be natural numbers, but for virtual batteries they can
be any positive real number. With these definitions, the eMSM and EEC models can be scaled.
For the SoC calculation with Coulomb Counting the capacity Q is just replaced by Qdes.
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3.4.1 Scaling Equivalent Electrical Circuit Models

Connecting several equivalent electrical circuits of a battery in series and parallel lead to a network
of identical voltage sources, resistors and capacitors. The resistors and capacitors of one cell model
can be concentrated to one impedance and then Thévenin’s theorem can be used, to replace this
network by a single voltage source and an impedance.

From a circuit-wise point of view there is no difference, if the cells are first connected serial and
then parallel (see Fig. 3.7):
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Figure 3.7: Applying Thévenin’s theorem on a set of EECs of a battery pack

voc,ser = scalev voc → voc,s = voc,ser = scalev voc (3.25)

Zser = scalev Z → Zs =
1

scaleQ
Zser =

scalev
scaleQ

Z = k Z (3.26)

or first parallel and then serial (see Fig. 3.8):

voc,par = voc → voc,s = scalev voc,par = scalev voc (3.27)

Zpar =
1

scaleQ
Z → Zs = scalev Zpar =

scalev
scaleQ

Z = k Z (3.28)

Applying Thévenin’s theorem to Fig. 3.7 or Fig. 3.8 leads to the Equations 3.25 and 3.26, which
are used to scale the parameters of the model.
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Figure 3.8: Applying Thévenin’s theorem on a set of EECs of a battery pack

3.4.1.1 Scaling the Open Circuit Voltage Model

Following Equation 3.25 the OCV is multiplied with scalev. This leads to a scaling of every entry
in a look-up table model. Multiplying the model equation of a mathematical model does not
always lead to a multiplication of a parameter, for example a2 and a6 of the Zheng model and
c1 in Chen/Rincón-Mora. The MSM and eMSM are a little bit different, since they contain the
term KQ 1

SoC resp. KQ 1
SoC+SoC0

. Since the capacity is also scaled, the parameter K has to be
scaled with

Ks =
scalev
scaleQ

K.

The parameters B and SoC0 are unchanged.
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3.4.1.2 Scaling the Component Values

With Equation 3.26 the values of the scaled resistors and capacities can be calculated:

Zs = k Z = k

(
Ri +

R1

1 + jωR1C1
+ · · ·+ Rn

1 + jωRnCn

)
=

= k Ri +
k R1

1 + jωR1C1
+ · · ·+ k Rn

1 + jωRnCn
=

= k Ri +
k R1

1 + jω (k R1) C1
k

+ · · ·+ k Rn

1 + jω (k Rn) Cnk
=

= Ri,s +
R1,s

1 + jωR1,sC1,s
+ · · ·+ Rn,s

1 + jωRn,sCn,s
. (3.29)

So the scaled resistors and capacities are

Ri,s = k Ri =
scalev
scaleQ

Ri (3.30)

Rl,s = k Rl =
scalev
scaleQ

Rl (3.31)

Cl,s =
Cl
k

=
scaleQ
scalev

Cl (3.32)

for an EEC model with n RC-elements and l = 1 . . . n .

At a real battery which consists of various cells, the resistors and time constants are not the
same. But this makes only a little difference as long as the cells are from the same batch and
have the same battery age, because the combination of multiple PT1-elements with similar time
constants can be described in good approximation with a single PT1 term with the mean value of
the time constants (see Fig. 3.9). Although the eleven time constants vary between 50 s and 150 s,
there’s hardly any difference between the average of them and a single PT1 with the average time
constant 100 s.

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Time [s]

N
or
m
al
iz
ed

va
lu
e
[p
.u
.]

Average of functions Average of τ

Figure 3.9: Comparison of the average of PT1-elements with different time constants and a PT1 with
an average time constant

For more realistic smaller differences between the time constants, the two curves are congruent.
So the simplification of combining scalev · scaleQ identical impedances to one impedance using
Equation 3.26 is acceptable.
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3.4.2 Scaling the eMSM

As already mentioned in Section 3.4.1, the parameters of the OCV-part are scaled as followed:

E0,s = scalev E0 (3.33)

Ks =
scalev
scaleQ

K (3.34)

As = scalev A. (3.35)

The internal resistor is scaled to

Rs =
scalev
scaleQ

R. (3.36)

while parameters τ , λ, B and SoC0 are unchanged.

To summarize, EEC models and the eMSM can easily be scaled from a certain parametrization
to a battery with a desired voltage and capacity. Therefore only multiplications and divisions of
the parameters with the scale factors to desired voltage and capacity are necessary.
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After a literature review on possible battery models and a discussion on how to parametrize
them, the battery models are verified against measurements of a battery. This section starts with
necessary error definitions, continues with a description of the software implementation of the
models and finally validates the simulation results against measurements of a real battery.

4.1 Error Definition

The usual relative error definition

ε =
xact − xref

xref
(4.1)

with xref as the reference value and xact as the actual real value has the big disadvantage that the
error tends to infinity if the reference value is close to or exact zero. Then the relative error isn’t
a meaningful quantity for an error anymore. This is especially important for the analysis of the
current set value in Section 5.3. Hence, this work uses another error definition which is familiar
with the measuring inaccuracy of measurement instruments. Instead of the current reference
value, the absolute error is divided by maximum of the absolute values of the data profile. This
leads the error definition

εx(ti) :=
xact(ti)− xref(ti)

max
ti
|xref(ti)|

i = 1 . . . N (4.2)

where N is the number of measurements of the data profile and ti the time of each measuring
point. On the basis of this weighted error, three additional errors can be defined. A maximum
weighted error

εx,max := max
ti
|εx(ti)| , (4.3)

a mean weighted error

εx,mean :=
1

N

N∑
i=1

εx (ti) (4.4)

and a weighted root mean squared error (RMS)

εx,rms :=

√√√√ 1

N

N∑
i=1

(εx (ti))
2. (4.5)

These error definitions will be used in this chapter as well as in the following ones.
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4.2 Implementation in Simulink

The models were implemented in Matlab/Simulink because the real time system (RTS) that
is used in this work offers the possibility to automatically parse Simulink models, convert them
in C-code, and then compile and execute it. While the implementation of the extended Modi-
fied Shepherd Model (eMSM) is straight forward by implementing the model equations (Equa-
tions 3.15 to 3.17), there are various versions of equivalent electrical circuit (EEC) models. The
open circuit voltage (OCV) as function of the state of charge (SoC) can be implemented as look-
up table or as mathematical function and there are a few possible OCV-models (cf. Section 3.1.1).
The passive components of an EEC model can either be constant or a function of the SoC. For
EEC models with a SoC-dependence, this dependency can be implemented in two ways. First, by
using a look-up table and second by mathematical functions. Look-up tables with a linear inter-
polation between the values would be the intuitive way, because the parametrization with pulsed
discharge directly produces a look-up table, but the literature review showed, that mathematical
functions are far more common, e.g. Lam’s Model in Section 2.6.1 or Chen and Rincón-Mora’s
Model in Section 2.6.2. The reason for this circumstance is not clear and also no explanation
was found during the literature review. A reason could be that the typical linear fitting between
two look-up table values results in a non continuously differentiable behavior which can cause
troubles for some solvers.

Since this work will be used furthermore at the Energy Department of the Austrian Institute of
Technology (AIT), all reasonable EEC model variants and the eMSM were implemented to build
a battery model library. These are

• the eMSM and an EEC model with constant component values because they are easily
parametrizable battery models,

• EEC models with mathematical functions for the OCV and the component values, because
these are the common models in the literature as well as

• EEC models with look-up tables because the Mobility Department of AIT analyzes batteries
and parametrizes their models this way.

Also combinations of mathematical functions and look-up tables are possible, which leads to
Table 4.1 where all the implemented EEC models are listed. Although this work does not use
EEC models with two RC-elements (compare Section 2.6), every model in Table 4.1 was also
implemented with two RC-elements due to probable future work.

OCV
Passive components

constant f (SoC) look-up table

f (SoC) ! ! %

look-up table ! ! !

Table 4.1: Implemented EEC battery models

Both, the eMSM and the EEC models use Coulomb Counting to calculate the SoC. Coulomb
Counting was implemented with an resettable integrator, so that the SoC can be reset to certain
values during run-time (see Fig. 4.1). If SoC set value is changed, the current value of SoCin is
unequal (“∼=” in Matlab notation) to the last one and the integrator will be reset and starts
with the initial condition SoCin. The gain-block with 3600 is used to scale between Ah, the
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common unit of Q, and As which is the SI-unit. The value of the integrator is limited between 0
and 1, so that the SoC always has valid values.

Memory
Integrator

1
s

xo

[SoC]

3600 -1

[i]
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[Q]

~=

Data Type Conversion

Convert

Figure 4.1: Implementation of Coulomb Counting in Matlab/Simulink

The eMSM model was mainly implemented in an Embedded Matlab Function, because this was
faster and clearer than an implementation with standard Simulink blocks. A screenshot is
shown in Fig. 4.2. The elements of the “para”-structure are the parameters of the as described
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Figure 4.2: Implementation of the eMSM in Matlab/Simulink

in Section 3.1.3. The saturation block after the calculation of the model output ensures that the
voltage is limited to zero when the mathematical model produces values below zero.

All EEC models have a parallel RC-element in common. Its differential equation

i =
v

R
+ C

dv

dt
(4.6)

was implemented with standard Simulink blocks with i as input and v as output value (see
Fig. 4.3). Two Saturation-blocks where used to ensure that the parameter values are greater
than eps, where eps is the distance from 1 to the next larger double precision number (2−52 ≈
2.2× 10−16).
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R//C: du/dt = i/C - u/RC
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Figure 4.3: Implementation of an RC-element in Matlab/Simulink

The OCV-models analyzed in Section 3.1.1 were implemented in one Embedded Matlab Function
where the OCV model can be changed via a parameter, so that the model can be changed easily.
This way, the OCV-model can be changed without changing the Simulink model, but only in
the initialization script which is very practical when simulating different batteries or different
parametrizations.

The functions for the SoC-dependency of the passive components were implemented the same
way than the OCV for the same reasons. According to Section 3.1.2.3, following functions were
implemented

• a polynomial up to 4th order,

• the function x = c0 + c1e−c2SoC , and

• the function x = c0 + c1 SoC
c2 .

As an example, Fig. 4.4 shows a screenshot of the implementation of an EEC model, where
the OCV is calculated via a look-up table and the component values with functions of SoC. To
calculate the SoC the block described in Fig. 4.1 is used. The OCV is calculated with the standard
Simulink block Lookup Table Dynamic with linear interpolation between the look-up table values.
The custom Simulink block Parameterfitting Model implements the Embedded Matlab Function
described above. All necessary parameters of the model are stored in the structures paraOCV
and paraComp.

The direct implementation of an electrical circuit without any additional blocks produces a neg-
ative battery voltage when an empty battery is discharged with a high current due to the term
Ri · i. This case can only happen in the model and not for a real battery, but the battery model
has to produce reasonable values at any point. There are several ways to cope with this issue.
One could be to set the input current to zero when SoC = 0 and the i > 0 (discharge). There still
would be a change in the output voltage due to the capacity C1. Another possible solution would
be to keep the output voltage at the same value when SoC = 0 and the battery is still discharged.
Also a combination of the two is possible. In the end, a more simple solution was implemented
as a low execution time is an important requirement for the battery model. It is a combination
of limiting the battery voltage to a value greater or equal to zero and setting the voltage to zero
when the state of charge is zero. This way the battery voltage can never be negative and has a
defined behavior if the state of charge equals to zero.
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Figure 4.4: Implementation of an EEC model with one RC-element in Matlab/Simulink

4.3 Validation

To validate the battery models, measurements of a ePLB C020 Li-ion battery were used. As
previously mentioned in Section 1.4.3, these are the measurements for the work in [ECKF13]
where a current profile on the basis of the FTP-72 driving cycle (Federal Test Procedure, [4]) was
repeatedly applied to a full charged battery until the battery was empty. The current profile of
one cycle is shown in Fig. 4.5.
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Figure 4.5: Test current profile on the basis of the FTP-72 driving cycle [4]

Because of reasons of clarity, not all the implemented battery models are included in this section.
Table 4.2 shows the models which are used. Other combinations of modeling the passive com-
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# Model type Passive comp. OCV
Parametrization
meas. data sheet

1 EEC, 1 RC-element look-up table look-up table ! %

2 EEC, 1 RC-element f (SoC) f (SoC) ! %

3 EEC, 1 RC-element c0 + c1 · SoC f (SoC) ! %

4 EEC, 1 RC-element constant f (SoC) ! %

5 eMSM - - ! %

6 eMSM - - % !

Table 4.2: Battery models which will be compared with the measurements

ponents and the OCV are also possible, but they are not listed in the table and in the analysis
below, since there is hardly any new information in comparison to the equivalent model with the
other OCV calculation.

In the used data base (cf. Section 1.4.3 and [ECKF13]) look-up table values for the OCV and
the passive components were available. Out of them, other parametrizations (cf. Table 4.2) were
extracted. This was already done in Section 3.1.1 for the OCV and in Section 3.1.2.3 for the
resistors and the capacity.

The EEC models were only simulated with parametrization data from measurements, while for
the eMSM, both parametrization with measurement data and data sheet parametrization was
used. So overall six different models and parametrizations are compared.

4.3.1 Estimating the Capacity and Choosing the Right Solver

A closer look at the measurement data revealed that the real capacity of the battery is a few
percent higher than the nominal capacity of 20 Ah of the data sheet. So the real capacity had
to be estimated. The measurement data starts with a phase of constant voltage charging. After
this phase, the current is zero for some time. At the end of this rest period (t = tstart FTP-72)
the battery voltage is 4.175 V. The OCV-SoC look-up table can be interpolated at this point,
which gives SoC = 98.89%. After this rest period the FTP-72 is repeated several times until the
battery voltage falls below 2.7 V the first time, followed with a rest period. At the end of last rest
period t = tend FTP-72) , the voltage is 2.768 V, which equals according to the OCV-SoC look-up
table SoC = 0.14%. Now the Equation 2.4 can be used to estimate the capacity

SoC (tend) = SoC (tstart)−
1

Q

tendˆ

tstart

i (τ) dτ (4.7)

≈ SoC (tstart)−
1

Qest

N∑
k=1

i (tstart + k · ts) · ts (4.8)

where ts is the sample time of the measurements (ts = 10 ms) and N = 1
ts

(tend − tstart) the
number of measurements between the start time of the FTP-72 cycles and the end of them. The
capacity is

Qest =
1

SoC (tstart)− SoC (tend)

N∑
k=1

i (tstart + k · ts) · ts
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which leads with tstart = 602.69 s and tend = 27 335.33 s to

Qest = 20.86 Ah. (4.9)

This value was used as capacity for all the simulations that use parametrization data from mea-
surements (Models #1 to #5 in Table 4.2).

First simulations of the eMSM implemented according to Section 4.2 showed a not negligible
error at the SoC calculation because the automatical step size feature of Simulink chooses too
big maximum step sizes. Various combinations of solver and step sizes were tried following the
guideline Choose a Solver from the Mathworks homepage [6]. Finally the solver ode45 with
max step size = 0.1 s was chosen as a tradeoff between accuracy and simulation duration. It
produces an error in the state of charge calculation of 0.04% at the end of the measurement
which was about nine hours.

4.3.2 Simulating EEC Models and the eMSM

After parametrizing the battery models, implementing them in Simulink and defining an error,
the simulations of the models were conducted. The current measurements of a repeatedly applied
FTP-72 cycle (cf. Fig. 4.5) were used as input for the models.

As a representative result, Fig. 4.6 shows the simulated battery voltage of an EEC model (Model
#1 according to Table 4.2). The battery voltage is underestimated a little bit when the state of
charge is close to zero and quite accurate in the middle SoC-area. The error between the model
and the measurements increases significantly when the SoC falls below 15%. This effect is the
same for all the 6 simulated models.

Model εmax εmean εrms

1 8.86% 0.47% 1.51%
2 8.40% 0.49% 1.49%
3 8.58% 0.50% 1.51%
4 8.81% 0.51% 1.53%
5 7.76% 0.46% 1.31%
6 77.24% -4.99% 17.49%

(a) Repeated FTP72-cycle from SoCinit =
98.89% till the battery is empty

Model εmax εmean εrms

1 1.05% -0.67% 0.73%
2 0.73% -0.50% 0.51%
3 0.77% -0.50% 0.51%
4 0.85% -0.55% 0.55%
5 0.93% -0.50% 0.51%
6 2.58% -0.94% 1.01%

(b) One FTP-72 cycle with SoCinit =
98.89%

Model εmax εmean εrms

1 0.72% 0.37% 0.38%
2 0.38% -0.01% 0.08%
3 0.45% -0.05% 0.11%
4 0.42% -0.04% 0.10%
5 0.49% 0.03% 0.12%
6 2.32% 0.49% 0.66%

(c) One FTP-72 cycle with SoCinit =
52.15%

Model εmax εmean εrms

1 6.86% 4.18% 4.39%
2 6.96% 4.59% 4.78%
3 6.91% 4.70% 4.88%
4 6.94% 4.76% 4.93%
5 6.77% 4.29% 4.47%
6 9.29% 6.37% 6.54%

(d) One FTP-72 cycle with SoCinit =
9.06%

Table 4.3: Errors between the measured and simulated voltage; model numbers according to Table 4.2
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Figure 4.6: Comparison of the measured and simulated battery voltage for a repeatedly applied FTP-72
cycle. The model is an EEC model with one RC-element, OCV and components are modeled
with look-up tables (model #1 in Table 4.2).

Table 4.3 shows the three defined errors for every simulated model. The table is divided in
four sub-tables, one for the overall range and three for one FTP-72 cycle at the upper SoC-
range (SoCinit = 98.89%), the middle (SoCinit = 52.15%) and the lower (SoCinit = 9.06%),
respectively. Models 1 to 5, so all the models which were parametrized with measurement data,
are quite similar. Beside the lower SoC-area, the maximum error is below 1.5% and the RMS
error below 1%. There is no significant difference between the errors of the five models. Especially,
it is very surprising that there is hardly any difference between the EEC model with constant
passive components and those with look-up tables or polynomials. This circumstance disagrees
with the literature analyzed in the literature review where a dependency of the state of charge is
proposed. Due to the fact that the models are so similar, it makes hardly any sense to plot them
together in one figure, because only little information can be withdrawn out of the graphs beside
of the fact, that they are similar.

Only the graphs of simulation data which are necessary to make the important conclusions are
shown in this chapter. The results of all the 24 simulations which are the basis of the data of
Table 4.3 are listed in Appendix C.
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4.3.2.1 Upper SoC-Range

Fig. 4.7 shows the eMSM in comparison with the measurement over one FTP-72 cycle with
SoCinit = 98.89%. The figures show an offset error of approximately 0.02 V, but beside of this, the
model can reproduce the measurement qualitatively correct. Apparently, the internal resistance
is determined correctly. The effect of the quite long time constant τ ≈ 100 s cannot be seen in a
signal with comparatively fast changes.
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Figure 4.7: Comparison of the measured and simulated battery voltage for one FTP-72 cycle with
SoCinit = 98.89% of the eMSM (Model #5 in Table 4.2).

4.3.2.2 Middle SoC-Range

In the middle SoC area, the simulation almost matches the measurements, which can be seen in
Fig. 4.8. The RMS error is below 0.15% and the maximum error below 1% for the Models #2 to
#5. Only the error of the model with look-up tables is higher. There is no evident reason why
this model performs worse than the other models. Fig. 4.9 shows the same input as Fig. 4.8, but
for the Model #1. In contrast to Model #2, there is a slight offset error which leads to 0.3%
higher mean and RMS error.

Simulations with other combinations of modeling the OCV and the passive components showed,
that using a look-up table for the resistor’s and capacity’s value increases the accuracy, while
using a look-up table for the OCV decreases the accuracy. It seems that OCV model which tries
to fit the look-up table values accidentally leads to a model which is more accurate than the
original look-up table. Nevertheless, the error of both models is in the dimension of one percent
which is more than sufficiently accurate.
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Figure 4.8: Comparison of the measured and simulated battery voltage for one FTP-72 cycle with
SoCinit = 52.15% of an EEC model with one RC-element, OCV and comp. values as f (SoC)
(Model #2 in Table 4.2)
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Figure 4.9: Comparison of the measured and simulated battery voltage for one FTP-72 cycle with
SoCinit = 52.15% of an EEC model with one RC-element, OCV and comp. values as look-up
table (Model #1 Table 4.2)
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4.3.2.3 Lower SoC-Range

As shown in Fig. 4.6 and Table 4.3d, the error of all models increases significantly when the
battery is almost discharged. Fig. 4.10 shows a comparison of the measurement with the look-up
table model for one FTP-72 cycle with SoCinit = 9.06%. Here, the model isn’t capable anymore
to reproduce the measurements, although the OCV in the model is close to the measured one,
and the transient behavior of the two voltages matches quite good, which would indicate that the
parametrization of the resistors suits well.
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Figure 4.10: Comparison of the measured and simulated battery voltage for one FTP-72 cycle with
SoCinit = 9.06% of an EEC model with one RC-element, OCV and comp. values as look-up
table (Model #1 Table 4.2).
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4.3.2.4 Using the KiBaM to Increase the Accuracy

The overestimation of the voltage for ongoing simulation time suggests the assumption that the
SoC determination calculates too high states of charge. This is because of the fact that the Rate
Capacity Effect is not taken into account at Coulomb Counting, which is used to calculate the
SoC. A model that includes this effect is the Kinetic Battery Model (KiBaM, see Section 2.4.4).
As mentioned in Section 3.3, there was no measurement data available to explicitly parametrize
the KiBaM. Hence, its parameters were determined by “trial and error” leading to

c = 0.75

k = 0.0005.

The result of the simulation of Model #1 with KiBaM instead of Coulomb Counting is shown in
Fig. 4.11. The figure shows that the KiBaM is able to model the earlier dropping of the battery
voltage due to the Rate Capacity Effect, but also increases the error at the high SoC sector.
Thus, additional effort is needed to parametrize the EEC model in combination with the KiBaM.
This is too far afield from the focus of this master thesis and hence done in future work.
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Figure 4.11: Comparison of the measured and simulated battery voltage for a repeatedly applied FTP-72
cycle using an EEC model with KiBaM instead of Coulomb Counting to estimate the SoC.
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4.3.2.5 Extended Modified Shepherd Model with Data Sheet Parametrization

The last simulated model was an eMSM which was parametrized with data sheet curves (model
#6 in Table 4.2). Fig. 4.12 shows this model in comparison to the measurement for a continued
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Figure 4.12: Comparison of the measured and simulated battery voltage for a repeatedly applied FTP-72
cycle using an eMSM which was parametrized with data sheet curves.

applied FPT-72 cycle. The model can reproduce the measurement quite well until the time is
about 2.35 · 104 s. At this point, the difference between the estimated capacity of 20 Ah and the
real capacity of 20.86 Ah becomes noticeable. While the real battery still has a SoC ≈ 4%, the
modeled battery is empty, wherefore the voltage breaks down.

Although the model is only parametrized on the basis of the discharge curves in the data sheet,
the mean and RMS error until t = 2.2 · 104 s is below 2%. Fig. 4.13 shows a detailed view of
4.12 one FPT-72 cycle with an initial state of charge of 52.15%. It can be clearly seen in the
figure that the resistance R is too high. The changes of voltage due to the internal resistance are
roughly twice as large for the model as for the measurements which goes in hand with Chapter 3,
where the data sheet parametrization led to R = 3.249 mW in comparison to R = 1.723 mW (see
Table 3.3). This shows that the static resistance of a battery is higher than the transient one. The
value of the resistance was determined by continuous discharge profiles and hence overestimates
the dynamic resistance. This is consistent with the EEC models where the AC resistant is smaller
than the DC resistant.

Neglecting the inaccurate capacity which leads to a completely wrong voltage after 2.2 · 104 s, the
maximum error is below five percent and the RMS error below two percent. This error is higher
than for the other models which were parametrized with data sheet data, but still unexpectedly
low. Thus, the eMSM parametrized with data sheet values and with a good choice of the time
constant τ , which can be guessed due to experience values or a literature research, can be used
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Figure 4.13: Comparison of the measured and simulated battery voltage for one FTP-72 cycle with
SoCinit = 52.15% using an eMSM which was parametrized with data sheet curves.

to model the principle behavior of the battery quite accurate. But it cannot predict the battery
lifetime because the nominal capacity is not equal to the real capacity (cf. Fig. 4.12).

Taking into account the requirements of the battery model (Section 1.4 and 2.1), the errors of
Table 4.3, the figures in this chapter and in Appendix C, the extended Modified Shepherd Model
(eMSM) turned out to be the best model in terms of parametrization effort, accuracy and the
easy possibility to parametrize the model without measurements. Therefore this model will be
used for the PHIL experiments in this work further on.
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After a literature research about battery models, their parametrization and validation, the Power
Hardware-in-the-Loop (PHIL) simulations can finally be implemented and conducted. This chap-
ter will deal with the involved components and the PHIL-simulation setup, while Chapter 6
discusses the results of the simulation.

The basic setup of a PHIL simulation using the ideal transformer model was shown in Fig. 1.3.
In a normal PHIL use case, the amplifier would be connected to the hardware under test and the
“virtual rest of system” the battery model with a battery management system, and for example
an energy management system with a domestic house model, a market model, etc. In this work,
only a setup to create a desired battery current is needed in order to validate the emulated battery
against measurements of a real battery.

To reproduce the measurements of the battery within the PHIL simulation, a variable battery
current in both energy directions is needed. Due to the lack of a programmable bidirectional cur-
rent source and load, a combination of a manually switchable constant load and a programmable
source is used. As power amplifier a bidirectional power source TopCon TC.GSS.32.600.400
from Regratron was used, because this device was available at the test bed. This leads to the
implemented PHIL setup shown in Fig. 5.1.

Real Time System

Measured Current

Voltage Set Value

Control Signals

vB

iB

Safety & 
Control

Battery 
Model

Power Source

 ± 66 A
0 .. 600 V

R0

RL vL

iS

Prog. DC Source

Host PC

Ethernet RS 232

Figure 5.1: Implemented PHIL setup with constant load and programmable DC source
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The power source can be controlled with an analog interface via the real time system (RTS) and
is capable of voltages up to 600 V and currents up to ±66 A. More information about its internals
and how to control the power source will be mentioned in Section 5.2. The resistor R0 was
used to limit the current between the power amplifier and the programmable DC source if their
terminal voltage varies due to their internal control loops. As resistor RL a manually switchable
power resistor and as programmable DC source a Regatron TopConQuadro TC.P.16.600.400.S
were used. More information about how to use them to create a desired battery current will be
discussed in Section. 5.3. This section is followed by a section which discusses how to set the right
resistance for RL. The PHIL setup is completed by a host computer which is used to control the
real time system (RTS) over Ethernet and the programmable DC source via an RS 232 interface.

5.1 OPAL-RT Real Time System

An OPAL-RT real time system is used for this work. It consists of a commercial off-the-shelf
server motherboard with two quad core Intel i7 CPUs operating a real time Red Hat Linux. An
additional FPGA (field-programmable gate array) provides timing features and the possibility to
connect I/O modules with digital and analog in- and outputs. Together with the OPAL-RT RTS
comes RT-LAB, an open real time simulation software environment. This gives the possibility to
execute Matlab/Simulink models on the RTS in real time processing electrical signals sampled
via the analog input modules and controlling external hardware via the output modules.

RT-LAB is composed of several parts. One of them is a Simulink library with blocks to read
and write Simulink signals from and to the I/O modules and to monitor the model. Another is
the functionality of transforming a Simulink model into C code which is then compiled to create
an executable program without Matlab runtime.

Execution Time of the Models on the Real Time System

The low execution time of the battery model is a crucial requirement. In a typical future applica-
tion the battery model will be part of a bigger PHIL simulation containing the simulation of an
AC microgrid. At this kind of simulations the RTS also generates the voltage curves for the AC
phases which are amplified with fast power amplifiers. For this kind of simulations a step time of
10 µs is desirable, which leads to an execution time, including processing the measurements and
model output, of under 10 µs of the battery model.

For a comparison of the execution time the extended Modified Shepherd Model (eMSM, Sec-
tion 3.1.3) and three different equivalent electrical circuit (EEC) models with one RC-element
were implemented. These EEC models are:

• a look-up table for the open circuit voltage (OCV) and a look-up table for the state of
charge (SoC) dependency of the resistors and capacity, linear interpolation between the
look-up table entries,

• OCV as a function of the SoC and constant resistors and capacities,

• OCV and R/C values as a function of the SoC.

The models were executed simultaneously, each running at one core of the RTS. Their execution
time is shown in Table 5.1. The execution time can be measured via the OpMonitor block of
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Model Execution time

eMSM 2.65 µs
EEC, one RC-element, Rs and C as look-up table 2.35 µs
EEC, one RC-element, Rs and C are constant 2.90 µs
EEC, one RC-element, Rs and C as function of SoC 4.35 µs

Table 5.1: Execution time of different battery models

RT-LAB. The table shows that the execution time of all four implemented model is below the
limit of 10 µs. There is also enough time left for the communication with other subsystems of the
simulation, for filtering and for offset correction of the measurements. So all the four implemented
models are suitable for the given task.

Nevertheless, Table 5.1 shows some differences between the models. As expected, the look-
up table model is the fastest, since only linear approximations on a relatively small table are
necessary, while the other models contain more computation intense mathematical function like
division or exponential function. The eMSM is roughly 10% faster than an EEC model with one
RC-element and constant parameters although their structure and complexity is more or less the
same. This can result from different execution times of standard Simulink blocks and embedded
Matlab functions. The execution time of the model with parameters as a function of the SoC
sticks out. It is about 50% higher than the others while its accuracy is not significantly higher
than the others (see Chapter 4). Using the KiBaM instead of Coulomb Counting results in an
approx. 1.5 µs higher execution time.

5.2 Power Amplifier

An essential component of a PHIL simulation is the power amplifier, which operates in this case in
the first and fourth quadrant, meaning that it can provide energy (“battery is being discharged”)
and absorb energy (“battery is being charged”). In this work the programmable bidirectional
DC supply Regatron TopCon TC.GSS.32.600.400 has been used, because it was available at the
research test bed of AITs Energy department and fulfilled the requirements regarding the terminal
voltage and power capability. Its topology is shown in Fig. 5.2. This power source contains three
rectifiers/inverters (number 3, 5 and 7 in Fig. 5.2), a DC intermediate circuit between two of
them (#4) and a transformer between the second and the third rectifier. This provides up to
600 V DC voltage with a galvanic isolation between AC and DC side. To reduce noise on the

1. Grid
2. Filter
3. Rectifier/Inverter
4. DC Intermediate Circuit

2 3 4 5 6 7 81

5. Rectifier/Inverter
6. Transformer
7. Rectifier/Inverter
8. Filter

+

 ‒ 

Figure 5.2: Topology of the Regatron TC.GSS bidirectional DC source
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lines and external disturbance, the AC and DC side has an output filter (#2 and #8). With this
combination of rectifiers, inverters and an intermediate circuit, DC power can be fed back to the
AC grid instead of heating power resistors.

The TC.GSS has a maximum DC current of 66 A in both directions. The overall power is limited
to 32 kW so there is a constant power mode between 53.3 A@600 V and 66 A@485 V. Fig. 5.3
shows this circumstance. The figure also shows, that due to the internal structure, the sink mode
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Figure 5.3: System operational area of the Regatron TC.GSS

is only possible above a specific minimal voltage. At 70 V the current is limited to −9 A and
the nominal current is available from 85 V on. This is an important restriction since it implies a
minimal battery voltage for charging.

The TC.GSS has an internal digital controller and can operate in constant voltage (CV), constant
current (CC) and constant power (CP) mode. The term “constant voltage” is misleading, since it
is a voltage regulation and the output provides a set value change within a few milliseconds. The
TC.GSS has three inputs (voltage, current and power) which are treated as maximum values. Its
internal controller increases the output power until the first of these three limits is reached and
alternatively decreases it until all the three values fall below the limits.

For this work the voltage regulation mode (CV mode) is used, because the output of the battery
model is its voltage which is then the set value for the DC supply. The other two input values
are used for safety and security reason, e.g. to not exceed the maximum permitted current in the
cables.

The bidirectional DC supply can be controlled in a few different ways. At first, there is a human
machine interface (HMI) directly on the device. It can be used, to set constant values for voltage,
current and power, where the limiting one is active. The HMI can also be used to set the cut-off
frequency for the input filter of the reference value and for the output filter of the actual values.
The HMI also provides a button to quickly disable the output and zero-potential it, which is very
important for safety issues.

Regatron also provides optional RS 232 and USB interfaces together with a LabVIEW and
C/C++ API (application programming interface). So the DC supply can be controlled and
supervised via LabVIEW or a self written program.
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Another available interface is the analog interface. The reference values for voltage, current and
power can be directly set through a voltage between 0 V and 10 V which corresponds to 0% until
100% of the nominal values. The analog interface also provides internal measurements of the DC
current and voltage. This is well suitable for an easy and fast control via the RTS with its analog
in- and outputs. Since the analog interface also provides digital inputs to activate and deactivate
the TC.GSS, it is used in this work.

5.2.1 Control of the Power Amplifier with the RTS via its Analog Interface

The analog output modules of the RTS have a range of −16 V to 16 V where the Simulink
signal value directly corresponds to the analog output voltage. As mentioned above, the power
amplifier has a range of 0 V to 10 V. For the voltage regulation 10 V conform to the maximum
output voltage of 600 Vand 0 V to 0 V. The same applies for the current, merely that the range
is −10 V to 10 V for −inom (−66 A) to inom (+66 A). So the analog output value is

vv ,out,analog = 10 V · vset

vnom
(5.1)

and

vi ,out,analog = 10 V · iset

inom
. (5.2)

The power input is reversed so 0 V to 10 V correlate with ±32 kW to 0 kW. This is done in order
that the input does not have to be connected if a power regulation or maximum power limit is
not used. This lead tho the equation

vp,out,analog = 10 V ·
(

1− pset

pnom

)
(5.3)

to adapt the Simulink signal value for the analog output module.

The analog input has to be activated with a rising edge on one specific pin of the analog interface.
Also the output has to be enabled with another pin. This output has to be activated manually
for safety issues. And finally it is practical to connect the clear-error-pin with the RTS, to reset
the DC supply after an error occured, so it can be used again. These three pins are controlled
with the RTS too.

The TC.GSS also provides internal measurements of the DC current and voltage via the analog
interface. The particular pins are connected to the analog input modules of the RTS. They work
with the same principle than the set values, but the other way around. So the measured value is

measured output value = nominal value · analog interface value

10 V
. (5.4)

To summarize, the used pins are shown in Table 5.2.

The TC.GSS uses a D-SUB 25-pin connector, while the RTS has BNC (Bayonet Neill–Concelman)
connectors. Hence, a small adapter board was built. This board gives also the possibility to enable
the analog interface with a button and to insert an emergency stop button in the interlock circuit.
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Pin Name Description Type

1 AGND analog ground for
inputs and outputs

–

2 VREF voltage set-point analog in
3 IREF current set-point analog in
4 IACT measurement of the DC

current
analog out

8 CLEAR ERROR clear an error to reuse
it after an error

digital in

9 VOLTAGE ON enable and disable the
output

digital in

14 PREF power set-point analog in
16 VACT measurement of the DC

voltage
analog out

17 COM digital ground –
20 ANALOG

REFERENCE
SELECT

activate the analog
interface

digital in

Table 5.2: Used pins of the power amplifiers analog interface

5.2.2 Correcting Offset- and Linearity-Error

First measurements showed an offset error between set values via the analog interface and the
actual value. So the input/output relation was further analyzed. Fig. 5.4 shows the experimental
setup. The RTS and the DC supply were connected via the analog interface. A host PC with a

Real Time System

Measured Current

Voltage Set Value

Control Signals

vB

iB

Safety & 
Control

Test 
Programm

Power Source

 ± 66 A
0 .. 600 V

RL

Host PC

Ethernet

Current Probe

Voltage
Measurement

Figure 5.4: Experimental setup for measuring the linearity error

GUI (graphical user interface) was used to set the reference values and read the measurements
of the actual values. The DC supply was connected with a constant load of ≈ 40W to ensure a
current below 16 A which is the maximum current of the used test cables. The measurements
showed two aspects. On the one hand there is an error between the set value (pin VREF and
IREF on the analog interface of the TC.GSS ) and the actual value. On the other hand, there is
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an error at the measurements of the actual values which are available over the output pins of the
analog interface (pin VACT and IACT). These four errors are identified below.

1. Error between voltage set value and actual voltage. This error is caused by the
DACs (digital-to-analog converter) of the RTS, the ADC (analog-to-digital converter) of
the TC.GSS and the internal control loop of the TC.GSS. To determine the error, different
voltage set values where set up via the GUI at the host PC and then measured with a Fluke
189 multimeter. Fig. 5.5a shows the absolute error between the voltage set values and the
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Figure 5.5: Absolute errors between set values, measured values by a multimeter and values displayed
at the RTS

measured actual voltages. The according data can be found in the Appendix in Table D.1.
The figure shows that the offset error is not constant, but decreasing for higher voltages.
So there is an linearity error. The error can be approximated by the equation

offset error = set value− output value = k · output value + d (5.5)

with k = −0.0013 and d = 1.3429 V. The average error is 1 V which is only ≈ 0.157% of the
nominal value. Reversed, the linear approximation can be used to generate more accurate
output values, by adjusting the set value before converting it to an analog voltage. This
adjustment is

output value =
set value− d

1 + k
. (5.6)

A simpler adjustment would be just to remove the average error of 1 V.

2. Error between actual voltage and measured voltage at the real time system.
This error is caused by voltage measurement of the TC.GSS, its DAC and the ADC of the
RTS. For determining the error of the voltage measurement, the input value was adjusted
manually until the multimeter showed the desired value. Then the measured value was
noticed. Fig. 5.5b shows the offset dependent on the output voltage. The according data
can be found in Table D.2 in the Appendix. A linear approximation with Equation 5.5
gives k = 0.0023 and d = 1.18 V with an average error of 1.8 V. The accuracy of the voltage
measurement is increased by adapting the input value with Equation 5.6.
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3. Error between current set value and actual current. This error is caused by the
DACs of the RTS, the ADC of the TC.GSS and the internal control loop of the TC.GSS.
The error was determined in the same way than for the voltage. The set value showed a
quite constant offset of 0.1 A which is in the same range than the one for the voltage (also
about ≈ 0.15% of the nominal value). So it is not corrected with Equation 5.6, but just
with subtracting the offset.

4. Error between actual current and measured current at the real time system.
This error is caused by current measurement of the TC.GSS, its DAC and the ADC of the
RTS, and was determined in the same way than for the voltage. The analysis of the current
measurement led to k = −0.005 and d = 0.0547 A with an average error of 0.03 A and the
measurement was adapted again by applying Equation 5.6. The according data is given in
Table D.3 and D.4.

5.3 Variable Load and Source

The PHIL-setup together with the battery model are validated against measurements of a real
battery. To reproduce the measured battery current, a variable load and source is needed. For this
work, only a programmable DC source was available, but with an additional constant load, it was
possible to generate variable battery emulator current in both the directions. Therefore a man-
ually switchable power resistor RL, which was available in the lab, was used. Fig. 5.1 shows the
according setup. The programmable DC source is a Regatron TopConQuadro TC.P.16.600.400.S
and the resistor a manually adjustable three phase 27 kW load. Their specifications can be found
in Appendix A on page 93.

The power amplifier as well as the programmable DC source have internal controllers to tune
their set values. Small differences δv of the two terminal voltages, based on response times of
their controllers, would result in high compensating current icomp = δv

Rcable
. Hence a resistor R0

is connected between them to limit this compensation current. In the lab a 0.5W power resistor
was available, which provided good results and therefore used.

By applying Kirchhoff’s laws, a desired battery emulator current iB can be generated by setting
the output current iS of the programmable DC-source to

iS = −iB +
vL

RL
. (5.7)

To achieve this, an additional controller is needed, which sets the output current for a desired iB
and a measured voltage vL. This was done via a LabVIEW program which ran on the host PC
of the RTS. Section 5.4 will discuss the choice of the right value for RL. The written LabVIEW
program is able to read a battery current profile from a csv-file with variable time stamps and
generate the desired battery current. Its pseudo code is shown in Algorithm 5.1.

First the program opens the csv-file and starts a timer. Then a loop is entered. Every loop pass
a set value for the programmable DC source is calculated using the desired battery current iB of
the present csv-file row, the measurement of vL and Equation 5.7. If the timer value is bigger
than the time entry in the next file row, the row index is increased by one and a new value for
iB is set. This loop runs until the last entry in the file is reached.

Regatron, the vendor of the programmable DC source, provides a LabVIEW VI to control the
TopConQuadro via the serial RS232 interface. This VI was adapted to reduce the execution time
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Algorithm 5.1 Basic idea of the LabVIEW Program to generate a variable battery current

load csv . f i l e
i n i t communication with DC source
s t a r t t imer

get f i r s t r e f va lue f o r i B
get f i r s t t ime next change ( in the f o l l o w i n g row )
whi l e EOF not reached

i f cu r r en t t ime > t ime next change
s e t row po in t e r to next row
get new r e f va lue f o r i B
get new t ime next change

end
read cur rent DC source vo l tage v L
c a l c u l a t e i S = −i B + v L/R L
s e t i S as s e t va lue f o r the DC source

end

significantly in order to make the control more accurate. Neither the operating system on the
PC, nor LabVIEW is real time capable. So the time of one loop pass is around ≈ 50 ms with a
variation of a few milliseconds. However, the LabVIEW program can generate a desired iB under
changing vB. Fig. 5.6a shows the current set values and the measured current. Fig. 5.6b shows a
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Figure 5.6: Set value and actual value of the current iS controlled with the LabVIEW program

zoom of the curve. The figure shows that the DC source can generate the desired current profile,
but with a small lag. The figure also shows a deviation which is a combination of measurement
noise and the control error due to the simple controller of the LabVIEW program. Following the
error definition of Equations 4.4 and 4.5 on page 46, the mean error εx,mean is smaller than 0.01%
and the RMS (root mean squared) error εx,rms is smaller than 1.5%. This was considered to be
small enough to run the PHIL test.
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5.4 Preparation of Measurements and Scaling the Battery Model

Before running the PHIL test, the measurements of the Li-ion battery have to be filtered, because
the colleagues who performed the measurement used a controllable resistor load to discharge the
battery. While switching the resistor load, the load is disconnected for a short time (cf. Fig. 5.7).
These fast spikes would cause troubles for the programmable DC-Source, so the signal was filtered

0 20 40 60 80 100
−20

−10

0

10

20

30

Time [s]

C
u
rr
en
t
[A

]

Measurement Filtered current

Figure 5.7: Battery test current and filtered current as input for the programmable DC source

with a PT3 low pass filter with the transfer function

G(s) =
1

(1 + s/ωc)
3 (5.8)

and ωc = 15 s−1.

The measurement data is from one single cell with a maximum current imeas,max = 86.163 A. The
voltage of a Li-ion cell is about 4 V, but as shown in Fig. 5.3, the battery simulator cannot absorb
power under a terminal voltage of 70 V. Also the cables in the lab environment were not capable
of currents above imax = 16 A. As a result, the battery model has to be scaled for the PHIL test.
This scaling is similar to the one in Section 3.4 with the difference, that the battery modeled is
scaled to be able to compare measurements with a PHIL simulation that cannot have the same
magnitudes of voltage and current due to hardware and safety limits.

The minimal battery simulator voltage for working as a sink is vmin = 70 V (compare with
Section 5.2). Thus the voltage must not fall below 70 V when i ≤ 0. For currents greater than
zero, there is no voltage limit, since the TC.GSS can provide energy at any voltage (see Fig. 5.3).
Due to the internal resistance of the battery, the battery voltage increases when the battery is
charged. Hence, the minimal terminal voltage occurs when the charge current is almost zero.
This leads to a scale factor for the battery voltage:

scalev =

⌈
vmin

limi→0 v (i, SoCmin)

⌉
=

⌈
vmin

voc (SoCmin)

⌉
(5.9)

with SoCmin as the minimal state of charge where the battery is considered as completely empty.
A SoCmin of 0% would not work, because voc (0%) = 0 V. A percentage of 0.5% turned out to be

69



PHIL Implementation

a good trade-off between the SoCmin close to 0% and to have a low maximum voltage for safety
reasons. As a result the maximal PHIL-battery voltage can be calculated as

vmax = voc (SoCmax) · scalev (5.10)

with SoCmax as the maximal SoC where the battery is considered as fully charged. A SoCmax

of 100% can be used if the OCV model has no point of discontinuity at this point. For example
that’s the case for the eMSM, but not for the Nernst model.

The eMSM with the parametrization as done in Section 3.1.3 leads to

scalev = 24, (5.11)

vmax = 100.15 V.

The second scale factor scaleQ is basically freely selectable with the only condition that no current
in any cable is higher than imax. The scale factor is the ratio between the PHIL battery current
iB and the current of the original measurement

scaleQ =
iB
imeas

. (5.12)

It makes sense to choose scaleQ is as close as possible to 1 to minimize the difference between the
original measured current and the PHIL current. Since imeas,max is greater than imax, iB should
be maximized without violating the boundary conditions

|iB| < imax,

iS < imax, (5.13)

iL = iB + iS < imax.

The value of the resistance RL has to be determined to solve this optimization problem.

Applying Kirchhoff’s and Ohm’s laws in Fig. 5.1 lead to

iS = −iB +
vL

RL
=

= −iB +
vB − iBR0

RL
=

= −iB
(

1 +
R0

RL

)
+
vB

RL
. (5.14)

The load current iL is

iL =
vB − iBR0

RL

= −iB
R0

RL
+
vB

RL
(5.15)

and the battery current iB is

iB =

(
vB

RL
− iS

)
1

1 + R0
RL

. (5.16)

The current iB in Equation. 5.16 is monotonically decreasing for higher RL, whereas the absolute
value of the current is monotonically increasing when the battery is charged. The battery can be
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charged if iS >
vB
RL

. Hence a higher iS or a lower vB increases |iB| for constant RL. Vice versa,
the battery is discharged if iS <

vB
RL

. To achieve a maximum |iB|, iS should be as small and vB

as high as possible.

Since all this dependencies on iS and vB are monotonically decreasing or increasing, it is sufficiently
to consider only the minimum and maximum values to find the RLthat maximizes |iB|. Fig. 5.8
shows the current iB as function of RL at these minimum and maximum values discarding the
areas where iL > imax (occurs when iS is close to imax and RLis small). The range of RL is limited
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Figure 5.8: Battery current iB for the minimum and maximum values of iS and vB

to the range the switchable load is capable of. The red line in Fig. 5.8 shows the minimum of
the other four curves. The maximum of this curve gives the maximum iB,max = |iB| and the
corresponding RL. For every other value of RL exists a combination of a iS and vB where either
the boundary conditions of Equation 5.13 violated or iB is smaller than iB,max. For example a
RL of 40W would make a higher charge current possible, but the discharge current will be smaller
than iB,max. The value of RL can be calculated by solving the equation

|iB (iS = 0 A, vB = vmin)| = |iB (iS = imax, vB = vmax)|(
vmin

RL

)
1

1 + R0
RL

= −
(
vmax

RL
− imax

)
1

1 + R0
RL

. (5.17)

Equation 5.17 results in

RL =
vmin + vmax

imax
=

70 V + 100.15 V

16 A
= 10.63W (5.18)

and

iB,max =
vmin

R0 +RL
=

70 V

0.5W + 10.63W
= 6.29 A. (5.19)
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Algorithm 5.2 Brute force algorithm to find out RL and iB,max

i Bmax = 0
R Lmax = 0

f o r every i B in [ 0 , i max ]
f o r every R L in [ min ( r e a l i z a b l e R L ) , max( r e a l i z a b l e R L ) ]

f o r every v B in [ v min , v max ]
c a l c u l a t e i S and i L when charg ing with i B
c a l c u l a t e i S and i L when d i s cha rg ing with i B

endfor

i f max( i S ) < i max && max( i L ) < i max && i B > i Bmax
i Bmax = i B
R Lmax = R L

e n d i f
endfor

endfor

i Bmax i s now the maximal p o s s i b l e i B which does not v i o l a t e
the boundary c o n d i t i o n s and R Lmax i s the corre spond ing R L

To test if the above line of argument is correct, a script was written that finds out RL and iB,max

using a brute force algorithm (see Algorithm 5.2). It tries all possible iB ∈ [−imax, imax] for every
realizable resistor RL in the possible battery voltage range vB ∈ [vmin, vmax] in a fine discretization
and saves the maximum iB that satisfies the boundary conditions of Equation. 5.13. This script
leads to the same iB,max than Equation 5.19.

The value of the switchable load should be chosen as close as possible to the theoretical optimum
of Equation 5.18. It does not matter if the set resistor at the switchable load is smaller or bigger.
The closed possible realizable resistor by the switchable load is RL = 11.0W which is fortunately
very close to the calculated value. This results in

iB,max =
vmin

R0 +RL
=

70 V

0.5W + 11.0W
= 6.09 A

and

scaleQ =
iB,max

imeas,max
=

6.09 A

86.163 A
= 0.07. (5.20)

Now the measurements and the battery model can be scaled with Equations 5.9 and 5.12. The
battery model is scaled according to Section 3.4. Also the current measurement is scaled with
scaleQ. The scaled current is then the set value for the LabVIEW program according to Sec-
tion 5.3 and Equation 5.7.
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In the previous chapters various battery models, their suitability for Power Hardware-in-the-Loop
(PHIL) simulations and their parametrization have been discussed, followed by the validation of
the models. Then the PHIL setup has been described, including offset correction of real time
PHIL measurements and the scaling of the existing battery measurements to be able to compare
them with the PHIL results. Thus, all the preparation work is done to be able to run the final
PHIL simulations. This chapter will first briefly discuss the post processing of the measurements
and then analyze the performed PHIL simulations.

6.1 Recording and Post Processing of Measurements

To analyze the PHIL simulations, several measurements and calculated values were stored both
at the real time system (RTS) and the programmable DC source. The data values of the real
time system were stored in a file with a sampling frequency of 1 kHz. This was done by using the
Simulink block OpWrite from RT-LAB. These values were

• the time t,

• the measured battery current iB which is the input of the battery model,

• the state of charge (SoC) calculated from the current iB ,

• the emulated battery voltage vB,set as output of the battery model (set value),

• and measured voltage vB (actual value).

Also the measurements of the programmable DC source, which were available within the written
LabVIEW VI, were stored. These values were

• the time tLV,

• the current set value iS,set,

• the measured current iS,

• the measured load voltage vL,

• and the estimated battery current iB,LV = vL
RL
− iS.

In contrary to the measurements of the real time system, which were stored synchronous every
1 ms, the LabVIEW VI was executed on a standard PC operating Windows XP. Hence, the
measurements where stored asynchronous approximately every 50 ms with a variety of a few
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milliseconds. To be able to compare the measurements, they have been interpolated onto a
equally spaced 1 ms time base.

Also the real time system and the LabVIEW program were started manually, so their measure-
ments were not synchronized. To compare both measurement sources, the currents iB and iB,LV

were cross correlated in order to find out the time offset between the measurements and correct
the offset. After these two steps, the measurements were on the same time base and synchronized
and ready for analysis.

6.2 Discharging of a Battery with a Constant Resistor

Before the final PHIL simulation with an FTP-72 cycle (federal test procedure) as input, a trial
run with a constant resistive load was performed to test the closed loop of real time system and
amplifier. The setup is the same than used for correcting the offset and linearity error described
in Section 5.2.2 and shown in Fig. 5.4.

As battery model the extended Modified Shepherd Model (eMSM, see Section 3.1.3) was used
with the parametrization done in Chapter 3. The battery was scaled to a nominal voltage of
76.65 V with a capacity Q of 0.25 Ah in order to achieve a for the amplifier suitable voltage and a
small discharge time. The short discharge time was chosen for practical reasons to see significant
changes of the voltage in a few seconds instead of minutes.

The discharge of this scaled battery with an initial state of charge SoCinit = 0.15 and a discharge
resistance of RL = 17.8W is shown in Fig. 6.1. The absolute error between the offline simulation
(pure software simulation) and the PHIL simulation stays under ±2 V and the weighted relative
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Figure 6.1: PHIL simulation of the discharge of an emulated battery with a constant resistor

74



PHIL Simulations

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

·10−2

Frequency [Hz]

|Y
(f
)|

[V
/
H
z]

Figure 6.2: Spectrum of the absolute error between offline simulated and PHIL simulated battery voltage
(without direct component)

error under ≈ 2% (according to the error definition of Equation 4.2 on page 46). The absolute
error is roughly independent of the set value and consists of two parts. The figure also shows that
the power source is not capable of setting the output voltage to zero, but remains at ≈ 1.5 V.
This is not a big issue for practical experiments, since this is only 0.25% of the nominal voltage
of 600 V and usual operating voltages won’t be around 0 V. The output voltage can be set to
zero by disabling the VOLTAGE ON digital input of the power source (cf. Table 5.2).

Fig. 6.2 shows the amplitude spectrum of the absolute error between the offline simulated voltage
and the PHIL simulation voltage. It was calculated via a Fourier transformation of the measure-
ments. The direct component is not shown because its amplitude is about ten times higher than
the second highest component. The figure illustrates, that the error consists not only of noise, but
also components with 6 Hz, 7 Hz, 35 Hz and 38 Hz. This is probably due to the internal control
loop of the power source that sets the output voltage of the source according to the set value. A
correlation of the periodical errors and the RTS with a sampling frequency of fs = 1

10µs = 100 kHz
could not be found.

This simple PHIL simulation shows that the combination of the present RTS and the power
source is capable of reproducing the results of the offline simulation with a maximum error of
2.16% and a RMS error of 0.69%. Hence it can be continued with the final PHIL simulation.

6.3 Simulating the FTP-72 Cycle

Now all the preparatory work is done to reproduce the battery measurements with an emulated
battery in a PHIL simulation. Chapter 2 discussed potential battery model, in Chapter 3 they
have been parametrized and afterwards validated against the measurements. Chapter 5 described
the PHIL implementation, which RTS and power amplifier were used and how they interact. Their
interaction was then verified in Section 6.2.
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As last PHIL simulation in this work a current on the basis of the FTP-72 cycle (cf. Section 1.4.3
and Fig. 4.5 on page 50) is used. Here, the current is bidirectional and this experiment is a
practical use case, because the cycle is a standardized driving cycle for cars. As battery model
the eMSM was used with the parametrization values listed in Table 3.3 and scaled according to
Equation 5.11 and 5.20. Following the analysis in Section 4.3, three FTP-72 cycles were executed:
one with an almost fully charged battery, one with an initial SoC of about 50% and one cycle
with an almost empty battery. The comparison between the offline simulations and the PHIL
simulations showed that their difference is independent from the voltage of the simulated battery.
Hence, only analysis for the cycle with SoCinit ≈ 0.5 is shown further on in this chapter.

6.3.1 Comparing the Currents

At the original measurement, the discharge current was generated by a switchable resistor. While
switching, the conductance was zero for short moments. This created troubles for the pro-
grammable DC source. Thus it was filtered (see Fig. 5.7 and Equation 5.8). After filtering, the
current was scaled according to Equation 5.20 to ensure that the current did not exceed the
maximum current of the used cables. The current values are then used as input for the pro-
grammable DC source which sets a current iS in order to create the desired battery current iB
(see Equation 5.7 and Fig. 5.1 for the experimental setup). Fig. 6.3 shows a comparison between
the set value iB and its actual measurement. The figure basically shows the same results than
Fig. 5.6. First, there is a noise with an RMS (root mean squared) error of ≈ 1%, which is the
combination of a noise and its impact on the current set value. But then the figure shows also
overshoots when the gradient of the set value is too high. This overshoots are generated by the
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Figure 6.3: Comparison between the set value of the battery current and the actual generated PHIL
current
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internal control algorithm of the programmable DC source and result in a short error up to 20%.
But still, an input current for the battery emulator with an overall RMS error of εRMS = 1.23%
and a mean error εmean < 0.01% can be created, which was considered to be accurate enough.
Future work has to show if these overshoots can be reduced by changing internal parameters or
filtering the set values. It is important to mention that the error of the current influences the
output through the calculation of the battery voltage (cf. Equation 3.15). The output voltage
results in a current which is then measured again, affects the voltage and so on.

Also the type of modeled battery makes a difference, because a lead-acid battery has a higher
internal resistance Ri than a Li-ion battery as well as increasing the capacity normally decreases
the internal resistance. An error εi of the current directly affects the output voltage by Ri · εi.

6.3.2 Comparing the States of Charge

The error of the generated PHIL current produces not only a directly error at the output value.
It also influences the state of charge (SoC) estimation. Fig. 6.4 shows a comparison between the
estimated SoC from the original battery measurements and the SoC calculated during the PHIL
simulation in the battery model. To estimate the state of charge of the measurements, Coulomb
Counting (Equation 2.4) was used with the capacity Q = 20.86 Ah and SoCinit = 98.89% (cf.
Section 4.3 and Equation 4.9).
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Figure 6.4: Comparison between the estimated SoC from battery measurements and the PHIL simulation

The figure shows, that the noise of the PHIL current has no noticeable influence on the SoC
calculation. But despite the offset correction done in Section 5.2.2, there is still an offset error
which leads to a drift of the SoC. After one cycle, the error is about 0.4%.

6.3.3 Comparing the Battery Voltages

Finally a comparison of the battery voltage of the offline simulation from Chapter 4 and the
PHIL simulation is done. The offline simulation results are scaled according to Equation 5.11 to
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Figure 6.5: Comparison of the battery voltages between the offline simulation and the PHIL simulation

be able to compare them. Fig. 6.5 shows the two voltages. The figure shows that there is an
error varying between ±0.5% or ±0.3 V. When there are fast changes of the battery current, the
error of the resulting change of the battery voltage increases up to ±1.5% or ±0.9 V. The average
error is slightly increasing which correlates with the error of the SoC calculation. The mean
error is below 0.01%, the RMS error 0.15% or 0.13 V and the maximum error 1.72% or 1.48 V.
It is important to mention also the absolute errors in Volt and not only the weighted relative
errors, because the absolute errors are almost independent of the average of the battery voltage.
A PHIL simulation near to the nominal voltage vnom = 600 V of the power source, would reduce
the relative error by a factor of 6. Hence, it makes no sense to scale the voltage of the PHIL
simulation down to a single cell and compare it with the original measurements of the battery.

A detailed look at the error reveals that it is not noise, but deterministic. Fig. 6.6 shows a
closer look at this error. It is the superposition of various sines with various amplitudes. This
becomes clearer with a look at the spectrum of the error which is shown in Fig. 6.7. There are
nine frequency components starting at 7.5 Hz with an increment of ≈ 1.9 Hz. The spectrum is
different to the one of the constant discharge in Fig. 6.2. Hence, it seems plausible that this error
comes from the combination of the power source and the programmable DC source. They both
have an internal control loop: one that controls the voltage vB, the other the current iS. The
two control algorithms are interacting with each other which produce this periodic error. This is
a classical phenomenon that appears at PHIL simulations where the power amplifier adds a new
error that would not be here if the experiment would be conducted with a real battery instead
of the emulated battery.

An extensive analysis of the interaction between the two controlled source and their internal
parameters is necessary to find out if and how the error can be reduced as well as if input filters
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Figure 6.6: Closer look at the error between offline and PHIL simulation
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Figure 6.7: Spectrum of the absolute error between offline and PHIL simulation

at the RTS can significantly oppress this error. This goes beyond the scope of this work and
hence was not done.

To sum up the PHIL simulations, the setup of the OPAL-RT RTS together with the Regatron
bidirectional power source is capable of reproducing the offline simulations. The interaction
between the two controlled source, the bidirectional power source and the programmable DC
source, creates a deterministic error which can be described with the superposition of 9 sine
signals between 7.5 Hz and 22.7 Hz . This error is independent of the mean value of the actual
emulated battery voltage and about ±0.4 V. It makes no sense to compare the measurement
of one battery cell with the results of a scaled PHIL simulation, since the measurements were
filtered to remove spike that the programmable DC cannot handle well. Also with the “constant”
error and variable scaled PHIL battery voltages, the rescaled error can be arbitrary increased or
decreased at will. But it makes sense to compare the PHIL simulation with an offset simulation,
where the used setup leads to an RMS error of 0.15% and 1.72% maximum error for a battery
voltage of about 84 V. These errors are sufficiently low, so the battery emulator can be considered
as well-performing. A conservative estimation of the total error between the measurements of a
cell and the results of the PHIL simulation would be adding the maximum relative errors. This
leads in a maximum error smaller than 5% for an state of charge area between 10% and 100%
and an error smaller than 10% for the whole state of charge range.
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7 Discussion and Conclusion

In this final chapter of the thesis, the work is reviewed and discussed. Also some ideas for future
work are mentioned, followed by personal experiences. Finally a summary and conclusion about
this work is presented.

7.1 Review and Discussion

The battery emulator developed in this work will extend an existing test bed which already
emulates an AC microgrid to be able to test battery related power electronics. According to
Section 1.4 on page 5 the requirements for the battery model of such a battery emulator are
a generic model which models the battery voltage as a function of current and state of charge,
an execution time below 10 µs for the existing OPAL RT real time system (RTS), and an easy
parametrization. The output of the model will be the set value for a bidirectional power source
and the measured current of the source the input of the model. As a result of a state of the art
analysis of battery modeling, discussing the parametrization of battery models and validating of
battery models (Chapters 2 to 4) the extended Modified Shepherd Model (eMSM) turned out to
be the most suitable model in terms of the requirements. After choosing the right battery model,
a Power Hardware-in-the-Loop (PHIL) setup was implemented and verified. The necessary steps
to accomplish this result are reviewed and discussed subsequently.

7.1.1 Requirements and the eMSM as Most Suitable Model

The boundary condition of an execution time below 10 µs of the battery model was not such
a hard condition than expected. It was obvious very soon in the state of the art analysis that
electrochemical models are computationally too expensive to meet this condition for reasonable
expensive state of the art real time systems. And the remaining possible models (equivalent
electrical circuit models and extended Modified Shepherd Model) have absolutely no problem
to fulfill the execution time boundary condition. So there was no need for optimizations in the
implementation to reduce the execution time.

The finally chosen extended Modified Shepherd Model fulfills all the requirements for the battery
model complexity defined in the problem statement in Section 1.4 on page 5. One reason for
this is that the requirements of the model were not definitely given at the beginning of the work.
They have been a result of a process during the literature research, because at the beginning there

80



Discussion and Conclusion

was hardly any knowledge about battery modeling and the complexity as well as the quality of
battery models. At the beginning there was the plan to create a battery model for lead-acid as
well as 2nd life Li-ion batteries. Also the temperature should be a parameter of the model so
that there can be distinguished between a cold start of an electric vehicle in the winter and in
the summer. But there was only measurement data for a new Li-ion battery recorded at 23 ◦C
available (cf. Section 1.4.3). So these two tasks were postponed to future work (see Section 7.2).

Another reason why the eMSM fulfills all the requirements for the model is that there have been
no quantitative requirements for the accuracy or a maximum error. The model should just be
as accurate as possible under the other boundary conditions. After the offline simulations to
validate the battery models and the PHIL simulations to verify the PHIL setup, their accuracies
have been discussed with experienced colleagues and considered to be high enough.

It was surprising that hardly anybody in the literature mentioned the similarities of equivalent
electrical circuit (EEC) models and generic mathematical models. Although they have a different
approach, their equations are very similar, like it is worked out in Section 2.7. It seems that the
trend in battery modeling goes to EEC models. Probably because of the intuitive understanding
of the behavior, the scalability by adding or removing RC-elements and the simple “drag and
drop”-implementation in programs like Simulink. Its toolboxes Simscape and SimPowerSystems
are both able to simulate electrical circuits by drawing them. Their parametrization is also very
straight forward by measuring the open circuit voltage and the voltage response to discharge
pulses.

Contrariwise, a textual implementation would be less intuitive and more complex, but faster and
more flexible, especially when the component values depend on the state of charge (SoC), the
current direction and rate, or the temperature. Strictly speaking, the model isn’t an EEC model
anymore, but a generic mathematical model. A good example of the benefits of generic model is
the term for the polarization resistance

Rpol =

{
K 1

SoC , i∗ > 0

K 1
λ−SoC , i∗ < 0.

of the extended Modified Shepherd Model (Equation 3.16 on page 37). With this simple term, the
eMSM is able to model the charge and discharge efficiency subject to SoC qualitatively correct.
The polarization resistance increases when an almost empty battery is discharged or if an almost
full battery is charged. A higher resistance results in higher losses which correlate with the charge
and discharge efficiency. None of the other simulated models in this work is capable of modeling
this behavior.

7.1.2 Parametrization of the Models

In contrary to fulfilling the short execution time boundary condition, the parametrization of the
models was far more complicated than thought at the beginning. In theory, it is easy to determine
the parameters of an open circuit voltage model (OCV model) from measurements by using an
optimization algorithm. But in practice, a good choice of the initial values is crucial. Otherwise
the algorithms get stucked in a local optimum far away from the global optimum. This applies all
the more accurate OCV model tested (Zheng, eMSM, Lamand Chen, cf. Table 3.1 on page 33),
but not for the Nernst model. So some “trial and error” is needed to find out good initial values.
Unfortunately this is far away from loading the measurements, pressing a button and getting the
correct result.
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The automatic determination of the resistor and capacitor values of an EEC model from a pulsed
discharge took some time, but is now ready to use. Here, the selection of the initial values is not
so crucial than for the OCV curve.

The extraction of the data out of the discharge curves from a data sheet was very straight forward.
There are several programs that claim to automatically do this after defining the axis manually.
All of the tested programs have been able to perform this, which is probably because these curves
are monotonically decreasing. Out of interest, the voltage response to a pulsed discharge (cf.
Fig. 3.2 on page 34) was also analyzed, but there most of the programs fail to extract the numeric
values of the curve out of a raster graphics. They got stucked around at an “edge” when a pulse
started or finished. So in the worst case, the data have to be extracted by manually clicking on
points at the curve. This is not difficult, but time consuming. After extracting the data out of
the figure, the parametrization process is the same than for a parametrization with measurement
data.

As a matter of interest, a second battery was parametrized with data sheet figures. This was a
6FM150-X lead-acid battery from VISION, because a home storage system, that contained four
of these batteries, was placed for a few weeks in the research test bed to perform some tests.
Unfortunately the quality of the figures in the data sheet of the 6FM150-X lead-acid battery was
very bad (cf. Fig. A.3 on page 95). The discharge curves are not monotonically decreasing, which
should be the case for a lead-acid battery. The curves were not smooth at all and an integral
over the current results in a withdrawn charge of more than 25% over the nominal capacity. In a
nutshell, the discharge profiles are useless for an exact parametrization of a battery model. This
shows that a parametrization on the basis of the data sheet is not always possible.

It is difficult to decide whether the requirement of an easy to parametrize model is met or not.
The parametrization takes some manual steps and is not completely automated. However, the
parametrization of an electrochemical model would be far more complicated. The parametrization
of the Nernst model would be more robust, but it is less accurate than the other examined OCV
models, especially when SoC > 95% and the OCV tends to infinity. So some manual steps cannot
be avoided.

The parametrization process revealed that the accuracy of the OCV part of the Modified Shepherd
Model can be increased significantly by slightly changing the model equation and adding a new
parameter SoC0. At this so called extended Modified Shepherd Model, the point of break down
of the battery voltage for low state of charges can be moved to a certain SoC with this new
parameter. With this improvement the eMSM has the best accuracy under all analyzed OCV
models with one parameter less the Lam model and Zheng model, which were second and third
ranked, concerning accuracy. Hence, the OCV part of the eMSM was used as OCV model for the
EEC models.

7.1.3 Validation of the Models

A very important first step of the validation was choosing the right solver and a small enough
maximum step sizes for the simulation. The auto option of Simulink for the maximum step size
produces too high step sizes resulting in a wrong calculation of the SoC via Coulomb Counting
(see Equation 2.4 on page 13). The drop of the SoC is overestimated resulting in states where the
calculated SoC is zero whereas the original experiment is still going on. Too small step sizes or
fixed step size solver unnecessary massively increase the simulation time. Following the Choose a
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Solver guideline from the Mathworks homepage [6] and performing some simulations resulted
in the solver ode45 with a maximum step size of 0.1 s. This example shows that the automatic
settings of Simulink cannot always be trusted and that it is important to check the settings and
results manually.

As expected, the validation of the measurements showed that the withdrawn charge of the bat-
teries varies a few percent compared to the nominal capacity. This makes it impossible to make
exact life time predictions of a battery. Due to the Rate Capacity Effect (cf. Section 2.4.1) the
usable capacity depends on the discharge current and is under normal working conditions always
smaller than the real capacity. Therefore, the nominal capacity of a battery is smaller than the
real capacity to achieve usable capacities in the range of the nominal capacity. The problem
statement mentioned the typical duration of a PHIL simulation is in the range of seconds to an
hour. In this time range, the Rate Capacity Effect has hardly any impacts, especially for Li-ion
battery. But the figures in Chapter 4 with the repeatedly applied test cycle showed that the effect
plays a role for longer experiments. If there are PHIL simulation with longer durations, or if the
battery model is used for offline simulations, the Rate Capacity Effect and with it the Recovery
Effect must be taken into account.

A solution would be replacing the Coulomb Counting with the Kinetic Battery Model (KiBaM).
Fig. 4.11 on page 57 shows that using the KiBaM, the SoC prediction is more accurate and the
error is less. For this figure, the parameters of the KiBaM were determined by trial and error.
The resulted parametrization not only decreased the error at a low SoC but also increased the
error at the beginning of the simulation. This shows that the parametrization is not optimal
and that there should be a combined parametrization of the OCV curve and the KiBaM. Such a
combined parametrization will be done in future work.

Beside the inaccurate state of charge prediction for long durations, the accuracy is very high. At
the high and medium SoC area, the maximum error of the models parametrized with data sheet
is below 1%. The RMS (root mean squared) error for one FTP-72 cycle (federal test procedure)
is below 0.15% (see Table 4.3 on page 52). The accuracy is so high, that the EEC model with
constant resistor and capacitor values is accidentally more accurate than the one with look-up
tables for the values. In theory, this should not happen, because the constant value-model is a
simplification of the look-up table-model. But the difference between them is so small and the
accuracy so high, that the in theory less accurate model accidentally leads to a more accurate
simulation result.

With the difference between the mean error and the RMS error, it is possible to estimate whether
the error is mainly a constant error, which can be ascribed to the OCV model, or if inaccuracy
is caused by model weakness. A look at Table 4.3 on page 52 reveals that the difference between
these two errors is quite small for a cycle with initial state of charge of 98.89% and 52.15%, but
higher for the cycle with SoCinit = 9.06%. This suggests the assumption that the EEC models
as well as the eMSM are capable of modeling the behavior for high and middle states of charge,
but show signs of weakness when the SoC is low. However, the main cause of the higher error is
still the wrong state of charge estimation.

The simulation of the eMSM with data sheet parametrization has an error smaller than ±2%
in comparison to the measurements of the real battery. The only problem is that the estimated
capacity (nominal capacity) is a few percent lower than the real capacity. So the voltage breaks
down too early because according to the model the battery is empty, while at the measured
battery, the SoC was still a few percent. So life time predictions are not possible, but the
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qualitatively behavior can be reproduced respectively predicted within an accuracy of ±2%. This
is a very satisfying result, considering that only data sheet information and an estimation of the
time constant τ was used.

7.1.4 PHIL Implementation and Simulation

Originally, the PHIL implementation and simulation only should be two smaller parts of a few.
But as always, the devil’s in the detail and in the end the PHIL implementation and simulation
took the most effort. Beginning with how to use the real time system, how to design a Simulink
model that can be compiled for the real time system, how to compile a model and execute it at
the RTS. Followed by learning how to use the analog to digital converters and process analog
input signals, as well as how to use the digital to analog converters to use Simulink signals as
analog output signals. After studying how to use and control the Regatron TC.GSS power source,
a small connector board was built in order to control the power source via the RTS. A closer look
at the manual of the TC.GSS revealed that there is a minimum terminal voltage of ≈ 70 V for
working as a sink and feeding energy into the grid. This limits the operating range of the battery
emulator and makes it impossible to emulate a typical 48 V lead-acid storage system.

Then different kinds of measurement tools were tested. It turned out, that the TC.GSS creates a
lot of electromagnetic pollution and current clamps cannot be used. So the internal measurement
of the power source, which was accessible via its analog interface had to be used. Future work
has to show, if there is another possibility to deal with this issue. After the decision of using
the internal measurement of the power source, a correction of offset and linearity errors of the
measuring chain was performed.

It took some time to find a method respectively a setup that is able to reproduce a scaled version
of the current from the original battery measurement because there was no second bidirectional
power source available. The final solution is a combination of a constant load and a programmable
current source Regatron TopConQuadro TC.P (for the setup see Fig. 5.1 on page 60). The
TopConQuadro can be controlled via a RS 232 interface and a LabVIEW program. Because the
current source measures also its terminal voltage and the value is available within LabVIEW, it is
possible to create a desired battery emulator current independent of the battery emulators voltage.
To achieve this, a LabVIEW program had to be written that reads a csv-file with battery current
set values, reads the voltage measurement and calculates the output current of the programmable
current source (cf. Section 5.3 on page 67). The library for the RS 232 communication provided
by Regatron had to be tuned in order to reduce the latency of setting new set values and reading
measurements. This reduced execution time resulted in an increased accuracy.

For the PHIL simulations the measurements as well as the battery model have to be scaled
because of limitations of the power source and of the used cables. When a battery is charged,
it absorbs electrical energy and stores it as chemical energy. When the built battery emulator is
“charged”, the energy is not lost by heating power resistors, but fed back into an AC grid. Due
to the internal architecture of the amplifier (cf. Fig. 5.2 on page 62), the minimal voltage for
feeding is limited to 70 V. Hence, the battery voltage had to be scaled from a nominal voltage
of 3.65 V to ≈ 88 V. Also the cables of the lab setup are only capable of maximum 16 A, while
the original measurements had a maximum current of about 86 A. Therefore, the capacity of the
emulated battery and the input current had to be scaled. This shows that the battery emulator
cannot emulate every battery voltage up to the nominal voltage of the power source. Also that

84



Discussion and Conclusion

the test bed needs thicker cables reproduce typical current for some battery applications. But
this is an issue than can be easily solved.

The PHIL simulation showed a deterministic error of the battery emulator voltage which is the
superposition of nine sine waves from 7.5 Hz to 22.7 Hz with a resulting amplitude of about 0.3 V
and a maximum error of 1.48 V. This error clearly exceeds the noise as the spectrum of the error
in Fig. 6.7 on page 79 shows and is in good approximation independent on the amplitude of the
battery voltage. The deterministic error probably caused by the interaction between the internal
control loops of the two controlled sources. This is a classical PHIL issue, where an additional
error appears, that would not exist when using a real battery instead of the emulated battery.
Future work has to show if this problem also occurs for other hardware under test and how the
error can be reduced.

With filtering the current as input of the model, scaling the battery voltage by the factor 24 and
an error that is almost independent of the voltage it makes no sense to compare the PHIL results
to the original measurements. First, the battery and the battery model have a different input.
Secondly, the PHIL voltage cannot be scaled back to a cell voltage, because the error scales not
this way. A very conservative estimation is adding the maximum relative errors between the
measurement and the simulation of a single cell, and between the offline simulation and the PHIL
simulation. This results in a maximum error smaller than 5% for 0.1 < SoC ≤ 1 and an error
smaller than 10% for the whole state of charge range. This error was considered to be small
enough for replacing a physical battery with a battery emulator.

7.2 Future Work

Possible future work can be divided in extending the battery model for other battery types,
improving the accuracy of the model and improving the signal handling between the RTS and
the power source. Some of the improvements can be implemented in a few hours and just need
input data for parametrization, while others require extensive work.

7.2.1 Extending the Model for other Battery Types

One wide field of future work is the extension to other battery types. In principle, the battery mod-
els used in this work are capable of modeling not only Li-ion batteries, but also lead-acid, NiMH
(Nickel metal hydride) and NiCd (Nickel Cadmium) batteries. They only need to be parametrized.
So a logical future work is to use measurements from other batteries and parametrize the pre-
sented battery models. Also, several parametrizations of batteries can be found in the literature,
but their quality and accuracy is not guaranteed. The literature review showed that the results
of the papers are often sugarcoated.

The battery voltage of lead-acid, NiMH and NiCd batteries have a hysteresis effect (see Sec-
tion 2.5.7 and [OD09]). When parametrizing batteries with this type, the hysteresis effect should
be considered to increase the accuracy. The additional implementation effort is small, because
only one differential equation has to be implemented (Equation 2.43 on page 21) and even more
simple hysteresis models can be found in [HLP12]. But it is not clear how complex the additional
configuration effort is.
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In the future, there will be a huge availability of Li-ion batteries at the end of their life cycle.
Their capacity decreased due to capacity fading. So their primary usage is not economic any
more. This are for example heavily used batteries from an electric vehicle. But there are fields of
applications where the capacity per kg or the capacity per m³ is not so important, but the costs
per Wh – for example home storage systems or storage systems for primary regulation and power
quality. This is a huge potential field for battery energy storage systems, battery related power
electronics and battery emulators.

7.2.2 Improving the Model Accuracy

The validation in Section 4.3 showed that the Kinetic Battery Model (KiBaM) improves the
state of charge (SoC) estimation for long simulations, because it models the Rate Capacity and
the Recovery Effect. Further measurements and work is necessary to systematically parametrize
the KiBaM in combination with an equivalent electrical circuit (EEC) model or the extended
Modified Shepherd Model. The method described in [KQ11] is in my opinion not the right way
because on the one hand it includes discharge with a “very large load” which can destroy the
battery and on the other hand, the KiBaM and the EEC model are parametrized separately.
Fig. 4.11 on page 57 shows that a separate parametrization leads to higher error under some
conditions than with Coulomb Counting. This should not happen, since the Coulomb Counting
is a special case of the KiBaM.

The behavior of batteries depends on the temperature of the battery. This is a circumstance
that is neglected in this work. Some authors already included temperature dependency like the
in this work several times cited work of Lam et al. [LBK11]. The open circuit voltage vs. SoC
curve is usually assumed to be independent of the temperature, while the capacity is modeled
Q ∝ exp− 1

T . But of course, more complex models are possible. While equation for the capacity
is based on the Arrhenius equation [11], which is an equation used to model the temperature
dependence of reaction rates in chemistry, the temperature dependency of the values of the
resistors and capacitors is modeled empirically. Extracted values from measurements are either
stored in look-up tables with interpolation between the table values, or mathematical functions
which fit these values. But in general, the resistance is lower for higher temperatures, while the
capacitances are higher.

The temperature of a battery is not always only given by the ambiance temperature. Every
battery has its losses, which heat the battery and for some use cases the thermal losses cannot
be dissipated completely and the battery warms up. A possible extension of the battery model
is the extension with a thermal model that models the heat generation as a result of the losses
in the battery, the convective heat as well as the conductive heat transfer to the ambiance and
the temperature rise of the battery.

Another possibility to extend a battery model and improve its accuracy is to make the parameters
current rate dependent. The implementation is in principle the same than for the temperature
dependency as for example done in [LBK11] or [TSK12].
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7.2.3 Improving the Interaction of RTS, Power Source and HuT

The analysis in Section 6.3.3 showed that there is a deterministic error between the set value and
the actual value of the power sources voltage. This error is probable due to the interaction between
the controlled voltage of the power source and the controlled current of the programmable DC
source. This phenomenon will likely occur also in future applications where the battery emulator
is connected with battery inverters, electric vehicle charge stations and so on. Maybe the instant
accuracy is not high enough, so an analysis and justification of the internal control parameters
of the power source will be necessary. This can also include additional band-rejection filter,
implemented in a Simulink model at the RTS.

By now, the input signals of the RTS are filtered with a simple PT1 low pass filter in order to
reduce the noise. Since the low execution time of the models allows additional computation effort
without violating the boundary of 10 µs, more complex filters are possible to better reduce the
noise.

The Regatron TC.GSS power source creates a lot of EMC pollution (electromagnetic compati-
bility). This makes it very difficult to use current clamps with Hall effect sensor. For example,
a Lem PR30 current probe measured up to 2 A when put around a 20 cm long wire which was
placed near to the power source. Hence, the internal current measurement of the power source
was used as input signal for the RTS. Additional work has to show, if the Regatron device creates
unwanted electromagnetic interference with other devices and what is need to be done, to be able
to use current clamps.

7.3 Personal Experiences and Perceptions

In the beginning it was difficult for me to recognize the usability of a paper and to decide before
reading most of the paper whether the quality of the paper is good or not. I also tried to reproduce
the results of the papers by implementing the models and simulating them and was not always
successful. This led me to the impression that the results of some papers are sugarcoated. In the
end, for me a good indicator to assess the quality of a paper turned out to be its figures. If they
are carefully created and have a good quality, the rest of the paper often also has a good quality
and vice versa. In future work, I will also focus mainly on journal papers and less on conference
papers.

I decided to write this thesis in English for two reasons. First, if this work should not be only
a means to an end, but read and used by other people, it should be written in English, because
the potential number of readers is a few hundred times higher. Second, I saw this as a kind of
investment: spend additional time and effort to write the thesis in English, but then have better
skills in future professional life. But writing the thesis in English was much harder than expected,
especially the switching between the daily life in German, and the composing of this document in
English. Time will tell if the investment will pay off or if it was jut unnecessary additional effort.

I really love to experiment or simulate and see what happens if this or that is changed. But in
retrospect, I should have focused more on reproducibility of the simulations and results, as well
as keep in mind a camera-ready documentation and not only notes and documentation for myself.
So for my future work, every simulation that produces a notable result will be enclosed with a
script that runs the simulation, but also includes all the necessary pre- and post-processing. So
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if a simulation will be conducted again with slightly different input parameters, it will just need
a few clicks to do this. This will take off some of the fun of the work, but reduce the overall
effort. Also the development of Simulink models, e.g. a battery model, and simulations which
use them will be separated on a very early state of development. This is obvious and very easy
to realize for text-oriented programming languages like C or Java, but not for Simulink.

The more I have read about batteries and battery modeling, the more I got the impression,
that there is no deep understanding about the internal processes inside a battery, what happens
exactly and why. This was very surprising for me, because batteries have been explored for more
than 50 years. For example, the original Shepherd Model [She65a, She65b] is from the 1960ies.
There are accurate models which describe the battery voltage. But it is difficult to find papers
about aging mechanisms, or a theoretical description of how to build a battery that lasts more
discharge cycles or whose capacity depends less on the temperature. Either this is not completely
known yet or it is a well-kept secret of the battery manufacturers.

7.4 Summary and Conclusion

This work presents a working battery emulator for Power Hardware-in-the-Loop simulations.
The battery emulator extends the research test bed from the Energy department of the Austrian
Institute of Technology. So far, this test bed can emulate an AC microgrid with varying frequency,
voltage and net impedance, as well as photovoltaic (PV) panels and programmable RLC loads
(cf. Fig. 1.4 on page 6). This gives the possibility to test PV inverters, energy and demand side
management strategies, and so forth. With the developed battery emulator the test bed also can
be used to analyze battery inverters, home storage systems, charging stations for electric vehicles,
demand shifting strategies and so on.

This fields of application need battery voltages up to a few hundred Volts and in particular cases
more than 20 kW battery power. The simultaneous emulation of an AC grid requires time steps
of 10 µs. Since the battery model is calculated in another core of the same RTS, the maximum
calculation period is also limited to 10 µs. A literature review revealed neither that battery models
been analyzed in terms of their applicability for PHIL simulation, nor work about implementations
of battery emulators with this fields of applications. Hence, this work is of high relevance to this
field.

Beside the low execution time, the requirements of such a battery model are

• modeling the battery voltage (output of the model) as a function of the battery current
(input of the model) and the state of charge,

• calculating the state of charge,

• taking polarization effects of the battery into account, and

• the model should be generic to be able to model different types of batteries.

Additionally, this work defined another requirement: an easy parametrization is favored. At best,
only data sheet information and experience values should be necessary to parametrize the battery
model, being aware that this will decrease the accuracy. This work focused on Li-ion batteries
because only measurements from a Li-ion battery had been available. A future extension to other
battery technologies was always kept in mind.
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A state of the art analysis (cf. Chapter 2) about battery modeling yielded several types of battery
models. Electrochemical models model the chemical processes of the battery. They consist of
several differential equations, some of them are partial differential equations. Electrochemical
models are the most accurate models, but their computational effort is too high for state of the
art real time simulation systems and the condition an execution time below 10 µs. Hence, they
do not comply with the requirements for the desired battery model of this work.

Another type of battery models are generic models, also often named mathematical models. They
consist of an empirical equation that describes the battery voltage as a function of the current
and state of charge, and at least of a second equation that calculates the state of charge. Various
generic models from the literature have been discussed and the Modified Shepherd Model (MSM,
cf. Section 2.5.5) turned out to be the most suitable model among them.

Equivalent electrical circuit models (EEC models) pursue another approach. They consist of a
voltage source (open circuit voltage, OCV), whose voltage is a function of the state of charge, an
internal resistance and none, one or more RC-elements, depending on the desired accuracy of the
model. Under the aspect of a low execution time and configuration effort, it is clear, that one
RC-element is the preferred grade of accuracy. EEC models with one RC-element meet all the
requirements. The literature review showed several mathematical models for the SoC-dependency
of the OCV. Also the resistor and capacitor values can be either constant or a function of the
SoC.

Six different OCV-models, three EEC models and the MSM have been analyzed and compared
in detail. The parametrization process in Chapter 3 showed that the accuracy of the MSM can
be increased significantly by adding an additional parameter. This applies both for the model
itself, as well as its OCV-part used as OCV model for an EEC model. This model was named
extended Modified Shepherd Model (eMSM, equations in Section 3.1.3) and was used further on
in this work instead of the MSM. The eMSM turned out to be parameterizable by data sheet
values and an estimation of a time constant, while a parametrization of EEC models only with
data sheet data is more difficult.

Both, generic models and EEC models have the state of charge as state variable. The SoC is
typically determined by Coulomb Counting that basically calculates an integral of the current.
Coulomb Counting needs less computation time, but it does not take the Rate Capacity and
Recovery Effect into account. This increases the error of the model for long simulation durations.
A solution of this problem is using the Kinetic Battery Model (KiBaM, see Section 2.4.4 and 3.3)
instead. The KiBaM consists of two charge wells, an inflow, a drain and a pipe between them.
Two differential equations describe the changes of the filling heights of the wells. With this
simple abstract model, the KiBaM is able to model these two effects that are caused by diffusion
effects inside the battery. Unfortunately, no measurements have been available to systematically
parametrize the KiBaM. Hence, Coulomb Counting was used for the validation.

After the parametrization, six models have been validated against measurements of a Li-ion
battery from a standardized FTP-72 driving cycle (cf. Section 1.4.3 and Fig. 4.5 on page 50).
These six models are four different EEC models, all parametrized based on measurements, an
eMSM also parametrized with measurements and an eMSM parametrized with data sheet values
(more details in Table 4.2 on page 51). The five models, which have been parametrized with
measurements, have roughly the same accuracy. In the typical operating area of a battery between
10% and 100% state of charge, the maximum error is lower than 3% and the RMS error about
1.5%. The eMSM is the most accurate model, but the difference is not significant. At lower
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state of charges, the error increases up to more than eight per cent. This has two reasons. First,
the models fail to accurately predict the behavior in SoC-area of the battery. Second, the non
modeled Rate Capacity Effect has an appreciable impact. The models overestimate the usable
capacity and hence, overestimate the battery voltage. In comparison, a model with “trial and
error”-parametrized KiBaM did not have this effect and the error was smaller than 3% until
the battery was almost empty. But this way of parametrization is not applicable for real PHIL
use-cases.

As expected, the eMSM that was parametrized with data sheet values has a higher error, but it
still remains under 10%. For a driving cycle with an initial state of charge of about 50%, the
maximum error is 2.32%, which is notably low. Overall, the eMSM was chosen to be the most
suitable model in terms of accuracy, parametrization effort and the boundary condition of a low
execution time. Therefore it was used in the PHIL simulations.

After the models had been validated, they were adapted to be able to run at the OPAL-RT real
time system and executed afterwards. An analysis of the execution time showed, that all models
easily meet the requirement of a time below 10 µs. As expected the fasted model is the EEC
model that uses look-up tables with an execution time of 2.35 µs (cf. Table 5.1 on page 62). The
eMSM has 2.65 µs with the second lowest execution time. Thus, enough time remains to filter
and process the input data.

The next step was building the actual battery emulator (see Chapter 5). This includes the
implementation of some control and security mechanisms, the setting of the simulated battery
voltage, the measurement of the actual PHIL current and its filtering within the RTS. The PHIL
setup was verified with two simulations. First, the discharge of an emulator battery with a
constant resistor. This was done to test the principle behavior of the battery emulator. After the
experiment succeeded, the emulator was tested with the measured current of the standardized
driving cycle. This profile contains dynamic currents in both directions, as well as rest periods.
In order to reproduce this variable current, a combination of a constant load and a programmable
current source was used and a LabVIEW program that generates a desired program was written.

The used power source has a limitation of minimal 70 V terminal voltage for feeding energy
from the DC side back into the AC grid. Also the measurements from the FTP-72 cycle had a
maximum of 86 A whereas the available cables in the lab were only capable of 16 A. Hence, the
parametrized battery model and also the current measurements as set values had to be scaled.
The original current set values contained short breakdowns to zero because they had been created
with a digital potentiometer that disconnects for a short time while switching. These short break
downs would have caused problems when using this signal as set value for the programmable DC
source. Hence, the set values have been filtered with a low pass filter (see Fig. 5.7 on page 69).

After these three steps, the PHIL simulations had been performed with the eMSM as battery
model. The experiment showed a maximum error of 1.48 V and an RMS error of 0.3 V between
the offline and the PHIL simulated battery voltage. An error of 1.48 V is about 1.72% of the
battery emulator voltage of 86 V. It is important to mention the absolute error in Volt and not a
relative error, because the error is quite independent of the terminal voltage. A Fourier analysis
of the error showed that it is not a noise but a deterministic superposition of nine sines starting
at 7.5 Hz with an increment of ≈ 1.9 Hz (cf. Fig. 6.7 on page 79). The error is most likely caused
due to the interaction two controlled sourced. This a classical PHIL phenomenon that would not
occur with the use of a real battery. Up to which extent this phenomenon will also occur for
another power hardware under test in a future PHIL experiment, depends on the hardware and
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the use case. So further analysis and how to suppress this error has to be done for the specific
device.

Since the battery model is scaled, the original current is scaled and filtered, and the error between
offline and PHIL simulation is roughly independent of the terminal voltage, it makes no sense to
scale the PHIL simulation down to a cell voltage of 3.65 V and compare the measurements of the
real battery with the results of the PHIL simulation. A conservative estimation of the overall
error between the real and the emulated battery is adding the maximum relative errors. This
results in a maximum error smaller than 5% in a typical operating range between 10% and 100%
state of charge and in an error smaller than 10% for the whole state of charge area.

The developed battery emulator was already used in the Vehilce2Grid-Inverter project [1]. In
this project the battery emulator replaced the battery on an electric vehicle in order to test a
novel charging station. This work is also the basis of two conference papers [SKLL13, SKLL14],
presented at the 39th “Annual Conference of the IEEE Industrial Electronics Society” (IECON
2013) and the 23rd “IEEE International Symposium on Industrial Electronics” (ISIE 2014).

A side result of this work is a Simulink library for battery modeling. This library emerged
out the model comparisons and simulations in this work and consists not only of the models
that have been validated in Chapter 4, but of EEC models with one and two RC-elements and
the eMSM. The OCV of any EEC model can be chosen as look-up table or as one of the six
in Section 3.1.1 compared OCV models. The resistor and capacity values can be either from
SoC dependent look-up table values, constant, or any of the five in Section 3.1.2.3 presented
mathematical models. The SoC can be determined by Coulomb Counting or the Kinetic Battery
Model. With this variety of different models, a lot of already parametrized and validated battery
models from the literature can be used. The library is rounded by a battery management system
to prevent a battery from exhaustive discharge or overcharge, a charge controller for constant
current/constant voltage charging and some controlled loads. This library has already been used
for offline simulations and pre-simulation of laboratory tests in two projects of the AIT and for
simulations in a diploma thesis of a colleague.

To conclude, in this work a battery emulator of Li-ion batteries between 70 V and 600 V battery
voltage has been implemented. The battery is simulated by the extended Modified Shepherd
Model, which is a self-made extension of an existing model from the literature. This model is
more accurate than equivalent electrical circuit models with one RC-element and also suitable to
be parametrized only with data sheet information. The model was validated against measure-
ments from a standardized driving cycle and has, parametrized with measurements, in the typical
operating area (0.1 < SoC ≤ 1) a maximum error of 3% and an RMS error of 1.31%. The whole
battery emulator has a maximum error of about 5%, which is for a lot of use cases low enough to
replace a real battery with a battery emulator. With such a setup, the battery voltage, capacity
and state of charge can be set immediately and arbitrary. Thus, a battery does not have to be
charged between two tests, which could take hours. Also there is no need to buy several batteries
with different types, voltages or capacity, which saves time and money. So this work will help to
make tests of battery related power electronics faster, cheaper and more flexible.
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A Used Hardware

In this work several hardware has been used. These have been

• a real time system (RTS) that calculates the battery model and controls the

• bidirectional power source, which is used as power amplifier for the battery emulator,

• and a programmable DC source as well as

• a switchable load to create a bidirectional battery emulator current.

The setup of the hardware is shown in Fig. 5.1 on page 60. The RTS is described in Section 5.1,
while the specifications of the other hardware are listed below. Excerpts of the data sheets of the
used batteries are listed afterwards.

Power Source

As power amplifier a bidirectional power source TC.GSS.32.600.400.S from Regatron was used.
Its specifications are listed in Table A.1. More information can be found at [9].

Parameter Value

AC line voltage 3× 360− 440 V
AC line frequency 48− 62 Hz
DC power Range 0−±32 kW
DC voltage Range 0− 600 V
DC current range 0−±66 A
static accuracy load regulation < ±0.1% FS
static accuracy line regulation < ±0.1% FS
response time load regulation < 2 ms

Table A.1: Specifications of the TC.GSS.32.600.400.S bidirectional power source
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Programmable DC source

To create a variable battery emulator current a Regatron TopConQuadro TC.P.16.600.400.S
programmable source was used. Its specifications are listed in Table A.2. More information can
be found at [8].

Parameter Value

AC line voltage 3× 360− 440 V
AC line frequency 48− 62 Hz
DC power Range 0− 16 kW
DC voltage Range 0− 600 V
DC current range 0− 32 A
static accuracy load regulation < ±0.1% FS
static accuracy line regulation < ±0.1% FS
response time load regulation < 2 ms

Table A.2: Specifications of the TC.GSS.32.600.400.S bidirectional power source

Manually Switchable Load

Since the programmable DC source can only provide energy, but not absorb, an additional load
was necessary. This load was a manually switchable load. A picture of it is shown in Fig. A.1.

Figure A.1: Picture of the manually switchable AC load
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Originally, the load is a three phase AC load with maximum 9 kW switchable in 600 W steps. The
according internal circuit of the load is shown in Fig. A.2. Via smart wiring and switch settings
there are a lot of possible overall resistor values. Section 5.3 deals with how the combination
of the programmable DC source and the load can be used to create a variable battery emulator
current in both directions.
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Figure A.2: Internal circuit of the switchable load
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Figure A.3: Excerpt of the data Sheet of a VISION 6FM150X Lead-acid battery
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Figure A.4: Data Sheet of a EiG ePLB C020 Li-ion battery
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B Computed Parameters

Several EEC models have been parametrized in Chapter 3 on the basis of measurements from an
ePLB C020 Li-ion battery (cf. Section 1.4.3). The particular parameters of these parametriza-
tions are listed below.

Parameters of OCV Model Parametrization

This section contains the parameters of the open circuit voltage (OCV) models parametrized in
Section 3.1.1. The comparison of the accuracy of the model in Table 3.1 is based on the values
of Table B.1 to B.6. The model name and its equation is given in the captions of the tables.

Parameter Value

E0 3.664
c1 0.09043
c2 -0.1481

Table B.1: Nernst: voc = E0 + c1 ln(SoC) + c2 ln(1− SoC)

Parameter Value

c0 3.854
c1 0.1578
c2 -0.2145
c3 1 39e=7
c4 -0.3755

Table B.2: Zheng: voc = c0 + c1 ln(SoC) + c2 ln(1− SoC) + c3
1

SoC + c4 SoC

RC Models

Various mathematical models to model the SoC dependency of the passive components have
been analyzed. The results of the parameter fitting are shown in Table B.7 to B.12. These
parametrizations are the basis of the R2in Table 3.2.
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Computed Parameters

Parameter Value

E0 3.471
A 0.706
B 2.254
K ·Q 0.006815

Table B.3: OCV part of the Modified Shepherd Model: voc = E0 −K ·Q 1
SoC +Ae−B(1−SoC)

Parameter Value

E0 3.49
A 0.6918
B 2.395
K ·Q 0.008779
SoC0 0.01009

Table B.4: OCV part of the extended Modified Shepherd Model: voc = E0 − K · Q 1
SoC+SoC0

+

Ae−B(1−SoC)

Parameter Value

Ri 1.7401 mW

R1 1.7159 mW

C1 59.455 kF

Table B.7: EEC model with one RC-element and constant component values

Parameter Value

a1 -0.685
a2 90.03
a3 2.718
a4 1.439
a5 1.677
a6 0.914

Table B.5: Lam: voc = a1e−a2SoC + a3 + a4SoC + a5e−
a6

1−SoC

Parameter Value

c0 -0.660
c1 92.74
c2 3.356
c3 1.347
c4 -2.16
c5 1.647

Table B.6: Chen and Rincón-Mora: voc = c0e−c1SoC + c2 + c3SoC + c4SoC
2 + c5SoC

3
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Computed Parameters

Parameter
Value

Ri R1 C1

c0 2.175 mW 2.065 mW 48.06 kF
c1 −0.7891 mW −0.7592 mW 20.66 kF

Table B.8: EEC model with one RC-element and component values modeled as straight line: c0+c1 ·SoC

Parameter
Value

Ri R1 C1

c0 2.635 mW 3.020 mW 24.30 kF
c1 −1.360 mW −1.737 mW 49.88 kF
c2 −10.89 mW −17.48 mW 297.4 kF
c3 26.41 mW 41.40 mW −503.8 kF
c4 −15.5 mW −24.23 mW 173.4 kF

Table B.9: EEC model with one RC-element and component values modeled as polynomial 4th order:
c0 + c1 · SoC + c2 · SoC2 + c3 · SoC3 + c4 · SoC4

Parameter
Value

Ri R1 C1

a 0.688 mW 8.106 µW −184.8 F
b −0.3856 −2.702 −2.847
c 0.7919 mW 1.498 mW 65.52 kF

Table B.10: EEC model with one RC-element and component values modeled with a · SoCb + c
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Computed Parameters

Parameter
Value

Ri R1 C1

a 5.242 mW 1.358 mW −35.45 kF
b −11.39 −4.583 −322.3
c 1.574 mW 1.447 mW 61.45 kF

Table B.11: EEC model with one RC-element and component values modeled with a · eb·SoC + c

Parameter
Value

Ri R1 C1

a 8.468 mW 1.606 mW 1.028 · 108 F
b −15.29 −4.764 2.632
c 1.717 mW 1.447 mW −1.028 · 108 F
d −0.1053 −0.01215 2.632

Table B.12: EEC model with one RC-element and component values modeled with a · eb·SoC + c · ed·SoC
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C Simulation results

Chapter 4 discusses the validation of the battery models on the basis of measurements of a
standardized FTP-72 driving cycle (federal test procedure). Overall, six models have been tested,
four different equivalent electrical circuit (EEC) models with one RC-element, and two extended
Modified Shepherd Models (eMSM), one parametrized with measurements and one with data
sheet values (cf. Table 4.2 on page 51). Four different ranges have been analyzed

• a repeatedly applied FTP-72 driving cycle to a full battery until the battery was completely
discharged

• a single FTP-72 driving cycle at an initial state of charge (SoC) of 98.89%,

• a single FTP-72 driving cycle at an initial SoC of 51.12%, and

• a single FTP-72 driving cycle at an initial SoC of 9.06%.

Out of these 24 simulations several weighted errors have been calculated (see Table 4.3 on page 52).
The according simulated battery voltages are shown subsequently in Figure C.1 to C.24.
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Repeatedly Applied FTP-72 Cycle to a Full Battery

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2
B
at
te
ry

v
ol
ta
ge

[V
]

Measured voltage Simulated voltage

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

·104

−2

0

2

4

6

8

Time [s]

R
el
at
iv
e
er
ro
r
[%

]

Figure C.1: EEC model with one RC-element, OCV and components are modeled with look-up tables
(model #1 in Table 4.2)
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Figure C.2: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are modeled dependent of the SoC with a polynomial of the 4th order
(model #2 in Table 4.2)
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Figure C.3: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are modeled dependent of the SoC as straight line (model #3 in Table 4.2)
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Figure C.4: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are constant (model #4 in Table 4.2)
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Figure C.5: eMSM parametrized with measurement data (model #5 in Table 4.2)
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Figure C.6: eMSM parametrized with data sheet curves (model #6 in Table 4.2)
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Simulation results

One FTP-72 Cycle with an Initial SoC of 98.89%
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Figure C.7: EEC model with one RC-element, OCV and components are modeled with look-up tables
(model #1 in Table 4.2)
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Figure C.8: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are modeled dependent of the SoC with a polynomial of the 4th order
(model #2 in Table 4.2)
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Figure C.9: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are modeled dependent of the SoC as straight line (model #3 in Table 4.2)
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Figure C.10: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are constant (model #4 in Table 4.2)
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Figure C.11: eMSM parametrized with measurement data (model #5 in Table 4.2)

4.00

4.05

4.10

4.15

4.20

B
at
te
ry

v
ol
ta
g
e
[V

]

Measured voltage Simulated voltage

0 200 400 600 800 1000 1200 1400 1600

−2.0

−1.5

−1.0

−0.5

0.0

Time [s]

R
el
at
iv
e
er
ro
r
[%

]

Figure C.12: eMSM parametrized with data sheet curves (model #6 in Table 4.2)
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Simulation results

One FTP-72 Cycle with an Initial SoC of 51.12%
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Figure C.13: EEC model with one RC-element, OCV and components are modeled with look-up tables
(model #1 in Table 4.2)
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Figure C.14: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are modeled dependent of the SoC with a polynomial of the 4th order
(model #2 in Table 4.2)
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Figure C.15: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM, com-
ponent values are modeled dependent of the SoC as straight line (model #3 in Table 4.2)
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Figure C.16: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are constant (model #4 in Table 4.2)
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Figure C.17: eMSM parametrized with measurement data (model #5 in Table 4.2)
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Figure C.18: eMSM parametrized with data sheet curves (model #6 in Table 4.2)
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Simulation results

One FTP-72 Cycle with an Initial SoC of 9.06%
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Figure C.19: EEC model with one RC-element, OCV and components are modeled with look-up tables
(model #1 in Table 4.2)

3.0

3.1

3.2

3.3

3.4

3.5

3.6

B
at
te
ry

v
o
lt
ag

e
[V

]

Measured voltage Simulated voltage

0 200 400 600 800 1000 1200 1400 1600
1

2

3

4

5

6

7

Time [s]

R
el
a
ti
ve

er
ro
r
[%

]

Figure C.20: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are modeled dependent of the SoC with a polynomial of the 4th order
(model #2 in Table 4.2)
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Figure C.21: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM, com-
ponent values are modeled dependent of the SoC as straight line (model #3 in Table 4.2)
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Figure C.22: EEC model with one RC-element, OCV is modeled with the OCV part of the eMSM,
component values are constant (model #4 in Table 4.2)
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Figure C.23: eMSM parametrized with measurement data (model #5 in Table 4.2)
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Figure C.24: eMSM parametrized with data sheet curves (model #6 in Table 4.2)
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D Measurement Data of Offset Correction

Measurements showed that there are offset errors between set values at the real time system (RTS)
and the actual value of the power source (cf. Fig. 5.4 for the measurement setup). Furthermore
there is an error between the actual value and the value shown at the RTS. This goes both for
the voltage as well as the current. In Section 5.2.2 these errors have been reduced by using a
linear correction function. The underlying measurements are shown in Table D.1 to D.4.

Set value [V] Measured value [V] Absolute error [V]

10 11.2 1.2
25 26.3 1.3
50 51.5 1.5

100 101.3 1.3
150 151.0 1.0
200 201.0 1.0
250 251.1 1.1
300 301.0 1.0
350 350.8 0.8
400 400.7 0.7
450 450.9 0.9
500 500.7 0.7
550 550.8 0.8
600 600.4 0.4

Table D.1: Offset between voltage RTS set values and actual voltages
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Measurement Data of Offset Correction

Actual value [V] Displayed value [V] Absolute error [V]

10 11.0 1.0
25 26.1 1.1
50 51.4 1.4

100 101.6 1.6
150 151.5 1.5
200 201.7 1.7
250 251.9 1.9
300 302.0 2.0
350 351.9 1.9
400 402.0 2.0
450 452.4 2.4
500 502.4 2.4
550 552.5 2.5
600 602.4 2.4

Table D.2: Error between actual voltage value (measured by a multimeter) and displayed value at the
RTS

Set value [A] Measured value [A] Absolute error [A]

1.00 1.096 0.10
2.00 2.090 0.09
3.00 3.090 0.09
4.00 4.100 0.10
5.00 5.100 0.10
6.00 6.100 0.10
7.00 7.100 0.10
8.00 8.100 0.10
9.00 9.100 0.10
9.50 9.600 0.10

Table D.3: Absolute error between RTS current set values and actual current

Set value [A] Measured value [A] Absolute error [A]

1.01 1.045 0.05
1.98 2.050 0.05
2.99 3.038 0.04
4.00 4.040 0.04
5.00 5.030 0.03
6.00 6.030 0.03
6.98 7.000 0.00
7.98 8.020 0.02
8.99 9.010 0.01
9.49 9.510 0.01

Table D.4: Absolute error between actual current value (measured by a multimeter) and displayed value
at the RTS
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