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Abstract

Multi-Context Systems (MCS) are a versatile and powerful framework for heterogeneous, non-
monotonic knowledge-integration. MCS allow information exchange between legacy information
systems, i.e., knowledge bases. Inconsistency occurs easily in such scenarios since it is impossible
to foresee all effects and consequences of the information exchange. Inconsistency makes an
MCS useless, just as in other formal systems; thus, inconsistency management is a major issue.

Resolving inconsistency by purely technical means is guaranteed to yield a consistent system,
but it can easily result in a system where the remaining information exchange leads to unwanted
or even dangerous conclusions. Consider, for example, an MCS that is employed in a hospital
and the billing subsystem became inconsistent because of a patient with insufficient insurance.
Automatically resolving the inconsistency by declaring the patient to be healthy and sending her
home instead of administering proper treatment surely is a solution, but it hardly is a valid one.
On the other hand, manually resolving all inconsistencies is not feasible since there usually exist
too many possible resolutions to consider each of them individually.

This thesis therefore addresses the issues of inconsistency management in MCS with a
focus on using preferences to identify and automatically select preferred and valid resolutions
of inconsistency, to aid a human operator by significantly reducing the number of possible
resolutions to consider.

The novelty of this approach is on the one hand a technique to enable meta-reasoning
about inconsistency resolutions within the MCS framework, i.e., preferences expressed in any
knowledge formalism can be incorporated to identify preferred resolutions and filter unwanted
ones. On the other hand, an extension of the MCS framework is introduced to enable the use of
legacy inconsistency management methods directly at each information system.

This thesis consists of three main parts. The first investigates basic notions to identify and
explain inconsistency in MCS. These notions are called diagnosis and explanation of inconsistency.
Refined notions are investigated and shown to be reducible to the basic notions, and splitting-set
based conditions are analyzed which allow to modularly obtain diagnoses and explanations from
parts of a given MCS. Finally, a logic program is given that computes all explanations of an MCS.

The second part of this thesis is dedicated to the identification and selection of most-preferred
diagnoses and the filtering of unwanted diagnoses. Several transformation-based approaches are
introduced which allow a transformed MCS to reason about the diagnoses of the original MCS,
i.e., these approaches enable meta-reasoning on diagnoses in MCS. The necessary extended
notions of diagnosis are shown to be of the same complexity as the basic notion, except for
one, which is of higher complexity but still shown to be worst-case optimal. Therefore, the new
meta-reasoning approach incurs no unnecessary complexity-wise cost.
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In the third part, the MCS framework is extended to incorporate existing, formalism-specific
methods of inconsistency management (e.g., belief revision for classical logics, or updates for
logic programs). In such an MCS where each knowledge base comes with local inconsistency
management, the overall system can only become inconsistent due to cyclic information exchange.
Furthermore, the extended framework is reducible to ordinary MCS and checking consistency in
the extended framework is of the same computational complexity as in ordinary MCS.



Kurzfassung

Multi-Context Systeme (MCS) sind ein formales und ausdruckstarkes Rahmenwerk (engl. fra-
mework) um Wissen zwischen verschiedenen, nicht homogenen, Informationssystemen aus-
zutauschen. Die Heterogenität von MCS ermöglicht den Informationsaustausch auch zwischen
Altsystemen und damit die Nutzung von bestehenden Wissensbasen in neuen Zusammenhängen.
Da es allerdings unmöglich ist, sämtliche Konsequenzen des Informationsaustausches im Voraus
zu bestimmen, entsteht dabei sehr leicht sogenannte Inkonsistenz, d.h. der Informationsaustausch
führt zu Widersprüchen. Ein formales System, das inkonsistent ist, bringt keinen Nutzen, da das
System entweder keinerlei Schlussfolgerungen erlaubt, oder auch falsche Schlussfolgerungen als
richtig deklariert. Das Behandeln und Beheben von Inkonsistenz ist daher ein wichtiges Thema
für Wissenssysteme.

Theoretisch kann man Inkonsistenz als rein technisches Problem betrachten und jede mögli-
che Behebung der Inkonsistenz daher gleichberechtig auffassen. In der Praxis kann dies jedoch
gefährliche Konsequenzen haben. Als Beispiel denke man an ein Krankenhaus, in welchem ein
Teilsystem zur automatisierten Erstellung von Rechnungen, ausgelöst durch eine Patientin mit
unzureichender Krankenversicherung, inkonsistent wird. Die Inkonsistenz ließe sich dadurch
beheben, dass die Patientin für gesund erklärt wird und diese dann ohne die medizinisch not-
wendige Behandlung nach Hause geschickt wird. Die Inkonsistenz ist damit zwar behoben, aber
sicher nicht auf eine zufriedenstellende Art und Weise. Eine manuelle Behebung der Inkonsistenz
könnte diesen Fall vermeiden, ist aber mit dem Problem verbunden, dass es oftmals eine große
Zahl an Möglichkeiten gibt, Inkonsistenz zu beseitigen. Oft ist es für einen Menschen daher
schlicht unmöglich, jede einzelne davon gesondert zu betrachten.

Diese Arbeit untersucht daher die Probleme und Lösungsmöglichkeiten von Inkonsistenz
(Konsistenzmanagement) in MCS, wobei ein besonderes Augenmerk auf die Verwendung von
Präferenzen gerichtet wird, um die bestmögliche Art der Auflösung der Inkonsistenz zu identifi-
zieren. Die automatisierte Auswahl solch präferierter und valider Lösungen unterstützt letztlich
diejenige Person, welche ein MCS bedient und betreibt, da sie nur noch jene Lösungen der
Inkonsistenz in Betracht ziehen muss, welche auch relevant sind.

Das Novum dieser Dissertation ist einerseits eine Technik für sogenanntes Meta-Reasoning,
welche es erlaubt innerhalb des MCS Frameworks über präferierte Lösungen zu schließen, d.h. die
Präferenzen müssen nicht in einem bestimmten Formalismus gegeben werden, sondern jeder
Formalismus, der in einem MCS eingesetzt werden kann, kann auch benutzt werden um die
beste Behebung der Inkonsistenz zu identifizieren. Andererseits wird im Folgenden auch eine
Erweiterung des MCS Frameworks präsentiert, welche es erlaubt bestehende Methoden des
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Konsistenzmanagements zu nutzen, um lokal die Konsistenz einzelner Informationssysteme zu
garantieren.

Der Hauptteil der vorliegenden Arbeit ist in drei Teile gegliedert. Im ersten Teil werden
grundlegende Konzepte untersucht, um Inkonsistenz in MCS zu beseitigen und um die Ursachen
für Inkonsistenz zu identifizieren. Diese Konzepte werden „Diagnosis“ (Diagnose) und „Expla-
nation“ (Erklärung) von Inkonsistenz genannt. Es werden mögliche Verfeinerungen untersucht,
wobei sich zeigt, dass die Verfeinerungen auf die grundlegenden Konzepte zurückgeführt werden
können. Weiters werden, basierend auf sogenannten Splitting-Sets, Eigenschaften identifiziert, die
es erlauben, obige Konzepte eines gegebenen MCS dadurch zu erhalten, dass man die Konzepte
nur auf Teilen des Systems berechnet und diese dann entsprechend kombiniert.

Der zweite Teil dieser Arbeit untersucht verschiedene Möglichkeiten, wie die am meisten prä-
ferierten Diagnosen eines inkonsistenten MCS identifiziert und selektiert werden können. Dabei
werden mehrere Transformations-basierte Ansätze entwickelt, welche es erlauben innerhalb eines
transformierten MCS über die Diagnosen des originalen MCS zu schließen, d.h. diese Trans-
formationen ermöglichen Meta-Reasoning über Diagnosen innerhalb des MCS Frameworks. Es
wird gezeigt, dass die dafür notwendigen erweiterten Begriffe von Diagnose mit einer Ausnahme
die gleiche Berechenbarkeitskomplexität haben wie die grundlegende Diagnose. Die Ausnahme
hat zwar höhere Komplexität, ist aber dennoch optimal im Bezug auf den schlechtesten Fall
(engl. worst-case optimal). Daraus folgt, dass dieser neue Ansatz für Meta-Reasoning keine
unnötigen Kosten im komplexitätstheoretischen Sinn verursacht.

Im dritten Teil wird das MCS Framework um lokales Konsistenzmanagement erweitert, damit
bereits existierende Methoden des Konsistenzmanagements für bestehende Formalismen (z.B.
Belief Revision für klassische Logiken oder Updates für Logikprogramme) lokal genutzt werden
können, sobald ein Informationssystem eines MCS auf dem entsprechenden Formalismus basiert.
Es zeigt sich, dass Inkonsistenz nur noch durch zyklischen Informationsfluss entstehen kann, wenn
jedes Informationssystem eines MCS mit lokalem Konsistenzmanagement ausgestattet ist. Ferner
ist das erweiterte Framework rückführbar auf das originale und es wird gezeigt, dass der Test, ob
Inkonsistenz im erweiterten Framework vorliegt, die gleiche Berechenbarkeitskomplexität hat,
wie im originalen Framework.
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CHAPTER 1
Introduction

As human beings we are used to combine knowledge from various sources of information.
When learning something new, we read a book or two, we discuss the matter with our friends
and colleagues, and we maybe also read some magazine dedicated to the matter. Combining
all the information gives us new insights and in most cases we profit from the multitude of
information sources. Every day we gather information from different sources to make up our
mind, e.g. information from the local newspapers, from books written in other languages, and
from colleagues. For computers, however, this process of considering information from very
different sources to gain new knowledge and insights, is still a difficult and largely unsolved
problem.

One of the reasons for that is the fact that computers use rigorous and syntactically restricted
languages (i.e., formal languages) and they cannot cope with expressions that are written in
another formal language. Computerised sources of knowledge often “speak” different formal
languages, since for many areas there are specifically-crafted formal languages that make it
easy to express knowledge in this area, while expressing knowledge outside this area is often
cumbersome or outright impossible. This focus on small areas of knowledge resulted in the
development of a plethora of formal languages, each having convincing reasons to exist, and
there does not seem to be a unifying language on the horizon to express all kinds of knowledge.
Like Esperanto, a universal language intended to be spoken by all humankind, there have been
attempts to establish such a language for computers. But they largely failed like Esperanto.
Integrating knowledge from different sources therefore must be able to build bridges between
formal languages, without trying to abolish any of them.

The problem is not new and especially since the rise of the world wide web there have been
numerous approaches to enable computers to integrate knowledge from different sources. Most
of these approaches, however, require that the knowledge sources provide the information in a
formalism from a given homogeneous class, e.g. all sources must be databases of the same kind
as in the area of database fusion and information integration; or all sources must be ontologies as
in the area of modular ontologies; or all sources must be formal (usually propositional) logics as
in the area of modal logics and many-world interpretations. A restriction which applies to many
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proposed solutions, is the exclusion of cyclic information exchange, i.e., it is not possible that
two such knowledge systems mutually acquire knowledge from each other. Another restriction is
the exclusion of nonmonotonic reasoning, although it is very natural to humans since it captures
reasoning like “if the timetable at the train station does not show that a train departs at 13:15, then
there is no train departing at that time”.

One approach to addresses the problem of integrating knowledge from various sources
of information is the framework of Multi-Context Systems (MCS). The MCS framework is
distinguished in that it allows knowledge specified in different (heterogeneous) formalisms to be
exchanged in cyclic and possibly nonmonotonic ways. In an MCS, an ontology can derive new
information from the absence of information in a database, while the database can simultaneously
use the knowledge of the ontology to derive new database entries.

The knowledge exchange between knowledge systems (called “contexts”) is specified in
MCS using so-called bridge rules. A bridge rule consists of a head and a body, where the head
specifies what information is derived at which context, and the body specifies all conditions that
must be met to actually derive the information in the head. For example, the following bridge rule
states: if context 1 does not know about an allergy against strong antibiotics (allergy_strong_ab),
then context 4 receives the information that strong antibiotics are allowed (allow_strong_ab).

(4 : allow_strong_ab)← not (1 : allergy_strong_ab).

The head is on the left side of the← while the body of this bridge rule is everything on the right.
Observe that this bridge rule is nonmonotonic, since it derives new information (allow_strong_ab)
from the absence of some other information (allergy_strong_ab).

Since the information in the head and all information referred to in the body of a bridge
rule may originate from different formal languages, bridge rules are a simple yet powerful way
to express information exchange between different knowledge sources. Note that bridge rules
are assume to be crafted by a human designer who decides which information in one context is
related to what information in another context. The MCS framework therefore does not solve the
problem of finding corresponding pieces of knowledge in different formalisms, but it solves the
problem of actually combining the knowledge once it is established how the knowledge should
interact. Nonmonotonic bridge rules and heterogeneous contexts make MCS a powerful and
versatile framework and it thus forms the basis of this thesis.

1.1 Motivation

Consider a hospital where a patient database, a medical ontology, and an expert system suggesting
possible treatments are connected via bridge rules. Assume that the patient database states that the
patient Joe has a certain type of pneumonia and a rare allergy to certain antibiotics. The medical
ontology derives from the type of pneumonia that the only available medication is a certain
antibiotic. Now the expert system combines these pieces of information and concludes that Joe
necessarily needs the antibiotics he is allergic to. Because the only option is forbidden by the
allergy and Joe requires treatment, the expert system becomes inconsistent. If this combination
of rare events was not anticipated, the whole system becomes inconsistent and it is not able to
conclude anything useful.
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In this example, every context by itself is consistent, but their interaction leads to an inconsis-
tency, so a local inconsistency management clearly is not enough. Modifying the content inside a
context also is not always possible: consider for example two companies that agree to share some
of their business information; if the resulting MCS is inconsistent, neither company is willing
to drop its own business data only to satisfy some constraints raised by the other. We therefore
consider inconsistency in terms of flawed information exchange, i.e., we identify bridge rules
as reasons of inconsistency. The first important issue then is to identify those bridge rules that
cause inconsistency, i.e., we want to explain the reasons of inconsistency and separate reasons if
there are multiple inconsistencies in one MCS. The next question is how the inconsistency can be
removed from the MCS, i.e., we want to repair the inconsistency. As it turns out, explanations
and repairs (called diagnoses) of inconsistency in an MCS are in some sense dual concepts that
identify the same set of bridge rules as culprits.

A diagnosis is a possible way to resolve the inconsistency. All diagnoses identify all ways
to do so, but there usually exists a large number of diagnoses of the inconsistencies in an MCS.
In the hospital example above, the inconsistency can be removed by modifying the information
flow so that the patient is considered healthy (not requiring treatment), or the information about
allergy is disregarded and the medication against pneumonia is given, which then possibly causes
an allergic reaction. It is clear that such a case cannot be resolved automatically, since additional
expert knowledge (i.e., an experienced medical doctor) is required. So, not all inconsistencies
should be treated automatically, but the person(s) responsible for removal shall be supported as
much as possible.

Assume, for example, that the cause of the inconsistency is not the presence of an allergy, but
the fact that the automated billing system of the hospital does not allow a required medication,
because the medication is not covered by the health insurance of the patient. Now there are
two possibilities to remove the inconsistency: either ignore the illness of the patient, or ignore
the issue with the health insurance. Treating the patient and ignoring the billing issue then
surely is the preferred solution. To support those who are accountable for the removal of the
inconsistency, the latter diagnosis could be singled out while all less preferred diagnoses are not
shown. Selecting from the set of possible diagnoses those diagnoses that are the most preferred
therefore is the second major issue regarding inconsistency management in MCS.

Inconsistency, on the other hand, has been studied for many knowledge formalisms and
mechanisms to cope with and resolve inconsistency have been developed for these formalisms. For
example, in the area of classical logic many methods to integrate new and possibly contradicting
information have been investigated in the area of belief revision. There are many reasons for
domain-specific solutions dealing with inconsistency. Therefore we do not want to ignore these
solutions, but applying them globally to an MCS does not work either, since these methods are
specifically tailored to certain logical formalisms while in an MCS many different formalisms
may be used. The third big issue therefore is to devise ways such that existing solutions for
inconsistency management may be applied to formalisms used in the contexts of MCS whenever
these solutions fit.
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1.2 Background and State-of-the-Art

The MCS framework originates from so-called MultiLanguage Systems (cf. [73, 74]), where
hierarchically ordered logics interact via a specific kind of bridge rule resulting in a system that is
similar to modal logics. In [114] Multi-Context Systems are introduced where every context is
a propositional logic, but information exchange between them may be nonmonotonic. In [35]
Multi-Context Systems are advanced by allowing contexts of an MCS to employ default theories,
hence possibly nonmonotonic contexts exchange information via possibly nonmonotonic bridge
rules. Finally, in [29], the MCS framework is extended to allow heterogeneous contexts, i.e.,
each context can use another logical formalism (including nonmonotonic ones) and bridge rules
also may be nonmonotonic. This thesis is based on the Multi-Context Systems framework as
introduced there.

At the beginning of this work, inconsistency in MCS only has been addressed in [16], later
presented in [17,19], where several algorithmic resolution strategies are proposed. The resolution
of inconsistencies is local, trust-, and possibly provenance-based. Due to its local algorithmic
description, the overall result is not easily described in formal terms. Furthermore, every context
is required to use a strict total-order on contexts (representing trust) to enable the resolution of all
inconsistencies. If the trust order is partial, not all inconsistencies can be resolved.

To globally identify the reasons of inconsistency, we use Reiter’s diagnosis approach in [113]
as a starting point. The most important difference to MCS is that Reiter’s approach is given for
monotonic logics, while MCS are nonmonotonic reasoning systems. A result of this difference is
that our diagnosis notion is a pair of sets (of bridge rules), while Reiter’s diagnosis is simply a
set (of formulas). Confidence in this choice is strengthened by the fact that other approaches at
inconsistency explanations for nonmonotonic formalisms also introduced pairs of sets (cf. [84]).

A large part of this thesis is dedicated to the selection of most preferred diagnoses among all
possible diagnoses. While preference on diagnoses is easy to capture by the mathematical notion
of a preference order (i.e., a transitive relation), finding a formalism to specify preferences in a
natural way (i.e., a formalism for preference elicitation) seems to be much harder. The approach
taken by CP-nets [25, 46] for specifying preferences is promising, hence we use it together with
the more general notion of preference orders.

Regarding the treatment of inconsistency locally within one formalism, we find many ap-
proaches based on belief revision in classical logic (cf. the survey [105]) whose postulates of
rational belief revision (AGM postulates) have been applied also to other formalisms. Another in-
teresting application of inconsistency removal is the area of updates in logic programming [2, 26],
since bridge rules of MCS are similar to rules in nonmonotonic logic programming.

More details on related work are given in Chapter 6.

1.3 Contributions and Methodology

This thesis addresses the three main issues of inconsistency management in Multi-Context
Systems described above. Before that, however, it must be clarified what constitutes inconsistency
with respect to MCS. There are two basic possibilities: an MCS is considered inconsistent, if there
are two contexts whose beliefs contradict each other, or an MCS is inconsistent if the semantics
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yields no useful result. The former is closer to the classical understanding of inconsistency, but it
does not seem to be suitable for MCS. Consider for example an MCS where one context believes
is_raining and another context believes the opposite, i.e., ¬is_raining . If the two contexts
represent weather stations at different locations, then these beliefs are perfectly valid. Here the
same symbol denotes two different real world entities (the weather at two different locations).
In general, the meaning or semantics of a statement may vary from one context to another.
Furthermore, an important application of MCS is the realisation of multiple communicating
agents where the possibility to model conflicts of opinion is paramount. In this case, it does not
even matter whether the weather stations are at different locations, since these express beliefs
at different contexts/agents and opposite views are bearable. The latter notion of inconsistency
therefore is more suitable for MCS, hence an MCS is considered to be inconsistent, if the
semantics of MCS yields no result (a formal description follows in Chapter 2).

Our contributions to the main issues of inconsistency management in MCS are as follows.

• We develop basic notions to (resolve) and explain inconsistency in MCS: the diagnosis
notion allows to identify all possible ways to repair an MCS by removing bridge rules
or making them condition-free (such that they always add information); the notion of
explanation identifies the reasons of an inconsistency and is able to separate multiple
sources of inconsistency. We further investigate refined notions that apply more fine-grained
modifications to bridge rules. We prove that these refinements can be obtained from the
regular notions on a transformed version of the original MCS. Diagnoses or explanations of
an MCS that are subset-minimal with respect to all diagnoses or explanations, respectively,
point out bridge rules that are relevant for inconsistency.

We further prove that under certain conditions, the (subset-minimal) diagnoses or expla-
nations of an MCS may be obtained by combining the (subset-minimal) diagnoses or
explanations, respectively, of parts of the MCS. This may aid in the computation of these
notions since it allows for a significant reduction in search space. Some of these results are
also used as stepping stones to prove the correctness of our approaches to preference. We
also investigate an approach to decompose a context of an MCS; again, this may result in a
smaller search space, but it also allows to de-centralise a given MCS.

Finally, to complement the computation of diagnoses given in [117], we develop a program
that computes all explanations of an MCS.

• To select the best diagnoses of an MCS, we propose two basic methods, one allows to filter
out those diagnoses that fail some required properties, the other is to compare diagnoses
with each other and select the most preferred one. For the former, we use filters, for the
latter we use preference orders. Both are general concepts that can capture many concrete
instances to express unwanted or preferred diagnoses. Since the MCS framework itself is
flexible and open to integrate information from many different logical formalisms, we do
not restrict the formalism in which filters and preferences are specified, i.e., the formalism
is open to the user’s choice.

To realise the selection of diagnoses in such an open way, we develop several transforma-
tions to enable meta-reasoning about diagnoses in MCS, i.e., given an MCS and a filter or
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preference order, a transformed MCS is constructed such that the diagnoses of the original
MCS also occur in the transformed MCS, but an additional context is able to observe these
diagnoses and apply some custom reasoning. Since the observer context is not restricted
to any particular formalism, this allows that filters and preferences are expressed in any
formalism that can be employed as a context of an MCS. Using CP-nets (cf. [25]) to specify
preference among diagnoses is also possible using the general approach for preference.
The transformations are shown to allow correct selection of diagnoses that pass the filter or
that are most preferred, respectively.

In the course of this, two extensions of the notion of diagnosis are introduced. The
computational complexity of these notions is analysed and by the use of reductions, the first
notion is shown to be of the same complexity as checking whether a pair of sets of bridge
rules constitutes a diagnosis that is subset-minimal among all possible diagnoses. The
second notion is shown to be of higher complexity using a genuine algorithm. Nevertheless
the notion is still worst-case optimal, because it is shown that the basic problem of selecting
most-preferred diagnoses also has presumably higher complexity.

• The notion of a diagnosis in MCS helps to restore global consistency, yet it may be the case
that much better and more fine-grained resolutions of inconsistency are possible at the local
level of each employed context. Our contribution to that is a significant generalisation of
the MCS framework, which allows that each context is equipped with a method to modify
its knowledge base given the information from other contexts. Our approach, which we call
managed Multi-Context Systems (mMCS) allows the application of arbitrary operations on
knowledge bases, but most importantly, it also allows the use of local, consistency-restoring
methods (e.g., belief revision). Furthermore, it allows that each context is enhanced
by those consistency-restoring methods that fit best to the formalism employed by the
context, e.g., a belief revision operator for classical logics or an update mechanism for
logic programs.

We prove for any mMCS where every context is equipped with a manager guaranteeing
local consistency of the context, that the mMCS is consistent if it contains no cyclic
information flow. Furthermore, for an mMCS with such context managers and cyclic
information flow, it holds that every inconsistency explanation includes a cycle. In other
words, in an mMCS where each context manager guarantees consistency of its local context,
the source of inconsistency always is some cyclic information exchange.

Finally, we show by a reduction to the ordinary MCS framework, that deciding whether an
mMCS is consistent has the same computational complexity as deciding whether an MCS is
consistent, assuming that the complexity of the MCS includes the complexity of managing.
This also shows that mMCS are not more expressive than MCS, but since we also show
that the mMCS framework captures the MCS framework, it establishes that mMCS allow a
more detailed study of inconsistency management in MCS without additional cost.

1.4 Structure

This thesis is structured as follows.
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• Chapter 2 introduces preliminary notions of Multi-Context Systems and accompanying
notions of abstract logics, bridge rules, and equilibrium semantics.

• In Chapter 3 the basic notions for explaining and removing inconsistency in MCS are
introduced and investigated; the chapter contains refinement and modularity results for
these notions, it states conversion and computational complexity results and it shows an
encoding in logic programming to compute explanations.

• In Chapter 4 open and general ways to discriminate between possible ways of removing
inconsistency in MCS are investigated. Two basic ways, filters and preferences, are given
as well as multiple ways to realise these in an MCS using meta-reasoning transformations
in such a way that the user may choose a concrete formalism for specifying a filter
or preference. Correctness of these transformations is proven and the computational
complexity of the transformations and additional notions is shown.

• In Chapter 5 managed Multi-Context Systems are introduced, where each context is
accompanied by a manager that is tailored to the specific formalism used in the context.
While in MCS the information flow only adds information, in an mMCS the information
from other contexts may trigger the manager to perform an arbitrary action, like applying
a belief revision operator on a context using classical logic, or applying logic program
updates on a context employing an answer-set program. It is investigated how consistency-
ensuring managers influence the consistency of the overall system and the computational
complexity of mMCS and its expressiveness are shown to be the same as for ordinary MCS.

• Chapter 6 relates the work presented here with other approaches and solutions to inconsis-
tency in knowledge-exchange systems.

• Finally, Chapter 7 concludes this work and gives an outlook on open problems and future
work.

1.5 Publications

This thesis originates from a research project on MCS1, and is in part based on material that
has been published in preliminary form. Chapter 2 and Chapter 3 are based on and use material
from [52], [53], and [54]. The basic notions of diagnosis and explanation in Chapter 3 were
jointly developed with Peter Schüller (cf. [117]) and some of the conversion properties were also
analysed together (on the other hand, refinements of the basic notions, modularity properties,
and the logic programming encoding for explanation computation are the work of the author).
Related work in Chapter 6 also uses text from [53] and [54].

Chapter 4 on preferences is based on [55] and [126]; it uses material from these publications
but significantly extends these by a more rigid investigation of possible realisations of meta-
reasoning in MCS, and it corrects several issues with the original approach.

Chapter 5 on local inconsistency management is based on [32] and uses material from this
publication. It extends it by missing proofs and some minor corrections.

1Vienna Science and Technology Fund (WWTF) project ICT 08-020
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CHAPTER 2
The Multi-Context Systems

Framework

In this chapter we recall the framework of Multi-Context Systems (MCS) as introduced in [29],
which constitutes the basis of this thesis. MCS are a powerful framework for heterogeneous
nonmonotonic knowledge-integration, meaning that information specified in a large variety of
knowledge-representation formalisms can be exchanged. This exchange may be nonmonotonic,
i.e., not only the presence, but also the absence of information may be used to infer new infor-
mation. The MCS framework is based on three basic concepts: abstract logics to capture any
knowledge-representation formalism, bridge rules to specify the information exchange, and con-
texts which represent concrete instances of knowledge bases; an MCS then simply is a collection
of such contexts and their respective bridge rules. Finally, the semantics of an MCS is given in
terms of equilibria. In the following these concepts are presented in detail.

2.1 Abstract Logics

To cover all kinds of knowledge-representation formalisms, MCS capture each formalism using a
very general concept called an abstract logic (or just logic).

Definition 2.1. An abstract “logic” L, is a triple L = (KB,BS,ACC) where:

• KB is the set of knowledge bases of L. We assume each element of KB is a set of elements
(“formulas”).

• BS is the set of possible belief sets, where the elements of a belief set are statements that
possibly hold or, beliefs adopted by an agent.

• ACC : KB → 2BS is a function describing the semantics of the logic by assigning to
each knowledge base a set of acceptable belief sets.
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Intuitively, each knowledge base kb ∈ KB is a set of “well-formed formulas” while each
belief set bs ∈ BS is a set of “beliefs” (statements) that a reasoner may jointly hold. The
acceptability function ACC(kb) singles out, given a knowledge base kb ∈ KB, those sets of
beliefs that are acceptable according to some reasoning method given kb. ACC is a multi-valued
function to capture nonmonotonic formalisms, where a knowledge base may have multiple
acceptable belief sets (as e.g. in Answer-Set Programming [57, 71, 72], reasoning with Default
Theories [112], or in Abstract Argumentation [47]).

Depending on the concrete situation, e.g. given an existing legacy system or a theorem prover
for a specific logic, different formalisations for some logic might be used. Therefore there is no
fixed mapping between a given logic and an abstract logic representing the given logic.

An advantage of this very general approach is that various formalisms for knowledge rep-
resentation can be captured, e.g. relational databases, logic programs, description logics, and
propositional logic.

The following examples show how some typical knowledge-representation formalisms can be
captured using abstract logics. These logics are used throughout this thesis in various examples.

Example 2.1 (Classical Propositional Logic). To capture classical (propositional) logic over a
set Σ of propositional atoms, we may define:

• KBc = 2Σwff
is the set of all subsets of Σwff , where Σwff is the set of well-formed formulas

over Σ built using the connectives ∧,∨,¬,→;

• BSc = 2Σwff
, i.e., each set of formulas is a possible belief set; and

• ACCc returns for each set kb ∈ KBc of well-formed formulas a singleton set that
contains the set of formulas entailed by kb; if |=c denotes classical entailment, then
ACCc(kb) = {{F ∈ Σwff | kb |=c F}}.

The resulting logic LcΣ = (KBc,BSc,ACCc) captures entailment in classical logics. Following
common terminology, we call Σ the signature of the logic.

Observe that any tautological formula is entailed by any knowledge base, hence any bs ∈
ACCc(kb) for some kb ∈ KBc is infinite (given that Σ is non-empty). In practice, therefore
the formulas in knowledge bases and belief sets might be restricted to particular forms, e.g., to
literals; we denote the logic where belief sets are restricted to literals by LplΣ = (KB,BS,ACC),
where BS = {bs ∈ BSc | bs ⊆ {A,¬A | A ∈ Σ}}, KB = KBc, and

ACC(kb) = {{A ∈ Σ | kb |=c A} ∪ {¬A | A ∈ Σ and kb |=c ¬A}} .

Example 2.2. Consider a propositional logic based on the abstract logic of Example 2.1 to reason
about the “weather” conditions in a front lawn. We want to express whether the grass is wet,
whether it is raining, whether a rainbow can be seen and whether the lawn sprinkler is turned
on; so Σ = {grass_is_wet , rainbow_visible, is_raining , sprinkler_on} and the respective
abstract logic is LplΣ = (KB,BS,ACC).
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The following set T of formulas is used to express that the grass is wet if the sprinkler is on
or if it is raining, that the sprinkler is on or it is raining, and that no rainbow is visible.

T = {sprinkler_on ∨ is_raining ,

sprinkler_on → grass_is_wet ,

is_raining → grass_is_wet ,

¬rainbow_visible}

T is a knowledge base of LplΣ , i.e., it holds that T ∈ KB. The set of acceptable belief sets of
T is ACC(T ) = {S} where S = {grass_is_wet ,¬rainbow_visible}. Since LplΣ is constructed
such that only entailed literals occur in the acceptable belief sets, S is the only such set.

Note that ACC(T ) above is a set containing the belief set S, since the formalism of abstract
logics allows multiple acceptable belief sets. This is especially useful for capturing Answer-Set
Programs (cf. Example 2.5), but it might also be useful for classical logics if one wants to do
model-based reasoning, i.e., one can design an abstract logic where every belief set corresponds
to a model; naturally, a set of formulas can have multiple models, hence multiple accepted belief
sets are also useful in such a case.

Example 2.3 (Description Logic). For ontologies with syntax and semantics of the description
logic ALC (see [4]), we use the abstract logic LALCΣ defined as follows.

Over a signature Σ of atomic concepts C, roles R, and individuals I , T-Box axioms and A-Box
axioms are defined based on concepts. The latter are inductively defined as follows: every atomic
concept is a concept, the universal concept > and the bottom concept ⊥ are concepts, and if
C,D are concepts and R ∈ R is a role, then C uD, C tD, ¬C, ∀R.C, and ∃R.C are concepts.
Given concepts C,D, a role R ∈ R, and individuals a, b ∈ I , a T-Box axiom (terminological
axiom) is a formula of the form C v D, and an A-Box axiom (assertional axiom) is either of
the form a :C, or of the form (a, b) :R. Finally, ALC axioms are either T-Box axioms or A-Box
axioms. Then, LALCΣ is composed of

• KB, being the collection of sets of finite ALC axioms,

• BS, being the set of possibly believed assertions, i.e., BS is the powerset of the set of
atomic A-Box axioms, and

• ACC, being a mapping from knowledge bases to the set of assertions entailed by the
knowledge base. For our purpose, ACC(kb) = {S} where S is the set of atomic A-Box
axioms entailed by kb (see [4] for details).

An LALCΣ -knowledge base contains both A-Box and T-Box axioms. An accepted belief set of
such a knowledge base is the set of atomic assertions that follow from the knowledge base.

Example 2.4. Consider a description logic LALCΣ = (KB,BS,ACC) modelling knowledge
about cars, where C = {Car ,Vehicle}, R = ∅, and I = {a, d}. To state that every car is a
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vehicle, and that d is a car, the knowledge base (i.e., the union of the respective T-Box and A-Box)
is as follows:

kb = {Car v Vehicle, d : Car}

The set of assertions entailed by kb is S = {d : Car , d : Vehicle} and hence ACC = {S}.

Example 2.5 (Disjunctive Answer Set Programming). For normal disjunctive logic programs
under answer set semantics over a non-ground signature Σ (cf. [111] and [64]), we use the
abstract logic LaspΣ = (KB,BS,ACC), which is defined as follows:

• KB is the set of normal disjunctive logic programs over Σ, i.e., each kb ∈ KB is a set of
rules of the form

a1 ∨ . . . ∨ an ← b1, . . . , bi, not bi+1, . . . , not bm,

where all ai, bj , are atoms over a first-order language Σ, and n + m > 0. Let r be
a rule of the aforementioned form, then H(r) = {a1, . . . , an}, B+(r) = {b1, . . . , bi},
B−(r) = {bi+1, . . . , bm}, and B(r) = B+(r) ∪ B−(r). Each rule r ∈ kb must be safe,
i.e., vars(H(r)) ∪ vars(B−(r)) ⊆ vars(B+(r)), where for a set of atoms A, vars(A) =
{vars(a) | a ∈ A} and vars(a) is the set of variables occurring in the atom a,

• BS is the set of Herbrand interpretations over Σ, i.e, each bs ∈ BS is a set of ground
atoms from Σ, and

• ACC(kb) returns the set of kb’s answer sets: for P ∈ KB and T ∈ BS, let P T = {r ∈
grnd(P ) | T |= B(r)} be the FLP-reduct (cf. [64]) of P wrt. T , where grnd(P ) returns
the ground instances of all rules in P . Then bs ∈ BS is an answer set, i.e., bs ∈ ACC(kb),
iff bs is a ⊆-minimal model of kbbs = {r ∈ grnd(kb) | bs |= B(r)}.

It is well-known for ASP that constraints (i.e., rules whose head is ⊥) are expressible using
rules as in Lasp

Σ = (KB,BS,ACC). We thus allow constraints in knowledge bases and note
that for any bs ∈ BS and kb ∈ KB it holds that: if there exists some r ∈ kbbs with H(r) = {⊥}
then this bs cannot be an answer set, i.e., bs /∈ ACC(kb).

Example 2.6. Consider a nonmonotonic ASP program which states that the sun is shining
whenever it is not cloudy and vice versa. We employ Lasp

Σ with Σ = {sunshine, cloudy} and the
following knowledge base:

kb = {sunshine ← not cloudy .

cloudy ← not sunshine.}

Observe that kb has exactly two answer sets, namely S = {sunshine} and S′ = {cloudy},
hence ACC(kb) = {S, S′}.

Example 2.7 (Relational Database). We capture relational databases using the abstract logic
LDB

Σ = (KB,BS,ACC) over a (finite) signature Σ composed of a set C of constant symbols
and a set R of predicate symbols and corresponding arity. LDB

Σ is defined as follows:
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• KB is the powerset of facts over Σ, i.e., KB = 2A where

A = {r (c1, . . . , ck) | r ∈ R with arity k, c1, . . . , ck ∈ C} ,

• BS = KB, and

• ACC(kb) = {kb}, for any kb ∈ KB.

Note that a much more involved logic is necessary to fully capture relational databases and
important concepts like the closed-world assumption (cf. [1]). For illustration purposes, however,
this very simple view on databases is sufficient.

In the remainder of this thesis we sometimes omit the explicit definition of the signature Σ
for an abstract logic LplΣ , LALCΣ , Lasp

Σ , or LDB
Σ if Σ is clear from the context.

2.2 Bridge Rules

To specify information exchange between contexts, so-called bridge rules are used. Bridge rules
are similar in form and behaviour to rules in logic programming. They differ from each other
by the fact that bridge rules are based on beliefs from (possibly) different abstract logics and
corresponding contexts. Based on the presence (or absence) of beliefs at other contexts, a bridge
rule can add information to a context.

Definition 2.2. Given a sequence L = (L1, . . . , Ln) of abstract logics where for 1 ≤ j ≤ n,
Lj = (KBj ,BSj ,ACCj). An Lk-bridge rule over L with 1 ≤ k ≤ n is of the following form:

(k : s)←(c1 : p1), . . . , (ci : pi),not (ci+1 : pi+1), . . . ,not (cm : pm). (2.1)

where for each 1 ≤ i ≤ m we have that ci ∈ {1, . . . , n}, pi is an element of some belief set
of the abstract logic Lci (i.e., pi ∈

⋃
BSci), and s is a knowledge base formula of Lk (i.e.,

s ∈
⋃

KBk).

Each bridge rule in an MCS is associated to a certain context in such a way that all Lk bridge
rules belong to the context with identifier k.

We denote by ϕ (r) the formula s in the head of r and byCh (r) the context k where r belongs
to. The full head of r is denoted by head(r) = (k : s), thus head(r) = (Ch (r) :ϕ (r)). The
literals in the body of r are referred to by body±(r), body+(r), body−(r), body(r), which de-
notes the set {(c1 : p1), . . . , (cm : pm)}, {(c1 : p1), . . . , (cj : pj)}, {(cj+1 : pj+1), . . . , (cm : pm)},
{(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm)}, respectively.

Furthermore, Cb (r) denotes the set of contexts referenced in r’s body, i.e., Cb (r) = {ci |
(ci : pi) ∈ body±(r)}.Note that different from [29], the head of r contains not only the knowledge-
base formula s but also the context identifier k. This choice merely is syntactic sugar and allows
easier identification of the context where r belongs to. For technical use later, we denote by cf (r)
the condition-free bridge rule resulting from r by removing all elements in its body, i.e., cf (r) is
(k : s)← . and for any set of bridge rules R, we let cf (R) =

⋃
r∈R cf (r).
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Example 2.8. Consider the sequence L = (Lasp
Σ′ , L

pl
Σ′′) = (L1, L2) of abstract logics where

Lasp
Σ′ and LplΣ′′ are defined as in Examples 2.6 and 2.2, respectively, except that their signatures

are Σ′ = {sunshine, cloudy} and Σ′′ = {cloudy , grass_is_wet , rainbow_visible, is_raining ,
sprinkler_on}, respectively.

We now present two L2 bridge rules over L, which we denote by r1 and r2. Intuitively,
the bridge rule r1 derives no rain (¬is_raining), if at 1 it is believed that the sun is shining
(sunshine). The bridge rule r2 derives that it is cloudy (cloudy), if at 2 it is believed that it is
raining (is_raining) and at 1 it is not believed that the sun is shining (sunshine).

r1 : (2 :¬is_raining)← (1 : sunshine).

r2 : (2 : cloudy)← (2 : is_raining),not (1 : sunshine).

Since r2 derives information for 2 and it also refers to beliefs at 2, r2 is an example of cyclic
information flow. It also demonstrates non-monotonicity, since it refers to the absence of the
belief in sunshine.

Using the introduced notation about bridge rules, we observe that

ϕ (r1) = ¬is_raining ϕ (r2) = cloudy

body(r1) = {(1 : sunshine)} body(r2) = {(2 : is_raining),not (1 : sunshine)}
body+(r1) = {(1 : sunshine)} body+(r2) = {(2 : is_raining}
body±(r1) = {(1 : sunshine)} body±(r2) = {(2 : is_raining), (1 : sunshine)}
body−(r1) = ∅ body−(r2) = {(1 : sunshine)}

Cb (r1) = {1} Cb (r2) = {1, 2}
Ch (r1) = 2 Ch (r2) = 2

Also note that the condition-free versions of r1 and r2 are as follows:

cf (r1) : (2 :¬is_raining)← .

cf (r2) : (2 : cloudy)← .

Observe that bridge rules only deal with elements of knowledge bases and elements of
belief sets, both of which are considered to be atomic expressions from the perspective of MCS.
Incorporating variables into bridge rules is possible but requires restrictions on context logics or
additional machinery for variable substitution (cf. [8, 65, 118] for details).

2.3 Multi-Context Systems

An abstract logic together with one of its knowledge bases and a set of bridge rules is called a
context; formally, a context C is a triple C = (L, kb, br) such that L = (KB,BS,ACC) is an
abstract logic, kb ∈ KB is a knowledge base, and br is a set of bridge rules with respect to a
suitable set of logics (cf. details below). Each context captures a concrete instance of a (legacy)
knowledge system and extends it with bridge rules. A Multi-Context System then simply is

14



a sequence of contexts, where the bridge rules of each context are defined with respect to the
sequence of logics employed in the contexts of the MCS. Formally:

Definition 2.3. A Multi-Context System M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, br i), 1 ≤ i ≤ n, where

• Li = (KBi,BSi,ACCi) is an abstract logic,

• kbi ∈ KBi is a knowledge base, and

• br i is a set of Li-bridge rules over L = (L1, . . . , Ln).

Furthermore, for each H ⊆ {ϕ (r) | r ∈ br i} it holds that (kbi ∪H) ∈ KBi, i.e., adding bridge
rule heads to a knowledge base again yields a knowledge base.

Note that br i consists of Li-bridge rules, which means that all of their heads have i as their
context identifier. Formally: if r ∈ bri then Ch (r) = i.

If two MCS are considered at the same time, which occurs often in the remainder of this thesis,
easy access to the bridge rules of a certain context of an MCS comes in handy. We therefore
introduce the following notation: br(M) =

⋃n
i=1 br i denotes the set of all bridge rules of M ,

C (M) = {1, . . . , n} denotes the set of all context identifiers of M , and br i(M) denotes the set
of bridge rules of context i of M , i.e., br i(M) = {r ∈ br(M) | Ch (r) = i}.

Example 2.9. Consider an MCS M representing a health care decision support system1 that
contains the following contexts: a patient history database (C1), a blood and X-Ray analysis
database (C2), a disease ontology (C3), and a decision support system (C4) which suggests
suitable treatments, formally: M = (C1, C2, C3, C4). Note that for illustration purposes, the
MCS only covers a single patient.

The contexts C1 and C2 use logics LplΣ1
and LplΣ2

as introduced in Example 2.1 over signatures
Σ1 = {allergy_strong_ab} and Σ2 = {blood_marker , xray_pneumonia}, respectively. Their
knowledge bases are as follows:

kb1 = {allergy_strong_ab},
kb2 = {¬blood_marker , xray_pneumonia}.

Those knowledge bases provide information that the patient is allergic to strong antibiotics
(kb1) and that a certain blood marker is not present while pneumonia was detected in an X-ray
examination (kb2).

The corresponding semantics is given by ACC(kb1) =
{
{allergy_strong_ab}

}
for C1, and

ACC(kb2) =
{
{¬blood_marker , xray_pneumonia}

}
for C2.

We use an ontology about diseases, given by context C3 using LALCΣ3
from Example 2.3

with the signature Σ3 containing concepts Pneumonia,BacterialDisease,AtypPneumonia ,
individuals d and m1 , and the role has_marker . Its knowledge base, kb3, consists of two axioms,
where the first states that pneumonia is a bacterial disease and the second that pneumonia together

1Throughout this thesis several examples are inspired by the medical domain. Note that medical information
conveyed by these examples may be incorrect or wrong.
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with an associated blood-marker indicates atypical pneumonia (a severe form of pneumonia).
The corresponding knowledge base is:

kb3 = {Pneumonia v BacterialDisease,
Pneumonia u ∃has_marker .> v AtypPneumonia}.

As kb3 is satisfiable and contains only terminological knowledge, no assertions follow from
this knowledge base, thus ACC(kb3) = {∅}. Adding the assertions that d is pneumonia and
that the role has_marker holds between d and a marker m1 results in the conclusion that d is
also a bacterial disease and atypical pneumonia, i.e.,

ACC
(
kb3 ∪ {d : Pneumonia, (d,m1 ) : has_marker}

)
={

{d : Pneumonia, d : BacterialDisease, d : AtypPneumonia, (d,m1 ) : has_marker}
}
.

For the context C4 that is suggesting proper treatments, we employ Lasp
Σ4

from Example 2.5
where Σ4 = {give_strong , give_weak ,need_ab, allow_strong_ab, give_nothing}. The knowl-
edge base for C4 is:

kb4 = {give_strong ∨ give_weak ← need_ab.
give_strong ← need_strong .
⊥ ← give_strong , not allow_strong_ab.
give_nothing ← notneed_ab, notneed_strong .}.

Depending on whether antibiotics or strong antibiotics is needed, C4 suggests a treatment
which is either a strong antibiotics, a weak antibiotics, or no medication at all. Without further
information, kb4 thus concludes that nothing is required, i.e., ACC(kb4) =

{
{give_nothing}

}
.

If need_ab and allow_strong_ab are added, however, kb4 results in two answer sets, i.e.,
ACC

(
kb4 ∪ {need_ab., allow_strong_ab.}

)
= {A1, A2} where A1 = {give_strong ,need_ab,

allow_strong_ab} and A2 = {give_weak ,need_ab, allow_strong_ab}. Note that by the con-
straint in kb4 the strong antibiotics is only given if allowed, hence ACC

(
kb4 ∪ {need_ab.}

)
=

{{give_weak ,need_ab}}.
The bridge rules of the MCS are given as follows:

r1: (3 : d : Pneumonia)← (2 : xray_pneumonia).

r2: (3 : (d,m1 ) : has_marker)← (2 : blood_marker).

r3: (4 : need_ab.)← (3 : d : BacterialDisease).

r4: (4 : need_strong .)← (3 : d : AtypPneumonia).

r5: (4 : allow_strong_ab.)← not (1 : allergy_strong_ab).

Rules r1 and r2 (belonging to context C3) provide input for disease classification to the
ontology; they assert facts about the disease ‘d’ and the blood marker ‘m1 ’. Rules r3 and
r4 (belonging to context C4) link disease information with medication requirements, while r5

(also belonging to context C4) relates acceptance of strong antibiotics with an allergy check on
the patient database. The sets of bridge rules of each context are as follows: br1 = br2 = ∅,
br3 = {r1, r2}, and br4 = {r3, r4, r5}.
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An overview of the knowledge bases and bridge rules of M is given in Figure 2.1, where each
bridge rule r ∈ {r1, . . . , r5} with Ch (r) = j and i ∈ Cb (r) is depicted as an arrow from Ci to
Cj . The figure also shows the set of equilibria EQ(M), the semantics of M which is explained in
detail below.

HistoryC1

Decision SupportC4 Disease Ontology C3

Laboratory C2

r1r2r3

r4

r5

r1: (3 : d : Pneumonia)← (2 : xray_pneumonia).
r2: (3 : (d,m1 ) : has_marker)← (2 : blood_marker).
r3: (4 : need_ab.)← (3 : d : BacterialDisease).
r4: (4 : need_strong .)← (3 : d : AtypPneumonia).
r5: (4 : allow_strong_ab.)← not (1 : allergy_strong_ab).

kb1 = {allergy_strong_ab}
kb2 = {¬blood_marker , xray_pneumonia}
kb3 = {Pneumonia v BacterialDisease,

Pneumonia u ∃has_marker .> v AtypPneumonia}
kb4 = {give_strong ∨ give_weak ← need_ab.

give_strong ← need_strong .
⊥ ← give_strong , not allow_strong_ab.
give_nothing ← notneed_ab, notneed_strong .}

br1 = ∅ br2 = ∅
br3 = {r1, r2} br4 = {r3, r4, r5}

C1 = (LplΣ1
, kb1, br1) C2 = (LplΣ2

, kb2, br2)

C3 = (LALCΣ3
, kb3, br3) C4 = (Lasp

Σ4
, kb4, br4)

EQ(M) = {({allergy_strong_ab}, {¬blood_marker , xray_pneumonia},
{d : Pneumonia, d : BacterialDisease}, {need_ab, give_weak})}

Figure 2.1: The MCS M = (C1, C2, C3, C4) from Example 2.9 with contexts Ci, bridge rules
br i, and knowledge bases kbi, 1 ≤ i ≤ 4.
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2.4 Equilibrium Semantics

Recall that an abstract logic L = (KB,BS,ACC) captures the semantics of a formalism via
its acceptability function ACC : KB→ 2BS which designates some belief sets as acceptable
under a given knowledge base. Belief sets therefore form the basis of the semantics of MCS.
More precisely, the semantics of MCS is based on sequences of belief sets, i.e., one belief set per
context. A sequence of belief sets of an MCS is called a belief state. Formally, given an MCS
M = (C1, . . . , Cn) with Ci = (Li, kbi, br i) and Li = (KBi,BSi,ACCi), a belief state of M
is a sequence S = (S1, . . . , Sn) of belief sets Si ∈ BSi, 1 ≤ i ≤ n.

Given a belief state S of M , one can evaluate for all bridge rules r ∈ br(M) whether the
body of r is satisfied in S, i.e., whether r is applicable in S. Formally, a bridge rule r of form
(2.1) is applicable in a belief state S, denoted by S r, iff for all (j : p) ∈ body+(r) it holds
that p ∈ Sj , and for all (j : p) ∈ body−(r) it holds that p /∈ Sj . For a set R of bridge rules and
a belief state S, app(R,S) denotes the set of bridge rules of R that are applicable in S, i.e.,
app(R,S) = {r ∈ R | S r}.

Equilibrium semantics designates some belief states as acceptable. Intuitively, it selects a
belief state S = (S1, . . . , Sn) of an MCS M as acceptable, if each context Ci takes the heads of
all its bridge rules that are applicable in S into account to enrich its knowledge base with, and
accepts its designated belief set Si under this enlarged knowledge base.

Definition 2.4. A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for every belief set Si,
1 ≤ i ≤ n, it holds that

Si ∈ ACCi

(
kbi ∪ {ϕ (r) | r ∈ app(br i, S)}

)
.

The set of all equilibria of an MCS M is denoted by EQ(M).

An alternative definition of equilibrium is based on appi(S,M), the knowledge-base for-
mulas of bridge rules of context Ci that are applicable in S, i.e., appi(S,M) = {ϕ (r) |
r ∈ br i(M), S r}. In these terms a belief state S = (S1, . . . , Sn) of an MCS M is an
equilibrium iff for all 1 ≤ i ≤ n it holds that Si ∈ ACCi

(
kbi ∪ appi (S,M)

)
. Since

appi(S,M) = {ϕ (r) | r ∈ app(br i(M), S)}, the two definitions of an equilibrium are equal.

Example 2.10. The MCS M of Example 2.9 (cf. Figure 2.1) has a single equilibrium S with
S = (S1, S2, S3, S4) where

S1 ={allergy_strong_ab},
S2 ={¬blood_marker , xray_pneumonia},
S3 ={d : Pneumonia, d : BacterialDisease}, and
S4 ={need_ab, give_weak}.

The only rules applicable in S are r1 and r3, as app(br1(M), S) = app(br2(M), S) = ∅,
app(br3(M), S) = {r1}, and app(br4(M), S) = {r3}.

Note that if we replace S4 with {need_ab, give_strong , allow_strong_ab}, then the resulting
belief state is not an equilibrium: C4 uses answer set semantics, therefore allow_strong_ab
cannot be part of S4 unless it is added by a bridge rule. The only bridge rule with this head is r5

but it is not applicable because of the presence of allergy_strong_ab in kb1 and in S1.
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To create bridge rules that are always applicable or never applicable, we also allow bridge
rules to contain the symbols> or⊥ as the single element in their body. Both> and⊥ are syntactic
sugar for an empty body and a body containing (` : p),not (` : p) where p is some belief of some
context C`, respectively. For a bridge rule r of form (k : s)← >. it therefore holds for all belief
states S that S r, while for a bridge rule r′ of form (k : s)← ⊥. it holds for all belief states S
that S 6 r′. For such bridge rules, we let body(r) = {>}, body(r′) = {⊥}, and we consider
their bodies to refer to no other contexts, i.e., Cb (r) = Cb (r′) = ∅, as well as we regard those
bridge rules to contain no literals in their bodies, i.e., body−(r) = body+(r) = body±(r) = ∅
and body−(r′) = body+(r′) = body±(r′) = ∅. The remaining notions on bridge rules, ϕ (r) and
Ch (r), are the same as for other bridge rules.

Given an MCS M = (C1, . . . , Cn) over abstract logics L = (L1, . . . , Ln) and a set R of
bridge rules, we call R compatible with M , if there exists a partitioning R1, . . . , Rn of R such
that for every 1 ≤ k ≤ n, r ∈ Rk implies that r is an Lk-bridge rule over L. In the following
chapters, we often consider modifications to the bridge rules of an MCS. We use the following
notation to denote an MCS where bridge rules have been exchanged: given an MCS M and a set
R of bridge rules such that R is compatible with M , we denote by M [R] the MCS obtained from
M by replacing its set of bridge rules br(M) with R. For example, M [br(M)] = M and M [∅]
is M with no bridge rules at all.

Regarding equilibria, we writeM |= ⊥ to denote thatM has no equilibrium, i.e., EQ(M) = ∅.
Conversely, by M 6|= ⊥ we denote the opposite, i.e., EQ(M) 6= ∅. As mentioned in Chapter 1,
we consider an MCS to be inconsistent if it has no equilibrium, i.e., EQ(M) = ∅ and M |= ⊥
are equivalent to saying that M is inconsistent.
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CHAPTER 3
Basic Notions of Inconsistency

3.1 Introduction

Inconsistency in MCS arises easily due to unforeseen effects of the information exchange. Con-
sider again the MCS of Example 2.9, where a hospital employs four already existing knowledge
bases such that their combined knowledge provides decision support for patient medications. In
Example 2.9 the patient is allergic to the strong antibiotic, while blood tests show that a certain
marker is absent and X-Ray indicates pneumonia. Now consider the case that the marker is
present:

Example 3.1. Changing the MCS of Example 2.9 such that the blood serum analysis shows the
presence of the blood marker, i.e. kb2 = {blood_marker , xray_pneumonia}, yields the MCS M
depicted in Figure 3.1.

The only accepted belief sets of C1 and C2 are

S1 = {allergy_strong_ab} and

S2 = {blood_marker , xray_pneumonia}, respectively.

Therefore bridge rules r1 and r2 are applicable in any belief state which is acceptable at C1 and
C2. Applicability of r1 and r2 in turn yields that the only accepted belief set of C3 then is

S3 = {d : Pneumonia, d : BacterialDisease, d : AtypPneumonia, (d,m1 ) : has_marker}.

Hence, r3 and r4 are applicable in any belief state which is acceptable at C1, C2, and C3.
At C4 it is then concluded that strong antibiotics are required, while the constraint

⊥ ← give_strong , not allow_strong_ab.
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states that giving the strong antibiotics must be allowed explicitly. Since the patient’s allergy does
not allow giving the strong antibiotics, the constraint is violated and hence C4 has no answer-set.
This means that there exists no belief set S4 which is accepted at C4. In consequence, no belief
state of M is an equilibrium.

Note that applicability of r5 would resolve this inconsistency by activating allow_strong_ab.
The applicability of r5, however, is prevented by the presence of allergy_strong_ab in S1 together
with the body literal ‘not (1 : allergy_strong_ab)’.

Since the MCS has no equilibrium, one cannot draw any conclusion from the inconsistent
MCS. Maybe the MCS encountered a real-world scenario which is not properly modelled by the
MCS (arguably, this is the case for Example 3.1). In practice, however, there will be multiple
patients and one forgotten use case for one patient should not make the whole system unusable.
In such circumstances, it is paramount to somehow get rid of the inconsistency and the first step
towards this is to identify the reasons of the inconsistency. In this chapter we therefore develop
and investigate basic notions to explain and analyse the reasons of inconsistency. The aim of
that is to understand where and how inconsistencies occur and how they can be removed. Since
MCS model loosely integrated knowledge with autonomous sources (e.g. different companies
linking parts of their business logic), we do not consider changing or modifying the data of
contexts (no company will allow another to meddle with crucial business data just to repair
some flaw in a common knowledge-exchange system). Therefore, we consider the data inside
contexts as impossible to modify and the information flow as source of inconsistency. Since
information exchange and interlinking in MCS is specified using bridge rules, we therefore focus
on bridge rules as possible reasons of inconsistency. In this chapter, we assume that each context
by itself is consistent, while in Chapter 5 we also investigate the case of inconsistent contexts and
modifications to the internal data of contexts.

Observe that our approach is very different from data integration scenarios (cf. related work
in Chapter 6) where integration is considered from a central perspective and data is modified.
Speaking in data-integration terms, we consider changing the mapping rather than modifying the
basic data. Another difference is that MCS allow cyclic information flow. Diagnosing faults in a
monotonic system and identifying the reasons of inconsistency by minimal sets of inconsistent
formulas is well-established (cf. Reiter’s seminal work [113]). These notions, however, are not
directly applicable to MCS, since MCS allow nonmonotonic reasoning, hence the concepts of a
diagnosis and the reasons for an inconsistency have to be addressed differently than in monotonic
reasoning systems. Non-monotonicity and cyclic information flow make the task of identifying
and explaining inconsistency a non-trivial task.

This chapter introduces basic notions to explain the reasons of inconsistency and to identify
diagnoses which allow to remove the inconsistency. This is followed by an investigation of
refined notions of explanations and diagnoses where it is shown that those refinements can be
simulated by the basic notions. A simplified notion, which only considers deleting bridge rules, is
also considered. Several properties regarding diagnoses and explanations are established. These
properties help to understand diagnoses and explanations in more detail, as well as they aid in
computing diagnoses and explanations by pointing at possibilities for a significant reduction of
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HistoryC1

Decision SupportC4 Disease Ontology C3

Laboratory C2

r1r2r3

r4

r5

r1: (3 : d : Pneumonia)← (2 : xray_pneumonia).
r2: (3 : (d,m1 ) : has_marker)← (2 : blood_marker).
r3: (4 : need_ab.)← (3 : d : BacterialDisease).
r4: (4 : need_strong .)← (3 : d : AtypPneumonia).
r5: (4 : allow_strong_ab.)← not (1 : allergy_strong_ab).

kb1 = {allergy_strong_ab}
kb2 = {blood_marker , xray_pneumonia}
kb3 = {Pneumonia v BacterialDisease,

Pneumonia u ∃has_marker .> v AtypPneumonia}
kb4 = {give_strong ∨ give_weak ← need_ab.

give_strong ← need_strong .
⊥ ← give_strong , not allow_strong_ab.
give_nothing ← notneed_ab, notneed_strong .}

br1 = ∅ br2 = ∅
br3 = {r1, r2} br4 = {r3, r4, r5}

C1 = (LplΣ1
, kb1, br1) C2 = (LplΣ2

, kb2, br2)

C3 = (LALCΣ3
, kb3, br3) C4 = (Lasp

Σ4
, kb4, br4)

Minimal diagnoses and explanations as defined in Section 3.2.

D±m(M) =
{

({r1} , ∅) , ({r2} , ∅) , ({r4} , ∅) , (∅, {r5})
}

E±m(M) = ({r1, r2, r4} , {r5})

Figure 3.1: Running example MCS with contexts Ci, bridge rules br i, and knowledge bases kbi.
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the search-space.Finally, a method is proposed to compute all explanations using so-called HEX-
programs employing the technique of saturation from answer-set programming. The approach
also has been implemented.

The remainder of this chapter is structured as follows. In Section 3.2 we introduce basic no-
tions explaining and analysing inconsistency and we investigate possible refinements. Section 3.3
investigates properties of the basic notions, among these are conversion results, modularity proper-
ties and decomposition results. Section 3.4 gives a brief overview of computational complexities
of decision problems related to inconsistency. Section 3.5 gives a short introduction to HEX-
programs and presents a saturation-based approach to compute the basic notion of inconsistency
explanation. Section 3.6 concludes this chapter and points at possible future work.

3.2 Diagnoses and Explanations for Inconsistency

As the combination and interaction of heterogeneous, possibly autonomous, systems can easily
have unforeseen and intricate effects, inconsistency is a major problem in MCS. To provide
support for restoring consistency, we seek to understand and give reasons for inconsistency.

Recall that by inconsistency we understand here that an MCS has no equilibrium. This
differs from the classical understanding, where inconsistency usually occurs in the presence of
contradictive knowledge.

Example 3.2. Consider an MCS M = (C1, C2) where the two contexts disagree on the truth of
is_raining , i.e., ACC1(kb1) = {{is_raining}}, ACC2(kb2) = {{¬is_raining}}, br(M) =
∅, and kb1 and kb2 are the respective knowledge bases of C1 and C2.

Then, M is not inconsistent, since S = ({is_raining}, {¬is_raining}) is an equilibrium.
Assuming that C1 and C2 are weather stations in different locations, our understanding of
inconsistency is appropriate. Even if C1 and C2 are at the same locations, their sensor readings
might differ withouth being considered inconsistent, e.g. due to known different sensitivity of C1

and C2 the above belief sets might just indicate a few raindrops.

Note that in Chapter 5 more strict forms of inconsistency are discussed. Recall that M |= ⊥
denotes that M has no equilibrium, i.e., M is inconsistent, and M 6|= ⊥ denotes the opposite.

In the following, we consider two possibilities for identifying the reasons of inconsistency in
MCS: first, a consistency-based formulation, which identifies a part of the bridge rules which need
to be changed to restore consistency. Second, an entailment-based formulation, which identifies
a part of the bridge rules which is required to make the MCS inconsistent. Following common
terminology, we call the first formulation a diagnosis (cf. [113]) and the second an inconsistency
explanation.

Diagnosis

As well-known, adding knowledge in nonmonotonic reasoning can both cause and prevent
inconsistency; the same is true for removing knowledge.

For our consistency-based explanation of inconsistency, we therefore consider pairs of sets of
bridge rules, such that if we deactivate the rules in the first set, and add the rules in the second set
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in unconditional form, the MCS becomes consistent (i.e., admits an equilibrium). Adding rules
unconditionally is the most severe form of modification of a rule’s body, but as we see later, this
notion also allows to capture more fine-grained forms of modification.

Definition 3.1. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ br(M), such
that M [br(M) \D1 ∪ cf (D2)] 6|= ⊥. We denote by D±(M) the set of all diagnoses.

An alternative reading of this notion is that a diagnosis indicates which bridge rules are
assumed to require modification in order to obtain a consistent MCS. By Occam’s razor, a hypoth-
esis is preferable to another one if it requires fewer assumptions, hence a minimal modification
is preferable, because it assumes a minimal set of bridge rules to require modification. We thus
prefer subset-minimal diagnoses to obtain a more relevant set of diagnoses.

For the remainder of this thesis, we extend the subset relation from sets to pairs of sets: given
pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset relation A ⊆ B holds iff
A1 ⊆ B1 and A2 ⊆ B2; additionally, A ⊂ B holds iff A ⊆ B and A 6= B both hold, where
A = B holds iff A1 = B1 and A2 = B2.

Definition 3.2. Given an MCS M , D±m(M) is the set of all pointwise subset-minimal diagnoses
of an MCS M , i.e.,

D±m(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : D′ ⊆ D ⇒ D ⊆ D′}.

We call a pair D = (D1, D2) ⊆ (br(M), br(M)) a diagnosis candidate, regardless of
whether or not D ∈ D±(M) holds.

Example 3.3. In our running example, we obtain
D±m(M) =

{
({r1} , ∅) , ({r2} , ∅) , ({r4} , ∅) , (∅, {r5})

}
.

Accordingly, deactivating r1, or r2, or r4, or adding r5 unconditionally, will result in a consistent
MCS. Note that ({r3}, ∅) is no diagnosis since in this case the presence of r4 ensures that
give_strong is inferred. Since administering the strong antibiotics is not allowed for kb4 ∪
{need_strong}, there is no acceptable belief set for C4 for this diagnosis candidate.

In more detail, we find: diagnosis ({r1} , ∅) removes bridge rule r1. This way we ignore the
X-Ray finding and obtain the following equilibrium:

EQ1 = ({allergy_strong_ab}, {blood_marker , xray_pneumonia},
{(d,m1 ) : has_marker}, {give_nothing}).

It represents that we do not treat the patient since both the disease ontology and, consequently,
the expert system have no information about a disease being present.

Diagnosis ({r2} , ∅) removes the bridge rule r2. This ignores the result about the presence of
the blood marker and the following equilibrium is obtained:

EQ2 = ({allergy_strong_ab}, {blood_marker , xray_pneumonia},
{d : Pneumonia, d : BacterialDisease}, {need_ab, give_weak}).

It represents that the patient is given a wrong medication.
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Diagnosis ({r4} , ∅) removes bridge rule r4. This ignores the information that treating the
illness requires the strong antibiotics. We obtain the following equilibrium:

EQ3 = ({allergy_strong_ab}, {blood_marker , xray_pneumonia},
{(d,m1 ):has_marker , d:Pneumonia, d:BacterialDisease,
d:AtypPneumonia}, {need_ab, give_weak}).

Similarly to the previous diagnosis, it represents that the patient is treated wrongly.
Diagnosis (∅, {r5}) adds an unconditional copy of bridge rule r5, which forces strong

antibiotics to be allowed as a treatment. The modified system has the following equilibrium:

EQ4 = ({allergy_strong_ab}, {blood_marker , xray_pneumonia},
{(d,m1 ):has_marker , d:Pneumonia, d:BacterialDisease,
d:AtypPneumonia}, {need_ab,need_strong , allow_strong_ab,
give_strong}).

Any or none of the above possibilities might be the right choice: such decisions ought to be
taken by a domain specialist (e.g., a doctor) and cannot be done automatically.

Preference on diagnoses can be defined in general, relying on some notion of plausibility (see
e.g., for abduction [36]). Adding preferences to select most preferred diagnoses is investigated in
detail in Chapter 4.

For talking about the MCS resulting from the application of a diagnosis (or diagnosis candi-
date) (D1, D2) ⊆ (br(M), br(M)), we also write M [D1, D2] to denote the MCS M [br(M) \
D1 ∪ cf (D2)].

Explanations

Knowing all possibilities to remove inconsistency from an MCS is important, identifying the
reasons of inconsistency to help a domain specialist understand the causes of inconsistency is
equally important. In the spirit of abductive reasoning, we also propose an entailment-based
notion of explaining inconsistency. An inconsistency explanation (in short, an explanation) is
a pair of sets of bridge rules, whose presence or absence entails a relevant inconsistency in the
given MCS.

Definition 3.3. Given an MCS M , an inconsistency explanation of M is a pair (E1, E2) of sets
E1, E2 ⊆ br(M) of bridge rules, such that for all (R1, R2) where E1 ⊆ R1 ⊆ br(M) and
R2 ⊆ br(M) \ E2, it holds that M [R1 ∪ cf (R2)] |= ⊥. By E±(M) we denote the set of all
inconsistency explanations of M , and by E±m(M) the set of all pointwise subset-minimal ones.

The intuition about E1 is as follows: bridge rules in E1 are crucial to create an inconsistency
in M (i.e., M [E1] |= ⊥), and this inconsistency is relevant for M in the sense that adding any
other bridge rules from br(M) to M [E1] never yields a consistent system.

This condition of relevancy is necessary for nonmonotonic reasoning systems; for example the
logic program P = {a← not a.} is inconsistent under the answer-set semantics, but its superset
P ′ = {a← not a. a.} is consistent. The inconsistency of P does not matter for P ′. In terms
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Figure 3.2: Modified medical MCS with inconsistent loop (cf. Example 3.5).

of MCS, a subset of all bridge rules may create an inconsistency in M , but this inconsistency is
irrelevant, if it does not occur when more or all bridge rules are present.

The intuition about E2 regards inconsistency wrt. the application of bridge rules: M [E1]
cannot be made consistent unless at least one bridge rule from E2 fires.

In summary, bridge rules E1 create a relevant inconsistency, and at least one bridge rule in
E2 must be applied in unconditional form to repair that inconsistency.

Example 3.4. In our running example, we have one minimal inconsistency explanation, namely
({r1, r2, r4} , {r5}). To trigger the only possible inconsistency, which is in C4, we need to import
need_strong (using r4) and we must not import allow_strong_ab (using r5). Furthermore, r4

can only fire if C3 accepts d : AtypPneumonia , which is only possible if r1 and r2 fire. Therefore,
r1, r2, and r4 must be present to get inconsistency, and the head of r5 must not be present.

From Definition 3.3 the following property follows immediately.

Proposition 3.1. Given an explanation E of an MCS M , each E′ such that E ⊆ E′ ⊆
(br(M), br(M)) is also an explanation.

The following examples each illustrate some aspect of minimal explanations.

Example 3.5. Consider a modification of our running medical example, where further bridge
rules are added for the administration of anti-allergenics. Bridge rule r6 encodes that an allergy
blocking (anti-allergenics) medication is given if the strong antibiotics is needed, the patient is
allergic to it, and nothing was done to block the allergic reaction; r7 encodes that the patient
database is informed if an anti-allergenics is applied:

r6: (4 : give_antiallergenic.)← (4 : need_strong),
(1 : allergy_strong_ab.),not (1 : allergy_blocked).

r7: (1 : allergy_blocked .)← (4 : give_antiallergenic).

The resulting system is depicted in Figure 3.2; it has two minimal inconsistency explanations: the
previous explanation ({r1, r2, r4}, {r5}), and the new ({r1, r2, r4, r6, r7}, {r6, r7}). The latter
shows the typical effect of a cycle with an odd number of negations through r6 and r7: both rules
of the cycle r6 and r7 are present in both components of the minimal explanation. Intuitively, all
rules of the cycle are necessary to cause the inconsistency while founding the cycle anywhere
prevents the inconsistency. Minimal diagnoses of this MCS are ({r1}, ∅), ({r2}, ∅), ({r4}, ∅),
({r6}, {r5}), ({r7}, {r5}), (∅, {r5, r6}), and (∅, {r5, r7}).
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kb3 =
{
⊥ ← a.

⊥ ← b.

⊥ ← not c, d.
}

C3

kb1 =
{
a. d.

}C1

kb2 =
{
b. c.

}C2

r4 : (3 : d)← (1 : d)

r1 : (3 : a)← (1 : a)

r3 : (3 : c)← not (2 : c)

r2 : (3 : b)← (2 : b)

Figure 3.3: An MCS with three reasons for inconsistency.

kb1=
{
a.
}

C1

kb2=
{}

C2

kb3=
{
⊥ ← c.

}
C3

r1 : (2 : b)← (1 : a). r2 : (3 : c)← not (2 : b).

Figure 3.4: An MCS with an irrelevant inconsistency, ignored by the notion of explanation.

The following examples all use the logic Lasp
Σ for answer-set programs where knowledge

bases have the common signature Σ = {a, b, c, d}.

Example 3.6. Explanations separate independent reasons for inconsistency, as the MCS M =
(C1, C2, C3) depicted in Figure 3.3 shows. Intuitively, there are three possibilities for M to
become inconsistent: by r1 which triggers the constraint ⊥ ← a. in C3; by r2 which triggers
⊥ ← b.; and by r3 not being applicable, which together with r4 triggers ⊥ ← not c, d. Therefore,
there are three minimal explanations, namely ({r1}, ∅), ({r2}, ∅), and ({r4}, {r3}). The latter
indicates that r3 must become applicable to remove the inconsistency.

The use of subset-minimality to single out preferred solutions also suggest that cardinality-
minimality could be an option. Example 3.6, however, shows that cardinality-minimal explana-
tions cannot identify all sources of inconsistency, since there are three ⊆-minimal explanations,
but only two cardinality-minimal ones. Additionally, the set of cardinality-minimal explanations
does not point out all bridge rules that must be modified to obtain a consistent system.

Example 3.7. Consider the MCS M = (C1, C2, C3) given in Figure 3.4. The MCS M ′ =
M [{r2}] which only contains bridge rule r2 is inconsistent, since r2 is applicable in M ′ and thus
the constraint in kb3 is violated. The MCS M [{r1, r2}], however is not inconsistent due to r1

causing r2 to be not applicable. Hence, this inconsistency yields no explanation andE±m(M) = ∅;
this agrees with the fact that M is consistent since S = ({a}, {b}, ∅) is an equilibrium.

Example 3.8. The MCS M = (C1, C2) depicted in Figure 3.5 is inconsistent, since there is
a cycle with an odd number of negations through r1 and r2. The single explanation for M is
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kb1=
{}

C1

kb2=
{}

C2

r1 : (2 : b)← (1 : a).

r2 : (1 : a)← not (2 : b).

Figure 3.5: An MCS with inconsistency caused by a cycle.

kb1=
{
a.
}

C1

kb2=
{}

C2

kb3=
{
⊥ ← c.

}
C3

r1 : (2 : b)← (1 : a). r2 : (3 : c)← (2 : b).

r3 : (3 : c)← not (2 : b).

Figure 3.6: An MCS where mutually exclusive bridge rules r2 and r3 are in the same explanation.

({r1, r2}, {r1, r2}), intuitively because the cycle can either be broken by removing one of its
rules, or it can be founded by making one rule unconditional.

Example 3.9. The MCS M = (C1, C2, C3) depicted in Figure 3.6 shows that mutually exclusive
bridge rules, here r2 and r3, may be part of the same explanation ({r2, r3}, ∅) ∈ E±m(M).
Intuitively, the presence of r3 causes the violation of the constraint in C3 for M [{r2, r3}] while
r2 causes the violation of the same constraint for M [br(M)]. Note that ({r3}, ∅) /∈ E±m(M)
since M [{r3, r1}] is consistent, hence the inconsistency caused by r3 alone is irrelevant. Besides
that, there is another minimal explanation for M , namely ({r1, r2}, ∅).

Deletion-Diagnosis / Deletion-Explanation

For domains where removal of bridge rules is preferred to unconditional addition of rules, we
specialise D± to obtain diagnoses of the form (D1, ∅). As for D±, subset-minimal diagnoses are
preferred.

Definition 3.4. Given an MCS M , a deletion-diagnosis of M is a set D ⊆ br(M) such that
M [br(M) \ D] 6|= ⊥. The set of all deletion-diagnoses is denoted by D−(M), the set of
⊆-minimal deletion-diagnoses is denoted by D−m(M).

Example 3.10. In Example 3.1, D−m(M) = {{r1}, {r2}, {r4}}.

Specialising inconsistency explanations to the first component, i.e., disregarding that rules
may be added unconditionally, all explanations are of the form (E1, br(M)).
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Definition 3.5. Given an MCS M , a deletion-explanation of M is a set E ⊆ br(M) such
that each R, where E ⊆ R ⊆ br(M), satisfies M [R] |= ⊥. The set of all such (⊆-minimal)
explanations is denoted by E+(M), and the set of ⊆-minimal ones by E+

m(M).

Example 3.11. The only, and thus minimal, deletion-explanation in Example 3.1 is {r1, r2, r4}.

Refined Notions of Diagnosis and Explanation

Refined Diagnosis

One can generalise Definition 3.1 to refined changes of bridge rules, such that bridge rules in
the second component of a diagnosis become applicable by only removing some body literals
instead of all. Hence, those bridge rules whose head formula restores consistency are not made
completely condition-free, but only a minimal set of the conditions in the body are removed.
Note that in the remainder of this section, we identify the body of a bridge rule with the set of its
literals. This means that a bridge rule where a literal occurs more than once is identified with the
bridge rule where each literal occurs exactly once. This is no real restriction since the two bridge
rules behave exactly the same anyway.

Let br ref (M) denote the set of bridge rules ofM where some body literals have been removed,
i.e., br ref (M) = {head(r) ← B. | B ⊆ body(r)}. A function fg : br(M) → br ref (M) is
called a body-reduction function; it maps bridge rules to rules where some or no body literals
are removed. In the following, we identify fg : br(M) → br ref (M) with the corresponding
function fg : 2br(M) → 2brref (M) on sets of bridge rules, i.e., for a set R ⊆ br(M) we have
fg(R) = {fg(r) | r ∈ R}.

Definition 3.6. A refined diagnosis is a triple (D1, D2, fg) consisting of sets of bridge rules
D1, D2 ⊆ br(M) and a body-reduction function fg : br(M) → br ref (M), such that the
resulting MCS is consistent, i.e., M [br(M) \D1 ∪ fg(D2)] 6|= ⊥. The set of all refined diagnoses
is denoted by D±,r(M).

Again, by Occam’s razor, we seek refined diagnoses that assume a minimal amount of
modifications necessary. To that end, we seek to change a minimal set of bridge rules and within
this set, we seek a minimal change of bridge rule bodies, where more preservation of body
literals is considered to be preferable. Formally, let fg and fg ′ be two body-reduction functions
on br(M), then fg is more conservative than fg ′, written fg ≤ fg ′, iff for every r ∈ br(M) holds
body(fg(r)) ⊇ body(fg ′(r)). Furthermore, we write fg < fg ′ iff fg ≤ fg ′ and fg 6= fg ′.

A refined diagnosis (D1, D2, fg) ∈ D±,r(M) is called minimal, iff for every (D′1, D
′
2, fg

′) ∈
D±,r(M) such that D′1 ⊆ D1 and D′2 ⊆ D2 it holds that D1 = D′1, D2 = D′2, and fg ′ 6< fg . The
set of all minimal refined diagnoses is denoted by D±,rm (M). Observe that the conservation of
the body-reduction functions only comes into play if the sets of bridge rules are subset-minimal.

Example 3.12. Consider a slight modification of Example 3.1 where data from the patient history
is only imported in the expert system if the patient is currently under treatment in the hospital. So
bridge rule r5 is changed to

r5: (4 : allow_strong_ab)← (1 : under_treatment),not (1 : allergy_strong_ab).
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and our patient is in the hospital, i.e., kb1 = {allergy_strong_ab, under_treatment}.
Let fg(r5) = (4 : allow_strong_ab) ← (1 : under_treatment) and fg(r) = r for all r ∈

br(M) with r 6= r5. We denote the modified MCS by M ′. Then there exists a refined diagnosis
which removes from r5 only the literal not (4 : allow_strong_ab), i.e., (∅, {r5}, fg) ∈ D±,rm (M ′),
because fg(r5) modifies r5 such that the strong antibiotic is allowed if the patient merely is under
treatment. Compared to removing the whole body, the refined diagnosis more precisely indicates
the beliefs whose presence would make M ′ consistent.

Note that one could also think of refining rules in D1, i.e., ensuring that a rule in D1 is not
applicable by adding additional literals to its body. But as there are no hints to which literals
should be added, such a process would result in a large and arbitrary search space. For example,
adding not (1 : allergy_strong_ab) to r2 would result in:

r′2: (3 : (d,m1 ) :has_marker)← (2 : blood_marker),not (1 : allergy_strong_ab).

This would make the MCS of Example 3.1 consistent. Given no information on which literals
make sense for adding to a bridge rule, any belief of any context may be added. This means
that for every ordinary diagnosis (D1, D2) ∈ D±(M) one simply needs to find a belief p of
some context Ck which is absent in all acceptable belief sets of Ck. Adding the literal (k : p) to
every bridge rule r ∈ D1 then prevents its applicapility. If there are multiple such beliefs, every
combination of them results in such a diagnosis where literals are added to bridge rules. In fact,
for m such beliefs there are m|D1| possible diagnoses resulting just from one context and one
diagnosis. Given no further information on which literals make sense to add, there seems to be
no way of singling out good literals to add among the exponentially many candidates. Therefore,
the addition of literals to bridge rules is not considered in this thesis.

But even in the case of minimal refined diagnoses, there is little information gain: every
minimal diagnosis (D1, D2) ∈ D±m(M), together with a witnessing equilibrium Sw of (D1, D2),
can be refined to a minimal refined diagnosis (D1, D2, fg) using the following refine function.
Let S be the set of belief states of the MCS M ; then refine(D2, Sw) : 2br(M)×S → (br(M)→
br ref (M)) is given by (D2, Sw) 7→ fg where fg is the body-reduction function defined as follows:

fg(r) =


head(r)← B. if r ∈ D2, B ⊆ body(r), Sw head(r)← B.,

and for no B ⊂ B′ ⊆ body(r) holds S head(r)← B′.;

r otherwise.

Observe that a refined diagnosis (D1, D2, fg) obtained in such way also admits the equilibrium
Sw, as all rules of fg(D2) are applicable in Sw and therefore all head beliefs of D2 are added to
the respective contexts, which results in the same knowledge bases as for cf (D2).

Proposition 3.2. A triple (D1, D2, fg) is a minimal refined diagnosis of M iff there exists a mini-
mal diagnosis (D1, D2) ∈ D±m(M) and a witnessing equilibrium Sw such that refine(D2, Sw) =
fg and no witnessing equilibrium S′w exists where refine(D2, S

′
w) = fg ′ and fg ′ < fg .
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Proof. (⇒) Let Dr = (D1, D2, fg) ∈ D±,rm (M), we show that (D1, D2) ∈ D±m(M) and we
first show that (D1, D2) ∈ D±(M). Since Dr is a refined diagnosis, it holds that M [br(M) \
D1 ∪ fg(D2)] 6|= ⊥. Let Sw be a witnessing equilibrium of M [br(M) \D1 ∪ fg(D2)], then it
holds for every r ∈ D2 that Sw fg(r) since Dr is minimal. Therefore, Sw is an equilibrium
of M [br(M) \ D1 ∪ cf (D2)], hence (D1, D2) ∈ D±(M). Since Dr is minimal, it holds for
no r ∈ D2 that Sw head(r)← body(fg(r)) ∪B. where body(fg(r)) ⊂ B ⊆ body(r), hence
refine(D2, Sw) = fg .

It remains to show that (D1, D2) ∈ D±m(M). Assume for contradiction that there exists
(D′1, D

′
2) ⊂ (D1, D2) such that (D′1, D

′
2) ∈ D±m(M). Let S′w be a witnessing equilibrium of

(D′1, D
′
2) and fg ′ = refine(D′2, S

′
w). Then it holds that (D′1, D

′
2, fg

′) ∈ D±,r(M) since S′w is
a witnessing equilibrium of M [br(M) \D′1 ∪ fg ′(D′2)]. Since (D′1, D

′
2, fg

′) ∈ D±,r(M) and
(D′1, D

′
2) ⊂ (D1, D2) it holds thatDr is not a minimal refined diagnosis, which is a contradiction.

Therefore, no such (D′1, D
′
2) exists and (D1, D2) ∈ D±m(M).

(⇐) Let D = (D1, D2) ∈ D±m(M), let Sw be a witnessing equilibrium of D, and let
refine(D2, Sw) = fg . Furthermore, assume that no witnessing equilibrium S′w exists with
refine(D2, S

′
w) = fg ′ and fg ′ < fg . We show that (D1, D2, fg) is a minimal refined diagnosis

of M . By definition of refine it holds for every r ∈ D2 that Sw fg(r). Therefore, Sw is an
equilibrium of M [br(M) \D1 ∪ fg(D2)] and (D1, D2, fg) ∈ D±,r(M).

Towards contradiction assume (D1, D2, fg) is not minimal, then there exists (D′1, D
′
2, fg

′) ∈
D±,rm (M) such that (1): (D′1, D

′
2) ⊂ (D1, D2) or (2): D1 = D′1, D2 = D′2, and fg ′ < fg . Case

(1): there exists a witnessing equilibrium S′w of M [br(M) \D′1 ∪ fg ′(D′2)]. Therefore S′w is a
witnessing equilibrium of M [br(M) \D′1 ∪ cf ({r ∈ D′2 | S′w fg ′(r)})], i.e., D′′ = (D′1, {r ∈
D′2 | S′w fg ′(r)}) ∈ D±(M). Since D′′ ⊂ D this is a contradiction to D ∈ D±m(M). In case
(2) holds fg ′ < fg and there exists a witnessing equilibrium S′w of M [br(M) \D1 ∪ fg ′(D2)].
Since (D′1, D

′
2, fg

′) ∈ D±,rm (M) and D′1 = D1, D
′
2 = D2, it holds that S′w also is an equilibrium

of M [br(M) \D1 ∪ cf (D2)] and refine(D2, S
′
w) = fg ′. Then, fg ′ < fg directly contradicts our

assumption that no such S′w and fg ′ exist. Since all cases are contradicting, it must hold that
(D1, D2, fg) is a minimal refined diagnosis.

Example 3.13. Recall Example 3.12. The set of minimal diagnoses is the same as for the running
example, in particular (∅, {r5}) is a minimal diagnosis. The refinement of this diagnosis can be
computed using its (only) witnessing equilibrium

Sv = ({allergy_strong_ab, under_treatment},
{blood_marker , xray_pneumonia},
{d : Pneumonia, (d,m1 ) : has_marker , d : AtypPneumonia},
{need_ab,need_strong , allow_strong_ab, give_strong}),

where only the negated literal of r5 is deleted, this is sufficient to make the rule applicable
under Sw, i.e., fg(r5) = (4 : allow_strong_ab) ← (1 : under_treatment). and it holds that
(∅, {r5}, fg) ∈ D±,rm (M).

Thus, each minimal refined diagnosis is essentially a minimal diagnosis in recoded form.
Minimal refined diagnoses can be simulated by minimal diagnoses and do not convey any more
information than minimal diagnoses.
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Refined Explanations

Similar to diagnoses, it is possible to consider refined modifications of rules (rather than cf (R2))
in Definition 3.3.

Definition 3.7. A refined explanation is a triple (E1, E2, fg) consisting of sets of bridge rules
E1, E2 ⊆ br(M) and a body-reduction function fg , such that M [R1 ∪ fg ′(R2)] |= ⊥ holds, for
every E1 ⊆ R1 ⊆ br(M), R2 ⊆ br(M), and every body-reduction function fg ′ where r ∈ E2

implies body(fg(r)) ⊆ body(fg ′(r)).

Here, we shift the “prevention of inconsistency” expressed by E2 in Definition 3.3 to the
body-reduction fg : we do not add unconditional bridge rules, i.e., from br(M) \E2, but rather
consider all body-reductions fg ′ for which it holds that bridge rules in E2 retain all literals
indicated by fg .

Example 3.14. Reconsider the modified MCS of Example 3.12. A refined explanation is
(E1, E2, fg) where E1 = {r1, r2, r4}, E2 = {r5}, and

fg(r5) = (4 : allow_strong_ab)← not (1 : allergy_strong_ab).

This indicates that every literal except not (1 : allergy_strong_ab) in the body of r5 might
be removed and the inconsistency is still present in the modified MCS. Phrased differently:
not (1 : allergy_strong_ab) must be deleted from the body of r5 to prevent the inconsistency
that is caused by E1.

The notion of a refined explanation is a generalisation of the notion of explanation and there
is a 1-to-1 correspondence between them.

Proposition 3.3. For an inconsistent MCS M , it holds that (E1, E2) ∈ E±(M) iff there exists a
body-reduction function fg such that (E1, E2, fg) is a refined explanation.

Proof. (⇒) Let (E1, E2) ∈ E±(M), pick fg such that for every r ∈ E2 holds fg(r) = r and for
r ∈ br(M) \ E2 holds fg(r) = head(r)← ., i.e. {fg(r) | r ∈ br(M)\E2} = cf (br(M)\E2).
Let R1, R2 be sets of bridge rules such that E1 ⊆ R1 ⊆ br(M), R2 ⊆ br(M) and let fg ′ be
any body-reduction function such that body(fg(r)) ⊆ body(fg ′(r)) holds if r ∈ E2. We have to
show that M [R1 ∪ fg ′(R2)] |= ⊥ holds. Note that by construction of fg and the fact that fg ′ is a
body-reduction function with body(fg(r)) ⊆ body(fg ′(r)) for all r ∈ E2, it holds that fg ′(r) = r
for all r ∈ E2.

Let S = (S1, . . . , Sn) be an arbitrary belief state of M (hence S is also a belief state
of M [R1 ∪ fg ′(R2)]), let A ⊆ R2 be those bridge rules of R2 that are applicable in S, i.e.,
A = {r ∈ R2 | S fg ′(r)}, and let B = {r ∈ E2 | r ∈ A} be those applicable bridge rules that
also occur in E2.

Now consider M [R1 ∪ B ∪ cf (A \ B)] and observe that E1 ⊆ (R1 ∪ B) ⊆ br(M) holds
as well as it holds that (A \ B) ⊆ br(M) \ E2. From (E1, E2) ∈ E±(M) it thus follows that
M [R1 ∪B ∪ cf (A \B)] |= ⊥, i.e., there exists some 1 ≤ k ≤ n such that Sk /∈ ACCk(kbk ∪
app(brk(M [R1 ∪B ∪ cf (A \B)]), S)).
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We next show that for all 1 ≤ i ≤ n it holds that:

{ϕ (r) | r ∈ br i(M [R1 ∪ fg ′(R2)]), S r} =

{ϕ (r) | r ∈ br i(M [R1 ∪B ∪ cf (A \B)]), S r}.

In the following, let 1 ≤ i ≤ n be arbitrary and let F1 = {ϕ (r) | r ∈ br i(M [fg ′(R2)]), S r}
and F2 = {ϕ (r) | r ∈ br i(M [B ∪ cf (A \B)]), S r}. Clearly, to prove the above equality, it
suffices to prove that F1 = F2.

(⊆) Let r ∈ br i(M [fg ′(R2)]) and S r hold, then it holds that r ∈ fg ′(R2), i.e., there exists
r′ ∈ br(M) such that r = fg ′(r′). If r′ ∈ E2 holds, then fg ′(r′) = r. By construction, it holds
that r′ ∈ B and since S r, it holds that S r′. Since ϕ (r) = ϕ (r′), it therefore holds that
ϕ (r) ∈ F2. If r′ /∈ E2 holds, then r′ ∈ A \B there exists r′′ ∈ cf (A \B) such that r′′ = cf (r),
i.e., S r′′ and by ϕ (r′′) = ϕ (r′) = ϕ (r) it holds that ϕ (r) ∈ F2.

(⊇) Let r ∈ br i(M [B ∪ cf (A \ B)]) hold and S r hold. If r ∈ B holds, then r ∈ E2

and fg ′(r) = r, hence S fg ′(r). Since ϕ
(
fg ′(r)

)
= ϕ (r) it then follows that ϕ (r) ∈ F1. If

r ∈ cf (A \B) holds, then there exists r′ ∈ A \B such that r′ /∈ E2 and by the construction of
A it holds that S fg ′(r′). Since ϕ (r′) = ϕ (r) it then follows that ϕ (r) ∈ F1. In summary, for
every ϕ (r) ∈ F2 holds ϕ (r) ∈ F1.

Therefore F1 = F2 holds for all 1 ≤ i ≤ n since i was chosen arbitrarily. Especially, for
i = k it holds that Sk /∈ ACCk(kbk ∪ app(brk(M [R1 ∪ fg ′(R2)]), S)), i.e., S is no equilibrium
of that MCS. Since S also was chosen arbitrarily, it holds for all belief states that there exists some
such k, and consequently it holds that M [R1 ∪ fg ′(R2)] |= ⊥. Furthermore, since R1, R2 and
fg ′ are also arbitrary with E1 ⊆ R1 ⊆ br(M), R2 ⊆ br(M), and body(fg ′(r)) ⊇ body(fg(r))
holds for all r ∈ E2, it holds for all such R1, R2 and fg ′ that M [R1 ∪ fg ′(R2)] |= ⊥. Thus,
(E1, E2, fg) is a refined explanation.
(⇐) Let (E1, E2, fg) be a refined explanation, i.e., M [R1 ∪ fg ′(R2)] |= ⊥ for every E1 ⊆ R1 ⊆
br(M), R2 ⊆ br(M), and body-reduction function fg ′ with body(fg(r)) ⊆ body(fg ′(r)) for
every r ∈ E2. Consider the body-reduction function fg ′ such that for all r ∈ br(M) \E2 it holds
that fg ′(r) = head(r) ← . and fg ′(r) = r for every r ∈ E2, i.e., fg ′(R′2) = cf (R′2) for every
R′2 ⊆ br(M) \ E2. Observe that body(fg(r)) ⊆ body(fg ′(r)) holds for every r ∈ E2, therefore
M [R1∪ fg ′(R2)] |= ⊥ for every E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) by Definition 3.7. Hence,
M [R1 ∪ cf (R′2)] |= ⊥ for every R′2 ⊆ br(M) \ E2 and thus (E1, E2) ∈ E±(M).

In contrast to diagnoses, an explanation does not admit a witnessing equilibrium. Therefore,
we cannot infer from an explanation whether the addition of a reduced version of a bridge rule
would yield consistency.

However, this can be achieved considering a transformed MCS: ConsiderM = (C1, . . . , Cn),
then M r = (C1, . . . , Cn, Cα) is the transformed MCS where Cα is a context whose acceptable
belief states contain exactly those formulas added to it via bridge rules, e.g.,Cα uses the logicLasp

and an empty knowledge base kbα = ∅. Furthermore, the bridge rules of br(M r) are obtained
from br(M) in such a way that every bridge rule r ∈ br(M) of form (2.1) in Definition 2.2 is
split into a core rule (r(0)) and a supplementary rule for each body atom (r(1), . . . , r(m)). The set
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tr(r) of transformed bridge rules corresponding to the bridge rule r ∈ br(M) is then given by:

tr(r) = { r(0) : (k : s)← (Cα : p1), . . . , (Cα : pj), (Cα : pj+1), . . . , (Cα : pm).

r(1) : (Cα : p1)← (c1 : p1).
. . .

r(j) : (Cα : pj)← (cj : pj).

r(j+1) : (Cα : pj+1)← not (cj+1 : pj+1).
. . .

r(m) : (Cα : pm)← not (cm : pm). }

Finally, M r contains for each bridge rule of M the corresponding transformed rules, i.e.,
br(M r) =

⋃
r∈br(M) tr(r). Note that, for readability, this transformation assumes w.l.o.g.

beliefs of different contexts to be disjoint. This can always be achieved by renaming the elements
in the new context Cα.

For example, a bridge rule

(c1 :h)← (c2 : a),not (c3 : b).

of M is transformed to the following bridge rules of M r:

(c1 :h)← (cα : a′), (cα : b′).

(cα : a′)← (c2 : a).

(cα : b′)← not (c3 : b).

An explanation (E1, E2) ∈ E±(M r) then allows to construct a refined explanation (E1, E
r
2 ,

fg) forM as follows: For every r ∈ br(M), it holds that r ∈ Er2 iff tr(r)∩E2 6= ∅. Furthermore,
for r ∈ br(M), let sup(r) = {body(r′) | r′ ∈ tr(r) ∧ r′ 6= r(0)}, then fg is a body-reduction
function on br(M) such that fg(r) = head(r)← sup(r) if r ∈ E2 and fg(r) = (r) otherwise.

For example, if the supplementary rule (cα : a′)← (c2 : a). is in E2, then the removal of the
corresponding literal, here (c2 : a), from the original bridge rule in M contributes to preventing
the inconsistency in M that is caused by E1. Similarly as for refined diagnoses, Proposition 3.3
together with the above transformation yielding M r allows to simulate refined explanations by
ordinary explanations.

3.3 Properties

In this section we first show that, to some extent, diagnoses can be converted to explanations and
vice versa; specifically, minimal diagnoses and minimal explanations point out the same bridge
rules, a property we call duality. We then prove a useful non-intersection property of minimal
diagnoses, and show how modularity of an MCS (defined in the spirit of splitting sets of logic
programs) is reflected in the structure of its diagnoses and explanations.
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Converting between Diagnoses and Explanations

Chronologically, we first discovered the duality between minimal diagnoses and explanations,
which is covered in the section after this. The author of this thesis first proved that duality holds
and later Peter Schüller (cf. [117]) proved the more specific conversion results given below. Since
this later proof is more elegant and it already implies duality, only the later proof is given here.

In the following, we show that it is possible to characterise explanations in terms of di-
agnoses, and vice versa minimal diagnoses in terms of minimal explanations. To this end,
we generalise the notion of a hitting set [113] from sets to pairs of sets. Given a collection
C = {(A1, B1), . . . , (An, Bn)} of pairs of sets (Ai, Bi), Ai, Bi ⊆ U over a set U , a hitting set of
C is a pair of sets (X,Y ), X,Y ⊆ U such that for every pair (Ai, Bi) ∈ C, (i) Ai ∩X 6= ∅ or (ii)
Bi ∩ Y 6= ∅. A hitting set (X,Y ) of C is minimal, if no (X ′, Y ′) ⊂ (X,Y ) is a hitting set of C.

We consider hitting sets over pairs of sets of bridge rules, and denote by HSM (C) (respectively,
minHSM (C)) the set of all (respectively, all minimal) hitting sets of C over U = br(M). Note
that in particular HSM (∅) = {(∅, ∅)}, and HSM ({(∅, ∅)}) = ∅.

Theorem 3.1 (cf. [54]). For every MCS M ,

(a) a pair (E1, E2) with E1, E2 ⊆ br(M) is an inconsistency explanation of M
iff (E1, E2) ∈ HSM (D±(M)), i.e., (E1, E2) is a hitting set of D±(M); and

(b) a pair (E1, E2) with E1, E2 ⊆ br(M) is a minimal inconsistency explanation of M
iff (E1, E2) ∈ minHSM (D±(M)), i.e., (E1, E2) is a minimal hitting set of D±(M).

Proof. In this proof, for variables Ei, Di, and Ri with i ∈ {1, 2}, we assume that Ei, Di, Ri ⊆
br(M). Furthermore, we denote by X the complement of set X wrt. br(M), i.e., X = br(M) \
X .

((a)) Given a pair (E1, E2). For all diagnoses (D1, D2) ∈ D±(M), D1 ∩ E1 or D2 ∩ E2 or
both are nonempty iff

for all (D1, D2) we have that

M [D1 ∪ cf (D2)] 6|= ⊥ implies D1 ∩ E1 6= ∅ or D2 ∩ E2 6= ∅

which (by reversing the implication and simplifying) is equivalent to

for all (D1, D2) we have that

(D1 ∩ E1 = ∅ and D2 ∩ E2 = ∅) implies M [D1 ∪ cf (D2)] |= ⊥.

As A ∩B = ∅ with A,B ⊆ br(M) is equivalent to A ⊆ B we next obtain

for all (D1, D2) we have that

(E1 ⊆ D1 and D2 ⊆ E2) implies M [D1 ∪ cf (D2)] |= ⊥.

If we let D1 = R1 and D2 = R2 this amounts to

for all (R1, R2) we have that

(E1 ⊆ R1 and R2 ⊆ E2) implies M [R1 ∪ cf (R2)] |= ⊥. (3.1)
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This proves the result ((a)) as this last condition is the one of an explanation (E1, E2) in Def-
inition 3.3. Note that, if (∅, ∅) ∈ D±(M), then no explanation exists; this is intentional and
corresponds to the definitions of diagnosis and explanation for consistent systems.

((b)) As minHSM (X) contains the ⊆-minimal elements in HSM (X), and E±m(M) contains
the ⊆-minimal elements in E±(M), ((b)) follows from ((a)).

Clearly, a hitting set of a collection X is the same as a hitting set of the collection of the
⊆-minimal elements in X; from Theorem 3.1. we therefore immediately obtain the following.

Corollary 3.1 (cf. [54]). For every MCS M ,

(a) a pair (E1, E2) with E1, E2 ⊆ br(M) is an inconsistency explanation of M
iff (E1, E2) ∈ HSM (D±m(M)); and

(b) a pair (E1, E2) with E1, E2 ⊆ br(M) is a minimal inconsistency explanation of M
iff (E1, E2) ∈ minHSM (D±m(M)).

Proof. Let min(X) be the set of ⊆-minimal elements in a collection X of sets. Then for every
(A,B) ∈ X \ min(X) there is a pair (A′, B′) ∈ min(X) with (A′, B′) ⊆ (A,B). Given
HSM (min(X)), every pair (A,B) ∈ X \min(X) is hit by every pair (C,D) ∈ HSM (min(X)).
Therefore HSM (min(X)) = HSM (X). Then ((a)) immediately follows from Theorem 3.1 ((a)),
and ((b)) immediately follows from Theorem 3.1 ((b)).

For the next result, we use the following generalisation of a well-known result for minimal hitting
sets [10].

Lemma 3.1 (cf. [54]). For every collection X = {X1, . . . , Xn} of pairs Xi = (Xi
1, X

i
2) of sets,

1 ≤ i ≤ n, such that X is an anti-chain wrt. ⊆, i.e., elements in X are pairwise incomparable
(Xi ⊆ Xj with 1 ≤ i, j ≤ n implies Xi = Xj) it holds that minHSM (minHSM (X)) = X .

Proof. A collection of sets C = {C1, . . . , Cn} over a universe, i.e., Ci ⊆ U , 1 ≤ i ≤ n, can
be seen as a hypergraphH = (U,C) with vertices U and hyperedges Ci ∈ C. If no hyperedge
Ci is contained in any hyperedge Cj , i 6= j, it is called simple. A hitting set on C is called
transversal, and the hypergraph (U,C ′) containing as hyperedges C ′ all minimal hitting sets of
the hypergraphH is called transversal hypergraph Tr(H).

We can map a collection X = {X1, . . . , Xn} of pairs Xi = (Xi
1, X

i
2) of sets, Xi

1,Xi
2 ⊆

U bijectively to a collection µ(X) = {µ(X1), . . . , µ(Xn)} over U ∪ {u′ | u ∈ U} where
µ(Xi

1, X
i
2) = Xi

1 ∪ {u′ | u ∈ Xi
2}. Then, (A,B) is a hitting set of X iff µ(A,B) is a hitting set

of µ(X), and well-known results for transversal hypergraphs [10] carry over to minimal hitting
sets over pairs.

In particular, given a simple hypergraph H = µ(X), it holds that Tr(Tr(µ(X))) = µ(X).
This directly translates into the lemma, because µ(X) is a simple hypergraph due to incomparabil-
ity (also called the anti-chain property) of X , and µ is bijective, therefore transversal hypergraphs
can be mapped back to minimal hitting sets.

Combined with Corollary 3.1 ((b)) we thus obtain.
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Theorem 3.2 (cf. [54]). A pair (D1, D2) with D1, D2 ⊆ br(M) is a minimal diagnosis of M iff
(D1, D2) is a minimal hitting set of E±m(M), formally D±m(M) = minHSM (E±m(M)).

Proof. From Corollary 3.1 (b) we have that E±m(M) = minHSM (D±m(M)). Applying minHSM
on both sides of this formula and then using Lemma 3.1 yields minHSM (E±m(M)) = minHSM (
minHSM (D±m(M))) = D±m(M).

As for computation, Theorem 3.1 provides a way to compute the set E±(M) of explanations
from the set D±(M) of diagnoses, while Theorem 3.2 allows us to compute the set D±m(M) of
minimal diagnoses from the set of minimal explanations E±m(M). Corollary 3.1 shows that, for
computing E±(M) and E±m(M), it is sufficient to know the set D±m(M) of minimal diagnoses.

Note that Theorem 3.2 generalises a result of Reiter’s approach to diagnosis [113], since the
former describes relationships between minimal hitting sets in a sense similar to the relationship
between diagnoses and conflict sets of the latter.

In contrast, note that Theorem 3.1 ((a)) uses hitting sets without the requirement of ⊆-
minimality.

Example 3.15. In Example 3.1 we have E±m(M) = {({r1, r2, r4} , {r5})} and D±m(M) ={
({r1} , ∅) , ({r2} , ∅) , ({r4} , ∅) , (∅, {r5})

}
. An explanation (E1, E2) has a nonempty intersec-

tion E1 ∩ D1 6= ∅ or E2 ∩ D2 6= ∅ with every minimal diagnosis (D1, D2). We thus obtain
exactly one minimal explanation E = ({r1, r2, r4} , {r5}) by Corollary 3.1; furthermore, all
component-wise supersets of E are explanations, as they also hit every minimal diagnosis,
e.g. ({r1, r2, r3, r4, r5} , {r1, r2, r3, r4, r5}), and ({r1, r2, r4} , {r1, r2, r3, r4, r5}).

For illustrating Theorem 3.2, consider the single minimal explanation (E1, E2) of M with
E1 = {r1, r2, r4} andE2 = {r5}. Then any minimal diagnosis (D1, D2) must fulfillE1∩D1 6= ∅
or E2 ∩D2 6= ∅, and there is no smaller pair (D1, D2) with that property. This condition holds
for all minimal diagnoses in D±m(M), and as they contain singleton sets only, and all rules in
E±m(M) have been ‘hit’ that way, it is easy to see that the condition cannot be true for any
smaller pair (D1, D2) ⊂ (D1, D2).

Duality

As it appears, explanations and diagnoses point out bridge rules as causes of inconsistency on
a dual basis. Intuitively, bridge rules in E1 of an explanation (E1, E2) cause inconsistency,
while bridge rules in D1 of a diagnosis (D1, D2) remove inconsistency; furthermore, adding
unconditional forms of bridge rules from E2 spoils inconsistency, while not adding unconditional
forms of bridge rules from D2 spoils consistency.

Both notions point out rules that are erroneous in the way that those rules contribute to
inconsistency. This naturally gives rise to the question whether diagnoses and explanations point
out the same rules of an MCS as erroneous, or whether they characterise different aspects.

To formalise this question, we introduce relevance for inconsistency. Given an MCS M , a
bridge rule r ∈ br(M) is relevant for diagnosis (d-relevant) iff there exists a minimal diagnosis
(D1, D2) of M with r ∈ D1 ∪D2. Analogously, r is relevant for explanation (e-relevant) iff
there exists a minimal explanation with r ∈ E1 ∪ E2.
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Example 3.16. Recall our running example whereD±m(M) =
{

({r1} , ∅) , ({r2} , ∅), ({r4} , ∅) ,
(∅, {r5})

}
while E±m(M) = {({r1, r2, r4} , {r5})}.

Here the set of d-relevant bridge rules is {r1, r2, r4, r5}. The set of e-relevant bridge rules is
identical to that; in fact, even identical component-wise, i.e.,⋃

{D1 | (D1, D2) ∈ D±(M)} = {r1, r2, r4} =
⋃
{E1 | (E1, E2) ∈ E±(M)}

and ⋃
{D2 | (D1, D2) ∈ D±(M)} = {r5} =

⋃
{E2 | (E1, E2) ∈ E±(M)}.

As the following proposition shows, the component-wise coincidence is not accidental. Not
only are the d-relevant rules exactly the same that are e-relevant, but this even holds if the
components of diagnoses and explanations are treated separately. Formalising this, for any set X
of pairs (A,B) we write

⋃
X for (

⋃
{A | (A,B) ∈ X},

⋃
{B | (A,B) ∈ X}).

Proposition 3.4. For every inconsistent MCS M ,
⋃
D±m(M) =

⋃
E±m(M), i.e., the unions of

all minimal diagnoses and all minimal inconsistency explanations coincide.

Proposition 3.4 is an immediate consequence of the close structural relationships between
diagnoses and explanations, which are shown by Theorems 3.1 and 3.2.

This provides evidence for our view that both notions capture exactly those parts of an MCS
that are relevant for inconsistency, as duality shows that, in total, two very different perspectives
on inconsistency state exactly the same parts of the MCS as erroneous.

In practice this allows one to compute the set of all bridge rules which are relevant for making
an MCS consistent (i.e., appear in at least one diagnosis) in two ways: either to compute all
minimal explanations, or to compute all minimal diagnoses. Furthermore, the duality result
allows to exclude, under Occam’s razor, all bridge rules that are not part of any diagnosis (or
explanation) from further investigation as they can be skipped safely.

Our running example suggests, that duality also holds for deletion-diagnoses and deletion-
explanations, which indeed is true:

Theorem 3.3. For every inconsistent MCS M ,
⋃
D−m(M) =

⋃
E+
m(M), i.e., the unions of all

minimal deletion-diagnoses and all minimal deletion-inconsistency explanations coincide.

Proof. This is a direct consequence of Proposition 3.4; set in its proof the second components of
diagnoses and explanations to ∅.

Asymmetry of Conversion

One notable aspect of the above conversion results is that minimal explanations and minimal
diagnoses can be converted into one another, while for the respective non-minimal notions, only
diagnoses can be converted to explanations, but not vice versa.

Intuitively, the reason why conversion is not symmetric stems from the fact that explanations
ignore irrelevant inconsistencies, i.e., contrary to diagnoses, explanations are an order-increasing
concept. This manifests in Proposition 3.1, which states that the supersets of an explanation are
explanations again.

Conversely, a similar property does not hold for diagnoses, i.e., the supersets of a diagnosis
may yield an inconsistent system. Consider an MCS M such that there is a diagnosis (D1, D2)
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and r ∈ br(M) \D1 is a bridge rule not removed by the diagnosis. If r inhibits an inconsistency,
then (D1 ∪ {r}, D2) is no diagnosis as the respective MCS is inconsistent. Although E±m(M) is
sufficient to determine all minimal diagnoses, it is not sufficient to determine which supersets of
a minimal diagnosis actually yield a consistent system.

The following example illustrates this.

Example 3.17. Consider the MCS M = (C1) where C1 is an ASP context with knowledge base
kb1 = {⊥ ← a. ⊥ ← b, not c.}, and the bridge rules are:

r1 : (1 : a)← not (1 : d).

r2 : (1 : b)← not (1 : d).

r3 : (1 : c)← not (1 : d).

Consider D = ({r1}, {}) and D′ = ({r1, r3}, {}). Clearly, D ⊂ D′ and D ∈ D±m(M) while
D′ /∈ D±m(M). On the other hand, E±m(M) = {({r1}, {})}, so by Proposition 3.1, D is a hitting
set on all (non-minimal) explanations. D′ also is a hitting set of all explanations, but it is no
diagnosis.

Non-Overlap in Minimal Diagnoses

We conclude a simple but useful property of minimal diagnoses. Definition 3.1 reveals that, if
(D1, D2) with r ∈ D2 is a diagnosis, then (D1 \ {r}, D2) and (D1∪{r}, D2) also are diagnoses.
For minimal diagnoses we therefore conclude the following.

Proposition 3.5. Every minimal diagnosis (D1, D2) of an MCS M , fulfils D1 ∩D2 = ∅, i.e., no
rule occurs in both components.

Proof. Let (D1, D2) ∈ D±m(M) and let S be a witnessing belief state for it, i.e., S is an
equilibrium of M [br(M) \D1 ∪ cf (D2)]. Towards contradiction, assume that D1 ∩D2 6= ∅.
Consider any bridge rule r ∈ D1 ∩ D2 and let Ch (r) = i and ϕ (r) = p. Furthermore,
consider r′ = cf (r) = (i : p) ← ., then body(r′) = ∅ and thus r′ is applicable in any
belief state. Therefore, r′ ∈ app(br i(M [br(M) \ D1 ∪ cf (D2)]), S) and consequently p ∈
{ϕ (r) | r ∈ app(br i(M [br(M) \ D1 ∪ cf (D2)]), S)}. For (D′1, D

′
2) = (D1 \ {r}, D2), we

thus obtain that p ∈ {ϕ (r) | r ∈ app(br i(M [br(M) \ D′1 ∪ cf (D′2)]), S)} and since all
other bridge rules are as before, we conclude that app(br i(M [br(M) \D′1 ∪ cf (D′2)]), S) =
app(br i(M [br(M) \D1 ∪ cf (D2)]), S) for all i ∈ C (M). Consequently S is an equilibrium
of M [br(M) \D′1 ∪ cf (D′2)] and (D′1, D

′
2) ∈ D±(M). But (D′1, D

′
2) ⊂ (D1, D2) contradicts

(D1, D2) ∈ D±m(M), which proves the result.

An analogue property does not hold for inconsistency explanations; as shown by Example
3.5: the minimal explanation (E1, E2) with E1 = {r1, r2, r4, r6, r7} and E2 = {r6, r7} is such
that r6 and r7 are present in both E1 and E2.

A minimal diagnosis also is such that only bridge rules that otherwise fire are removed and
only those that otherwise do not fire are made unconditional, as the following proposition shows.
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Proposition 3.6. Let M be an MCS and (D1, D2) ∈ D±m(M) hold. Then, if holds for every
S ∈ EQ(M [D1, D2]) that r ∈ D1 implies S r and that r ∈ D2 implies that S 6 r.

Proof. Let (D1, D2) ∈ D±m(M) hold for some MCS M = (C1, . . . , Cn). Assume towards
contradiction that there exists S ∈ EQ(M [D1, D2]) such that (1) there exists r ∈ D1 with S 6 r
or (2) there exists r ∈ D2 with S r.

Case (1): consider (D′1, D
′
2) = (D1 \ {r}, D2) and note that M [D1, D2] differs from

M [D′1, D
′
2] only by the fact that r ∈ br i(M [D′1, D

′
2]) holds for Ch (r) = i while it holds that

r /∈ br i(M [D1, D2]). Consider the belief state S = (S1, . . . , Sn) and observe that for all 1 ≤
j ≤ n with j 6= i holds that Sj ∈ ACCj(kbj ∪ {ϕ (r) | r ∈ app(br j(M [D′1, D

′
2]), S)}) since

S ∈ EQ(M [D1, D2]) holds and br j(M [D1, D2]) = br j(M [D′1, D
′
2]) holds for all 1 ≤ j ≤ n

with j 6= i. To show that S ∈ EQ(M [D′1, D
′
2]) holds, it therefore only remains to show that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br j(M [D′1, D
′
2]), S)}) holds: since br j(M [D′1, D

′
2]) =

br j(M [D1, D2]) \ {r} and S 6 r holds, it follows that app(br j(M [D′1, D
′
2]), S) =

app(br j(M [D1, D2]), S) and consequently that S ∈ EQ(M [D′1, D
′
2]) holds. Since (D′1, D

′
2) ⊆

(D1, D2) and (D′1, D
′
2) ∈ D±(M) holds, this contradicts that (D1, D2) ∈ D±m(M) holds.

Case (2): consider (D′1, D
′
2) = (D1, D2 \ {r}) and observe that again S = (S1, . . . , Sn)

is such that for all 1 ≤ j ≤ n with j 6= Ch (r) holds Sj ∈ ACCj(kbj ∪ {ϕ (r) | r ∈
app(br j(M [D′1, D

′
2]), S)}) since it holds that S ∈ EQ(M [D1, D2]) and br j(M [D1, D2]) =

br j(M [D′1, D
′
2]) for all 1 ≤ j ≤ n with j 6= i. Similarly, as in the other case, it holds that S r

and hence app(br j(M [D′1, D
′
2]), S) = app(br j(M [D1, D2]), S). Again, (D′1, D

′
2) ∈ D±(M)

holds and because (D′1, D
′
2) ⊂ (D1, D2) holds, this contradicts that (D1, D2) ∈ D±m(M) holds.

Since both cases lead to contradiction, it follows that there exists no such S ∈ EQ(M [D1, D2])
with either r ∈ D1 implies S 6 r or r ∈ D2 implies S r. Consequently, it holds for all
S ∈ EQ(M [D1, D2]) that r ∈ D1 implies S r and that r ∈ D2 implies that S 6 r.

Modularity of Explanations and Diagnoses

We next give a syntactic criterion which enables the computation of explanations for an MCS
M in a divide-and-conquer fashion. In particular, minimal explanations of M are then just
combinations of the minimal explanations of the smaller parts. Based on the results about
conversion between explanations and diagnoses, these results then carry over to diagnoses as
well. This can be exploited to compute minimal explanations and minimal diagnoses for certain
classes of MCS more efficiently.

An approach to modularisation (in particular for hierarchical and partitionable MCS) is that
some part does not impact the rest of the system. To this end, we adapt the notion of splitting set
as introduced by [96] in the context of logic programming; a splitting set characterises a subset of
a logic program which is independent of other rules in the program by a syntactic property.

Since an MCS may include contexts with arbitrary logics, a purely syntactical criterion can
only be obtained by resorting to beliefs occurring in bridge rules, under the implicit assumption
that every output belief of a context depends on every input belief of the context. Hence, we split
at the level of contexts, i.e., a splitting set is a set of contexts rather than a set of literals.
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Definition 3.8. A set of contexts U ⊆ C (M) is a splitting set of an MCS M , if every rule
r ∈ br(M) is such that Ch (r) ∈ U satisfies Cb (r) ⊆ U . More formally, U is a splitting set iff
U ⊇

⋃
{Cb (r) | r ∈ br(M), Ch (r) ∈ U}.

For such U , the set bU = {r ∈ br(M) | Ch (r) ∈ U} is called the bottom relative to U .

Example 3.18. In our running example, we have C (M) = {C1, . . . , C4}, with e.g., Ch (r1) =
Ch (r2) = C3, and Cb (r1) = Cb (r2) = {C2}. So the set U1 = {C2, C3} is a splitting set of M ;
its bottom is bU1 = {r1, r2}.

The further splitting sets of M are U2 = {C1} with bU2 = ∅, U3 = {C2} with bU3 = ∅, and
U4 = {C4, C3, C2, C1} with bottom bU4 = br(M).

Intuitively, if U is a splitting set of M , then the consistency (respectively inconsistency) of
contexts in U does not depend on the contexts in C (M) \ U . Thus, if M [bU ] is inconsistent, M
stays inconsistent (under the assumption that M [∅] 6|= ⊥).

Lemma 3.2. Let U be a splitting set of an MCS M and let R1, R2 ⊆ br(M). Then, U is also a
splitting set of M [R1 ∪ cf (R2)].

Proof. Towards contradiction assume that U is not a splitting set for M [R1 ∪ cf (R2)], i.e., there
exists a rule r ∈ br(M [R1 ∪ cf (R2)]) such that Ch (r) ∈ U and Cb (r) 6⊆ U . Thus, there exists
(i : p) ∈ body±(r) such that i /∈ U . Since body±(r′) = ∅ for all r′ ∈ cf (R2), it follows that
r ∈ R1 and since R1 ⊆ br(M), it follows that r ∈ br(M). By the assumption that Ch (r) ∈ U
and because U is a splitting set of M , it follows that i ∈ U for all (i : p) ∈ body±(r), which
contradicts that Cb (r) 6⊆ U . Therefore, no such r can exist and U is also a splitting set of
M [R1 ∪ cf (R2)].

Lemma 3.3. Let M be an MCS, let B be a set of bridge rules compatible with M , and let
U ⊆ C (M) be a splitting set for M [B]. Then, for every i ∈ U and belief state S = (S1, . . . , Sn)
of M it holds that:

Si ∈ ACCi(kbi ∪ app(br i(M [bU ]), S)) iff Si ∈ ACCi(kbi ∪ app(br i(M [B]), S)).

Proof. We first show that br i(M [bU ]) = br i(M [B]) holds for all i ∈ U :

(⊆) From the definition of the bottom, bU , it follows that bU ⊆ B, thus br i(M [bU ]) ⊆
br i(M [B]).
(⊇) Consider r ∈ br i(M [B]). It holds that Ch (r) = i. Since U is a splitting set and i ∈ U it
follows that r ∈ bU by definition of the bottom bU . Hence, br i(M [bU ]) ⊇ br i(M [B]).

As a consequence of br i(M [bU ]) = br i(M [B]), it follows that app(br i(M [bU ]), S) =
app(br i(M [B]), S) holds for all i ∈ U , and therefore it is also the case that ACCi(kbi ∪
app(br i(M [bU ]), S)) = ACCi(kbi ∪ app(br i(M [B]), S)), which proves the lemma.

Observe that splitting sets preserve acceptability not only when bridge rules in the remainder
of the MCS are modified (as in Lemma 3.3), but also when belief sets in the remainder are
exchanged. For two belief states S = (S1, . . . , Sn) and S′ = (S′1, . . . , S

′
n) of an MCS, we say

that S coincides with S′ on U , written S =U S
′, if for all i ∈ U holds Si = S′i.
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Lemma 3.4. Let M be an MCS, let B be a set of bridge rules compatible with M , and let
U be a splitting set for M [B]. Furthermore, let S = (S1, . . . , Sn) and S′ = (S′1, . . . , S

′
n) be

belief states of M , and let bU ⊆ R ⊆ B. Then, S =U S′ and i ∈ U implies ACCi(kbi ∪
app(br i(M [B]), S)) = ACCi(kbi ∪ app(br i(M [R]), S′)).

Proof. Since bU ⊆ R it holds for all i ∈ U that br i(M [B]) = br i(M [R]). Furthermore, because
U is a splitting set, it follows that c ∈ U for all (c : p) ∈ body±(r) such that r ∈ br i(M [B]) and
i ∈ U . As a consequence p ∈ Sc iff p ∈ S′c since S and S′ coincide on U and r ∈ br i(M [B]) iff
r ∈ br i(M [R]).

For a pair R = (R1, R2) of sets of bridge rules compatible with M and a set U of contexts
we say that R is U -headed iff r ∈ (R1 ∪R2) implies Ch (r) ∈ U .

Proposition 3.7. Suppose U is a splitting set of an MCS M . Then,

(i) E ∈ E±(M [bU ]) iff E ∈ E±(M) and E is U -headed, and

(ii) D ∈ D±(M [bU ]) iff there exists some D′ ∈ D±(M) such that D ⊆ D′.

Proof. For reasoning about explanations, the concept of explanation range proves to be useful. For
a given pairE = (E1, E2) ∈ 2br(M)×2br(M) of sets of bridge rules andB ⊆ br(M), the explana-
tion range ofE with respect toB is Rg(E,B) = {(R1, R2) | E1 ⊆ R1 ⊆ B and R2 ⊆ B \ E2}.
Intuitively, Rg(E,B) are “relevant pairs” for E with respect to the upper bound B. It follows
directly from Definition 3.3 that, E = (E1, E2) ∈ E±(M) iff M [R1 ∪ cf (R2)] |= ⊥ for all
(R1, R2) ∈ Rg(E, br(M)).

In the following we prove Item (i): E ∈ E±(M [bU ]) holds iff E ∈ E±(M) holds and E is
U -headed.

(⇒) Let (R′1, R
′
2) ∈ Rg(E, br(M)) be arbitrary, then both R′1 ⊆ br(M) and R′2 ⊆ br(M). By

Lemma 3.2, U is also a splitting set for the MCS N ′ = M [R′1 ∪ cf (R′2)].
Let R1 = R′1 ∩ bU and let R2 = R′2 ∩ bU . As E1, E2 ⊆ bU , it follows that (R1, R2) ∈

Rg(E, bU ). Because E is an explanation of M [bU ], it holds for N = M [R1 ∪ cf (R2)] that N |=
⊥, i.e., for every belief state S exists a context i ∈ U with Si /∈ ACCi(kbi ∪ app(br i(N), S)).

Since B = R′1 ∪ cf (R′2) is compatible with M and U is a splitting set for N ′ = M [B],
we conclude from Lemma 3.3 that for every belief state S it holds that Si ∈ ACCi(kbi ∪
app(br i(N

′), S)) iff Si ∈ ACCi(kbi ∪ app(br i(N), S)). Since N |= ⊥ this implies that for
every S there exists some i ∈ U such that Si /∈ ACCi(kbi∪app(br i(N

′), S)) and thusN ′ |= ⊥.
Since (R′1, R

′
2) ∈ Rg(E, br(M)) is arbitrary, it follows that E ∈ E±(M). Furthermore, E is

U -headed by definition.

(⇐) Let E = (E1, E2) ∈ E±(M) such that E is U -headed, and consider some arbitrary
(R1, R2) ∈ Rg(E, bU ). Since bU ⊆ br(M), we conclude that (R1, R2) ∈ Rg(E, br(M)). Since
E is an explanation of M , it follows that N = M [R1 ∪ cf (R2)] is such that N |= ⊥. As this
holds for every (R1, R2) ∈ Rg(E, bU ), it follows that (E1, E2) ∈ E±(M [bU ]).

This establishes item (i).
Next we prove Item (ii): D ∈ D±(M [bU ]) holds iff there exists D′ ∈ D±(M) such that

D ⊆ D′.
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(⇒) Let D = (D1, D2) ∈ D±(M [bU ]). Then, there exists an equilibrium S of M [R] where
R = (bU \ D1) ∪ cf (D2). Consider (D′1, D

′
2) = (D1 ∪ (br(M) \ bU ), D2) and observe that

(br(M) \D′1) ∪ cf (D′2) = R, because br(M) \D′1 = bU \D1. Since S is an equilibrium of
M [R], it follows that D′ ∈ D±(M).

(⇐) Assume D′ ∈ D±(M) where D′ = (D′1, D
′
2). First assume that E±(M [bU ]) = ∅, i.e.,

M [bU ] is consistent. Then, D = (∅, ∅) ∈ D±(M [bU ]), hence D ⊆ D′ and D ∈ D±(M [bU ]).
Otherwise, E±(M [bU ]) 6= ∅. Consider (D1, D2) = (D′1 ∩ bU , D′2 ∩ bU ) and let R′ =

br(M) \ D′1 ∪ cf (D′2) and R = bU \ D1 ∪ cf (D2). Observe that br j(M [R]) = ∅ for all
j ∈ C (M) \ U , because R ⊆ bU ∪ cf (bU ) and for no rule r ∈ bU ∪ cf (bU ) it holds that
Ch (r) = j.

As M [∅] is consistent, there exists some S0
j ∈ ACCj(kbj) for every j ∈ C (M). Let

S′ = (S′1, . . . , S
′
n) be an equilibrium for M [R′] (which exists because D′ ∈ D±(M)). Let

S = (S1, . . . , Sn) such that Si = S′i if i ∈ U , and Si = S0
i otherwise. Then, S is an equilibrium

for M [R]. Indeed, first consider i ∈ C (M) \ U . Since br i(M [R]) = ∅, it follows that
app(br i(M [R]), S) = ∅, hence S0

i ∈ ACCi(kbi ∪ app(br i(M [R]), S)). Second, consider i ∈
U . Note that U is a splitting set of M [R], because br j(M [R]) = ∅ for all j ∈ C (M) \ U . Since
bU ⊆ R ⊆ R′ and S =U S

′, it follows from Lemma 3.4 that ACCi(kbi∪app(br i(M [R]), S)) =
ACCi(kbi∪app(br i(M [R′]), S′)). From S′i ∈ ACCi(kbi∪app(br i(M [R′]), S′)) and Si = S′i,
it thus follows that Si ∈ ACCi(kbi ∪ app(br i(M [R]), S)).

Consequently, Si ∈ ACCi(kbi ∪ app(br i(M [R]), S)) for all i ∈ C (M); hence S is an
equilibrium of M [R]. Since R1 ∪R2 ⊆ bU , it follows that D ∈ D±(M [bU ]).

Corollary 3.2. Every minimal explanation of M [bU ] is a minimal explanation of M .

Proof. Let E ∈ E±m(M [bU ]), then it follows from Proposition 3.7 that E ∈ E±(M) and
E is U -headed. Assume for a contradiction that E /∈ E±m(M). Hence, there exists some
E′ ∈ E±(M) such that E′ ⊂ E. Since E is U -headed, it follows that E′ also is U -headed. Thus
by Proposition 3.7 it follows thatE′ ∈ E±(M [bU ]), which contradicts thatE ∈ E±m(M [bU ]).

Note that M [bU ] does not yield all explanations that contain rules from bU , but it yields all
explanations that contain only rules from M [bU ].

Example 3.19. Reconsider the MCS M from Example 3.1, where the laboratory database
together with the disease ontology forms a splitting set U = {C2, C3} with bU = {r1, r2}. Now
M [bU ] is consistent, so E±(M [bU ]) = ∅, but the overall MCS is inconsistent with the minimal
explanation E = ({r1, r2, r4}, {r5}). In line with Proposition 3.7, E contains rules from bU but
E is not bU -headed.

In the particular case that two splitting sets form a partitioning of the MCS, then both partitions
can be treated without considering the other one. This means that explanations only contain rules
from one partition and diagnoses of the whole MCS are obtained by simply combining diagnoses
of each of the partitions.

Proposition 3.8. Suppose that both U⊆ C (M) and U ′ = C (M) \ U are splitting sets of an
MCS M . Then, every E ∈ E±m(M) is either U -headed or U ′-headed.
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Proof. As in the proof of Proposition 3.7, let (R1, R2) ∈ Rg(E,B) iff E1 ⊆ R1 ⊆ B and
R2 ⊆ B \E2. Given a splitting set V ⊆ C (M) and sets of bridge rules R1, R2 ⊆ br(M), we
call M [(R1 ∩ bV ) ∪ cf (R2 ∩ bV )] the V -projection of M wrt. R = (R1, R2).

W.l.o.g. assume that M = (C1, . . . , Cn), U = {1, . . . , k}, and U ′ = {k + 1, . . . , n}, where
1 ≤ k < n. Towards contradiction assume that some E = (E1, E2) ∈ E±m(M) exists which
contains rules from both, bU and bU ′ . Consider an arbitrary (R1, R2) ∈ Rg(E, br(M)). Since E
is an explanation, it holds that M [R1 ∪ cf (R2)] |= ⊥.

We prove that for every R = (R1, R2) ∈ Rg(E, br(M)) either its U -projection or its
U ′-projection is inconsistent, or both.

Towards contradiction assume that neither projection is inconsistent. Then, there exists
an equilibrium S = (S1, . . . , Sn) of the U -projection of M wrt. R and an equilibrium S′ =
(S′1, . . . , S

′
n) of the U ′-projection of M wrt. R. Consider the belief state S′′ = (S1, . . . , Sk,

S′k+1, . . . , S
′
n). By Lemma 3.4, it holds that Si ∈ ACCi(kbi ∪ app(br i(M [R1 ∪ cf (R2)]), S′′)

for all i ∈ U , because U is a splitting set of M [R1 ∪ cf (R2)], bU ⊆ (R1 ∩ bU )∪ cf (R2 ∩ bU ) ⊆
R1 ∪ cf (R2), and S =U S

′′.
Analogously, it holds that S′i ∈ ACCi(kbi ∪ app(br i(M [R1 ∪ cf (R2)]), S′′) for all i ∈ U ′.
Consequently, S′′ is an equilibrium ofM [R1∪cf (R2)], which contradicts thatE is an explanation.
Therefore, for every R ∈ Rg(E, br(M)) it holds that either the U -projection of R, the U ′-
projection of R, or both are inconsistent.

Next, we distinguish for all R ∈ Rg(E, br(M)) which projections are inconsistent.

Case (1): for every R ∈ Rg(E, br(M)) its U -projection is inconsistent. Then, E′ = (E1 ∩
bU , E2 ∩ bU ) is an explanation, since for every R′ ∈ Rg(E′, br(M)) it holds that R′ is a U -
projection of some R ∈ Rg(E, br(M)), which is inconsistent. Since E1 ∪ E2 6⊆ bU , we have
E′ ⊂ E. Since E′ ∈ E±(M), it follows that E /∈ E±m(M), which contradicts the assumption
that E ∈ E±m(M).
Case (2): for all R ∈ Rg(E, br(M)) it holds that the U ′-projection is inconsistent. Analogously
to the previous case, we conclude that E′ = (E1 ∩ bU ′ , E2 ∩ bU ′) is an explanation of M such
that E′ ⊂ E, which contradicts the assumption that E ∈ E±m(M).
Case (3): Neither case (1) nor case (2) applies. That is, for some R = (R1, R2) ∈ Rg(E, br(M))
the U -projection is consistent, and also for some R′ = (R′1, R

′
2) ∈ Rg(E, br(M)) the U ′-

projection is consistent. This means that there exists some belief state S = (S1, . . . , Sn) such
that Si ∈ ACCi(kbi ∪ app(br i(M [(R1 ∩ bU ) ∪ cf (R2 ∩ bU )]), S)) holds for all i ∈ C (M)
and there exists some belief state S′ = (S′1, . . . , S

′
n) such that for all i ∈ C (M) it holds that

S′i ∈ ACCi(kbi ∪ app(br i(M [(R′1 ∩ bU ′) ∪ cf (R′2 ∩ bU ′)]), S)).
Now consider R′′ = (R′′1 , R

′′
2) = ((R1 ∩ bU ) ∪ (R′1 ∩ bU ′), (R2 ∩ bU ) ∪ (R′2 ∩ bU ′)).

First, we show that R′′ ∈ Rg(E, br(M)). Since U and U ′ partition C (M), it holds that
E1 = (E1∩ bU )∪ (E1∩ bU ′); since E1 ⊆ R1, clearly E1∩ bU ⊆ R1∩ bU . Analogously, it holds
thatE1∩bU ′ ⊆ R1∩bU ′ . Consequently, E1 = (E1∩bU )∪(E1∩bU ′) ⊆ (R1∩bU )∪(R′1∩bU ′);
hence E1 ⊆ R′′1 ⊆ br(M). For R′′2 observe that (R2 ∪ R′2) ∩ E2 = ∅ since both R2 and
R′2 are disjoint with E2 by definition. Therefore ((R2 ∩ bU ) ∪ (R′2 ∩ bU ′)) ∩ E2 = ∅; hence
R′′2 ⊆ br(M) \ E2. In conclusion, it holds that R′′ ∈ Rg(E, br(M)).

Second, we show that S′′ = (S1, . . . , Sk, S
′
k+1, . . . , S

′
n) is an equilibrium of the MCS

M [R′′1 ∪ cf (R′′2)]. Since S′′ =U S and, as already shown R1 ∩ bU ⊆ R′′1 and cf (R2 ∩ bU ) ⊆
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cf (R′′2), it follows by Lemma 3.4 that Si ∈ ACCi(kbi∪app(br i(M [R′′1 ∪cf (R′′2)]), S′′)) for all
i ∈ U . Analogously, the same is shown for U ′, i.e., for all i ∈ U ′ it holds that S′i ∈ ACCi(kbi ∪
app(br i(M [R′′1 ∪ cf (R′′2)]), S′′)). Therefore, S′′ is an equilibrium of M [R′′1 ∪ cf (R′′2)]. Since
R′′ ∈ Rg(E, br(M)), it follows that E /∈ E±(M). This is a contradiction to the assumption that
E ∈ E±m(M).

Since all cases yield a contradiction, it follows that every E ∈ E±m(M) is either U -headed or
U ′-headed.

Corollary 3.3. Suppose U ⊆ C (M) and U ′ = C (M)\U are splitting sets of an MCSM . Then,
E±m(M) = E±m(M [bU ]) ∪ E±m(M [bU ′ ]).

Proof. (⊆) Let E ∈ E±m(M). Then by Proposition 3.8, E is either U -headed or U ′-headed. If E
is U -headed, then E ∈ E±(M [bU ]) by Proposition 3.7. Assume that E /∈ E±m(M [bU ]). Hence
some E′ ⊂ E exists such that E′ ∈ E±m(M [bU ]). By Proposition 3.8, E′ ∈ E±m(M). This
contradicts that E ∈ E±m(M), which gives E ∈ E±m(M [bU ]). Analogously, if E is U ′-headed,
then E ∈ E±m(M [bU ′ ]). It follows that E ∈ E±m(M [bU ]) ∪ E±m(M [bU ′ ]).

(⊇) Let E ∈ E±m(M [bU ]) (respectively E ∈ E±m(M [bU ′ ])). Since U (respectively U ′) is a
splitting set of M , from Corollary 3.2 it follows that E ∈ E±m(M). In conclusion it holds that
E±m(M) ⊇ E±m(M [bU ]) ∪ E±m(M [bU ′ ])

Thus, using U,U ′ the MCS M can be partitioned into two parts where minimal explanations
can be computed independently. From this and Theorem 3.2 we can conclude that for a partition-
able MCS, the set of all minimal diagnoses can be obtained by combining the minimal diagnoses
of each partition.

Proposition 3.9. Suppose that U and U ′ = C (M) \ U are splitting sets of an MCS M . Then,

D±m(M) = {(A1 ∪B1, A2 ∪B2) |
(A1, A2)∈D±m(M [bU ]) and (B1, B2)∈D±m(M [bU ′ ])}.

Proof. By Corollary 3.3, E±m(M) = E±m(M [bU ]) ∪ E±m(M [bU ′ ]), while by Theorem 3.2 each
diagnosis is a minimal hitting set on E±m(M). Because U and U ′ partition M , E±m(M [bU ])
and E±m(M [bU ′ ]) are on disjoint sets. Therefore the minimal hitting set of their unions is the
pairwise combination of their minimal hitting sets. That is, (D1, D2) ∈ minHSM (E±m(M))
iff (D1, D2) = (A1 ∪ B1, A2 ∪ B2) with (A1, A2) ∈ minHSM (E±m(M [bU ]) and (B1, B2) ∈
minHSM (E±m(M [bU ′ ]). From Theorem 3.2 it follows that D±m(M) = minHSM (M). This
proves the proposition.

We combine the MCS from Example 3.8 and Example 3.9 to obtain a partitionable MCS.

Example 3.20. Consider the MCS Mc = (C ′′1 , C
′′
2 , C

′′
3 , C

′′
4 , C

′′
5 ) = (C1, C2, C

′
1, C

′
2, C

′
3) which

combines the MCS M from Example 3.8 and a primed version M ′ of the MCS from Example 3.9.
This requires some rewriting of context identifiers in bridge rules. The full details of this follow in
the next section. The resulting MCS is depicted in Figure 3.7. Obviously Mc has a partitioning
(U,U ′) where U = {1, 2} and U ′ = {4, 5, 6}.
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kb1=
{}

C ′′1 =C1

kb2=
{}

C ′′2 =C2

r1 : (2 : b)← (1 : a).

r2 : (1 : a)← not (2 : b).

kb′1=
{
a.
}

C ′′3 =C ′1

kb′2=
{}

C ′′4 =C ′2

kb′2=
{
⊥ ← c.

}
C ′′5 =C ′3

r′1 : (4 : b)← (3 : a). r′2 : (5 : c)← (4 : b).

r′3 : (5 : c)← not (4 : b).

Figure 3.7: The combination of the MCS from Example 3.8 and Example 3.9. Context identifiers
in bridge rules are adapted (cf. details in the following section).

Then, E±m(Mc) = {({r1, r2}, {r1, r2}), ({r′1, r′2}, ∅), ({r′2, r′3}, ∅)} = E±m(M) ∪ E±m(M ′)
while

D±m(Mc) ={({r1, r
′
2}, ∅), ({r1, r

′
1, r
′
3}, ∅)

({r2, r
′
2}, ∅), ({r2, r

′
1, r
′
3}, ∅)

({r′2}, {r1}), ({r′1, r′3}, {r1})
({r′2}, {r2}), ({r′1, r′3}, {r2})

={(A1 ∪B1, A2 ∪B2) | (A1, A2)∈D±m(MU ), (B1, B2)∈D±m(MU ′)}.

Shifting and Decomposition of Contexts

In this section, we investigate how MCS can be combined or broken up. Based on the previous
splitting-set results, we show that the diagnoses of a combined MCS are cross-products of the
diagnoses of the combined parts and vice versa, i.e., for finding diagnoses, an MCS may be
broken into smaller partitions, given that all bridge rules of the original MCS also appear in one
of the partitions.

Since the contexts and bridge rules in an MCS are identified by their position, a way of
shifting/manipulating indices of such positional identifiers is necessary. For this, we shift indices
according to a permutation I : N→ N, i.e., I is a bijective mapping. Given a bridge rule r of form
(2.1), then I(r) is the bridge rule (I(k) : s) ← (I(c1) : p1), . . . , (I(cj) : pj),not (I(cj+1) :
pj+1), . . . ,not (I(cm) : pm); furthermore, for a set R of bridge rules we have I(R) = {I(r) |
r ∈ R} and for a context Ci = (Li, kbi, br i) we have I(Ci) = (Li, kbi, I(br i)). Given an
MCS M = (C1, . . . , Cn), a permutation I is compatible with M if I(x) ≤ n holds for all
x ≤ n, i.e., I is a permutation on C (M); the “shuffled” version of M wrt. a compatible I
then is I(M) = (I(CI−1(1)), . . . , I(CI−1(n))). Given a belief state S = (S1, . . . , Sn) we have
I(S) = (SI−1(1), . . . , SI−1(n))
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To combine two existing MCS into a new one, we use the following ⊗ operator: given the
MCS M = (C1, . . . , Cn) and M ′ = (C ′1, . . . , C

′
m) their combination is

M ⊗M ′ = (C1, . . . , Cn, I(C ′1), . . . , I(C ′m))

where I(x) =


n+ x for 1 ≤ x ≤ m,
x−m for m+ 1 ≤ x ≤ n+m,

x otherwise.
In the following, we call I the permutation wrt.M⊗M ′. Note that by construction the permutation
I wrt. M ⊗M ′ is compatible with M ⊗M ′. Recall that M [R1, R2] = M [br(M)\R1∪cf (R2)].
Regarding modifications and diagnosis candidates, we then observe that

M [A1, A2]⊗M ′[B1, B2] = (M ⊗M ′)[A1 ∪ I(B1), A2 ∪ I(B2)]

where I is the mapping wrt. M ⊗M ′.
The following lemma shows that shifting alone has no influence on acceptability.

Lemma 3.5. Given an MCS M = (C1, . . . , Cn) and a compatible permutation I , then S ∈
EQ(M) holds iff I(S) ∈ EQ(I(M)) holds. Furthermore, S ∈ EQ(M [D1, D2]) holds iff I(S) ∈
EQ(I(M [D1, D2])) holds.

Proof. Observe that I is a bijection on {1, . . . , n} which simply renames context identifiers.
Therefore, one can directly conclude that S ∈ EQ(M) holds iff I(S) ∈ EQ(I(M)) holds. In the
following, we show in full detail that this renaming indeed is correct.

Let S = (S1, . . . , Sn) and I(S) = (SI−1(1), . . . , SI−1(n)) = (S′1, . . . , S
′
n). and let 1 ≤

i ≤ n. Note that S ∈ EQ(M) holds iff for all 1 ≤ i ≤ n holds Si ∈ ACCi(kbi ∪
app(br i(M), S)); additionally I(S) ∈ EQ(I(M)) holds iff for all 1 ≤ j ≤ n holds Sj ∈
ACCj(kbj ∪ app(br j(I(M), I(S)). Given that I is bijective and compatible to M , there
exists j ∈ {1, . . . , n} for every i ∈ {1, . . . , n} such that j = I(i) and vice versa, i.e., for
every j ∈ {1, . . . , n} exists a i ∈ {1, . . . , n} such that i = I−1(j). We now show that
for any 1 ≤ i, j ≤ n such that j = I(i) it holds that Si ∈ ACCi(kbi ∪ app(br i(M), S)
iff Sj ∈ ACCj(kbj ∪ app(br j(I(M)), I(S)). Observe that by construction of I(M) it
holds that Si = Sj , ACCi = ACCj , and kbi = kbj . Hence it suffices to show that
app(br i(M), S) = app(br j(I(M)), I(S)). Note that br j(I(M)) = I(br i(M)), hence there
exists a bijection from br j(I(M)) to br i(M), namely I; furthermore I also maps bijectively each
r ∈ br i(M) and every (c : p) ∈ body±(r) to I(r) and (I(c) : p). Since ϕ (r) = ϕ (I(r)) it suf-
fices to show that p ∈ Sc holds iff p ∈ S′I(c) holds. This is true since S′I(c) = SI−1(I(c)) = Sc, thus
it follows that app(br i(M), S) = app(br j(I(M)), I(S)) which in turn implies that S ∈ EQ(M)
iff I(S) ∈ EQ(I(M)).

From this we also conclude that S ∈ EQ(M [D1, D2]) holds iff I(S) ∈ EQ(I(M [D1, D2]))
holds, because M [D1, D2] is an MCS, hence the above statement also applies to M [D1, D2].

To show that the set of diagnoses of M ⊗M ′ is the product of the set of diagnoses of M
and of M ′, we use the following lemma, which states that if M ′ has no bridge rules, the set of
diagnoses of M coincides with the set of diagnoses of M ⊗M ′.
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Lemma 3.6. Given an MCS M = (C1, . . . , Cn) and an MCS M ′ = (C ′1, . . . , C
′
m) with

br(M ′) = ∅. Then for every belief state (S1, . . . , Sn) of M exist belief sets Sn+1, . . . , Sn+m

such that (S1, . . . , Sn+m) ∈ EQ(M ⊗M ′) holds iff (S1, . . . , Sn) ∈ EQ(M) holds.

Proof. Let Mo = M ⊗M ′.
“⇒”: Let S = (S1, . . . , Sn+m) ∈ EQ(M ⊗M ′) be such that for every 1 ≤ i ≤ n+m holds

Si ∈ ACCi(kbi ∪ app(br i(M
o), S)). Note that by construction of Mo it holds for every bridge

rule r ∈ br i(M
o) with 1 ≤ i ≤ n that (c : p) ∈ body±(r) implies that c ∈ {1, . . . , n} holds.

Hence by br i(M
o) = br i(M) follows that app(br i(M

o), S) = app(br i(M), (S1, . . . , Sn)).
Therefore, for all i ∈ C (M) it holds that Si ∈ ACCi(kbi ∪ app(br i(M), (S1, . . . , Sn))), i.e.,
(S1, . . . , Sn) ∈ EQ(M).

“⇐”: Let S = (S1, . . . , Sn) ∈ EQ(M) hold. Since br(M ′) = ∅, it holds for all n +
1 ≤ j ≤ n + m that br j(M

o) = ∅. Recall that contexts are consistent without bridge rules,
i.e., there exists S∅j ∈ ACCj(kbj ∪ ∅) for all n + 1 ≤ j ≤ n + m. Consider the belief
state S′ = (S1, . . . , Sn, S

∅
n+1, . . . , S

∅
n+m) and observe that for all 1 ≤ i ≤ n it holds that

app(br i(M
o), S′) = app(br i(M), S) since br i(M

o) = br i(M). It therefore follows that
S′ ∈ EQ(Mo) holds.

Since shifting has no influence on acceptability, we can turn around the above lemma to show
that the set of diagnoses of M ⊗M ′ equals the set of diagnoses of M ′ if br(M) = ∅.

Corollary 3.4. Given an MCS M = (C1, . . . , Cn) and an MCS M ′ = (C ′1, . . . , C
′
n′) with

br(M) = ∅. Then, for every belief state (S′1, . . . , S
′
n′) of M ′ exist belief sets S1, . . . , Sn such

that (S1, . . . , Sn, S
′
1, . . . , S

′
n′) ∈ EQ(M ⊗M ′) holds iff (S′1, . . . , S

′
n′) ∈ EQ(M ′) holds.

Proof. Consider a permutation I ′ that exchanges the positions of contexts of M and M ′ in M ⊗
M ′, formally: let I be the permutation wrt. M ⊗M ′ and recall that I is compatible with M ⊗M ′.
Let I ′ = I−1 and M s = I ′(M ⊗M ′). Note that M s equals M ′ ⊗M , hence by Lemma 3.5
we obtain that (S1, . . . , Sn, S

′
1, . . . , S

′
n′) ∈ EQ(M ⊗M ′) iff I ′((S1, . . . , Sn, S

′
1, . . . , S

′
n′)) ∈

EQ(M s) iff (S′1, . . . , S
′
n′ , S1, . . . , Sn) ∈ EQ(M ′ ⊗M).

Since br(M) = ∅ it holds by Lemma 3.6 that for every belief state (S′1, . . . , S
′
n′) of M ′ exist

belief sets Sn′+1, . . . , Sn′+n such that (S′1, . . . , S
′
n′ , Sn′+1, . . . , Sn′+n) ∈ EQ(M ′ ⊗M) holds

iff (S′1, . . . , S
′
n′) ∈ EQ(M ′) holds. In summary, (S1, . . . , Sn, S

′
n+1, . . . , S

′
n+n′) ∈ EQ(M ⊗M ′)

holds iff (S′n+1, . . . , S
′
n+n′) ∈ EQ(M ′) holds.

We now continue with our main argument, namely that M ⊗ M ′ admits exactly those
diagnoses which are a combination of a diagnosis of M and a diagnosis of M ′.

Proposition 3.10. Given two MCSM andM ′, thenD±(M⊗M ′) = {(A1∪I(B1), A2∪I(B2)) |
(A1, A2) ∈ D±(M), (B1, B2) ∈ D±(M ′)} where I is the permutation wrt. M ⊗M ′.

Proof. W.l.o.g. let M = (C1, . . . , Cn), let M ′ = (C ′1, . . . , C
′
n′), and let Mo = M ⊗ M ′.

Observe that by construction, there is no bridge rule whose head belongs to M (resp. M ′)
and whose body contains a belief from M ′ (resp. M ). Consequently, U = {1, . . . , n} and
U ′ = {n+1, . . . , n+n′} = C (Mo)\U are both splitting sets ofMo. Let S∅ = (S∅1 , . . . , S

∅
n+n′)
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be an equilibrium of Mo[∅], which exists by our assumption that all contexts (of M and M ′) are
consistent without bridge rules; additionally let B = br(Mo) \D1 ∪ cf (D2).

“⇒”: Let (D1, D2) ∈ D±(Mo) hold. Then there exists a belief state S = (S1, . . . , Sn+n′)
such that for every 1 ≤ i ≤ n+ n′ it holds that Si ∈ ACCi(kbi ∪ app(br i(M

o[D1, D2]), S)).
Consider SU = (S1, . . . , Sn, S

∅
n+1, . . . , S

∅
n+n′) and observe that SU =U S; hence by

Lemma 3.4 it follows for all i ∈ U that

ACCi(kbi ∪ app(br i(M
o[B]), S)) = ACCi(kbi ∪ app(br i(M

o[R]), SU ))

holds for all bU ⊆ R ⊆ B, specifically for R = bU . Note that U,U ′, and bU meant here
are relative to the MCS Mo[B], where by Lemma 3.2 U and U ′ are also splitting sets of
Mo[B]. Consequently, for all i ∈ U it holds that Si ∈ ACCi(kbi ∪ app(br i(M

o[bU ]), SU ))
and for all j ∈ C (Mo) \ U it holds that S∅j ∈ ACCj(kbj ∪ app(br j(M

o[bU ]), SU )), because
br j(M

o[bU ]) = ∅; thus it holds that SU ∈ EQ(Mo[bU ]). Recall that bU is defined relative to
Mo[B], hence bU = br(M) \ (D1 ∩ br(M)) ∪ cf (D2 ∩ br(M)), i.e., for A1 = D1 ∩ br(M)
and A2 = D2 ∩ br(M) it holds that Mo[bU ] = Mo[br(M) \ A1 ∪ cf (A2)] and it follows that
SU ∈ EQ(Mo[br(M) \ A1 ∪ cf (A2)]), i.e., it holds that (A1, A2) ∈ D±(Mo[br(M)]). Since
Mo[br(M)] = M⊗M ′[∅], Lemma 3.6 applies, i.e., it holds that (S1, . . . , Sn) ∈ EQ(M [A1, D2])
and we conclude that (A1, A2) ∈ D±(M).

The proof that (B1, B2) ∈ D±(M ′) for B1 = D1 ∩ I(br(M ′)) and B2 = D2 ∩ I(br(M ′))
is analogous; it is based on the belief state SU ′ = (S∅1 , . . . , S

∅
n, Sn+1, . . . , Sn+n′) which is a

witness of (I(B1), I(B2)) ∈ D±(Mo[bU ′ ]); applying Corollary 3.4 (for (M ⊗ M ′)[bU ′ ] =
M ⊗M ′[B1, B2]) then yields that (B1, B2) ∈ D±(M ′).

“⇐”: Let (A1, A2) ∈ D±(M) and (B1, B2) ∈ D±(M ′) hold. Then there exists some SA =
(SA1 , . . . , S

A
n ) ∈ EQ(M [A1, A2]) and SB = (SB1 , . . . , S

B
n′) ∈ EQ(M ′[B1, B2]). Consider the

belief state S = (S1, . . . , Sn+n′) such that Si = SAi for 1 ≤ i ≤ n and Sn+j = SBj for
1 ≤ j ≤ n′. Observe that S is a belief state of the MCS Md = Mo[A1 ∪ I(B1), A2 ∪ I(B2)].
Thus it suffices to show S ∈ EQ(Md), because this implies that (A1 ∪ I(B1), A2 ∪ I(B2)) ∈
D±(M ⊗M ′).

We first show that for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kbi ∪ app(br i(M
d), S)).

Let B = br(Md); hence Md = Md[B], and note that U and U ′ are splitting sets of Md[B] by
Lemma 3.2. Next we consider Md[bU ] (with bU relative to Md) and R = bU . Since Md[R] =
Md[bU ] = (M [A1, A2]⊗M ′[∅]) and SA ∈ EQ(M [A1, A2]), it holds by Lemma 3.6 that there
exist S′n+1, . . . , S

′
n+n′ such that SM = (S1, . . . , Sn, S

′
n+1, . . . , S

′
n+n′) ∈ EQ(M [A1, A2] ⊗

M ′[∅]), i.e., for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kbi ∪ app(br i(M
d[R]), SM ))

It holds that SM =U S and bU ⊆ R ⊆ B; hence by Lemma 3.4 it holds for all 1 ≤ i ≤ n that
ACCi(kbi ∪ app(br i(M

d[B]), S)) = ACCi(kbi ∪ app(br i(M
d[R]), SM )). Consequently, it

holds that Si ∈ ACCi(kbi ∪ app(br i(M
d[B]), S)) for all 1 ≤ i ≤ n.

Second, we show that for all n+1 ≤ j ≤ n′ it holds that Sj ∈ ACCi(kbi∪app(br i(M
d), S).

Consider Md[bU ′ ] (with bU ′ relative to Md) and R′ = bU ′ . Since Md[R′] = Md[bU ′ ] =
M [∅]⊗M ′[B1, B2] and SB ∈ EQ(M [B1, B2]) hold, it follows by Corollary 3.4 that there exist
S′1, . . . , S

′
n such that SM

′
= (S′1, . . . , S

′
n, Sn+1, . . . , Sn+n′) ∈ EQ(M [∅] ⊗M ′[B1, B2]), i.e.,

for all n+ 1 ≤ j ≤ n′ it holds that Sj ∈ ACCi(kbi ∪ app(br i(M
d), SM

′
)). Since it holds that

SM
′

=U ′ S and bU ′ ⊆ R′ ⊆ B, Lemma 3.4 applies and it follows that for all n+ 1 ≤ j ≤ n+n′
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it holds that ACCj(kbj ∪ app(br j(M
d[B]), S)) = ACCj(kbj ∪ app(br j(M

d[R′]), SM
′
)).

Consequently, it holds that Sj ∈ ACCj(kbj ∪ app(br j(M
d[B]), S)) with n+ 1 ≤ j ≤ n+ n′.

In summary, it holds for every 1 ≤ i ≤ n+ n′ that Si is accepted, i.e, S ∈ EQ(Md), hence
(A1 ∪ I(A2), B1 ∪ I(B2)) ∈ D±(M ⊗M ′).

Decomposition of Contexts

In this section, we investigate conditions that allow to decompose a context into two independent
contexts, such that the overall semantics is preserved. Such decomposition can aid in computing
the set of acceptable belief sets (since the input size for deciding whether a belief set is accepted
may be reduced by the decomposition). Furthermore, decomposition can be used to de-centralise
the information flow in an MCS. In the later sections, we develop and investigate several trans-
formations of MCS, where the transformations and proofs are significantly simpler if we allow
one central context where all information flows through. Using the decomposition techniques
presented in the following allows to de-centralise the information flow again, after it has been
centralised for ease of presentation and proving. This allows to keep the information flow as local
as possible.

We proceed by first introducing output-projected equilibria and belief states. We define when
a context is decomposable, subsequently we show that an MCS where one context is decomposed
has the same diagnoses and equilibria as the original MCS. Finally, we give some syntactic
criteria to decide whether a context can be decomposed.

Output-projected Equilibria

Output-projected equilibria have originally been introduced to analyse the computational com-
plexity of recognising diagnoses and explanations. Intuitively, an output-projected belief state of
an MCS M is the same as a belief state of M , except that only those beliefs are considered which
occur in the body of some bridge rule of br(M). Since the belief sets of an output-projected
belief state contain only those beliefs occurring in bridge rules, decomposing a context with
respect to output-projected beliefs is more general than decomposing a context with respect to all
beliefs. We therefore use output-projected beliefs states and review this notion here.

Computing equilibria by guessing and verifying so-called “kernels of context belief sets” has
been outlined in [48]. For the purpose of recognising diagnoses and explanations, it is sufficient
to check for consistency, i.e., for existence of an arbitrary equilibrium in an MCS.

Here we first define output beliefs, which are the beliefs used in bodies of bridge rules. Then
we show that for checking consistency of an MCS, it is sufficient to consider equilibria projected
to output beliefs.

Definition 3.9. Given an MCS M = (C1, . . . , Cn), the set of output beliefs of Ci, OUT i = {p |
(i : p) ∈ body±(r), r ∈ br(M)}, is the set of beliefs p of Ci that occur in the bodies of bridge
rules.
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Example 3.21. In Example 3.1 we have

OUT 1 = {allergy_strong_ab},
OUT 2 = {xray_pneumonia, blood_marker},
OUT 3 = {d : BacterialDisease, d : AtypPneumonia}, and

OUT 4 = ∅.

Note that no bridge rule contains a belief at context C4, hence OUT 4 = ∅.

Using the notion of output beliefs, we let Soi = Si ∩OUT i be the projection of Si to OUT i,
and for any belief state S = (S1, . . . , Sn) we let So = (So1 , . . . , S

o
n) be the output-projected

belief state So of S.
An output-projected belief state provides sufficient information for evaluating the applicability

of bridge rules. We next show how to obtain witnesses for equilibria using this projection.

Definition 3.10. An output-projected equilibrium of an MCS M is an output-projected belief
state T = (T1, . . . , Tn) such that for all 1 ≤ i ≤ n,

Ti ∈
{
Soi | Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i, Ti)})

}
.

Here T contains information about all (and only about) output beliefs. As these are the beliefs
that determine bridge rule applicability, in every equilibrium S, app(R,S) = app(R,So); thus
we obtain:

Lemma 3.7 (cf. [117]). For each equilibrium S of an MCS M , So is an output-projected
equilibrium. Conversely, for each output-projected equilibrium T of M , there exists some
equilibrium S of M such that So = T .

Given an MCS M , we denote by EQo(M) the set of output-projected equilibria of M .

Example 3.22 (continued). In our running example, the equilibrium

S = ({allergy_strong_ab}, {¬blood_marker , xray_pneumonia},
{d : Pneumonia, d : BacterialDisease}, {need_ab, give_weak})

is witnessed by the output-projected equilibrium

So = ({allergy_strong_ab}, {xray_pneumonia},
{d : Pneumonia, d : BacterialDisease}, ∅).

Here we can observe that, for consistency of the overall system, it is not relevant which belief set
is accepted at Ci, only that some belief set is.

Every equilibrium is witnessed by a single output-projected equilibrium, and every output-
projected equilibrium witnesses at least one equilibrium.
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Context Decomposition

Intuitively, a context is decomposable, if we can partition the head-formulas of its bridge rules,
hence the set br i of bridge rules into brAi and brBi , and if we further can partition OUTi into
OUTAi and OUTBi such that there exists knowledge bases kbAi , kbBi such that every accepted
output-projected belief state of the original context corresponds to the union of an accepted
output-projected belief state of the two contexts. In formal terms:

Definition 3.11. Given an MCS M = (C1, . . . , Cn), we call Cn = (Ln, kbn, brn) with logic
Ln = (BSn,KBn,ACCn) decomposable iff there exist bridge rules brAn , brBn ⊂ brn, output
beliefsOUTAn , OUT

B
n ⊂ OUTn, and knowledge bases kbAn , kbBn ∈ KBn such that the following

all hold:

• brAn ∪ brBn = brn and brAn ∩ brBn = ∅,

• {ϕ (r) | r ∈ brAn } ∩ {ϕ (r) | r ∈ brBn } = ∅,

• OUTAn ∪OUTBn = OUTn and OUTAn ∩OUTBn = ∅, and

• for all H ⊆ {ϕ (r) | r ∈ brn} holds:

there exists Sn ∈ ACCn(kbn ∪H)

iff

there exist SA ∈ ACCn(kbAn ∪ (H ∩ {ϕ (r) | r ∈ brAn })) and

SB ∈ ACCn(kbBn ∪ (H ∩ {ϕ (r) | r ∈ brBn }))
such that Sn ∩OUTn = (SA ∩OUTAn ) ∪ (SB ∩OUTBn )

Notice that this notion only considers the interfacing of Cn to other contexts, it does not
consider the internals of the context. So, for a decomposable context Cn its knowledge base kbn
is not required to be decomposable in kbAn and kbBn . In fact, kbAn and kbBn may be independent
of kbn and the resulting accepted belief sets are only required to match on the output-projected
beliefs, i.e., SA and SB may contain additional beliefs not present in Sn. This means that the
requirements for a decomposable context are not as strict as they could be; hence the propositions
below hold for a more general set of contexts.

In order to realise the decomposition of a (decomposable) context Cn into CAn and CBn ,
we remove Cn and introduce contexts CAn and CBn , i.e., the form of the resulting MCS is
M ′ = (C1, . . . , Cn−1, C

A
n , C

B
n ). Since the beliefs of OUTBn are now present only in the context

at position n + 1, all bridge rules of M must be adapted to refer to n + 1 instead of n, when
referring to beliefs of OUTBn . Beliefs of OUTAn need not be changed since CAn already is at
position n in M ′. To formally express that change we use the mapping B(i : p) which is:

B(i : p) =

{
(n+ 1 : p) if i = n and p ∈ OUTBn
(i : p) otherwise.

53



Given a bridge rule of form (2.1), then B(r) is the bridge rule

(k : s)← B(c1 : p1), . . . , B(cj : pj),not B(cj+1 : pj+1), . . . ,not B(cm : pm).

We extend this notion to setsR of bridge rules byB(R) = {B(r) | r ∈ R}. The formal definition
for decomposing an MCS then is as follows:

Definition 3.12. Let M = (C1, . . . , Cn) be an MCS where Cn is a decomposable context
wrt. bridge rules brAn , brBn ⊂ brn, output beliefs OUTAn , OUT

B
n ⊂ OUTn, and knowledge

bases kbAn , kbBn ∈ KBn. Then, the MCS decomposed wrt. Cn is M ′ = (C ′1, . . . , C
′
n−1, C

A
n , C

B
n )

where

• for 1 ≤ i ≤ n− 1, the context C ′i is C ′i = (Li, kbi, B(br i)) where Ci = (Li, kbi, br i),

• CAn = (Ln, kbAn , B(brAn )), and

• CBn = (Ln, kbBn , {(n+ 1 : ϕ (r))← body(r). | r ∈ B(brBn )}).

Observe that there is a one-to-one mapping from bridge rules of Cn in M to the bridge rules
of CAn and CBn , i.e., there exists a bijective mapping s from brn(M) to brn(M ′) ∪ brn+1(M ′)
where M ′ is decomposed wrt. Cn. Since all other bridge rules of M ′ also stem from exactly
one bridge rule of M , we extend s to all bridge rules, formally: s : br(M) → br(M ′) with

s(r) 7→

{
(n+ 1 : ϕ (r))← body(B(r)). if r ∈ brBn
B(r) otherwise.

To prove that M and M ′ behave the same for any diagnosis candidate, we first extend the
bijection s on bridge rules to a bijection s′ on modified bridge rules. Second, we show that a
bridge rule’s body is satisfied by a belief state S iff the body of the corresponding bridge rule is
satisfied by a corresponding belief state S′, i.e., we show that S r iff S′ s′(r) if S′ agrees
with S wrt. output-projected beliefs and the context decomposition.

Using the bijection s between bridge rules of M and M ′, we can establish a bijection s′ of
the two MCS under modifications as follows. Given D1, D2 ⊆ br(M), the bijection between
bridge rules of M [D1, D2] and M ′[s(D1), s(D2)] is as follows:

s′(r, r′) holds iff (r, r′) ∈ {(r, s(r)) | r ∈ br(M), s(r) ∈ br(M ′)}\
{(r, s(r)) | r ∈ D1, s(r) ∈ s(D1)}

∪ {(cf (r), cf (s(r))) | r ∈ D2, s(r) ∈ s(D2)}.

Note that for any r ∈ br(M [D1, D2]) it holds that ϕ (r) = ϕ (s′(r)).
The following lemma now shows the connection between belief states and applicable bridge

rules of M and those of M ′ given a diagnosis candidate.

Lemma 3.8. Given an MCS M = (C1, . . . , Cn) and the MCS M ′ decomposed wrt. Cn. Let
S = (S1, . . . , Sn) be a belief state of M and let S′ = (S′1, . . . , S

′
n+1) be a belief state of

M ′. If it holds for all 1 ≤ i ≤ n − 1 that Si ∩ OUTi = S′i ∩ OUTi and if it holds that
Sn ∩OUTn = (S′n ∩OUTAn ) ∪ (S′n+1 ∩OUTBn ), then
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1. for any r ∈ br(M [D1, D2]) holds that S r iff S′ s′(r), and

2. for any 1 ≤ j ≤ n− 1 holds that

{ϕ (r) | r ∈ app(br j(M [D1, D2]), S)}= {ϕ (r) | r ∈ app(br j(M
′[s(D1), s(D2)]), S′)}.

Proof. 1. Let r ∈ br(M [D1, D2]). Then r ∈ D2 holds or r ∈ br(M) holds. In the former case
body(r) = ∅, hence S r and body(s′(r)) = ∅, hence S′ s′(r); therefore it also holds
that S r iff S′ s′(r). In the latter case where r ∈ br(M) holds, we consider an arbitrary
(c : p) ∈ body±(r) and we distinguish on the value of c:

• c 6= n: Then B(c : p) = (c : p) and since Sc ∩ OUTc = S′c ∩ OUTc, it follows
that S (c : p) iff S′ B(c : p). It follows analogously that S not (c : p) iff
S′ not B(c : p).

• c = n: Then either p ∈ OUTAn holds or p ∈ OUTBn holds but not both. Note that
OUTAn ∩ OUTBn = ∅, hence Sn ∩ OUTn = (S′n ∩ OUTAn ) ∪ (S′n+1 ∩ OUTBn ) implies
that Sn ∩ OUTAn = S′n ∩ OUTAn and Sn ∩ OUTBn = S′n+1 ∩ OUTBn . For p ∈ OUTAn
it holds that B(c : p) = (n : p) and S (c : p) iff S′ (n : p) iff S′ B(c : p),
because Sn ∩ OUTAn = S′n ∩ OUTAn . Analogously, it holds that S not (c : p) iff
S′ not B(c : p). For p ∈ OUTBn it holds that B(c : p) = (n+ 1 : p) and S (c : p) iff
S′ (n+ 1 : p) iff S′ B(c : p), because Sn ∩OUTBn = S′n+1 ∩OUTBn . Analogously,
it holds that S not (c : p) iff S′ not B(c : p).

Therefore it holds for all (c : p) ∈ body±(r) that S r iff S′ B(r) and by the definition
of s′ and s′ it follows that S r iff S′ s′(r). For all bridge rules r ∈ br(M [D1, D2]), it
therefore holds that S r iff S′ s′(r).

2. To show that for all 1 ≤ j ≤ n− 1 holds

{ϕ (r) | r ∈ app(br j(M [D1, D2]), S)} =

{ϕ (r) | r ∈ app(br j(M
′[s(D1), s(D2)]), S′)},

we first observe that r ∈ br j(M [D1, D2]) holds iff s′(r) ∈ br j(M
′[s(D1), s(D2)]) holds.

Since S r iff S′ s′(r), it holds that r ∈ app(br j(M [D1, D2]), S) if and only if it
holds that s′(r) ∈ app(br j(M

′[s(D1), s(D2)]), S′). Since ϕ (r) = ϕ (s′(r)) also holds,
it follows immediately that {ϕ (r) | r ∈ app(br j(M [D1, D2]), S)} = {ϕ (r) | r ∈
app(br j(M

′[s(D1), s(D2)]), S′)} for all 1 ≤ j ≤ n− 1.

We can now show the output-projected equilibria of M under some modification of its bridge
rules are the same as the output-projected equilibria of M ′ under the same modifications applied
to the corresponding bridge rules of M ′. Since Cn of M is decomposed into CAn and CBn , the
resulting belief states of M are such that the belief set at the n-th position corresponds in a belief
state of M ′ to the union of the belief sets at the n-th and n+ 1-th position.
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Proposition 3.11. Let M be an MCS with decomposable context Cn, let M ′ be the MCS decom-
posed wrt. Cn, and let s be the corresponding bijective mapping s : br(M) → br(M ′). Then,
for any diagnosis candidate (D1, D2) ∈ 2br(M) × 2br(M) holds that

EQo(M [D1, D2]) =

{(T1, . . . , Tn−1, Tn ∪ Tn+1) | (T1, . . . , Tn+1) ∈ EQo(M ′[s(D1), s(D2)])}.

Proof. Note that there is a one-to-one mapping between output beliefs of M and those of M ′,
since OUTi for 1 ≤ i ≤ n− 1 is the same for M and M ′, and OUTn and OUTn+1 of M ′ are a
partitioning of OUTn of M . Thus any output-projected belief state of M corresponds one-to-one
to an output-projected belief state ofM ′; hence the correspondence also holds forM [D1, D2] and
M ′[s(D1), s(D2)]. In the following, we use this correspondence and we write T = (T1, . . . , Tn)
to denote a belief state of M and we write T ′ = (T ′1, . . . , T

′
n, T

′
n+1) to denote the corresponding

belief state of M ′, i.e., it holds that Tn = T ′n ∪ T ′n+1 and Ti = T ′i for all 1 ≤ i ≤ n− 1.
In the following, we write OUT ′i to denote the set of output-beliefs of context Ci of the MCS

M ′, while OUTi denotes the output-beliefs of Ci of the MCS M . Note that only OUTn differs
from OUT ′n while for 1 ≤ j ≤ n− 1 it holds that OUTj = OUT ′j .

We now prove the actual proposition.
“⊆”: Let T ∈ EQo(M [D1, D2]) hold. We have to show that T ′ ∈ EQo(M ′[s(D1), s(D2)])

holds. First observe that T ∈ EQo(M [D1, D2]) implies that there exists an equilibrium S =
(S1, . . . , Sn) ∈ EQ(M [D1, D2]) such that for all 1 ≤ i ≤ n it holds that Ti = Si ∩ OUTi. Let
H = app(brn(M [D1, D2]), S) and note that because Cn is a decomposable context, it holds that
there exists SA ∈ ACCn(kbAn∪(H∩{ϕ (r) | r ∈ brAn })) and SB ∈ ACCn(kbBn ∪(H∩{ϕ (r) |
r ∈ brBn })) such that Sn∩OUTn = (SA∩OUTAn )∪ (SB ∩OUTBn ). Furthermore, it holds that
(SA∩OUTAn )∪(SB∩OUTBn ) = Sn∩OUTn = Tn = T ′n∪T ′n+1 and sinceOUTAn ∩OUTBn = ∅,
it holds that SA ∩OUTAn = T ′n and SB ∩OUTBn = T ′n+1.

Now consider the belief state S′ = (S′1, . . . , S
′
n+1) = (S1, . . . , Sn−1, S

A, SB) of M ′ and
observe that S′i ∩ OUT ′i = T ′i holds for all 1 ≤ i ≤ n + 1. Thus T ′ is the output-projected
belief state wrt. S′. By the construction of S and S′, Lemma 3.8 is applicable and it holds
for any 1 ≤ j ≤ n − 1 that {ϕ (r) | r ∈ app(br j(M [D1, D2]), S)} = {ϕ (r) | r ∈
app(br j(M

′[s(D1), s(D2)]), S′). Since S ∈ EQ([M [D1, D2]) holds, it furthermore follows that
that Sj ∈ ACCj(kbj ∪ {ϕ (r) | r ∈ app(br j(M

′[s(D1), s(D2)]), S′)}) for all 1 ≤ j ≤ n− 1.
Since SA ∈ ACCn(kbAn ∪(H∩{ϕ (r) | r ∈ brAn })) and SB ∈ ACCn(kbBn ∪(H∩{ϕ (r) | r ∈
brBn })) both hold, it follows that S′ ∈ EQ(M ′[s(D1), s(D2)]. Since it holds that T ′i = S′i∩OUT ′i
for all 1 ≤ i ≤ n+ 1, it thus holds that T ′ ∈ EQo(M ′[s(D1), s(D2)]).

“⊇”: Let T ′ = (T ′1, . . . , T
′
n+1) ∈ EQo(M ′[s(D1), s(D2)]). We have to show that T =

(T ′1, . . . , T
′
n−1, T

′
n∪T ′n+1) ∈ EQo(M [D1, D2]). For easier reference, we let T = (T1, . . . , Tn) =

(T ′1, . . . , T
′
n−1, T

′
n ∪ T ′n+1). Since T ′ ∈ EQo(M ′[s(D1), s(D2)]) holds, there exists S′ =

(S′1, . . . , S
′
n+1) ∈ EQ(M ′[s(D1), s(D2)]) such that T ′i = S′i ∩ OUT ′i with 1 ≤ i ≤ n + 1.

Let SA = S′n, SB = S′n+1, let

HA = {ϕ (r) | r ∈ app(brn(M ′[s(D1), s(D2)], S′)},
HB = {ϕ (r) | r ∈ app(brn+1(M ′[s(D1), s(D2)], S′)}, and
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let H = HA ∪HB . Note that HA = H ∩ {ϕ (r) | r ∈ brAn } and HB = H ∩ {ϕ (r) | r ∈ brBn }
since M ′ is the MCS decomposed wrt. the decomposable context Cn, i.e., {ϕ (r) | r ∈ brAn } ∩
{ϕ (r) | r ∈ brBn } = ∅. From that it furthermore follows that there exists Sn ∈ ACCn(kbn∪H)
such that Sn ∩OUTn = (SA ∩OUTAn ) ∪ (SB ∩OUTBn ).

Now consider the belief state S = (S1, . . . , Sn) = (S′1, . . . , S
′
n−1, Sn) which agrees with S′

on all but the last belief set. Note that Sj ∩ OUTj = S′j ∩ OUT ′j holds for all 1 ≤ j ≤ n − 1

and it holds that Sn ∩ OUTn = (S′n ∩ OUTAn ) ∪ (S′n+1 ∩ OUTBn ). Therefore Lemma 3.8
applies and it holds for all r ∈ br(M [D1, D2]) that S r iff S′ s′(r). Consider the set
R = {r ∈ brn(M [D1, D2]) | S r} of bridge rules of Cn that are applicable in S and let R′ be
those bridge rules of C ′n and C ′n+1 that are applicable under S′, i.e.,

R′ = {r ∈ brn(M ′[s(D1), s(D2)]) | S′ r} ∪ {r ∈ brn+1(M ′[s(D1), s(D2)]) | S′ r}.

We substitute r by s′(r) in the equation and obtain that:

R′ = {s′(r) | r ∈ brn(M [D1, D2]), S′ s′(r)} ∪ {s′(r) | r ∈ brn(M [D1, D2]), S′ s′(r)}.

Using S′ s′(r) iff S r we get:

R′ = {s′(r) | r ∈ brn(M [D1, D2]), S r} ∪ {s′(r) | r ∈ brn(M [D1, D2]), S r}.

Recalling that R = {r ∈ brn(M [D1, D2]) | S r} thus gives R′ = {s′(r) | r ∈ R}. Since
ϕ (r) = ϕ (s′(r)) it follows that {ϕ (r) | r ∈ R′} = {ϕ (r) | r ∈ R}, i.e., H = {ϕ (r) |
r ∈ app(brn(M [D1, D2]), S)}. Since Sn ∈ ACCn(kbn ∪ H) holds, it thus holds that Sn ∈
ACCn(kbn ∪ {ϕ (r) | r ∈ app(brn(M [D1, D2]), S)}), i.e., context Cn accepts the belief set
Sn of the belief state S.

Since Lemma 3.8 applies to S and S′, it holds that {ϕ (r) | r ∈ app(br j(M [D1, D2]), S)} =
{ϕ (r) | r ∈ app(br j(M

′[s(D1), s(D2)]), S′)} for all 1 ≤ j ≤ n. Consequently, it holds that
Sj ∈ ACCj(kbj ∪ app(br j(M [D1, D2]), S)) for all 1 ≤ j ≤ n− 1 and in summary with the
above, the same holds for all 1 ≤ j ≤ n. Thus S ∈ EQ(M [D1, D2]) holds.

Recall that Sj ∩OUTj = Tj = T ′j holds for all 1 ≤ j ≤ n− 1 and note that Sn ∩OUTn =

(SA ∩OUTAn ) ∪ SB ∩OUTBn ) = T ′n ∪ T ′n+1 = Tn since OUTAn ∩OUTBn = ∅. Therefore T
is the output-projected belief state wrt. S, i.e., T ∈ EQo(M [D1, D2]) holds.

Note that output-projected equilibria are sufficient for computing diagnoses and explanations
(cf. Lemma 5.7), hence this notion is sufficient for replacing a context by two others. Also note
that the above restriction on just replacing the last context in an MCS can be lifted immediately,
since Lemma 3.5 shows that contexts may be re-arranged freely by shuffling (permutation).
Since it preserves all equilibria, any context may be decomposed. Furthermore, if one of the
contexts resulting from a decomposition is by itself a decomposable context, then this context
may be decomposed further. Overall, this allows to decompose a context into arbitrary many
other contexts and if some shifting is applied, all contexts of an MCS that are decomposable may
be decomposed, possibly multiple times.
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Instances of decomposable contexts In the following, we present specific instances of decom-
posable contexts, hence we show that our previous definition of a decomposable context is not
vacuous. We first observe that contexts employing Lasp

Σ admit a syntactic criterion by which a
decomposable context can be recognised. If we consider the undirected dependency graph of
the ASP program and this graph contains at least two connected components, then one of the
components may induce the decomposition of the context.

Formally, let Cn = (Lasp
Σ , kbn, brn) be a context employing ASP. We consider the program

P obtained by adding to kbn all facts (or rules) which may be added by bridge rules, i.e.,
P = kbn ∪ {ϕ (r) | r ∈ brn}. Let A be the set of atoms that occur in P ; then the (undirected)
dependency graph is GP = (A,E) where {a1, a2} ∈ E holds iff there exists a rule r in P such
that a1 is the head of r and a2 occurs in the body of r. If there exists a connected component
G′ = (A′, E′) such that G′ 6= GP , then G′ may be used to decompose Cn as follows:

kbAn = {p ∈ kbn | ∃a ∈ A′ : a occurs in p}
kbBn = {p ∈ kbn | ∀a ∈ A′ : a occurs not in p}
brAn = {r ∈ brn | ∃a ∈ A′ : a occurs in ϕ (r)}
brBn = {r ∈ brn | ∀a ∈ A′ : a occurs not in ϕ (r)}

OUTAn = {b ∈ OUTn | b ∈ A′}
OUTBn = {b ∈ OUTn | b /∈ A′}

Observe that brAn ∩ brBn = ∅ and brAn ∪ brBn = brn as well as {ϕ (r) | r ∈ brAn } ∩ {ϕ (r) | r ∈
brAn } = ∅. It also holds that OUTAn ∩OUTBn = ∅ and OUTAn ∪OUTBn = OUTn. It remains
to show that for any H ⊆ {ϕ (r) | r ∈ brn} it holds that there exists Sn ∈ ACCn(kbn ∪H) iff
there exist SA ∈ ACCn(kbAn ∪(H∩{ϕ (r) | r ∈ brAn })) and SB ∈ ACCn(kbBn ∪(H∩{ϕ (r) |
r ∈ brBn })) such that Sn ∩OUTn = (SA ∩OUTAn ) ∪ (SA ∩OUTBn ). Here, an even stronger
property holds, namely that Sn = SA∪SB , i.e., every answer-set of Cn is the union of an answer
set of CAn and CBn . For that, we note that A′ is a splitting set (cf. [96]) and A \A′ is a splitting set
as well for P ∪H for any H ⊆ {ϕ (r) | r ∈ brn}. Following the Splitting Set Theorem of [96] it
holds that Sn is an answer-set of P ∪H if Sn = SA ∪SB where 〈SA, SB〉 is a so-called solution
to P ∪H with respect to A′. The pair is a solution, iff SA is an answer-set for the bottom relative
toA′, which is kbAn ∪(H∩{ϕ (r) | r ∈ brAn }), and if SB is an answer-set to the remainder relative
to SA. In the terminology of [96], this is bA′(P ∪H \ bA′(P ∪H), SA) where bA′(P ∪H) is the
bottom relative to A′. Since A \A′ also is a splitting set of P ∪H , it holds that the remainder is
not changed by SA, i.e., bA′(P ∪H \bA′(P ∪H), SA) = kbBn ∪(H∩{ϕ (r) | r ∈ brBn ). In other
words, Sn is an answer-set of kbn ∪H iff SA is an answer-set of kbAn ∪ (H ∩ {ϕ (r) | r ∈ brAn })
and SB is an answer-set of kbBn ∪ (H ∩ {ϕ (r) | r ∈ brBn ). By the employed logic Lasp

Σ , S
is an answer-set iff if S is an accepted belief set, hence this shows that the above condition of
connected components in the dependency graph indeed identifies a decomposable context.
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Context Consistency (A,B)
?
∈

complexity checking D±(M) D±
m(M) E±(M) E±

m(M)

CC(M) MCSEQ MCSD MCSDm MCSE MCSEm

P NP NP DP
1 coNP DP

1

NP NP NP DP
1 coNP DP

1

ΣP
i , i ≥ 1 ΣP

i ΣP
i DP

i ΠP
i DP

i

PSPACE PSPACE

EXPTIME EXPTIME

Table 3.1: Complexity of consistency checking and recognising (minimal) diagnoses and explana-
tions, given (A,B) and an MCS M for complexity classes of typical knowledge-representation
formalisms. Membership holds for all cases, completeness holds if at least one context is complete
for the respective context complexity (cf. [117]).

3.4 Computational Complexity

This sections states the computational complexity of various important decision problems regard-
ing inconsistency in MCS. The complexity results are shown here to give a full picture of our
basic notions and they form the basis for the complexity analysis of extended notions in later
chapters. Detailed results as well as proofs are shown in [54] and [117].

We next consider the complexity of consistency checking, and of diagnosis and explanation
recognition in MCS in a parametric fashion. To this end, we recall the complexity classes
that we will use, and show that we can abstract an MCS to beliefs used in bridge rules. We
use context complexity as a parameter to characterise the overall complexity and we establish
for hardness generic results for all complexity classes that are closed under conjunction and
projection. Table 3.1 summarises our results for complexity classes that are typically encountered
in knowledge representation.

Complexity Classes

Recall that P, EXPTIME, and PSPACE are the classes of problems that can be decided
using a deterministic Turing machine in polynomial time, exponential time, and polynomial
space, respectively. Furthermore NP (resp., coNP) is the class of problems that can be decided
on a non-deterministic Turing machine in polynomial time, where one (resp., all) execution paths
accept. Recall the polynomial hierarchy, where ΣP

0 = ΠP
0 = P, ΣP

i is NP with a ΣP
i−1 oracle,

and ΠP
i is coNP with a ΣP

i−1 oracle.
Given complexity class C, we denote by D(C) the “difference class” of C, i.e., D(C) =

{L1 × L2 | L1 ∈ C, L2 ∈ co-C} denotes the complexity class of decision problems that are the
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“conjunction” of a problem L1 in C and a problem L2 in co-C. For example, D(NP) = DP
1 and

D(ΣP
i ) = DP

i . A prototypical problem complete for DP
1 is deciding, given a pair (F1, F2) of

propositional Boolean formulas, where F1 is satisfiable and F2 is unsatisfiable. Note in particular
that D(PSPACE) = PSPACE and that D(EXPTIME) = EXPTIME.

Closure under Conjunction and Projection A complexity class C is closed under conjunc-
tion, if the following holds: given a problem L in C, it holds that the problem Ln where Ln is the
n-fold Cartesian product of L, and I = (I1, . . . , In) is a ‘yes’ instance of Ln iff every instance
Ij , 1 ≤ j ≤ n is a ‘yes’ instances of L, is such that

⋃
n≥1 L

n is also a problem in C.
All classes P, NP, ΣP

i , ΠP
i , D(ΣP

i ), PSPACE, etc. here are closed under conjunction.
A decision problem L ⊆ Σ?×Σ? is polynomially balanced, if some polynomial p exists such

that |I ′| ≤ p(|I|) for all (I, I ′) ∈ L. Moreover, L is a polynomial projection of L′ ⊆ Σ? × Σ?

if L = {I | ∃I ′ : (I, I ′) ∈ L′} and L′ is polynomially balanced (intuitively, I ′ is a witness
of polynomial size for I). Given a complexity class C, let π(C) contain all problems which
are a polynomial projection of a problem L′ in C. Then a complexity class C is closed under
projection if π(C) ⊆ C.

The classes ΣP
i , NP, EXPTIME, PSPACE are closed under projection, while coNP

and ΠP
i are presumably not. For further background see [104].

Context Complexity

The complexity of consistency checking for an MCS clearly depends on the complexity of its
contexts. We next define a notion of context complexity by considering the roles which contexts
play in the problem of consistency checking.

For all complexity considerations, we represent logics Li of contexts Ci implicitly; they are
fixed and we do not consider these (possibly infinite) objects to be part of the input of the decision
problems we investigate. Accordingly, the instance size of a given MCS M will be denoted by
|M | = |kbM | + |br(M)| where |kbM | denotes the size of knowledge bases in M and |br(M)|
denotes the size of its set of bridge rules. Recall that for consistency checking (i.e., equilibrium
existence) it is sufficient to consider output-projected equilibria.

Consistency of an MCS M can be decided by a Turing machine with input M which
(a) guesses an output-projected belief state So ∈ OUT 1 × · · · ×OUTn, (b) evaluates the bridge
rules on So, yielding for each context Ci a set of active bridge rule heads Hi wrt. So, and
(c) checks for each context whether it accepts the guessed Soi wrt. Hi. We call the complexity of
step (c) context complexity, formalised as follows.

Definition 3.13. Given a context Ci = (kbi, br i, Li) and a pair (H,Ti), with H ⊆ IN i and
Ti ⊆ OUT i, the context complexity CC(Ci) of Ci is the computational complexity of deciding
whether there exists an Si ∈ ACCi(kbi ∪H) such that Si ∩OUT i = Ti.

Example 3.23. Contexts with propositional logic LcΣ (see Example 2.1) have DP
1 -complete

context complexity, while the restricted logic LplΣ , that is used in our running example for contexts
C1 and C2 (see Example 3.1), is tractable; more precisely, the context complexity is O(n).

A context that captures a propositional answer set program is complete for NP [42].
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Default Logic programs and disjunctive logic programs (cf. Example 2.5) have ΣP
2 -complete

acceptability checking and thus complexity [42, 78].
For contexts hosting ontological reasoning in the Description Logic ALC (see Example 2.3),

the logic LALCΣ can be used with context complexity EXPTIME.

Given an MCS M , we say M has upper context complexity C, denoted CC(M) ≤ C, if
CC(Ci) ⊆ C for every context Ci of M ; We say M has lower context complexity C, denoted
CC(M) ≥ C, if C ⊆ CC(Ci) for some context Ci of M . We say that M has context complexity
C, denoted CC(M) = C, iff CC(M) ≤ C and CC(M) ≥ C. That is, if CC(M) = C all contexts
in M have complexity at most C, and some context in M has C-complete complexity, provided
the class C has complete problems.

Example 3.24 (continued). In our running example, for M = (C1, C2, C3, C4) we have
the following context complexities: CC(C1) = CC(C2) =O(n), CC(C3) = EXPTIME, and
CC(C4) = ΣP

2 . AsO(n) ⊆ ΣP
2 ⊆ EXPTIME, we obtain CC(M) ≤ EXPTIME, and asC2

is EXPTIME-complete, we obtain CC(M) ≥ EXPTIME; hence CC(M) = EXPTIME.

Complexity Results (cf. [117])

We consider the decision problem for consistency (MCSEQ) and recognition problems for diag-
noses (MCSD), minimal diagnoses (MCSDm), explanations (MCSE), and minimal explanations
(MCSEm). Note that existence of diagnoses and explanations is trivial by our basic assumptions
that M is inconsistent and that M [∅] is consistent.

Table 3.1 summarises the results for context complexities that are present in typical monotonic
and nonmonotonic KR formalisms.

For a given context complexity CC(M) of an MCS M , MCSEQ has the same computational
complexity as MCSD. If the context complexity is NP or above, this complexity is equal to
context complexity; for context complexity P, it is NP. Intuitively, this is explained as follows.
For context complexity NP and above, guessing a belief state and checking whether it is an
equilibrium can be incorporated into context complexity without exceeding checking cost; if the
context complexity is P, this complexity is NP.

Recognising minimal diagnoses MCSDm is complete for the complexity of MCSD, which
captures diagnosis recognition, and an additional complementary problem of refuting MCSD,
which captures diagnosis minimality recognition. For context complexity P it holds that MCSDm
is DP-complete.

The complexity of MCSE is in the complementary class of the corresponding problem MCSD.
Intuitively this is because diagnosis involves existential quantification and explanation involves
universal quantification. Accordingly, the complexity of MCSEm is complementary to MCSDm.
As the complexity classes of MCSDm are closed under complement, MCSEm and MCSDm have
the same complexity.

These results show that minimal diagnosis and minimal explanation recognition are harder
than checking consistency (under usual complexity assumptions), while they are polynomially
reducible to each other.
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3.5 Computation

In this section, we show how to compute explanations for MCS using HEX-programs. This
approach is implemented in the tool MCS-IE,1 which is an open source experimental prototype.

First we recall HEX-programs, which extend answer set programs, then show how to compute
explanations, and finally give an overview of the MCS-IE tool.

Preliminaries: HEX-Programs

HEX-programs [58, 59] extend disjunctive logic programs by allowing for access to external
information with external atoms, and by predicate variables.

In this thesis, we only use ground (variable-free) HEX-programs and thus recall simplified
definitions.

Syntax Let C and G be mutually disjoint sets of constants and external predicate names,
respectively. Elements from G are prefixed with “&”.

An ordinary atom is a formula p(c1, . . . , cn) where p, c1, . . . , cn are constants. An external
atom is a formula &g [~v](~w), where ~v = Y1, . . . , Yn and ~w = X1, . . . , Xm are two lists of
constants (called input and output lists, respectively), and &g ∈ G is an external predicate name.
Intuitively, an external atom provides a way for deciding the truth value of tuple ~w depending on
the extension of input predicates ~v.

A HEX rule r is of the form

α1 ∨ . . . ∨ αk ← β1, . . . , βm, not βm+1, . . . , not βn m, k ≥ 0, (3.2)

where all αi are ordinary atoms and all βj are ordinary or external atoms. Rule r is a constraint,
if k= 0; it is a fact if n= 0 (in this case we omit←). A HEX-program (or program) is a finite set
of HEX rules: it is ordinary, if it contains only ordinary atoms.

Semantics The (ordinary) Herbrand base HBo
P of a HEX-program P is the set of all ordinary

atoms p(c1, . . . , cn) occurring in P . An interpretation I of P is any subset I ⊆ HBo
P ; I satisfies

(is a model of)

• an atom α, denoted I |=α, if α ∈ I for an ordinary atom α, or if f&g(I,~v, ~w) = 1 in the case
where α= &g [~v](~w) and f&g : 2HBo

P × Cn × Cm → {0, 1} is a (fixed) (|~v|+|~w|+1)-ary
Boolean function associated with &g ;

• a rule r of form (3.2) (I |= r), if either I |= αi for some αi, or I |= βj for some
j ∈ {m+ 1, . . . , n}, or I 6|= βi for some i ∈ {1, . . . ,m};

• a program P (I |= P ), iff I |= r for all r ∈ P .

1
http://www.kr.tuwien.ac.at/research/systems/mcsie/
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The FLP-reduct [64] of a program P wrt. an interpretation I is the set fP I ⊆ P of all rules r
of form (3.2) in P such that I |= βi, for all i ∈ {1, . . . ,m} and I 6|= βj for all j ∈ {m+1, . . . , n}
(i.e., I satisfies the body of (3.2)). Then, I is an answer set of P iff I is a ⊆-minimal model of
fP I . We denote by AS(P ) the collection of all answer sets of P .

For P without external atoms, this coincides with answer sets as in [72], for a discussion on
the relation between FLP-reduct and GL-reduct see [64]. HEX programs can be evaluated using
the dlvhex solver. 2 A detailed comparison of HEX programs and MCS, showing similarities and
differences, is given in [48].

To check whether a context accepts a given belief state under a given knowledge base, we cre-
ate an external atom &con_outi [pres i, bi]() which computes ACCi in an external computation.
This external atom returns true iff context Ci, when given Bi(I), accepts a belief set Si such that
its projection to output-beliefs OUT i is equal to Ai(I). Formally,

f&con_outi(I, pres i, ini) = 1 iff Ai(I) ∈ {Soi | Si ∈ ACCi(kbi ∪Bi(I))}.

Computing Explanations

We now address the computation of explanations and present an encoding in HEX. Given the
conversion results in Section 3.3, explanations either can be computed from the set of diagnoses,
or directly by a suitable encoding. In [54] two encodings in HEX are given, one to compute
diagnoses and the other to compute explanations. We only show the latter here, since the author
of this thesis only is involved in this one.

To identify a diagnosis, it is only necessary to find an equilibrium, while identifying an
explanation requires the absence of an equilibrium and it requires that the inconsistency is not
irrelevant, i.e, all “relevant pairs” (R1, R2), such that E1 ⊆ R1 and R2 ⊆ br(M) \ E2, must
yield an inconsistent system. This is also mirrored by the computational complexity, since the
computational complexity of diagnosis recognition is not the same as the one for explanation
recognition. For context complexity CC(M) being P it is NP for diagnosis recognition versus
coNP for explanation recognition. Such a check can be realised in HEX, but an involved encoding
is needed.

To formally capture the “relevant pairs” of an explanation candidate, we recall the notion of
explanation range, which so far has only been used in proofs: given an explanation candidate
E = (E1, E2) ∈ 2br(M) × 2br(M), the explanation range of E is

Rg(E) = {(R1, R2) | E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) \ E2}

It follows directly from Definition 3.3 that, E = (E1, E2) ∈ E±(M) iff M [R1 ∪ cf (R2)] |=
⊥ for all (R1, R2) ∈ Rg(E).

We check explanations by utilising the saturation technique (cf. [56, 94]) from answer-set
programming. The underlying idea of saturation hinges on the following observation: a model I
of a HEX-program P is an answer-set only if it is a ⊆-minimal model of fP I . To check whether a
forall-statement holds, first an interpretation I? is designed such that I? is a ⊆-maximal model
of fP I? ; second, using disjunctive rules, a model I representing a possible counter-example

2
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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Figure 3.8: Saturation conceptual overview with three explanation candidates E1, E2, and E3.
Steps are: 1) Guess explanation candidate; 2) Partial interpretation corresponding to guess; 3)
Guess belief state S and bridge rules R = (R1, R2) ∈ Rg(Ej); 4) Partial interpretation IEjSR
corresponding to guesses of Ej , S,R; 5) Is S equilibrium of M [R1 ∪ cf (R2)]; 6) Resulting
model, saturated if S is no equilibrium; 7) Select ⊆-minimal model; 8) Answer sets (saturated
minimal models): I?E1 and I?E3 .

is guessed such that I ⊆ I? holds. The logic program P is designed such that if I indeed is
a counter-example to the forall-statement, then I is a model of the reduct fP I? of P wrt. I?;
therefore I ⊆ I? holds and it follows that I? is not a ⊆-minimal model of fP I? , which ensures
that I? is not an answer-set of P (although I? still is a model of fP I?). On the other hand, if
no counter-example exists, then no I ⊆ I? exists such that I is a model of fP I? and I? is a
⊆-minimal model of fP I? .

Figure 3.8 gives a conceptual and exemplary overview of the saturation technique. It shows
three explanation candidates and the conceptual steps and partial interpretations to derive whether
a candidate indeed is an explanation. There are eight steps, which are as follows for a given MCS
M :

1) An explanation candidate E = (E1, E2) is guessed.

2) Each candidate corresponds to a partial interpretation IE .

3) A “relevant pair” R = (R1, R2) ∈ Rg(E) is guessed together with a belief set S for
M [R1 ∪ cf (R2)].

4) The result is a partial interpretation IESR corresponding to the guessed sets above.
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5) It is checked whether I encodes an equilibrium, i.e., whether for each Ci ∈ C (M) holds
Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [R1 ∪ cf (R2)]), S)}).

6) If the previous condition does not hold for every Ci ∈ C (M), then IESR encodes not an
equilibrium and IESR is saturated with respect to those atoms encoding S and R.

Saturation in more detail works as follows: any guess of S and R is encoded by two atoms,
for example the statement whether a bridge rule r ∈ br(M) is contained in R1 is encoded
via two atoms r1 (r) and nr1 (r). For an interpretation I the statement that r ∈ R1 holds is
encoded by the condition that r1 (r) ∈ I and nr1 (r) /∈ I; the statement r /∈ R1 is encoded
by the condition that r1 (r) /∈ I and nr1 (r) ∈ I . Saturation then makes both atoms true,
i.e., if I is saturated, then, I r1 (r) ∈ I and nr1 (r) ∈ I both hold. Observe that from the
perspective of HEX this is not a contradiction and it holds that the saturated interpretation
is a superset of both possibilities regarding the containment of r in R1.

This saturated interpretation, denoted by I?E , is a maximum interpretation wrt. the guess
for E. Conversely, if S is an equilibrium, then I is not saturated which means that the
resulting interpretation I is a subset of I?E .

7) Following the semantics of HEX, a minimal model is selected. Since I?E is a maximum
model, it will only be the minimal model, if there is no other I ⊂ I?E .

8) A constraint finally ensures that only a saturated interpretation I?E is an answer-set. Hence
only an explanation candidate such that in its range no equilibrium exists admits an answer-
set.

In the following we present a direct encoding, PEp (M), in HEX using saturation. We first
guess an explanation candidate E = (E1, E2) and then ensure via saturation, that for all pairs of
sets (R1, R2) ∈ Rg(E) the modified system is inconsistent, i.e., we check for every (R1, R2) ∈
Rg(E) and for every belief state S, that some context of M [R1 ∪ cf (R2)] does not accept S.

For all r ∈ br(M), PEp (M) contains the following rules to guess an explanation candidate.

e1 (r) ∨ ne1 (r). (3.3)

e2 (r) ∨ ne2 (r). (3.4)

To give some intuition of the saturation technique, assume that I is the (partial) interpretation
corresponding to an explanation candidate guessed by the above rules. To check that every
(R1, R2) ∈ Rg(E) yields an inconsistent system, saturation is used as follows: via disjunctive
rules, (R1, R2) ∈ Rg(E) is guessed as well as a belief state S. If S is not an equilibrium for
M [R1 ∪ cf (R2)], then the atom spoil is concluded to be true. This in turn leads to the truth of all
other atoms that occur in rules to guess R1, R2, S, and all other atoms that are necessary to check
that S is not an equilibrium. The resulting interpretation, I?, is said to be saturated (or spoiled);
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formally, it contains Ispoil , which is given by:

Ispoil ={r1(r), nr1(r), r2(r), nr2(r), brbody(r) | r ∈ br(M)}∪
{ini(b) | r ∈ br(M) ∧ Ch (r) = i ∧ ϕ (r) = b} ∪ {spoil}∪⋃
a∈OUT i

{pres i(a), abs i(a)} ∪
⋃

b∈INi

{ini(b)}.

Most importantly, I? is a maximal model of fPEp (M)I and every other guess for (R1, R2) and
S will result in the same interpretation I?, if S is not an equilibrium of M [R1 ∪ cf (R2)].

On the other hand, if there is a guess for (R1, R2) and S such that S is an equilibrium of
M [R1 ∪ cf (R2)], then the corresponding interpretation I ′ will not be saturated. Since I? is a
maximal model, it then holds that I ′ ⊂ I?, hence I? is not a minimal model of fPEp (M)I . Thus,
if I? is indeed the minimal model of fPEp (M)I , then there can not exist such an I ′, i.e., for all
(R1, R2) and S it then holds that S is not an equilibrium of M [R1 ∪ cf (R2)].

Since we are only interested in explanation candidates E where no equilibrium exists for
any (R1, R2) ∈ Rg(E), a constraint is added to ensure that only saturated models comprise an
answer set, i.e, we ensure that only I? may yield an answer set.

To generate (R1, R2) ∈ Rg(E), for every r ∈ br(M) the following rules are in PEp (M):

r1 (r) : −e1 (r). (3.5)

r1 (r) ∨ nr1 (r) : −ne1 (r). (3.6)

nr2 (r) : −e2 (r). (3.7)

r2 (r) ∨ nr2 (r) : −ne2 (r). (3.8)

We further guess a belief state ofM , so PEp (M) contains for every a ∈ OUT i with 1 ≤ i ≤ n
the following rule:

pres i(a) ∨ abs i(a). (3.9)

Recall that I is an answer set of PEp (M) iff I is a ⊆-minimal model of fPEp (M)I . As we
use saturation and external atoms, this can lead to the undesired effect that some r ∈ fPEp (M)I

is unsupported, i.e., for a being the head of r it can happen that a ∈ I but the body of r is false
under I and no other rule’s body with head a is true. To avoid this, each bridge rule of M is
encoded such that a ∈ I implies that a corresponding body also evaluates to true. This is achieved
by the addition of a unique atom brbody(r) for each r ∈ br(M) and further rules ensuring that
each literal in the body of r holds if brbody(r) ∈ I . So, PEp (M) contains for each r ∈ br(M) of
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form (i : b)← (i1 : b1), . . . , (ik−1 : bk−1), not(ik : bk), . . . , not(im : bm) the following rules:

brbody(r) : −r1 (r), pres i1(b1), . . . , pres ik−1
(bk−1), abs ik(bk), . . . , abs im(bm). (3.10)

r1 (r) : −brbody(r). (3.11)

pres i1(b1) : −brbody(r). (3.12)

. . .

pres ik−1
(bk−1) : −brbody(r). (3.13)

abs ik(bk) : −brbody(r). (3.14)

. . .

abs im(bm) : −brbody(r). (3.15)

ini(b) : −brbody(r). (3.16)

ini(b) : −r2 (r). (3.17)

Rules (3.16) and (3.17) ensure that the head of r is derived if either the body holds, or if r is
unconditional, i.e., r ∈ R2. For the head (i : b) of r, let [(i : b)] be the set of bridge rules whose
head is the same, i.e., [(i : b)] = {r ∈ br(M) | Ch (r) = i∧ϕ (r) = b}. For each head (i : b) of
a bridge rule with [(i : b)] = {r1, . . . , rk} the following rule of PEp (M) ensures that (i : b) is
supported:

brbody(r1) ∨ . . . ∨ brbody(rk) ∨ r2(r1) ∨ . . . ∨ r2(rk) : −ini(b). (3.18)

So far PEp (M) guesses an explanation candidate E, a pair (R1, R2) ∈ Rg(E), a belief state
encoded by pres and abs , and the beliefs of applicable bridge rule heads are computed. To ensure
that E is an explanation it must be the case that for every pair (R1, R2) and belief state S some
context Ci does not accept Si given the input encoded by ini. If some context does not accept Si
then a special atom spoil is derived, i.e., if the external atom &con_out ′i [spoil , pres i, ini, out i]()
is false then spoil is derived. This atom is also derived if the guess of S and (R1, R2) is
contradictory by itself. So for every r ∈ br(M), a ∈ OUT i, i ∈ {1, . . . , n} the following rules
are in PEp (M):

spoil : −not&con_out ′i [spoil , pres i, ini](). (3.19)

spoil : −r1 (r),nr1 (r). (3.20)

spoil : −r2 (r),nr2 (r). (3.21)

spoil : −pres i(a), abs i(a). (3.22)

We slightly extend the external atom &con_outi [pres i, ini]() for checking consistency of a
context: if spoil is present, then the external atom must be false. This is needed, since a spoiled
interpretation I? must be a model of the HEX program, which is only guaranteed if the external
atom is false in I?. So, &con_out ′i [spoil , pres i, ini]() is based on &con_outi [pres i, ini]() as
follows:

f&con_out′i
(I, spoil , pres i, ini) = 0 iff f&con_outi(I, pres i, bi) = 0 ∨ spoil ∈ I.
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To saturate all guesses, we add the following rules, for all r ∈ br(M), i ∈ C (M) , a ∈
OUT i, b ∈ INi, to PEp (M):

r1 (r) : − spoil . r2 (r) : − spoil . (3.23)

nr1 (r) : − spoil . nr2 (r) : − spoil . (3.24)

abs i(a) : − spoil . pres i(a) : − spoil . (3.25)

ini(b) : − spoil . brbody(r) : − spoil . (3.26)

As an interpretation I of a program P is only an answer set if it is a minimal model of fP I ,
it follows that I is not an answer set if there is a model I ′ of fP I with I ′ ⊂ I . If the guess for
(R1, R2) and the belief state S is not acceptable at context Ci, then spoil is derived and saturation
takes place, i.e., I ′ becomes ⊆-maximal. If, however, some guess for (R1, R2) and S yields an
equilibrium of M , then the corresponding interpretation I ′ is a subset of the saturated guesses,
thus making the explanation candidate no minimal model of its reduct.

To obtain only valid explanations, PEp (M) contains the following constraint:

: −not spoil . (3.27)

It ensures that only saturated interpretations I? can be answer sets. But it only is a ⊆-minimal
model of fPEp (M)I , if no I ′ ⊂ I exists, i.e., if all (R1, R2) ∈ Rg(E) yield an inconsistent
system. For more details on the saturation technique we refer to [60, 95].

The answer sets of PEp (M) now exactly encode all explanations of the inconsistent MCS M .
To prove this in the following, we utilise several lemmas and introduce some notation first.

For the following proofs we assume M = (C1, . . . , Cn) to be an arbitrary but fixed MCS
and PEp (M) to be the explanation encoding for M . Given a HEX rule r of form (3.2), we write
BHEX(r) = {β1, . . . , βn} and HHEX(r) = {α1, . . . , αk} to denote body and head of r respectively.
For an interpretation I and a HEX rule r, we write I |= BHEX(r) iff I |= βi for all i ∈ {1, . . . ,m}
and I 6|= βj for all j ∈ {m+ 1, . . . , n}. Similarly, we write I |= HHEX(r) iff I |= αi for some
i ∈ {1, . . . , k}.

For referring to a specific rule of PEp (M), we write trN (v1, . . . , v`) where N is the rule
of form (N) instantiated with v1 . . . , v`. We denote by TRn(M) the set of all instantiations
of a rule wrt. an MCS M . For example, let r7 ∈ br(M), then tr3.5(r7) denotes the HEX rule
r1 (r7) : − e1 (r7)., while TR3.5(M) = {tr3.5(r) | r ∈ br(M)}. For brevity, we write only
those values necessary to identify the instantiation, e.g., for rules of form (3.10) we write tr3.10(r)
where r ∈ br(M); for a rule of form (3.18), we write tr3.18(i, b) where (i : b) is the head of
some r ∈ br(M).

We say an interpretation I consistently encodes an explanation candidate E = (E1, E2)
where E1 = {r ∈ br(M) | e1 (r) ∈ I}, E2 = {r ∈ br(M) | e2 (r) ∈ I}, for all r ∈ br(M):
(i) e1(r) ∈ I iff ne1(r) /∈ I , and (ii) e2(r) ∈ I iff ne2(r) /∈ I .

Lemma 3.9. Every answer set I of PEp (M) consistently encodes an explanation candidate.

Proof. Let I be an answer set of PEp (M). Then, by definition I must be a minimal model
of fPEp (M)I . Assume for contradiction that I does not consistently encode an explanation
candidate. Then, for some r ∈ br(M) one of the following cases holds.
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(i) e1 (r) ∈ I and ne1 (r) ∈ I: Consider I ′ = I \ {e1 (r)}. For all tr ∈ fPEp (M)I

with e1 (r) /∈ HHEX(tr) it holds that I ′ |= tr since I |= tr. There is only one rule tr′

such that e1 (r) ∈ HHEX(tr′), namely tr′ = tr3.3(r). Since ne1 (r) ∈ I ′ and ne1 (r) ∈
HHEX(tr3.3(r)) it holds that I ′ |= tr, hence I ′ |= fPEp (M)I . Since I ′ ⊂ I this contradicts
that I is a minimal model of fPEp (M)I .

(ii) e1 (r) /∈ I and ne1 (r) /∈ I . Since BHEX(tr3.3(r)) = ∅, it holds that tr3.3(r) ∈ fPEp (M)I

while I 6|= HHEX(tr3.3(r)). Hence, in contradiction to the assumption, it holds that
I 6|= fPEp (M)I .

(iii) e2 (r) ∈ I and ne2 (r) ∈ I: This is similar to case (i), just replace e1 by e2 and tr3.3(r)
by tr3.4(r).

(iv) e2 (r) /∈ I and ne2 (r) /∈ I: This is similar to case (ii), just replace e1 by e2 and tr3.3(r)
by tr3.4(r).

Since each case yields a contradiction, it follows that I consistently encodes an explanation
candidate.

Lemma 3.10. If I is an answer set for PEp (M) and E = (E1, E2) is the explanation candidate
consistently encoded by I , then fPEp (M)I exactly contains

1. TR3.9(M) ∪ . . . ∪ TR3.26(M).

2. {tr3.5(r) | r ∈ E1}∪ {tr3.6(r) | r ∈ br(M) \E1}∪ {tr3.7(r) | r ∈ E2}∪ {tr3.8(r) | r ∈
br(M) \ E2}.

Proof. Let I be an answer set for PEp (M) encoding an explanation candidate E = (E1, E2).
1. By the constraint rule (3.27), it holds that spoil ∈ I , thus rules TR3.23(M)∪ . . .∪TR3.26(M)
are in fPEp (M)I . Let tr ∈ TR3.23(M) ∪ . . . ∪ TR3.26(M), then it holds that I |= BHEX(tr),
hence it follows that I |= HHEX(tr). Therefore, I |= BHEX(tr′) and tr′ ∈ fPEp (M)I , where
tr′ ∈ TR3.9(M) ∪ . . . ∪ TR3.22(M). Specifically, it holds for tr3.19(i), where 1 ≤ i ≤ n, that
I |= BHEX(tr3.19(i)), because spoil ∈ I which implies that f&con_out′i

(I, spoil , pres i, ini) = 0.
2. Let r ∈ E1. Then e1 (r) ∈ I and ne1 (r) /∈ I since I consistently encodes E. Thus,
I |= BHEX(tr3.5(r)), therefore tr3.5(r) ∈ fPEp (M)I . Furthermore, I 6|= BHEX(tr3.6(r)), hence
tr3.6(r) 6∈ fPEp (M)I .

Let r ∈ br(M) \E1. Then e1 (r) /∈ I and ne1 (r) ∈ I since I consistently encodes E. Thus,
I |= BHEX(tr3.6(r)), therefore tr3.6(r) ∈ fPEp (M)I . Furthermore, I 6|= BHEX(tr3.5(r)), hence
tr3.5(r) 6∈ fPEp (M)I .

The remaining cases for E2 are analogous.

Definition 3.14. An interpretation I of PEp (M) is called contradiction-free (regarding r1 , nr1 ,
r2 , nr2 , pres i, abs i) if and only if the following conditions hold:

r1 (r) ∈ I iff nr1 (r) /∈ I for every r ∈ br(M)

r2 (r) ∈ I iff nr2 (r) /∈ I for every r ∈ br(M)

pres i(a) ∈ I iff abs i(a) /∈ I for every a ∈ OUT i, 1 ≤ i ≤ n
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We say that a contradiction-free interpretation I consistently encodes a belief state S =
(S1, . . . , Sn) and a pair (R1, R2) of sets of bridge rules such that: a ∈ Si iff pres i(a) ∈ I ,
r ∈ R1 iff r1 (r) ∈ I , and r ∈ R2 iff r2 (r) ∈ I .

Notice that rule (3.27) and Lemma 3.10 ensure that no answer set I of PEp (M) is contra-
diction-free, because it holds that spoil ∈ I and the rules of TR3.23(M) ∪ . . . ∪ TR3.26(M)
ensure the saturation of I . The notion, however, is useful for reasoning about (minimal) models
of fPEp (M)I .

PEp (M) guarantees that a contradiction-free interpretation I that encodes a belief state S and
a pair (R1, R2) of sets of bridge rules also contains a representation of the set of heads of bridge
rules applicable under S and (R1, R2), as the following lemma shows.

Lemma 3.11. Let I be a contradiction-free interpretation that encodes the belief state S =
(S1, . . . , Sn) of M , and let (R1, R2) such that R1, R2 ⊆ br(M). If I is a minimal model of
P ⊆ PEp (M) such that TR3.10(M) ∪ . . . ∪ TR3.18(M) is a subset of P , then {b ∈ INi |
ini(b) ∈ I} = {ϕ (r) | r ∈ app(br i(M [R1 ∪ cf (R2)]), S)} for every 1 ≤ i ≤ n.

Proof. Recall that, given an MCS M ′, [(i : b)] denotes the set of bridge rules whose head is
(i : b), i.e., [(i : b)] = {r ∈ br(M ′) | Ch (r) = i ∧ ϕ (r) = b}.
(⊆): Let b ∈ {b ∈ INi | ini(b) ∈ I} and le {r1, . . . , rk} = [(i : b)] be the set of bridge rules of
M [R1 ∪ cf (R2)] whose head is (i : b). Since I |= BHEX(tr3.18(i, b)), it must hold for some rule
rj with 1 ≤ j ≤ k that r2 (rj) ∈ I or brbody(rj) ∈ I .

In the former case it follows that rj ∈ R2 and thus rj ∈ app(br i(M [R1 ∪ cf (R2)]), S),
hence b ∈ {ϕ (r) | r ∈ app(br i(M [R1 ∪ cf (R2)]), S)}.

In the latter case, brbody(rj) ∈ I together with rules tr3.12(rj), . . . , tr3.15(rj) implies that
each literal in the body of rj is satisfied by the belief state S. Furthermore, from I |= tr3.11(rj) it
follows that r1 (rj) ∈ I , hence rj ∈ R1. Therefore, rj ∈ app(br i(M [R1 ∪ cf (R2)]), S), hence
b ∈ {ϕ (rj) | app(br i(M [R1 ∪ cf (R2)]), S)}.
(⊇) Let b ∈ app(br i(M [R1 ∪ cf (R2)]), S)} and let {r1, . . . , rk} = [(i : b)] be the bridge rules
in M [R1 ∪ cf (R2)] whose head is (i : b). By definition of applicability, it must hold for some rj
with 1 ≤ j ≤ k that either rj ∈ R2 or rj ∈ R1 and the body of rj is satisfied wrt. S. In the former
case r2 (rj) ∈ I and by tr3.17(rj) it must hold that ini(b) ∈ I , hence b ∈ {b ∈ INi | ini(b) ∈ I}.
In the latter case observe that S |= rj and as I consistently encodes S and (R1, R2), it holds that
I |= BHEX(tr3.10(rj)). Therefore ini(b) ∈ I , hence b ∈ {b ∈ INi | ini(b) ∈ I}.

Theorem 3.4. Let M be an inconsistent MCS. Then (E1, E2) ∈ E±(M) iff there exists an
answer set I of PEp (M) where E1 = {r | e1(r) ∈ I} and E2 = {r | e2(r) ∈ I}.

Recall the concept of a saturated (“spoiled”) interpretation. An interpretation is saturated, if
it is a superset of Ispoil , which is defined as follows:

Ispoil ={r1(r), nr1(r), r2(r), nr2(r), brbody(r) | r ∈ br(M)}∪
{ini(b) | r ∈ br(M) ∧ Ch (r) = i ∧ ϕ (r) = b} ∪ {spoil}∪⋃
a∈OUT i

{pres i(a), abs i(a)} ∪
⋃

b∈INi

{ini(b)}.
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Soundness (⇐). Let I be an answer set of PEp (M). Then by Lemma 3.9 I consistently encodes
an explanation candidate E = (E1, E2) where E1 = {r ∈ br(M) | e1(r) ∈ I} and E2 = {r ∈
br(M) | e2(r) ∈ I}. We show that E is an explanation of M .

Since I is an answer set of PEp (M), it is a minimal model of fPEp (M)I and by Lemma 3.10
all rules of TR3.9(M) ∪ . . . ∪ TR3.26(M) are in fPEp (M)I , so I must be a minimal model of
those rules. By rule (3.27) it follows that spoil ∈ I , therefore for each tr ∈ TR3.23(M) ∪ . . . ∪
TR3.26(M) it holds that HHEX(tr) ∈ I since I |= BHEX(tr). Therefore, Ispoil ⊆ I .

Towards a contradiction, assume that E is not an explanation. Then, there exists (R1, R2) ∈
Rg(E) such that M ′ 6|= ⊥ holds for M ′ = M [R1 ∪ cf (R2)], i.e., M ′ has an equilibrium
S = (S1, . . . , Sn).

Consider the interpretation IS,(R1,R2) corresponding to S and (R1, R2), i.e., I ′ is a con-
tradiction-free interpretation regarding r1 ,nr1 , r2 ,nr2 , pres i, abs i that consistently encodes
S and (R1, R2). Let IS,(R1,R2),E = IS,(R1,R2) ∪ {e1 (r) ∈ I} ∪ {ne1 (r) ∈ I} ∪ {e2 (r) ∈
I} ∪ {ne2 (r) ∈ I} be the interpretation consistently encoding E, S, and (R1, R2). Finally, let
Iapp = {ini(b) | b ∈ app(br i(M

′), S)} ∪ {brbody(r) | r ∈ R1 ∧ S |= r} correspond to the set
of bridge rule heads and bodies applicable under S. Combining them, we obtain an interpretation
I ′ = IS,(R1,R2),E ∪ Iapp . Note that I ′ ⊂ I , since I is saturated and both I and I ′ consistently
encode E.

As we show in the following, it holds that I ′ |= fPEp (M)I :

• For every tr ∈ TR3.3(M) ∪ TR3.4(M) it holds that I ′ |= tr since I |= tr and I agrees
with I ′ on atoms e1 ,ne1 , e2 , and ne2 .

• For every tr ∈ TR3.5(M)∪ . . .∪TR3.8(M) it holds that I ′ |= tr since (R1, R2) ∈ Rg(E)
and I ′ consistently encodes (R1, R2).

• For every tr ∈ TR3.9(M) it holds that I ′ |= tr since I ′ consistently encodes S.

• For every r ∈ br(M) it holds that I ′ |= tr3.10(r) since Iapp ⊆ I ′ and Iapp is defined such
that S r and r ∈ R1 implies that brbody(r) ∈ I ′.

• For every r ∈ br(M) it holds that I ′ |= tr3.11(r) since brbody(r) ∈ I ′ implies r ∈ R1,
hence by I ′ encoding (R1, R2) it follows that r1 (r) ∈ I ′.

• For every r ∈ br(M) it holds that I ′ |= tr3.12(r), . . . I ′ |= tr3.15(r), because brbody(r) ∈
I ′ only if S |= r, hence by I ′ encoding S the following hold: HHEX(tr3.12(r)) ∈
I ′, . . . ,HHEX(tr3.15(r)) ∈ I ′.

• For every r ∈ br(M) it holds that I ′ |= tr3.16(r), respectively I ′ |= tr3.17(r) since S |= r
and r ∈ R1, respectively r ∈ R2, implies that r ∈ app(br i(M

′), S), hence ini(b) ∈ I ′
where i ∈ C (M) and ϕ (r) = b.

• For every head (i : b) of a bridge rule it holds that I ′ |= tr3.18(i, b), because if ini(b) ∈ I ′
for some i ∈ C (M), then by definition of I ′ there exists r ∈ app(br i(M

′), S) such that
one of the following holds:

– S |= r and r ∈ R1, which implies that brbody(r) ∈ I ′.
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– r ∈ R2 and therefore r2 (r) ∈ I ′.

• I ′ |= tr3.19(i) holds for all 1 ≤ i ≤ n: By definition of Iapp , it holds that {b | ini(b) ∈
I ′} = app(br i(M

′), S) and since I ′ encodes S, it also it holds that {a | pres i(a)} =
Si. By assumption S is an equilibrium of M ′, hence Si ∈ ACCi(app(br i(M

′), S)).
Therefore, f&con_out′i

(I ′, pres i, ini) = 1 and I ′ 6|= BHEX(tr3.19(i)).

• For every tr ∈ TR3.20(M)∪ . . .∪TR3.22(M) it holds that I ′ |= tr since I ′ is conflict-free
and I ′ 6|= BHEX(tr).

• For every tr ∈ TR3.23(M) ∪ . . . ∪ TR3.26(M) it holds that I ′ |= tr since spoil /∈ I ′.

• Rule (3.27): is not in the reduct fPEp (M)I , hence it needs not be satisfied by I ′.

Therefore, all rules of fPEp (M)I are satisfied and it follows that I ′ is a model of fPEp (M)I .
Since I ′ ⊂ I , I is not a minimal model of fPEp (M)I , which contradicts that I is an answer set
of PEp (M). This proves that E ∈ E±(M).

Completeness (⇒). Let E = (E1, E2) ∈ E±(M). Then for every (R1, R2) ∈ Rg(E) it holds
that M ′ |= ⊥ where M ′ = M [R1 ∪ cf (R2)], i.e., for every belief state S = (S1, . . . , Sn) some
1 ≤ i ≤ n exists such that Si /∈ ACCi(app(br i(M

′), S)).
We show that

IE ={e1 (r) | r ∈ E1} ∪ {ne1 (r) | r ∈ br(M) \ E1}
∪ {e2 (r) | r ∈ E2} ∪ {ne2 (r) | r ∈ br(M) \ E2}
∪ Ispoil

is an answer set of PEp (M).
Since IE contains respective instances for e1 ,ne1 , e2 , and ne2 , fPEp (M)IE contains the

following rules: tr3.5(r) such that r ∈ E1; tr3.6(r) such that r ∈ br(M) \ E1; tr3.7(r) such
that r ∈ E2; and tr3.8(r) such that r ∈ br(M) \ E2. Furthermore, because IE contains Ispoil ,
fPEp (M)IE contains all rules in TR3.3(M)∪TR3.4(M)∪TR3.9(M)∪ . . .∪TR3.26(M). Given
that Ispoil ⊂ IE , it is easy to see that IE is a model of fPEp (M)IE . It remains to show that IE is
a ⊆-minimal model of fPEp (M)IE .

Assume for contradiction that some I ′ ⊂ IE is a model of fPEp (M)IE . Observe that IE
consistently encodes E by definition. Since it must hold that I ′ |= tr where tr ∈ TR3.3(M) ∪
TR3.4(M) and I ′ ⊂ IE , it follows that I ′ also consistently encodes E.

Since fPEp (M)IE contains rules TR3.23(M) ∪ . . . ∪ TR3.26(M) which must be satisfied
by I ′, either spoil /∈ I ′ or all respective heads are in I ′, which means that I ′ is saturated.
The latter implies that I ′ = IE , which contradicts the assumption I ′ ⊂ IE . Hence it follows
that spoil /∈ I ′. This requires that I ′ 6|= BHEX(tr) where tr ∈ TR3.19(M) ∪ TR3.20(M) ∪
TR3.21(M) ∪ TR3.22(M).

Since it holds that I 6|= BHEX(tr3.19(i)) for all 1≤ i≤n, there exists a contradiction-free
guess regarding r1 ,nr1 , r2 ,nr2 , pres i, abs i such that f&con_out′i

(I ′, pres i, ini) = 1. Let S =
(S1, . . . , Sn) be the belief state consistently encoded by I ′ and let (R1, R2) be the pair of
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master.hex: #context(1,"dlv_asp_context_acc", "kb1.dlv").
#context(2,"dlv_asp_context_acc", "kb2.dlv").
#context(3,"ontology_context3_acc", "").
#context(4,"dlv_asp_context_acc", "kb4.dlv").
r1: (3:pneum) :- (2:xraypneum).
r2: (3:marker) :- (2:marker).
r3: (4:need_ab) :- (3:pneum).
r4: (4:need_strong) :- (3:atyppneum).
r5: (4:allow_strong_ab) :- not (1:allergystrong).

kb1.dlv: allergystrong.

kb2.dlv: marker. xraypneum.

kb4.dlv: give_strong v give_weak :- need_ab.
give_strong :- need_strong.
give_nothing :- not need_ab, not need_strong.
:- give_strong, not allow_strong_ab.

Figure 3.9: Examples for MCS topology and knowledge base input files of the MCS-IE tool.
These files encode most parts of our running example.

sets of bridge rules consistently encoded by I ′. It holds that (R1, R2) ∈ Rg(E), because
TR3.5(M) and TR3.7(M) together with the fact that I ′ is contradiction-free ensure: e1 (r) ∈ I ′
implies r1 (r) ∈ I ′ and r2 (r) ∈ I ′ implies that ne2 (r) ∈ I ′. In other words, R1 ⊆ E1 and
R2 ⊆ br(M) \ E2, hence (R1, R2) ∈ Rg(E).

By Lemma 3.11, {b ∈ INi | ini(b) ∈ I ′} = {ϕ (r) | r ∈ app(br i(M [R1∪cf (R2)]), S)} for
every 1 ≤ i ≤ n, which implies that Si ∈ ACCi({ϕ (r) | r ∈ app(br i(M [R1∪cf (R2)]), S)});
i.e., S is an equilibrium of M [R1 ∪ cf (R2)]. Since (R1, R2) ∈ Rg(E), this contradicts that E
is an explanation of M . It follows that no I ′ ⊂ IE is a model of fPEp (M)IE . Hence IE is an
answer set of PEp (M).

Implementation and Evaluation

The above encoding in HEX for explanation computation is implemented in the MCS-IE3 tool, the
MCS Inconsistency Explainer [22], which is an experimental prototype based on the dlvhex solver.
MCS-IE solves the reasoning tasks of enumerating output-projected equilibria, diagnoses, minimal
diagnoses, explanations, and minimal explanations of a given MCS. To do so, it uses the encoding
presented here and further, straightforward encodings for diagnosis computation (cf. [54] for
a complete list). Note that the author of this thesis is only involved in the development and
implementation of a MCS-IE plug-in realizing the PEp (M) rewriting; the author is not involved in
the development of the MCS-IE system itself.

Contexts can be realised as ASP programs, or by writing a context reasoning module using a
C++ interface which allows for implementing arbitrary formalisms that can be captured by MCS

3http://www.kr.tuwien.ac.at/research/systems/mcsie/
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Figure 3.10: Architecture of the MCS-IE system.

contexts.
An online version of MCS-IE is available4, which is a useful research tool for quick analysis

of inconsistency in small-scale MCS. It requires no installation of additional software on the user
side and allows direct editing of bridge rules and context knowledge-bases. A list of showcase
MCS allows to directly compute (minimal) diagnoses and (minimal) explanations also for the
MCS of Example 3.1.

Example 3.25 (ctd). Figure 3.9 shows files which encode our running example MCS in the
MCS-IE input format. Contexts C1, C2, and C4 are formalised in ASP, with knowledge bases
kb1.dlv, kb2.dlv, and kb4.dlv, these contexts are evaluated through a HEX-plugin for
external atoms, which in turn uses the dlv solver. On the other hand, ontology reasoning C3 is
implemented in C++. For more details about the format and the interface we refer to [22].

Figure 3.10 shows the architecture of the MCS-IE system, which is implemented as a plugin
to the dlvhex solver. The MCS M at hand is described by the user in a master input file, which
specifies all bridge rules and contexts (it may refer to context knowledge base files). Depending
on the configuration of MCS-IE, the desired reasoning tasks are solved using one of the three
rewritings Pp(M), PDp (M), resp. PEp (M), on the input MCS M . Note that this thesis only
presents PEp (M) while the other rewritings are also given in [54]. MCS-IE enumerates answer
sets of the rewritten program, and potentially uses a⊆-minimisation module, and a module which
realises the conversions between diagnosis and explanation notions as described in Theorem 3.2

4http://www.kr.tuwien.ac.at/research/systems/mcsie/tut/
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and Corollary 3.1. Explanations can be computed by MCS-IE using the direct encoding given in
Section 3.5 or through the conversion from diagnoses.

As expected, MCS-IE shows the following behaviour wrt. efficiency: the rewriting PDp (M),
which uses guess-and-check, shows better performance than the rewriting PEp (M), which ex-
presses the coNP task of recognising explanations in the ΣP

2 formalism of full-fledged disjunc-
tive HEX programs.

Nevertheless, it appeared that also PDp (M) does not scale well. This lead to the development
of a better HEX evaluation framework, which divides and conquers the guessing space more
efficiently [49]. Further improvements on the algorithmic aspects are clearly necessary, but
outside the scope of this thesis.

3.6 Summary and Outlook

We have considered the problem of inconsistency analysis in nonmonotonic Multi-Context
Systems (MCS), which are a flexible, abstract formalism to interlink heterogeneous knowledge
sources for information exchange. We have presented a consistency-based and an entailment-
based notion of inconsistency explanation, called diagnosis and explanation, which are in a
duality relation that can be exploited for computational purposes. We furthermore investigated
possible refinements and showed that our basic notions are sufficient to cover the refined notions.
We proved several properties regarding the relationship of diagnoses and explanations as well as
modularity based on splitting-sets, product-based combinations of MCS, and decompositions of
contexts. These properties include the facts that:

• diagnoses and explanations cover the same bridge rules.

• if the information exchange of an MCS exhibits a modular structure, then diagnoses and
explanations of certain parts of the MCS can be extended to diagnoses and explanations of
the full MCS. Under stronger conditions, diagnoses and explanations of the whole MCS
are combinations of those parts of the system.

• diagnoses are neutral to shuffling the order of contexts and corresponding bridge rules of
an MCS. We also show that in some cases, a context may be decomposed into two contexts
such that diagnoses of the decomposed MCS correspond one-to-one to those of the original
MCS.

These results all can aid in a more efficient calculation of diagnoses and explanations. We
recall the characterisation of the computational complexity of the two notions, which establish
generic results for a range of context complexities. They show that in many cases, explaining
inconsistency does not lead to a jump in complexity compared to inconsistency testing, although
(unsurprisingly) depending on the interlinking intractability might arise. We have furthermore
shown how explanations can be computed by a transformation to HEX programs, which has been
implemented in the experimental software tool MCS-IE.

Our results provide a basis for building advanced systems of interlinked knowledge sources,
in which the natural need for inconsistency management is supported, by taking specifically the
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information linkage as a source of inconsistency into account, in contrast to traditional works
(cf. Chapter 6) on inconsistency management that focus on the contents of the knowledge sources;
however, in loosely connected systems, control over autonomous knowledge sources is elusive
and modifying the information exchange may be the only resort to remove inconsistency.

Further Work. The work presented here has been continued in several directions. One of
them is to impose different kinds of preferences on the notions of diagnosis and explanation. In
Chapter 4 we present these approaches in detail; they allow for filtering and comparing diagnoses;
using meta-programming techniques, the most-preferred diagnoses can be selected from all
diagnoses and unwanted diagnoses can be filtered-out.

Another direction concerns incomplete information about contexts. The setting considered in
here assumes complete information about the behaviour of the contexts in information exchange,
i.e., for each ’input’ of relevant beliefs from other contexts accessed via bridge rules, the ’output’
in terms of firing bridge rules is fully known. In real-world applications, however, this information
may be only available for specific (classes of) inputs, and querying a context arbitrarily often to
gain this knowledge might be infeasible. In such scenarios the notions introduced in [51] allow to
obtain reasonable approximations for diagnoses and explanations of inconsistency.

Finally, another implementation is available in which diagnoses and explanations can be
computed by distributed algorithms, exploiting the distributed MCS evaluation framework of
[5, 6, 43].

Another issue is to combine inconsistency management of contents and of context interlinking.
Many approaches exist to repair inconsistency stemming from an inconsistent theory or arising
from the merging of data from different sources (cf. Chapter 6). Some of these approaches
like maximal consistent subsets of a knowledge base (which are ubiquitous in content-based
inconsistency management) might be simulated using bridge rules. However, an emerging
combination—although in a uniform formalism—would be inflexible and less amenable to refine-
ment. More promising is to combine the notions in this chapter and in [32], which generalised
MCS with a management component for each context and operations to be performed on the
knowledge base when a bridge rule fires; this allows for a more sophisticated content-change than
simple addition of formulas. Nevertheless, consistency can not be guaranteed in general with
such content-based approaches, as inconsistency caused by cyclic information flow can not be
resolved. Since the latter can be dealt with by modifying the interlinking, as for instance by our
notion of diagnosis, a combination of techniques is advantageous. In Chapter 5 we present such
local inconsistency management components and further investigate their impact on consistency
of MCS.
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CHAPTER 4
Preferences

4.1 Introduction

Given an inconsistent MCS the notion of diagnosis yields all possible ways to remove inconsis-
tency. Since this notion is purely technical, it is not able to further distinguish unwanted diagnoses
from preferred ones. Although the set of minimal diagnoses yields minimal modifications in
order to ensure the existence of an equilibrium, it cannot identify diagnoses whose modifications
yield serious consequences like wrongfully considering an ill patient as healthy and not giving
her any medication.

Example 4.1. LetM be an MCS handling patient treatments and billing in a hospital; it contains
the following contexts: a patient database C1, a logic program C2 suggesting proper medication,
and a logic program C3 handling the billing. Context C1 uses the abstract logic LplΣ , while both
C2 and C3 use Lasp

Σ . We restrict our example to a single patient with the following knowledge
bases for contexts:

kb1 = {hyperglycemia, allergic_animal_insulin, insurance_B},
kb2 = {give_human_insulin ∨ give_animal_insulin ← hyperglycemia.

⊥ ← give_animal_insulin, not allow_animal_insulin},
kb3 = {bill ← bill_animal_insulin.

bill_more ← bill_human_insulin.
⊥ ← insurance_B , bill_more.}

Context C1 provides information that the patient has severe hyperglycemia, that she is allergic
to animal insulin, and that her health insurance is from company B. Context C2 suggests to
apply either human or animal insulin if the patient has hyperglycemia and requires that the
applied insulin does not cause an allergic reaction. Context C3 does the billing and encodes that
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Figure 4.1: Contexts and bridge rules of the hospital MCS M = (C1, C2, C3) of Example 4.1.

insurance B only pays animal insulin. The bridge rules of M are:

r1: (2 : hyperglycemia) ← (1 : hyperglycemia).
r2: (2 : allow_animal_insulin)←not (1 : allergic_animal_insulin).
r3: (3 : bill_animal_insulin) ← (2 : give_animal_insulin).
r4: (3 : bill_human_insulin) ← (2 : give_human_insulin).
r5: (3 : insurance_B) ← (1 : insurance_B).

The MCS and its bridge rules are shown in Figure 4.1. Since the patient has hyperglycemia
and is allergic to animal insulin, the belief set containing give_human_insulin is the only one
acceptable at C2, i.e., the human insulin must be given. Since the insurance company does not
cover human insulin, the billing context C3 admits no acceptable belief set and the MCS M
therefore is inconsistent.

The minimal diagnoses of M are as follows:

D±m(M) = {({r1} , ∅) , ({r4} , ∅) , ({r5} , ∅) , (∅, {r2})}

Applying one of these diagnoses, i.e., considering for (D1, D2) ∈ D±m(M) the MCS
M [br(M) \ D1 ∪ cf (D2)], yields that the illness of the patient is ignored, that the medica-
tion is not billed, that the insurance receives a bill it will not pay, and that the patient is given a
medication she is allergic to, respectively.

It is not easy to identify the best minimal diagnosis among those available. If the health of
the patient is most important, then those diagnoses only causing a wrong billing are preferred.
On the other hand, if economic values are paramount, one might consider any diagnosis leading
to a wrong billing as unacceptable.

In this chapter we therefore address the problem of distinguishing and selecting the most
preferred diagnoses, respectively the filtering of unwanted diagnoses.

A related approach to guaranteeing an equilibrium in MCS is elaborated in [16, 17, 19]; it is
based on trust among contexts and provenance information. In contrast to that, we do not focus on
a single formalism for preference, and in the spirit of MCS we aim for a solution which is general
and open to a wide variety of preference formalisms. As a first step, we therefore introduce three
general notions for selecting preferred diagnoses: first, protecting bridge rules unconditionally
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from any modification; second, removing diagnoses from any further consideration (filtering);
third, selecting diagnoses that are most preferred with respect to an arbitrary preference relation.

Having these basic notions, we then show how they can be realised within the established MCS
framework. The core idea to realising the selection of preferred diagnoses without confinement
to a certain formalism is to use a context of an MCS for preference specification. This requires
the ability of introspection or meta-reasoning regarding possible diagnoses of the MCS. Finding
techniques that enable an MCS to achieve capabilities for meta-reasoning about the diagnoses
of itself therefore is an important task. Our contributions here are the definition of a variety of
meta-reasoning techniques as well as an investigation of some of their properties.

Finally, we focus on computational complexity to show that protecting bridge rules from
modifications is easy to achieve. The complexity of filtering depends on the complexity of
deciding whether a diagnosis is filtered out, but our approach comes with no additional cost.
Regarding the selection of a most-preferred diagnosis, one the one hand it depends on the
computational complexity of deciding whether a diagnosis is preferred over another, but on the
other hand it also depends on the choice of the meta-reasoning approach. We show that one incurs
exponential cost, while another approach is worst-case optimal.

The remainder of this chapter is structured as follows. In Section 4.2 we introduce some
general types of preferences, i.e., filters and preference orders. In Section 4.3 we investigate two
approaches to achieve meta-reasoning in MCS and we realise filters, and preference orders. In
Section 4.4 we derive the computational complexity of the developed approaches to filter and
select most-preferred diagnoses.

4.2 Preferences and Filters

Clearly, not all diagnoses are equally “good”, since the application of some of them might have
serious consequences, e.g., in Example 4.1 if the patient is treated as being all healthy. In the
literature two basic ways occur frequently: one is to separately consider each outcome (i.e.,
diagnosis) and discard it whenever it fails some preference condition; the other is to compare
outcomes with each other and decide which is the most appealing. We call the former a filter,
since it filters unwanted diagnoses, and the other a preference.

Many formalisms have been developed for specifying preference and in order to capture as
many as possible, we use preferences in their most general form, i.e., we use mathematical order
relations. We also consider two sample instantiations, namely CP-nets (cf. [25]) where preference
is specified by statements like “if bride rules r1 and r2 are removed, I prefer bridge rule r3 to be
condition-free” and an approach based on units of modified bridge rules.

Since preferences allow to rank diagnoses, but they do not allow the exclusion of diagnoses
from being considered, preferences alone are not sufficient. If one wants to ensure that certain
diagnoses are excluded from being considered valid, the need arises for a way to filter out certain
diagnoses. For specifying a filter, we again use the most general approach, which is a Boolean
function on diagnoses.

In this section we introduce the definitions of filters and preference orders in general, as
well as some specific preference formalisms. The following sections then show how they can be
realised in MCS in such a way that any formalism used to define the preference order or filter can
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be incorporated thanks to using the abstract logic of an MCS context. Furthermore, our approach
preserves core properties of MCS like information hiding and decentralised evaluation.

Filters on Diagnoses

Filters allow a designer of an MCS to apply sanity checks on diagnoses, thus they can be seen as
hard constraints: diagnoses that fail to satisfy the conditions are filtered out and not considered
for consistency restoration.

Protecting Bridge Rules

In a first attempt, we may consider protecting some bridge rules from being modified altogether,
i.e., we disallow a diagnosis to contain protected bridge rules. The adapted notion of diagnosis
such that certain bridge rules, tagged as protected, are never part of it is as follows.

Definition 4.1. Let M be an MCS with protected rules brP ⊆ br(M). A diagnosis excluding
protected rules brP is a diagnosis (D1, D2) ∈ D±(M), where D1, D2 ⊆ br(M) \ brP . We
denote the set of all minimal such diagnoses by D±m(M, brP ).

Example 4.2. Consider the hospital MCSM of Example 4.1 again. One might decide that bridge
rules for health-related information-flow are protected, i.e., brP = {r1, r2}.

The set of minimal protected diagnoses then is:

D±m(M, brP ) = {({r4}, ∅), ({r5}, ∅)}

In the following we also write diagnosis with protected bridge rules meaning a diagnosis
excluding protected rules. It follows directly from the definition that every diagnosis with
protected rules also is a regular diagnosis. Furthermore, every minimal diagnosis with protected
bridge rules also is a regular minimal diagnosis.

Proposition 4.1. LetM be an inconsistent MCS with protected rules brP . ThenD±(m)(M, brP ) ⊆
D±(m)(M), i.e., every (minimal) diagnosis excluding protected rules is a (minimal) diagnosis.

Proof. Let D ∈ D±(M, brP ), then by definition D ∈ D±(M).
Given D = (D1, D2) ∈ D±m(M, brP ), assume towards contradiction that there exists

(D′1, D
′
2) ∈ D±m(M) such that (D′1, D

′
2) ⊂ (D1, D2). Observe that D′1, D

′
2 ⊆ br(M) \ brP ,

hence (D′1, D
′
2) ∈ D±(M, brP ). This contradicts that D ∈ D±m(M, brP ), thus it follows that

D ∈ D±m(M).

Observe that D±m(M, brP ) not necessarily contains cardinality-minimal diagnoses, consider
for example an MCS M ′ with two diagnoses D = ({r1}, ∅) and D′ = ({r2, r3}, ∅) and brP =
{r1}, then D is cardinality-minimal but it holds that D /∈ D±m(M ′, brP ) and D′ ∈ D±m(M ′, brP ).

In Section 4.4 it is shown that the computational complexity of deciding whether D ∈
D±(M, brP ) holds is the same as deciding whether D ∈ D±(M) holds, i.e., the computational
complexity of diagnosis with protected bridge rules is the same as for regular diagnosis.
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Figure 4.2: Contexts and bridge rules of the MCS M = (C1, C2) from Example 4.3.

Filters in General

We now introduce filters in general, which allow a designer of an MCS to apply sanity checks on
diagnoses. A whole diagnosis candidate (D1, D2) is considered whether it fails some conditions
and if it does not satisfy the conditions, it is filtered out and not considered for consistency
restoration; thus a filter can be seen as hard constraints on diagnoses. We here want our approach
to be open to a large variety of formalisms and therefore we characterise a filter by a Boolean
function (or characteristic function) on diagnosis candidates.

Example 4.3. Consider two scientists, Prof. K and Dr. J, planning to write a paper. We formalise
their reasoning in an MCS M using two contexts C1 and C2, each employing Lasp

Σ for answer
set semantics. Dr. J will write most of the paper and Prof. Kwill participate if she finds time or if
Dr. J thinks the paper needs improvement (bridge rule r1). Dr. J knows that the participation of
Prof. K results in a good paper (r2 and kb1) and he will name Prof. K as author if she participates
(r3). The knowledge bases of the contexts are:

kb1 = { contribute ← improve.

contribute ← has_time.}
kb2 = { good ← coauthored .}

The bridge rules of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name_K )← (1 : contribute).

Figure 4.2 depicts the contexts and bridge rules ofM . It appears thatM is inconsistent, intuitively
because the cycle through bridge rules r1 and r2 has an odd number of negations.

The set of minimal diagnoses of M is:

D±m(M) = { ({r1} , ∅) , ({r2} , ∅) , (∅, {r2}) , (∅, {r1}) }

The first two diagnoses break the cycle by removing a rule, the last two “stabilise” it.

The definition of a filter on diagnosis candidates then is as follows.
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Definition 4.2. LetM be an MCS with bridge rules br(M). A diagnosis filter forM is a function
f :2br(M)×2br(M) → {0, 1} and the set of filtered diagnoses is D±f (M) = {(D1, D2) ∈
D± (M) | f(D1, D2) = 1}. By D±m,f (M) we denote the set of all subset-minimal such
diagnoses.

Given a diagnosis candidateD = (D1, D2) ∈ 2br(M)×2br(M), we also write f(D) to denote
f(D1, D2). Writing the set D±f,m(M) explicitly, we obtain:

D±m,f (M) =
{
D | D ∈ D±(M) and f(D) = 1 and

@D′ ∈ D±(M) :
(
D′ ⊂ D and f(D′) = 1

)}
(4.1)

Example 4.4. Consider the MCS of Example 4.3 and the diagnoses D = ({r2} , ∅) and D′ =
(∅, {r2}), where the contribution of Prof. K is either enforced or forbidden. For both cases,
the authorship information conveyed by r3 is wrong. Using a filter, we can declare diagnoses
undesired if they modify r2 without modifying r3 accordingly as follows:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2

1 otherwise

In particular it holds that f(D) = 0 = f(D′).

Note that filters are a generalisation of diagnoses with protected bridge rules, since every
diagnosis with protected bridge rules corresponds to a filter as follows. Let M be an MCS with
protected bridge rules brP , we construct a filter f brP in the following way:

f brP (D1, D2) =

{
0 if ∃r ∈ brP : r ∈ (D1 ∪D2)

1 otherwise

It is easy to see that D ∈ D±(M, brP ) holds iff f brP (D) = 1. From the definition of f brP one
can also see that diagnoses with protected bridge rules are some kind of modular filter, where
each bridge rule of a diagnosis D can be checked independently of the other bridge rules.

It also holds that every filtered diagnosis is a regular diagnosis, but minimal filtered diagnoses
are not necessarily regular minimal diagnoses. So an analogous property as in Proposition 4.1
does not hold with respect to minimal filtered diagnoses. The following example shows why.

Example 4.5. Consider the MCS M and the filter f of Example 4.4 again. The set of minimal
filtered diagnoses is as follows:

D±m,f (M) =
{

({r1}, ∅), (∅, {r1}), ({r2, r3}, ∅), (∅, {r2, r3})
}

It holds that ({r2, r3}, ∅) /∈ D±m(M), but nevertheless ({r2, r3}, ∅) is a subset-minimal diagnosis
respecting the condition expressed by the filter f . Intuitively, the latter diagnoses modify the
authorship information in a consistent way and are minimal in the sense that no unnecessary
modification is applied.
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One could argue whether minimal filtered diagnoses should select from the set of regular
minimal diagnoses only those which pass the filter, i.e., select the set {D ∈ D±m(M) | f(D) = 1}.
Although such a definition looks appealing, it may be the case that no minimal diagnosis passes
the filter while there are (not-minimal) diagnoses of M passing the filter. The resulting set of
filtered minimal diagnoses then is empty while there are useful diagnoses satisfying the filter
and these diagnoses do not incur unnecessary modifications other than those that satisfy the filter
condition and make the resulting MCS consistent. Since the notion D±m,f contains exactly the
latter set of diagnoses, this notion seems to be more suitable.

As it is a key strength of MCS to integrate different knowledge bases in a decentralised
manner, users of MCS will want to specify their constraints on diagnoses in a logic of their choice,
decentralised, and under the provision that they do not have to disclose information considered
private. In Section 4.3 we realise filters within the MCS formalism, such that these properties are
retained.

Preferences on Diagnoses

To compare diagnoses and select the most appealing one(s), we use preferences. In the spirit of
MCS we also want this approach to be open to any kind of formalism for specifying preference.
In general, preference is just an order relation on diagnoses. To avoid counter-intuitive results
like A being preferred over B and B being preferred over C, but A not being preferred over C,
we only require that preferences are transitive. Since virtually every other preference formalism
yields an order relation, we first introduce the general formalisation and later show how two
specific formalisms fit into our general approach.

Definition 4.3. A preference order over diagnoses for an MCS M is a transitive binary relation
� on 2br(M) × 2br(M); we say that D is preferred to D′ if D � D′.

Given a preference order �, we denote by ≺ the irreflexive version of �, i.e., D ≺ D′ holds
iff D � D′ and D 6= D′ hold. Using a preference order �, we can now define what constitutes
a most preferred diagnosis. Again the intuition is that such a most preferred diagnosis is one
which incurs a minimal set of modifications and there exists no other diagnosis that is strictly
more preferred. To do so, we first introduce �-preferred diagnoses, which are those diagnoses
such that no other diagnosis is strictly more preferred. The most preferred diagnoses then are the
subset-minimal ones from the set of �-preferred diagnoses.

Definition 4.4. Let M be an inconsistent MCS. A diagnosis D ∈ D±(M) of M is called �-
preferred iff for all D′ ∈ 2br(M) × 2br(M) with D′ ≺ D ∧D 6� D′ it holds that D′ /∈ D±(M).
A diagnosis D ∈ D±(M) is minimal �-preferred iff D is subset-minimal among all �-preferred
diagnoses. The set of �-preferred diagnoses is denoted by D±�(M) and the set of minimal
�-preferred is denoted by D±m,�(M).

Observe that we do not require that � is acyclic and therefore we consider all diagnoses in
a cycle to be equally preferred; this justifies the condition of D′ ≺ D ∧D 6� D′ for defining
D±�(M).
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Example 4.6. Consider the hospital MCS M of Example 4.1 again, where bridge rules r1 and
r2 transport information regarding the patient’s health and bridge rules r3, r4, and r5 cover the
information flow for billing. If we consider it most important that information flow regarding
health information is changed as little as possible, a preference order � as follows might be used:

(D1, D2) � (D′1, D
′
2) iff {r1, r2} ∩ (D1 ∪D2) ⊆ (D′1 ∪D′2) ∩ {r1, r2}

We observe that following this definition, the following preferences (and several more) hold:

({r4, r5}, ∅) � ({r1}, ∅) ({r4}, ∅) � ({r1}, ∅) ({r5}, ∅) � ({r1}, ∅)
({r4, r5}, ∅) � (∅, {r2}) ({r4}, ∅) � (∅, {r2}) ({r5}, ∅) � (∅, {r2})

({r4}, ∅) � ({r5}, ∅) ({r5}, ∅) � ({r4}, ∅)

Note that � indeed yields cyclic preferences among those diagnosis candidates that are incom-
parable, especially it holds that ({r4}, ∅) ≺ ({r5}, ∅) and ({r5}, ∅) ≺ ({r4}, ∅). The set of
�-preferred diagnoses of M then is:

D±�(M) = {(D1, D2) | D1, D2 ⊆ {r3, r4, r5} and r4 ∈ D1 \D2 or r5 ∈ D1 \D2}

Note that ({r5}, ∅) ∈ D±�(M), ({r4}, ∅) ∈ D±�(M), and ({r4, r5}, ∅) ∈ D±�(M) all hold.
Selecting from D±�(M) the subset-minimal ones, we obtain D±m,�(M), which is:

D±m,�(M) = {({r5}, ∅), ({r4}, ∅)}

This agrees with our intuition that a minimal set of modifications should be applied and we favour
to modify bridge rules for billing information rather than modifying health-related bridge rules.

For use in the following sections, we also state the sets D±�(M) and D±m,�(M) explicitly.

D±�(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ ≺ D ∧D 6� D′)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ � D ∧D′ 6= D ∧D 6� D′)} (4.2)

= {D ∈ D±(M) | ∀D′ ∈ D±(M) : (D′ � D ∧D 6� D′)⇒ D′ = D}

Based on this, we can define D±m,�(M) in terms of D±�(M) as follows.

D±m,�(M) = {D ∈ D±�(M) | ∀D′ ∈ D±�(M) : D′ ⊆ D ⇒ D′ = D}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : (D′ � D ∧D 6� D′ ⇒ D′ = D)

∧∀D′ ∈ D±�(M) : D′ ⊆ D ⇒ D′ = D}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : (D′ � D ∧D 6� D′ ⇒ D′ = D)

∧∀D′ ∈ D±(M) :
[
(∀D′′ ∈ D±(M) : D′′ � D′

∧D′ 6� D′′ ⇒ D′′ = D′) ∧D′ ⊆ D
]
⇒ D′ = D}

In Section 4.3 we show how preferences can be realised in general.
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Sample Instantiations of Preference Orders

CP-nets One preference formalism which exhibits appealing features of locality and privacy
is called conditional preference networks (CP-nets) [25]. CP-nets capture a natural class of
preference statements like “If my new car is from Japan, I prefer hybrid over diesel engine,
assuming all else is equal”. Given that MCS are decentralised systems, users may want to express
preferences on diagnoses solely based on a local set of bridge rules, assuming all other things
equal. Since CP-nets allow to model such local preference and have successfully been used for
preference elicitation (e.g. [46]), we consider them in more detail here.

We first recall the formalism of CP-nets (cf. [25]). In terms of CP-nets, the fact that “my new
car is from Japan” is an assignment of a value to a variable; here the value is “from Japan” and
the variable, call it vO, is the origin of the car. A variable in the terminology of CP-nets is some
attribute or feature that may take one of several values. Given a set V = {v1, . . . vn} of variables,
each variable vi ∈ V is associated with a set of its possible values, denoted by Dom(vi). An
assignment x of values to a set X ⊆ V of variables is a function that maps each variable vi ∈ X
to an element of its domain Dom(vi). An assignment is partial ifX ⊂ V and complete ifX = V ;
the set of all assignments to X ⊆ V is denoted by Assgt(X); an assignment is also called an
outcome. Given an outcome o ∈ Assgt({x, y, z}), we write o = axbycz to denote that o maps
x, y, z ∈ V to a ∈ Dom(x), b ∈ Dom(y), and c ∈ Dom(z), respectively; we furthermore
identify o with the set containing these assignments, e.g., o = {ax, by} ∪ {cz}. Given two sets
of variables X,Y ⊆ V with X ∩ Y = ∅ and assignments x ∈ Assgt(X),y ∈ Assgt(Y ) to X
and Y , then xy is the combination of both assignments, hence xy ∈ Assgt(X ∪ Y ); similarly
if d ∈ Dom(v) and y ∈ Assgt(Y ) such that v /∈ Y , then we write yd to denote the assignment
from Assgt(Y ∪ {v}) where v is assigned the value d and every v′ ∈ Y is assigned the same
value as in y.1

In the above sentence, we can identify two variables vO the origin of the car and vE the engine
type, where Dom(vO) contains (at least) “from Japan” and Dom(vE) contains “hybrid” and
“diesel”. Here, the preference over the variable engine type depends on the value of the variable
origin, i.e. vO is a parent variable of vE , denoted by Pa(vO) = {vE}. Note that a variable v
can have multiple parent variables, hence Pa(v) is a set. The dependency among variables is
what comprises the network part of a CP-net. Another building block are so-called conditional-
preference tables (CPTs), which formalise the preference statements for every variable. Intuitively,
a conditional preference table for some variable v associates to each complete assignment for
Pa(v), a total preorder over the possible values of v, i.e., over Dom(v). A relation - over a
set O of outcomes is a total preorder iff it is transitive, reflexive, and for any two elements
o, o′ ∈ O it holds that either o - o′ or o′ - o (both may be the case, hence a total preorder allows
indifference)2.

Formally, a CP-net is a directed graph N = (V,E) where V = {v1, . . . , vn} is a finite set
of variables (or features or attributes) and E ⊆ V × V is the conditional dependency between
variables. For v ∈ V we denote the set of parents of v by Pa(v) = {v′ ∈ V | (v′, v) ∈ E}.

1Following the notation from [25], we note that v ∈ V with d ∈ Dom(v) is clear from the context whenever yd
is used.

2Different from [25], but in line with the remainder of this thesis we write o - o′ to denote that o is preferred
over o′.
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Each variable v ∈ V of a CP-net G = (V,E) is associated (or labelled) with a conditional
preference table CPT (v) that maps each outcome u ∈ Assgt(Pa(v)) of the parents of v to
a total preorder -vu over Dom(v). Note that CPT (v) contains one order over Dom(v) for
every possible assignment of its parent variables; for Pa(v) = {p1, . . . , pk} therefore CPT (v)
contains |Dom(p1)| × . . .× |Dom(pk)| orders over Dom(v).

Example 4.7. We formalise the sentence “If my new car is from Japan, I prefer hybrid over diesel
engine, and if my new car is from Germany, I prefer diesel over hybrid” by the CP-netN = (V,E)
with variables V = {Origin,Engine} and dependency E = {(Origin,Engine)}, i.e., there is
only one edge in the graph N . We consider only small domains with two countries of origin
Dom(Origin) = {Japan,Germany} and two engine types Dom(Engine) = {hybrid , diesel}.

The CPT of the variable Engine states the above sentence in terms of total preorders for
every outcome of its parent Pa(Origin):

CPT (Engine) : JapanOrigin : hybrid - diesel

GermanyOrigin : diesel - hybrid

The CPT regarding the variable Origin with Pa(Origin) = ∅ states that a car from Japan is
preferred

CPT (Origin) : Japan - Germany

For readability, the above listing only contains -, while in fact these are three different total
preorders, namely -Engine

JapanOrigin
, -Engine

GermanyOrigin
, and -Origin

∅ from top to bottom. In this CP-net
the outcome that is preferred over all others is JapanOriginhybridEngine .

There are several ways to give the semantics of a CP-net N = (V,E) (cf. [25]), one is by
so-called flipping sequences, another is by preference graphs, but the most general one is based
on total preorders over all possible outcomes that satisfy the CP-net.

Given a total preorder - over the outcomes of variables V = {v1, . . . , vn}, i.e. - is a total
preorder over Dom(v1)× . . .×Dom(vn), then- is said to satisfy the CP-net G iff it satisfies the
conditional preference table CPT (v) of every v ∈ V ; - satisfies CPT (v) iff it satisfies every
total preorder -vu of CPT (v) with u ∈ Assgt(Pa(v)). Finally, - satisfies -vu iff for all x, x′ ∈
Dom(v) holds that whenever x -vu x

′ holds then it holds for all y ∈ Assgt(V \ ({v} ∪ Pa(v)))
that yxu - yx′u. Intuitively, - satisfies the CP-net G iff it agrees on all entries of every
conditional preference table of G. Observe that not for every CP-net a total preorder exists which
satisfies the CP-net. But if a CP-net N is acyclic and indifference in CPTs is not allowed, then
some - exists which satisfies N ; hence CP-nets are often restricted to be acyclic with their CPTs
not containing indifference. In the following, we only consider satisfiable CP-nets, i.e., CP-nets
such that there exists at least one total preorder - that satisfies the CP-net.

Given a CP-net N = (V,E) and two outcomes o,o′ ∈ Assgt(V ), one says N entails o - o′

(i.e. outcome o is preferred over o′), denoted by N |= o - o′, iff o - o′ holds in every total
preorder - that satisfies N . The question whether N |= o - o′ holds is also called a dominance
query, since it answers whether the outcome o dominates the outcome o′, i.e., whether o is always
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preferred to o′. Also note that this entailment is transitive, i.e., if N |= o - o′ and N |= o′ - o′′

both hold, then it holds that N |= o - o′′. Given a CP-net N , we can thus readily define a
preference order � that is transitive, by taking entailment on N . Note however, that the resulting
� is over outcomes of the variables of N and not over pairs of sets of diagnoses, hence we need
to decide how a CP-net should represent diagnosis candidates over an MCS M .

It is rather natural that each variable v ∈ V of a CP-net N = (V,E) represents a bridge
rule r ∈ br(M) and the domain Dom(v) represents the possible modifications expressed in a
diagnosis. Since a bridge rule may be removed, condition-free, or unmodified, a first attempt to
capture preferences over diagnosis using CP-nets is the following (cf. [55]).

Definition 4.5. A CP-net N = (V,E) is called 3-compatible with an MCS M if the following
holds: there exists a bijective mapping CPV : br(M)→ V mapping bridge rules of M to vari-
ables V , and for every v ∈ V the domain is Dom(v) = {unmodified , removed , condition-free}.

Note that a 3-compatible CP-net can not represent a diagnosis candidate D = (D1, D2) =
({r}, {r}) with r ∈ br(M), since the domain of CPV (r) can not indicate that r is both removed
and condition-free. If D is applied to M , however, ϕ (r) is added to the respective context of
M [D1, D2], since D makes r condition-free. Now consider the diagnosis D′ = (D′1, D

′
2) =

(∅, {r}) and observe that ϕ (r) is added to the respective context of M [D′1, D
′
2]. Therefore both

diagnoses admit the same equilibria, i.e., EQ(M [D1, D2]) = EQ(M [D′1, D
′
2]). One might argue

that this is sufficient and both D and D′ should be represented by an outcome of N that maps the
variable CPV (r) to condition-free.

On the other hand, distinguishing between both diagnoses might be desired to capture all
possible diagnoses of an MCS, so the CP-net needs to represent the possibility that a bridge
rule is both removed and condition-free. One could simply extend the notion of 3-compatible
to make Dom(CPV (r))) contain four elements. There are arguments against this, which stem
from the analysis of the computational complexity of CP-nets. The computational complexity
of binary-valued CP-nets, i.e., CP-nets where for all v ∈ V holds that |Dom(v)| = 2, has been
studied more extensively and it is known that dominance queries in certain classes of multi-valued
CP-nets are not in NP (cf. [25]). Therefore, we suggest to represent a diagnosis candidate
(D1, D2) such that each bridge rule r ∈ br(M) is represented by two variables, one indicating
whether r ∈ D1 and another one indicating whether r ∈ D2.

Definition 4.6. A CP-net N = (V,E) is fully compatible with an MCS M if there exists
a partitioning V1, V2 of V such that there exists a bijective function CP 1

V : br(M) → V1

and a bijective function CP 2
V : br(M) → V2; furthermore, the domains are such that for

all v ∈ V1 it holds that Dom(v1) = {inD1 ,not_inD1} and for all v ∈ V2 it holds that
Dom(v) = {inD2 ,not_inD2}.

Having those two notions of compatibility, it is clear how a diagnosis candidate relates
to a global outcome of a compatible CP-net. For an MCS M and a fully compatible CP-net
N = (V,E) it is as follows: given a diagnosis candidate (D1, D2) ∈ 2br(M) × 2br(M) the
corresponding outcome is o ∈ Assgt(V ) such that o = {inD1 r | r ∈ D1} ∪ {not_inD1 r | r /∈
D1} ∪ {inD2 r | r ∈ D2} ∪ {not_inD2 r | r /∈ D2}. For a 3-compatible CP-net N = (V,E)
and given diagnosis candidate (D1, D2) the corresponding outcome is o = {unmodifiedr | r /∈
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D1∪D2}∪{removedr | r ∈ D1\D2}∪{condition-freer | r ∈ D2}. The relation is one-to-one
in the case of a fully compatible CP-net, while in the case of a 3-compatible CP-net, there are
several diagnoses mapping to the same global outcome of the CP-net since a bridge rule that is
condition-free and removed is considered as condition-free in the CP-net. In the following we
then write N |= D - D′ to denote that there are outcomes o and o′ of N such that o corresponds
to D, o′ corresponds to D′, and N |= o - o′.

Example 4.8. Assume an MCS M where several corporations make contracts using bridge rules.
Contract details, such as when a contract will start, how long it is valid, who owes whom money,
etc. are encoded with bridge rules. For instance, C1 is leasing a car from C2 with the following
properties encoded as bridge rules:

r1 : (1 : pay(car , 500))← (2 : price(car , 500))

r2 : (1 : due(car ,monthly))← (2 : due(car ,monthly))

If r2 is removed to restore consistency, r1 becomes meaningless and possibly confuses further
reasoning. Removing both rules is then preferred to removing only r2, i.e., if r2 is removed, r1 is
preferred to be removed, too.

We can represent such a preference with a 3-compatible CP-net N = (V,E) with V =
{v1, v2} and E = {(v2, v1)}, i.e., Pa(v1) = {v2}, Pa(v2) = ∅, and CPV (ri) = vi for
i ∈ {1, 2}. Assuming that adding rules unconditionally is always considered to be the worst
option, the conditional preference table of v1 is:

CPT (v1) : unmodifiedv2 : unmodifiedv1 - removedv1 - condition-freev1
removedv2 : removedv1 - unmodifiedv1 - condition-freev1
condition-freev2 : unmodifiedv1 - removedv1 - condition-freev1

The CPT for v2 is:

CPT (v2) : unmodifiedv2 - removedv2 - condition-freev2

Note that in the first, second, third, and fourth line we write- to denote-v1unchangedv2
,-v1removedv2

,

-v1condition-freev2
, and -v1∅ , respectively.

Observe that if the converse preference for r2 depending on the status of r1 is desired in
addition, the resulting CP-net becomes cyclic, which requires special care to guarantee that the
CP-net is satisfiable by some order (cf. [25] for some details on this issue).

Definition 4.7. Given an MCS M and a CP-net N that is either 3-compatible to M or fully
compatible toM , we say a diagnosisD ∈ D±(M) isN -preferred iff there exists noD′ ∈ D±(M)
such that N |= D′ - D and it does not hold that N |= D - D′. Let DN (M) denote the set of
all N -preferred diagnoses of M then the set of optimal diagnoses preferred according to N are
the diagnoses of DN (M) that are subset-minimal; we denote these by D±opt(M,N). Formally,

D±opt(M,N) = {D ∈ DN (M) | ∀D′ ∈ DN (M) : D′ ⊆ D ⇒ D = D′}.

88



Observe that given a CP-net N that is compatible to the MCS M , we can readily define a
preference order �N that is equivalent to N as follows: for all D,D′ ⊆ 2br(M) × 2br(M) it holds
that N |= D - D′ iff D � D′. Since the entailment of the CP-net is transitive, �N also is
transitive, hence it is a preference relation in the sense of Definition 4.3. A consequence of that is
the following:

Proposition 4.2. Given a CP-net N compatible to an MCS M , let D �N D′ hold iff N |= D -
D′ holds. Then DN (M) = D±�N (M) and D±

m,�N (M) = D±opt(M,N).

Proof. We first show that DN (M) = D±�N (M). We write down DN (M) in set-notation and
obtain:

DN (M) = {D ∈ D±(M) | @D′ ∈ D±(M) : N |= D′ - D ∧ ¬(N |= D - D′)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬N |= D′ - D ∨N |= D - D′}

Regarding D±�N (M) we have that:

D±�N (M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ -N D ∧D 6-N D′ ∧D′ 6= D)}

= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(N |=D′-D ∧ ¬N |=D-D′ ∧D′ 6=D)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬N |= D′ - D ∨N |= D - D′ ∨D′ = D}

It remains to show that given any D,D′ ∈ D±(M), the following two formulas are equivalent:

¬N |= D′ - D ∨N |= D - D′ (4.3)

¬N |= D′ - D ∨N |= D - D′ ∨D′ = D (4.4)

Clearly, (4.3) implies (4.4), it thus remains to show that (4.4) implies (4.3). The latter clearly
holds if ¬N |= D′ - D holds or N |= D - D′ holds. Therefore, it only remains to show
that in the case where both do not hold, (4.3) is implied by (4.4): from N |= D′ - D and
¬N |= D - D′ follows D′ = D, hence by N |= D′ - D it then follows that N |= D - D′,
i.e., (4.3) is satisfied in this case. Consequently, (4.4) implies (4.3) and thus, both conditions are
equivalent. Therefore, it holds that DN (M) = D±�N (M).

It then follows trivially from the definitions of D±opt(M,N) and D±
m,�N (M) that they are the

same, because D±opt(M,N) is the set of ⊆-minimal diagnoses of D±�N (M) while D±
m,�N (M) is

the set of ⊆-minimal diagnoses of DN (M).

Another way of defining the semantics of a CP-net N = (V,E) is via so-called flipping
sequences. The idea is that given an outcome o of N , we can find a more preferred outcome o′ by
finding one entry -vu in the CPT (v) of some variable v that matches with o but whose outcome
may be improved, i.e., it holds that d′ -vu d, u ⊂ o, and dv ∈ o. This means that flipping the
value assigned to v from d to d′ yields a complete outcome o′ which is more preferred than
o. Formally, let o and o′ be two complete outcomes of N such that there exists v ∈ V with
d, d′ ∈ Dom(v), d 6= d′, dv ∈ o, d′v ∈ o′, o \ {dv} = o′ \ {d′v}, d′ -vu d, u ⊂ o, and u ⊂ o′,
then the flip from o to o′ is an improving flip. A sequence o1, . . . ,ok is a flipping sequence of
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improving flips iff for all 1 ≤ i < k holds that the flip from oi to oi+1 is improving. Intuitively, a
complete outcome is optimal, if no improving flips are possible. Indeed, flipping sequences agree
with entailment for acyclic CP-nets without indifference (cf. [25]).

In [55] these flipping sequences are used to define the optimal diagnoses of an MCS M
given a 3-compatible CP-net N . Let iflips(D,D′) denote the set of sequences of improving
flips of diagnosis candidates D and D′, i.e., iflips(D,D′) is nonempty if there exists a flipping
sequence from the outcome corresponding to D to the outcome corresponding to D′, which holds
iff N |= D′ - D. In terms of flips, the most preferred diagnoses D±opt(M,N) of an MCS then
are D±opt(M,N) = min⊆{D ∈ D±(M) | ∀D′ ∈ D±(M) : iflips(D,D′) = ∅}.

The computational complexity of deciding whether a global outcome is preferred over another
by a given CP-net is very much depending on properties of the given CP-net (cf. [25, 75]). It can
be decided in quadratic time if the CP-net is binary-valued and tree-structured; for binary-valued
directed-path singly connected CP-nets, the same decision problem, however, is NP-complete.
If a CP-net is multi-valued with partially specified preferences, then the problem is not in NP.3

This is important for realising CP-net based preferences on diagnoses of an MCS, because either
the realisation must be open to being adapted to the specific computational needs, or only a
restricted variant of CP-nets may be used. Since the former is more general and more appealing,
we realise CP-nets in a general manner in the following sections.

One further way to give the semantics of CP-nets is via the corresponding outcome graph.
A CP-net N induces a preference graph GN over complete outcomes, where each complete
outcome is a vertex in the preference graph. An edge from outcome oi to oj indicates that a
preference for oj over oi can be determined directly from one conditional preference table of the
CP-net (cf. [25]). The transitive closure G+

N of a preference graph induces a preference order on
global outcomes; conceptually this transitive closure is similar to flipping sequences, i.e., there is
an edge from outcome o to o′ iff the corresponding diagnosis candidates D and D′ are such that
iflips(D,D′) is non-empty. Furthermore, for a CP-net compatible with an MCS, every global
outcome represents a potential diagnosis.

Proposition 4.3. Let M be an inconsistent MCS, and let N be a CP-net associated with M .
Then G+

N induces a preference order ≺ over diagnoses of M .

Proof. G+
N is the transitive closure of GN , hence the relation induced by its edge-relation is also

transitive, i.e., it is a preference order.

Unit-based Groups of Bridge Rules In this section we introduce a simple and practical
approach to identify preferred diagnoses based on units of bridge rules which together convey
information about an entity.4 Intuitively, a unit of bridge rules is a non-empty set of bridge
rules which together ensure that the information flow about some entity is correct. For example,
the bridge rules r1 and r2 of Example 4.1 convey necessary information about the patients
condition, i.e., her illness and her allergy. Information about only one of these two leads to wrong

3The proof of Theorem 20 in [25] shows that exponentially long flipping sequences may occur in such CP-nets.
We conjecture that the same construction and proof is applicable to those CP-nets for preferences on diagnoses as
written in [55], since indifference can be used to the same effect as partially specified preferences.

4In [126] a unit of bridge rules is called a “category”. To avoid confusion, we call it unit of bridge rules here.
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conclusions and might be dangerous, e.g., if a diagnosis makes r2 unconditional then the patient
is given animal insulin, risking an allergic reaction. It is better to not conclude anything about the
patient than making wrong and dangerous conclusions. Such preference is justified whenever it is
the case that a group of bridge rules only makes sense if none of them is modified.

In logic programming often a single rule by itself is not useful, but only several rules together
form a specific behaviour and cover an intended meaning. As syntax and semantics of bridge
rules is inspired by logic programming rules, we predict that the same also holds for bridge rules.
Names for units of bridge rules in general are arbitrary, including the possibility of a syntactic
derivation from the MCS, e.g., by a combination of involved beliefs and knowledge-base formulas.

Definition 4.8. Let U be the set of unit names,M an MCS, and for each r ∈ br(M) let unit(r) ⊆
U be an association of bridge rules to (one or more) unit names. By UM =

⋃
r∈br(M) unit(r)

we denote the set of units of bridge rules of M .

Note that unit names only serve the purpose of naming the units of bridge rules explicitly;
from the formal perspective, each unit name could be substituted by the set of bridge rules that
are associated with it. In the following we also identify a unit name u ∈ UM with the set of
bridge rules {r ∈ br(M) | unit(r) = u} that belong to u.

Example 4.9. In Example 4.1 rules r1 and r2 carry the information of how to treat the patient
correctly, while rules r3, r4, and r5 carry information for accounting and billing. We can identify
two units of bridge rules, e.g., “treatment” for bridge rules r1, r2 and “billing” for r3, r4, r5.

We formalise this using the set of unit names UM = {treatment , billing} and associating
bridge rules to units as follows:

unit(r1) = unit(r2) = {treatment}
unit(r3) = unit(r4) = unit(r5) = {billing}

This grouping naturally follows from what the bridge rules are intended to do.

The identification of bridge rules that work together is usually easy at design time of an
MCS, since the person(s) specifying bridge rules know what their intended meaning is, i.e., they
know which bridge rules form a unit and what it should do. In traditional programming such
information is often explicitly expressed in programmers’ comments in the source code.

If a bridge rule is modified by a diagnosis, it is likely that the behaviour of all units the bridge
rule is part of is modified and possibly corrupted. Furthermore, if the result of unit of bridge rules
A depends on another unit of bridge rules B, then A gives wrong or unexpected results if B is
modified, although A was not modified directly. Therefore units may depend on each other and
modifications of rules of one unit also changes the result of units that depend upon the former
unit. We therefore also consider dependencies among units.

Definition 4.9. Let UM be the units of an MCS M . Each u ∈ UM is associated with a set of
units Pu ⊆ UM it depends on. We write dep(u, u′) iff u′ ∈ Pu.

Example 4.10. In Example 4.9, if r2 is modified, the patient not only is given a different treatment,
but also the billing gives other results than expected, since there is a patient that is not billed at
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all. If this behaviour is correct or not may depend on whether this case was expected to occur for
the knowledge base of C3. Since this case potentially should not happen, we consider the unit

“billing” to depend on the unit “treatment”, formally dep(billing , treatment).

Note that the dependency of units as well as their names and associations are semantic
information, so for an MCS several categorisations into units may be adequate. If we assume that
each bridge rule of an MCS was added by the creator for some reason, then the creator intuitively
knows the unit this bridge rule belongs to, i.e., the reason(s) for a bridge rule to exist corresponds
to the unit it belongs to. Therefore we assume that units are supplied by the creator of the MCS
since they are (at least implicitly) known at the time of creation.

For dependencies among units we also assume them to be specified explicitly by the creator
of the MCS. Although, under certain restrictions, it is possible to derive them automatically. For
example, if all contexts of an MCS consist of logic programs and those programs are openly
known, then one could take the dependency graph G of the whole MCS to derive dependencies
among categories. Here G could be the dependency graph over all bridge rules combined with
the rules of all contexts (suitably renamed, if necessary). Then a unit u1 depends on u2, if there
exist bridge rules r1, r2 with u1 ∈ unit(r1) and u2 ∈ unit(r2) such that there is a path in G
from the node representing the head of r1 to the node representing the head of r2. In the case that
the unit of a constraint rule depends on two other units, it is, however, not immediately clear if
those two units then mutually depend on each other. Therefore an automatic derivation of units
has to address further details which are beyond the scope of this thesis.

Different grouping of bridge rules into units and different dependencies may lead to other
diagnoses being preferred. Therefore we assume in the following that a grouping of bridge rules
into units deemed correct for the given MCS is applied. Whether this can be derived automatically
(at least to some extent) is an issue for future work.

Using the dependency information, we can now state which units are influenced by a diagnosis
and possibly lead to wrong information.

Definition 4.10. Let M be an MCS with unit names UM and dependencies dep. For a diagnosis
D = (D1, D2) of M , the set of possibly corrupted units wrt. D is the smallest set UD ⊆ UM
such that for all r ∈ D1 ∪D2 holds unit(r) ⊆ UD and whenever u1 ∈ UD and dep(u2, u1) then
u2 ∈ UD.

A diagnosis which modifies a smaller set of units is always desirable, as it ensures that more
parts of the diagnosed system still yield reliable results. This induces a preference order such that
preferred diagnoses modify only a minimal set of units.

Definition 4.11. Let D,D′ ∈ D± (M) be diagnoses of an MCS M . D is at least as preferred as
D′ iff UD ⊆ UD′ . We denote this preference order by D �U D′.

Assuming that all categories are of equal importance, one can strengthen the above notion
by requiring that a preferred diagnosis modifies only the least amount of categories, i.e., prefer
diagnoses which modify cardinality minimal sets of units. Cardinality-based preference can
drastically reduce the number of diagnoses to be considered. So it may be easier for a human
operator, responsible for restoring consistency, to select the best diagnosis.
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Definition 4.12. Let D,D′ ∈ D± (M) be diagnoses of an MCS M . D is preferred over D′ iff
|UD| ≤ |UD′ |. This is denoted by D �|U | D′.

Notice that �|U | minimizes the number of modified units, which not necessarily is related to
the number of modified bridge rules. Further refinements are possible, e.g., such that ⊆-minimal
diagnoses among the �|U |-minimal ones are preferred.

Example 4.11. In Example 4.10 we have UM = {treatment , billing}, unit(r1) = unit(r2) =
{treatment}, unit(r3) = unit(r4) = unit(r5) = {billing}, and dependency is given by
dep(billing , treatment). We obtain for the diagnoses D = ({r1} , ∅) and D′ = ({r4} , ∅) that
UD = {treatment , billing} and UD′ = {billing}, hence D′ �U D holds as well as D′ �|U | D.

The most-preferred diagnoses given �U or �|U | are

D±m,�U (M) = D±m,�|U|(M) = {({r4} , ∅) , ({r5} , ∅)} .

4.3 MCS-Realisation

We now present ways to realise filters and preference orders in general, including CP-nets and
preferences on units of bridge rules. All realisations use a rewriting technique transforming
an MCS M into an extended MCS M ′, where certain new contexts can do meta-reasoning on
diagnoses of the original MCS M . The underlying idea here is that a diagnosis D applied to
M ′ has the same effects as if D would be applied to M , but in M ′ there are additional contexts
which observe the behaviour of the bridge rules taken from M . Hence these observation contexts
are enabled to reason on the observed diagnosis D. One significant advantage of this approach
is that the observation context may use any abstract logic to reason on the observed diagnosis,
hence any formalism that can be captured by an abstract logic may be used for implementing the
filter or preference order. Thus our approach can capture a wide range of formalism to specify
preferences and it allows the creator of an MCS to use whichever formalism she or he sees to fit
best.

We introduce two different transformations, where the idea of the first is to only add bridge
rules and contexts to observe the information exchange between contexts of M . The disadvantage
of this transformation is that there are MCS where the observation is not able to identify each
diagnosis correctly. The second transformation is more general and allows correct identification
of diagnoses, but it requires the rewriting of all bridge rules. This rewriting is not intrusive, since
it only requires that each rule is duplicated and one additional positive literal added in it.

Both transformation approaches realise filters in general by using diagnoses with protected
bridge rules. Since the realisation of preferences is more involved, it is only shown using the
second transformation. Preferences also require some additional notions of diagnoses, which
allow to prioritise some bridge rules. This notion of prioritised bridge rules in principle establishes
a lexicographic order on diagnosis candidates. We furthermore present two possible ways to
realise preferences in general using the second transformation. The first one incurs the addition
of exponentially many bridge rules, while the second one requires only linearly many additional
bridge rules, but comes at the cost of duplicating the original MCS, i.e., each context of the
original MCS occurs twice in the resulting MCS.
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As we show in Section 4.4, the computational complexity of identifying diagnoses with
protected bridge rules is the same as the complexity of identifying regular diagnoses, hence
selecting minimal filtered diagnoses is computationally not more expensive than selecting regular
minimal diagnoses. Section 4.4 furthermore shows that the complexity of selecting minimal
�-preferred diagnoses (using the second transformation duplicating the original MCS) is higher
than selecting minimal diagnoses, but the complexity of doing so is still worst-case optimal.
Hence we show that the complexity of selecting minimal �-preferred diagnoses is costly, but our
approach to do so is optimal from the perspective of computational complexity.

Furthermore, for preference orders and filters that are not inherently centralised, the realisation
allows that preferred solutions are found in a decentralised, localised manner, maintaining
privacy and information hiding. Thus we preserve key properties of MCS also for inconsistency
assessment and selection of preferred diagnoses.

Meta-Reasoning Transformation

We now present the first transformation to enable meta-reasoning about diagnoses in an MCS. This
approach is called the meta-reasoning transformation. The objective is to enable the observation
of bridge rule applicability, i.e., to have some observation contexts which know whether certain
bridge rules are applicable in a belief state. The idea behind this is a follows: given a minimal
diagnosis (D1, D2) of an inconsistent MCS M , r ∈ D1 implies that the body of r is satisfied in
M [br(M) \D1 ∪ cf (D2)] while ϕ (r) is not added to the context Ck with k = Ch (r), since r is
removed and (D1, D2) is a minimal diagnosis. Similarly for r ∈ D2 it holds that ϕ (r) is added
to context Ck with k = Ch (r) while the body of r is not satisfied. Therefore, observing the body
and head of a bridge rule is sufficient to detect whether it has been modified by a diagnosis, given
that the diagnosis is minimal.

Observing the body of a bridge rule r is possible by use of a protected bridge rule whose
body is the same as of r. The observation of the addition of the head formula, however, is not
always possible, since the resulting belief set not necessarily exposes information about the
(input) knowledge base. The observation of the presence of the head of ϕ (r) requires that there is
a belief of Ck with k = Ch (r) which is present in every acceptable belief set of Ci if and only if
ϕ (r) is added to the knowledge base of Ci. Note that such a behaviour occurs naturally in many
logics, e.g. every context using the logic Lasp

Σ for Answer-set programs shows this behaviour for
all atoms which occur only in the head of a single bridge rule.

To observe all logics, the approach here is a two-step transformation. First, a given MCS
M is enlarged with so-called relay contexts to allow the observation of bridge rules. Second,
the enlarged/relayed MCS is enhanced with observation contexts which are able to detect the
applicability of bridge rules. Furthermore, these contexts can also detect whether and how a
bridge rule occurs in a minimal diagnosis.

Relayed Multi-Context Systems

We now present how an MCS can be extended by relay contexts that allow the observation
of heads of applicable bridge rules. We first introduce the notion of a relayed MCS and then
show that its belief states and applicable bridge rules correspond one-to-one to belief states and
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applicable bridge rules of the original MCS. Furthermore, we show that the same also holds
if both systems are modified according to a diagnosis candidate of the original system and the
corresponding diagnosis candidate of the relayed system.

All relay contexts are based on a simple abstract logic which behaves similar to an iden-
tity function. Formally, given an MCS M , the relay logic L

r wrt. M is the logic L r
=

(2H , 2H ,ACC
r
) where H = {headr | r ∈ br(M)} contains a new symbol headr for every

bridge rule r ∈ br(M) and ACC
r
(kb) = {kb} for any kb ⊆ H . Hence a context employing a

relay logic exhibits its input knowledge-base formulas as the only acceptable belief set and all
bridge rules are identifiable by a separate symbol.

Definition 4.13. Given an MCS M = (C1, . . . , Cn), the corresponding relayed MCS is the MCS
M ′ = (C ′1, . . . , C

′
n, C

′
n+1, . . . , C

′
2n) where it holds for every 1 ≤ i ≤ n that C ′n+i is the relay

context of Ci, and C ′i is the relayed context of Ci.
Formally, for Ci = (Li, kbi, br i), the relay context of Ci is Cn+i = (L

r
, ∅, brn+i) and the

relayed context is C ′i = (Li, kbi, br ′i) where L
r

is the relay logic for M . Furthermore, for every
r ∈ br i of form (2.1):

• brn+i(M
′) contains the relayed bridge rule:

(n+ i : headr)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (4.5)

• br i(M
′) contains:

(i : s)← (n+ i : headr). (4.6)

For convenience, we writeM r to denote the corresponding relayed MCS ofM . Furthermore,
for a bridge rule r ∈ br(M), we write r r to denote the corresponding relayed bridge rule of form
(4.5), which belongs to the relay context, i.e., for r ∈ br i(M) it holds that r r ∈ brn+i(M

r
).

We extend this notion also to sets of bridge rules R ⊆ br(M) where R r
= {r r | r ∈ R}. Since

r is a bijective mapping, we also use it to map (some of) the bridge rules of M r to bridge rules
of M . Hence, for R ⊆ br(M) it holds that (R

r
)

r
= R.

Example 4.12. Consider the MCS M = (C1, C2) of Example 4.3 where C1 = (Lasp
Σ , kb1, {r1}),

C2 = (Lasp
Σ , kb2, {r2, r3}), and the bridge rules br(M) of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name_K )← (1 : contribute).

The relay version of M is M
r

= (C ′1, C
′
2, C

′
3, C

′
4) as follows:

C ′1 = (Lasp
Σ , kb1, {r

r
1 }) C ′2 = (Lasp

Σ , kb2, {r
r

2 , r
r

3 }

C ′3 = (L
r
, ∅, {r′1}) C ′4 = (L

r
, ∅, {r′2, r′3})
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Figure 4.3: The relayed version M r
= (C ′1, C

′
2, C

′
3, C

′
4) of the MCS M = (C1, C2) of Exam-

ple 4.3, which is depicted in Figure 4.2.

The bridge rules of M
r

are as follows:

r
r

1 : (3 : headr1)← not (2 : good).

r′1 : (1 : improve)← (3 : headr1).

r
r

2 : (4 : headr2)← (1 : contribute).

r′2 : (2 : coauthored)← (4 : headr2).

r
r

3 : (4 : headr3)← (1 : contribute).

r′3 : (2 : name_K )← (4 : headr3).

Figure 4.3 shows the bridge rules and contexts of M
r

.

In the following, the MCS resulting from the application of a diagnosis candidate to an
MCS occurs many times. Recall that given an MCS M and a diagnosis candidate (D1, D2) ⊆
2br(M) × 2br(M), M [D1, D2] denotes the MCS resulting from the application of (D1, D2) to M ,
i.e., M [D1, D2] = M [br(M) \D1 ∪ cf (D2)].

For applying diagnoses, we extend the notion of relayed bridge rules to unconditional bridge
rules as follows: given a bridge rule r ∈ br i(M), then cf (r)

r
= cf (r

r
), i.e., cf (r)

r
=

(n + i : headr) ← . where i = Ch (r), and n is the number of contexts of M . Therefore, for
D1, D2 ⊆ br(M) we obtain that M r

[D
r

1 , D
r

2 ] = M
r
[br

M
r \D r

1 ∪ {cf (r
r
) | r ∈ D2}].

Intuitively, the bridge rules of a relay context behave just like the bridge rules of the original
context while the bridge rules of the relayed context simply import the information from the relay
context. Since every relay has an empty knowledge-base and its acceptance function behaves
like the identity function (modulo wrapping the knowledge base into a singleton set), the relayed
MCS behaves exactly like the original MCS.

It follows that the accepted belief sets of Ci in M are related one-to-one to the accepted belief
sets of C ′i and C ′n+i in M r . This even holds under application of a diagnosis (D1, D2) to M and
application of its relayed variant (D

r
1 , D

r
2 ) to M r .

The formal proof of this intuition relies on a one-to-one mapping of accepted belief states
S = (S1, . . . , Sn) of M [D1, D2] to accepted belief states S′ = (S1, . . . , Sn, Sn+1, . . . , S2n) of
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M
r such that for every 1 ≤ i ≤ n it holds that Sn+i = {headr | r ∈ app(br i(M [D1, D2]), S)}.

In the following we write S r to denote the belief state for M r resulting from the belief state
S = (S1, . . . Sn) of M [D1, D2] as above, i.e.,

S
r

= (S1, . . . , Sn, {headr | r ∈ app(br1(M [D1, D2]), S)}, . . . ,
{headr | r ∈ app(brn(M [D1, D2]), S)}).

We next show that applying a modification to M and the corresponding modification to M r

results in the same bridge rules being applicable in both MCS.

Lemma 4.1. Let M(C1, . . . , Cn) be an MCS, R1, R2 ⊆ br(M) be sets of bridge rules of M ,
and S = (S1, . . . , Sn) be a belief state of M . Then, for every 1 ≤ i ≤ n holds that:

i. app(br i(M [R1, R2]), S)
r

= app(brn+i(M
r
[R

r
1 , R

r
2 ]), S

r
), and

ii. {ϕ (r) | r ∈ app(br i(M [R1, R2]), S)} = {ϕ (r′) | r′ ∈ app(br i(M
r
[R

r
1 , R

r
2 ]), S

r
)}.

Proof. i. “⊆”: Let r ∈ app(br i(M [br(M) \ R1 ∪ cf (R2)]), S). We have to show that
r

r ∈ app(brn+i(M
r
[br

M
r \R r

1 ∪ cf (R
r
2 )]), S

r
). Since it holds that br i(M [br(M) \

R1 ∪ cf (R2)]) ⊆ br(M) \R1 ∪ cf (R2), we know that r ∈ br(M) \R1 or r ∈ cf (R2).

• Case r ∈ br(M)\R1: then, r ∈ app(br i(M [br(M)\R1∪cf (R2)]), S), i.e., it holds
that S r. Consider r r and observe that (c : p) ∈ body+(r

r
), respectively (c :

p) ∈ body−(r
r
), implies that (c : p) ∈ body+(r), respectively (c : p) ∈ body−(r),

holds. Since S r, it follows that p ∈ Sc for all (c : p) ∈ body+(r) and p′ /∈ Sc′
for all (c′ : p′) ∈ body−(r). By definition of S r , it follows that p ∈ Sc for all
(c : p) ∈ body+(r

r
) and p′ /∈ Sc′ for all (c′ : p′) ∈ body−(r

r
). Consequently, it

holds that S′ r
r , i.e., r r ∈ app(brn+i(M

r
[R

r
1 , R

r
2 ]), S

r
).

• Case r ∈ cf (R2): then, there exists r′ ∈ br(M) such that r = cf (r′) and r′ ∈ R2,
therefore it holds that r′

r
∈ R r

2 . By definition of cf , it holds that cf (r′
r
) ∈ cf (R

r
2 ),

where cf (r′
r
) = (n + i : ϕ (r′)) ←. Since body(cf (r′

r
)) = ∅, it holds that

cf (r′
r
) ∈ app(brn+i(M

r
[R

r
1 , R

r
2 ]), S

r
). Because cf (r′

r
) = (cf (r′))

r and
cf (r′) = r, it holds that r r ∈ app(brn+i(M

r
[R

r
1 , R

r
2 ]), S

r
).

In summary, if it holds that r ∈ app(br i(M [br(M) \R1 ∪ cf (R2)]), S), then it holds that
r

r ∈ app(brn+i(M
r
[br

M
r \R r

1 ∪ cf (R
r
2 )]), S

r
).

“⊇”: Let r′ ∈ app(brn+i(M
r
[br

M
r \R r

1 ∪ cf (R
r
2 )]), S

r
), we have to show that there

exists r ∈ app(br i(M [br(M)\R1∪cf (R2)]), S) such that r r
= r′. Again, we distinguish

whether r′ ∈ br
M

r \R r
1 or r′ ∈ cf (R

r
2 ).

• Case r′ ∈ br
M

r \ R r
1 : then, r′ ∈ app(brn+i(M

r
), S

r
), i.e., S r

r′. Observe

that Cb (r′) ⊆ {1, . . . , n}. Since S r
r′, (c : p) ∈ body+(r′) implies p ∈ Sc and
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(c : p) ∈ body−(r′) implies p /∈ Sc. Consider r ∈ br(M) such that r r
= r′, then

S r since S and S r agree on each Si for 1 ≤ i ≤ n and (c : p) ∈ body+(r),
respectively (c : p) ∈ body−(r), implies (c : p) ∈ body+(r′), respectively (c :

p) ∈ body−(r′). Consequently, r ∈ app(br i(M), S), r r ∈ app(br i(M), S)
r , and

r′ ∈ app(br i(M), S)
r .

• Case r′ ∈ cf (R
r
2 ): then, there exists r′′ ∈ R r

2 such that cf (r′′) = r′, and there exists
r ∈ br(M) such that (r)

r
= r′′. By definition of R r

2 , it also holds that r ∈ R2

and body(cf (r)) = ∅, therefore it holds that cf (r) ∈ app(br i(M [br(M) \ R1 ∪
cf (R2)]), S).

It remains to show that (cf (r))
r

= r′. From the facts that r′ = cf (r′′) and r′′ = (r)
r

it follows that r′ = cf ((r)
r
), which is equivalent to r′ = (cf (r))

r .

This shows that (app(brn+i(M
r
[br

M
r \R r

1 ∪ cf (R
r
2 )]), S

r
)) ⊆

(app(br i(M [br(M) \R1 ∪ cf (R2)]), S))
r and finally proves item i.

ii. “⊆”: Let s ∈ {ϕ (r) | r ∈ app(br i(M [R1, R2]), S)}, i.e., there exists a bridge rule t ∈
br i(M [R1, R2]) such that t ∈ app(br i(M [R1, R2]), S) and ϕ (t) = s. By construction of
M

r , it then follows that there exists a bridge rule t′ ∈ br i(M
r
[R

r
1 , R

r
2 ]) of form (4.6),

i.e., t′ = (i : s) ← (Cn+i : head t). Since it holds by definition of S r
= (S1, . . . , S2n)

that Sn+i = {headr | r ∈ app(br i(M [R1, R2]), S)}, it follows that head t ∈ Sn+i,
because t ∈ app(br i(M [R1, R2]), S). Therefore, t′ ∈ app(br i(M

r
[R

r
1 , R

r
2 ]), S

r
) and

consequently s ∈ {ϕ (r′) | r′ ∈ app(br i(M
r
[R

r
1 , R

r
2 ]), S

r
)}.

“⊇”: Let s ∈ {ϕ (r′) | r′ ∈ app(br i(M
r
[R

r
1 , R

r
2 ]), S

r
)}. Hence there exists t′ ∈

br i(M
r
[R

r
1 , R

r
2 ]) such that ϕ (t′) = s and S r

t′. By construction of M r , all bridge
rules in br i(M

r
[R

r
1 , R

r
2 ]) are of form (4.6). Hence without loss of generality, let t′ =

(i : s) ← (n + i : head t) such that t ∈ br i(M) and ϕ (t) = s. Since S r
t′, i.e.,

head t ∈ Sn+i, it follows by definition of Sn+i that t ∈ app(br i(M [R1, R2]), S). Since
ϕ (t) = s, it follows that s ∈ {ϕ (r) | r ∈ app(br i(M [R1, R2]), S)}.

We now show that S is an equilibrium of M iff S r is an equilibrium of M r , and that this re-
lation also holds under bridge rule modifications, i.e., it holds for M [D1, D2] and M r

[D
r

1 , D
r

2 ]
given that (D1, D2) ∈ 2br(M) × 2br(M).

Proposition 4.4. Let M be an MCS, D1, D2 ⊆ br(M), and S be a belief state of M . Then S is
an equilibrium of M [D1, D2] iff S

r
is an equilibrium of M

r
[D

r
1 , D

r
2 ].

Proof. Let M = (C1, . . . , Cn) and M r
= (C ′1, . . . , C

′
n, C

′
n+1, . . . , C

′
2n) where it holds for

1 ≤ i ≤ n that C ′i = (Σi, kbi, br ′i) and Ci = (Σi, kbi, br i). Furthermore, let S = (S1, . . . , Sn)

and let S r
= (S′1, . . . , S

′
n, S

′
n+1, . . . , S

′
2n). Note that Si = S′i for 1 ≤ i ≤ n.

“⇒”: Let S = (S1, . . . , Sn) be an equilibrium of M [D1, D2], i.e., for all 1 ≤ i ≤
n it holds that Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}). It follows
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from Lemma 4.1 item i. that {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)} = {ϕ (r′) | r′ ∈
app(br i(M

r
[D

r
1 , D

r
2 ]), S

r
)}, hence it holds that context C ′i of M r accepts S′i = Si, i.e.,

S′i ∈ ACCi(kbi ∪ {ϕ (r′) | r′ ∈ app(br i(M
r
[D

r
1 , D

r
2 ]), S

r
)}.

It remains to show that for n + 1 ≤ j ≤ 2n it holds that S′j ∈ ACCj(kbj ∪ {ϕ (r) |
r ∈ app(br j(M

r
[R

r
1 , R

r
2 ]), S

r
)}). By definition of M r , it holds that Cj = (Σ

r
, ∅, br j),

i.e., Sj ∈ ACCj(kbj ∪ {ϕ (r) | r ∈ app(br j(M
r
[R

r
1 , R

r
2 ]), S

r
)}) iff Sj = {ϕ (r) | r ∈

app(br j(M
r
[R

r
1 , R

r
2 ]), S

r
)}. Therefore, we have to show that

{ϕ (r) | r ∈ app(br j(M
r
[R

r
1 , R

r
2 ]), S

r
)} = {headr | r ∈ app(br j−n(M [R1, R2]), S)}.

Since every r ∈ br j(M
r
[R

r
1 , R

r
2 ]) is of form (4.6), i.e., it holds that ϕ (r) = head t for

some t ∈ br j−n(M), it is sufficient to show that

app(br j(M
r
[R

r
1 , R

r
2 ]), S

r
) = app(br j−n(M [R1, R2]), S).

But this is already shown in Lemma 4.1 i. thus it holds that S′j ∈ ACCj(kbj ∪ {ϕ (r) | r ∈
app(br j(M

r
[R

r
1 , R

r
2 ]), S

r
)}). Therefore, it holds that S r is an equilibrium of M r

[R
r
1 , R

r
2 ].

“⇐”: Let S r be an equilibrium of M r
[R

r
1 , R

r
2 ]. Then it holds for any 1 ≤ i ≤ n that

S′i ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
r
[R

r
1 , R

r
2 ]), S

r
). By Lemma 4.1 ii. it holds that

{ϕ (r) | r ∈ app(br i(M
r
[R

r
1 , R

r
2 ]), S

r
)} = {ϕ (r) | r ∈ app(br i(M [R1, R2]), S)} and

since S′i = Si, it follows that Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [R1, R2]), S)}), i.e.,
for 1 ≤ i ≤ n it holds that contextCi ofM [R1, R2] accepts Si. Consequently, S is an equilibrium
of M [R1, R2].

It also holds that there is a one-to-one mapping between equilibria of M r and equilibria of
M .

Corollary 4.1. Given an MCSM and sets of bridge rulesR1, R2⊆ br(M). If S′= (S′1, . . . , S
′
2n)

is an equilibrium of M
r
[R

r
1 , R

r
2 ] then S = (S′1, . . . , S

′
n) is an equilibrium of M [R1, R2] and

S
r

= S′.

Proof. For reference, let S = (S1, . . . , Sn) = (S′1, . . . , S
′
n) and let M r

= (C ′1, . . . , C
′
2n). Let

1 ≤ i ≤ n; since C ′n+i is a relay context employing the logic L r and S′ is an equilibrium of
M

r
[R

r
1 , R

r
2 ], it holds that S′n+i = {ϕ (r) | r ∈ app(brn+i(M

r
[R

r
1 , R

r
2 ]), S′)}. Furthermore,

for all r ∈ brn+i(M
r
[R

r
1 , R

r
2 ]) and for all (c : p) ∈ body±(r) it holds that 1 ≤ c ≤ n.

Because S′ =1,...,n S, it follows that app(brn+i(M
r
[R

r
1 , R

r
2 ]), S). By the construction of

M
r
[R

r
1 , R

r
2 ] an analogous reasoning as in the proof of Lemma 4.1 item i. can be applied to

show that indeed app(brn+i(M
r
[R

r
1 , R

r
2 ]), S) = app(br i(M [R1, R2]), S)

r . In summary, it
holds for all 1 ≤ i ≤ n that S′n+i = {headr | r ∈ app(br i(M [R1, R2]), S)}, i.e., S′ = S

r .
Since S′ is an equilibrium of M r

[R
r
1 , R

r
2 ] it follows directly from Proposition 4.4 that S is

an equilibrium of M [R1, R2].
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It follows that there is a one-to-one correspondence of diagnoses of M and M r , given that
only such pairs of sets of bridge rules of M r are considered where there exists a corresponding
pair of sets of bridge rules of M , formally:

Corollary 4.2. Given an MCS M and D1, D2 ⊆ br(M), then (D1, D2) ∈ D±(M) holds iff
(D

r
1 , D

r
2 ) ∈ D±(M

r
) holds.

Proof. Observe that (D1, D2)∈D±(M) implies that there exists an equilibrium S ofM [D1, D2].
Analogously, (D

r
1 , D

r
2 )∈D±(M

r
) implies that there exists an equilibrium S′ ofM r

[D
r

1 , D
r

2 ].
By Corollary 4.1 it holds that S′ = S

r and S is an equilibrium of M [D1, D2] iff S′ is an equilib-
rium of M r

[D
r

1 , D
r

2 ], which proves the statement.

An alternative characterisation of the same pairs is possible via the notion of a diagnosis
with protected bridge rules. Let brP be the set of bridge rules of M r which are of form (4.6),
i.e., brP = br

(M
r

)
\ (br(M))

r . Then, (D
r

1 , D
r

2 ) ∈ D±(M
r
) iff there exists (D′1, D

′
2) ∈

D±(M, brP ) such that D′1 = D
r

1 and D′2 = D
r

2 .
In the next section the relayed MCS M r is used for meta-reasoning about diagnoses. Since

the purpose of the relayed MCS is to observe whether the knowledge-base formula ϕ (r) of
a bridge rule r is added to the respective context, relays are necessary in general. For a large
class of contexts, however, the relaying is not necessary and either the original MCS M could
be used or an MCS where only some contexts are relayed. If a context C = (L, kb, br) with
L = (KB,BS,ACC) satisfies the following condition, it does not need a relay: for all ϕ (r)
exists b ∈

⋃
BS such that for all H ⊆ {ϕ (r) | r ∈ br} and for all S ∈ ACC(kb ∪H) holds

b ∈ S iff ϕ (r) ∈ H . Informally, for every head-formula of a bridge rule r exists a special belief
b matching the presence of r in the set of applicable bridge rules. Note that this only works for
contexts whose bridge rule heads are unique, i.e., if it holds for all r, r′ ∈ br with r 6= r′ that
ϕ (r) 6= ϕ (r′).

There is another alternative to solve the issue addressed by the relayed MCS, by changing
the knowledge-base of a context instead of adding a relay context. For example, a context C =
(Lasp

Σ , kb, br) using ASP can be rewritten to C ′ = (Lasp
Σ , kb′, br ′) such that the above condition

is met by adding auxiliary atoms: let brhead be an new atom which neither occurs in kb nor in
{ϕ (r) | r ∈ br}. Then kb′ = kb ∪ {ϕ (r)← brhead(r).} and br ′ = {(Ch (r) : brhead(r))←
body(r). | r ∈ r}. So, every atom in the head of a bridge rule is changed to a unique ground
atom, which can only occur in an accepted belief set of C ′ iff the atom is added by a bridge rule,
i.e., brhead(r) is the atom to identify whether the head of the rule corresponding to r has been
added. The effect is that considering only output-projected beliefs, C and C ′ have the same sets
of accepted beliefs. For simplicity of presentation, in the following, we consider relayed MCS
only, since this approach also is the most general one.

Observing Diagnoses

We have shown that the relayed version M r of an MCS M exhibits belief states such that the
belief set of each relay context exactly gives the set of applicable bridge rules, even if a diagnosis
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and its corresponding relayed version is applied to M , respectively M r . In the next step, we add
observation contexts to M r to observe the applicability of bridge rules and draw conclusions
from these observations.

The observation of a set B ⊆ br(M) of bridge rules of M is possible in M r by employing
any logic which is compatible to bridge rules with head beliefs from

⋃
r∈B{bodyr, headr}. Let

ΣB be such a logic, then an observation context is a tuple (ΣB, kbB, B) where kbB is a ΣB-
knowledge base and B ⊆ br(M). Next, we give the meta-reasoning transformation of M which
enables a set O of observation contexts to observe the respective bridge rules, by extending M r

with a new context for each observation context o ∈ O.

Definition 4.14. Let M = (C1, . . . , Cn) be an MCS, its relay version M
r

= (C ′1 . . . , C
′
2n), and

a set of observation contextsO = {(ΣB1 , kbB1 , B1), . . . , (ΣBk , kbBk , Bk)}. The meta-reasoning
transformation of M wrt. O is the MCS MO = (C ′1, . . . , C

′
2n, C2n+1, . . . , C2n+k) where for

each 1 ≤ i ≤ k it holds that C2n+i = (ΣBi , kbBi , brBi) is a context based on the observation
context (ΣBi , kbBi , Bi) such that its set of bridge rules brBi contains for every r ∈ Bi of form
(2.1) with Ch (r) = ` the following two bridge rules:

(2n+ i : bodyr)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (4.7)

(2n+ i : headr)← (n+ ` : headr). (4.8)

We call an observation context (Σ = (KB,BS,ACC), kb, B) conservative if it accepts
every set of applicable bridge rules, i.e., if ACC(kb ∪H) 6= ∅ for every H ⊆ {headr, bodyr |
r ∈ B}.

Example 4.13. Consider the relayed MCS M
r

= (C ′1, C
′
2, C

′
3, C

′
4) of Example 4.12 and the

observation context Obs = (Lasp
Σ , ∅, {r2, r3}). Note that by choice, the bridge rule r1 is not ob-

served. The corresponding MCS MO for O = {Obs} is as follows: MO = (C ′1, C
′
2, C

′
3, C

′
4, C5)

with C5 = (Lasp
Σ , ∅, br5) and bridge rules br5 as follows:

br5 = { (5 : bodyr2)← (1 : contribute).

(5 : headr2)← (4 : headr2).

(5 : bodyr3)← (1 : contribute).

(5 : headr3)← (4 : headr3).}

Figure 4.4 shows the bridge rules and contexts of MO.

The following theorem shows that equilibria of M and equilibria of the meta-reasoning
transformation MO correspond to each other.

Theorem 4.1. Given an MCS M , a set of conservative observation contexts O, a pair of sets
of bridge rules R1, R2 ⊆ br(M), and a belief state S = (S1, . . . , Sn) for M . Then, S
is an equilibrium of M [R1, R2] iff there exist belief sets S2n+1, . . . , S2n+|O| such that S′ =

(S1, . . . , Sn, Sn+1, . . . , S2n+|O|) is an equilibrium of MO[R
r
1 , R

r
2 ].

101



Relayed Prof. K

C ′1

Relayed Dr. J C2RelayC ′3 Relay

C ′4

Observer Obs C5

r
r

1

r′1 r
r

2

r
r

3

r′2

r′3

headr3headr2
bodyr2

bodyr3

Figure 4.4: The meta-reasoning transformation of the MCS M = (C1, C2) of Example 4.3 where
bridge rules r2 and r3 are observed by C5.

Proof. “⇒”: Let S = (S1, . . . , Sn) be an equilibrium of M [R1, R2], then S r is an equilibrium
of M r

[R
r
1 , R

r
2 ] by Proposition 4.4. Observe that U = {1, . . . , 2n} ⊆ C

(
MO

)
is a splitting set

of MO, because for every bridge rule r ∈ brMO it holds that Cb (r)∩{2n+ 1, . . . , 2n+ |O|} =
∅. Now consider the MCS MO[br

M
r ] where all bridge rules of observation contexts are

removed. Obviously, it holds for every 1 ≤ i ≤ 2n that br i(M
O) = br i(M

r
). Consider

S
r

= (S1, . . . , S2n) and observe that by Proposition 4.4, it holds that S r is an equilibrium of
M

r . Hence, we can extend S r to a belief state S′′ = (S1, . . . , S2n, S2n+1, . . . S2n+|O|) where
for every 1 ≤ j ≤ |O| it holds that S2n+j ∈ ACC2n+j(kb2n+j). Since every observation
context is conservative, it holds that every such S2n+j exists. By Proposition 4.4 then every
context Ci for 1 ≤ i ≤ 2n of MO[(brMO \R r

1 ∪ cf (R
r
2 )) ∩ br

M
r ] accepts Si, which implies

that S′′ is an equilibrium of MO[(brMO \R r
1 ∪ cf (R

r
2 )) ∩ br

M
r ].

By Lemma 3.3 we then conclude that every context Ci for 1 ≤ i ≤ 2n of the MCS
MO accepts Si. Since observation contexts are conservative, there exists some S′ such that
S′ = (S1, . . . , S2n], S

′
2n+1, . . . , S

′′
2n+|O| with S′ =U S

′′ and for every 1 ≤ j ≤ |O| it holds that

S2n+j ∈ ACC2n+j(kb2n+j ∪ app(br2n+j(M
O[brMO \R r

1 ∪ cf (R
r
2 )]), S′)). By Lemma 3.4

(instantiated with B = brMO \ R r
1 ∪ cf (R

r
2 ) and R = (brMO \ R r

1 ∪ cf (R
r
2 )) ∩ br

M
r ) it

then follows that S′ is accepted by every context Ci for 1 ≤ i ≤ 2n, i.e.,S′ is an equilibrium of
MO[R

r
1 , R

r
2 ].

“⇐”: Let S′= (S1, . . . , S2n+|O|) be an equilibrium ofMO[R
r
1 , R

r
2 ]. SinceU = {1, . . . , 2n}

is a splitting set of MO[R
r
1 , R

r
2 ], it holds by Lemma 3.3 for all 1 ≤ i ≤ 2n that

Si ∈ ACCi(kbi ∪ app(br i(M
O[(brMO \R r

1 ∪ cf (R
r
2 )) ∩ bU ]), S′))
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iff Si ∈ ACCi(kbi ∪ app(br i(M
O[(brMO \R r

1 ∪ cf (R
r
2 )], S′)).

Consider the MCS M
r
[R

r
1 , R

r
2 ] and observe that br i(M

r
[R

r
1 , R

r
2 ]) = br i(M

O[(brMO \
R

r
1 ∪ cf (R

r
2 )) ∩ bU ]) for every 1 ≤ i ≤ 2n. For the belief state S′′ = (S1, . . . , S2n) it then

follows that app(br i(M
r
[R

r
1 , R

r
2 ]), S′′) = app(br i(M

O[(brMO \R r
1 ∪ cf (R

r
2 )) ∩ bU ]), S′)

for 1 ≤ i ≤ 2n.
Since for every such i, the context Ci is the same in M r and MO, it therefore follows that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
r
[R

r
1 , R

r
2 ]), S′′)}). Hence, S′′ is an equilibrium of

M
r
[R

r
1 , R

r
2 ], thus by Corollary 4.1 S′′ = S

r for S = (S1, . . . , Sn), and by Proposition 4.4 it
finally holds that S is an equilibrium of M [R1, R2].

The next lemma shows that MO indeed allows to observe corresponding modifications of
bridge rules of M .

Lemma 4.2. Let M be an MCS, R1, R2 ⊆ br(M), and O = {O1, . . . , Ok} be a set of ob-
servation contexts such that Oi = (Σo, kbo, bro) is an observation context with 1 ≤ i ≤ k.
Let MO be the meta-reasoning transformation of M wrt. O, let S be a belief state of M
and SO = (S1, . . . , S2n+k) be a belief state of MO where (S1, . . . , S2n) = S

r
, and let

Hi = {ϕ (r) | r ∈ app(br2n+i(M
O[R

r
1 , R

r
2 ]), SO) be the beliefs added to observation context

Oi. Then, for every bridge rule r ∈ bro observed by Oi with Ch (r) = j holds that:

• S r iff bodyr ∈ Hi and

• r ∈ app(br j(M [R1, R2]), S) or cf (r) ∈ app(br j(M [R1, R2]), S) iff headr ∈ Hi.

Proof. Let K = {1, . . . , n} be the index set of contexts of M .

• By definition of MO, it holds that Cb
(
r

r
)

= Cb (r) ⊆ {1, . . . , n}, and by definition of

SO, it holds that SO =K S
r

=K SO, i.e., they agree on belief sets S1, . . . , Sn. Therefore
S r iff SO r

r . Since there is exactly one bridge rule r′ of form (4.7) wrt. r and Oi, it
holds that ϕ (r′) = bodyr and body(r′) = body(r

r
). Therefore, S r

r
r iff S r

r′ iff
bodyr ∈ Hi. Thus, it holds that S r iff bodyr ∈ Hi.

• By Lemma 4.1 it holds that

(app(br j(M [R1, R2]), S))
r

= app(brn+j(M
r
[R

r
1 , R

r
2 ]), S

r
).

Since r ∈ brO and brO ⊆ br(M), it holds that r ∈ app(br j(M [R1, R2]), S) implies that
r ∈ app(br j(M [R1, R2 \ {r}]), S).

“⇒”: Let r ∈ app(br j(M [R1, R2]), S). Then S r and by analogous reasoning as above,
it holds that SO r

r , hence headr ∈ Sn+j by definition of SO and S r . Therefore, by
the bridge rule of form (4.8) wrt. r and Oi, it follows that headr ∈ Hi. Let cf (r) ∈
app(br j(M [R1, R2]), S), then r ∈ R2, hence r r ∈ R

r
2 and consequently cf (r

r
) ∈

app(br2n+i(M
O[R

r
1 , R

r
2 ]), SO), which implies that headr ∈ Hi.
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“⇐”: Let headr ∈ Hi, then headr ∈ Sn+j since there is only one bridge rule r′ with
ϕ (r′) = headr, i.e., r′ is of form (4.8) wrt. r and Oi. Since headr ∈ Sn+j , it holds
by the definition of SO and S r , that either r ∈ app(br j(M [R1, R2]), S) or cf (r) ∈
app(br j(M [R1, R2]), S).

We now introduce a restriction on filters to correctly observe all minimal-filtered diagnoses
of those restricted filters. This restriction ensures that the filter does not enforce diagnoses where
unnecessary bridge rules or bridge rule bodies are removed, i.e. the filter is deletion parsimonious.
Intuitively, a filter is parsimonious if for every diagnosis candidate (D1, D2) it holds that either
(D1, D2) is not a diagnosis that passes the filter, or the resulting MCS admits an equilibrium
where all r ∈ D1 are applicable and all r ∈ D2 are not applicable.

Definition 4.15. Let M be an MCS and let f be a filter for M . A pair of bridge rules
(D1, D2) ∈ 2br(M) × 2br(M) is deletion-parsimonious iff f(D1, D2) = 1 and there exists
S ∈ EQ(M [D1, D2]) such that ∀r ∈ D1 : S r and ∀r ∈ D2 : S 6 r both hold.

The filter f is a deletion-parsimonious filter if for every (D1, D2) ∈ D±(M) it holds that:
either (D1, D2) is deletion-parsimonious or there exists (D′1, D

′
2) ⊂ (D1, D2) which is deletion-

parsimonious.

A direct consequence of this notion is the following for every subset-minimal filtered diagno-
sis.

Corollary 4.3. Let f be a deletion-parsimonious filter and (D1, D2) ∈ D±m,f (M). Then there
exists a belief state S ∈ EQ(M [D1, D2]) such that:

• every bridge rule r ∈ D1 is applicable in S, i.e., S r, and

• every bridge rule r ∈ D2 is not applicable in S, i.e., S 6 r.

Proof. Let (D1, D2) ∈ D±m,f (M) hold. Towards contradiction, assume that for all belief states
S ∈ EQ(M [D1, D2]) either there exists some r ∈ D1 with S 6 r or there exists some
r ∈ D2 with S r. Since (D1, D2) ∈ D±m,f (M), it holds that f(D1, D2) = 1 and by the
above condition it then holds that (D1, D2) is not deletion-parsimonious. Since f is a deletion-
parsimonious filter, it then follows that there exists some deletion-parsimonious (D′1, D

′
2) ⊂

(D1, D2), i.e., f(D′1, D
′
2) = 1 and there exists S ∈ EQ(M [D′1, D

′
2]) such that for all r ∈ D1

holds S r and for all r ∈ D2 holds S 6 r. Note that S is a witnessing equilibrium of
(D′1, D

′
2), i.e., (D′1, D

′
2) ∈ D±(M) holds. f(D′1, D

′
2) = 1, and (D′1, D

′
2) ⊂ (D1, D2) thus

contradicts that (D1, D2) ∈ D±m,f (M) also holds. Consequently, it holds for some belief state
S ∈ EQ(M [D1, D2]) that for all r ∈ D1 holds S r and for all r ∈ D2 holds S 6 r.

Since the notion of a deletion-parsimonious filter not only depends on the filter f , but also on
the behaviour of the MCS M under modifications, it is no easy task to check whether a given
filter f is deletion-parsimonious. Indeed, restricting to deletion-parsimonious filters excludes
many useful filters. Nevertheless, if f is such that f(D1, D2) = 0 whenever (D1, D2) /∈ D±m(M)
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holds, then f is a deletion-parsimonious filter. This holds because only minimal diagnoses pass
the filter and by Proposition 3.6 it holds for every belief state S ∈ EQ(M [D1, D2]) that r ∈ D1

implies S r and r ∈ D2 implies that S 6 r. Intuitively, the filter only selects a subset of
the set of ⊆-minimal diagnoses. Another example of a deletion-parsimonious filter is given in
Example 4.4.

We now show how deletion-parsimonious filters can be realised and we prove the correctness
of that approach. In general, however, filters are not deletion-parsimonious, therefore we later
present ways to realise filters in general at the expense of more complex observation contexts.

Definition 4.16. LetM be an MCS and f be a deletion-parsimonious filter forM . A parsimonious-
filter transformation ofM wrt. f is a meta-reasoning transformationMO withO = {(Σf , kbf , br(M))}
where the logic Σf = (KBf ,BSf ,ACCf ) of the observation context is such that

• if kb ∈ KBf and H ⊆ {bodyr, headr | r ∈ br(M)}, then (kb ∪H) ∈ KBf , and

• for any H ⊆ {bodyr, headr | r ∈ br(M)} with D1 = {r ∈ br(M) | bodyr ∈ H ∧
headr /∈ H} and D2 = {r ∈ br(M) | bodyr /∈ H ∧ headr ∈ H}, it holds that

ACCf (kbf ∪H) = ∅ iff f(D1, D2) = 0.

By Mf we denote the parsimonious-filter transformation of M wrt. f .

An example of an observation context of a parsimonious filter-transformation is the following
based on ASP. Intuitively, the encoding first derives whether the observed bridge rules are removed
or made condition-free. Then it checks whether the set of modified bridge rules corresponds to
any pair (D1, D2) with f(D1, D2) = 0. A respective ASP program P of an observation context
might be as follows:

inD1 (r)← bodyr, not headr. ∀r ∈ br(M)

inD2 (r)← headr, not bodyr. ∀r ∈ br(M)

⊥ ← filter(D), not passes(D).

passes(D)← filter(D), inD1 (r), not rfiltD1 (D, r). ∀r ∈ br(M)

passes(D)← filter(D), not inD1 (r), rfiltD1 (D, r). ∀r ∈ br(M)

passes(D)← filter(D), inD2 (r), not rfiltD2 (D, r). ∀r ∈ br(M)

passes(D)← filter(D), not inD2 (r), rfiltD2 (D, r). ∀r ∈ br(M)

This assumes that the filter f also is specified explicitly in P . To do so, we assume that “(D1, D2)”
denotes a unique name for (D1, D2), and P then also contains the following facts:

filter(“(D1, D2)”). ∀D1, D2 ∈ br(M) with f(D1, D2) = 0

rfiltD1 (“(D1, D2)”, r). ∀r ∈ D1

rfiltD2 (“(D1, D2)”, r). ∀r ∈ D2
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This encoding is exponential in the size of br(M) in the worst case, since then all diagnosis
candidates are specified explicitly by facts. In practice a filter can be represented much more
succinctly in ASP by using rules to describe the filter conditions.

The following theorem shows that a parsimonious filter-transformation allows to select the
minimal-filtered diagnoses of M wrt. a deletion-parsimonious filter f by selecting minimal
protected diagnoses of the transformed MCS Mf .

Theorem 4.2. Given an inconsistent MCS M = (C1, . . . , Cn), let f be a deletion-parsimonious
filter on diagnoses and let Mf be a parsimonious filter-transformation of M wrt. f , i.e., the

protected rules of Mf are brP = br(MO) \ (br(M)
r
). Then, D = (D1, D2) ∈ D±m,f (M) iff

(D
r

1 , D
r

2 ) ∈ D±m(Mf , brP ).

Proof. Let Mf = (C1, . . . , C2n, Cf ) where Cf is the filter context that observes all bridge rules
of br(M).

“⇒”: Let D = (D1, D2) ∈ D±m,f (M), i.e., f(D) = 1. Then by Corollary 4.3 there exists
an equilibrium S = (S1, . . . , Sn) ∈ EQ(M [D1, D2]) such that for every bridge rule r ∈ D1 it
holds that S r and for every bridge rule r ∈ D2 it holds that S 6 r.

We first show that (D
r

1 , D
r

2 ) ∈ D±f (Mf , brP ). By Proposition 4.4 it follows that S r ∈
EQ(M

r
[D

r
1 , D

r
2 ]). Since M r

[D
r

1 , D
r

2 ] induces a splitting set U in MO[D
r

1 , D
r

2 ] with U =
{1, . . . , 2n}, it follows by Proposition 3.7 that there exists some S′ = (S1, . . . , S2n, Sf ) ∈
EQ(MO[D

r
1 , D

r
2 ] with (S1, . . . , S2n) = S

r , if Sf is accepted by Cf . Hence, it remains to show
that Sf ∈ ACCf (kbf ∪ H) where H = {ϕ (r) | r ∈ app(br2n+1(MO[D

r
1 , D

r
2 ]), S′)}. By

definition of Cf , it remains to show that: for every r ∈ D1 it holds that bodyr ∈ H ∧ headr /∈ H
and for every r ∈ D2 it holds that bodyr /∈ H ∧ headr ∈ H .

Let r ∈ D1. Then by Corollary 4.3, it holds that S r which implies by Lemma 4.2 that
bodyr ∈ H . Since D1 ∩D2 = ∅, it does not hold that cf (r) ∈ app(br j(M [D1, D2]), S) where
j = Ch (r) and since r ∈ D1, it also does not hold that r ∈ app(br j(M [D1, D2]), S), hence
by Lemma 4.2 it follows that headr /∈ H . Let r ∈ D2. Then cf (r) ∈ app(br j(M [D1, D2]), S)
where j = Ch (r) and by Lemma 4.2 it follows that headr ∈ H . Furthermore, by Corollary
4.3, it follows that S 6 r, hence by Lemma 4.2 it follows that bodyr /∈ H . In summary, it
holds for every r ∈ D1 that bodyr ∈ H ∧ headr /∈ H while for every r ∈ D2 it holds that
bodyr /∈ H ∧ headr ∈ H . Therefore, by definition of Cf , it follows that Sf ∈ ACCf (kbf ∪H)

and consequently S′ ∈ EQ(Mf [D
r

1 , D
r

2 ]), i.e., (D
r

1 , D
r

2 ) ∈ D±f (Mf , brP ).

Second, we show that (D
r

1 , D
r

2 ) is minimal, i.e., we show that there is no (D′1
r
, D′2

r
) ⊂

(D
r

1 , D
r

2 ) which is in D±m(Mf , brP ). Towards contradiction, assume that such (D′1
r
, D′2

r
)

exists. Then it follows from Corollary 4.2 that (D′1, D
′
2) ∈ D±(M). Since (D′1

r
, D′2

r
) ∈

D±m(Mf , brP ), it holds that there exists an equilibrium S′ such that S′ = (S′1, . . . , S
′
2n, S

′
f ) ∈

EQ(Mf [D′1
r
, D′2

r
]), specifically S′f ∈ ACCf (kbf ∪ H) where it holds that H = {ϕ (r) |

r ∈ app(brf (Mf [D′1
r
, D′2

r
]), S′)}. Note that by Corollary 4.1 follows that there exists a belief

state S of M such that S = (S′1, . . . , S
′
n). If H correctly “encodes” the diagnosis (D′1, D

′
2),
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then it follows that f(D′1, D
′
2) = 1 and consequently, that (D′1, D

′
2) ∈ D±m,f (M) which then

contradicts the assumption that (D1, D2) ∈ D±m,f (M) since (D′1, D
′
2) ⊂ (D1, D2).

It therefore remains to show that (i) bodyr ∈ H∧headr /∈ H implies r ∈ D′1 and (ii) bodyr /∈
H ∧ headr ∈ H implies r ∈ D′2. Let for (i) bodyr ∈ H , headr /∈ H be the case. Then S′ r′

where r′ is the rule of form (4.7) wrt. r and Cf and body(r′) = body(r
r
). Since headr /∈ H , this

implies that headr /∈ Sn+j where j = Ch (r). Since S′ is an equilibrium, it holds by Corollary 4.2

that headr /∈ {ϕ (r′) | r′ ∈ app(brn+j(Mf [D′1
r
, D′2

r
]), S′)}, which only holds if r r ∈ D′1

r
.

Hence it holds that r ∈ D′1. Now consider case (ii) and let it hold that bodyr /∈ H ∧ headr ∈ H .
By Lemma 4.2 then follows that S 6 r, hence S′ 6 r

r , because S and S′ agree on all belief sets

S′i where i ∈ Cb (r) = Cb

(
r

r
)

. Since headr ∈ H , it follows by the bridge rule of form (4.8)

wrt. r that headr ∈ Sn+j where j = Ch (r). Since S′ is an equilibrium, it holds by Corollary

4.2 that headr ∈ {ϕ (r′) | r′ ∈ app(brn+j(Mf [D′1
r
, D′2

r
]), S′)}. Since S′ 6 r

r , this implies

that cf (r
r
) ∈ app(brn+j(Mf [D′1

r
, D′2

r
]), S′), i.e., r r ∈ D′2

r
, thus r ∈ D′2. Since Sf ∈

ACCf (kbf ∪H) and by the definition of ACCf , it therefore holds that f(D′1, D
′
2) = 1, which

implies that (D′1, D
′
2) ∈ D±m,f (M); thus contradicts that (D1, D2) ∈ D±m,f (M). Therefore, there

exists no such (D′1
r
, D′2

r
) ∈ D±m(Mf , brP ) and it follows that (D

r
1 , D

r
2 ) ∈ D±m(Mf , brP ).

“⇐”: Let (D
r

1 , D
r

2 ) ∈ D±m(Mf , brP ). Then there exists an equilibrium S′ such that S′ =

(S1, . . . , S2n, Sf ) ∈ EQ(Mf [D
r

1 , D
r

2 ]). We first show that (D1, D2) ∈ D±f (M). Corollary
4.2 implies that (D1, D2) ∈ D±(M), therefore it only remains to show that f(D1, D2) = 1.
Consider the input H = {ϕ (r) | r ∈ app(brf (Mf [D

r
1 , D

r
2 ]), S′)} of Cf under S′. Note that

S
r

= (S1, . . . , S2n) and S = (S1, . . . , Sn). We have to show that (i) bodyr ∈ H ∧ headr /∈ H
implies r ∈ D1 and (ii) bodyr /∈ H ∧ headr ∈ H implies r ∈ D2. For (i) observe that by
Lemma 4.2, S r and r /∈ app(br j(M [D1, D2]), S) where j = Ch (r). Therefore, it holds that
r ∈ D1. For case (ii) it holds by Lemma 4.2 that S 6 r and either r ∈ app(br j(M [D1, D2]), S)
or cf (r) ∈ app(br j(M [D1, D2]), S). Since S 6 r, the latter must be the case, i.e., r ∈
D2. Therefore, H “encodes” (D1, D2) correctly and by the definition of ACCf it holds that
f((D1, D2)) = 1, hence (D1, D2) ∈ D±f (M).

Second, we show that there exists no (D′1, D
′
2) ⊂ (D1, D2) such that (D′1, D

′
2) ∈ D±f (M).

Towards contradiction, assume that (D′1, D
′
2) ∈ D±m,f (M) with (D′1, D

′
2) ⊂ (D1, D2) ex-

ists. In the “⇒”-direction above, it is already proven that (D′1, D
′
2) ∈ D±m,f (M) implies

that (D′1
r
, D′2

r
) ∈ D±m(Mf , brP ). Since (D′1

r
, D′2

r
) ⊂ (D

r
1 , D

r
2 ), this contradicts that

(D
r

1 , D
r

2 ) ∈ D±m(Mf , brP ). Therefore no such (D′1, D
′
2) ⊂ (D1, D2) exists and it holds that

(D1, D2) ∈ D±m,f (M).

The restriction to deletion-parsimonious filters excludes a significant amount of possible
filters, but a more involved transformation allows to capture all filters. This, however, requires
additional guessing on those bridge rules which can not be observed, to accommodate for the fact
that the observation of a diagnosis is imperfect.

In the next section another approach at meta-reasoning in MCS is presented where no
additional guessing is required. Since the other approach also allows to realise filters and
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preference orders in general, the correctness proof of this approach is omitted and the guessing
approach to realise filters is only presented. Furthermore, we state several observations for filters
in general, i.e., conjectures about the correctness of the approach presented in this section.

The application of a parsimonious-filter transformation on an MCS M and a filter f that is
not deletion-parsimonious yields a system which cannot identify all minimal-filtered diagnoses,
but every obtained diagnosis corresponds to a minimal-filtered diagnosis. Note that any diagnosis
(D1, D2) obtained from Mf in such a way yields a witnessing equilibrium S ∈ EQ(M [D1, D2])
such that r ∈ D1 implies S r and r ∈ D2 implies S 6 r.

The expected relationship for an MCS M and any filter f , is then as follows: let Mf be
the parsimonious filter-transformation of M wrt. f ; then (D

r
1 , D

r
2 ) ∈ D±m(Mf , brP ) implies

(D1, D2) ∈ D±m,f (M).
To identify all minimal-filtered diagnoses using our approach of observing witnessing equi-

libria, it suffices to guess for those bridge rules r ∈ br(M) whose status cannot be observed
definitely, whether r ∈ D1, r ∈ D2, or neither holds. If a minimal such guess yields a diagnosis
such that f(D1, D2) = 1, then this diagnosis is a minimal-filtered one. To guess on these
“relatively unknown” bridge rules, we can either introduce additional bridge rules realising the
guessing, or we can leave this guessing to the logic employed by the filter context as follows.

Definition 4.17. Let M be an MCS, let f be a filter, and let O be a singleton set containing
an observation context, O = {(Σf , kbf , br(M))}. Then the filter-transformation M+

f of M
wrt. f equals the meta-reasoning transformation MOsuch that the following holds for the logic
Σf = (KBf ,BSf ,ACCf ):

• if kb ∈ KBf and H ⊆ {bodyr, headr | r ∈ br(M)}, then (kb ∪H) ∈ KBf ;

• for every bs ∈ BSf and for every B ⊆ {inD1 r, inD2 r | r ∈ br(M)} there exists
bs ∪B ∈ BSf ;

• for every (D1, D2) ∈ 2br(M)×2br(M),H ⊆ {bodyr, headr | r ∈ br(M)}, and Sf ∈ BSf
it holds that:

Sf ∈ ACCf (kbf ∪H) iff f(D1, D2) = 1,

D1 = {r | inD1 r ∈ Sf}, D2 = {r | inD2 r ∈ Sf},
{r ∈ br(M) | bodyr ∈ H ∧ headr /∈ H} ⊆ D1, and

{r ∈ br(M) | bodyr /∈ H ∧ headr ∈ H} ⊆ D2

• if A = {inD1 r, inD2 r | r ∈ br(M)}, then for any Sf , S′f ∈ ACCf (kbf ∪H) it holds
that: Sf ∩A ⊆ S′f ∩A implies Sf = S′f .

The minimal-filtered diagnoses of M can then be obtained by considering the witnessing
equilibria of the minimal-diagnoses of the filter-transformation M+

f . Each such equilibrium
contains for the observation context a belief set that corresponds to a minimal-filtered diagnosis.
Formally, given an MCS M and a filter f , let M+

f be the filter-transformation of M wrt. f .
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Furthermore, let brP = br(M+
f ) \ (br(M))

r , let A1 = {inD1 r | r ∈ br(M)}, and let
A2 = {inD2 r | r ∈ br(M)}. Then the following relationship is conjectured (proof omitted):

D±m,f (M) = {(Sf ∩A1, Sf ∩A2) | (S1, . . . , Sf ) ∈ EQ(M+
f (M [D1, D2]),

(D1, D2) ∈ D±m(M+
f , brP )}.

We now also give a concrete example for the logic and knowledge base of the observation
context of M+

f .

Example 4.14. We realise the logic used for the observation context in the filter-transformation
as a disjunctive ASP program P . Although the computational complexity for disjunctive ASP is
in ΣP

2 , this does not increase the overall complexity of finding a minimal diagnosis, because this
task also is ΣP

2 -hard.

The goal of P is, given some observation, to find all minimal diagnosis candidates which
satisfy the filter. Only minimal extensions of the observed diagnosis that still satisfy the filter
should lead to an answer set. An extension (D1, D2) of the surely modified (observed) bridge
rules (R1, R2) is minimal, if all other extensions (D′1, D

′
2) between the extension and the ob-

served bridge rules do not satisfy the filter, i.e., for all (D′1, D
′
2) with (R1, R2) ⊆ (D′1, D

′
2) ⊂

(D1, D2) it holds that f(D′1, D
′
2) = 0. Furthermore, if it holds that (R1, R2) ⊆ (D1, D2) and

f(D1, D2) = 1, then (D1, D2) is such a minimal extension of the observation that satisfies the
filter.

To realise the check for all such (D′1, D
′
2) we use the saturation technique similar as used in

Section 3.5 with HEX-programs. This means that there is an atom spoil whose derivation triggers
the saturation of the answer set with all atoms possibly used in the guessing of (D′1, D

′
2). If

one (D′1, D
′
2) with f(D′1, D

′
2) = 1 is found, then this “answer set” is not saturated, since it is a

counter-example to the guessed minimal diagnosis candidate (D1, D2). Another constraint then
ensures that every answer set must be saturated, invalidating the non-minimal (D1, D2). If all
diagnosis candidates (D′1, D

′
2) are such that f(D′1, D

′
2) = 0, then the minimal interpretation of

P is the saturated interpretation, which makes it an answer set.

Let P be the disjunctive ASP program, then P contains for every r ∈ br(M) the following
rules for those bridge rules (R1, R2) whose modification is observed, and a guess for the extension
(D1, D2) of possibly modified bridge rules.

inR1 r ← bodyr, not headr. inR2 r ← not bodyr, headr.

inD1 r ← inR1 r. inD2 r ← inR2 r.

inD1 r ∨ ninD1 r. inD2 r ∨ ninD2 r.

⊥ ← ninD1 r, inD1 r. ⊥ ← ninD2 r, inD2 r.
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To ensure that (D1, D2) fits the observation, the following rules are in P for every r ∈ br(M):

⊥ ← ninD1 r, inD2 r, not bodyr, not headr. ⊥ ← inD1 r, inD2 r, not bodyr, not headr.

⊥ ← ninD1 r,ninD2 r, bodyr, not headr. ⊥ ← ninD1 r, inD2 r, bodyr, not headr.

⊥ ← inD1 r, inD2 r, bodyr, not headr.

⊥ ← ninD1 r,ninD2 r, not bodyr, headr. ⊥ ← inD1 r,ninD2 r, not bodyr, headr.

⊥ ← inD1 r,ninD2 r, bodyr, headr.

The following rules of P guess bridge rules (D′1, D
′
2) between (R1, R2) and (D1, D2); for

every r ∈ br(M) there are the following rules:

inD ′1r ∨ ninD ′1r. inD ′2r ∨ ninD ′2r.

inD ′1r ← inR1 r. inD ′2r ← inR2 r.

ninD ′1r ← ninD1 r. ninD ′2r ← ninD2 r.

To ensure that (D′1, D
′
2) also fits the observation, the following rules are in P for every

r ∈ br(M):

⊥ ← ninD ′1r, inD ′2r, not bodyr, not headr. ⊥ ← inD ′1r, inD ′2r, not bodyr, not headr.

⊥ ← ninD ′1r,ninD ′2r, bodyr, not headr. ⊥ ← ninD ′1r, inD ′2r, bodyr, not headr.

⊥ ← inD ′1r, inD ′2r, bodyr, not headr.

⊥ ← ninD ′1r,ninD ′2r, not bodyr, headr. ⊥ ← inD ′1r,ninD ′2r, not bodyr, headr.

⊥ ← inD ′1r,ninD ′2r, bodyr, headr.

The next rules of P ensure that f(D1, D2) = 1 and that the answer set is saturated if
f(D′1, D

′
2) = 0. For that, we represent the filter f explicitly in such a way that every com-

bination of bridge rules is given as one rule, i.e., we write down each line of the charac-
teristic function that corresponds to f . Formally, P contains for all A,B ⊆ br(M) with
f(A,B) = 0, A = {r1, . . . , rk}, br(M) \ A = {rk+1, . . . , rn}, B = {r′1, . . . , r′`}, and
br(M) \B = {r′`+1, . . . , r

′
m} the following two rules:

spoil ←inD ′1r1 , . . . , inD ′1rk ,ninD ′1rk+1
, . . . ,ninD ′1rn ,

inD ′2r′1 , . . . inD ′2r′` ,ninD ′2r′`+1
, . . . ,ninD ′2r′m .

⊥ ←inD1 r1 , . . . , inD1 rk ,ninD1 rk+1
, . . . ,ninD1 rn ,

inD2 r′1 , . . . inD2 r′` ,ninD2 r′`+1
, . . . ,ninD2 r′m .

The following rules in P for every r ∈ br(M) saturate the interpretation if spoil is derived
and they derive spoil if the atoms inD ′1 ,ninD ′1 , inD ′2 ,ninD ′2 do not correspond to some
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(D′1, D
′
2).

inD ′1r ← spoil . ninD ′1r ← spoil

inD ′2r ← spoil . ninD ′2r ← spoil

spoil ← inD ′1r,ninD ′1r spoil ← inD ′2r,ninD ′2r

Finally, the following constraint of P ensures that every answer set is saturated:

⊥ ← not spoil .

Meta-reasoning Encoding

Instead of observing a (minimally) changed MCS and guessing for not definitely observable
modifications, we can encode the modifications of a diagnosis directly in an MCS such that
observations are perfect, but the original system is no longer just observed but actively modified
instead. Conceptually, given an MCS M = (C1, . . . , Cn) all its bridge rules are rewritten
and protected such that a diagnosis is applied only to the bridge rules of an additional context
Cn+1. This context Cn+1 then is able to definitely observe the modifications and to exhibit this
observation to all other contexts via its acceptable belief set.

The bridge rules of the original system are modified to consider the belief set of Cn+1. So
they either behave like removed or like made unconditional, depending on what Cn+1 believes.
For these two modes of behaviour, each bridge rule r ∈ br(M) is replaced by two bridge rules in
the meta-reasoning system: one bridge rule for becoming unconditional and one that behaves
like r or like being removed (i.e., it simply does not fire when Cn+1 believes that r is removed).
The form of these two bridge rules is similar to the form of bridge rules in the HEX-encoding for
computing diagnoses (cf. Section 3.5, rules (3.10), (3.16), and (3.17)).

Since this meta-reasoning encoding is used as foundation for filters and preferences, we
introduce a property θ that describes the additional behaviour of the context Cn+1. This allows to
later specify the required behaviour for filters and preferences. The preference encoding requires
further bridge rules for mapping preferences to bridge rules; this set of additional bridge rules is
called K, so we obtain as meta-reasoning encoding of M an MCS Mmr(θ,K). The definition of
Mmr(θ,K) and the following propositions are thus more general than needed for encoding filters
only. The advantage of this approach is that we have a common foundation for both encodings
and several propositions hold for both encodings. As is later shown in full detail, the property θ
to realise a filter f is simply stating that θ(D1, D2, ∅) holds iff f(D1, D2) = 1.

To encode (observe) diagnoses, the context Cn+1 needs bridge rules where a diagnosis can
be applied to and which can be observed reliably. To that end, for every r ∈ br(M) we have the
following two bridge rules to encode/observe whether r is removed or made unconditional.

d1(r) : (n+1 : not_removedr)← >. (4.9)

d2(r) : (n+1 : uncondr)← ⊥. (4.10)

For a set R ⊆ br(M), let d1(R) = {d1(r) | r ∈ R} and d2(R) = {d2(r) | r ∈ R}.
Furthermore, for a set of bridge rules R, we say that the heads of R are unique, if it holds for
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any r, r′ ∈ R that ϕ (r) = ϕ (r′) and Ch (r) = Ch (r′) implies that r = r′. The meta-reasoning
encoding Mmr(θ,K) then is as follows.

Definition 4.18. Let M = (C1, . . . , Cn) be an MCS, let K be a set of bridge rules such that the
following holds for all r ∈ K: body(r) = {⊥}, Ch (r) = n+1, and for all r′ ∈ br(M) holds
ϕ (r) 6= not_removedr′ and ϕ (r) 6= uncondr′ . Furthermore, let θ be a ternary property over
2br(M) × 2br(M) × 2K. Then, the MCS Mmr(θ,K) = (C ′1, . . . , C

′
n, Cn+1) is a meta-reasoning

encoding if the following holds:

(i) for every Ci = (Li, kbi, br i) with 1 ≤ i ≤ n it holds that C ′i = (Li, kbi, br ′i) where br ′i
contains for every r ∈ br i of form (2.1) the following two bridge rules:

(i : s)←(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm),

not (n+1 : removedr). (4.11)

(i : s)←(n+1 : uncondr). (4.12)

(ii) Cn+1 = (Ln+1, kbn+1, brn+1) is any context such that:

a) brn+1 = d1(br(M)) ∪ d2(br(M)) ∪ K and the only rules with head formulas
not_removedr and uncondr are of form (4.11) and (4.12).

b) the semantics ACCn+1 of Ln+1 fulfills for every H ⊆ {ϕ (r) | r ∈ brn+1} that
Sn+1 ∈ ACCn+1(kbn+1 ∪H) iff θ(R1, R2, R3) holds where:

R1 = {r ∈ br(M) | not_removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H},
R3 = {r ∈ K | ϕ (r) ∈ H}, and

Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2}

The protected bridge rules brP of Mmr(θ,K) are all rules of form (4.11) and (4.12).

Note that the heads of brn+1 are unique, because the bridge rules r of K are all of the same
form except for their head formula ϕ (r) and the remaining bridge rules of brn+1 also have
unique heads. The condition about acceptable belief sets, namely that Sn+1 = {removedr |
r ∈ R1} ∪ {uncondr | r ∈ R2} at first seems to be a strong restriction on possible belief sets,
since it disallows the occurrence of any other belief. On the other hand, however, the set of
output-projected beliefs OUTn+1 of context Cn+1 for every Mmr(θ,K) is such that OUTn+1 =
{removedr, uncondr | r ∈ br(M)}, i.e., no other belief of Cn+1 is used by any bridge rule of
Mmr(θ,K). We can therefore safely allow that Cn+1 exhibits other beliefs and all of the following
proofs go through.

Example 4.15. Recall the MCS M = (C1, C2) of Example 4.3. Let K = ∅ and θ(D1, D2, ∅)
always hold. Then the meta-reasoning encoding Mmr(θ,K) = (C ′1, C

′
2, C3) is such that the
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context C1, C2, equals modulo bridge rules the context C ′1, C ′2, respectively. Recall that the
bridge rules of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name_K )← (1 : contribute).

The bridge rules of Mmr(θ,K) then are as follows:

r′1 : (1 : improve)← not (2 : good),not (3 : removedr1).

r′′1 : (1 : improve)← (3 : uncondr1).

(2 : coauthored)← (1 : contribute),not (3 : removedr2).

(2 : coauthored)← (3 : uncondr2).

(2 : name_K )← (1 : contribute),not (3 : removedr3).

(2 : name_K )← (3 : uncondr3).

d1(r1) : (3 : not_removedr1)← >.
d2(r1) : (3 : uncondr1)← ⊥.
d1(r2) : (3 : not_removedr2)← >.
d2(r2) : (3 : uncondr2)← ⊥.
d1(r3) : (3 : not_removedr3)← >.
d2(r3) : (3 : uncondr3)← ⊥.

Notice that only the latter half of the bridge rules of Mmr(θ,K) is not protected, i.e., the first
six bridge rules are guaranteed to be not modified in a diagnosis with protected bridge rules.
Figure 4.5 depicts the contexts and, for better visibility, only those bridge rules of Mmr(θ,K) that
stem from r1 ∈ br(M) are shown.

The remainder of this subsection is dedicated to prove that Mmr(θ,K) allows to do meta-
reasoning on diagnoses of M . The results here are used in the following two subsections to prove
that Mmr(θ,K) allows to realise filters and preferences in general.

The following lemma shows that the applicable bridge rules of M under a diagnosis (D1, D2)
add exactly those knowledge-base elements that are also added under the corresponding diagnosis
(d1(D1), d2(D2) ∪K) of Mmr(θ,K), where K ⊆ K is arbitrary.

Lemma 4.3. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding wrt. θ and K.
Furthermore, let D1, D2 ⊆ br(M), let K ⊆ K, let S = (S1, . . . , Sn) be a belief state of M ,
and let S′ = (S1, . . . , Sn, Sn+1) be a belief state of Mmr(θ,K) where Sn+1 = {uncondr |
r ∈ D2} ∪ {removedr | r ∈ D1}. Then, for all 1 ≤ i ≤ n it holds that {ϕ (r) | r ∈
app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)} = {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.
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Figure 4.5: Contexts of the meta-reasoning encoding Mmr(θ,K) = (C1, C2, C3) from Exam-
ple 4.15. Only bridge rules r′1, r

′′
1 , d1(r1), d2(r1) of Mmr(θ,K) that stem from bridge rule

r1 ∈ br(M) are shown.

Proof. Let D1, D2 ⊆ br(M), let K ⊆ K, let S = (S1, . . . , Sn) be a belief state of M , and
let S′ = (S1, . . . , Sn, Sn+1) be a belief state of Mmr(θ,K) where Sn+1 = {uncondr | r ∈
D2} ∪ {removedr | r ∈ D1}. Furthermore, let i be arbitrary such that 1 ≤ i ≤ n holds.
We show that {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′)} = {ϕ (r) | r ∈
app(br i(M [D1, D2]), S)} holds.

“⊇”: Let s ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. Then s = ϕ (r) for some bridge rule
r such that either r ∈ br(M) \ D1 and S r, or r = cf (r2) where r2 ∈ D2. In the former
case, consider the bridge rule r1 of form (4.11) wrt. r. By construction, body(r1) = body(r) ∪
{not (n+1 : removedr)} and ϕ (r1) = ϕ (r). Since r /∈ D1, removedr /∈ Sn+1, and since S
and S′ agree on Si for i ∈ {1, . . . , n}, i.e., S ={1,...,n} S

′, it follows that S′ r1. Therefore
ϕ (r1) = ϕ (r) = s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2)∪K]), S′)}. In the latter
case, where r = cf (r2) and r2 ∈ D2 hold, observe that r2 ∈ D2 implies that uncondr2 ∈ Sn+1.
Consider the bridge rule r′2 of form (4.12) wrt. r2 and observe that ϕ (r′2) = ϕ (r2) = s while
body(r′2) = {(n+1 : uncondr2)}. Since uncondr2 ∈ Sn+1, it holds that S′ r′2, hence
s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}. Thus it follows that {ϕ (r) |
r ∈ app(br i(M [D1, D2]), S)} ⊆ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2)∪K]), S′)}.
“⊆”: Let s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′)}. Then there
exists some r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′) such that s = ϕ (r). Note
that r either is of form (4.11) or of form (4.12). In the former case, it holds that S′ r and
removedr1 /∈ Sn+1 where r1 ∈ br i(M) and r is the bridge rule of form (4.11) wrt. r1. Since
S and S′ agree on all belief sets from S1 to Sn, i.e., S ={1,...,n} S

′, and body(r) = body(r1) ∪
{not (n+1 : removedr)}, it holds that S r. Since removedr1 /∈ Sn+1 it furthermore holds
that r1 /∈ D1. This implies that r1 ∈ br i(M [D1, D2]) and consequently it holds that r1 ∈
app(br i(M [D1, D2]), S), thus s = ϕ (r) = ϕ (r1) ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.
If r is of form (4.12), body(r) = {(n+1 : uncondr2)} where r2 ∈ br i(M) and r is the
bridge rule of form (4.12) wrt. r2. Since r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2)∪K]), S′) and
r /∈ d2(D2) ∪ K, it follows that S′ r, hence uncondr2 ∈ Sn+1 and thus r2 ∈ D2. There-
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fore, it holds that cf (r2) ∈ app(br i(M [D1, D2]), S) and consequently ϕ (r2) = ϕ (r) =
s ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. In both cases it holds that {ϕ (r) | r ∈
app(br i(M

mr(θ,K)[d1(D1), d2(D2)∪K]), S′)} ⊆ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.

The next lemma shows that every protected diagnosis of a meta-reasoning MCS is exhibited
in the belief set of the observation context of every witnessing equilibrium of said diagnosis.

Lemma 4.4. Let M = (C1, . . . , Cn) be an MCS and Mmr(θ,K) = (C1, . . . , Cn, Cn+1) be a
meta-reasoning encoding. Given that D1, D2 ⊆ br(M), K ⊆ K, and S = (S1, . . . , Sn, Sn+1)
is a belief state of Mmr(θ,K),

Sn+1 ∈ ACCn+1(kbn+1 ∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)})

holds iff Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1} and θ(D1, D2,K) holds.

Proof. By definition of ACCn+1 (cf. Definition 4.18)

Sn+1 ∈ ACCn+1(kbn+1 ∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)})

holds iff Sn+1 = {removedr | r ∈ R1}∪{uncondr | r ∈ R2} and θ(R1, R2, R3) is true, where

R1 = {r ∈ br(M) | not_removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H},
R3 = {r ∈ K | ϕ (r) ∈ H}, and

H = {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)}.

To prove this lemma, it therefore suffices to show that R1 = D1, R2 = D2, and R3 = K.
Consider the set B of bridge rules of context Cn+1 in the MCS resulting from the application

of the diagnosis:

B = brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K])

=
(

brn+1(Mmr(θ,K)) \ d1(D1)
)
∪ cf

(
d2(D2) ∪K

)
=
((
d1(br(M)) ∪ d2(br(M)) ∪ K

)
\ d1(D1)

)
∪ cf

(
d2(D2) ∪K

)
.

Observe that every bridge rule r ∈ B is such that either body(r) = {⊥} or body(r) = {>}.
Hence, for any belief state S the set of applicable bridge rules, call it Bapp , is exactly the set of
rules whose body is >. Formally,

Bapp = {r ∈ B | body (r) = {>}} = app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S).

Recall that r ∈ d1(br(M)) ∪ d1(D1) ∪ cf
(
d2(D2) ∪K

)
implies that body(r) = {>}, while

r ∈ d2(br(M)) ∪ K implies that body(r) = {⊥}. Therefore,

Bapp = d1(br(M)) \ d1(D1) ∪ cf
(
d2(D2) ∪K

)
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and consequently it holds for the set H of heads of applicable bridge rules that

H = {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)}
= {ϕ (r) | r ∈ Bapp}
= {ϕ (r) | r ∈

(
d1(br(M)) \ d1(D1) ∪ cf (d2(D2) ∪K)

)
}

= {not_removedr | r ∈ br(M) \D1} ∪ {uncondr | r ∈ D2} ∪ {ϕ (r) | r ∈ K}.

Since the heads of brn+1 are unique, it holds for any rK ∈ K and r ∈ br(M) that uncondr 6=
ϕ (rK) 6= not_removedr and it also holds for any K ′ ⊆ K that the heads of K ′ are unique.
Consequently, it holds that

R1 = {r ∈ br(M) | not_removedr /∈ H} = {r ∈ br(M) | r ∈ D1} = D1

R2 = {r ∈ br(M) | uncondr ∈ H = {r ∈ br(M) | r ∈ D2} = D2

R3 = {r ∈ K | ϕ (r) ∈ H} = {r ∈ K | r ∈ K} = K.

Since it only remained to show that R1 = D1, R2 = D2, and R3 = K, the lemma is therefore
proven.

The following proposition shows that there is a one-to-one correspondence between diagnoses
of M and diagnoses of Mmr(θ,K).

Proposition 4.5. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding with protected
bridge rules brP , and let D1, D2 ⊆ br(M), K ⊆ K.

(1) Let S = (S1, . . . , Sn) be a belief state of M and let S′ = (S1, . . . , Sn, Sn+1) where
Sn+1 = {removedr | r ∈ D1} ∪ {uncondr | r ∈ D2}. Then, S ∈ EQ(M [D1, D2]) and
θ(D1, D2,K) holds iff S′ ∈ EQ(Mmr(θ,K)[d1(D1), d2(D2) ∪K]) holds.

(2) (D1, D2) ∈ D±(M) and θ(D1, D2,K) hold

iff (d1(D1), d2(D2) ∪K) ∈ D±(Mmr(θ,K), brP ) holds.

Proof. (1) Since Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1} and S′ =
(S1, . . . , Sn, Sn+1), all pre-conditions of Lemma 4.4 and Lemma 4.3 are satisfied; hence
we conclude the following.

By Lemma 4.4, θ(D1, D2,K) holds iff

Sn+1 ∈ ACCn+1

(
kbn+1

∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}
)
. (4.13)

By Lemma 4.3, for all 1 ≤ i ≤ n holds

{ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}

= {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.
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which implies that for all 1 ≤ i ≤ n it holds that

ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′))})

= ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}).

This in turn implies that for all 1 ≤ i ≤ n, it holds that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′))})

iff Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}). (4.14)

From (4.14) and (4.13) we therefore obtain that: θ(D1, D2,K) holds and for all 1 ≤ i ≤ n
it holds that Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S) if and only if for all
1 ≤ j ≤ n+ 1 it holds that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′))}).

This is equivalent to: θ(D1, D2,K) and S ∈ EQ(M [D1, D2]) hold iff it holds that S′ ∈
EQ(Mmr(θ,K)[d1(D1), d2(D2) ∪K]).

(2) This is a direct consequence of (1) and the fact that a diagnosis implies the existence of
a witnessing equilibrium and vice versa, i.e., (D1, D2) ∈ D±(M) iff there exists a belief
state S ∈ EQ(M [D1, D2]), for any M,D1, D2, and S. Thus

(D1, D2) ∈ D±(M) and θ(D1, D2,K) hold
iff θ(D1, D2,K) and (S1, . . . , Sn) ∈ EQ(M [D1, D2]) hold
iff (by (1)) (S1, . . . , Sn, Sn+1) ∈ EQ(Mmr(θ,K)[d1(D1), d2(D2) ∪K]) holds
iff (d1(D1), d2(D1) ∪K) ∈ D±(Mmr(θ,K)) holds.

It remains to show that (d1(D1), d2(D1) ∪K) ∈ D±(Mmr(θ,K)) iff (d1(D1), d2(D1) ∪
K) ∈ D±(Mmr(θ,K), brP ). This follows from (d1(D1)∪d2(D2)∪K)∩brP = ∅ (see Defi-
nition 4.18) and Proposition 4.1, which shows thatD±(Mmr(θ,K), brP ) ⊆ D±(Mmr(θ,K)),
i.e, every diagnosis with protected bridge rules also is a diagnosis.

The following lemma shows that the bridge rules of context Cn+1 in the MCS Mmr(θ,K)

are such that for a minimal diagnosis (D1, D2) ∈ D±m(Mmr(θ,K), brP ), a bridge rule r with
body(r) = {>} is only contained in D1 (or not modified at all), and a bridge rule r with
body(r) = {⊥} is only contained in D2 (or not modified at all).

Lemma 4.5. Let Mmr(θ,K) be a meta-reasoning encoding with protected bridge rules brP , and
let (D1, D2) ∈ D±m(Mmr(θ,K), brP ). Then, for every r ∈ br(Mmr(θ,K)) \ brP holds that:

(i) body(r) = {>} implies r /∈ D2 and

(ii) body(r) = {⊥} implies r /∈ D1.
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Proof. Since (D1, D2) ∈ D±m(Mmr(θ,K), brP ), there exists a witnessing equilibrium S ∈
EQ(Mmr(θ,K)[D1, D2]) of (D1, D2). Since (D1, D2) is a diagnosis with protected bridge rules,
it holds that (D1 ∪D2) ∩ brP = ∅, which by construction of Mmr(θ,K) implies that r ∈ brn+1.

For a proof by contradiction, we now show the following:

(i) if body(r) = {>} and r ∈ D2 then (D1 \ {r}, D2 \ {r}) ∈ D±(Mmr(θ,K), brP );

(ii) if body(r) = {⊥} and r ∈ D1 then (D1 \ {r}, D2) ∈ D±(Mmr(θ,K), brP ).

To show that the respective smaller diagnosis admits a witnessing equilibrium it suffices in the
following to consider only applicable bridge rules of Cn+1, because it is the only context of
Mmr(θ,K) with bridge rules that are not protected.

(i) Case body(r) = {>} and r ∈ D2. Then

ϕ (r) ∈ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[D1, D2]), S)}

since cf (r) ∈ app(brn+1(Mmr(θ,K)[D1, D2]), S). Now consider (D1 \ {r}, D2 \ {r}) ⊂
(D1, D2) and observe that r ∈ app(brn+1(Mmr(θ,K)[D1 \ {r}, D2 \ {r}]), S) since
r is a bridge rule of the modified system and body(r) = {>}. Consequently, S ∈
EQ(Mmr(θ,K)[D1 \ {r}, D2 \ {r}]) and (D1 \ {r}, D2 \ {r}) ∈ D±(Mmr(θ,K), brP ).
Note that this reasoning applies regardless of whether r ∈ D1 holds.

(ii) Case body(r) = {⊥} and r ∈ D1. Then

app(brn+1(Mmr(θ,K)[D1 \ {r}, D2]), S) = app(brn+1(Mmr(θ,K)[D1, D2]), S)

since r either is not applicable (left-hand side), or it is not a bridge rule of the modified
MCS (right-hand side). Consequently, S ∈ EQ(Mmr(θ,K)[D1 \ {r}, D2]) and therefore
(D1 \ {r}, D2) ∈ D±(Mmr(θ,K), brP ).

Each of these statements contradicts that (D1, D2) ∈ D±m(Mmr(θ,K), brP ), hence the state-
ment of the lemma follows.

We can apply the observation of Lemma 4.5 to regular diagnoses and contexts with unique
heads by considering brP = ∅.

Corollary 4.4. Let M be an MCS, let (D1, D2) ∈ D±m(M), and let Ci be a context of M . Then,
for every r ∈ br i it holds that body(r) = {>} implies r /∈ D1 and body(r) = {⊥} implies
r /∈ D1.

Proof. Consider the proof of Lemma 4.4, with brP = ∅. The statement here can be proven
analogously.

The following lemma shows that there are no diagnoses in D±m(Mmr(θ,K), brP ) other than
those which correspond to diagnoses of M .
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Lemma 4.6. Let M be an MCS and Mmr(θ,K) be some meta-reasoning encoding for M . For
every (R1, R2) ∈ D±m(Mmr(θ,K), brP ) there exist D1, D2 ⊆ br(M) and K ⊆ K such that
R1 = d1(D1) and R2 = d2(D2) ∪K.

Proof. Recall that brP contains all bridge rules of form (4.11) and (4.12), hence the only bridge
rules not in brP are those of brn+1, because brMmr(θ,K) = brP ∪ brn+1. Since brn+1 =
d1(br(M))∪ d2(br(M))∪K, it follows directly that for every (R1, R2) ∈ D±m(Mmr(θ,K), brP )
there existD1, D

′
1, D2, D

′
2 ⊆ br(M) andK,K ′ ⊆ K such thatR1 = d1(D1)∪d2(D′1)∪K ′ and

R2 = d1(D′2)∪d2(D2)∪K. Observe that for all r ∈ d2(D′1)∪K ′ it holds that body(r) = {⊥},
hence by Lemma 4.5 it follows that d2(D′1) ∪K ′ = ∅. Furthermore, it holds for all r ∈ d1(D′2)
that body(r) = {>}, hence by Lemma 4.5 it follows that d1(D′2) = ∅. Together, this means that
D′1 = D′2 = K ′ = ∅ and therefore it holds for every (R1, R2) ∈ D±m(Mmr(θ,K), brP ) that there
exist D1, D2 ⊆ br(M) and K ⊆ K such that R1 = d1(D1) and R2 = d2(D2) ∪K.

We can now combine Lemma 4.6 with Proposition 4.5 to establish the correspondence
between minimal θ-satisfying diagnoses of M and minimal diagnoses of Mmr(θ,K).

Proposition 4.6. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding, then the set
of minimal θ-satisfying diagnoses with protected bridge rules brP is

D±m(Mmr(θ,K), brP ) ={(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M), θ(D1, D2,K) holds,[
@(D′1, D

′
2) ∈ D±(M),K ′ ⊆ K :

(D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′1, D

′
2,K

′)holds
]
}.

Proof. By definition of minimal diagnosis, it holds that

D±m(Mmr(θ,K), brP ) =

{(R1, R2) |(R1, R2) ∈ D±(Mmr(θ,K), brP )

and there exists no (R′1, R
′
2) ∈ D±(Mmr(θ,K), brP )

such that (R′1, R
′
2) ⊂ (R1, R2)}

By Lemma 4.6, it holds for every (R1, R2) ∈ D±m(Mmr(θ,K), brP ) that there exist D1, D2 ⊆
br(M) and K ⊆ K such that R1 = d1(D1) and R2 = d2(D2) ∪K, hence we obtain that

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(d1(D1), d2(D2) ∪K) ∈ D±(Mmr(θ,K), brP )

and there exists no (d1(D′1), d2(D′2) ∪K ′) ∈ D±(Mmr(θ,K), brP )

such that (d1(D′1), d2(D′2) ∪K ′) ⊂ (d1(D1), d2(D2) ∪K)

holds for some K,K ′ ⊆ K}
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By Proposition 4.5 we know that (d1(D1), d2(D2) ∪ K) ∈ D±(Mmr(θ,K), brP ) holds iff
(D1, D2) ∈ D±(M) and θ(D1, D2,K) hold. Therefore we obtain

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(d1(D′1), d2(D′2) ∪K ′)⊂ (d1(D1), d2(D2) ∪K) and θ(D′1, D
′
2,K

′)

holds for some K,K ′ ⊆ K}.

Since d1 and d2 are bijective, (d1(D′1), d2(D′2) ∪ K ′) ⊂ (d1(D1), d2(D2) ∪ K) holds iff
(D′1, D

′
2 ∪K ′) ⊂ (D1, D2 ∪K) holds.

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′1, D

′
2,K

′)

holds for some K,K ′ ⊆ K}.

In the following, we say that θ is functional (or a function), if for every D1, D2 ⊆ br(M)
there exists at most one K ⊆ K such that θ(D1, D2,K) holds. We say that θ is functional
increasing if θ is functional and if θ(D1, D2,K), θ(D′1, D

′
2,K

′), and (D1, D2) ⊆ (D′1, D
′
2)

implies that K ⊆ K ′, where D1, D2, D
′
1, D

′
2 ⊆ br(M),K,K ′ ⊆ K.

For functional increasing θ we can extend the previous lemma.

Lemma 4.7. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding such that θ is
functional increasing. Then, the set of minimal θ-satisfying diagnoses with protected bridge rules
brP is

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2)∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K

′) holds for some K,K ′⊆K}

Proof. From Proposition 4.6 we know that

D±m(Mmr(θ,K), brP ) ={(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M), θ(D1, D2,K) holds,[
@(D′1, D

′
2) ∈ D±(M),K ′ ⊆ K :

(D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′1, D

′
2,K

′)holds
]
}.
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Because θ is functional increasing, it holds that (D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) holds iff

(D′1, D
′
2) ⊂ (D1, D2). We therefore obtain that:

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2)∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K

′) holds for some K,K ′⊆K}.

Filter Encoding

We use the meta-reasoning encoding to realise filters, by simply requiring that the observation
context becomes inconsistent, if the observed diagnosis does not pass the filter, i.e., we put
f(D1, D2) = 1 as the property θ(D1, D2,K) for K = ∅. Since no further bridge rules are
needed to realise filtered diagnoses, we pick K = ∅.

Definition 4.19. Let M be an MCS and let f be a filter. Let K = ∅ and let θ(D1, D2, ∅) hold iff
f(D1, D2) = 1. Then Mmr(θ,K) is the filter-encoding of M wrt. f , which we also denote by Mf .

Example 4.16. Reconsider the MCS M = (C1, C2) of Example 4.4 where two scientists write a
paper and diagnoses are to be filtered by a filter f if the authorship information is modified by a
diagnosis in an incoherent way. The filter f (see Example 4.4) is defined as follows:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2

1 otherwise

The resulting filter encoding Mf is the MCS Mmr(θ,K) = (C ′1, C
′
2, C3), which has the same

shape as the MCS of Example 4.15. It only differs in the contents of the observation/encoding con-
text C3 which now realises the filter f . We use ASP again for the logic of C3 = (Lasp

Σ , kb3, br3).

Recall that the knowledge-base formulas added by bridge rules to C3 are either of the form
uncondr or not_removedr and this information has to be exposed accordingly in the accepted
belief set. Also remember that the definition of the meta-reasoning encoding requires that every
accepted belief set only consists of beliefs in {removedr, uncondr | r ∈ br(M)}, but since no
other bridge rule of Mmr(θ,K) uses any other belief, we may allow further beliefs in the accepted
belief set, i.e., our ASP program may use additional atoms.

121



The knowledge base kb3 of C3 then is:

kb3 = { removedr1 ← notnot_removedr1 .

removedr2 ← notnot_removedr2 .

removedr3 ← notnot_removedr3 .

⊥ ← removedr3 , not removedr2 .

⊥ ← not removedr3 , removedr2 .

⊥ ← uncondr3 , not uncondr2 .

⊥ ← not uncondr3 , uncondr2 .}

The first three rules of kb3 ensure that the removal information in correct while nothing is needed
to ensure that the information about condition-free bridge rules is exposed (if bridge rule ri
is made unconditional, then the fact uncondri is added to kb3 by the bridge rule d2(ri) ∈
br3(Mmr(θ,K)) being applicable and hence uncondri is also present in the answer set and thus
in the belief set of C3.

The four constraints of kb3 finally encode the filter condition and they ensure that the context
has no acceptable belief set if the corresponding diagnoses are applied.

Observe that the definition of θ follows the definition of f and because f is an abstrac-
tion/generalisation of some desired actual behaviour, it is possible to use the desired actual
behaviour directly to realise the context Cn+1 of Mmr(θ,K), i.e., for a concrete use case where
some logic is used to describe which diagnoses should be filtered out, it is not really necessary
to first abstract the concrete case to a filter f , build θ accordingly and then derive a concrete
instantiation of Cn+1. Rather, it is sufficient to take the definition of the meta-reasoning encoding
and interpret it as the definition of the interfacing between the logic that does the filtering and the
rest of the MCS framework. The reason why we introduced filters in general lies in the fact that
this allows us to prove that all such filterings can be realised correctly. The following theorem
now shows that diagnoses with protected bridge rules of Mf indeed correspond one-to-one to
filtered diagnoses of M .

Theorem 4.3. LetM be an MCS, let f be a filter and letMf be the corresponding filter-encoding.
Then, D±m,f (M) = {(D1, D2) | (d1(D1), d2(D2)) ∈ D±m(Mf , brP )}.

Proof. Recall that Mf = Mmr(θ,K) where θ is defined such that θ(D1, D2, ∅) holds iff it holds
that f(D1, D2) = 1, hence θ is functional increasing. By Lemma 4.7 it therefore holds that

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2)∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K

′) holds for some K ′,K ′⊆K}
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which in case of Mf becomes

D±m(Mf , brP ) = {(d1(D1), d2(D2)) |(D1, D2) ∈ D±(M) and θ(D1, D2, ∅) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2) ⊂ (D1, D2) and θ(D′1, D

′
2, ∅) holds}.

By definition of Mf it furthermore holds that θ(D1, D2, ∅) holds iff f(D1, D2) = 1, hence we
obtain that

D±m(Mf , brP ) = {(d1(D1), d2(D2)) |(D1, D2) ∈ D±(M) and f(D1, D2) = 1

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2) ⊂ (D1, D2) and f(D′1, D

′
2) = 1}

Applying the definition of minimal-filtered diagnoses, we thus obtain that

D±m(Mf , brP ) = {(d1(D1), d2(D2)) | (D1, D2) ∈ D±m,f (M)}.

Note that this statement is equivalent to

D±m,f (M) = {(D1, D2) | (d1(D1), d2(D2)) ∈ D±m(Mf , brP )}.

To obtain all minimal-filtered diagnoses of an MCS M wrt. the filter f , it is therefore
sufficient to compute all subset-minimal diagnoses (with protected bridge rules) of the MCS
Mf = Mmr(θ,K). Note that this encoding does not come with increased computational cost,
since M and Mf have the same number of bridge rules possibly occurring in a diagnosis with
protected bridge rules. Consider Mf and the respective bridge rules, i.e., the set br(Mf ) \ brP =
d1(br(M)) ∪ d2(br(M)): since body(r) = {>} for r ∈ d1(br(M)) and body(r) = {⊥}
for r ∈ d2(br(M)), it follows from Corollary 4.4 that for every (R1, R2) ∈ D±m(Mf , brP )
it holds that r ∈ R1 ⇒ r ∈ d1(br(M)) and r ∈ R2 ⇒ r ∈ d2(br(M)). Hence, there are
2|d1(br(M))|× 2|d2(br(M))| possibly relevant diagnoses for Mf while there are 2|br(M)|× 2|br(M)|

possible diagnoses for M ; since |d1(br(M))| = |d2(br(M))| = |br(M)|, the problem size for
deciding whether a minimal-filtered diagnosis exists for M is the same as the problem size for
deciding whether a minimal diagnosis with protected bridge rules exists for Mf .

Preference Encoding

We now show how to use the meta-reasoning encoding Mmr(θ,K) for realising preferences. The
set K used in the meta-reasoning encoding plays a crucial role, since it is used to map a given
preference order on diagnoses to the ⊆ relation on K. This allows to select minimal �-preferred
diagnoses by considering ⊆-minimal diagnoses of Mmr(θ,K). Since the ⊆-minimality on K
should take precedence over the remaining modified bridge rules of Mmr(θ,K), we introduce a
lexicographic order on bridge rules in which the latter are behind those of K. As we show in
Section 4.4, the complexity of identifying a diagnosis with respect to prioritised bridge rules K is
not higher than identifying a minimal diagnosis.
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In the remainder of this section, we present two approaches to realise preferences. The first
approach is plain and simple, but comes at the cost of K being exponentially larger than br(M),
i.e., Mmr(θ,K) contains exponentially many more bridge rules than M . We also prove that the
approach is correct for total preference orders. The second approach adds only linearly many
bridge rules, specifically it holds for this approach that |K| = 4|br(M)| + 1, but it requires
that the original MCS M is cloned. So, first an MCS 2.M is built which consists of two
independent copies of M , and then the meta-reasoning encoding is applied on 2.M , i.e., the
resulting MCS is (2.M)mr(θ,K). We show that minimal �-preferred diagnoses can be selected
from (2.M)mr(θ,K) using this MCS and a slightly more involved diagnosis with prioritised bridge
rules. The complexity of selecting these diagnoses increases, but as it is later shown, it is still
worst-case optimal.

We come now to define the notion of a diagnosis with protected bridge rules and then continue
with the plain meta-reasoning encoding for total preference orders. In the following, we write
(D1, D2) ⊆brH (D′1, D

′
2) as shorthand for (D1 ∩ brH , D2 ∩ brH) ⊆ (D′1 ∩ brH , D′2 ∩ brH),

i.e., we denote by ⊆brH the restriction of ⊆ to the set brH ; furthermore, we write =brH for
an analogous restriction on =. To realise a total preference order, the following definition is
sufficient where we select from the set of minimal diagnoses with protected bridge rules those
that are minimal with respect to the prioritised bridge rules. The bridge rules that are marked as
prioritised take precedence for minimality. A prioritised-minimal diagnosis is subset-minimal
with respect to prioritised bridge rules (regardless of minimality of the remaining bridge rules).

Definition 4.20. Let M be an MCS with bridge rules br(M), protected rules brP ⊆ br(M), and
prioritised rules brH ⊆ br(M). The set of prioritised-minimal diagnoses is

D±(M, brP , brH) ={
D ∈ D±m(M, brP )

∣∣∀D′ ∈ D±m(M, brP ) : D′ ⊆brH D ⇒ D′ =brH D
}
.

Before showing the plain preference encoding, we show how an arbitrary order relation over
a pair of sets may be mapped to the ⊆-relation on an exponentially larger set, i.e., we map � on
diagnoses of an MCS M , to another set which is exponentially larger than the set of diagnoses of
M .

Definition 4.21. Let� be a preference relation on 2br(M)×2br(M) and let g : 2br(M)×2br(M) →
K be a bijective mapping where K is arbitrary. Then, the subset-mapping mapg� : 2br(M) ×
2br(M) → 2K is defined as follows. For every (D1, D2) ∈ 2br(M) × 2br(M):

mapg�(D1, D2) =
{
K ∈ K | K=g(D′1, D

′
2) for some (D′1, D

′
2) � (D1, D2)

}
∪
{
g(D1, D2)

}
.

Observe that mapg�(D1, D2) collects g(D′1, D
′
2) of all (D′1, D

′
2) “below” (D1, D2). Further-

more, by adding g(D1, D2) it establishes reflexivity regardless of the reflexivity of �.
The following lemma shows that the subset-mapping correctly maps a preference relation on

diagnoses to the subset-relation on an exponentially larger set. This allows to decide whether a
diagnosis is more preferred than another solely based on subset relationship.
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Lemma 4.8. Let � be a preference on diagnosis candidates of an MCS M , let K be a set, and
let g be a bijective mapping g : 2br(M) × 2br(M) → K. Then, for any (D1, D2) 6= (D′1, D

′
2) ∈

2br(M) × 2br(M) it holds that (D1, D2) � (D′1, D
′
2) iff mapg�(D1, D2) ⊆ mapg�(D′1, D

′
2).

Proof. “⇒”: Suppose that (D1, D2) � (D′1, D
′
2). We have to show that for every K ∈

mapg�(D1, D2) it holds that K ∈ mapg�(D′1, D
′
2). Let K ∈ mapg�(D1, D2) hold. Then it

follows by definition that K = g(D′′1 , D
′′
2) for some (D′′1 , D

′′
2) ∈ 2br(M) × 2br(M). In the case

that (D′′1 , D
′′
2) = (D1, D2) it trivially follows that (D′′1 , D

′′
2) � (D′1, D

′
2) and thus by definition

of mapg�(D′1, D
′
2) it holds that K ∈ mapg�(D′1, D

′
2). In the case that (D′′1 , D

′′
2) 6= (D1, D2)

it follows by the definition of mapg�(D1, D2) that (D′′1 , D
′′
2) � (D1, D2). Since (D1, D2) �

(D′1, D
′
2) and � is transitive, it follows that (D′′1 , D

′′
2) � (D′1, D

′
2) and consequently, it holds that

K ∈ mapg�(D′1, D
′
2). Thus for any K ∈ mapg�(D1, D2) it holds that K ∈ mapg�(D′1, D

′
2), i.e.,

mapg�(D1, D2) ⊆ mapg�(D′1, D
′
2).

“⇐”: Suppose that mapg�(D1, D2) ⊆ mapg�(D′1, D
′
2). We have to show that (D1, D2) �

(D′1, D
′
2). By definition g(D1, D2) ∈ mapg�(D1, D2) and hence g(D1, D2) ∈ mapg�(D′1, D

′
2).

By definition of mapg�(D′1, D
′
2) and since (D1, D2) 6= (D′1, D

′
2), it then follows that (D1, D2) �

(D′1, D
′
2).

We now use mapg� to map the preference of a total order � to the set K which occurs
in the meta-reasoning transformation Mmr(θ,K). To that end, we choose θ(D1, D2,K) such
that it holds iff mapg�(D1, D2) = K. By that, every diagnosis with protected bridge rules
(d1(D1), d2(D2) ∪ K) of Mmr(θ,K) contains the preference � encoded in K. Selecting a
diagnosis of Mmr(θ,K) where K is minimal then selects a preferred diagnosis according to �.

Definition 4.22. Let M be an MCS and let � be a preference relation. Furthermore, let

K = {(n+1 : diagD1,D2
)← ⊥. | D1, D2 ⊆ br(M)} (4.15)

and let g be a bijective function such that g(D1, D2) = (n+1 : diagD1,D2
) ← ⊥. for all

D1, D2 ⊆ br(M). Let θ(D1, D2,K) hold iff mapg�(D1, D2) = K. Then the MCS Mmr(θ,K) is
called the plain encoding of M wrt. �, which we also denote by Mpl�; all bridge rules of K are
prioritised, i.e., brH = K.

Note that since mapg� is a function, also θ is equivalent to a function 2br(M) × 2br(M) → K.

Example 4.17. We consider the hospital MCS M of Example 4.1 again using a preference order
on diagnoses that is similar to the one of Example 4.6, i.e., we prefer diagnoses that change the
bridge rules regarding health, r1, r2, as little as possible. To make the preference of the latter
example total, we use cardinality-minimality, i.e., given (D1, D2), (D′1, D

′
2) ∈ 2br(M) × 2br(M)

the preference order � is such that:

(D1, D2) � (D′1, D
′
2) iff

∣∣{r1, r2} ∩ (D1 ∪D2)
∣∣ ≤ ∣∣(D′1 ∪D′2) ∩ {r1, r2}

∣∣
The resulting MCS Mmr(θ,K) is shown in Figure 4.6, where for illustration purposes only

bridge rules stemming from r5 ∈ br(M) and some of the bridge rules of the observation context,
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Patient databaseC1 Medication C2

Billing C3

Observer/EncoderC4

r1

r2 r3r4

r′5

r′′5

d1(r5)

d2(r5)diag∅,∅
diag{r1},∅

diag{r1,r2},∅
. . .

. . .

. . .

diagbr(M),br(M)

Figure 4.6: Contexts and some bridge rules of the plain encoding Mpl� = (C1, C2, C3, C4)
of the hospital MCS wrt. � from Example 4.17. For illustration purposes, only bridge rules
stemming from r5 and some from K are shown; dashed lines indicate bridge rules r1, . . . , r4

from M whose corresponding bridge rules in Mpl� are not shown.

i.e., some of the bridge rules from K are indicated. Note that br4(Mmr(θ,K)) contains for every
possible diagnosis of M a certain bridge rule.

Regarding the logic and knowledge base employed in C4 = (Lasp
Σ , kb4, br4), we use ASP

again to demonstrate a possible realisation, where kb4 contains the following rules:

removedr ← notnot_removedr. ∀r ∈ br(M)
⊥ ← cur_diagD1,D2

, not diagD1,D2
. ∀D1, D2 ⊆ br(M)

cur_diagD′1,D′2 ← cur_diagD1,D2
. ∀(D′1, D′2) � (D1, D2)

cur_diagD1,D2
← removedr1 , . . . , removedrk , uncondr′1 , . . . , uncondr′m .

∀D1, D2 ⊆ br(M), D1 = {r1, . . . , rk}, D2 = {r′1, . . . , r′m}

Intuitively, the rules of the first line ensure that diagnosis observation is exposed correctly in an
accepted belief set of C4; the following constraints ensure the presence of condition-free bridge
rules (i.e., they map each diagnosis candidate to the corresponding bridge rule being condition-
free); rules of the third line guarantee that all bridge rules corresponding to more-preferred
diagnoses also need to be condition-free, following the ASP semantics these rules do the same
as mapg�(D1, D2); finally, the rules of the last line recognise one of the exponentially many
diagnosis candidates.
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The following lemma shows that the setD±m(Mpl�, brP ) of minimal diagnoses with protected
bridge rules of Mpl� corresponds to those diagnoses of M which are at the same time, preferred
according to � and ⊆-minimal. These diagnoses not yet correspond to minimal �-preferred
diagnoses since preference among⊆-incomparable diagnoses is not captured byD±m(Mpl�, brP ).

Lemma 4.9. Given an MCS M and a preference � on its diagnoses, it holds that

D±m(Mpl�, brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)∧
K = mapg�(D1, D2) ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}.

Proof. By Proposition 4.6 it holds that:

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(d1(D′1), d2(D′2) ∪K ′) ⊂ (d1(D1), d2(D2) ∪K) and

θ(D′1, D
′
2,K

′) holds for some K ′ ⊆ K}
= {(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) ∧ θ(D1, D2,K) ∧ ∀(D′1, D′2) ∈ D±(M):(

∃K ′ : θ(D′1, D′2,K ′)∧
(d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)

)
⇒ (d1(D′1), d2(D′2) ∪K ′) = (d1(D1), d2(D2) ∪K)}

Next we substitute θ by its definition, i.e., θ(D1, D2,K) iff mapg�(D1, D2) = K.

D±m(Mmr(θ,K), brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K ′ : mapg�(D′1, D

′
2) = K ′∧

(d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)
)

⇒ (d1(D′1), d2(D′2) ∪K ′) = (d1(D1), d2(D2) ∪K)}

Since d1 and d2 both are bijective, mapg�(D1, D2) = K, and mapg�(D′1, D
′
2) = K ′, it follows

that (d1(D′1), d2(D′2) ∪K ′) = (d1(D1), d2(D2) ∪K) holds iff (D′1, D
′
2) = (D1, D2). Hence,

D±m(Mmr(θ,K), brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K ′ : (mapg�(D′1, D

′
2) = K ′∧

(d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)
)

⇒ (D1, D2) = (D′1, D
′
2)}
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Towards the next step, we need to show that the following is true for (D1, D2) ∈ D±(M),
(D′1, D

′
2) ∈ D±(M), and mapg�(D1, D2) = K:(

mapg�(D′1, D
′
2) = K ′ ∧ (d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)

)
⇒ (D1, D2) = (D′1, D

′
2) (4.16)

iff(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2) (4.17)

Observe that (d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K) holds iff (D′1, D
′
2) ⊆ (D1, D2)

and K ′ ⊆ K both hold. Furthermore, by Lemma 4.8 it holds that K ′ = mapg�(D′1, D
′
2) ⊆

mapg�(D1, D2) = K iff (D′1, D
′
2) � (D1, D2), given that (D1, D2) 6= (D′1, D

′
2). In the case

that (D1, D2) = (D′1, D
′
2), the implication of (4.16) is trivially true; in this case, (4.17) also

holds since its consequent is the same. Therefore, (4.16) holds iff (4.17) holds. After substitution,
it therefore holds that:

D±m(Mpl�, brP ) = {(d1(D1), d2(D2)∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}

The following theorem shows the relation between minimal�-preferred diagnoses ofM wrt. a
total preference � and prioritised-minimal diagnoses of Mpl�. Observe that mapg� is injective
since mapg�(D1, D2) contains g(D1, D2), which by g being a bijection is different for every
diagnosis candidate (D1, D2). Therefore, mapg� is bijective on its range and it allows to establish
a one-to-one relation between minimal �-preferred diagnoses of M and prioritised-minimal ones
of Mpl�. Intuitively, this shows that for a total preference order, the set of prioritised-minimal
diagnoses of the plain encoding of M wrt. � can be used to select the minimal �-preferred
diagnoses of M .

Theorem 4.4. For every MCS M and total preference � on its diagnoses, it holds that

D±(Mpl�, brP , brH) =

{(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±m,�(M),mapg�(D1, D2) = K}.

Proof. In the following, let θ, K, and mapg� be according to Mpl� = Mmr(θ,K).
“⇒”: Let (R1, R2) ∈ D±(Mpl�, brP , brH), i.e., (R1, R2) ∈ D±m(Mpl�, brP ) and for all

(R′1, R
′
2) ∈ D±m(Mpl�, brP ) holds that (R′1, R

′
2) ⊆brH (R1, R2) ⇒ (R′1, R

′
2) =brH (R1, R2).

By Lemma 4.9 it holds that (R1, R2) = (d1(D1), d2(D2)∪K) where K = mapg�(D1, D2) and
(D1, D2) ∈ D±(M). To show that (D1, D2) ∈ D±m,�(M), we have to show that (D1, D2) is
�-preferred and subset minimal among all �-preferred diagnoses. Assume that (D1, D2) is not
�-preferred. Then by (4.2) there exists a diagnosis (D′1, D

′
2) ∈ D±(M) such that (D′1, D

′
2) �

128



(D1, D2), (D1, D2) 6= (D′1, D
′
2), and (D1, D2) 6� (D′1, D

′
2) all hold. Let mapg�(D′1, D

′
2) = K ′

and mapg�(D1, D2) = K. Since it holds that (D′1, D
′
2) 6= (D1, D2) and (D′1, D

′
2) � (D1, D2) it

follows from Lemma 4.8 that K ′ ⊆ K. From (D1, D2) 6� (D′1, D
′
2) it also follows that K 6⊆ K ′

holds and thus K ′ ⊂ K holds. This means that (R′1, R
′
2) = (d1(D′1), d2(D′2) ∪ K ′) ⊂brH

(d1(D1), d2(D2) ∪K) = (R1, R2) holds.
Now suppose (R′1, R

′
2) ∈ D±m(Mpl�, brP ) holds; then (R1, R2) ∈ D±(Mpl�, brP , brH)

contradicts that (R′1, R
′
2) ⊂brH (R1, R2). On the other hand, (R′1, R

′
2) /∈ D±m(Mpl�, brP )

implies that some (R′′1 , R
′′
2) ∈ D±m(Mpl�, brP ) exists with (R′′1 , R

′′
2) ⊂ (R′1, R

′
2), i.e., there

exist D′′1 , D
′′
2 ⊆ br(M) such that (D′′1 , D

′′
2) � (D′1, D

′
2) � (D1, D2) and K ′′ ⊆ K ′ ⊂ K both

hold where K ′′ = mapg�(D′′1 , D
′′
2), R′′1 = d1(D′′1), and R′′2 = d2(D′′2) ∪K ′′. Since K ′′ ⊂ K

it therefore holds that (R′′1 , R
′′
2) ⊂brH (R1, R2) and together with (R′′1 , R

′′
2) ∈ D±m(Mpl�, brP )

this contradicts that (R1, R2) ∈ D±(Mpl�, brP , brH). Since every case yields a contradiction,
it therefore follows that there exists no such (D′1, D

′
2), i.e., (D1, D2) indeed is a �-preferred

diagnosis.
It remains to show that (D1, D2) is subset-minimal among all�-preferred diagnoses. Towards

contradiction, assume there exists (D′1, D
′
2) ∈ D±�(M) such that (D′1, D

′
2) ⊂ (D1, D2). We

distinguish on how � relates (D1, D2) and (D′1, D
′
2).

• case (D1, D2) � (D′1, D
′
2) ∧ (D′1, D

′
2) � (D1, D2): since (R1, R2) ∈ D±m(Mpl�, brP ),

it holds by Lemma 4.9 that (D′1, D
′
2) � (D1, D2)∧ (D′1, D

′
2) ⊆ (D1, D2)⇒ (D′1, D

′
2) =

(D1, D2) which directly contradicts that (D′1, D
′
2) ⊂ (D1, D2).

• case (D1, D2) � (D′1, D
′
2) ∧ (D′1, D

′
2) 6� (D1, D2): in this case, (D′1, D

′
2) is not �-

preferred, because (D1, D2) ≺ (D′1, D
′
2). Hence, it contradicts that (D′1, D

′
2) ∈ D±�(M).

• case (D1, D2) 6� (D′1, D
′
2) ∧ (D′1, D

′
2) � (D1, D2): this case is analogous to the first one,

i.e., (R1, R2) ∈ D±m(Mpl�, brP ) contradicts that (D′1, D
′
2) � (D1, D2) and (D′1, D

′
2) ⊂

(D1, D2) both hold.

• case (D1, D2) 6� (D′1, D
′
2) ∧ (D′1, D

′
2) 6� (D1, D2): this case contradicts with � being

total.

Consequently, there exists no (D′1, D
′
2) ∈ D±�(M) such that (D′1, D

′
2) ⊂ (D1, D2) and therefore

it holds that (D1, D2) ∈ D±m,�(M).
“⇐”: Let (D1, D2) ∈ D±m,�(M). We have to show that

(d1(D1), d2(D2) ∪K) ∈ D±(Mpl�, brP , brH)

holds with mapg�(D1, D2) = K. By definition, it holds that

D±(Mpl�, brP , brH) = {D ∈ D±m(Mpl�, brP ) | ∀D′ ∈ D±m(Mpl�, brP ) :

D′ ⊆brH D ⇒ D′ =brH D}.
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While by Lemma 4.9 it holds that:

D±m(Mpl�, brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)∧
K = mapg�(D1, D2) ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}.

Observe that brH = K and
(
d1(br(M)) ∪ d2(br(M))

)
∩ K = ∅, hence (d1(D1), d2(D2) ∪

K) ⊆brH (d1(D′1), d2(D′2) ∪K ′) holds iff K ⊆ K ′ holds.
Therefore, it also holds that:

D±(Mpl�, brP ) = {(d1(D1), d2(D2) ∪K) ∈ D±m(Mpl�, brP ) | (4.18)

∀(D′1, D′2) ∈ D±(M) :[
∀(D′′1 , D′′2) ∈ D±(M) :

(
(D′′1 , D

′′
2) � (D′1, D

′
2)

∧ (D′′1 , D
′′
2) ⊆ (D′1, D

′
2)
)
⇒ (D′1, D

′
2) = (D′′1 , D

′′
2)
]

⇒
(
mapg�(D′1, D

′
2) ⊆ K ⇒ K = mapg�(D′1, D

′
2)
)
}.

First, we show that (d1(D1), d2(D2) ∪K) ∈ D±m(Mpl�, brP ), which by Lemma 4.9 holds
iff the following holds: (D1, D2) ∈ D±(M) ∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2). Since it holds that

(D1, D2) ∈ D±m,�(M), it also holds that (D1, D2) ∈ D±(M), and K = mapg�(D1, D2) by
construction.

It remains to show that ∀(D′1, D′2) ∈ D±(M) :
(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆

(D1, D2)
)
⇒ (D1, D2) = (D′1, D

′
2). Assume towards contradiction that there exists some

(D′1, D
′
2) ∈ D±(M) such that (D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2) and (D1, D2) 6=

(D′1, D
′
2), i.e., it holds for (D′1, D

′
2) that (D′1, D

′
2) ⊂ (D1, D2) ∧ (D′1, D

′
2) � (D1, D2). We

distinguish whether (D1, D2) � (D′1, D
′
2) also holds: if (D1, D2) � (D′1, D

′
2) holds, (D′1, D

′
2)

is �-preferred since (D1, D2) is. Since (D1, D2) ∈ D±m,�(M), (D1, D2) is subset-minimal
among all �-preferred diagnoses, which contradicts that (D′1, D

′
2) ⊂ (D1, D2) holds. In

the case that (D1, D2) 6� (D′1, D
′
2), it holds that (D1, D2) 6∈ D±�(M), since it holds that

(D′1, D
′
2) � (D1, D2) ∧ (D1, D2) 6= (D′1, D

′
2) ∧ (D1, D2) 6� (D′1, D

′
2). This contradicts that

(D1, D2) ∈ D±m,�(M). Hence it follows that no such (D′1, D
′
2) exists. Consequently, it holds

that (d1(D1), d2(D2) ∪K) ∈ D±m(Mpl�, brP ).
According to (4.18), it remains to show that for all (D′1, D

′
2) ∈ D±(M) it holds that[

∀(D′′1 , D′′2) ∈ D±(M) :
(
(D′′1 , D

′′
2) � (D′1, D

′
2) ∧ (D′′1 , D

′′
2) ⊆ (D′1, D

′
2)
)

⇒ (D′1, D
′
2) = (D′′1 , D

′′
2)
]
⇒
(
mapg�(D′1, D

′
2) ⊆ K ⇒ K = mapg�(D′1, D

′
2)
)
.

Towards contradiction, assume there exists (D′1, D
′
2) ∈ D±(M) such that ∀(D′′1 , D′′2) ∈ D±(M) :(

(D′′1 , D
′′
2) � (D′1, D

′
2) ∧ (D′′1 , D

′′
2) ⊆ (D′1, D

′
2)
)
⇒ (D′1, D

′
2) = (D′′1 , D

′′
2) holds and also

mapg�(D′1, D
′
2) ( K holds. Since mapg�(D′1, D

′
2) ( K, it follows that (D1, D2) 6= (D′1, D

′
2)

and hence by Lemma 4.8 that (D′1, D
′
2) � (D1, D2) and (D1, D2) 6� (D1

′, D2
′) both hold,

which implies (D1, D2) /∈ D±m,�(M), in contradiction to the assumption. Therefore, no such
(D′1, D

′
2) can exist. This proves that (d1(D1), d2(D2) ∪ K) ∈ D±(Mpl�, brP , brH), which

completes the proof.
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To select minimal �-preferred diagnoses based on an arbitrary preference order, another
encoding can be utilised, which we describe next.

Clone Encoding. We now present an approach to meta-reasoning in MCS which allows to
select minimal�-preferred diagnoses with respect to an arbitrary preference order. This approach,
called clone encoding, uses the meta-reasoning encoding Mmr(θ,K) as before, but it is applied
not to M directly, but to M ⊗M , i.e., to the MCS which consists of two independent copies
of M . Any diagnosis of M ⊗M thus contains two possible diagnoses of M and as such the
observation/encoding context is able to observe and compare two diagnoses.

The advantage of this approach is that it provably is correct for all preference orders and the
resulting MCS is only linearly larger than M . A drawback, however, is that cloning the original
MCS may be impractical for some MCS where expensive equipment is needed to implement the
contexts of M .

For the purpose of encoding preferences in general, we consider the extension of an MCS by
a clone of itself, i.e., for an MCS M = (C1, . . . , Cn), we define the MCS 2M = (C1, . . . , C2n)
to be the MCS which contains two independent clones of M ; formally, 2M = M ⊗M (cf. Sec-
tion 3.3 for the definition of ⊗ on MCS). For easier reference, we write 2.r to denote the clone of
the bridge rule r, i.e., 2.r = I(r) where I is the mapping wrt. M ⊗M . Note that 2.br(M) is the
set of bridge rules of M shifted by n, i.e., 2.br(M) is the set of bridge rules of the second clone
of M .

The following lemma shows that diagnoses of 2M correspond to diagnoses of M in such a
way that every diagnosis of 2M is composed of two diagnoses of M .

Lemma 4.10. Let M be an MCS. Then (D1, D2) ∈ D±(2M) holds iff there exist (D′1, D
′
2) ∈

D±(M) and (D′′1 , D
′′
2) ∈ D±(M) such that D1 = D′1 ∪ 2.D′′1 and D2 = D′2 ∪ 2.D′′2 .

Proof. Observe that 2M = M ⊗M and that 2.R = I(R) where I is the mapping wrt. M ⊗M .
The statement then follows directly from Proposition 3.10.

The underlying idea of the encoding is that a specific prioritised bridge rule tmax indicates
whether the diagnosis applied to the second clone is preferred over the diagnosis applied to the
first clone. Additionally, the diagnosis of the first clone is exhibited via prioritised bridge rules,
while the diagnosis of the second clone is only exhibited via non-prioritised bridge rules.

If the diagnosis applied to the second clone is more preferred than the one applied to the first,
then tmax needs not become condition-free. Similar to the saturation technique from Answer-Set
Programming, if for a given diagnosis of the first clone, there exists some more preferred diagnosis
of the second clone, then there exists a diagnosis where tmax is not included. So, a diagnosis D
such that no more preferred diagnosis D′ exists is maximal with respect to the inclusion of tmax ,
because there exists no more preferred diagnosis D′ of M that could occur at the second clone.
Selecting a diagnosis that modifies a minimal set of prioritised bridge rules and that contains
tmax thus selects a �-preferred diagnosis.

We define tmax as follows:

tmax : (2n+1 : ismax )← ⊥.
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To represent the diagnosis of the first clone, we use the following prioritised bridge rules. For a
bridge rule r ∈ br(M) let in1(r), in1(r), in2(r), and in2(r) denote the following bridge rules:

in1(r) : (2n+1 : in1(r))← ⊥.
in1(r) : (2n+1 : in1(r))← ⊥.
in2(r) : (2n+1 : in2(r))← ⊥.
in2(r) : (2n+1 : in2(r))← ⊥.

Notation. We denote a diagnosis candidate (D1, D2) ∈ 2br(M) × 2br(M) using these bridge
rules by the set K(D1, D2) = {in1(r) | r ∈ D1} ∪ {in1(r) | r /∈ D1} ∪ {in2(r) | r ∈
D2} ∪ {in2(r) | r /∈ D2}. The clone encoding then formally is as follows.

Definition 4.23. Let M = (C1, . . . , Cn) be an MCS and � a preference order. The clone
encoding of M wrt. � is the MCS 2Mmr(θ,K) where 2M = (C1, . . . , C2n) = M ⊗M ,

K =
⋃

r∈br(M)

{
(2n+1 : q)← ⊥., | q ∈ {in1(r), in1(r), in2(r), in2(r)}

}
∪ {tmax}

and for any R1, R2 ⊆ br(2M), and R3 ⊆ K, θ(R1, R2, R3) holds iff R1 = D1 ∪ 2.D′1,
R2 = D2 ∪ 2.D′2 and either

• (D1, D2) = (D′1, D
′
2) and R3 = K(D1, D2) ∪ {tmax} or

• (D′1, D
′
2) � (D1, D2), (D1, D2) 6� (D′1, D

′
2), and R3 = K(D1, D2).

We denote the clone encoding by M� = 2Mmr(θ,K).

Note that the second case above with (D′1, D
′
2) � (D1, D2) implies that (D1, D2), (D′1, D

′
2)

are two diagnoses of M , because the MCS 2M only admits a diagnosis if (D1, D2) ∈ D±(M)
and (D′1, D

′
2) ∈ D±(M) both hold (cf. Lemma 4.10). Also observe that the clone encoding

M� = (2M)mr(θ,K) = (M ⊗M)mr(θ,K) is linear in the size of M , since for every bridge rule
in M there exist 2 · 4 + 4 bridge rules in M�, where the factor 2 is from M ⊗M , the factor
4 is from the meta-reasoning encoding itself and the +4 is due to K. In summary, it holds that
|br(M�)| = 12 · |br(M)|+ 1, where the 1 is tmax .

Example 4.18. Consider the unit-based preference order �U of Example 4.11 over the MCS
M from Example 4.1. The resulting MCS M� = (C1, C2, C3, C4, C5, C6, C7) is based on two
clones of M , where the first comprises the contexts C1, C2, C3 and the second the contexts
C4, C5, C6. The context C7 finally is the observation/encoding context.
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We first recall the bridge rules of 2M = M ⊗M using the permutation I corresponding to
M ⊗M . Accordingly br(2M) is:

r1 : (2 : hyperglycemia)← (1 : hyperglycemia).

r2 : (2 : allow_animal_insulin)← not (1 : allergic_animal_insulin).

r3 : (3 : bill_animal_insulin)← (2 : give_animal_insulin).

r4 : (3 : bill_human_insulin)← (2 : give_human_insulin).

r5 : (3 : insurance_B)← (1 : insurance_B).

I(r1) : (5 : hyperglycemia)← (4 : hyperglycemia).

I(r2) : (5 : allow_animal_insulin)← not (4 : allergic_animal_insulin).

I(r3) : (6 : bill_animal_insulin)← (5 : give_animal_insulin).

I(r4) : (6 : bill_human_insulin)← (5 : give_human_insulin).

I(r5) : (6 : insurance_B)← (4 : insurance_B).

A graphical rendering of M� is given in Figure 4.7, where for readability only some of the
bridge rules of M� are shown. The set of bridge rules of the observation context C7 is as follows:

br7(M�) =
{

(7 : not_removedr1)← >. (7 : uncondr1)← ⊥.
(7 : not_removedr2)← >. (7 : uncondr2)← ⊥.

· · ·
(7 : not_removed I(r4))← >. (7 : uncond I(r4))← ⊥.
(7 : not_removed I(r5))← >. (7 : uncond I(r5))← ⊥.
(7 : in1(r1))← ⊥. (7 : in1(r1))← ⊥.
(7 : in2(r1))← ⊥. (7 : in2(r1))← ⊥.

· · ·
(7 : in1(r5))← ⊥. (7 : in1(r5))← ⊥.
(7 : in2(r5))← ⊥. (7 : in2(r5))← ⊥.

}
To fully realise the property θ and the preference order �U based on the units UM =

{treatment , billing} with bridge rules associated to units and dependency among units given as
in Example 4.11, we may use for the observation context C7 an ASP program that consists of the
following rules:

removedr ← notnot_removedr. ∀r ∈ br(M ⊗M) (4.19)

⊥ ← removedr, not in1(r). ∀r ∈ {r1, . . . , r5} (4.20)

⊥ ← not removedr, in1(r). ∀r ∈ {r1, . . . , r5}
⊥ ← not removedr, not in1(r). ∀r ∈ {r1, . . . , r5}
⊥ ← removedr, in1(r). ∀r ∈ {r1, . . . , r5}
⊥ ← uncondr, not in2(r). ∀r ∈ {r1, . . . , r5}
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⊥ ← uncondr, in2(r). ∀r ∈ {r1, . . . , r5}
⊥ ← not uncondr, not in2(r). ∀r ∈ {r1, . . . , r5}
⊥ ← uncondr, in2(r). ∀r ∈ {r1, . . . , r5} (4.21)

mod(clone1 , billing)← removedr. ∀r ∈ {r3, . . . , r5} (4.22)

mod(clone1 , billing)← uncondr. ∀r ∈ {r3, . . . , r5}
mod(clone2 , billing)← removedr. ∀r ∈ {I(r3), . . . , I(r5)}
mod(clone2 , billing)← uncondr. ∀r ∈ {I(r3), . . . , I(r5)}

mod(clone1 , treatment)← removedr. ∀r ∈ {r1, r2}
mod(clone1 , treatment)← uncondr. ∀r ∈ {r1, r2}
mod(clone2 , treatment)← removedr. ∀r ∈ {I(r1), I(r2)}
mod(clone2 , treatment)← uncondr. ∀r ∈ {I(r1), I(r2)} (4.23)

mod(clone1 , billing)← mod(clone1 , treatment). (4.24)

mod(clone2 , billing)← mod(clone2 , treatment). (4.25)

clones_different ← removedr, not removedr′ . ∀r ∈ br(M),∀r′ ∈ I(br(M)) (4.26)

clones_different ← not removedr, removedr′ . ∀r ∈ br(M),∀r′ ∈ I(br(M))

clones_different ← uncondr, not uncondr′ . ∀r ∈ br(M),∀r′ ∈ I(br(M))

clones_different ← not uncondr, uncondr′ . ∀r ∈ br(M),∀r′ ∈ I(br(M)) (4.27)

clone1 _modifies_more ← mod(clone1 , U), notmod(clone2 , U). (4.28)

clone2 _modifies_more ← mod(clone2 , U), notmod(clone1 , U).

clone1 _less_preferred ← clone1 _modifies_more, not clone2 _modifies_more. (4.29)

⊥ ← not ismax , clone1 _less_preferred , clones_different . (4.30)

⊥ ← not clone1 _less_preferred , clones_different . (4.31)

The intuition of the above rules is as follows: rules of form (4.19) expose the diagnoses of
both clones; the constraints of form (4.20)–(4.21) ensure that the diagnosis of the first clone is
exhibited via prioritised bridge rules; rules of form (4.22)–(4.23) deduce which units of bridge
rules have been modified in the first and second clone; rules (4.24) and (4.25) take care of the
dependency between the units treatment and billing; rules of form (4.26)–(4.27) infer whether
the diagnosis of the first clone is different from the diagnosis of the second clone; rules (4.28)–
(4.29) infer whether the modified units of the first clone is a superset of the modified units of the
second clone, which means the diagnosis of the second clone is more preferred than the one of the
first clone. Finally, the constraint (4.30) ensures that tmax is made condition-free if the diagnosis
of the second clone is more preferred than the diagnosis of the first clone, and the constraint
(4.31) ensures that only comparable diagnoses (or if both diagnoses are equal) yield a diagnosis
of the MCS M�.
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Figure 4.7: The MCS M� = (C1, C2, . . . , C7) of Example 4.18. Some of the bridge rules of the
observation context C7 are shown and the bridge rules stemming from r5 of the MCS M . Dashed
and gray lines indicate the other bridge rules of M ⊗M whose resulting bridge rules in M�

are omitted for presentation purpose. The prioritised bridge rules of M� are tmax and all bridge
rules of form ini(rj) and ini(rj).

For selecting minimal �-preferred diagnoses based on an arbitrary preference order, we
strengthen Definition 4.20 in two steps: first, if two diagnoses are equal considering their
prioritised bridge rules, then subset-minimality on the remaining bridge rules is taken into
account. Second, since we only want to select diagnoses where no more preferred ones exist, we
consider only prioritised-minimal diagnoses that contain the bridge rule tmax .

For the first step, let M be an MCS with bridge rules br(M), protected rules brP , and
prioritised rules brH ⊆ br(M). The set of subset-minimal prioritised-minimal diagnoses then is:

D±m(M, brP , brH) =
{
D ∈ D±m(M, brP )

∣∣ (4.32)[
∀D′ ∈ D±m(M, brP ) : D′ ⊆brH D ⇒ D′ =brH D

]
∧[

∀D′ ∈ D±m(M, brP ) :[(
∀D′′ ∈ D±m(M, brP ) : D′′ ⊆brH D′ ⇒ D′′ =brH D′

)]
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⇒
[
D′ ⊆br(M)\brH D ⇒ D =br(M)\brH D′

]]}
The first condition ensures that a diagnosis D is prioritised-minimal (lines one and two) and for
all other diagnoses D′ that are prioritised-minimal (lines three and four) it holds that D is a subset
of D′ (line five).

For the second step, we just add to D±m(M, brP , brH) the condition that D and D′ make tmax

condition-free. Formally:

Definition 4.24. Given an MCS M with protected bridge rules brP and prioritised bridge rules
brH , the set of subset-minimal prioritised-minimal (mpm) diagnoses wrt. tmax is

D±m,tmax
(M, brP , brH) =

{
D ∈ D±m(M, brP )

∣∣ tmax ∈ D∧[
∀D′ ∈ D±m(M, brP ) : D′ ⊆brH D ⇒ D′ =brH D

]
∧[

∀D′ ∈ D±m(M, brP ) :[(
∀D′′ ∈ D±m(M, brP ) : D′′ ⊆brH D′ ⇒ D′′ =brH D′

)
∧ tmax ∈ D′

]
⇒
[
D′ ⊆br(M)\brH D ⇒ D =br(M)\brH D′

]]}
where tmax ∈ D stands for D = (D1, D2) ∧ tmax ∈ D2.

Intuitively, D is an mpm-diagnosis, if it respects protected bridge rules and contains tmax

(first line), if it is preferred, i.e., it is minimal wrt. prioritised bridge rules brH among all other
diagnoses of the MCS M (second line), and if for all all other preferred diagnoses that contain
tmax (third and fourth line) it holds that D is subset-minimal wrt. regular bridge rules (fifth line).

As we show in the following section on complexity, this notion is computationally harder than
the notion of prioritised-minimal diagnosis. Nevertheless, the problem itself (i.e., the problem of
selecting a minimal �-preferred diagnosis) is shown to be as hard as this notion, which means
the notion is worst-case optimal.

Note that D,D′ ∈ D±(M, brP ) implies that D ⊆br(M)\brH D′ holds iff D ⊆br(M)\brH\brP
D′ holds, because D = (D1, D2) ∈ D±(M, brP ) implies that D1 ∩ brP = ∅ = D2 ∩ brP . The
same also holds for =br(M)\brH and =br(M)\brH\brP .

Towards proving thatD±m,tmax
applied onM� allows to select⊆-minimal, preferred diagnoses

of M according to �, we use the following lemmas about the set K(D1, D2). Recall that
K(D1, D2) is the set of prioritised bridge rules of M� that represent the diagnosis candidate
(D1, D2) of M , i.e., K(D1, D2) is as follows:

K(D1, D2) ={in1(r) | r ∈ D1} ∪ {in1(r) | r /∈ D1}∪
{in2(r) | r ∈ D2} ∪ {in2(r) | r /∈ D2}

The next lemma shows that the set K(D1, D2) is unique for every D1, D2 ⊆ br(M).

Lemma 4.11. Let M� be a clone encoding, D1, D2 ⊆ br(M), and R = K(D1, D2). Then,
there exists no D′1, D

′
2 ⊆ br(M) with (D1, D2) 6= (D′1, D

′
2) such that R = K(D′1, D

′
2).
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Proof. Towards contradiction, let (D1, D2) 6= (D′1, D
′
2) be such that K(D1, D2) = K(D′1, D

′
2).

By (D1, D2) 6= (D′1, D
′
2) follows that either D1 6= D′1 or D2 6= D′2. Let D1 6= D′1 and

observe that K(D1, D2) ∩ {in1(r) | r ∈ br(M)} = {in1(r) | r ∈ D1} 6= {in1(r) | r ∈
D′1} = K(D′1, D

′
2) ∩ {in1(r) | r ∈ br(M)}. Consequently K(D1, D2) 6= K(D′1, D

′
2) which

contradicts the assumption. The case D2 6= D′2 is similar. It therefore follows that for R =
K(D1, D2) no D′1, D

′
2 ⊆ br(M) with (D1, D2) 6= (D′1, D

′
2) exists such that R = K(D′1, D

′
2).

The next lemma shows that two sets K(D1, D2) and K(D′1, D
′
2) are incomparable iff

(D1, D2) is different from (D′1, D
′
2).

Lemma 4.12. Given Mmr(θ,K) and some D1, D2, D
′
1, D

′
2 ⊆ br(M), let R = K(D1, D2) and

let R′ = K(D′1, D
′
2); then R ⊆ R′ or R′ ⊆ R holds iff (D1, D2) = (D′1, D

′
2).

Proof. Let M be an MCS, D1, D2, D
′
1, D

′
2 ⊆ br(M), R = K(D1, D2), and R′ = K(D′1, D

′
2).

Observe that by definition of K it holds that |R| = |R′|. Hence, R ⊆ R′ or R′ ⊆ R only holds
iff R = R′. By Lemma 4.11 it holds that K is injective, i.e., R = R′ iff (D1, D2) = (D′1, D

′
2).

Consequently, R ⊆ R′ or R′ ⊆ R holds iff (D1, D2) = (D′1, D
′
2).

In the following, we write t(D1, D2) as a shorthand for the corresponding diagnosis in
the MCS M�, so t(D1, D2) = (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪K(D1, D2) ∪ {tmax}); for
D = (D1, D2) we also write t(D) to denote t(D1, D2). The following lemma shows the
relationship between �-preferred diagnoses of M and prioritised-minimal ones of M�.

Lemma 4.13. Given an MCS M and a preference order �, D ∈ 2br(M)× 2br(M) is �-preferred
iff both (1) t(D) ∈ D±m(M�, brP ) and (2) for every D′ ∈ D±m(M�, brP ) : D′ ⊆brH t(D) ⇒
D′ =brH t(D) hold.

Proof. “⇒”: Let D be �-preferred, then D ∈ D±(M) holds. We first show that t(D) ∈
D±m(M�, brP ) holds: by Proposition 4.6 and the definition of M� = Mmr(θ,K) it holds that
(d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪K(D1, D2) ∪ {tmax}) ∈ D±(M�, brP ) iff

1. (D1 ∪ 2.D1, D2 ∪ 2.D2) ∈ D±(2M) holds,

2. θ(D1 ∪ 2.D1, D2 ∪ 2.D2,K(D1, D2) ∪ {tmax}) holds, and

3. there exists no (D′1∪2.D′′1 , D
′
2∪2.D′′2) ∈ D±(2M) such that (i) (d1(D′1∪2.D′′1), d2(D′2∪

2.D′′2)∪K ′) ⊂ (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)∪K(D1, D2)∪{tmax}) and (ii) θ(D′1 ∪
2.D′′1 , D

′
2 ∪ 2.D′′2 ,K

′) holds for some K ′ ⊆ K.

We show that each of those statements holds:

1. Since D ∈ D±(M) holds, it follows from Lemma 4.10 that (D1 ∪ 2.D1, D2 ∪ 2.D2) ∈
D±(2M) holds.
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2. Recall that θ(R1, R2, R3) for M� = (2M)mr(θ,K) is defined such that it holds if R1 =
D1 ∪ 2.D1, R2 = D2 ∪ 2.D2, and R3 = K(D1, D2)∪ {tmax}, hence θ(D1 ∪ 2.D1, D2 ∪
2.D2,K(D1, D2) ∪ {tmax}) holds.

3. Towards contradiction, assume that there exists (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M)

and K ′ ⊆ K such that it holds that (d1(D′1 ∪ 2.D′′1), d2(D′2 ∪ 2.D′′2) ∪K ′) ⊂ (d1(D1 ∪
2.D1), d2(D2 ∪ 2.D2) ∪K(D1, D2) ∪ {tmax}) and θ(D′1 ∪ 2.D′′1 , D

′
2 ∪ 2.D′′2 ,K

′) holds.
Note that from this it follows that K ′ ⊆ K(D1, D2) ∪ {tmax} and from the definition of
θ that K ′ ⊆ K(D′1, D

′
2) ∪ {tmax}. Hence by Lemma 4.12, it follows that (D′1, D

′
2) =

(D1, D2). If (D′′1 , D
′′
2) = (D1, D2) then it holds by definition of θ that tmax ∈ K ′, i.e.,

(d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪K(D1, D2) ∪ {tmax}) = (d1(D′1 ∪ 2.D′′1), d2(D′2 ∪
2.D′′2)∪K ′) which contradicts that the latter is a proper subset of the former. If (D′′1 , D

′′
2) 6=

(D1, D2) holds, then by definition of θ it follows that (D′′1 , D
′′
2) � (D1, D2) = (D′1, D

′
2)

and (D1, D2) = (D′1, D
′
2) 6� (D′′1 , D

′′
2) both hold, which contradicts that (D1, D2) is

�-preferred. It therefore follows that no such (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M) exists.

Since all three statements hold, it follows that t(D) ∈ D±m(M�, brP ) holds.
It remains to show that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH t(D) holds.

Assume that T ∈ D±m(M�, brP ) is such that T ⊆brH t(D) holds. Then by definition of θ it holds
that T = (d1(T1∪2.T ′1), d2(T2∪2.T ′2)∪K(T1, T2)∪Tm) for some T1, T2, T

′
1, T

′
2 ⊆ br(M) and

Tm ⊆ {tmax}. Since K(T1, T2) ⊆ K, it holds by T ⊆brH t(D) that K(T1, T2) ⊆ K(D1, D2),
hence by Lemma 4.12 it follows that (T1, T2) = (D1, D2). Since (D1, D2) is �-preferred, i.e.,
there exists no (D′1, D

′
2) ∈ D±(M) such that (D′1, D

′
2) � (D1, D2) and (D1, D2) 6� (D′1, D

′
2)

both hold, it follows from the definition of θ that (T ′1, T
′
2) = (D1, D2) and consequently it holds

that Tm = {tmax}. Altogether this means that T = t(D) and thus it holds that T =brH t(D). It
therefore holds that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D)⇒ T =brH t(D).

“⇐”: Suppose t(D1, D2) ∈ D±m(M�, brP ) and ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒
T =brH t(D) with D = (D1, D2) hold. Since t(D1, D2) ∈ D±m(M�, brP ) holds, it follows
from Proposition 4.6 that (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)) ∈ D±(2M), hence by Lemma 4.10
it holds that (D1, D2) ∈ D±(M).

To show that D is �-preferred, consider the set F of diagnoses that are more preferred than
D, i.e., F = {D′′ ∈ D±(M) | D′′ � D,D 6� D′′}. Towards contradiction, assume that F is
non-empty, hence there exists some subset-minimal D′ ∈ F , i.e., D′ ∈ F and for all D′′ ∈ F
holds D′′ 6⊆ D′. Next we consider (T ′1, T

′
2) = (d1(D1 ∪D′1), d2(D2 ∪D′2) ∪K(D1, D2)) and

observe that θ(D1 ∪D′1, D2 ∪D′2,K(D1, D2)) holds, because D′ � D and D 6� D′ both hold.
Since (D1, D2) ∈ D±(M) and (D′1, D

′
2) ∈ D±(M) it holds that (D1∪2.D′1, D2∪2.D′2) ∈

D±(2M). Observe that there exists no other D′′ ⊂ D′ with D � D′′, D′′ 6� D, and D′′ ∈
D±(M). Therefore, there exists no (D′′1 , D

′′
2) ∈ D±(M) such that (d1(D1 ∪ 2.D′′1), d2(D2 ∪

2.D′′2) ∪K(D1, D2)) ⊂ (T ′1, T
′
2) and θ(D1 ∪ 2.D′′1 , D2 ∪ 2.D′′2 ,K(D1, D2)) both hold. Thus

Proposition 4.6 applies and it follows that (T ′1, T
′
2) ∈ D±m(M�, brP ). Observe that (T ′1, T

′
2) ⊆brH

t(D) since T ′2 ∩ brH = K(D1, D2) ∪ {tmax} and for t(D) = (T1, T2) holds T2 ∩ brH =
K(D1, D2). This directly contradicts that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D)⇒ T =brH t(D)
holds. Thus the set F cannot be non-empty, i.e., there exists no D′ ∈ D±(M) such that D′ � D
and D 6� D′ both hold. Therefore, D is �-preferred.
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We immediately obtain from the previous lemma that D±(M�, brP , brH) suffices to obtain
those diagnoses of M that are �-preferred according to �.

Theorem 4.5. Let M be an MCS and � be a preference on diagnoses of M . Then D ∈ D±(M)
is �-preferred iff t(D) ∈ D±(M�, brP , brH) holds.

Proof. Recall that D±(M, brP , brH) =
{
D ∈ D±m(M, brP )

∣∣ ∀D′ ∈ D±m(M, brP ) : D′ ⊆brH
D ⇒ D′ =brH D

}
. Hence, t(D) ∈ D±(M�, brP , brH) holds iff t(D) ∈ D±m(M�, brP )

holds and for every D′ ∈ D±m(M�, brP ) it holds that D′ ⊆brH t(D) ⇒ D′ =brH t(D)
}

.
By Lemma 4.13 this condition holds iff D is �-preferred. In summary, D is �-preferred iff
t(D) ∈ D±(M�, brP , brH) holds.

Note that t(D) ∈ D±(M�, brP , brH) implies that tmax ∈ t(D); but there also are diagnoses
T ∈ D±(M�, brP , brH) such that tmax /∈ T . Nevertheless, it follows directly from the definition
of M� that for any T ∈ D±(M�, brP , brH) with tmax ∈ T there exist D1, D2 ⊆ br(M) such
that T = t(D1, D2). So, diagnoses of D±(M�, brP , brH) that contain tmax correspond one-to-
one to �-preferred diagnoses of M .

The next theorem shows that the clone encoding M� and the notion of mpm-diagnosis
D±m,tmax

allows to select all minimal �-preferred diagnoses of M according to �. This theorem
therefore establishes that the clone encoding is sound and complete.

Theorem 4.6. Let M be an MCS and � be a preference order on diagnoses of M . Then
(D1, D2) ∈ D±m,�(M) holds iff t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) holds.

Proof. “⇒”: Let D = (D1, D2) ∈ D±m,�(M) hold. Then D ∈ D±�(M) holds, i.e., D is
�-preferred and D ∈ D±(M) holds. From Lemma 4.13 we then conclude that t(D) ∈
D±m(M�, brP ) and that the following holds: ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH

t(D). By construction of t(D) it furthermore holds that tmax ∈ t(D). Hence it remains to show
that ∀T ′ ∈ D±m(M�, brP ) :

[(
∀T ′′ ∈ D±m(M�, brP ) : T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′

)
∧ tmax ∈

T ′
]
⇒
[
T ′ ⊆br(M�)\brH t(D)⇒ t(D) =br(M�)\brH T ′

]
.

Towards contradiction, assume that T ′ ∈ D±m(M�, brP ) exists with
(
∀T ′′ ∈ D±m(M�, brP ) :

T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′
)
∧ tmax ∈ T ′ and T ′ ⊂br(M�)\brH t(D). Note that the definition

of θ and tmax ∈ T ′ together imply that there exists some D′ = (D′1, D
′
2) with D′1, D

′
2 ⊆ br(M)

such that T ′ = t(D′) holds. Further note that T ′ = t(D′) satisfies all conditions of Lemma 4.13,
thus it holds that D′ ∈ D±(M) and that D′ is �-preferred.

From T ′ = t(D′) ⊂br(M�)\brH t(D) it follows that (d1(D′1 ∪ 2.D′1), d2(D′2 ∪ 2.D′2)) ⊂
(d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)) and since d1, d2, and 2. are bijective, it holds that (D′1, D

′
2) ⊂

(D1, D2). Since D′ is �-preferred, this contradicts that D is subset-minimal among all �-
preferred diagnoses, i.e., it contradicts that D ∈ D±m,�(M). Therefore no such T ′ can exist and
it holds that t(D) ∈ D±m,tmax

(M�, brP , brH).
“⇐”: Let t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) hold. Since t(D1, D2) ∈ D±m(M�, brP )
and tmax ∈ t(D1, D2) hold, it follows from Lemma 4.13 that D = (D1, D2) ∈ D±(M) and that
D is �-preferred. It remains to show that D is subset-minimal among diagnoses in D±�(M).

Towards contradiction, assume that there exists D′ ∈ D±�(M) with D′ ⊂ D. Since D′ is �-
preferred and D′ ∈ D±(M) holds, it follows from Lemma 4.13 that t(D′) ∈ D±m(M�, brP ) and
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∀T ∈ D±m(M�, brP ) : T ⊆brH t(D′) ⇒ T =brH t(D′) holds. Let T ′ = t(D′). Then it holds
for T ′ that

(
∀T ′′ ∈ D±m(M, brP ) : T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′

)
∧ tmax ∈ T ′. Let T = t(D).

Because d1, d2, and 2. are bijective and D′ ⊂ D, it follows that
[
T ′ ⊆(br(M)\brH) T ⇒

T =br(M)\brH T ′
]

does not hold. This contradicts that t(D1, D2) ∈ D±m,tmax
(M�, brP , brH)

holds. Therefore no such D′ exists and it holds that D is subset-minimal among D±�(M), i.e.,
D ∈ D±m,�(M) holds.

Recall that, given a CP-netN compatible with an MCSM , the minimal�-preferred diagnoses
according to �N and the optimal ones according to N coincide, i.e., D±opt(M,N) = D±

m,�N (M)
(cf. Proposition 4.2). One thus can realise the selection of optimal diagnoses according to a
CP-net using the clone encoding M�

N
and the methods provided in this section. Also note that

the size of M�
N

is only linearly larger than M .
Since the approaches only specify some of the behaviour of the observation context, the

concrete choice of logic to use and realise the observation is open to the choice of the user. This
is especially useful for preference formalisms like CP-nets where algorithms may be chosen
according to the computational complexity of the employed CP-net.

De-centralized meta-reasoning: All approaches at meta-reasoning use one central observation
context which knows all bridge rules and knows for each bridge rule whether and how it is
modified. Although this observation context does not know the actual status of the information
exchange, it is still violating information hiding to some extent. In the previous chapter the
decomposition of a context is investigated and some criteria are given which preserve a one-to-one
correspondence between the diagnoses of the original MCS and the MCS where one context
is decomposed into two contexts (cf. Proposition 3.11). These results suggest that the central
observation context of the filter encoding Mf and the clone encoding M� may be decomposed
without interfering with the correctness of the diagnosis observations.

Indeed, if a filter f for a given MCS M is such that there exists A,B ⊂ br(M) with
A ∪ B = br(M) and A ∩ B = ∅ and for all D1, D2 ⊆ br(M) it holds that f(D1, D2) = 1 iff
f(D1 ∩ A,D2 ∩ A) = 1 and f(D1 ∩ B,D2 ∩ B) = 1, then the observation context of Mf =
(C1, . . . , Cn, Cn+1) is decomposable. Intuitively, f is such that the modifications of bridge rules
in A can be checked independently from the modifications of bridge rules in B and vice versa.
The decomposition ofCn+1 then is based on the following sets: brAn+1 = {d1(r), d2(r) | r ∈ A},
brBn+1 = {d1(r), d2(r) | r ∈ B}, OUTAn+1 = {removedr, uncondr | r ∈ A}, and OUTBn+1 =
{removedr, uncondr | r ∈ B}.

Since the meta-reasoning encoding does not yield a specific knowledge base for Cn+1, we
cannot state the decomposed knowledge base in general, but for any reasonable logical formalism
that realises the check whether f(D1, D2) = 1 it is possible to realise the checks whether
f(D1 ∩A,D2 ∩A) = 1 and whether f(D1 ∩B,D2 ∩B) = 1 by two (independent) knowledge
bases. These knowledge bases then complete the decomposition of the observation context. If
the filter f permits it, this decomposition can be repeated several times, where each time one
context is decomposed into two independent ones, until the observation of diagnoses is fully
decentralised.
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Example 4.19. Consider the MCS Mf = (C1, C2, C3) of Example 4.16 realising the filter f on
the MCS M whose bridge rules are br(M) = {r1, r2, r3}. Recall that f is defined by:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2

1 otherwise

Obviously, br(M) can be partitioned intoA = {r2, r3} andB = {r3}, because for allD1, D2 ⊆
br(M) holds that f(D1 ∩B,D2 ∩B) = 1 and f(D1 ∩A,D2 ∩A) = f(D1, D2). The resulting
sets for decomposing C3 then are as follows: brA3 = {d1(r2), d2(r2), d1(r3), d2(r3)}, brB3 =
{d1(r1), d2(r1)}, OUTA3 = {removedr2 , uncondr2 , removedr3 , uncondr3}, and OUTB3 =
{removedr1 , uncondr1}.

Since the knowledge base kb3 of Mf uses ASP, we can easily get the knowledge bases kbA3
and kbB3 by partitioning kb3:

kbA3 = { removedr2 ← notnot_removedr2 .

removedr3 ← notnot_removedr3 .

⊥ ← removedr3 , not removedr2 .

⊥ ← not removedr3 , removedr2 .

⊥ ← uncondr3 , not uncondr2 .

⊥ ← not uncondr3 , uncondr2 .}
kbB3 = { removedr1 ← notnot_removedr1 .

The resulting decomposed MCS then is M ′ = (C ′1, C
′
2, C

A
3 , C

B
3 ) whose remaining details follow

Definition 3.12. By Proposition 3.11 the diagnoses of M ′ correspond one-to-one to the diagnoses
of Mf . Since diagnoses with protected bridge rules are directly based on ordinary diagnoses,
these results carry over, and M ′ can be used to obtain minimal filtered diagnoses of M , where
the filter itself is realised in a decentralised way.

Regarding preferences and the clone encoding M�, the decomposition results, however, are
not yet sufficient, because of the bridge rule tmax which must be forced to be made condition-free
whenever the diagnosis of the second clone inM� is less (or equally) preferred than the diagnosis
of the first component. This requires some additional information flow between the decomposed
contexts; in fact, it only requires one additional bridge rule that signals to that context of the
decomposition where tmax belongs to, that tmax should be forced to be made condition-free.
Intuitively, one protected bridge rule is sufficient for that, since it can transport all that is required
and by protecting it, it is guaranteed to be not modified by any diagnosis. We assume that the
aforementioned decomposition results can be lifted to diagnoses with protected bridge rules such
that additional information flow between the decomposed contexts is allowed using protected
bridge rules. Such decomposition results are interesting in their own, but outside the scope of this
thesis.
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Context Checking (D1, D2)
?
∈

complexity D±m(M) D±m(M, brP ) D±(M, brP , brH) D±m,tmax
(M, brP , brH)

CC(M) MCSDm MCSDPm MCSDPH MCSDPHm,tmax

P DP
1 DP

1 DP
1 in ΠP

2

NP DP
1 DP

1 DP
1 in ΠP

2

ΣP
i , i ≥ 1 DP

i DP
i DP

i in ΠP
i+1

Proposition cf. Section 3.4 4.7 4.8 4.9

Table 4.1: Membership results of the computational complexity of deciding whether a diagnosis
candidate is protected, prioritised-minimal, or an mpm-diagnosis. If at least one context is hard
for the given context complexity, then hardness also holds for MCSDPm and MCSDPH.

4.4 Computational Complexity

This section analyses the computational complexity of the more sophisticated notions of diagnosis
in an MCS that are introduced in the preceding sections. We show that deciding whether a pair
D = (D1, D2) of sets of bridge rules is a subset-minimal diagnosis with protected bridge rules
brP of M is not harder than deciding whether D is a subset-minimal diagnosis, i.e., deciding
whether D ∈ D±m(M, brP ) holds is not harder than deciding whether D ∈ D±m(M) holds. We
also demonstrate that the same is true for prioritised-minimal diagnoses, i.e., deciding whether
D ∈ D±(M, brP , brH) holds is as hard as deciding whether D ∈ D±m(M) holds. This notion of
diagnosis can be applied to the plain encoding Mpl� for total preference orders to select minimal
�-preferred diagnoses according to a total preference order �. The drawback of this approach,
however, is the exponentially many bridge rules in Mpl�.

Since the clone encoding M� incurs no exponential blow-up of bridge rules, it is reasonable
to expect that the computational complexity of deciding whetherD is a subset-minimal prioritised-
minimal diagnosis wrt. tmax , i.e., deciding whether D ∈ D±m,tmax

(M, brP , brH) holds, is higher
than the one of deciding whether D ∈ D±m(M) holds. Indeed, we prove in the following that
deciding whether D ∈ D±m(M, brP , brH) holds is in ΠP

2 for context complexity CC(M) in NP.
In contrast to this deciding whether D ∈ D±m(M) holds is in DP

1 for the same context complexity.
Since deciding whether t(D) ∈ D±m,tmax

(M�, brP , brH) holds is only a means to de-
cide whether D ∈ D±m,�(M) holds, we also investigate the lower bound for the latter prob-
lem. We prove that it is ΠP

2 -hard, hence we show that the clone encoding using M� and
D±m,tmax

(M�, brP , brH) is in fact worst-case optimal.
In Table 4.1 the results for the introduced notions of diagnosis are summarised; the table also

shows the names of the corresponding decision problems as introduced in the remainder of this
section. The rest of this section finally contains statements and proofs of these complexity results.

Recall that MCSDm is the problem of deciding whether for a given D ∈ 2br(M) × 2br(M) it
holds that D ∈ D±m(M). Analogous to that, we denote by MCSDPm the problem of deciding
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whether D ∈ D±m(M, brP ) holds for given D ∈ 2br(M) × 2br(M), MCS M , and brP ⊆ br(M).

Proposition 4.7. The computational complexity (hardness and membership) of MCSDm in
Table 4.1 is the same as for MCSDPm.

Proof. In the remainder of this proof we assume C to be the computational complexity of
MCSDm.

Membership: In the following we give a polynomial-time reduction ≤pm from MCSDPm to
MCSDm. Given an instance of MCSDPm, i.e., given an MCS M , a set brP ⊆ br(M), and a
diagnosis candidate D ∈ 2br(M) × 2br(M), we define ≤pm such that

(M, brP , D) 7→

{
(M,D) if D1 ∩ brP = ∅ = D2 ∩ brP where D = (D1, D2)

(M⊥, (∅, ∅)) otherwise

where M⊥ = (C⊥), C⊥ = (Lasp
Σ , kb⊥, br⊥), br⊥ = {(1 : a) ← >.}, and kb⊥ = {⊥ ← a.} is

such that (∅, ∅) /∈ D±m(M⊥). Intuitively, the reduction checks whether D contains bridge rules
from brP and if so, maps to an instance which is not in MCSDm. If D contains no bridge rules
from brP , then ≤pm simply drops brP . Since the check whether D contains bridge rules of brP is
possible in polynomial time, ≤pm is a polynomial-time many-one reduction.

It remains to show that indeed (M, brP , D) is a yes-instance of MCSDPm iff≤pm (M, brP , D)
is a yes-instance of MCSDm.

“⇒”: Let (M, brP , D) be a yes-instance of MCSDPm, i.e., D ∈ D±m(M, brP ) holds. Then,
D = (D1, D2) is such that D1 ∩ brP = ∅ = D2 ∩ brP , hence ≤pm (M, brP , D) = (M,D). By
Proposition 4.1 it holds that D±m(M, brP ) ⊆ D±m(M), hence it follows that D ∈ D±m(M) holds,
i.e., (M,D) is a yes-instance of MCSDm.

“⇐”: Let ≤pm (M, brP , D) be a yes-instance of MCSDm. Note that it cannot be the case that
≤pm (M, brP , D) = (M⊥, (∅, ∅)), because (∅, ∅) /∈ D±m(M⊥) contradicts that ≤pm (M, brP , D)
is a yes-instance of MCSDm. Consequently, it holds that ≤pm (M, brP , D) = (M,D) and thus
D = (D1, D2) is such that D1 ∩ brP = ∅ = D2 ∩ brP . Furthermore, D ∈ D±m(M) holds,
thus it follows that D ∈ D±(M, brP ) holds. Assume that D /∈ D±m(M, brP ) holds. Then
there exists D′ ⊂ D such that D′ ∈ D±m(M, brP ) holds. By Proposition 4.1 then follows that
D′ ∈ D±m(M), which contradicts that D ∈ D±m(M). Therefore no such D′ exists and it follows
that D ∈ D±m(M, brP ) holds.

Since ≤pm is a polynomial reduction from MCSDPm to MCSDm, it follows that the com-
putational complexity of MCSDPm is in C, i.e., the same complexity class where MCSDm is
in.

Hardness: Let D ∈ D±m(M) be hard for some complexity class C. Observe that by definition
of diagnoses with protected bridge rules, it holds that D ∈ D±m(M) is true iff D ∈ D±m(M, ∅)
is true. Since deciding whether D ∈ D±m(M) is C-hard, it thus follows that deciding whether
D ∈ D±m(M, brP ) also is C-hard.

Now we consider the problem MCSDPH which is defined as follows: given an MCS M , a
diagnosis candidate D ∈ 2br(M) × 2br(M), protected bridge rules brP ⊆ br(M), and prioritised
bridge rules brH ⊆ br(M), decide whether it holds for every T ∈ D±m(M, brP ) that T ⊆brH
D implies T =brH D. In other words, MCSDPH is the problem of deciding whether D ∈
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M ′

M ′ ⊗M

Figure 4.8: The reduction from MCSDPH to MCSDPm exemplified on the MCS M =
(C1, C2, C3) with two bridge rules br(M) = {r1, r2}, with r1 : (2 : b) ← (1 : a)., and
r2 : (3 : d)← (2 : c)., protected bridge rules brP = ∅, and prioritised bridge rules brH = {r2},
thus Rreg = {r1}. Shown is the resulting MCS M ′ ⊗M ; its components are indicated in gray.

D±(M, brP , brH) holds. As we later show, this problem is in the same complexity class as
deciding whether D ∈ D±m(M, brP ).

We now present a polynomial-time reduction from MCSDPH to MCSDPm. We remark that a
direct membership proof would be simpler, but the reduction is of interest in its own.

The underlying idea of the reduction is that, given an MCS M with protected bridge rules
brP and prioritised bridge rules brH , we simulate the modifications of regular bridge rules
inside the resulting MCS. The set Rreg of regular (non-prioritised, non-protected) bridge rules is
Rreg = br(M) \ brH \ brP and their modifications can be simulated by using a meta-reasoning
transformation Mmr(θ,K) = (C1, . . . , Cn+1) where the bridge rules of Cn+1 which correspond
to modifications of bridge rules in Rreg take their values from an additional context Cn+2

which generates all possible modifications, i.e., every possible modification corresponds to an
acceptable belief set of Cn+2. In the resulting MCS M ′ = (C1, . . . , Cn+2) we protect all bridge
rules except those that correspond to modifications of bridge rules in brH , i.e., every diagnosis of
M ′ corresponds to one (or more) diagnoses of M , but the diagnoses of M ′ only contain bridge
rules corresponding to subsets of brH . Hence any minimal diagnosis of M ′ is ⊆brH -minimal
wrt. M . To ensure that the diagnosis indeed is ⊆-minimal, we further add a copy of M , i.e., the
resulting MCS is M ′ ⊗M where M ′ ensures minimality wrt. ⊆brH and M ensures minimality
wrt. ⊆. An illustration of the resulting MCS is given in Figure 4.8.

We now give the formal definition of the reduction. Given an MCS M and a set Rreg ⊆
br(M), let K = ∅ and let θ be such that for all D1, D2 ⊆ br(M) the property θ(D1, D2, ∅)
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holds. We craft an MCS based on the meta-reasoning MCS Mmr(θ,K) = (C1, . . . , Cn, Cn+1) to
obtain an MCS where the modification of all bridge rules in Rreg is hidden in the set of possible
belief states. To that end, we introduce another context Cn+2 with no bridge rules and whose
acceptable belief sets encode all respective modifications of bridge rules of Rreg . Formally,
Cn+2 = (Lasp

Σ , kbn+2, ∅) where

kbn+2 = {not_removedr ← not removedr | r ∈ Rreg}
∪ {not_removedr ← not removedr | r ∈ Rreg}
∪ {uncondr ← notnot_uncondr | r ∈ Rreg}
∪ {not_uncondr ← not uncondr | r ∈ Rreg}.

Observe that for every D1, D2 ⊆ Rreg , there is a belief set Sn+2 with {not_removedr | r ∈
D′1} ∪ {uncondr | r ∈ D2} = Sn+2 ∩

(
{not_removedr, uncondr | r ∈ Rreg}

)
; furthermore,

since Cn+2 has no bridge rules, it follows that Sn+2 ∈ ACCn+2(kbn+2 ∪ app(brn+2, S)) holds
for all belief states S = (S1, . . . , Sn+2).

Recall that all bridge rules of Cn+1 are either of the form (n+ 1 : not_removedr)← >. or
of the form (n+ 1 : uncondr)← ⊥. (with r ∈ br(M)). Let Cn+1 = (L, kbn+1, brn+1); then
C ′n+1 = (L, kbn+1, br ′n+1) where

br ′n+1 = {(n+ 1 : not_removedr)← (n+ 2 : not_removedr). | r ∈ br(M), r ∈ Rreg}
(4.33)

∪ {(n+ 1 : uncondr)← (n+ 2 : uncondr). | r ∈ br(M), r ∈ Rreg} (4.34)

∪ {(n+ 1 : not_removedr)← >. | r ∈ br(M), r /∈ Rreg} (4.35)

∪ {(n+ 1 : uncondr ← ⊥. | r ∈ br(M), r /∈ Rreg}. (4.36)

Intuitively, C ′n+1 equals Cn+1 but those bridge rules occurring in Rreg refer to Cn+2. Similar to
the meta-reasoning encoding, we denote by d1(r) the corresponding bridge rule of form (4.35)
and by d2(r) the corresponding bridge rule of form (4.36). We also extend these notions to sets
of bridge rules and, e.g., write d1(br(M) \R1) to denote the set of bridge rules of line (4.35).

Finally, we call M ′ = (C1, . . . , Cn, C
′
n+1, Cn+2) the meta-guessing MCS for M and Rreg .

The effect of the redirection to Cn+2 is that the acceptable belief sets of Cn+2 guess all possible
modifications. The rest of M ′ behaves like an ordinary meta-reasoning encoding. The protected
bridge rules of M ′ is the set brP ′ = brM ′ \ (d1(br(M) \ Rreg) ∪ d2(br(M) \ Rreg)), i.e., all
bridge rules are protected except those bridge rules of Cn+1 which do not correspond to bridge
rules in Rreg .

Now the reduction ≤pm from MCSDPH to MCSDPm is as follows:

(M, (D1, D2), brP , brH) 7→ (M ′ ⊗M, (D′1, D
′
2), brP

′′)

where M ′ is the meta-guessing MCS wrt. Rreg = br(M) \ brP \ brH and brP ′′ = brP
′ ∪ I(brP )

where I is the mapping wrt. M ′ ⊗M and brP ′ is the set of protected bridge rules of the meta-
guessing MCS M ′; furthermore D′1 = I(D1)∪d1(D1∩ brH) and D′2 = I(D2)∪d2(D2∩ brH),
i.e., (D′1, D

′
2) contains a diagnosis candidate of M , and it contains a diagnosis candidate over

brH with modifications to the remaining bridge rules of M being simulated by M ′.
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Observe that (M ′⊗M, (D′1, D
′
2), brP

′′) is polynomial in the size of (M, (D1, D2), brP , brH),
because M ′ ⊗M only has four times as many bridge rules as M and all other sets are subsets
of these bridge rules. Also note that (M ′ ⊗M, (D′1, D

′
2), brP

′′) can be computed in polynomial
time, more precisely, it can be computed in time linear in the size of (M, (D1, D2), brP , brH).

In the following, we show that ≤pm indeed is a correct reduction from MCSDPH to MCSDPm.

Lemma 4.14. ≤pm is a polynomial-time reduction from MCSDPH to MCSDPm.

Proof. “⇒”: Let (M, (D1, D2), brP , brH) be a yes-instance of MCSDPH, i.e., (D1, D2) ∈
D±(M, brP , brH) holds. We have to show that (D′1, D

′
2) ∈ D±m(M ′ ⊗M, brP

′′) also holds.
From (D1, D2) ∈ D±(M, brP , brH) and (4.32) it follows that (D1, D2) ∈ D±m(M, brP )

holds.
By Proposition 4.1 it then holds that (D1, D2) ∈ D±m(M), thus there exists S = (S1, . . . , Sn)

with S ∈ EQ(M [D1, D2]). We now show that (d1(D1 ∩ brH), d2(D2 ∩ brH)) ∈ D±m(M ′, brP
′)

holds; to that end consider the belief state S′ = (S1, . . . , Sn, Sn+1, Sn+2) where

Sn+1 = {removedr | r ∈ r ∈ D1} ∪ {uncondr | r ∈ D2}
Sn+2 = {not_removedr | r ∈ D1 \ brH} ∪ {uncondr | r ∈ D2 \ brH}.

By construction of Cn+2, it holds that

Sn+2 ∈ ACCn+2(kbn+2 ∪ app(brn+2(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′).

Consider the set of applicable bridge rules of Cn+1 under S′ and the diagnosis candidate
(D1 ∩ brH , D2 ∩ brH) (where Rreg = (br(M) \ brP \ brH):

{ϕ (r) | r ∈app(brn+1(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′)}
= {not_removedr | r ∈ br(M), r /∈ Rreg , r /∈ D1 \ brH}
∪ {not_removedr | r ∈ br(M), r ∈ Rreg , r /∈ D1 ∩ brH}
∪ {uncondr | r ∈ br(M), r /∈ Rreg , r ∈ D2 ∩ brH}
∪ {uncondr | r ∈ br(M), r ∈ Rreg , r ∈ D2 \ brH}

= {not_removedr | r ∈ br(M), r /∈ D1}
∪ {uncondr | r ∈ br(M), r ∈ D2}

=:H

Since Sn+1 = {removedr | r ∈ r ∈ D1} ∪ {uncondr | r ∈ D2} and θ(D1, D2, ∅) holds,
it follows from the definition of Cn+1 (cf. Definition 4.18 and Lemma 4.4) that Sn+1 ∈
ACCn+1(kbn+1 ∪H) holds.

Following the reasoning in Lemma 4.3 it is then possible to construct a proof showing that
for all 1 ≤ i ≤ n it holds that

app(br i(M [D1, D2]), S) = app(br i(M
′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′).

Since the semantics ACCi and knowledge base kbi of each context Ci are the same in M and
M ′, it then follows from S ∈ EQ(M [D1, D2]) that for all 1 ≤ i ≤ n holds Si ∈ ACCi(kbi ∪
app(br i(M

′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′)).

146



In summary, it holds that S′ ∈ EQ(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]).
Since (D1, D2) ∈ D±(M) holds, we then conclude from Proposition 3.10 that (I(D1) ∪

d1(D1∩brH), I(D2)∪d2(D2∩brH) = (D′1, D
′
2) ∈ D±(M ′⊗M) holds. Note thatD′1∩brP ′′ =

∅ = D′2 ∩ brP ′′, hence (D′1, D
′
2) ∈ D±(M ′ ⊗M, brP

′′) also holds.
It remains to show that (D′1, D

′
2) ∈ D±m(M ′ ⊗M, brP

′′). Towards contradiction assume that
there exists (T1, T2) ∈ D±(M ′ ⊗M, brP

′′) with (T1, T2) ⊂ (D′1, D
′
2), i.e., by construction of

M ′ ⊗M it either is the case that (T1 ∩ I(br(M)), T2 ∩ I(br(M)) ⊂ (D′1 ∩ I(br(M)), D′2 ∩
I(br(M))) holds or (T1 ∩ brM ′ , T2 ∩ brM ′) ⊂ (D′1 ∩ brM ′ , D

′
2 ∩ brM ′) holds.

In the former case, Proposition 3.10 implies that (I−1(T1∩I(br(M))), I−1(T2∩I(br(M)))) ∈
D±(M); furthermore, since (D′1 ∩ I(br(M)), D′2 ∩ I(br(M))) = (D1, D2) it holds that
(I−1(T1 ∩ I(br(M))), I−1(T2 ∩ I(br(M)))) ⊂ (D1, D2). This contradicts that (D1, D2) ∈
D±(M, brP , brH).

In the latter case, i.e., (T1∩ brM ′ , T2∩ brM ′) ⊂ (D′1∩ brM ′ , D
′
2∩ brM ′), it holds that (T1∩

brM ′ , T2 ∩ brM ′) ⊂ (brH , brH) since all other bridge rules of brM ′ are contained in brP ′′. Let
S be a witnessing equilibrium, i.e., let S = (S1, . . . , Sn+2) ∈ EQ(M ′[(T1 ∩ brM ′ , T2 ∩ brM ′)])
hold. Consider the modifications of bridge rules in br(M)\brP \brH which are represented by S,
i.e., consider T ′1 = {r ∈ br(M) \ brP \ brH | not_removedr /∈ Sn+2} and T ′2 = {r ∈ br(M) \
brP \ brH | uncondr ∈ Sn+2}. It holds that ((T1 ∩ brM ′)∪T ′1, (T2 ∩ brM ′)∪T ′2) is a diagnosis
candidate ofM . Since S ∈ EQ(M ′[(T1∩brM ′ , T2∩brM ′)]) holds andM ′ stems fromMmr(θ,K),
one can show using Lemma 4.3 that ((T1 ∩ brM ′)∪T ′1, (T2 ∩ brM ′)∪T ′2) ∈ D±(M, brP ) holds.
This contradicts that (D1, D2) ∈ D±(M, brP , brH), because ((T1 ∩ brM ′) ∪ T ′1, (T2 ∩ brM ′) ∪
T ′2) ⊂brH (D1, D2).

Therefore, no such (T1, T2) exists and it holds that (D′1, D
′
2) ∈ D±m(M ′ ⊗M, brP

′′).
“⇐”: We prove the converse, i.e., we assume that (M, (D1, D2), brP , brH) is not a yes-

instance of MCSDPH and show that ≤pm (M, (D1, D2), brP , brH) = (M ′⊗M, (D′1, D
′
2), brP

′′)
also is not a yes-instance of MCSDPm. By assumption it therefore holds that (D1, D2) /∈
D±(M, brP , brH) holds. From the definition of D±(M, brP , brH) we then obtain that either
(i) (D1, D2) /∈ D±m(M, brP ) holds or (ii) that there exists (D′1, D

′
2) ∈ D±m(M, brP ) with

(D′1, D
′
2) ⊂brH (D1, D2).

In case (i) (D1, D2) /∈ D±m(M, brP ), hence by Proposition 3.10 it holds that (I(D1) ∪
d1(D1 ∩ brH), I(D2) ∪ d2(D2 ∩ brH)) /∈ D±m(M ⊗M ′, brP ′′).

In case (ii) (D′1, D
′
2) ∈ D±m(M, brP ) with (D′1, D

′
2) ⊂brH (D1, D2). W.l.o.g. we as-

sume that (D′1, D
′
2) is minimal wrt. ⊂brH , i.e., there exists no (D′′1 , D

′′
2) ∈ D±m(M, brP ) with

(D′′1 , D
′′
2) ⊂brH (D′1, D

′
2). This means that (M, (D′1, D

′
2), brP , brH) is a yes-instance of MCS-

DPH. We can further assume that (D1, D2) ∈ D±m(M, brP ) from (i).
Now consider (T1, T2) = (I(D1) ∪ d1(D′1 ∩ brH), I(D2) ∪ d2(D′2 ∩ brH)). Since

(M, (D′1, D
′
2), brP , brH) is a yes-instance of MCSDPH, the “⇒” direction above can be ap-

plied to it; this yields that (d1(D′1 ∩ brH), d2(D2 ∩ brH)) ∈ D±m(M ′, brP
′) holds. Ap-

plying Proposition 3.10 and the fact that T1 ∩ brP ′′ = ∅ = T2 ∩ brP ′′ then implies that
(T1, T2) ∈ D±m(M ′ ⊗ M, brP

′′) holds. Note that (T1, T2) ⊂ (D′1, D
′
2) holds which in turn

implies that (D′1, D
′
2) /∈ D±m(M ′ ⊗M, brP

′′) holds. In other words, (M ′ ⊗M, (D′1, D
′
2), brP

′′)
is not a yes-instance of MCSDPm.
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In all cases, we showed that ≤pm (M, (D1, D2), brP , brH) is not a yes-instance of MCSDPm,
which concludes the “⇐” direction of the proof.

In summary, we showed that (M, (D1, D2), brP , brH) is a yes-instance of MCSDPH iff
(M ′ ⊗M, (D′1, D

′
2), brP

′′) =≤pm (M, (D1, D2), brP , brH) is a yes-instance of MCSDPm, i.e.,
≤pm is a reduction from MCSDPH to MCSDPm. Since (M ′ ⊗ M, (D′1, D

′
2), brP

′′) can be
computed in time linear in the size of (M, (D1, D2), brP , brH), it furthermore holds that ≤pm a
polynomial-time reduction.

The following Proposition shows, that MCSDPH indeed is in the same complexity class as
deciding whether D ∈ D±m(M, brP ) holds and hence whether D ∈ D±m(M) holds.

Proposition 4.8. MCSDPH is in DP
i for context complexity CC(M) in ΣP

i , i ≥ 1; if at least one
context of M is hard for ΣP

i , then MCSDPH is DP
i -hard.

Proof. Membership: By Lemma 4.14 it holds that ≤pm is a polynomial-time reduction from
MCSDPH to MCSDPm, hence membership immediately follows.

Hardness: Note that MCSDm is DP
i -hard if at least one context is hard for ΣP

i (cf. Sec-
tion 3.4). Let M ′ and D′ be any MCS and diagnosis candidate, respectively, used for showing
hardness of MCSDm (i.e., M ′ is the result of the reduction showing hardness of MCSDm and D′

is the diagnosis resulting from the reduction of M ′). Now pick brP ′ = brH
′ = ∅.

By definition, it holds for all M, brP , brH and D, that D ∈ D±(M, brP , brH) implies
D ∈ D±m(M,brP ) which in turn implies D ∈ D±m(M). Therefore, D′ ∈ D±(M ′, brP

′, brH
′)

implies that D′ ∈ D±m(M ′) holds. Furthermore, since brP ′ = brH
′ = ∅ it also follows from the

definition of prioritised-minimal diagnosis and protected diagnosis that D′ ∈ D±m(M ′) implies
D′ ∈ D±(M ′, brP

′, brH
′). In summary, D′ ∈ D±m(M ′) holds iff D′ ∈ D±(M ′, brP

′, brH
′)

holds. Therefore MCSDPH also is DP
i -hard if at least one context of M is hard for ΣP

i .

Next we consider the problem MCSDPHtmax which we define as follows: given an MCS M ,
a diagnosis candidate D ∈ 2br(M) × 2br(M), protected bridge rules brP ⊆ br(M), prioritised
bridge rules brH ⊆ br(M), and tmax ∈ br(M); decide whether the following both hold:

1. tmax ∈ D2 with D = (D1, D2) and

2. for all T ∈ D±m(M, brP ) it holds that T ⊆brH D ⇒ T =brH D.

Notice that MCSDPHtmax basically amounts to checking the presence of tmax in a diagnosis
candidate of MCSDPH. As the following lemma shows, the complexity of the former is in the
same complexity class as the latter.

Lemma 4.15. MCSDPHtmax is in DP
i for context complexity CC(M) in ΣP

i (where i ≥ 1).

Proof. For membership, we give a reduction ≤pm from MCSDPHtmax to MCSDPH as follows:

(M,D, brP , brH , tmax ) 7→

{
(M,D, brP , brH) if D = (D1, D2), tmax ∈ D2

(M⊥, (∅, ∅), brM⊥ , ∅) otherwise
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where M⊥ is the inconsistent MCS from the proof of Proposition 4.7, i.e., (M⊥, (∅, ∅), brM⊥ , ∅)
is not a yes-instance of MCSDPH since the MCS is inconsistent but all its bridge rules are
protected.

“⇒”: Let (M,D, brP , brH , tmax ) be a yes-instance of MCSDPHtmax , this means that D ∈
D±(M, brP , brH) and tmax ∈ D2 with D = (D1, D2) hold. Then D ∈ D±(M, brP , brH) also
holds, i.e., (M,D, brP , brH) is a yes-instance of MCSDPH.

“⇐”: Let (M,D, brP , brH , tmax ) be not a yes-instance of MCSDPHtmax , i.e., let it not
be the case that D ∈ D±(M, brP , brH) and tmax ∈ D2 with D = (D1, D2) both hold. In
case tmax /∈ D2 it holds that (∅, ∅) /∈ D±(M⊥, brM⊥ , ∅) since M⊥ is inconsistent but all its
bridge rules are protected, i.e., ≤pm maps to a no-instance of MCSDPH. In case tmax ∈ D2

holds, it follows that D ∈ D±(M, brP , brH) does not hold by the assumption. Therefore
(M,D, brP , brH) is not a yes-instance of MCSDPH. Hence in all cases,≤pm (M, brP , brH , tmax )
is not a yes-instance of MCSDPH.

We denote by MCSDPHm,tmax the problem of deciding given an MCS M , a diagnosis
candidate D ∈ 2br(M) × 2br(M), and protected and prioritised bridge rules brP , brH ⊆ br(M)
whether D ∈ D±m,tmax

(M, brP , brH).

Proposition 4.9. MCSDPHm,tmax is in ΠP
i+1 for context complexity CC(M) in ΣP

i (with i ≥ 1).

Proof. By Lemma 4.15 MCSDPHtmax is in DP
i for context complexity CC(M) in ΣP

i .
Algorithm 1 decides whether (D1, D2) ∈ D±m,tmax

(M, brP , brH) holds using an oracle for
MCSDPHtmax , which checks that (D1, D2) ∈ D±(M, brP , brH) and tmax ∈ D2 hold. Then it
checks for each T1, T2 ⊆ br(M) that (T1, T2) ∈ D±(M, brP , brH) and (T1, T2) ⊂ (D1, D2) do
not hold.

The for-each check clearly is in coNPDP
i since each check contains a call to a DP

i oracle.
Also note that MCSDPHtmax is in DP

i , hence it also is in coNPDP
i . Since this complexity

class is closed under conjunction, it follows that the overall algorithm is in the complexity class
coNPDP

i . Furthermore, it holds that coNPDP
i = coNPΣP

i , hence coNPDP
i = ΠP

i+1. Thus
checking whether D ∈ D±m,tmax

(M, brP , brH) holds is in ΠP
i+1 for context complexity CC(M)

in ΣP
i .

The previous decision problems arise from our approach at realising the selection of preferred
and filtered diagnoses of an MCS. To give a full picture, we also investigate the complexity
of the basic problem, i.e., we investigate the computational complexity of deciding whether
D ∈ D±m,�(M) holds for a given MCS M , D ∈ 2br(M) × 2br(M), and an arbitrary preference
order �; we denote this decision problem by MCSDMPREF.

As the following proposition shows, MCSDMPREF itself is ΠP
2 -hard even if the context

complexity and deciding whether D � D′ holds is tracktable. This result also shows that our
approach of realising the selection of minimal �-preferred diagnoses is worst-case optimal.

Proposition 4.10. MCSDMPREF is ΠP
2 -hard, even if CC(M) and deciding whether D′ � D′′

hold are both in P.
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Algorithm 1: Deciding whether (D1, D2) ∈ D±m,tmax
(M, brP , brH) holds.

Input :MCS M , (D1, D2), brP , and brH with D1, D2 ⊆ br(M), brP , brH ⊆ br(M).
Output : accepts iff (D1, D2) ∈ D±(M, brP , brH)
res← oracleMCSDPHtmax

((D1, D2),M, brP , brH);
if res = NO then

fail;
end
foreach T1, T2 ⊆ br(M) do

res← oracleMCSDPHtmax
((T1, T2),M, brP , brH);

if res = YES then
if (T1, T2) ⊆br(M)\brH (D1, D2), (T1, T2) 6= (D1, D2), and
(T1, T2) 6=br(M)\brH (D1, D2) then

fail;
end

end
end
accept;

Proof. To prove that deciding MCSDMPREF is ΠP
2 -hard, we reduce the problem of deciding

whether a QBF2,∀-formula is valid to MCSDMPREF.
A formula G is in QBF2,∀ if it is of the form ∀ ~X∃~Y : F where F is a propositional formula

over the variables of ~X = {x1, . . . , xk} and ~Y = {y1, . . . , y`} for some k, ` ∈ N. In the
following we call F the matrix of G. Let ψ[x/t] denote the substitution of the propositional
variable x by t ∈ {>,⊥}. The semantics is given in terms of valuations over ~X and ~Y , where a
valuation Vχ is a mapping Vχ : ~χ→ {>,⊥} for χ ∈ {X,Y }. Since the matrix F contains only
variables in ~X and ~Y a valuation VX ∪ VY allows to evaluate the truth value of F , where this
evaluation clearly is in P. The semantics of the quantifiers then is defined in the usual way in
terms of valuations. Formally, ∀ ~X∃~Y : F is valid iff for all valuations VX there exists a valuation
VY such that F [x1/VX(x1), . . . , xk/VX(xk), y1/VY (y1), . . . , y`/VY (y`)] evaluates to true.

We now define an MCS MG whose single context utilises this evaluation of F given a
valuation of all variables. Given a QBF2,∀-formula G with ~X , ~Y , and F as above. Let brX1 and
brY1 be defined as follows:

brX1 = {(1:x)← >. | x ∈ ~X} ∪ {(1:x̄)← >. | x ∈ ~X}
brY1 = {(1:y)← >. | y ∈ ~Y } ∪ {(1:ȳ)← >. | y ∈ ~Y }.

ThenMG = (C1) where the bridge rules ofC1 are br1 = brX1 ∪brY1 . Note that br1 is polynomial
(even linear) in the size of G.

In the remainder of this proof, we write for a set R of bridge rules ϕ(R) to denote the set of
head-formulas of the bridge rules of R, i.e., ϕ(R) = {ϕ (r) | r ∈ R}. Let H ⊆ ϕ(br1), we say
that H is consistent wrt. ~X (resp. ~Y ) iff for all x ∈ ~X (resp. x ∈ ~Y ) holds that x ∈ H iff x̄ /∈ H .
We call H consistent if it is both consistent wrt. ~X and ~Y . Note that if H is consistent wrt. ~X
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then there exists a consistent valuation V H
X such that VX(x) = > iff x ∈ H and VX(x) = ⊥ iff

x̄ ∈ H; if H is consistent wrt. ~Y then there exists a consistent valuation V H
Y defined analogously.

Intuitively, we design ACC1 such that C1 admits an equilibrium if the set H of heads of
applicable bridge rules either is such that H ∩ brX1 = ∅ or H is consistent, hence represents a
consistent valuation of variables of G and this valuation makes F true. In these cases, C1 accepts
the belief set ∅ while in all other cases, C1 accepts no belief set (hence it makes MG inconsistent).
Formally, ACC1 and kb1 are such that:

ACC1(kb1 ∪H) =


{∅} if H is consistent and F evaluates to true under H, or

if H ∩ ϕ(brX1 ) = ∅, or
if H is consistent wrt. ~X and H ⊇ ϕ(brY1 ),

∅ otherwise.

Note that CC(MG) is in P since deciding whether H ∩ ϕ(brX1 ) = ∅, deciding whether H is
consistent, and deciding whether F evaluates to true under H are all possible in polynomial time.
Furthermore note that there is only one belief state S∅ = (∅) for MG.

To give a concrete instance of ACC1 and kb1, let F = {c1, . . . , cm} be given as a set of
clauses each of the form c` = (l`1 ∨ l`2 ∨ . . .∨ l`k) with k ∈ N. We associate with each clause c`
of this form a set of rules

lp(c`) =
{

clause_c` ← l`1 . . . . clause_c` ← l`j .

clause_c` ← l`j+1
. . . . clause_c` ← l`k .

}
where l`1 to l`j are the positive literals and l`j+1

to l`k are the negative literals of c`.
Finally, C1 = (Lasp

Σ , kb1, br1) uses the abstract logic of ASP and kb1 is as follows:

kb1 = { consistentX ← not inconsistentX .

inconsistentX ← x, x̄. ∀x ∈ ~X

consistentY ← not inconsistentY .

inconsistentY ← y, ȳ. ∀y ∈ ~Y
⊥ ← not ok .

ok ← consistentX , consistentY , trueF .

ok ← notnonempty_intersect .

ok ← consistentX , notnotfullY .

nonempty_intersect ← x. ∀x ∈ ~X

nonempty_intersect ← x̄. ∀x ∈ ~X

notfullY← not y. ∀y ∈ ~Y
notfullY← not y. ∀y ∈ ~Y

trueF ← clause_c1, . . . , clause_ck. for F = {c1, . . . , ck}
} ∪ {r ∈ lp(c`) | c` ∈ F}
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Observe that kb1 is a stratifiable logic program while bridge rules only add facts, thus ACC1(kb1∪
H) can be computed in polynomial time. Also note that kb1 is polynomial (even linear) in the
size of G.

Next, we define � in such a way that the diagnosis candidate Dvalid = (brX1 , ∅) is in
D±m,�(MG) iff G is valid. Formally, � is such that:

(D1, D2) � (D′1, D
′
2) holds iff D2 = D′2 = ∅,

(D1, D2) 6= Dvalid 6= (D′1, D
′
2),

D1 ∩ brX1 = D′1 ∩ brX1 , and

D1 ∩ brY1 ⊆ D′1 ∩ brY1 all hold.

Observe that deciding whether D � D′ holds clearly is in P. Further note that MG is polynomial
in the size ofG since kb1 and br1 are both polynomial (even linear) in the size ofG. We now show
that Dvalid ∈ D±m,�(MG) holds iff G is valid. In some abuse of notation, in the following we
write M [D] to denote the MCS obtained from modifying M according to a diagnosis candidate
D, i.e., M [D] with D = (D1, D2) here denotes M [D1, D2].

“⇒”: Let Dvalid ∈ D±m,�(MG) hold. Towards contradiction, assume that G is not valid,
i.e., there exists a valuation VX for ~X such that no valuation VY for ~Y makes F true. Let
R ⊆ brX1 be such that V ϕ(R)

X = VX and consider the diagnosis D = (brX1 \ R, ∅). Let
H = {ϕ (r) | r ∈ app(br1(MG[D]), S∅)} and observe that H is consistent wrt. ~X since R
is consistent. Since (brX1 \ R) ∩ brY1 = ∅, if follows that H ∩ ϕ(brY1 ) = ϕ(brY1 ) and it thus
holds that {∅} ∈ ACC1(kb1 ∪H), i.e., S∅ is an equilibrium of MG[D], hence D ∈ D±(MG).
Further note that D ⊂ Dvalid holds. Since Dvalid ∈ D±m,�(MG) and D ⊂ Dvalid , it follows
that D /∈ D±�(MG) holds; i.e. there exists a diagnosis D′ ∈ D±(MG) such that D′ � D and
D 6� D′ both hold, which implies that D′ 6= D.

Let D′ = (D′1, D
′
2) and D = (D1, D2); from the definition of � we obtain that D′2 = ∅,

D′ 6= Dvalid , D′1∩brX1 = D1∩brX1 , andD′1∩brY1 ⊆ D1∩brY1 all hold. LetH ′ = {ϕ (r) | r ∈
app(br1(MG[D′]), S∅)} and observe that H ′ is consistent wrt. ~X since D1 is consistent wrt. ~X
and D′1 ∩ brX1 = D1 ∩ brX1 . Since D′ 6= D holds, it is the case that D′1 ∩ brY1 ⊂ D1 ∩ brY1 and
thus D1 ∩ brY1 6= ∅, i.e., H ∩ ϕ(brY1 ) 6= ϕ(brY1 ). This contradicts with H ∩ ϕ(brY1 ) = ϕ(brY1 )
established earlier. Therefore no such D exists and consequently no valuation VX exists such that
all valuations VY make F false, i.e., G is valid.

“⇐”: Let G be valid, i.e., for every valuation of x1, . . . , xk there exists a valuation of
y1, . . . , y` such that F evaluates to true. Observe that br1(MG[Dvalid ]) = brY1 , hence H =
app(br1(MG[Dvalid ]), S∅) is such that H ∩ ϕ(brX1 ) = ∅, thus ACC1(kb1 ∪H) = {∅} and S∅
is a witnessing equilibrium of Dvalid ∈ D±(MG). Furthermore, since Dvalid is, by definition of
�, in no relation to any other diagnosis candidate it thus follows that Dvalid ∈ D±�(MG).

It remains to show that Dvalid is subset-minimal among all diagnoses in D±�(MG). Consider
any D′ ⊂ Dvalid , i.e., D′ = (D′1, ∅) where D′1 ⊂ brX1 . Recall that D′ is not a diagnosis,
if there exists no witnessing equilibrium; since S∅ is the only belief state of MG, it follows
that D′ is a diagnosis if and only if S∅ is an equilibrium of MG[D′]. In the following, let
H ′ = app(br1(MG[D′]), S∅). Since D′1 ⊂ brX1 holds, it follows that H ′ ⊇ ϕ(brY1 ), because
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for any r ∈ brY1 it holds that body(r) = {>}, i.e., r is applicable in any belief state. Since
H ′ ⊇ ϕ(brY1 ) holds, it cannot be the case that H ′ is consistent wrt. ~Y ; thus H ′ is not consistent.
Furthermore, by D′1 ⊂ brX1 it follows that H ′ ∩ ϕ(brX1 ) 6= ∅. By the definition of ACC1 it then
follows that D′ only is a diagnosis if H ′ is consistent wrt. ~X .

Assume that H ′ is consistent wrt. ~X then V H′
X is a consistent valuation for variables in

~X . Since G is valid and all variables in ~X are ∀-quantified, there exists a valuation VY for
the variables of ~Y such that F evaluates to true under V H′

X and VY . Let R ⊂ brY1 be the set
of bridge rules consistent wrt. ~Y such that V ϕ(R)

Y = VY and consider the diagnosis candidate
D′′ = (D′1 ∪ (brY1 \ R), ∅). Let H ′′ = {ϕ (r) | r ∈ app(br1(MG[D′′]), S∅)} and observe that
H ′′ is consistent since D′1 and R both are consistent. Furthermore, V H′′

X = V H′
X and V H′′

Y = VY ,
thus F evaluates to true under H ′′, hence S∅ is an equilibrium of M [D′′] and D′′ ∈ D±(MG)
holds.

Now consider whether D′′ � D′ holds: D′ = (D′1, ∅), D′′ = (D′1 ∪ (brY1 \ R), ∅), D′′ 6=
Dvalid 6= D′, D′1 ∩ brX1 = (D′1 ∪ (brY1 \R))∩ brX1 , and D′1 ∩ brY1 ⊆ (D′1 ∪ (brY1 \R))∩ brY1
all hold. Therefore D′′ � D′ holds. Since R ⊂ brY1 holds, it follows that brY1 \R 6= ∅ and by
D′1 ⊂ brX1 it then follows that (D′1 ∪ (brY1 \R)) ∩ brY1 ⊆ D′1 ∩ brY1 does not hold. Therefore
D′ � D′′ does not hold and consequently, it holds that D′ /∈ D±�(MG).

Since D′ ⊂ Dvalid was chosen arbitrary, it follows that Dvalid is subset-minimal among all
diagnoses in D±�(MG), hence Dvalid ∈ D±m,�(MG) holds.

In summary, it thus follows that the above reduction from QBF2,∀ to MCSDMPREF is correct.
Since QBF2,∀ is ΠP

2 -complete, this proves that MCSDMPREF is ΠP
2 -hard.

4.5 Summary

In this chapter we addressed the problem of identifying and selecting among all diagnoses of an
MCS those which are most preferred. We considered two basic types of preference: filters, which
allow to discard diagnoses that do not fulfil certain criteria, and preference orders which allow to
compare diagnoses. Since MCS are a flexible framework that is open to integrate information
from many different logical formalisms, we think it is necessary that the formalism in which
filters and preferences are specified also is open to the user’s choice.

To achieve this, we used the same concepts that underlie the MCS formalism, i.e., if the user
can specify its conditions on diagnoses in the same way as specifying a context of an MCS, then
in principle any logic formalism may be used to do so. We thus developed several techniques for
meta-reasoning about diagnoses in MCS, i.e., given an MCS M and some filter or preference
order it is shown in the previous sections how to transform these into an MCS M ′ such that the
diagnoses of M ′ correspond one-to-one to the filtered or most-preferred diagnoses of M .

In order to do so, we first presented filters on diagnoses and preference orders on diagnoses
in their most general form. We also showed that these can capture well-known formalisms
for preferences specification like CP-nets [25]. Then we presented two approaches at meta-
reasoning where the first observes the beliefs in the body and knowledge-base formulas in the
heads of existing bridge rules, and the second approach uses a more direct encoding of bridge
rule modifications that require all bridge rules of an existing MCS to be modified. The former
approach is less intrusive, but does not allow perfect observation, hence for meta-reasoning on
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MCS M and . . . Transformation Size Diagnosis notion Complexity
deletion-parsimon. filter f Mf (Def. 4.16) linear D±

m(Mf , brP ) DP
i

filter f Mf (Def. 4.19) linear D±
m(Mf , brP ) DP

i

total preference order � Mpl� (Def. 4.22) exponential D±
m(Mpl�, brP , brH) DP

i

preference order � M� (Def. 4.23) linear D±
m,tmax

(M�, brP , brH) ΠP
i

Table 4.2: Overview of the presented approaches to select filtered and most-preferred diagnoses.
For the given filters and preference orders (first column), the transformation approaches (second
column) are proven to be correct. Size is the size of the resulting transformed MCS in terms
of bridge rules of M ; complexity is given wrt. context complexity ΣP

i of the transformed MCS
(complexity depends also on hardness of f and �).

diagnoses additional guessing is necessary. The second approach allows perfect observation and
requires no guessing, which is the reason why we focused on this approach for realising the
selection of most-preferred diagnoses.

Both approaches also need some more involved notions of diagnosis, namely diagnoses where
some bridge rules are protected and diagnoses where some bridge rules are considered of higher
priority than the rest (i.e., some kind of lexicographic order on bridge rules). An analysis of the
computational complexity of these notions was given, which showed that the notion of minimal
diagnosis with protected bridge rules has the same complexity as the notion of minimal diagnosis.
The notion of prioritised-minimal diagnosis also has the same complexity, but it is not sufficient
to select most-preferred diagnoses. The notion to do so, called an mpm-diagnosis, has higher
complexity than the notion of subset-minimal diagnosis, but we also showed that the problem of
selecting most-preferred diagnoses is computationally as hard as an mpm-diagnosis. Hence, our
approach is worst-case optimal from a complexity theoretic point of view.

In Table 4.2 we give an overview of the meta-reasoning techniques developed and their
respective overall complexities given some preference order or filter. Note that the definitions of
the presented transformations all state which “interface” has to be followed by the implementation
of a filter or a preference order. We also give examples that show how Answer-Set Programming
can be used to realise these interfaces in general. But of course, any formalism may be used to do
so.
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CHAPTER 5
Inconsistency in Managed

Multi-Context Systems

5.1 Introduction

This chapter is dedicated to the incorporation of legacy solutions for local inconsistency man-
agement, i.e., inconsistency management that is tailored to specific knowledge-representation
formalisms. For many such formalisms there already exist ways to deal with inconsistency,
e.g. various kinds of belief revision operators for propositional logic, updates for logic program-
ming, paraconsistent logics, etc. All of these methods address inconsistency in one specific
formalism or a specific class of logics, hence in a Multi-Context System these ways to deal with
inconsistency are tightly connected to certain instances of abstract logics, i.e., they are tied to
contexts. Additionally, most of these methods of dealing with inconsistency assume to have
a “global” perspective, i.e., they require full access to all knowledge that they are applied to.
Therefore they must be connected directly with a context and its corresponding knowledge base,
where they may assume this global perspective on the local context.

On the other hand, the approach must be very general to allows all kinds of ways to deal
with inconsistency in a knowledge-representation formalism. In [32] we therefore proposed
a new, more general form of MCS where such additional operations on knowledge bases can
be freely defined; this is akin to the management functionality of database systems. We call
the additional component context manager and the generalised systems managed Multi-Context
Systems (mMCS). Each context manager may deal with inconsistency or apply other modifications
to a context. Depending on applicable bridge rules, this manager can modify the knowledge
base and even the semantics (i.e., the acceptability function) of the context. The premier use of
context managers in case of this thesis is, however, that they allow to employ legacy techniques
for inconsistency management. Since our results on inconsistency also hold for mMCS in general,
we do not restrict mMCS here and instead introduce them in their full generality,

Our contributions in this chapter therefore are
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(1) the concept of managed Multi-Context Systems, which allow bridge rules to not only add
elements to the knowledge base of a context, but to trigger any operation on the knowledge base.
For instance, rather than simply adding a formula φ, we may want to revise the KB with φ to
avoid inconsistency in the context’s belief set (cf. [105]); and, we may want to modify only
certain parts of KB such that φ is entailed.

(2) a short survey on how the manager of a context can be used: for the full range of SQL
operations on a relational database; for belief revision; for updates of logic programs; for capturing
the framework of argumentation context systems.

(3) an investigation of the effects of local inconsistency management on overall consistency
of the mMCS. We show that the reasons of inconsistency are always rooted in some cyclic
information flow in an mMCS where the local consistency of each context is ensured by the
context manager.

(4) we show that mMCS can capture MCS and vice versa by incorporating the functionality of
context managers into the respective acceptability functions. The latter is also used to show that the
computational complexity of deciding whether an mMCS is consistent is of the same complexity
as deciding whether the corresponding MCS (with internalised management functionality) is
consistent.

The outline of this chapter is as follows: we introduce the mMCS framework in Section 5.2,
Section 5.3 discusses sample instances. The the aspects of inconsistency management in mMCS
are addressed in Section 5.4, and complexity issues in Section 5.6.

5.2 Managed Multi-Context Systems

Multi-Context Systems allow us to increase the knowledge base of a context using informa-
tion from other contexts, but not to operate on it in other ways. Such other operations might
be: removal of information; revision with new information, or other complex operations like
view-updates of databases; program updates of logic programs; modifications of argumenta-
tion frameworks, etc. Notably, these operations are realised by legacy systems, but the MCS
framework can not cope with this functionality in a principled way.

To enable such functionality with a clear distinction between the knowledge base and addi-
tional operations on it, we introduce the managed Multi-Context Systems framework. The latter
extends Multi-Context Systems such that contexts come with an additional managing function
that evaluates the aforementioned operations, in analogy to the distinction of a database (DB) and
a database management system (DBMS).

Example 5.1. Consider a pharmaceutical company producing drugs. A drug effect database
C1 holds information about what is the remedy of an illness caused by certain bacteria, also
treatments known to be ineffective are stored. To maximise efficiency, the company wants to
know all kinds of illness that can be cured by their drugs. A public health RDF-triple store C2

is queried on illness caused by bacteria for which C1 already holds a remedy. Furthermore,
probable influence of the drugs on other bacteria is derived which enables more focused clinical
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trials, i.e., only those effects are tested in the later trial where a likely effect was found. This is
realised using an ontology about bacteria C3 and a third party reasoner using a logic program
C4 to derive likely drug effects on other bacteria. To avoid that the third-party reasoner becomes
inconsistent, the bridge rules of C4 do not add information, instead they trigger an update of the
employed logic program. To facilitate the information exchange, C1 uses a view restricted to the
necessary information and since information derived from C4 is also returned through this view,
it must be updateable. Furthermore, the third-party offers several available semantics for their
reasoner, including stable model and well-founded semantics. The overall system in the end is
the mMCS Mph = (C1, C2, C3, C4) given in Example 5.4 and depicted in Figure 5.1.

To accommodate flexible semantics of contexts, we first extend the notion of abstract logic
to one which has several semantics to choose from. This allows, e.g., that a logic program is
evaluated using well-founded semantics instead of stable-model semantics based on input from
other contexts, or switching from classical to paraconsistent semantics.

Definition 5.1. A logic suite LS = (KBLS ,BSLS ,ACCLS ) consists of the set BSLS of possible
belief sets, the set KBLS of well-formed knowledge-bases, and a nonempty set ACCLS of
possible semantics of LS , i.e, ACC ∈ ACCLS implies ACC : KBLS → 2BSLS .

For a logic suite LS , let ΦLS = {s ∈ kb | kb ∈ KBLS} be the set of formulas occurring in
its knowledge bases.

Example 5.2 (continued). C1 is a relational database which contains the information that
penicillin remedies pneumonia caused by the bacteria streptococcus pneumoniae and also that
azithromycin remedies Legionair’s disease caused by legionella pneumophila; effectiveness of
both remedies is backed by clinical trials and therefore evident. Also, it contains information
that penicillin is ineffective against legionella pneumophila. C1 is based on the abstract logic
LDB

Σ = (KBDB,BSDB,ACCDB) of Example 2.7 with Σ suitably chosen to accommodate the
following knowledge base kb1 of C1.

kb1 = {treatment(penicil , str_pneu, pneu, evidence),

treatment(azith, leg_pneu, leg , evidence),

ineffective(penicil , leg_pneu)}

The logic suite LS 1 employed by C1 is LS 1 = (KBDB,BSDB, {ACCDB}), i.e., it equals LDB
Σ

with its acceptability function ACCDB being the only one of LS 1.
C2 is an RDF-triple store containing information that streptococcus pneumoniae causes

meningitis and legionella pneumonphila causes atypical pneumonia. Formally, the knowledge
bases of C2 is:

kb2 = {str_pneu rdf :causes men,

leg_pneu rdf :causes atyp_pneu}.

We assume that the logic suite LS 2 = (KBRDF ,BSRDF , {ACCRDF }) and its semantics are
suitably chosen, e.g., based on [81] with KBRDF and BSRDF being a set of ground RDF
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triples (i.e., RDF triples without blank nodes), and ACCRDF being simple entailment, i.e.,
ACCRDF (kb) = {kb}.

The bacteria DL ontology C3 is based on the logic LALCΣ = (KB,BS,ACC) (with A
suitably chosen), but differently fromLALCΣ , here we are not interested in atomic A-Box axioms, but
in concept subsumption. Formally, the logic suite LS 3 = (KB3,BS3, {ACC3}) where KB3 =
KB, BS3 is the powerset of atomic concept subsumption, i.e., BS3 = 2Q, Q = {C v D |
C,D are atomic concepts}, and ACC3(kb) = {S} where S contains all concept subsumptions
under kb. The knowledge base kb3 of C3 contains the information that streptococcus pneumoniae
is a bacterium and legionella pneumophilae also is a bacterium; kb3 is as follows:

kb3 = {str_pneu v bact ,

leg_pneu v bact}.

C4 is a logic program accessing the ontology C3 on bacteriological relations to deduce
probable effects on related bacteria. C1 also holds information on ineffective drugs which should
be incorporated into C4 by means of a logic program update. This allows one to deduce probable
effects on bacteria except for cases where there is already negative evidence. The context C4

employs a generalised logic program to derive further possible drug effects. The context uses a
logic similar to Lasp

Σ of Example 2.5 where default-negated atoms may appear in the head of a
rule.

Formally, LS 4 = (KB4,BS4, {ACCASP ,ACCWF }) where KB4 is the powerset of rules
of form L ← L1, . . . , Lk where L,L1, . . . , Lk are literals over Σ, BS4 is the set of Herbrand
interpretations over Σ, ACCASP is the semantics of stable models of generalised logic programs
(cf. [2]), and ACCWF is the well-founded semantics of logic programs (cf. [125]).

Finally, the knowledge base kb4 of C4 states that: if A and B are instances of the same
concept C, and X is effective against A, then X is also effective against B;

kb4 = {effective(X,B)← effective(X,A), isa(A,C), isa(B,C).}

Regarding the bridge rules of this system, we note thatC1 requires view updates to be executed
while C4 simply imports some information from the ontology C3 and uses information from C1 to
revise its program with. Hence, C4 requires two types of operations executed on its applicable
bridge rules, namely addition and revision.

In MCS the head formulas in the bridge rules of a context are all treated the same, i.e., these
formulas are added to the knowledge base of the context. Here, we want to extend bridge rules
such that their head formulas may be treated in different ways, e.g., some the head formulas
of some bridge rules are simply added to the knowledge base, while for some other bridge
rules, the knowledge base is revised with their head formulas. This also enables bridge rules to
“trigger” more than one operation. To distinguish these operations, we introduce the notion of a
management base as follows.

Definition 5.2. A management base is a set of operation names (briefly, operations) OP .

Intuitively, a management base is the set of commands that can be executed on formulas,
e.g., addition, revision with formulas. For a logic suite LS and a management base OP , let
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Drug EffectsC1 Public Health C2

Bacterial Ontology C33rd-party ReasonerC4

r1

r3

r4 r2r5

r1: (1 : insert(treatment(X,B, I, likely)))← (1 : effective (X,B)) ,
(2 :B rdf :causes I) .

r2: (1 : insert(effective(X,B)))← (4 : effective (X,B)) .
r3: (4 : add(isa(X,Y )))← (3 : (X v Y )) .
r4: (4 : add(effective(X,B)))← (1 : effective (X,B)) .
r5: (4 : upd(not effective(X,B)))← (1 : ineffective (X,B)) .

kb1 = {str_pneu rdf :causes men,
leg_pneu rdf :causes atyp_pneu}

kb2 = {blood_marker , xray_pneumonia}
kb3 = {str_pneu v bact ,

leg_pneu v bact }
kb4 = {effective(X,B)← effective(X,A), isa(A,C), isa(B,C).}

Figure 5.1: The mMCS Mph from Examples 5.1–5.4 with contexts Ci, knowledge bases kbi, and
schematic bridge rules r1, . . . , r5.

ΦOP
LS = {o(s) | o ∈ OP , s ∈ ΦLS} be the set of operational statements that can be built from

OP and ΦLS .
The semantics of such statements is given by a management function. A management function

maps a set of operational statements and a knowledge base to pairs of a modified knowledge
base and a semantics. It allows to not only add formulas to a context, but to specify any desired
operations to be applied on formulas and a context.

Definition 5.3. A management function over a logic suite LS and a management base OP is a
function mng : 2ΦOP

LS ×KBLS → 2(KBLS×ACCLS ) \ {∅}.

Note that the management function returns a set of pairs of modified knowledge-base and
selected semantics. This allows for a management function to offer more than one result which
may be used, e.g., in model-based revision where each resulting knowledge-base corresponds to
a model of the revised formula.

The bridge rules of a context Ci of an mMCS are now of form (2.1) as for MCS, but with the
head expression s being an operational statement for the management function mng i of Ci. All
notions regarding bridge rules carry over directly from MCS to mMCS. Hence, for OP i being
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the management base of Ci, it holds for every r ∈ br i that ϕ (r) ∈ ΦOP i
LS i

. The notion of an
Lk bridge rule in mMCS is defined analogous to MCS, with the only difference that Lk bridge
rules are now defined over a sequence L = (LS 1, . . . ,LSn) of logic suites instead of a sequence
L = (L1, . . . , Ln) of abstract logics.

Example 5.3 (continued). The data of C1 is offered to C4 through a view “effective”, which
contains only the information about which drug effects what bacteria, i.e., (X,B) ∈ effective iff
(X,B, _, evidence) ∈ treatment . To insert into that view, C1 uses an operation “insert”, i.e.,
OP1 = {insert} and the management function mng1 is defined such that tuples inserted into the
view effective are transformed to treatment tuples. Formally,

mng1(O, kb1) = {(kb′1 ∪N ∪ V,ACC1)}

where kb′1 = kb1 ∪ {effective(X,B) | treatment(X, _, B, evidence) ∈ kb1}
N = {treatment(X,B, I, E) | insert(treatment(X,B, I, E)) ∈ O}
V = {treatment(X,B, I, estimate) | insert(effective(X,B)) ∈ O,

treatment(_, B, I, _) ∈ kb1 ∪N}

Notice that kb′1 serves to materialise the view regarding effective.
Since C2 and C3 are not intended to have any bridge rules, their management bases are

irrelevant, i.e., we pick OP2 = OP3 = ∅ and their management functions do not modify
their original respective knowledge base. Hence mng2 and mng3 are any functions such that
mng2(∅, kb) = {(kb,ACCRDF )} and mng3(∅, kb) = {(kb,ACC)} hold.

For C4, the operations are OP4 = {upd , add} and mng4 adds all formulas in add as facts
and the resulting program is updated according to formulas in upd by the method given in [2],
which avoids inference of conflicting information (see Example 5.5 for details). Thus, mng4

always selects as acceptability function ACCASP the stable model semantics of dynamic logic
programs.

The context C1 contains two types of bridge rules: the first connect existing information
about effects on bacteria with information from C2 about illness caused by the same bacteria.
The incorporated information is further marked as only being likely, but not clinically tested. The
second type of bridge rules incorporates probable drug effects from C4.

br1 = { (1 : insert(treatment(X,B, I, likely)))← (1 : effective (X,B)) , (2 :B rdf :causes I) .

(1 : insert(effective(X,B)))← (4 : effective (X,B)) .}

Contexts C2 and C3 have no bridge rules, only C4 gets bridge rules

br4 = { (4 : add(isa(X,Y )))← (3 : (X v Y )) .

(4 : add(effective(X,B)))← (1 : effective (X,B)) .

(4 : upd(not effective(X,B)))← (1 : ineffective (X,B)) .},

which, from top to bottom, import ontological information from C3, import drug effects from C1,
and update the resulting logic program with ineffectiveness information from C1. The updating
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ensures that there is no contradicting effectiveness derived by C4 in such a way that known
ineffectiveness takes precedence over derived information.

Here we use for readability and succinctness schematic bridge rules with variables (upper
case letters and _ ) which range over associated sets of constants; they stand for all respective
instances, which are obtainable by value substitution.

A managed MCS (mMCS) is then an MCS where each context additionally comes with a
management function and bridge rule heads are operational statements.

Definition 5.4. A managed Multi-Context System M is a collection M = (C1, . . . , Cn) of
managed contexts where, for 1 ≤ i ≤ n, each managed context Ci is a quintuple Ci =
(LS i, kbi, br i,OP i,mng i) such that

• LS i = (BSLS i ,KBLS i ,ACCLS i) is a logic suite,

• kbi ∈ KBLS i is a knowledge base,

• br i is a set of Li bridge rules over L = (LS 1, . . . ,LSn),

• OP i is a management base, and

• mng i is a management function over LS i and OP i.

As for ordinary MCS, a belief state S = (S1, . . . , Sn) of M is a belief set for every context,
i.e., Si ∈ BSLS i . Again, by appi(S,M) = {ϕ (r) | r ∈ br i(M), S r} we denote the set of
applicable heads of bridge rules, which is a set of operational statements.

The semantics of mMCS is also defined in terms of equilibria as follows.

Definition 5.5. Let M = (C1, . . . , Cn) be an mMCS. A belief state S = (S1, . . . , Sn) is an equi-
librium ofM iff for every 1 ≤ i ≤ n there exists some (kb′i,ACCLS i) ∈ mng i(appi(S,M), kbi)
such that Si ∈ ACCLS i(kb′i).

The equilibrium semantics of ordinary MCS contains two steps: applicability of bridge rules
and acceptability of belief sets under the resulting knowledge base. The equilibrium semantics of
mMCS adds between those two steps another one for managing the context.

Example 5.4. The mMCS Mph = (C1, C2, C3, C4) of Example 5.3 has one equilibrium S =
(S1, S2, S3, S4) where, omitting for brevity atoms of the form not a in S4, it holds that:

S1 = { treatment(penicil , str_pneu,men, likely),

treatment(azith, leg_pneu, atyp_pneu, likely),

treatment(azith, str_pneu, pneu, estimate),

treatment(azith, str_pneu,men, estimate),

effective(azith, str_pneu), effective(azith, leg_pneu),

effective(penicil , str_pneu)} ∪ kb1,
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S2 = kb2,

S3 = { str_pneu v bact ,

leg_pneu v bact}, and

S4 = { effective(penicil , str_pneu),

effective(azith, str_pneu),

effective(azith, leg_pneu),

isa(str_pneu, bact),

isa(leg_pneu, bact)}.

We extend some notions from MCS to mMCS: given an mMCS M , the set of all its bridge
rules is denoted by br(M), cf (r) is the condition-free version of r, i.e., cf (r) is head(r) ← .,
EQ(M) denotes the set of all equilibria of M , and for any set R of bridge rules is cf (R) =
{cf (r) | r ∈ R}. Furthermore, M [R] denotes the mMCS M where all bridge rules are replaced
by those bridge rules in R (assuming that R is compatible with M ).

5.3 Sample Instantiations

We consider instantiations of our framework, first discussing relational databases, logic programs,
and belief revision. Second, we capture argumentation context systems by mMCS.

Relational Databases. For relational databases, our running example already shows how a
management function is used to realise view-updates. Many other operations on databases may be
realised using managed contexts. In fact, e.g., the SQL language, ΣSQL, can be accommodated:
a context whose management base is built upon ΣSQL and a management function mngSQL
which realises the SQL semantics. This allows us to use SQL in an mMCS. Observe that the
implementation of mngSQL is rather trivial, as existing implementations of SQL can be used via
suitable interfaces, e.g., MySQL, Oracle DB, etc. In our running example, the respective view
statement is:

CREATE VIEW eff AS
SELECT drug, bacteria FROM treat
WHERE credibility = evd;

To realise ordered sequences of SQL statements, one may use time stamps in bridge rules
handled by mngSQL.

Belief Revision. Change of logical theories and knowledge bases is a long-standing area in
logic and AI. Central operations on beliefs are expansion , contraction , revision and update
(see [105] for an excellent survey).

Let L be a logic with the set L of formulas and semantics ACCL, and let rev : 2L×L → 2L

be a revision operator for theories in L. We may define a management function mngrev for the
management base {revise}, e.g., as follows:

mngrev (O, kb) = {(rev(kb, {φ1 ∧ . . . ∧ φn | revise(φi) ∈ O}),ACCL)}.
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Here, multiple revisions (n ≥ 2) are handled by conjunction; other realisations (e.g., iteration)
exist.

Logic Programming. Various extensions of logic programs have been proposed, e.g., updates
of logic programs [2] which we use in our running example, debugging-support [26], or meta-
reasoning support. Many of them are realised using meta-programming (viewing the program to
update as data), i.e., they transform a logic program Pe and additional input I , into a logic program
Pt, such that solutions to the problem given by Pe and I are obtained from Pt (without altering the
semantics). In the mMCS framework, we can achieve this directly using a management function
mng such that, for a program Pe and operational statements O encoding I , mng(O,Pe) =
{(Pt, ACCLP )} where Pt is assembled from Pe and O, and ACCLP is the employed semantics
of logic programs.

Example 5.5. Suppose C4 of the mMCS in Example 5.4 uses the update semantics of [2], i.e., the
semantics of upd is given by the respective program transformation. For the operational statement
upd(not effective(penicil , leg_pneu)) which is applicable in the belief state S of Example 5.4,
the relevant rules are

not effective(penicil , leg_pneu)← . (5.1)

effective(penicil , leg_pneu)← effective(penicil , bact), isa(str_pneu, bact),

isa(leg_pneu, bact). (5.2)

The ground instance (5.2) is rejected (not contained in the transformed program), intuitively
because it is in conflict with the more recent information represented by (5.1). Therefore, the
stable model does not contain effective(penicil , leg_pneu).

The ability of the management function to choose among different semantics allows one
to flexibly select a suitable logic program semantics depending on the belief state. E.g., one
may enforce for a program in context Ci that paraconsistent semantics as in [115] is used if
it has an inconsistent belief set, and answer-set semantics otherwise. If the context employs
answer-set semantics as originally defined in [72], where an inconsistent logic program has the
single answer-set consisting of all literals, then a self-referential bridge rule may be used to detect
whether the program is inconsistent. Hence the management function need not even be able
to detect that answer-set semantics yields inconsistency, since this can be done using a bridge
rule whose operation in the head causes the management function to select one of the available
semantics. It is achieved by self-referential bridge rules semantics(parAS ) ← (i :⊥). and
semantics(AS )← not(i :⊥)., where ⊥ encodes inconsistency, OP i = {semantics}, and

mng i(kb, O) =

{{
(kb,ACCparAS )

}
if semantics(parAS ) ∈ O{

(kb,ACCAS )
}

otherwise.
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Argumentation Context Systems. Argumentation context systems (ACS) [30] are a homoge-
neous framework for distributed, abstract group argumentation where all reasoning components
are Dung argumentation frameworks (AFs) [47]. ACS are similar to mMCS in that they uti-
lize bridge rules for information exchange about arguments and each component of an ACS is
equipped with a mediator similar to a context manager. Even more so since bridge rules not
only extend context AFs, they may invalidate arguments or attack relations, they may select a
semantics, and they provide ways of resolving inconsistent information resulting the applicability
of bridge rules whose head formulas possibly contradict each other.

We now recall AFs and ACS as given in [30]. An argumentation framework (AF) is a pair
A = (A, attacks) where A is a set of arguments and attacks is a binary relation on A. An
argument a ∈ A is acceptable with respect to a set E ⊆ A if for each b ∈ A with attacks(b, a)
exists some b′ ∈ E with attacks(b′, b), i.e., a is acceptable wrt. E if every attacker in A is attcked
by some argument b′ ∈ E. A set E ⊆ A is conflict-free if there are no arguments a, b ∈ E with
attacks(a, b); E is admissible if it is conflict-free and each argument a ∈ E is acceptable wrt. E.

There is a number of different semantics for AFs, where the basic ones are given by preferred
extensions, stable extensions and grounded extensions. A set E ⊆ A is a preferred extensions of
A = (A, attacks) if E is a maximal (wrt. ⊆) admissible set of A; E ⊆ A is a stable extensions
of A if E is conflict-free and every argument outside E is attacked by an argument in E, i.e.,
for all b ∈ A \ E exists b′ ∈ E such that attacks(b′, b) holds; finally, E ⊆ A is a grounded
extensions if it is the least fixpoint of the operator FA : 2A → 2A where FA(E) = {a ∈
A | a is acceptable wrt. E}. A logic suite to capture argumentation frameworks and the above
semantics is LAFΣ = (KBAF ,BSAF , {ACCpref ,ACCstab ,ACCgr}) where KBAF is the
powerset over {attacks(a, b) | a, b ∈ Σ}, i.e., KBAF consists of all possible attack relations
over Σ, BSAF = 2Σ is the set of possible extensions, and ACCs(kb) = {E ∈ BSAF |
E is an s-extension of kb} where s ∈ {pref , stab, grnd} and an s-extension is the respective
preferred, stable, or ground extension.

ACS allow an AF to be modified according to information from other AFs. These modifi-
cations are given by so-called context expressions, where for a set A of arguments and a set of
values V the following expressions are possible (a, b ∈ A, v, v′ ∈ V ): arg(a), arg(a), att(a, b),
att(a, b), a > b, val(a, v), v > v′, mode(r), sem(s) where r ∈ {skep, cred} is a reasoning
mode and s ∈ {pref , stab, grnd} is a semantics. Notice that the usage of values V allows to
model value-based argumentation-frameworks.

A set CE of context expressions induces a preference order >CE defined as the small-
est transitive relation such that a >CE b holds if either a> b ∈ CE or val(a, v1) ∈ CE,
val(b, v2) ∈ CE, and (v1, v2) is in the transitive closure of {(v, v′) | v >v′ ∈ CE}. Based
on >CE and the contents of CE one can decide whether a set of context expressions CE is
consistent; for more details see [30].

Given an AFA = (A, attacks) and a set of context expressions CE, the CE-modification of
A is the argumentation framework ACE = (ACE , attacksCE) where ACE = A ∪ {def} such
that def /∈ A, and attacksCE is the smallest relation satisfying

1. if att(a, b) ∈ CE then (a, b) ∈ attacksCE ,

2. if (a, b) ∈ attacks , att(a, b) /∈ CE, and b 6>CE a, then (a, b) ∈ attacksCE ,
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3. if arg(a) ∈ CE or (arg(b) ∈ CE ∧ (a, b) ∈ attacksCE) then (def , a) ∈ attacksCE .

The CE-modification basically applies all modifications as given in CE respecting preferences
and removal of arguments, where the latter is achieved by the addition of a new argument def
that invalidates all “removed” arguments by attacking them.

To express information exchange between AFs, bridge rules similar to those of MCS are used.
In the following, we call such a bridge rule an ACS-rule, whose general form is

s← p1, . . . , pj ,not pj+1, . . . ,not pm.

where s is a context expression and p1, . . . , pm are arguments of a specific parent AF. Note that
an ACS-rule only considers arguments from one AF, though multiple rules may consider several
AFs.

An argumentation context systems (ACS) is a sequence F = (M1, . . . ,Mn) of modules
Mi = (Ai,Med i), 1 ≤ i ≤ n where Ai is an argumentation framework and Med i is a mediator
over the AFs A1, . . . ,An. A mediator Med i = (Ei, R1, . . . , Ri−1, Ri+1, . . . , Rk, choice) is a
tuple comprised of a set Ei of context expressions, a set of ACS-rules Rj , j 6= i, for every other
AF of the ACS, and an inconsistency-handling method choice. There are four inconsistency-
handling methods for choice which are based on [27]: some details of this inconsistency handling
are given in [30]; for this work it is sufficient to know that each of these methods allows to select
from a sequence F = (F1, . . . , Fn) of formulas a consistent subset F ′ of F1 ∪ . . . ∪ Fn.

The semantics of an ACS is given in terms of acceptable states, where a state S assigns
each moduleMi = (Ai,Med i) a set of acceptable arguments Si ⊆ Ai of Ai = (Ai, attacks i)
and a set CEi of context expressions for Ai. A state is acceptable, if each Si is an acceptable
CEi-extension for Ai and each CEi is an acceptable context for Med i with respect to all Aj
(1 ≤ j ≤ n). We first state what makes Si an acceptable CEi-extension for Ai and then we state
what makes CEi an acceptable set of context expressions for Med i.

First, given a consistent set of context expressions CEi, a set Si ∈ Ai is an acceptable
CEi-extension either if mode(cred) ∈ CEi and S ∪ {def} is an s-extensions of ACEii ,
or if mode(skep) ∈ CEi and S ∪ {def} is the intersection of all s-extensions of ACEii ,
where sem(s) ∈ CEi holds. Second, CEi is an acceptable set of context expressions for
the mediator Med i = (Ei, R1, . . . , Rn, choice) wrt. a state S = ((S1, CE1), . . . , (Sn, CEn))
if CEi is a choice-preferred (hence consistent) set of context expressions for the sequence
F = (E1, R1(S1), . . . , Rn(Sn)) where for all 1 ≤ i ≤ n, Ri(Si) is the set of heads of applicable
ACS-rules, i.e.,

Ri(Si) =
{
h | h← p1, . . . , pj ,not pj+1, . . . ,not pm. ∈ Ri,

{p1, . . . , pj} ⊆ Si, {pj+1, . . . , pm} ∩ Si = ∅
}
.

Note that different from MCS and mMCS, the bridge rules of an ACS have no context identifier
but the context they refer to is implicit, since each module has one set of bridge rules for any
other module.

We may capture an ACS F = (M1, . . . ,M1) by an mMCS MF = (C1, . . . , Cn) based on
logic suites LAFΣ and context managers that simulate the mediators. For every context expression
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of the ACS there exists a corresponding operation name and the bridge rules of MF simulate
the ACS-rules of F . A one-to-one correspondence between equilibria (and their witnessing
knowledge-bases) of MF and the acceptable states of F can be shown.

Definition 5.6. Given an ACS F = (M1, . . . ,Mn) with modules Mi = (Ai,Med i), AFs
Ai = (Ai, attacks i), and mediators Med i = (Ei, Ri,1, . . . , Ri,n, choicei) for every 1 ≤ i ≤ n,
the corresponding mMCS MF = (C1, . . . , Cn) is as follows.

For 1 ≤ i ≤ n, the context Ci = (LSi, kbi, br i, OPi,mng i) is such that

• the logic suite is LS i = LAFΣ = (KBi,BSi,ACCi) with Σ = Ai ∪ {def},

• the knowledge base kbi = {(a, a′) | attacks(a, a′) ∈ attacks i} contains the attack
relation from the AF Ai,

• the management base OPi contains every context expression of CEi indexed from 1 to n
to identify the AF where the expression originates from, i.e, OPi = {sj | s ∈ CEi, 1 ≤
j ≤ n}.

The set of bridge rules br i of context Ci contains for every ACS-rule r ∈ Ri,`, 1 ≤ ` ≤ n, of
form (5.3) the following bridge rule:

(i : sj(attacks(def ,def)))← (j : p1), . . . , (j : pj),not (j : pj+1), . . . ,not (j : pm).

where sj ∈ OPi is the operational name corresponding to the context expression s indexed by the
context identifier j where the context expression originates from; also note that the knowledge-
base formula attacks(def ,def) serves the sole purpose of turning the context expression s into
an operational statement. We design the management function such that the attack relation is
ignored.

In slight abuse of notation, we denote by Rj(O) the set of context expressions originating
from j, with 1 ≤ j ≤ n, that occur in a set O of operational statements, i.e., Rj(O) = {s |
sj(attacks(def ,def)) ∈ O}. Note that Rj(O) actually ignores the knowledge-base formula
and only yields operation names. Finally, the management function mng i is such that for every
set O of operational statements and every kb ∈ KBi we have that

mng i(O, kb) =
{

(kb′,ACCs,m) | CE is a choicei-preferred set of context expressions for

F = (Ei, R1(O), . . . , Rn(O)),

sem(s) ∈ CE,mode(m) ∈ CE,ACCs,m ∈ ACCi
kb′ = {attacks(a, b) | (Ai)CE = (Ai, att), (a, b) ∈ att}

}
.

Given an ACS F = (M1, . . . ,Mn) and its corresponding mMCS MF , we observe that for
any equilibrium (S1, . . . , Sn) ∈ EQ(MF ) there exist sets CE1, . . . , CEn of context expressions
such that ((S1, CE1), . . . , (Sn, CEn)) is an acceptable state of F and for any acceptable state
((S1, CE1), . . . , (Sn, CEn)) of F it holds that (S1, . . . , Sn) is an equilibrium of MF . In the
realisation here, there is no direct one-to-one correspondence, because the context expressions
CE1, . . . , CEn are implicitly kept inside the management functions of MF .
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Note that it is also possible to shift the context expressions and corresponding modifications
of an AF from the management function to the logic suite of the context in order to obtain the
context expressions of acceptable states of the ACS. A knowledge base of a context then not
only represents an AF A but also a set CE of context expressions; furthermore, the acceptability
function ACC accepts a set of arguments A, if A is acceptable for ACE and the respective
reasoning mode and semantics that is specified in CE. By that, the choosing of a semantics,
however, also is shifted from the management function to the context. We therefore feel that the
presented realisation of ACS in mMCS by Definition 5.6 is more appealing.

5.4 Inconsistency Management

Different forms of inconsistency can arise in mMCS:

1. Nonexistence of equilibria: in the previous chapters, we said that an MCSM is inconsistent
if EQ(M) = ∅, i.e., these chapters deal with nonexistence of equilibria in MCS, the
underlying notions and many results can be directly extended to mMCS.

2. Local inconsistency: even if equilibria exist, they may contain inconsistent belief sets. This
presupposes an adequate notion of consistency (for belief sets and sets of formulas). In
most context logics such a notion exists or is easily defined.

3. Operator inconsistency: the operations in the heads of applicable bridge rules are conflict-
ing, e.g., operations like add(p) and delete(p), or revise(p) and revise(¬p), which might
require the management function to yield knowledge bases that are consistent and at the
same time contain p and contain ¬p.

Handling inconsistencies of type 2 and 3 is one of the motivations that led to the development of
mMCS. For type 1 inconsistencies the techniques of Chapter 3 and from [52, 54] can be adapted
easily.

Local Consistency

Local consistency requires an adequate notion of consistency for every employed logic suite. We
give some examples of such notions, which may be used to decide whether a knowledge-base or
a belief set of a context is (locally) consistent.

• Classical propositional logic using the abstract logic LplΣ or any logic suite based on the
same set KB of knowledge bases and belief sets BS: a belief set bs ∈ BS is inconsistent,
if there exists a formula ψ such that ψ ∈ bs and ¬ψ ∈ bs both hold; a knowledge base
kb ∈ KB is consistent if every bs ∈ ACC(kb) is consistent, where ACC ∈ ACC is any
acceptability function employed by the logic suite.

Note that for many logics, deciding whether a given knowledge base kb is consistent
effectively amounts to checking whether all belief sets acceptable under kb contain both a
literal and its negation.
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• Description logics based on the abstract logic LALCΣ or any logic suite using the same set
KB of knowledge bases and belief sets BS: a knowledge base kb ∈ KB (which contains
A- and T-Box axioms) is consistent if there exists an interpretation that is both a model of
all A-Box axioms of kb and of all T-Box axioms of kb (cf. [4]). Provided that the belief sets
of LALCΣ contain only atomic A-Box axioms (without negation), any belief set of LALCΣ is
consistent.

Note that the logic suite employed in the mMCS of Example 5.4 uses belief sets bs ∈ BS
to represent concept subsumption and kb ∈ KB may contain only T-Box axioms. Here,
one may require for kb being considered consistent that there exists a model I of kb such
that I satisfies all concepts occurring in kb. For bs ∈ BS that is acceptable for kb under
the given semantics, i.e., ACC(kb) = {bs}, one may require for bs being consistent that
kb is consistent, i.e., it satisfies all occurring concepts.

• Answer-set programs based on Lasp
Σ = (KB,BS,ACC): a knowledge base kb ∈ KB

is consistent, if there exists an answer set of kb, i.e., kb is consistent if ACC(kb) 6= ∅. A
belief set bs ∈ BS always is consistent.

Note that following [72], an inconsistent logic program has exactly one answer-set, namely
the set {a,¬a | a ∈ Σ}. If this definition of answer set is used for an abstract logic, then
there previous set corresponds to the only inconsistent belief set and kb is inconsistent, if
the aforementioned set is its single answer-set.

We now demonstrate how local consistency can be achieved by using adequate managers,
given suitable notions of consistency as exemplified above.

Definition 5.7. We call a management function mng local consistency (lc-) ensuring1 if, for
each set O of operational statements and each KB kb, in every pair (kb′,ACC) ∈ mng(O, kb)
the KB kb′ is consistent. Furthermore, an mMCS M is locally consistent if in each equilibrium
S = (S1, . . . , Sn) of M , all Si are consistent belief sets.

In the remainder of this section, we assume that all acceptability functions of a logic suite
reasonably fit the consistency notion in the sense that, if an acceptability function is applied to a
consistent knowledge base, then all accepted belief sets are also consistent. Formally, given a
logic suite LS = (KB,BS,ACC), we assume the following holds:

for all ACC ∈ ACC, if kb ∈ KB is consistent, then every bs ∈ BS with bs ∈
ACC(kb) is consistent.

Proposition 5.1. Let M be an mMCS such that all management functions are lc-ensuring. Then
M is locally consistent.

Proof. Let M = (C1, . . . , Cn) be an mMCS such that each for every context Ci its management
function mng i is lc-ensuring. Towards contradiction, assume that M is not locally consistent, i.e.,
there exists an equilibrium S = (S1, . . . , Sn) such that for some belief set Sj with 1 ≤ j ≤ n it

1In [32] this property is called local consistency (lc-) preserving. We call this property lc-ensuring here to better
account for the fact that the original knowledge-base may be inconsistent.
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holds that Sj is not consistent. Since S is an equilibrium, it holds that Sj ∈ ACC(kb′) for some
(ACC, kb′) ∈ mngj(appj(S,M), kbj). Since mng i is lc-ensuring, it holds that kb′ is consistent.
Since acceptability functions reasonably fit the consistency notion and since Sj ∈ ACC(kb′)
holds, it follows that Sj is consistent; this contradicts that Sj is not consistent. Therefore, no such
equilibrium S exists and it holds that M is locally consistent.

How to define lc-ensuring managers? To simplify matters we assume all contexts are based
on propositional logic with classical consistency and semantics, given by ACCpl , and consider
a single operator add with the obvious meaning. We proceed by: (1) selecting a base revision
operator rev satisfying consistency preservation (revising a propositional KB with a consistent
formula always results in a consistent KB); (2) picking maximal consistent subsets of the formulas
to be added. Let FO = {p | add(p) ∈ O} and let MC (FO) be the set of maximal consistent
subsets of FO. Now define

mng(O, kb) = {(rev (kb,
∧
F ) ,ACCpl ) | F ∈ MC (FO)} .

This management function is obviously lc-ensuring. Further refinements, e.g., based on additional
preferences among bridge rules, are straightforward.

Global Consistency

We can directly extend the notions of Chapter 3 to mMCS to obtain diagnoses and explanations. A
diagnosis of an inconsistent mMCSM is a pair (D1, D2) of sets of bridge rulesD1, D2 ⊆ br(M)
such that M [D1, D2] = M [br(M) \D1 ∪ cf (D2)] is consistent, i.e., M [D1, D2] 6|= ⊥ which
is equivalent to EQ(M [D1, D2]) 6= ∅. We denote by D±(M) the set of all such diagnoses and
by D±m(M) the set of all pointwise subset-minimal diagnoses. Observe that the definition of a
diagnosis of an mMCS is the same as of a diagnosis of an MCS. This is because the necessary
notions of MCS directly carry over to mMCS.

Explanations of inconsistency in mMCS are also defined in exactly the same way as for MCS.
Formally, given an mMCS M , an explanation of M is a pair (E1, E2) of sets E1, E2 ⊆ br(M)
such that for all (R1, R2) with E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) \ E2, it holds that
M [R1 ∪ cf (R2)] |= ⊥. E±(M) denotes the set of all inconsistency explanations of M , and
E±m(M) the set of all pointwise subset-minimal ones.

Example 5.6. Suppose to improve the mMCS Mph from Example 5.3 by adding a further bridge
rule r1 to ensure that water is considered ineffective, even if C4 does not derive this. The bridge
rule r1 is:

(1 : insert(ineffective(water , leg_pneu)))← not (4 : ineffective(water , leg_pneu)).

The resulting mMCS M ′ph is inconsistent: let t denote ineffective(water , leg_pneu) and let r2

be the rule of form (4 : upd(t)← (1 : t) in of context C4; now if t 6∈ S4 holds, then t ∈ S1 must
hold by r1, implying t ∈ S4 holds by r2, a contradiction; on the other hand, if t ∈ S4 holds then
t 6∈ S1 follows, which implies that t 6∈ S4 holds, again a contradiction.
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Then M ′ph has one minimal explanation, ({r1, r2}, {r1, r2}), and four minimal diagnoses:

D±m(M ′ph) =
{

({r1}, ∅), ({r2}, ∅),
(∅, {r1}), (∅, {r2})

}
.

One of the basic functions of context managers is to ensure an acceptable belief set of a
context regardless of its applicable operational statements.

Definition 5.8. We call a context Ci with knowledge base kbi in an mMCS M totally coherent
if for every belief state S of M some (kb′,ACCi) ∈ mng i(appi(S), kbi) exists such that
ACCi(kb′) 6= ∅; and Ci totally incoherent if no belief state S fulfils the previous condition.

Note that any context with an lc-ensuring management function is totally coherent; the
opposite need not be the case.

Example 5.7. All contexts of Mph from Example 5.4 and M ′ph from Example 5.6 are totally
coherent. Indeed, for C2 and C3 this holds trivially, as they have no bridge rules. Similarly, for
C1 each insertion of tuples yields a knowledge base with an acceptable belief set (as effective and
ineffective may share tuples, the belief set may be regarded to be inconsistent). ForC4 we observe
that the logic program has no stable model only if effective(X,B) and not effective(X,B)
are derived for some (X,B). The atom not effective(X,B) however, can only hold for atoms
added through the upd operation whose semantics guarantees that effective(X,B) is no longer
derivable. Therefore C4 has always an acceptable belief set.

Note that M ′ph is inconsistent, although all of its contexts are totally coherent.

Total coherence cannot prevent inconsistency of the whole mMCS caused by cyclic infor-
mation flow. On the other hand, context managers can ensure the existence of diagnoses. To
guarantee the existence of a diagnosis for an MCS M , [52] requires that M [∅] is consistent. For
mMCS we can replace this premise by the considerably weaker assumption that no context is
totally incoherent.

Proposition 5.2. Let M be an inconsistent mMCS. Then D±(M) 6= ∅ if no context of M is
totally incoherent.

Proof. Let M = (C1, . . . , Cn) for some n ≥ 1. Since no context is totally incoherent, it holds
for every 1 ≤ i ≤ n that there exists exists a belief state Si = (Si1, . . . , S

i
n) of M such that some

(kb′i,ACCi) ∈ mng i(appi(S
i), kbi) exists with ACCi(kb′) 6= ∅. Since ACCi(kb′) is not

empty, let Si ∈ ACCi(kb′) be one accepted belief set and let Sw = (S1, . . . , Sn) be the belief
state where each Si is such an accepted belief set, i.e. for all 1 ≤ i ≤ n is Si ∈ ACCi(kb′i) with
(kb′i,ACCi) ∈ mng i(appi(S

i), kbi). Intuitively, each belief set Si of Sw is acceptable if the
right set Ri of operational statements is given to mng i. We now craft a diagnosis which ensures
that Ri results from the modified system as follows: delete all bridge rules and add those bridge
rules in condition-free form whose operational statement in the head occurs in Ri. Because all
bridge rules of the resulting mMCS are condition-free, all those bride rules are applicable also in
Sw, making it an equilibrium.
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Formally: recall that appi(S
i) = {ϕ (r) | r ∈ br i(M), Si r}, and consider the set Ri =

{r ∈ br i(M) | Si r} of bridge rules applicable in Si. Note that br i(M [br(M), Ri]) = cf (Ri)
and that appi(S

i) = {ϕ (r) | r ∈ cf (Ri)}, because ϕ (r) = ϕ (cf (r)) holds for all bridge rules
r. Also note that for any belief state S′ it holds that {ϕ (r) | r ∈ br i(M [br(M), Ri]), S

′ r} =
{ϕ (r) | r ∈ cf (Ri)} = appi(S

i), because for any r ∈ cf (Ri) it holds that body(r) = ∅ and
thus S′ r.

Let R∪ = R1∪ . . .∪Rn be the union of all such Ri and observe that br i(M [br(M), R∪]) =
br i(M [br(M), Ri]) for all 1 ≤ i ≤ n. Since all bridge rules in M [br(M), R∪] are uncon-
ditional, it holds that {ϕ (r) | r ∈ app(br i(M [br(M), R∪]), Sw)} = appi(S

i), hence it
holds for all 1 ≤ i ≤ n that Si ∈ ACCi(kb′i) where (kb′i,ACCi) ∈ mng i({ϕ (r) | r ∈
app(br i(M [br(M), R∪]), Sw)}, kbi). In other words, Sw is an equilibrium of M [br(M), R∪];
hence Sw is a witnessing equilibrium of (br(M), R∪) ∈ D±(M).

Note that the converse of Proposition 5.2 is not true, i.e., a totally incoherent mMCS M
may have a diagnosis. The reason here is that total incoherence is defined with respect to all
possible sets of applicable bridge rules and not with respect to all possible sets of knowledge-base
formulas added by bridge rules. There can be more sets of possible knowledge-base formulas
than there might be sets of heads of applicable bridge rules (if no modifications of the bridge rules
are taken into account). Since a diagnosis is able to enforce any possible sets of knowledge-base
formulas, there still can be diagnoses for a totally incoherent context. The following example
shows that behaviour in more detail.

Example 5.8. Let M = (C1) be an mMCS where C1 is based on the abstract logic for ASP
Lasp

Σ = (KB,BS,ACC). The logic suite of C1 is then LS 1 = (KB,BS, {ACC}). The
management base OP1 = {add}, and the management function mng1 adds all statements, i.e.,
for kb ∈ KB, O ⊆ ΦOP1

LS1
is mng1(O, kb) = {(kb ∪ {s | add(s) ∈ O},ACC)}. Furthermore,

the knowledge base and bridge rules of C1 are:

kb1 = {⊥ ← a, b. c.}
br1 = { (1 : add(a.))← >.

(1 : add(b.))← >.}

Any belief state S = (S1) of M is such that S1 ⊆ {a, b, c} and it holds for all such
S1 that app1(S1) = {add(a.), add(b.)} since both bridge rules of C1 are applicable in any
belief state. Hence for any belief state S it holds that mng1(app1(S,M), kb1) = {(kb1 ∪
{a. b.},ACC)}. By the semantics of ASP it then follows that ACC(kb1 ∪ {a. b.}) = ∅.
Since this holds for all belief states, C1 is totally incoherent. Nevertheless, (br1(M), ∅) is
a diagnosis, since M [∅] has an equilibrium, namely S = ({c}), because app1(S,M [∅]) =
∅, hence mng1(app1(S,M [∅]), kb1) = {(kb1,ACC)} and ACC(kb1) = {{c}}. Therefore,
(br i(M), ∅) ∈ D±(M) holds although every context of M is totally incoherent.

Note that forbidding the use of > in the body of a bridge rule would not be sufficient to
remedy this issue, since C1 is also totally incoherent if the body of both bridge rules is (1 : c).
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We can strengthen the notion of coherence for contexts further, by requiring that the context
is coherent not only for all possible belief sets, but also for all possible sets of knowledge-base
formulas added by bridge rules. This ensures coherence, even under modification of bridge rules.

Definition 5.9. We call a context Ci with knowledge base kbi in an mMCS M omni-coherent
if for every set H ⊆ {ϕ (r) | r ∈ br i(M)} of operational statements of bridge rules, some
(kb′,ACCi) ∈ mng i(H, kbi) exists such that ACCi(kb′) 6= ∅. We call Ci omni-incoherent if
no such H ⊆ {ϕ (r) | r ∈ br i(M)} fulfils the previous condition.

Observe that if a context is omni-coherent, then it also is totally coherent, because for all
belief states S it holds that appi(S,M) ⊆ {ϕ (r) | r ∈ br i(M)}. For omni-incoherent contexts
the previous proposition now holds in both directions.

Proposition 5.3. Let M be an inconsistent mMCS. Then D±(M) 6= ∅ iff no context of M is
omni-incoherent.

Proof. “⇒”: Let D±(M) 6= ∅ hold. We have to show that no context of M is omni-incoherent.
Towards contradiction, assume that there exists 1 ≤ i ≤ n such that contextCi is omni-incoherent.
Let (D1, D2) ∈ D±(M) and S ∈ EQ(M [D1, D2]) where S = (S1, . . . , Sn) and let H =
appi(S,M [D1, D2]). Since {ϕ (r) | r ∈ br i(M [D1, D2])}⊆{ϕ (r) | r ∈ br i(M)}, it follows
by the omni-incoherence ofCi that there exists no (kb′,ACCi)∈mng i(appi(S,M [D1,D2]),kbi)
such that ACCi(kb′) 6= ∅.
Hence Si /∈ ACCi(kb′) holds for all (kb′,ACCi) ∈ mng i(appi(S,M [D1, D2]), kbi). This
contradicts that that S ∈ EQ(M [D1, D2]). Therefore the assumption that there exists an omni-
incoherent Ci is wrong and it follows that no context of M is omni-incoherent.

“⇐”: We can directly re-use the proof of Proposition 5.2 to construct a diagnosis of M as
follows.

Let M = (C1, . . . , Cn), n ≥ 1. Since no context is omni-incoherent, it holds for every 1 ≤
i ≤ n that there exists some belief state Si = (Si1, . . . , S

i
n) of M such that some (kb′i,ACCi) ∈

mng i(appi(S
i,M), kbi) exists with ACCi(kb′) 6= ∅. Since ACCi(kb′) is not empty, let

Si ∈ ACCi(kb′) be an arbitrary accepted belief set and let Sw = (S1, . . . , Sn) be the belief
state where each Si is such an accepted belief set w.r.t. the belief state Si, i.e. for all 1 ≤ i ≤ n is
Si ∈ ACCi(kb′i) with (kb′i,ACCi) ∈ mng i(appi(S

i,M), kbi).
Recall that appi(S

i,M) = {ϕ (r) | r ∈ br i(M), Si r}, and consider the set Ri = {r ∈
br i(M) | Si r} of bridge rules applicable in Si. Note that br i(M [br(M), Ri]) = cf (Ri) and
that appi(S

i,M) = {ϕ (r) | r ∈ cf (Ri)}, because ϕ (r) = ϕ (cf (r)) holds for all bridge rules
r. Also note that for any belief state S′ it holds that {ϕ (r) | r ∈ br i(M [br(M), Ri]), S

′ r} =
{ϕ (r) | r ∈ cf (Ri)} = appi(S

i,M), because for any r ∈ cf (Ri) it holds that body(r) = ∅ and
thus S′ r.

Let R∪ = R1∪ · · · ∪Rn be the union of all such Ri and observe that br i(M [br(M), R∪]) =
br i(M [br(M), Ri]) for all 1 ≤ i ≤ n. Since all bridge rules inM [br(M), R∪] are unconditional,
it holds that appi(S

w,M [br(M), R∪]) = appi(S
i,M), hence it holds for all 1 ≤ i ≤ n that

Si ∈ ACCi(kb′i) where (kb′i,ACCi) ∈ mng i(appi(S
w,M [br(M), R∪]), kbi). In other words,

Sw is an equilibrium ofM [br(M), R∪]; hence Sw is a witnessing equilibrium of (br(M), R∪) ∈
D±(M).
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One of the main observations regarding inconsistency and managed contexts is that acyclic
and thus in particular hierarchic mMCS with totally coherent contexts are always consistent.

Proposition 5.4. Any acyclic mMCS with totally coherent contexts has an equilibrium.

Proof. Let M be an acyclic mMCS with totally coherent contexts. Since M is acyclic, there
exists a topological ordering C`1 , . . . , C`n of the contexts of M such that (c : p) ∈ body±(r),
r ∈ br i(M), Cc = C`j , and Ci = C`k implies that j < k, i.e., bridge rules of context Ci only
refer to beliefs of contexts that occur earlier in the ordering.

Using this topological ordering, we construct in the following a series S1, . . . , Sn of belief
states where each Si = (Si1, . . . , S

i
n) is such that (1) Si`k = Si−1

`k
for all i > k and (2) for all C`k

it holds that Sk`k ∈ ACC′(kb′) where (kb′,ACC′) ∈ mng`k(app`k(Sk,M), kb`k). Intuitively,
the topologically first context C`1 accepts the belief set S1

`1
of the belief state S1 and the belief

set Si`1 of all later belief states Si, 1 ≤ i ≤ n. The topologically second context accepts the belief
set S2

`2
of the second belief state S2 and the belief set Si`2 of all later belief states Si, 2 ≤ i ≤ n.

Unitl the last context C`n accepts the belief set Sn`n of the belief state Sn and since all contexts
accept Sn it holds that Sn ∈ EQ(M).

Let S0 = (S0
1 , . . . , S

0
n) = (∅, . . . , ∅), we then define Sk for 1 ≤ k ≤ n inductively as follows.

Let kb`k be the knowledge base ofC`k ; now consider mng`k(app`k(Sk−1), kb`k) and observe that
by total coherence of C`k it holds that there exists (kb′,ACC′) ∈ mng`k(app`k(Sk−1), kb`k)
such that there exists S`k ∈ ACC′(kb′). Then, we define

Sk = (Sk−1
1 , . . . , Sk−1

`k−1, S`k , S
k−1
`k+1, . . . , S

k−1
n ).

Observe that for every 1 ≤ `k ≤ n it holds that app`k(Sk) = app`k(Sn) since the bridge
rules of C`k only refer to beliefs from contexts C`j with j < k and Sj`j = Sj+1

`j
= . . . =

Sn`j . Hence, Sn`k = Sk`k ∈ ACC′(kb′) with (kb′,ACC′) ∈ mng`k(app`k(Sn), kb`k) =

mng`k(app`k(Sk), kb`k). Since this holds for all 1 ≤ k ≤ n, it follows that Sn ∈ EQ(M)
holds, which proves the statement.

Since any omni-coherent context also is totally coherent, the above result also extends to such
mMCS.

Corollary 5.1. Any acyclic mMCS with omni-coherent contexts has an equilibrium.

Our main contribution to inconsistency in mMCS with omni-coherent contexts is the observa-
tion of Theorem 5.1 that any minimal inconsistency explanation of such an mMCS contains a
cycle and all bridge rules of such an explanation are cycle-reaching. The examples following the
theorem also demonstrate that some probable refinements of the theorem do not hold, i.e., the
characterisation is quite precise.

Before proceeding, we need to introduce some notations regarding cycles. Let M =
(C1, . . . , Cn) be an mMCS. Then the directed graph induced by M is GM = (V,E) with
vertices V = {C1, . . . , Cn} and edges E = {e(r) | r ∈ br(M)} where e(r) = {(Ci, Cj) | r ∈
br j(M), (i : p) ∈ body±(r)}. Intuitively, GM contains an edge from Ci to Cj whenever there

173



exists a bridge rule of Cj whose body contains a belief from Ci.2 A path p inGM = (V,E) is any
sequence p = (e1, . . . , ek) of edges with e1, . . . , ek ∈ E and e1 = (v1, v2), . . . , ek = (vk, vk+1).
A path p = (e1, . . . , ek) in GM is a cycle, if e1 = (v1, v2) and ek = (vk, v1) hold. A sequence
(r1, . . . , rk) of bridge rules corresponds to a path p = (e1, . . . , ek) if e1 ∈ e(r1), . . . , ek ∈ e(rk)
all hold. A sequence (r1, . . . , rk) of bridge rules is a cycle if there exists a corresponding path
p = (e1, . . . , ek) and p is a cycle.

Given a cycle p = (e1, . . . , ek), we say a bridge rule r reaches p in GM , if there exists
a path p′ = (e′1, . . . , e

′
m, e1) in GM such that e′1 ∈ e(r) holds. A bridge rule r ∈ br(M) is

cycle-reaching in GM if there exists a cycle p in GM such that r reaches p in GM .
Observe that the modifications considered by an explanation of an mMCS M yield an mMCS

M ′ such that GM contains all edges of GM
′
. Formally, let R ⊆ br(M) ∪ cf (br(M)) hold, let

GM = (V,E) and let GM [R] = (V ′, E′). Then it holds that E′ ⊆ E, i.e., GM [R] contains no
more edges than GM . The reason is that bridge rules in cf (br(M)) do not refer to any beliefs
from other contexts, i.e., for any r ∈ cf (br(M)) it holds that body(r) = ∅, thus Cb (r) = ∅, and
consequently e(r) = ∅. From that it also follows that if a bridge rule r ∈ br(M) is not cycle-
reaching in GM , then r also is not cycle-reaching in GM [R] for any R ⊆ br(M) ∪ cf (br(M)).

Theorem 5.1. Let M be an inconsistent mMCS with omni-coherent contexts. Then for every
minimal explanation (E1, E2) ∈ E±m(M) there exists a cycle cyc = (r1, . . . , rk) such that
{r1, . . . , rk} ⊆ E1 holds and every r ∈ E1 is cycle-reaching in GM .

Proof. Let M = (C1, . . . , Cn) be an inconsistent mMCS with omni-coherent contexts and let
(E1, E2) ∈ E±m(M). Towards contradiction, assume that there exists no cycle (r1, . . . , rk) such
that {r1, . . . , rk} ⊆ E1. Since (E1, E2) ∈ E±m(M), it follows for all E1 ⊆ R1 ⊆ br(M)
and R2 ⊆ br(M) \ E2 that M [R1 ∪ cf (R2)] |= ⊥ holds. Consider R1 = E1 and R2 = ∅
and observe that M [R1 ∪ cf (R2)] = M [E1] is an acyclic mMCS with omni-coherent contexts.
Hence by Corollary 5.1 it follows that M [E1] has an equilibrium, i.e., M [R1 ∪ cf (R2)] 6|= ⊥.
This contradicts that (E1, E2) ∈ E±m(M) holds. Hence there exists a cycle cyc = (r1, . . . , rk)
such that {r1, . . . , rk} ⊆ E1.

It remains to show that every r ∈ E1 is cycle-reaching in GM . Towards contradiction,
assume there is r ∈ E1 such that r is not cycle-reaching in GM . In the following we show that
given such r it holds that (E1 \ {r}, E2) also is an explanation, contradicting the minimality
of (E1, E2). We proceed in three steps. In the first step, we show that considering any R1, R2

with E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) \ E2 it holds for the resulting M [R1 ∪ cf (R2)] that
in every belief state S one of the contexts that is not reachable by r is causing S to be not an
equilibrium, i.e., the cause of inconsistency always is some context that is not reachable by r. In
the second step, we show that removing r has no influence on applicable bridge rules of these
contexts not reachable by r. In the third step we combine the two observations to derive that
for all relevant bridge rules R1, R2 and all belief states S it holds that M [R1 \ {r} ∪ cf (R2)] is
inconsistent, which is equivalent to showing that (E1 \ {r}, E2) ∈ E±(M) holds.

In the following, let V +(r) ⊆ V be the set of nodes of GM = (V,E) that are reachable from
the node where r belongs to, i.e., V +(r) is the set of nodes reachable in GM from the node in the

2The direction of edges in GM is the same as in all illustrations throughout this thesis. Note, however, that this is
exactly the opposite direction as used in the import closures of [5, 6].
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singleton set {v ∈ V | (v′, v) ∈ e(r)}. Since V is the set of contexts of M , V +(r) is a subset of
these contexts. Furthermore, let A be the set of indices of nodes/contexts reachable from r and
let B be the set of indices of nodes/contexts not reachable from r, formally:

A ={i ∈ N | Ci ∈ V +(r)}
B ={i ∈ N | Ci ∈ V \ V +(r)} = {1, . . . , n} \A

We now show that for every belief state S = (S1, . . . , Sn) there exists some i ∈ B such that
there exists no (ACCi, kb′i) ∈ mng i(appi(S,M [R1 ∪ cf (R2)]), kbi) with Si ∈ ACCi(kb′i).
Informally, we show that every belief state is not acceptable by some context of B. Towards
contradiction, assume that there exists S0 = (S0

1 , . . . , S
0
n) such that for every i ∈ B it holds that

there exists (ACCi, kb′i) ∈ mng i(appi(S
0,M [R1 ∪ cf (R2)]), kbi) with Si ∈ ACCi(kb′i).

Since r is not cycle-reaching, it holds that the resulting induced sub-graph is acyclic. Hence,
there exists a topological ordering to : {Cj | j ∈ A} → {1, . . . , k} of the contexts of V +(r)
such that to(Ci) ≤ to(Cj) implies that the bridge rules of Ci do not use beliefs of Cj for any
i, j ∈ A. Formally, to(Ci) = ` implies that for every context Cj with to(Cj) ≥ ` it holds that
j /∈

⋃
r∈br i(M)Cb (r). Note that

⋃
r∈br i(M)Cb (r) is a superset of

⋃
r∈br i(M [R1∪cf (R2)])Cb (r)

since R1 ⊆ br(M) holds and unconditional bridge rules refer to no other contexts. Hence,
the topological ordering to also works for M [R1 ∪ cf (R2)] where E1 ⊆ R1 ⊆ br(M), R2 ⊆
br(M) \ E2 are arbitrary.

Using to, we then inductively construct a sequence of belief states. Let j be such that
to(Cj) = 1 and observe that since Cj is omni-coherent, it holds that there exists a belief set
S1
j ∈ ACCj(kb′j) with (ACCj , kb′j) ∈ mngj(appj(S

0,M [R1 ∪ cf (R2)]), kbj). Now define
S1 = (S1

1 , . . . , S
n
1 ) such that for all 1 ≤ i ≤ n with i 6= j it holds that S1

i = S0
i and S1

j

is the belief set above. Notice that appj(S
1,M [R1 ∪ cf (R2)]) = appj(S

0,M [R1 ∪ cf (R2)])
by construction of S1. Consequently, it holds that S1

j ∈ ACCj(kb′j) with (ACCj , kb′j) ∈
mngj(appj(S

1,M [R1 ∪ cf (R2)]), kbj). Furthermore, note that for all i ∈ B it holds that
appi(S

0,M [R1 ∪ cf (R2)]) = appi(S
1,M [R1 ∪ cf (R2)]), because by definition of V +(r) no

context of B has a bridge rule that refers to any context of A. Since it further holds for all
j ∈ B that S1

j = S0
j , it therefore holds that there exists (ACCi, kb′i) ∈ mng i(appi(S

1,M [R1 ∪
cf (R2)]), kbi) with S1

i ∈ ACCi(kb′i).
Let j ∈ {2, . . . , k} and let Ci be such that to(Ci) = j. Then the belief state Sj =

(Sj1, . . . , S
j
n) is such that for all 1 ≤ ` ≤ n with ` 6= i it holds that Sj` = Sj−1

` and Sji is
a belief set Sji ∈ ACCi(kbi) with (ACCi, kb′i) ∈ mng i(appi(S

j−1,M [R1 ∪ cf (R2)]), kbi).
Note that such an Sji exists since Ci is omni-coherent and since r is not cycle-reaching and
Ci is reachable from r, it holds that Ci has no bridge rule referring to itself. Hence, it holds
that appi(S

j−1,M [R1 ∪ cf (R2)]) = appi(S
j ,M [R1 ∪ cf (R2)]). Consequently, it holds that

there exists (ACCi, kb′i) ∈ mng i(appi(S
j ,M [R1 ∪ cf (R2)]), kbi) such that Sji ∈ ACCi(kb′i)

holds.
Consider Sk = (Sk1 , . . . , S

k
n) and observe that for all i ∈ B it holds that Ski = Sk−1

i =
. . . = S0

i . Hence it holds that appi(S
k,M [R1 ∪ cf (R2)]) = appi(S

0,M [R1 ∪ cf (R2)])
and therefore it holds that there exists (ACCi, kb′i) ∈ mng i(appi(S

1,M [R1 ∪ cf (R2)]), kbi)
with S1

i ∈ ACCi(kb′i). It furthermore holds for all j ∈ A that there exists (ACCj , kb′j) ∈
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mngj(appj(S
k,M [R1∪cf (R2)]), kbj) with Skj ∈ ACCj(kb′j), because Skj = S`j for to(Cj) =

` and as argued in the inductive step above it holds that (ACCj , kb′j) ∈ mngj(appj(S
k,M [R1∪

cf (R2)]), kbj) with Skj ∈ ACCj(kb′j). In summary, it holds for all 1 ≤ i ≤ n that there exists
(ACCi, kb′i) ∈ mng i(appi(S

k,M [R1 ∪ cf (R2)]), kbi) with Ski ∈ ACCi(kb′i), i.e., it holds
that Sk ∈ EQ(M [R1 ∪ cf (R2)]). This contradicts that M [R1 ∪ cf (R2)] |= ⊥ and therefore
also contradicts that (E1, E2) ∈ E±m(M) holds. Hence the assumption that there exists such
a belief state S0 is false, and it holds for every belief state S = (S1, . . . , Sn) that there exists
i ∈ B such that there exists no (ACCi, kb′i) ∈ mng i(appi(S,M [R1 ∪ cf (R2)]), kbi) with
Si ∈ ACCi(kb′i).

We now show that for all R ⊆ br(M) ∪ cf (br(M)), for all belief states S = (S1, . . . , Sn)
and for all i ∈ B it holds that appi(S,M [R]) = appi(S,M [R \ {r}]). Recall that B is the set of
indices of those contexts that are not in V +(r). Since r belongs to a context in V +(r), it thus holds
that br i(M [R]) = br i(M [R\{r}]). It thus follows that appi(S,M [R]) = appi(S,M [R\{r}]).

Summarising, we know that for every belief state S = (S1, . . . , Sn) there exists some i ∈ B
such that no (ACCi, kb′i) ∈ mng i(appi(S,M [R1∪cf (R2)]), kbi) exists with Si ∈ ACCi(kb′i).
By the above, it also holds that there exists no (ACCi, kb′i) ∈ mng i(appi(S,M [R1 \ {r} ∪
cf (R2)]), kbi) with Si ∈ ACCi(kb′i). Hence S is not an equilibrium of M [R1 \ {r} ∪ cf (R2)]
and since this holds for all belief states S, it follows that M [R1 \ {r} ∪ cf (R2)] |= ⊥.

Furthermore, since this holds for all R1, R2 with E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) \E2,
it follows that (E1 \ {r}, E2) ∈ E±(M) holds. This clearly contradicts that (E1, E2) ∈ E±m(M)
holds. Therefore, the assumption that there exists an r ∈ E1 such that r is not cycle-reaching in
GM is false; thus all r ∈ E1 are cycle-reaching in GM , which concludes our proof.

Note, that not every cycle causes inconsistency, and that due to potential non-monotonicity
inside contexts the number of negative literals occuring in the bridge rules of a cycle is not
relevant for determining whether a cycle will cause inconsistency.

One possible sharpening of the above theorem could be that those bridge rules which are not
part of a cycle are directly connected to the cycle, i.e., given an mMCSM and (E1, E2) ∈ E±m(M)
such that r ∈ E1 is not part of a cycle in E1, then one could expect that r is cycle-reaching in
GM [E1]. As the following example shows, however, this need not be the case.

Example 5.9. Consider an mMCS M = (C1, C2, C3, C4, C5) where all contexts use ASP, i.e.,
LS 1 = . . . = LS 5 with LS 1 = (KBASP ,BSASP , {ACCASP }) stemming from the abstract
logic Lasp

Σ = (KBASP ,BSASP ,ACCASP ). All contexts use the same management function
and operational base, i.e., for all 1 ≤ i ≤ 5 holds Oi = {add} and the management functions
simply add all head formulas, i.e., mng i(O, kb) = {(kb ∪ {s | add(s) ∈ O})}. The knowledge
bases and bridge rules of M are as follows:

kb1 = {a← not b.} br1 = {r1 : (1 : add(b))← (2 : b).}
kb2 = {b← a, c.} br2 = {r2 : (2 : add(a))← (1 : a).

r′2 : (2 : add(c))← (3 : c).}
kb3 = {c← not d.} br3 = {r3 : (3 : add(d))← (4 : d).}
kb4 = {d← not e.} br4 = {r4 : (4 : add(e))← (5 : e).}
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Figure 5.2: The MCS of Example 5.9 whose minimal explanation (E1, E2) =
({r1, r2, r

′
2, r4}, {r1, r2, r3}) contains in E1 all bridge rules except r3. Bridge rule r4 is cycle-

reaching in GM , but not in GM [E1].

kb5 = {e.} br5 = {}

The mMCS is also depicted in Figure 5.2. Observe that all contexts of M are omni-coherent,
since for any set of operational statements occurring at a context of M , the knowledge base
resulting from the management function has an answer set.

Intuitively, the cycle (r1, r2) causes inconsistency, if c is present at C2. Since e is present at
C5, r4 causes d to be absent in C4 and r3 is not applicable. Thus c is derived in C3 and r′2 adds
c to C2.

A minimal explanation of M is (E1, E2) = ({r1, r2, r
′
2, r4}, {r1, r2, r3}) where (r1, r2) is

a cycle in GM and bridge rules r′2, r4 ∈ E1 are cycle-reaching in GM . Removing r4 from E1

would result in M [R1 ∪ cf (R2)] being consistent, for R1 = {r1, r2, r3, r4} and R2 = ∅, hence
(E1 \{r4}, E2) does not constitute an explanation. One can check that removing any other bridge
rules from (E1, E2) also does not constitute an explanation, i.e., (E1, E2) ∈ E±m(M) holds.

Therefore there is a minimal explanation (E1, E2) for M such that there exists r ∈ E1 which
is not contained in a cycle and also not directly connected to the cycle in GM [E1].

One could also expect that for any (E1, E2) ∈ E±m(M) of an mMCS M , it holds that E1

contains at most one cycle. The following example shows that this, however, need not be the case.

Example 5.10. Consider the mMCS M = (C1, C2, C3, C4, C5) using the same logic suites and
context managers as the mMCS in Example 5.9, i.e., all contexts of M use ASP. The knowledge
bases and bridge rules are as follows:

kb1 = {a ∨ a′.} br1 = {}
kb2 = {b← a, c.} br2 = {r2 : (2 : add(a))← (1 : a).

r′2 : (2 : add(c))← (3 : c).}
kb3 = {c← not b.} br3 = {r3 : (3 : add(b))← (2 : b).}
kb4 = {b′ ← a′, c′.} br2 = {r4 : (4 : add(a′))← (1 : a′).

r′4 : (4 : add(c′))← (5 : c′).}
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r2r4 r3r5
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Figure 5.3: The MCS of Example 5.10 whose minimal explanation (E1, E2) =
({r2, r

′
2, r3, r4, r

′
4, r5}, {r′2, r3, r

′
4, r5}) contains two cycles (r3, r

′
2) and (r5, r

′
4).

kb5 = {c′ ← not b′.} br3 = {r5 : (5 : add(b′))← (4 : b′).}

The resulting mMCS is depicted in Figure 5.3. Observe that all contexts of M are omni-coherent,
for the same reason as in Example 5.9.

Intuitively, C1 has two answer sets, one containing a the other containing a′. For the one
containing a, the cyclic information flow through C2 and C3 causes inconsistency by the cycle
(r′2, r3). Analogous for the answer set containing a′, the cycle (r′4, r5) causes inconsistency. M
is inconsistent and one can check that (E1, E2) = ({r2, r

′
2, r3, r4, r

′
4, r5}, {r′2, r3, r

′
4, r5}) is an

explanation. Indeed, (E1, E2) is a minimal explanation since any removal of one bridge rule
makes the resulting mMCS consistent. Since E1 contains two cycles, this shows that even for
omni-coherent mMCS there are minimal explanations containing more than one cycle.

5.5 Expressiveness of MCS and mMCS

In this section we show that each MCS can be cast into an mMCS where the management base of
each context contains a single operation name for addition and every context manager simply
adds all applicable bridge rules. We then show that each mMCS can be cast into an MCS where
the acceptability function of each context is internally using the functionality of the context
manager, i.e., we show that an acceptability function of an MCS may hide a context manager.
This establishes that MCS and mMCS have the same expressivity.

An ordinary context Ci = (Li, kbi, br i) with logic Li = (BSLi ,KBLi ,ACCLi) can
be turned quite easily into a managed context C ′i = (LS i

′, kbi, br ′i,OP i, add i) over LS i =
(BSLi ,KBLi , {ACCLi}), where OP i = {add i} and add i interprets add(f) as addition of
f , i.e., add i(O, kbi) = {(kbi ∪ {s | add(s) ∈ O},ACCLi)} and br ′i = {(i : add(s)) ←
body(r). | r ∈ br i ∧ ϕ (r) = s}. We call C ′i the management version of Ci and for convenience
we identify both. Managed MCS thus generalise ordinary MCS.

Proposition 5.5. Let M = (C1, . . . , Cn) be an MCS and M ′ = (C ′1, . . . , C
′
m) the mMCS where

each C ′i is the management version of Ci. Then S is an equilibrium of M iff S is an equilibrium
of M ′.

Proof. Note that for every 1 ≤ i ≤ n it holds that r ∈ br i holds iff (i : add(s))← body(r). ∈
br ′i holds. Therefore for any belief state S holds that S r iff S (i : add(ϕ (r))) ←
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body(r). By that and from the definition of br ′i it follows that {ϕ (r) | r ∈ br ′i, S r} =
{add(ϕ (r)) | r ∈ br i, S r} = {add(s) | s ∈ appi(S,M)}, where 1 ≤ i ≤ n holds.
Since add i(O, kbi) = {(kbi ∪ {s | add(s) ∈ O},ACCLi)}, it holds for all 1 ≤ i ≤ n
that add i({ϕ (r) | r ∈ br ′i, S r}, kbi) = {(kbi ∪ appi(S,M),ACCLi)}. W.l.o.g. let
S = (S1, . . . , Sn). Then it holds for all 1 ≤ i ≤ n that Si ∈ ACCLi(kbi ∪ appi(S,M))
holds iff there exists (kb′i,ACC′i) ∈ add i(kbi, appi(S,M

′)) with Si ∈ ACC′i(kb′i). In other
words, S is an equilibrium of M iff S is an equilibrium of M ′.

The idea to show that MCS can simulate mMCS is that the management function and
acceptability function of the managed context are combined into a new acceptability function
which then serves in the ordinary context. Since the acceptability function of an ordinary MCS
only receives a knowledge base as input, the operational statements of the bridge rules of the
mMCS must be allowed as knowledge-base elements. Furthermore, measures have to be taken
to ensure that these additional knowledge-base elements cannot be confused with knowledge-
base elements of the original context of the mMCS. We thus construct an abstract logic whose
knowledge bases are composed of knowledge-base elements and operational statements that
are preceded by a new symbol not occurring in the original knowledge base to distinguish the
operational statements from knowledge-base elements.

Given a logic suite LS = (KB,BS,ACC) and a management base OP , the overlap-free
combination of LS and OP is the set KBOP

LS = {kb ∪ {ns(o) | o ∈ O} | kb ∈ KB, O ⊆ ΦOP
LS }

where ns is a new symbol not occurring in ΦLS , i.e., ns occurs in no knowledge base of KB.
Notice that for any knowledge-base kb ∈ KB and set o ⊆ OP of operational statements, there
exists exactly one corresponding set in KBOP

LS .
In the following, we denote the set of all operational statements preceded by the new symbol

by ns(ΦOP
LS ) = {ns(o) | o ∈ ΦOP

LS }. Since ns is a symbol not occurring in any knowledge base,
it is possible for any kb ∈ KBOP

LS to compute the corresponding knowledge base kb \ ns(ΦOP
LS )

of KB and the corresponding set of operational statements kb ∩ ns(ΦOP
LS ) in time linear in the

size of kb.
Let M = (C1, . . . , Cn) be an mMCS and let Ci = (LS i, kbi, br i,OP i,mng i) be a managed

context with logic suite LS i = (KB,BS,ACC), 1 ≤ i ≤ n. The corresponding ordinary
context is C ′i = (L′i, kbi, br ′i) where the abstract logic L′i = (KBOP i

LS i
,BS,ACCi) is based on

the overlap-free combination of LS i and OP i, the same set of belief sets as for LS i, and an
acceptability function ACCi : KBOP i

LS i
→ BS as follows:

ACCi(kb) = {Si ∩OUTi | Si ∈ ACC′(kb′),

(kb′,ACC′) ∈ mng i({o | ns(o) ∈ kb}, kb \ ns(ΦOP
LS )}

The knowledge base of C ′i is the same as of Ci, while the head-formula of each bridge rule
is wrapped by the new symbol ns, i.e., br ′i = {(i :ns(ϕ (r))) ← body(r). | r ∈ br i}. The
operational statements in the head of bridge rules of Ci are turned into ordinary knowledge-base
elements of C ′i.

Definition 5.10. Given an mMCS M = (C1, . . . , Cn), the corresponding ordinary MCS is
M ′ = (C ′1, . . . , C

′
n) where for each 1 ≤ i ≤ n, C ′i is the ordinary context corresponding to the

managed context Ci.
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As the following proposition shows, the output-projected equilibria of the managed MCS
are the same as the equilibria of the corresponding ordinary MCS. Output-projected belief states
in mMCS are similar to those of MCS. For a context Ci of an mMCS M = (C1, . . . , Cn), let
OUT i be the set of all beliefs p occurring in the body of some bridge rule r ∈ br(M), i.e.,
OUT i = {p | (i : p) ∈ body±(r), r ∈ br(M)}. Then, the output-projection So of a belief state
S = (S1, . . . , Sn) of M is the belief state So = (So1 , . . . , S

o
n), where Soi = Si ∩ OUT i, for

1 ≤ i ≤ n.

Proposition 5.6. Given an mMCS M = (C1, . . . , Cn), its corresponding ordinary MCS M =
(C ′1, . . . , C

′
n), and an output-projected belief state S of M . Then, S ∈ EQo(M) holds iff

S ∈ EQ(M ′) holds.

Proof. First observe that for all 1 ≤ i ≤ n holds that OUTi(M) = OUTi(M
′) since the bodies

of all bridge rules are the same in both systems; hence we only write OUTi in the following.
For the following observations, let T = (T1, . . . , Tn) be a belief state of M , and let S =

(S1, . . . , Sn) = T o be the output-projected belief state wrt. T . Thus, it holds that Si = Ti∩OUTi
for all 1 ≤ i ≤ n and it holds that T is a belief state of M ′.

Let 1 ≤ i ≤ n be arbitrary and observe that appi(T,M) = appi(S,M) and appi(T,M
′) =

appi(S,M
′), since S is the output-projection of T and OUTi(M) = OUTi(M

′). Furthermore,
appi(S,M

′) = {ns(o) | o ∈ appi(T,M)} = ns(appi(T,M)), because there exists r ∈
br i(M) iff there exists r′ ∈ br i(M

′) such that body(r) = body(r′) and ϕ (r′) = ns(ϕ (r)).
Since kbi ∩ ns(ΦOP i

LS i
= ∅, it holds that {o | ns(o) ∈ kbi ∪ appi(S,M

′)} = appi(T,M) and it
holds that (kbi ∪ appi(S,M

′)) \ ns(ΦOP
LS ) = kbi.

In summary, the following holds:

Ti ∩OUTi ∈ ACC′i(kb′i) holds for some (kb′i,ACC′i) ∈ mng(appi(T,M), kbi)

iff ∃(kb′,ACC′) ∈ mng i(appi(T,M), kbi) : Ti ∩OUTi ∈ ACC′(kb′)

iff ∃(kb′,ACC′) ∈ mng i({o | ns(o) ∈ kbi ∪ appi(S,M
′)}, kbi) : Ti ∩OUTi ∈ ACC′(kb′)

iff ∃(kb′,ACC′) ∈ mng i({o | ns(o) ∈ kbi ∪ appi(S,M
′)}, (kbi ∪ appi(S,M

′)) \ ns(ΦOP
LS )):

Ti ∩OUTi ∈ ACC′(kb′)

iff Si ∈ ACCi(kbi ∪ appi(S,M
′)).

Since i was arbitrarily chosen, it holds for all 1 ≤ i ≤ n that Ti ∩ OUTi ∈ ACC′i(kb′i)
holds for some (kb′i,ACC′i) ∈ mng(appi(T,M), kbi) iff Si ∈ ACCi(kbi ∪ appi(S,M

′))
holds. Hence, T ∈ EQ(M) holds iff S ∈ EQ(M ′) holds for any belief state T of M such that
S = T o.

Although this proposition only considers output-projected equilibria of the mMCS, the
following section shows that these are sufficient to check the consistency of an mMCS (cf. Propo-
sition 5.7). Also note that the notion of an ordinary context C ′i corresponding to the managed
context Ci of an mMCS can be changed easily to consider belief sets without output-projection.
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Here, ACCi of C ′i then is as follows:

ACCi(kb) = {Si | Si ∈ ACC′(kb′),

(kb′,ACC′) ∈ mng i({o | ns(o) ∈ kb}, kb \ ns(ΦOP
LS )}.

It is easy to prove that the equilibria of the resulting MCS directly correspond to those of the
mMCS.

5.6 Computational Complexity

We consider here the consistency problem CONSmng(M) in mMCS, i.e., given an mMCS
M = (C1, . . . , Cn), decide whether it has some equilibrium. For consistency checking, we can
concentrate on output-projections of equilibria:

Proposition 5.7. An mMCS M = (C1, . . . , Cn) is consistent iff some output-projected belief
state S′ = (S′1, . . . , S

′
n), exists such that, for all 1 ≤ i ≤ n, S′i ∈ {Si ∩ OUT i | Si ∈

ACCi(kb′i) ∧ (kb′i,ACCi) ∈ mng i(appi(S
′,M), kbi)}.

Proof. By definition, an mMCS M is consistent iff there exists some S ∈ EQ(M).
We now show that there exists S ∈ EQ(M) iff there exists an output-projected belief state

S′ = (S′1, . . . , S
′
n) such that, for all 1 ≤ i ≤ n holds S′i ∈ {Si ∩ OUTi | Si ∈ ACCi(kb′i) ∧

(kb′i,ACCi) ∈ mng i(appi(S
′,M), kbi)}.

Recall that by definition, it holds for all 1 ≤ c ≤ n and beliefs p that p ∈ OUTc holds
iff there exists a bridge rule r ∈ br(M) with (c : p) ∈ body±(r). Therefore it holds for all
belief states S = (S1, . . . , Sn) and S′ = (S′1, . . . , S

′
n) = (S1 ∩ OUT1, . . . , Sn ∩ OUTn) that

for every r ∈ br(M) and for all (c : p) ∈ body±(r) it holds that: p ∈ Sc holds iff p ∈ S′c holds.
Consequently, S r holds iff S′ r holds.

“⇒”: Let S = (S1, . . . , Sn) ∈ EQ(M) and consider S′ = (S1∩OUT1, . . . , Sn∩OUTn) =
(S′1, . . . , S

′
n) such that for all 1 ≤ i ≤ n it holds that S′i = Si ∩ OUTi. Obviously, S′ is an

output-projected belief state and it holds for any r ∈ br(M) that S r iff S′ r. It thus follows
that appi(S,M) = appi(S

′,M) and hence mng i(appi(S
′,M), kbi) = mng i(appi(S,M), kbi).

Since S ∈ EQ(M) holds, it follows for all 1 ≤ i ≤ n that Si ∈ ACCi(kb′i) holds for some
(ACCi, kb′i) ∈ mng i(appi(S,M), kbi); consequently it also holds that Si ∈ ACCi(kb′i) holds
for some (ACCi, kb′i) ∈ mng i(appi(S

′,M), kbi). Consequently, S′ is such that for all 1 ≤ i ≤
n holds S′i ∈ {Si ∩OUTi | Si ∈ ACCi(kb′i) ∧ (kb′i,ACCi) ∈ mng i(appi(S

′,M), kbi)}.
“⇐”: Let S′ = (S′1, . . . , S

′
n) be such that for all 1 ≤ i ≤ n it holds that S′i ∈ {Si ∩OUTi |

Si ∈ ACCi(kb′i)∧(kb′i,ACCi) ∈ mng i(appi(S
′,M), kbi)}. Consider S = (S1, . . . , Sn) such

that for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kb′i) ∧ (kb′i,ACCi) ∈ mng i(appi(S
′,M), kbi)

and Si ∩ OUTi = S′i. Observe that such Si exists by the definition of S′. It remains to show
that for all 1 ≤ i ≤ n holds Si ∈ ACCi(kb′i) ∧ (kb′i,ACCi) ∈ mng i(appi(S,M), kbi). Since
Si ∩ OUTi = S′i, it holds that S r iff S′ r for all r ∈ br(M). Hence appi(S,M) =
appi(S

′,M) and the statement follows; consequently, it holds that S ∈ EQ(M).

Generalising the notion of context complexity CC(M) from MCS to mMCS, let the context
complexity of Ci be the complexity of the following problem:
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CCmng(M) P ΣP
i ∆P

i+1 PSPACE EXPTIME

CONSmng(M) NP ΣP
i ΣP

i+1 PSPACE EXPTIME

Table 5.1: Complexity CONSmng(M) of recognising whether an mMCS M is consistent with
respect to context complexity CCmng(M), where i ≥ 1 and entries denote membership.

(CCmng ) Decide, given a set Oi of operator statements and S′i ⊆ OUT i, whether there
exist some (kb′i,ACCi) ∈ mng i(Oi, kbi) and Si ∈ ACCi(kb′i) such that S′i =
Si ∩OUT i.

Here, Ci is explicitly represented by kbi and br i, and the logic suite is implicit, i.e., an oracle
decides existence of Si. The context complexity CCmng(M) of an mMCS M is a (smallest) upper
bound for the context complexity classes of all Ci. Depending on CCmng(M), the complexity of
consistency checking for some complexity classes is shown in Table 5.1, where entries denote
membership results, resp. completeness results if CC is hard for some Ci, 1 ≤ i ≤ n.

These results are all direct consequences of the complexity results of ordinary MCS, since
we can use Proposition 5.6 to simulate an mMCS using an MCS. Observe that, given a managed
context Ci and its corresponding ordinary context C ′i, the definition of the acceptability function
of C ′i is equal to the notion of context complexity of Ci, hence the context complexity of C ′i is
the same as for Ci. If CCmng(M) is C for some complexity class C, then deciding for given
S′i, Oi whether some (kb′i,ACCi) ∈ mng i(Oi, kbi) exists such that Si ∈ ACCi(kb′i) and
S′i = Si ∩OUTi hold is possible in C, i.e., there exists an algorithm deciding this in C.

We can use this to construct an algorithm realising the acceptability function of an ordinary
context, whose complexity then is also in C.

The following proposition shows that using Proposition 5.6 allows to translate an mMCS
M into an MCS M ′ such that their output-projected equilibria are the same and the context
complexity of both systems also is the same; effectively, this is a reduction from CONSmng(M)
to CONS(M ′).

Proposition 5.8. The complexity of CONSmng(M) in Table 5.1 for an mMCS M is the same as
the complexity of CONS(M ′) for the corresponding MCS M ′.

Proof. Let M = (C1, . . . , Cn) be an mMCS and let M ′ = (C ′1, . . . , C
′
n) be the corresponding

ordinary MCS. First observe, that the size of M ′ is the same as of M , since for any 1 ≤ i ≤ n
holds that those elements of Ci that are explicitly represented, knowledge-base kbi and bridge
rules br i(M), are of the same size as those elements of C ′i that are explicitly represented,
knowledge-base kbi and bridge rules br i(M

′). This holds, because the knowledge base of Ci
and C ′i is both times kbi and the bridge rules of M ′ are the same as for M , except that the
operational statements in the heads of br i(M) are wrapped by a new symbol in br i(M

′); hence
|br i(M)| = |br i(M

′)|.
Consider for any 1 ≤ i ≤ n, the managed context Ci and the corresponding ordinary

context C ′i. Let CCmng(M)≤C hold for some complexity class C. Then given a set Oi of opera-
tional statements and an output-projected belief set S′i, deciding whether some (kb′i,ACC′i) ∈
mng i(Oi, kbi) and Si ∈ ACC′i(kb′i) exists such that S′i = Si ∩OUTi, is in C.
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Likewise, for the context complexity CC(M ′) of an ordinary MCS it holds that CC(M ′) is the
complexity of deciding whether for a given H ⊆ {ϕ (r) | r ∈ br i(M

′)} and an output-projected
belief set Si there exists Ti ∈ ACCi(kbi ∪H) such that Si ∩OUTi = Ti.

In the following, we assume that C ≥ P. For deciding whether Ti ∈ ACCi(kbi ∪H) holds,
we recall the definition of ACCi:

ACCi(kb) = {S ∩OUTi | ∃(kb′,ACC′) ∈ mng i({o | ns(o) ∈ kb}, kb \ ns(ΦOP
LS )) :

S ∈ ACC′(kb′)}

Note that the computation of Oi = {o | ns(o) ∈ kb} and kbi = kb \ns(ΦOP
LS ) is possible in time

linear in the size of kb, while the decision whether there exists (kb′,ACC′) ∈ mng i(H, kbi) such
that S ∈ ACC′(kb′) is possible in C, because this decision is exactly the context complexity
of Ci in the mMCS M , and CCmng(M) ≤ C. Hence, the complexity of deciding whether
Ti ∈ ACCi(kbi ∪H) holds is C. Since this holds for all 1 ≤ i ≤ n, it holds that the context
complexity CC(M ′) ≤ C; consequently CC(M ′) = CCmng(M).

Since CC(M ′) = CCmng(M) for CCmng(M) ≥ P, and by Proposition 5.6 it holds that
S ∈ EQo(M) holds iff S ∈ EQ(M ′) holds, and by Proposition 5.7 it holds that S ∈ EQo(M)
holds iff there exists an equilibrium T ∈ EQ(M) such that S = T o, it holds that deciding
CONSmng(M) is possibly by deciding CONS(M ′). Hence, we have a polynomial-time reduc-
tion from CONSmng(M) to CONS(M).

Using simple insert/delete management, an example of CCmng(M) in P would be an mMCS
built on defeasible logic (cf. [101]), and one for NP (resp., ΣP

2 ) using normal (disjunctive)
answer set programs. Argumentation context systems [30] provide examples of mMCS with
context complexity in ∆P

3 ; examples for PSPACE and EXPTIME can be found, e.g., among
modal and description logics. Such contexts also have respective hard instances.

Problem CCmng intuitively consists of two subproblems: (MC) compute some (kb′i,ACCi) ∈
mng i(Oi, kbi) and (EC) decide whether Si ∈ ACCi(kb′i) exists s.t. S′i = Si ∩OUT i. However,
it makes sense to analyse consistency depending on CCmng : often MC is solvable in polynomial
time (perhaps non-deterministically and/or with the help of an oracle) or polynomial space, but
kb′i may become exponentially large (e.g., using a KB update or revision operator), nevertheless
its explicit construction is avoidable for solving EC. If the output of MC remains polynomial, then
the complexity of CCmng can suitably be characterised in terms of MC (e.g., maximal consistent
subsets of a propositional theory) and EC. We leave more detailed results for future work.

5.7 Summary

In this chapter we presented managed Multi-Context Systems (mMCS), where contexts are
enhanced by a context manager which allows that the knowledge base of the context is modified
depending on applicable bridge rules and a semantics for reasoning is selected. Context managers
can apply belief revision for classical logics, update logic programs according to some update
operators, ensure that the context is consistent, and much more. Thus they allow that legacy
methods of managing inconsistency are brought to the Multi-Context Systems framework in
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such a way that each context of an mMCS uses the best fitting method of local inconsistency
management.

We gave some sample instantiations of mMCS showing that they can capture operations on
relational databases, belief revision, logic program updates, and the framework of argumentation
context systems. The main issue addressed, however, is the influence of context managers that
ensure the existence of locally acceptable belief sets (i.e., managers that guarantee the consistency
of a context). Most importantly, it turns out that acyclic mMCS using such context managers are
always consistent and for cyclic mMCS it holds that the source of inconsistency always is some
cyclic information flow.

An investigation of the expressiveness of mMCS showed that they are not more expressive
than MCS, since we showed how to translate an mMCS into an MCS and vice versa. This is in
line with our results on computational complexity, which show that deciding whether a given
mMCS has an equilibrium is of the same complexity as deciding whether the corresponding MCS
has an equilibrium.
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CHAPTER 6
Related Work

Non-monotonicity in MCS was introduced in [114] and then further developed in [29, 35] to
eventually allow heterogeneous as well as nonmonotonic systems, and in particular nonmonotonic
MCS [29] as considered in this thesis (cf. [31] for a more comprehensive account of work related to
MCS). However, issues arising from inconsistency of such systems have been largely disregarded.

Inconsistency in MCS

A remarkable exception, and thus most closely related to ours, is [18, 19], where inconsistency in
a homogeneous MCS setting is addressed. The approach is to consider defeasible bridge rules for
inconsistency removal, i.e., a rule is applicable only if its conclusion does not cause inconsistency.
This concept is described in terms of an argumentation semantics in [17]. The decision which
bridge rules to ignore is based, for every context, on a strict total order of all contexts. The set
of rules that are ignored thus corresponds to a unique deletion-only diagnosis whose declarative
description is more involved compared to our notion, but which is polynomially computable.
Note however, that the second component of diagnoses, i.e., rules that are forced to be applicable,
have no counterpart in the defeasible MCS inconsistency management approach. Furthermore,
the strict total order over contexts forces the user to make (perhaps unwanted) decisions at design
time; alternative orders would require a redesign and separate evaluation. Our approach avoids
this and can be refined to respect various kinds of orderings and preferences (cf. Chapter 4).
Furthermore, the management component of mMCS can also enfore a strict total order when
importing information from other contexts, i.e., if for such a managed context two bridge rules
with conflicting head formulas are applicable, then the context manager only adds the formula of
the strictly preferred context. A more detailed investigation, however, is required to determine in
how far this is sufficient to capture the approach of [19].

The framework of managed Multi-Context Systems has been used as a basis for systems
which take time into account. In [76] evolving Multi-Context Systems (eMCS) are introduced
where discrete time steps are considered and distinct by sets of observations at each step. There
are two types of contexts in an eMCS, ordinary ones like in mMCS and observation contexts,
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whose knowledge bases change at each time step. The underlying idea is that an observation
context represents some kind of sensor whose data is used by the other contexts. Furthermore,
there are two types of bridge rules, one whose operational statement is considered only for the
current time step, and one which has a permanent effect. The semantics of eMCS is given in
terms of sequences of belief states under a given sequence of observations: the sequence of belief
states is incremental in the sense that each belief state takes the current observations and current
bridge rules into account as well as all permanent bridge rules from belief states earlier in that
sequence.

In [77] eMCS are further extended by evolving bridge rules resulting in an MCS framework
called beMCS. In beMCS observation sequences not only effect the knowledge bases of certain
contexts, but also the bridge rules of the ordinary contexts. Depending on these observations,
some bridge rules are then disabled following some update semantics similar to that of logic
programming updates. Some of the notions and results of inconsistency management in mMCS
also carry over to eMCS and beMCS. Most notably it holds for a beMCS (eMCS) with totally
coherent contexts, that it is consistent if it is acyclic, i.e., it admits an evolving equilibrium.

Reactive Multi-Context Systems (rMCS) (cf. [28,33,34,61]) have been developed in parallel to
eMCS. They capture sensor readings and discrete time steps similarly as eMCS, although sensors
are technically not represented as contexts. They behave like observation contexts in eMCS.
Reactive MCS are also based on mMCS and their semantics is given in terms of a so-called
run, which again is very similar to an evolving equilibrium. It is also shown how contradicting
sensor data can be treated by timestamping each observation and using the management function
of contexts for inconsistency management. The advantage of such an approach is that various
tailored management functions can be used at the same time to resolve inconsistent sensor data.
Nevertheless, rMCS can address issues which cannot be addressed by (static) mMCS, e.g., short
response times to emergencies.

Addressing inconsistency in rMCS and eMCS, one can lift the notion of diagnosis to a
sequence of observations, where for a sequence of length n, a lifted diagnosis is a sequence of
n ordinary diagnoses, one for every time step, such that every of these steps admits a (static)
equilibrium, i.e., the whole sequence of observations admits a run. Since the belief states at
different time steps possibly depend on each other, further conditions may account for identifying
preferred or minimal diagnoses. Intuitively, given a sequence of observations, the (seemingly
superflous) removal of a bridge rule at time t might allow to keep two other bridge rules at time
t + 1. So, diagnoses for rMCS and eMCS can be minimal with respect to each time step, or
minimal with respect to a whole sequence of observations. Intuitively, the latter seems to be the
better choice since rMCS and eMCS deliberately consider inductively built semantics while the
former kind of minimality ignores that time steps occur one after another and that beliefs of an
earlier step can influence a latter one. Regarding explanations, it seems possible to define an
explanation dual to the concept of diagnosis of the latter kind (considering the inductive influence
of time steps). More work on this is required, but rMCS and eMCS are outside the scope of this
thesis.

The study of equilibria in Multi-Context Systems recently has been continued in [124] where
the notions of grounded equilibrium and (ordinary) equilibrium are generalised to supported
equilibrium semantics. Various strengths of supports are possible to obtain a range of equilibrium
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semantics; grounded equilibria and ordinary equilibria then are instances of certain supported
equilbria. Of special interest here is the notion of support which in principle enables a notion
of diagnosis that also considers modifications of knowledge bases to restore global consistency.
Due to the recency of this work, the notion of support has not been addressed in this thesis and
the topic remains for future work.

A stream-based approach at the semantics of MCS is taken in [62] where so-called asyn-
chronous Multi-Context Systems (aMCS) are introduced. In aMCS each context is assigned
input- and output-streams which contain computed pieces of information. Similar to rMCS (and
eMCS) discrete time steps are considered, some contexts are designated for sensory input, and
the semantics of such a system is given in terms of a run, which describes the states of the system.
Different from rMCS and eMCS, however, a run in aMCS allows for partially computed belief
sets and information to be exchanged before a full belief set (or full belief state) is computed.

Another formalism for homogenous contextualized reasoning that incorporates a form of
inconsistency tolerance is the Contextualized Knowledge Repository (CKR) approach [119].
It is similar to the MCS approach of formalizing context-dependent knowledge, i.e., a CKR
is a set of contexts where each context is a description logic. Contexts are assigned a vector
of dimensional values that specify which kind of knowledge is contained in the context, e.g.
{location = Italy , time = 2014} states that the knowledge contained in the context is about Italy
in the year 2014. Another context with broader knowledge on Europe in 2014 may be assigned the
vector {location = Europe, time = 2014}. When MCS use bridge rules to refer to knowledge
from another context, the CKR approach extends each description logic used in a context to
allow direct referring to another context by a dimensional vector as qualifier. For example a DL
concept for hot Italian cities might be HotItalianCity v HotRegion u City{location=Italy}. The
semantics of CKR then ensures that the interpretation of individuals, concepts, and roles matches
across contexts, i.e., a CKR model is a local model for each context (similar as a belief state in
MCS is a belief set for each context) and the local models agree on the interpretation of common
knowledge, which is different from MCS where belief sets need not agree on common symbols.
It is furthermore possible to specify in a DL-like meta-language the coverage of topics among
contexts, e.g., that the context about Europe is more general than the one about Italy. A CKR
model also guarantees that the knowledge is then interpreted accordingly in both contexts.

A CKR is inconsistency tolerant in the sense that if some context is inconsistent (i.e., if its
local model is the one with empty domain), then this inconsistency does not propagate to other
unrelated contexts. The details are more intricate and given certain circumstances, inconsistency
in one context may even turn the whole CKR inconsistent. In our terms, the inconsistency notion
of CKR is more closely described by what we call local inconsistency in Chapter 5. In this sense,
MCS are also inconsistency tolerant, since local inconsistency does not imply that no equilibrium
exists. For example, consider a context Ci with an inconsistent knowledge-base using LplΣ and
Σ = {a}: Ci accepts the belief set S = {a,¬a} and this belief set occurs in an equilibrium of
the MCS. So the MCS is not inconsistent while one of its contexts is (locally) inconsistent. In
contrast to CKR, our approach also allows to restore consistency by modifying the interlinking of
contexts.

Similar in vein to CKR systems are Modular Ontologies, i.e., a framework (cf. [63]) where
description logic modules utilize and realize a set of interfaces in such a way that if a module is
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locally inconsistent, then by the notion of an “epistemic hole” it is ensured that the inconsistency
does not spread to other modules. The interfaces are connected by bridge rules for Distributed
Description Logic (DDL) [23]. Consistent query answering in a module is achieved by using the
maximal consistent set of interfaces utilized by this module only, therefore whole interfaces will
be ignored if they would cause any inconsistency in the module. Again, in addition to addressing
a more general setting in terms of heterogeneity, our work considers potential modifications of
bridge rules that allow to go beyond simple masking of inconsistent parts of the system in order
to analyze inconsistency and potentially restore consistency.

Conceptually close to homogeneous forms of MCS are Federated Databases, a distributed
formalism for autonomous, cooperating, linked databases [80]: each database has in addition
to its local database schema an export schema describing which of its data may be used by
other databases and an import schema describing what data from other databases it uses. Data
is considered to describe “objects” (abstract or real-world entities), which can be exported and
imported using a decentralized negotiation between two databases. Notably, [121] is a survey that,
in addition to autonomy (access granting and revoking), is taking up on issues of heterogeneity,
however mostly referring to the integration of different query languages of database systems.
Global transaction management guarantees the consistency of the federated database, but due
to the autonomy and concurrency of the employed database systems this task is possible only
by enforcing serious restrictions. Existing approaches handle incoherence in a database-typical
manner of cascading or rejecting local or distributed constraints. For instance, several protocols
for global integrity constraint enforcement are presented in [79]. Since global transactions are
unavailable without imposing serious restrictions, these protocols for constraint enforcement are
defined upon quiescent states of the system, i.e., when it is at rest. For these states, designated
constraint managers at each database ensure that no constraints are violated by querying each
other according to the protocol and the constraints. Hence, inconsistency in federated databases
is addressed at the level of the (individual) databases rather than their interlinking. Even though
resorting to SQL and stratified Datalog allows for non-monotonicity, the possibility of instability
in a distributed database system—due to cyclic dependencies—has not been addressed in the
literature. Our work would be suitable to deal with such situations, given that federated databases
can be described as MCS with stratified (mostly monotonic) contexts including constraints, and
with positive bridge rules. Ordinary MCS on the other hand, cannot deal with the iterative nature
of federated databases, but reactive or evolving MCS could.

Concerning the complexity results we established for diagnoses of MCS, we remark that
they are related to respective results in abduction: by associating abducible hypotheses with
bridge rules, due to the non-monotonicity of the system, recognition of diagnoses corresponds to
cancellation abduction problems. The latter have been shown to be NP-complete in [36] under
the assumption of a tractable underlying theory (i.e., for P contexts in our terminology).

In [128] simplified MCS are presented as important for practical matter. In such MCS all
bridge rules are of the form (j : a) ← (i : a); such MCS are less expressive, as complex rule
bodies and negation (thus nonmonotonic information flow) are not supported. In the presence of
context managers, i.e., in mMCS, an analogous restriction does not impair expressivity: using,
e.g., bridge rules (j : beliefs(i, a))← (i : a). with designated operations beliefs , the management
function mngj can emulate any bridge rule r by mngj(O, kbj) = {(kbj ∪H,ACCj)} where
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H = {ϕ (r) | ∀(i : p) ∈ body+(r) : beliefs(i, p) ∈ O,∀(i : p) ∈ body−(r) : beliefs(i, p) /∈ O},
i.e. mngj adds the head formula ϕ (r) if all positive literals of r are present in the form of their
respective operational statement and all negative literals are absent. In fact, every MCS M can be
easily transformed into such an mMCS M ′ having the same equilibria and all bridge rules being
of the above form.

Broader Context

In a broader context, we have explored the relationship of our work to approaches and methods
for inconsistency management in knowledge bases, grouped into debugging techniques (e.g.,
for Prolog [107, 108] and ASP [70, 102]), repairing methods (for instance based on abductive
reasoning [84], discrimination among fusion rules [82], or policies for subquery propagation in
peer-to-peer systems [11]), consistent query answering (e.g., over ontologies [90], propositional
knowledge bases in peer-to-peer systems [20], etc.), and paraconsistent reasoning (applying, e.g.,
syntactic [15], logic-based [116], or domain-specific [66] methods).

We classify and discuss this literature according to the following basic approaches:

• debugging techniques serve the purpose of diagnosing information systems, aiming at
identifying sources of unexpected and in most cases unintended computation outcomes,
and at explaining the latter;

• repairing techniques modify the content of knowledge bases in order to restore consistency,
in particular when new information is incorporated into a knowledge base, or when several
knowledge bases are integrated into a single one;

• consistent query answering virtually repairs a knowledge base or system, often by ignoring
a minimal subset of beliefs or subsystems, and operates on the resulting (virtual) consistent
system (i.e., no knowledge is permanently removed);

• paraconsistent reasoning accepts contradictory knowledge and, rather than repairing or
ignoring (parts of) the information, a more tolerant mode of reasoning is applied that
handles also inconsistent pieces of knowledge in a non-trivial way.

Different from most approaches to inconsistency management, the aim of this thesis is not
to provide a fixed set of methods for automatically restoring inconsistency, but to provide the
following: a useful theoretical framework for analyzing inconsistency, methods to reason about
inconsistency and its possible resolutions (using a user-selected formalism), and the incorporation
of legacy inconsistency management techniques.

Debugging in Logic Programming

Debugging in logic programming, i.e., finding out why some logic program has no answer or
has an unexpected answer, is remotely related to the problem considered in this thesis given that
bridge rules look and behave similar to rules in logic programming. A major difference is that in
MCS we take contexts with an opaque content into account. In logic programming, the presence
of an atom in a model of a program directly depends on the firing of rules, which in turn directly
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depends on the presence or absence of other atoms in the bodies; in the MCS framework, which
allows to capture arbitrary logics by abstract belief set functions, there is in general no visible
link between the firing of bridge rules (adding information to a context) and beliefs accepted by
the context.

Prolog Debugging

A framework for debugging Prolog programs was developed in [120]. It relies strongly on the
operational specifics of Prolog and consists of a diagnosis and a bug-correction component, where
three basic types of errors are considered: (i) termination with incorrect output, (ii) termination
with missing output, and (iii) nontermination. For the latter, the approach identifies rules that
behave unexpectedly by tracing procedure calls and querying the user whether the procedure call
at hand of the form 〈procedure, input , output〉 is correct. A similar goal is achieved in [109],
where the user should not tell whether such a triple is wrong, but point to a wrong subterm of a
procedure call; for that, the implementation builds on a modified unification algorithm that keeps
track of the origins of subterms. This is further refined in [106], where the different types of bugs
are treated uniformly and by the use of a heuristics the number of questions to the user is reduced.

In comparison, our notion of inconsistency diagnosis roughly corresponds to type (i) and (ii)
errors: in a diagnosis (D1, D2), D1 contains bridge rules whose head belief is “incorrect”, while
D2 contains bridge rules whose head belief is “missing”. As for (iii), nontermination is not an
issue for MCS since no infinite recursion can emerge (modulo computations inside contexts).
Furthermore, our approach is fully declarative, without operational attachment adherent to Prolog,
and it does not require user input; on the other hand, it only covers consistency and no further
aspects. Nonetheless, it is possible to mimic behaviour under user input to some extent by using
the meta-reasoning encoding of Chapter 4 such that the observation context enforces the user
input, i.e., the user input is interpreted as a filter f and the filter-encoding Mf is used.

A purely declarative perspective on Prolog debugging is taken in [98], based on the formal
semantics of extended programs under SLDNF resolution. Again two types of errors are con-
sidered, so called “wrong clause instances” (wrong solutions) and “uncovered atoms” (missing
solutions). To pinpoint the origin of such errors, the user must specify the intended interpretation
of the program, by repeatedly answering queries about the behaviour of the rules.

In [108] a connection between logic program debugging and abductive diagnosis is investi-
gated. It considers extended logic programs (with strong and default negation) under closed-world
assumption (CWA). Based on revisables, i.e., a subset R of the set of literals notL assumed true
by CWA, and the notion of supported sets SS(L) of a literal L, the removal sets of L are defined
as the hitting sets of SS(L) restricted to R; the ones of the literal ⊥ indicate how to obtain a
non-contradictory program. Using a transformed program P1 of P and information about wrong
and missing solutions in P , so called minimal revising assumptions (MRAs) of P1 are computed
in an iterative manner which identify the reasons for wrong and missing solutions. For programs
P that model diagnostic problems, minimal solutions can be obtained from the MRAs.

The ideas and notions in [98, 106] are merged in [107, 108] for normal logic programs
with constraint rules under well-founded semantics. Referring to them, a diagnosis for a set
U of literals (corresponding to a partially known desired model) is a pair D = 〈Unc, InR〉
where Unc are uncovered atoms and InR are incorrect rules of P , such that U is contained
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in the well-founded model (WFM ) of the program P ′ that results from P by removing all
incorrect rules and adding all uncovered atoms. In case of a single minimal diagnosis, the bug in
the program is pinpointed precisely; otherwise, the user is asked which diagnosis corresponds
to the intended interpretation. This leads to an iterative debugging algorithm that only asks
disambiguating queries, i.e., it asks about a subset of the intended interpretation and adds the
answer to U . Our notion of inconsistency diagnosis, where D = (D1, D2) is a diagnosis iff
M [br(M) \D1 ∪ cf (D2)] 6|= ⊥ resembles this notion for U = ∅, since a diagnosis of an MCS
only asks for the existence of an equilibrium and not for certain beliefs to be present or absent;
the underlying semantics of MCS is however very different from WFM . Furthermore, there is
no counterpart of our inconsistency explanations, nor have refined diagnoses been considered.

ASP Debugging

Answer-set Programming (ASP) is as a rule-based paradigm related to MCS, yet more under
grounded equilibrium semantics, which imposes a minimality condition on equilibria [29]; in fact,
answer-set programs can be modeled as particular MCS with monotonic rules and nonmonotonic
bridge rules.

The declarative debugging of answer-set programs was approached by [123] for programs that
have no cycles of odd length (where constraints are still allowed); in subsequent works, tagging
[26], meta-programming for ground [70] and non-ground programs [102], and establishing
procedural techniques (breakpoints, step-wise execution) [103] have been considered. The idea
is that an expected answer-set E and an (erroneous) ASP program P are transformed into a
program T whose answer-sets explain why E is not an answer-set of P . Explanations cover that
an instantiation of some rule in P is not satisfied by E, as well as the presence of unfounded
loops (i.e., lack of foundedness). The latter could be of interest for developing a diagnosis of
MCS under grounded equilibria semantics; this remains for future work. On the other hand, the
procedural techniques seem to be less promising, as MCS lack rule chaining due to context logics.

A different approach to debug answer-set programs is given in [7], where A-Prolog (an
ASP-based language) is extended by consistency-restoring (CR) rules of the form

r : h1 or . . . or hk
+← l1, . . . , lm, not lm+1, . . . , not ln.

which intuitively reads as: if l1, . . . , lm are accepted beliefs while lm+1, . . . , ln are not, then one
of h1, . . . , hk “may possibly” be believed to remove inconsistency. In addition, a preference
relation on the rules may be provided. The semantics of CR rules is defined via a translation to
abductive logic programs, i.e., logic programs where certain atoms are abducibles (cf. [87]). In
answer sets of such programs, a minimal set of abducibles may be assumed to be true without
further justification.

Disregarding possible rule preferences, a logic program P with CR rulesCR can be embedded
to a MCS M = (C1), where the single context C1 is over disjunctive logic programs, such that
the answer sets of P with CR correspond to the witnessing equilibria of the minimal diagnoses
(D1, D2) of M . In more detail, C1 has the knowledge base kb1 = P ∪ {cr(r) | r ∈ CR} and
bridge rules br1 = {(c1 : ab(r))← ⊥. | r ∈ CR}, where ab(r) are fresh atoms, for each r as
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above, and

cr(r) = h1 ∨ . . . ∨ hk ← ab(r), l1, . . . , lm, not lm+1, . . . , not ln;

informally, unconditional firing of a bridge rule simulates the corresponding CR rule; note that
D1 = ∅.

Content-based Methods

The methods and approaches underlying research issues and works presented in this subsection
exhibit more foundational differences to our notions of diagnosis and explanation. Therefore, we
will mostly discuss them on a more general level, pointing to some seminal works and survey
articles for more extensive coverage of the relevant literature. Note however, that the framework
of managed Multi-Context Systems introduced in Chapter 5 enables MCS to employ the same
inconsistency management methods local at each context that we describe in the sequel, i.e.,
every approach below can be used in an mMCS as a management function of a managed context
employing a suitable logic.

Repair Approaches in Integrating Information

A lot of work on inconsistency management has been concentrating on the repair of data during
merging, incorporating, or integrating data from different sources. In contrast to our work, in
such approaches usually the mappings that relate data of different knowledge bases are fixed,
while the contents of the knowledge bases are subject to change in order to restore consistency.
This subsumes approaches that do not actually modify original data but modify it virtually (i.e., a
view), or operate on a copy.

Belief revision and belief merging are well understood problems, in particular for classical
propositional theories [88, 105]. They address how to incorporate a new belief into an existing
knowledge base, respectively how to combine knowledge bases, such that the resulting knowl-
edge base is consistent. In this regard, our approach is more related to belief merging than to
belief revision. A major difference to belief merging is, however, that MCS connect heteroge-
neous knowledge bases in a decentralized fashion (compared to a centralized merge of uniform
knowledge bases), and that selective information exchange among knowledge bases is possible
via bridge rules in complex topologies. Furthermore, our work concentrates on changing the
mappings between these components in case of conflict, while belief merging strives for modified
contents (i.e., knowledge base). Nevertheless, mMCS allow the use of belief revision locally at
suitable contexts to guarantee local consistency.

Abductive reasoning is often applied to identify pieces of information that need to be changed
in order to repair a logical theory or knowledge base, cf. [84, 99, 127]. In particular, in [84]
abduction is applied to repair theories in (nonmonotonic) logic based on notions of ‘explanation’
and ‘anti-explanation’. Given an autoepistemic theory K and a set Γ of abducible formulas, one
removes the formulas of a set O ⊆ Γ, and adds the formulas of a set I ⊆ Γ, to entail (resp.
not entail) an observation F ; i.e., (K ∪ I) \ O |= F (explanation), resp. (K ∪ I) \ O 6|= F
(anti-explanation). A repair of an inconsistent theory K is given by an anti-explanation of F = ⊥.
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Given an inconsistent theory K and a set of hypotheses Γ, we can establish a correspondence
between diagnoses using the following MCS MK and anti-explanations for ⊥. MK = (C1) is
an MCS whose only context C1 = (LK ,K \ Γ, brK) is defined over a suitable (autoepistemic)
logic LK = (KBK ,BSK ,ACCK) where KBK is the set of all well-formed autoepistemic
theories, BSK is the set of all possible autoepistemic theories, and ACCK maps each theory to
the set of its stable and consistent expansions. The bridge rules brK of C1 are brK = {(1 :φ)←
>. | φ ∈ K ∩ Γ} ∪ {(1 :φ)← ⊥. | φ ∈ Γ \K}, i.e., every φ ∈ K ∩ Γ is added by a bridge rule
and every φ ∈ Γ \K is not added by a bridge rule. A diagnosis of MK which removes a bridge
rule of the former kind removes the corresponding formula φ from the theory K, and a bridge
rule made condition-free is adding the respective formula.

Diagnoses and anti-explanations now correspond as follows. Let D1, D2 ⊆ br(MK) be such
that for all r ∈ D1 holds body(r) = > and for all r ∈ D2 it holds that body(r) = ⊥; then
(D1, D2) ∈ D±(MK) implies (K ∪ {ϕ (r) | r ∈ D2}) \ {ϕ (r) | r ∈ D1} 6|= ⊥, i.e., I,O with
I = {ϕ (r) | r ∈ D2} and O = {ϕ (r) | r ∈ D1} is an anti-explanation of ⊥ with respect to K.
Furthermore, if I ∩O = ∅ and (K ∪ I) \O 6|= ⊥ hold, then (D1, D2) ∈ D±(MK) where D1 =
{r ∈ brK | ϕ (r) ∈ O ∧ body(r) = {>}} and D2 = {r ∈ brK | ϕ (r) ∈ I ∧ body(r) = {⊥}}
hold, i.e., every anti-explanation corresponds to a diagnosis, given that the anti-explanation is
not at the same time adding and removing the same formula φ ∈ Γ.

As regards our notion of explanation for an inconsistent MCS, it has no counterpart in
the approach of [84], since our explanations yield an inconsistent MCS while the notions of
explanation and anti-explanation of [84] require that the resulting theory (K∪I)\O is consistent,
i.e., no theory K and sets I,O exist such that (K ∪ I) \O is consistent and (K ∪ I) \O |= ⊥
both hold.

Information integration approaches (see, e.g., [38, 45, 92, 93]) wrap several information
sources and materialize the information into one global schema. Two main tasks are required
to do so; the first is called schema matching to match the underlying schemas of the data (e.g.,
the attribute ’address’ in one schema corresponds to the attribute ’location’ in another). Schema
matching is either rule-based (often using hand-crafted rules) or based on machine learning
techniques to automatically deduce matches after sufficient training examples have been given.
The second task of information integration then is to match the data, e.g., identify (relational)
tuples from different sources that describe the same real-world entity.

Differences exist in whether the global schema is expressed as a view in terms of the local
schemata (global-as-view approaches), or vice versa (local-as-view). The relevant relationships
are represented as mappings, which often are specified by database queries; inconsistencies are
resolved by modifying the materialized information, thus again by changing contents. However,
since the original information sources are not altered, one might consider it closer in spirit
to our approach than belief merging. Inconsistency management in information integration
systems, and in particular the global-as-view approach, may be regarded as implicit change of
mappings, by discarding tuples and/or generating missing tuples. Naturally, this corresponds
to deactivating bridge rules and forcing bridge rules to fire, respectively. Different from MCS
however, information integration approaches rely on hierarchical, acyclic system topologies. On
the other hand, they apply a more expressive mapping formalism compared to bridge rules in
MCS.
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Peer-to-peer data integration systems [40] allow for a dynamically changing architecture of a
data integration scenario in which peers can enter or leave the system anytime.

An automatic approach for reasoning with inconsistent knowledge in a peer-to-peer system is
presented in [20] where peers use propositional languages but may utilize varying consequence
relations like classical logic or nonmonotonic logic. Each peer is assigned a global preference
value and each formula is assigned a rank according to the support of the formula, i.e., if
knowledge from other peers is used, then the priority value of the most preferred peer supporting
the formula gives an upper bound to the rank of the formula. Each formula and its support is used
to construct an abstract argumentation framework (cf. [47]) whose preferred extensions designate
those formulas that are “distributed entailed” by the system. Due to this, a formula φ and its
negation ¬φ might both be entailed by the same system.

In principle, preference orders over diagnoses as introduced in Chapter 4 of an MCS can be
used to simulate the ranking of formulas (occurring in the head of bridge rules), but due to the
lack of a notion of support in contexts in general, this approach is limited to contexts where such
a notion can be defined and successfully incorporated into the preference order on diagnoses.
The witnessing equilibria of preferred diagnoses then would result in sets similar to the preferred
extensions of the above argumentation framework.

Note that the distributed entailment is similar in nature to techniques of consistent query
answering, and inconsistency handling in peer-to-peer systems often uses approaches similar to
consistent query answering. We therefore discuss some peer-to-peer systems in the respective
subsection below.

Ontology mapping [41] and the related tasks of ontology alignment, merging, and integration
aim at (re-)using ontologies in a suitable combination. To this end, mappings between concepts,
roles, and individuals are identified to denote the same entity or related entities in different
ontologies. Automatic, statistical, and machine learning-based methods are used to ‘discover’
suitable mappings. They may introduce inconsistency in the (global or local) view on the
resulting ontology, even if each individual ontology is consistent. Consistency is achieved by
either fully disregarding a mapping if it would add an inconsistency, by preventing the spreading of
inconsistency from one inconsistent ontology to another (cf. [24]), or by applying an evolutionary
approach at modifying/mapping ontologies (cf. [100, 122]). Heterogeneity in ontology mapping
usually refers to different nomenclatures prevailing in different ontologies, or to ontologies in
different yet closely related formalisms (e.g., different description logics). In contrast, in MCS
heterogeneity refers to combining systems based on different logical formalisms, which may be
related by need not share any relationship in general.

Using context managers of mMCS, however, it is possible to employ ontology mapping
and corresponding tools in mMCS to achieve the same mapping results between contexts based
on ontologies, while at the same time these ontologies can interact with other contexts using
formalisms totally different from ontologies. Also note that our approaches of preference-based
inconsistency resolution allow a more fine-grained and specific resolution of inconsistency, given
that mappings are expressed via bridge rules.

To summarize, the main difference between our work and the contributions to these rather
diverse settings of information integrating — and in particular the issue of achieving integrity in
doing so — is that our approach allows to locally re-use these approaches using context managers,
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but on a global perspective our notions of diagnosis and explanation consider modifying the
‘mapping’, i.e., the interlinking, rather than the data. While the importance of maintaining and
repairing mappings has been recognized [45], major breakthroughs are still missing.

Consistent Query Answering

The approaches considered in this section do not actually modify data to repair an inconsistent
system, but virtually consider possible repairs in order to return consistent answers to queries. As
this includes (partial) ignorance of information (and thus inconsistency) for the sake of reasoning
on a consistent system, the approaches may be regarded as in between repairing and paraconsistent
reasoning.

The term consistent query answering (CQA) has been coined in the database area where
various settings (wrt. integrity constraints and operations for repair) have been considered [3,
12, 13]. In general, the consistent answers to a query are those that result from every possible
repair of the inconsistent database, where a repair is a minimal modification of the database such
that all constraints are satisfied (cf. [13]). Given a database instance D (i.e., a set of tuples) over
some schema S that violates a set of integrity constraints IC, a repair is a database instance D′

over S that satisfies IC and which makes ∆(D,D′) = (D \D′) ∪ (D′ \D) (the symmetric set
difference) minimal. The repair D′ hence can be seen as a modification of D where some tuples
are removed (D \D′) and some tuples are added (D′ \D), which is comparable to the minimal
diagnosis of an inconsistent MCS.

Indeed, let D be a database instance over S and let IC be some integrity constraints. We
design a corresponding MCS MD,IC = (C1) as follows: L1 = (KB1,BS1,ACC1) is a logic
where KB1 contains all database instances over S , BS1 = KB1, and ACC1(kb) = {kb} holds
iff kb satisfies all constraints of IC; the context C1 = (L1, ∅, br1) and every possible tuples over
S appears in the head of some bridge rule of C1, such that without modified bridge rules the tuples
of D are added while all other tuples are not added. Formally, br1 = {(1 : a)← >. | a ∈ D} ∪
{(1 : a)← ⊥. | a /∈ D, a ∈

⋃
KB1}. Then MD,IC has an equilibrium S = (D) iff D satisfies

all integrity constraints of IC. Furthermore, every minimal diagnosis (D1, D2) ∈ D±m(MD,IC)
corresponds to a repair D′ of D with D′ = D \ {ϕ (r) | r ∈ D1} ∪ {ϕ (r) | r ∈ D2}.

Further note that minimal deletion-diagnosis introduced in Chapter 3 correspond to a form of
repairs where only the removal of tuples is considered. Notably, this kind of repairs is sufficient
for the case of denial constraints (including key constraints, functional dependencies, etc.), it is
sufficient to restrict the attention to tuple deletions for obtaining repairs and answering queries
consistently.

Consistent query answering on top of equilibria admitted by minimal diagnoses then is
possible, but beyond the scope of this work. On the other hand, context managers of mMCS may
directly realize the computation of repairs. Selecting the consistent query answers, however, then
requires skeptical reasoning over all knowledge bases returned by the context manager while
the semantics introduced for mMCS is geared towards credulous reasoning, i.e., a belief state
(S1, . . . , Sn) is an equilibrium of an mMCS if for every 1 ≤ i ≤ n there exists some knowledge
base returned by the context manager that accepts the Si, but for CQA it the requirement for an
equilibrium would be that for every 1 ≤ i ≤ n and all knowledge bases returned by the context
manager (i.e., for all repairs), Si is accepted.
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Irrespective of that, CQA can be used in mMCS if the context manager returns as modified
knowledge base one which encodes all possible repairs. Also note that several notions of repairs
have been introduced in CQA (cf. [13]), each defining repair as minimal modification but with
different understanding of minimality (e.g., cardinality-based minimality versus subset-based
minimality) or modification (e.g., change of attribute values). Using suitable context managers
and acceptability functions these techniques may be employed in mMCS.

In general, CQA might be regarded as an approach that automatically applies minimal
(deletion-)diagnoses to suppress inconsistent information for answering queries over inconsistent
relational databases. Despite this similarity to our work, the differences apart from heterogeneity
are that diagnoses and explanations address the interlinking of knowledge bases rather than
their content and they aim at making inconsistencies amenable to analysis, explicitly hinting at
problems that should be investigated, rather than treating them implicitly for the sake of providing
consistent answers.

CQA techniques have also been extended to description logic ontologies, e.g., in [90, 91],
where the taxonomy part (TBox) is considered to be consistent but the data part (ABox) may
possibly be inconsistent. Consistent answers to queries are then obtained on maximal consistent
subsets of the data wrt. the taxonomy part (and potential further constraints).

Other approaches (but similar in nature) have been applied to answering queries in peer-
to-peer data integration settings. The approach in [39] ignores inconsistent components and
imports beliefs from other contexts only if they do not cause inconsistency; hence mappings
between peers are changed such that only maximally consistent sets of beliefs are imported.
Besides the conceptual difference to MCS regarding the system architecture (dynamic vs. static),
our approach explains inconsistency by pointing out mappings that must be changed to achieve
consistency. Furthermore, its does not aim at suggesting fixes to the system, and in particular not
by ignoring entire contexts or beliefs held by a minority among them.

Paraconsistent Approaches

Paraconsistent reasoning approaches (see, e.g., [14, 83]) aim upfront at ignoring or tolerating
inconsistency in knowledge bases, providing means to reason on them without knowledge
explosion, i.e., without justifying arbitrary beliefs (ex falso quodlibet); thus, they do not focus on
eliminating inconsistency. Nevertheless, in addition to keeping information systems operable in
case of inconsistency, paraconsistent reasoning may, similar to our aim, also serve the purpose of
analysing inconsistency.

Taking again a very general perspective, in particular disregarding heterogeneity and even
the fact that our techniques apply to the interlinking of information, syntactic approaches such
as [15] would be closest to our approach. The authors of [15] essentially restrict theories to the
intersection of maximal consistent subsets of formulae as a basis for drawing paraconsistent
conclusions. However, while minimal deletion-diagnoses might be viewed as corresponding
to maximal consistent subsets, our approach does not prescribe a particular reasoning mode
upon them (like considering the system obtained by their intersection). Moreover, our notions of
diagnosis and explanation provide more fine-grained structures for analysis than just considering
deletion diagnosis, and they deal with nonmonotonic behavior.
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The methods that are applied in logic-based approaches to paraconsistent reasoning are
completely orthogonal to our techniques. The most prominent representatives resort to many-
valued logics in order to deal with inconsistency (cf. [9,110]). The same applies to paraconsistent
logic programming [21] (see e.g. [50] for more references and recent works), which therefore
also are elusive from a detailed comparison. Nevertheless, developing model-based techniques
for paraconsistent reasoning from inconsistent MCS is an interesting topic for future research.
In this regard, [116] can be inspiring, where trust on information sources on the web has been
modeled using an extension of Belnap’s four-valued logic [9] and bridge-rule like constructions
based on external predicates govern the information flow.

We conclude this section with a pointer to Gabbay and Hunter [67] who argued strongly
for managing inconsistency, in contrast to avoiding, removing, or ignoring it. Their point
is that an inconsistent system requires actions to be taken, and in order to do so, different
issues must be respected that require a variety of methods. Notably they also developed a
corresponding framework in a relational database setting [68, 69]. In this spirit, we consider the
notions of diagnosis and inconsistency explanation for MCS as providing a foundational basis for
developing methods for more specific tasks on top in order to manage inconsistency of the system.
Employing our approaches at meta-reasoning on diagnoses of an inconsistent MCS and using
context managers allows on the global and local level to analyse inconsistency and subsequently
execute actions deemed sufficient for resolving inconsistency.
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CHAPTER 7
Conclusion

In this work we have investigated inconsistency management in the Multi-Context Systems
framework. We have addressed three main questions: how to identify the reasons of inconsistency,
how to select most preferred resolutions of inconsistency, and how to enable in MCS the use of
legacy solutions to inconsistency management locally at each employed formalisms.

To answer the first question (cf. Chapter 3), we have introduced the notion of diagnosis to
characterize resolutions of inconsistency and explanations to identify the reasons of inconsistency
and separate multiple inconsistencies. Diagnoses and explanations are pairs of sets of bridge
rules indicating which bridge rules have to be removed and which have to be condition-free
(such that they add information unconditionally). We also investigated refined notions where
more fine-grained modifications to bridge rules are considered and have shown that the ordinary
notions are sufficient to capture the refined notions.

Depending on the topology of the information exchange (so-called splitting sets) of an MCS,
we showed that diagnoses and explanations of the whole MCS may be constructed by a combining
diagnoses and explanations of parts of the MCS, i.e., we gave conditions that allow for a modular
computation of diagnoses and explanations. Finally, we also gave an encoding in HEX (an
extension of answer-set programming) to compute all explanations of inconsistency in an MCS.

The second question, i.e., selecting most preferred resolutions of inconsistency (i.e., diag-
noses), was addressed in Chapter 4. Since it is impossible to decide for all MCS what comprises a
preferred diagnosis, the preference on diagnoses for a given MCS must be expressed in some for-
malism. Our main contribution here is to not confine the user of an MCS to a specific preference
formalism, but to develop a technique for meta-reasoning about diagnoses in MCS. By that, the
user of an MCS may employ any formalism that can be used in an MCS to reason about preferred
diagnoses. We presented several transformations and enhanced notions of diagnosis to allow the
selection of most preferred diagnoses. Furthermore, we also presented transformations which
allow the filtering of unwanted diagnoses, i.e., we not just support the comparison of diagnoses,
but also the dismissal of diagnoses that fail requirements specified by the user of an MCS.

In the course of this, we have introduced two transformation-based approaches to meta-
reasoning, where the first approach allows for bridge rules of the original MCS to be untouched
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in some cases and meta-reasoning is added on top of the existing MCS. The disadvantage of this
approach is that meta-reasoning is imperfect, i.e., there are circumstances where two different
diagnoses cannot be discerned. The second approach allows perfect observation but requires
all bridge rules to be modified. These modifications are minimal and the original MCS can
be reconstructed easily from the transformed one. We showed for the first approach to meta-
reasoning that so-called deletion-parsimonious filters can be applied and according diagnoses can
be selected correctly. Based on the second approach, we showed that filters in general can be
selected correctly. In both cases, the notion of a diagnosis where some bridge rules are protected
from modification is employed.

Using the second approach to meta-reasoning, we introduced two transformations to realize
the selection of most preferred diagnoses. The first transformation, called “plain encoding”, was
shown to be correct for total preference orders using a further enhanced notion of diagnosis
where some bridge rules are prioritized over the others. The second transformation, called “clone
encoding”, was shown to be correct for preference orders in general using another enhancement of
the diagnosis notion, called mpm-diagnosis (i.e., subset-minimal prioritized-minimal diagnosis).
Note that the plain encoding introduces exponentially many bridge rules while the clone encoding
duplicates every context of the original MCS.

We also have investigated the computational complexity of the introduced notions: the
complexity of subset-minimal diagnoses with protected bridge rules and prioritized diagnoses is
the same as the complexity of ordinary subset-minimal diagnoses; the complexity of recognizing
an mpm-diagnosis, however, is higher than the complexity of the aforementioned diagnoses,
specifically it is one step up in the polynomial hierarchy. Nevertheless, we also showed that the
complexity of selecting most-preferred diagnoses is already at the second level of the polynomial
hierarchy for MCS where context complexity is polynomial-time and the given preference order
also is polynomial-time. This shows that the clone encoding (which is linear in the size of the
original MCS) combined with the notion of mpm-diagnosis indeed is worst-case optimal in this
case.

Chapter 5 addressed the third main question, i.e., how to enable MCS to take advantage of
existing inconsistency management techniques that have been developed for specific formalisms.
To accomodate for such inconsistency managers, we extended the MCS framework such that
each context is accompanied by a context manager resulting in managed Multi-Context Systems
(mMCS). A context manager receives as input the heads of applicable bridge rules and the
knowledge base of the context and it returns a modified knowledge base. Since the context
manager may return any possible knowledge base, this allows any form of modification to be
applied to the context. We have presented several useful sample instances, but the most interesting
one is inconsistency management where the context manager applies belief revision to a classical
logic, or logic programming updates. The context manager also allows to select a semantics of
the context to switch between available semantics, e.g., a regular semantics and a paraconsistent
one.

We have then investigated the effect of context managers that always guarantee the consistency
of a context, i.e., the context manager of each context ensures that under every set of heads of
bridge rules the context admits an acceptable belief set. We showed that for such mMCS
consistency is ensured if the topology of the information exchange is acyclic (i.e., bridge rules
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form no cycle). We furthermore showed that for cyclic such mMCS it holds that the reasons
of inconsistency always include a cycle and possibly some additional bridge rules that carry
information towards the cycle.

Finally, we showed that mMCS and MCS have the same expressivity since each mMCS
can be transformed into an equivalent MCS and vice versa. Using this, we could also show
that the computational complexity of deciding whether an mMCS is consistent under certain
necessary assumptions is the same as the complexity of deciding whether the corresponding
MCS is consistent. Hence mMCS allow for an explicit application of (legacy) inconsistency
management techniques tailored to specific formalisms while being not more complex than
ordinary MCS.

7.1 Open Issues and Future Work

Several issues surrounding inconsistency in MCS have to remain open for this thesis.

Equilibrium Notions. In this thesis we considered an MCS to be inconsistent if it admits no
equilibrium. In [29] the notion of grounded equilibrium is introduced as an alternate semantics
of MCS and in [124] the concept is generalized to cover a range of eqilibrium notions, where
grounded equilibria and equilibria as used within this thesis are just two specific cases. We did
not address such notions of equilibria, but we suspect that many results of this thesis carry over
to them. Our belief is based on the fact that our basic notions of diagnosis and explanations are
built on whether there exists an equilibrium or not, so these notions can be readily extended to
grounded equilibria or other forms of equilibria by just using the appropriate notion of equilibrium.
On the other hand, it seems unlikely that such a change is without further interference, hence we
consider a thorough investigation on the choice of equilibrium semantics and its influence on
properties of diagnoses and explanations necessary.

Modifying Knowledge Bases. The notions of diagnosis and explanation consider only mod-
ifications of bridge rules while knowledge inside contexts is not modified. Locally modifying
knowledge to ensure local consistency can be addressed by context managers as proposed in
Chapter 5. These choices satisfy information hiding concerns, since no context is required to
exhibit its private knowledge base to identify diagnoses or explanations. In recent work [124]
the notions of support and justifications enable the tracing of reasons of inconsistency also
through knowledge bases. Hence, it enables global diagnoses that also consider modifications to
knowledge bases. Consider for example an inconsistent mMCS where cyclic information flow is
the reason of some inconsistency: our notion of diagnosis either removes a bridge rule or makes
a bridge rule condition-free to break the cycle, where a diagnosis based on support may also
consider the addition of a new fact to one of the involved knowledge bases to stabilise the cycle.

Basic Notions. Regarding our basic notions, there remain several issues for future work. On
the computational side, scalability to scenarios with larger data volume and number of bridge
rules is desirable, where the intrinsic complexity of our diagnoses and explanations is prohibitive
in general. It remains to single out settings where scalability is still possible, and to get a clearer
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picture of the scalability frontier. This is linked to the complexity of consistency checking for
an MCS; restrictions on the interlinking, in numbers and structure (for the latter, see [6]) will
be helpful, as well as properties of the context logics (e.g., monotonicity and unique accepted
belief sets). Related to this is developing pragmatic variants of our notions, like focusing by
protecting bridge rules (which does not increase worst case complexity), giving up properties
(e.g., minimality), or by tolerating inconsistency in parts of the system.

Preferences. The clone encoding M� for preferences is able to realise all preference orders,
but it comes at the cost of cloning each context of the original MCS. As the plain encoding
shows, this is not always necessary. It would be a big improvement to identify preferences whose
realisation requires no cloning and also avoid the exponential increase in bridge rules incurred
by the plain encoding. Whether such an encoding exists and if it can realise useful classes of
preferences is an open question.

We investigated preferences among diagnoses in general, but the aspect of deducible infor-
mation under a given diagnosis has not been investigated. For example, one could think of a
preference like “the best diagnosis is one that leads to a maximum amount of knowledge in the
resulting belief sets” (without turning all bridge rules condition-free, i.e., D2 still is minimal).
Such preference requires to consider the resulting equilibria, which our approach does not con-
sider. Luckily, the meta-reasoning encoding can be extended to allow such preferences by simply
adding further protected bridge rules that import all beliefs of the contexts to the observation
context.

To realise preferences in general, we needed to introduce the notion of an mpm-diagnosis,
whose computational complexity is higher than that of regular diagnoses (or diagnoses with
protected bridge rules). Currently, there exists no implementation to compute mpm-diagnoses.
The same is true for minimal diagnoses with protected bridge rules, but these should be easy to
implement on top of the existing implementation to compute minimal diagnoses.

The presented meta-reasoning approaches are centralised and we showed for some filters,
how the central observation context may be decomposed into multiple smaller ones depending on
the actual filter that is realised. For the clone encoding, this decomposition is not readily possible
since it requires some information flow between the decomposed contexts. Using protected bridge
rules such information flow in theory is possible, but it is unclear if such a decomposition with
respect to diagnoses with protected bridge rules is possible in general.

Managed MCS. An interesting issue for future work are refined semantics for mMCS to
discriminate among equilibria, such as an extension of minimal or grounded equilibria [29] to
mMCS. Moreover, as management functions may yield alternative knowledge bases, preference
of equilibria may be based on preference of alternatives. In particular for consistency restoring,
minimality of change seems natural.

Practical Applications. Computing diagnoses, explanations, or equilibria of an MCS is hard,
i.e., it is NP-hard and depending on context complexities it may be even harder. Similar NP-
hard problems like SAT or ASP resulted in efficient solvers that are able to handle (relatively)
large instances while no such efficient solutions are known for MCS (although there has been
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impressive work for MCS in [5, 6, 49]). Intuitively, a major reason for the relative efficiency of
SAT- and ASP-solvers is the fact that they analyse and learn the internal structure of a given
instance, which allows them to cut away large portions of the search space that do not contribute
to a possible solution. Since we assumed an information hiding regime for contexts, i.e., they do
not exhibit their internal structure to the outside, similar approaches for equilibrium computation
in MCS are not possible. It seems that giving up on information hiding enables much more
efficient and practical algorithms for finding the equilibria of a given MCS and in consequence
also for identifying diagnoses or explanations. The notion of support as in [124] might be useful
to describe the internal structure of contexts in general terms to more efficiently find equilibria.
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