
Real-Time Performance Analysis of
Synchronous Distributed Systems

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

DI Alexander Kößler
Matrikelnummer 0325498

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Ulrich Schmid

Diese Dissertation haben begutachtet:

(Univ.Prof. Dr. Ulrich Schmid) (Prof. Dr. Krishnendu Chatterjee)

Wien, Oktober 2014
(DI Alexander Kößler)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

DI Alexander Kößler
Wasserburgergasse 5/5, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Alexander Kößler)

A
ck

no
w
le
dg

m
en

ts

FIRST OF ALL, I would like to thank my adviser Ulrich Schmid.
He provided the conditions for fruitful research in the Embed-
ded Computing Systems Group and his distributed systems

lecture opened my mind and caught my interest for this research topic.
Discussions with him were always very helpful and his extensive and
nevertheless detailed knowledge about literature is amazing and very
valuable.

Furthermore, I would like to express my gratitude to the co-authors
of the publications that lead to this thesis. Particularly I would like to
thank Matthias Függer, Thomas Nowak, and Martin Zeiner, for their
support when we wrote the synchronizer papers, as well as Krishnendu
Chatterjee and Andreas Pavlogiannis for their support when writing
the real-time scheduling papers.

I would like to thank Josef Widder for his support during all the years.
Discussions with him have always been very fruitful and his comments
to improve this thesis were very valuable.
I would also like to thank Heinz Deinhart for keeping the working

infrastructure up and running, as well as, Traude Sommer for her prag-
matic way of solving administrative barriers. Furthermore, I want to
thank my colleagues from the Embedded Computing Systems Group
for their companionship during my stay at the department and their
feedback to this thesis.

Last but not least, I would like to thank all my Friends and my Family,
especially Johanna, for their continuous support during all the years of
my studies.
This work was partially supported by grants P21694 and P20529 as

well as by the NFN RiSE S11405 of the Austrian Science Foundation
(FWF).

Alexander Kößler
Vienna, October 2014

for Johanna

A
bs

tr
ac
t

THE TIME IT TAKES for an algorithm to perform its task is a central
question in computer science. It has been extensively studied for (cen-
tralized) sequential algorithms, while a comprehensive treatment of

time complexity in the distributed setting is still lacking. In synchronous
round-based distributed algorithms, the number of rounds until the problem
is solved represents a performance measure analogous to standard time com-
plexity (Newtonian real-time), but puts under the rug the many intricacies
that occur in a round due to faults, message passing, timing uncertainties due
to asynchrony etc.

This thesis provides a novel framework for analyzing distributed systems
running multiple independent distributed algorithms simultaneously on a
shared message passing communication infrastructure. In particular, the pre-
viously mentioned timing uncertainties are addressed, and the performance
of the executed algorithms are analyzed with respect to Newtonian real-time.
To do so, the internals of a round, that is, transmitting and receiving mes-
sages, must be taken into account. We study these mechanisms with different
mathematical tools.

On the transmitter side, a real-time scheduler responsible for scheduling
the messages of multiple algorithms on the shared communication channels.
Since suitable fault-tolerance techniques allow to deal with dropped messages
in a synchronous distributed algorithm, messages can be modeled as firm
deadline jobs with the end of a round as their deadline. Obviously, a good
scheduling algorithm maximizes the cumulative utility gained by the success-
fully scheduled jobs. The quality of a scheduler is usually characterized by its
competitive factor, that is, the performance of the scheduler with respect to an
optimal clairvoyant scheduler, that knows the future. This thesis lays the foun-
dation for a new approach to automatically perform the competitive analysis
of scheduling algorithms with respect to given task sets. This is done by using
a reduction to the problem of finding minimum mean-weight-cycles in multi-
objective graphs. In addition, albeit being computationally hard, algorithmic
game theory also allows to synthesize optimal scheduling algorithms.

On the receiver side, a synchronizer algorithm can be used to maintain a
consistent round structure by compensating messages dropped by the sched-
uler. The performance of a distributed algorithm running atop of such a thus
synchronizer directly depends on the performance of the synchronizer. Ab-
stracting dropped (and otherwise lost) messages by a probabilistic link failure
model allows to calculate the expected round duration using Markov theory.
By analyzing the series of the starting times of the rounds generated by the
synchronizer, and by modeling its execution as a Markov chain, this thesis
finally develops results regarding the expected round duration.

K
ur
zf
as
su

ng
EINE DER ZENTRALEN Fragen der Informatik ist, wie lange ein Al-

gorithmus braucht, um seine Aufgabe zu erfüllen. Während diese
Frage in (zentralisierten) sequenziellen Algorithmen bereits ausgiebig

untersucht wurde, sind in verteilten Algorithmen noch viele Fragen zur Zeit-
komplexität offen. In synchronen rundenbasierenden verteilten Algorithmen
stellt die Rundenanzahl bis zur Termination ein zur klassischen Zeitkomplexi-
tät analoges Maß dar, jedoch werden dabei viele Feinheiten unter den Teppich
gekehrt, die zum Beispiel durch Fehler, das Kommunikationssystem oder
Ungewissheiten der zeitlichen Abfolgen durch Asynchronität während einer
Runde auftreten.

Die vorliegende Arbeit stellt eine neuartige Analyse verteilter Systeme vor,
die mehrere unabhängige verteilte Algorithmen nebenläufig auf einer gemein-
samenKommunikationsinfrastruktur ausführen. Dabei wird besonders auf die
bereits angesprochenen Ungewissheiten der zeitlichen Abfolgen eingegangen
und die Leistungsfähigkeit der Algorithmen in Bezug auf das Echtzeitverhal-
ten analysiert. Das Hauptaugenmerk liegt dabei auf den Interna einer Runde,
konkret dem Senden und Empfangen von Nachrichten, die mit verschiedenen
mathematischen Werkzeugen analysiert werden.

Um den Zugriff der Algorithmen auf die gemeinsam verwendeten Kommu-
nikationskanäle zu steuern, wird ein Echtzeitscheduler verwendet. Geeignete
Fehlertoleranz-Mechanismen erlauben es, verloren gegangene Nachrichten in
synchronen verteilten Algorithmen zu tolerieren. Daher können Nachrichten
als Arbeitspakete aufgefasst werden, die als Bearbeitungsfrist das Ende der
Runde haben. Ein guter Echtzeitscheduler versucht, den kumulativen Ertrag
zu maximieren, den er durch die fristgerechte Bearbeitung der Pakete erhält.
Seine Konkurrenzfähigkeit wird üblicherweise in Relation zu einem optimalen
hellseherischen Scheduler gemessen, der in die Zukunft sehen kann. Diese
Arbeit legt den Grundstein für eine neue Methode zur automatischen Ana-
lyse der Konkurrenzfähigkeit von Schedulingalgorithmen. Dabei wird das
Problem bei vorgegebenen Arbeitspakettypen auf das Finden von Kreisen mit
minimalem durchschnittlichen Gewicht in einem Graphen reduziert. Weiters,
wenngleich mit sehr großem Rechenaufwand verbunden, kann durch algo-
rithmische Spieltheorie ein optimaler Schedulingalgorithmus synthetisiert
werden.

Auf der Empfängerseite kommt ein Synchronisationsalgorithmus zum Ein-
satz, der vom Schduler verworfene gegangenen Nachrichten implizit kompen-
siert und wieder eine konsistente Rundenstruktur herstellt. Das Zeitverhalten
eines darauf aufbauenden verteilten Algorithmus hängt stark von der Leis-
tungsfähigkeit dieses Synchronisationsalgorithmus ab. Eine Abstraktion der
verworfenen (oder sonstwie verlorengegangenen) Nachrichten in einem pro-
babilistischen Kommunikations-Fehlermodell ermöglicht die Anwendung von
Markoff-Theorie zur Berechnung der zu erwarteten Rundendauer. Die Analyse
der Folge der Startzeiten der von dem Synchronisieralgorithmus generierten
Runden durch die Modellierung als Markoff-Kette liefert schlussendlich Er-
kenntnisse über die zu erwarteten Rundendauern.

Contents

1 Introduction 1
1.1 Synchronous Distributed Systems: Theory vs. Reality 3
1.2 Questions and Contributions of this Thesis 6
1.3 Road Map of this Thesis: . 7

2 Modeling Distributed Systems 9
2.1 Classic Distributed Computing Models 10

2.1.1 Synchrony . 11
2.1.2 Execution and Communication Primitives 16
2.1.3 Modeling Faults . 20

2.2 Achieving a Round Structure . 22
2.3 The Real-Time Distributed Computing Model 25
2.4 Basics of Real-Time Scheduling . 27

2.4.1 Selection of On-line Scheduling Algorithms 29
2.4.2 Time/Utility Functions . 32
2.4.3 Comparing Schedulers . 32

2.5 Putting it all Together . 35

3 Real-Time Scheduling 43
3.1 Formal Problem Definition . 45
3.2 Labeled Transistion Systems as Models for Algorithms 48

3.2.1 Deterministic LTS for an On-line Algorithm 48
3.2.2 The Non-deterministic LTS . 49

3.3 Admissible Job Sequences . 50
3.4 Overall Approach for Computing CR . 52
3.5 Graphs with Multiple Objectives . 53

3.5.1 Objectives . 53
3.5.2 Decision Problem . 55

3.6 Reduction to Multi-Objective Graphs . 58
3.6.1 Reduction for Safety and Liveness Constraints 58
3.6.2 Reduction for Limit-Average Constraints 60

3.7 Optimized Reduction . 61
3.7.1 Clairvoyant LTS . 61

ii Contents

3.7.2 Clairvoyant LTS Generation . 62
3.7.3 On-line State Space Reduction . 64

3.8 Experimental Results . 64
3.8.1 Varying Tasksets Without Constraints 64
3.8.2 Fixed Taskset with Varying Constraints 66
3.8.3 Running Times . 66
3.8.4 Competitive Ratio of TD1 . 66

3.9 Modeling as a Graph Game . 68
3.9.1 Plays . 68
3.9.2 Strategies . 69
3.9.3 Objectives . 69
3.9.4 Decision Problems . 70
3.9.5 Perfect-information Games . 70

3.10 Complexity Results . 70
3.11 The Synthesis Problem . 74
3.12 Bibliographic Remarks . 75

4 Round Synchronization 77
4.1 The Retransmission Scheme . 78

4.1.1 Computational Model . 79
4.1.2 Simulating Perfect Round Executions 80
4.1.3 The Algorithm . 81

4.2 Round Durations under Probabilistic Message Loss 83
4.3 Calculating the Expected Round Duration 85

4.3.1 Round Durations as a Markov Chain 86
4.3.2 Using Λ(r) to Compute λ . 90

4.4 Results for Finite Retransmission Bounds 93
4.5 Removing the Maximum Retransmission Bound 97

4.5.1 System Model in the Dual Space 98
4.5.2 Performance Measure . 99

4.6 Explicit Formulas for λIII and λIV . 100
4.7 Markovian Analysis . 101

4.7.1 Using â(t) to Calculate λ . 102
4.7.2 Behavior of λ for p→ 1 . 103
4.7.3 Behavior of λ for p→ 0 . 104
4.7.4 Lower Bounds on λI and λII . 104
4.7.5 Lower Bound on Parameters for λII 105
4.7.6 Lower Bound on Parameters for λI 107

4.8 Discussion of Results . 109
4.9 Bibliographic Remarks . 112

5 Conclusion and Future Work 115

Bibliography 119

List of Figures

Chapter 1: Introduction
1.1 How a distributed system is usually analyzed. 4
1.2 How a distributed system might end up being implemented. 4

Chapter 2: Modeling Distributed Systems
2.1 Abstraction in Computer Engineering. 9
2.2 Example for the communication graph of a distributed system. 11
2.3 Example of a part of a synchronous execution. 13
2.4 Example of an asynchronous execution. 14
2.5 Two different paradigms for sending messages. 18
2.6 Two different paradigms for receiving messages. 19
2.7 Generating rounds from approximately synchronized clocks. 25
2.8 Classic vs. real-time distributed computing model. 26
2.9 Illustration of a real-time job. 28
2.10 Different scheduling scenarios for jobs JA and JB. 29
2.11 Time/utility functions of different kinds of real-time tasks. 33
2.12 Three different scheduling scenarios indistinguishable at time t = 1. . . 34
2.13 Proposed system architecture of the distributed system. 36
2.14 Communication and round abstraction of three sync. distr. algorithms. . 37
2.15 Scheduling of the messages generated by three distributed algorithms. . 38
2.16 Structure of a process in the proposed system model. 38
2.17 Detailed communication schema within a distributed algorithm execution. 41

Chapter 3: Real-Time Scheduling
3.1 EDF for two tasks represented as a deterministic LTS. 49
3.2 Example of a safety LTS LS . 50
3.3 Example of a liveness LTS LL. 51
3.4 Example of a limit-average LTS LW . 52
3.5 An example of a multi-graph G. 54
3.6 The competitive ratio of algorithms in different tasksets without constraints. 65
3.7 Restricting the absolute workload generated by the adversary. 65
3.8 Illustration of construction of the game from a 3-SAT formula. 72

iv List of Figures

Chapter 4: Round Synchronization
4.1 Fair-lossy execution of A(B). 84
4.2 Expressions for λdet(N , p, M) with M = 2 and N = {2, 3}. 93
4.3 λprob(N , p, M) and λdet(N , p, M) versus p forN = {2, 4} and 2 6 M 6 6. 94
4.4 Fair-lossy execution of A(B) in the dual space (cf. Figure 4.1). 98
4.5 Expected round durations for N = 3 and lower bounds for cases I and II. 109
4.6 Monte-Carlo simulation results for case I. 110
4.7 Monte-Carlo simulation results for case II. 111
4.8 Calculated expected round duration of case IV. 112
4.9 Simulated T1(r)/r versus r. 113
4.10 λprob, λdet for M 6 4 and simulations versus N 114

Chapter 1
Introduction

TODAY, DISTRIBUTED SYSTEMS are ubiquitous. The most prominent example
is the Internet: Our society cannot possibly be imagined anymore without this

distributed system containing more than 903 million hosts.1 But distributed systems
not only exist in such large scales. A set of sensor nodes connected by a wireless ad-hoc
network executing a distributed algorithm, e.g., for air pollution monitoring, or a set of
autonomous robots cooperating, for example, in a robot soccer game, form distributed
systems as well. Distributed systems also exist at the hardware level. In [Fü10, FS12]
a distributed system is built from multiple self-contained hardware blocks that, by
communicating with each other, establish a fault-tolerant clock in a System-on-Chip.

What are Distributed Systems?

There are various definitions of “what forms a distributed system.” In this work, we
adhere to the criteria given in [Gho06].

Multiple processes: There is no point in calling a single-process-system distributed.
Therefore, a distributed system consists of at least two distinct processes executing
their programs concurrently. Usually the processes of the distributed system are
also spatially distributed by assigning every process a dedicated processing node.

Interprocess communication: Communication is one of the key elements in distributed
systems. In message passing systems information between processing nodes, and
thus the processes of an algorithm, can only propagate by sending and receiving

1According to the 2012 figures of the CIA World Factbook, U.S. Central Intelligence Agency, 2012,
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2184rank.html, accessed:
29/04/2014.

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2184rank.html

2 Introduction

messages. Shared-memory systems are providing a different model for inter-
process communication: All processes have access to a shared memory address
space that is used for information exchange. In this work, we restrict ourselves to
message passing systems; a communication graph indicates which processes can
directly communicate with each other.

Disjoint local states: A process does not have access to the local state of any other
process. As mentioned before, this work focuses on message passing systems,
therefore systems in which processes have access to a shared-memory are not
taken into account.

Collective goal: Processes must communicate with each other to meet a common goal.
A typical goal in distributed computing, for example, is to decide on a common
value.

Distributed Systems are Important

Over the last decades distributed systems have gained substantial importance. Besides
scalable performance, the most prominent advantage of distributed systems is that they
can be made fault-tolerant. The most powerful computing system using a single central
process can be rendered unusable if this process fails. Unfortunately, there are faults
like single event transients and bit-flips in memory cells caused by ionized particle hits,
cross-talk and electromagnetic interference, or failures in the power supply that cannot
be controlled or avoided by the system designer that can make the central process fail.
Such single points of failure are an intrinsic problem in centralized systems and are
clearly problematic in systems aiming for high availability and reliability requirements.
To overcome this significant issue and hence to increase the robustness, distributed
systems employ space redundancy.

General distributed systems literature, such as [Gho06], describes additional benefits
of distributed systems like a geographically distributed environment to provide geo-
graphically distributed services, the possibility of advancing the system performance
beyond the (physical) performance limitations of a single processing node, and better
scalability. However, these issues are less relevant in the context of this thesis.

Distributed Systems are Challenging

In centralized systems, a decision like opening or closing a valve depending on the
temperature is straightforward. The centralized process just fetches all the sensor
readings it needs to decide if the valve should be opened or closed, and executes the
corresponding action.

If a distributed system is required, e.g., because the requirements demand that
a single point of failure has to be avoided, opening or closing the valve gets much
more involved. Multiple processes have to communicate with each other to build up

1.1 Synchronous Distributed Systems: Theory vs. Reality 3

a consistent view of the global system state. Additionally, this system state may be
time-variant and thus change during the process of data collecting. Hence, the multiple
sensor readings cannot be compared directly as replica determinism2 cannot always
be guaranteed and distributed consensus algorithms have to be used. Even worse, the
valve has to be built in a fault-tolerant manner to ensure the (process controlling the)
valve does not form the single point of failure.

Furthermore, while the access to a resource is straightforward in a centralized
system, distributed systems might need to provide additional services such as mutual
exclusion, synchronization, or atomic transactions for consistent access by all processes
to shared resources.

Everything comes at a price, and so does distributing a system for the sake of fault
tolerance. To tolerate f Byzantine-faulty processes (i.e., processes that do not adhere to
their algorithms but may behave arbitrarily) in distributed agreement, at least a total
number of 3 f + 1 processes are needed, together with additional restrictions on the
minimal connectivity of the communication graph [LSP82]. When it comes to tolerating
transient failures, additional non-trivial problems like the recovery of processes and
their reintegration have to be taken care of.

This small example demonstrates some of the implications that arise when actually
making systems fault-tolerant. It also indicates that the algorithms running on the
processing nodes in the distributed system get much more involved, thus increasing
the efforts required for proving them correct. While computer-aided verification of
algorithms is already common practice in fault-free systems, for example, for the ver-
ification of device drivers in MS Windows and GNU/Linux as in [BBC+06], model
checking of fault-tolerant distributed systems is only at its beginning [JKS+13].

1.1 Synchronous Distributed Systems: Theory vs. Reality

Figure 1.1 shows a computer scientist’s “view” of a distributed system running four
processes of a synchronous distributed algorithmA on four processing nodes. The struc-
ture of the distributed system is nicely shown by the communication graph representing
the dedicated point-to-point links used for communication between the processes. The
algorithm’s processes are usually modeled as (possibly infinite) state machines, spec-
ified in pseudo code and manually or automatically proven correct. A synchronous
distributed algorithm assumes a consistent and communication-closed round structure
provided by the distributed system (i.e., if a message is sent by a process, it will be
delivered to the receiver process in the same round or not at all, as there are no late
messages). Unfortunately, a real-world implementation of this distributed system may
look completely different.

2Replica determinism [Kop97] guarantees that replicated objects deterministically produce the same
output at all times and thus is a prerequisite for some fault tolerance mechanisms like triple modular
redundancy (TMR). In the introduced example, temperature readings of replicated sensor nodes usually
are not replica determinant as their output may slightly differ. For example assume the correct sensor
readings are 49.7 ◦C and 50.1 ◦C while the faulty one is 53.5 ◦C. TMR is useless in this case.

4 Introduction

1 2

3

4

Algo A Algo A

Algo A

Algo A

Algorithm 1: Solving consensus in synchronous systems of diameter D
Code for processes i, 1 6 i 6 N :
Variables: xi ∈ N, yi := undef., valuei := xi, in-bufferi

1 Initial State: in-bufferi = ∅

2 for round r, 1 6 r 6 D + 1 do
3 receive V, the set of values sent by the neighbors from in-bufferi
4 valuei ← min(V ∪ {valuei})
5 send valuei to neighbors
6 if r = D + 1 then
7 yi ← valuei

Figure 1.1: How a distributed system is usually analyzed.

Bus Arbiter

x86

OS 3

Algo A

Bus Arbiter

x86

OS 3

Routing

Algo B

Bus Arbiter

Atmel AVR

Algo A

Bus Arbiter

x86

OS 1

Middleware

Algo A

Bus Arbiter

Atmel AVR

Algo B

Bus Arbiter

x86

OS 2

Routing

Algo A

Bus Arbiter

x86

OS 1

Algo B

Bus Arbiter

ARM

OS 3

Algo B

Shared BusShared Bus

Figure 1.2: How a distributed system might end up being implemented.

As shown in Figure 1.2, the previously mentioned dedicated point-to-point links
may be realized by a shared bus system. Therefore, every processing node needs some
kind of bus arbitration to avoid collisions. Additionally, the pseudo code is not executed
directly; rather, there are various computer architectures and operating systems involved
in the implementation. There might also be other distributed algorithms executed in a
shared environment, which are not considered in the original analysis and thus may
make all timing assumptions about the bus access void.

In the following, some of the most common stumbling blocks that may arise when
implementing a theoretically sound distributed system/algorithm in a real-world ap-
plication are identified.

Unexpected timing uncertainties:

In the analysis of distributed systems, typically, only a single instance of a distributed
algorithm is executed exclusively by the computation nodes in the system. This allows
to abstract all timing related parameters such as network delay, message queuing, and
the execution times of the processes, in the end-to-end delay of the communication
(i.e., the duration between sending a message and processing it). An upper-bound on

1.1 Synchronous Distributed Systems: Theory vs. Reality 5

this end-to-end delay is then used in the implementation as the round duration of the
synchronous distributed system.

In reality, thingsmay look a bit different: A shared communicationmedium, possibly
needing bus arbitration, like a CAN-Bus in a car, and communication timeouts in
combination with retransmission protocols applying additional load are not uncommon.
Such implementations can easily result in violations of the synchrony assumptions
used in the design of a synchronous distributed system, and thus in the failure of the
algorithm.

Analysis of a distributed algorithm is based on its pseudo code specification. No
operating system is mentioned, no middleware, no third-party-libraries adding exe-
cution time uncertainties are present. Unfortunately, this is not always true when it
comes to the implementation of a distributed algorithm. Heterogeneous hardware,
various operating systems combined with architecture dependent implementations or
the need for additional middleware to compensate missing system features are adding
additional timing uncertainties and thus challenges for the system designer when it
comes to the implementation of an algorithm.

Faults and Errors:

When designing a fault-tolerant distributed system, one of the most crucial things is
a valid fault hypothesis. A fault hypothesis describes exactly which types of faults a
system has to deal with and how many/often faults may occur. Common types of
faults are: (i) Faults regarding the execution of processes, such as crash faults, where
a process prematurely stops executing the specified algorithm, and Byzantine faults,
where a process deviates from the specified algorithm and can behave arbitrarily; (ii)
Faults regarding communication, such as omission faults, where a process fails to
send/receive a set of messages. An example for a fault hypothesis is: During the
execution of a distributed algorithm at most f of its processes may crash. Clearly, if the
fault hypothesis is not valid for the real-world application, e.g., because suddenly f + 1
processes crash or one process behaves Byzantine faulty, the correctness proofs of the
distributed algorithm are useless for its real-world implementation.

Furthermore, there are hardware phenomena, like metastability in digital circuits,
that are even stronger than Byzantine faults, as they cannot be captured inside fault-
containment regions.3 This is due to the fact that, even though a binary Byzantine signal
can behave arbitrarily, it still has to adhere to the binary signal specification, while a
metastable signal is an out-of-spec operation (cf. [FFS09]).

Finally, when it comes to the hardware implementation of a distributed system, addi-
tional challenges arise. Constructs regularly used in theory such as unbounded counters,
e.g., used as sequence numbers for messages, or implicit mutual exclusion constraints,
both present in [FFSS08], need to be treated very carefully to avoid implementation
errors.

3A fault-containment region is the set of subsystems that can be affected by a single fault (cf. [Kop97]).

6 Introduction

Scalability problems:

Manually proving a distributed algorithm correct for a system with four, 40 or 4 000
processes usuallymakes no difference. The number of processes is abstracted away by an
ominous variable N , and the correctness proofs usually hold for arbitrary large values
of N . When it comes to realization, missing or insufficient analysis of the algorithm,
e.g., w.r.t. the memory usage, can make distributed systems fail. Algorithms working
perfectly fine for four or 40 processes break when executed, for example, in a wireless
network with 800 nodes, like the one deployed in the University of California, Berkeley,4
as a poor implementation the routing table suddenly exceeds the 512 bytes of locally
available main memory or because piggybacking of messages exceeds the maximal
supported message size.

1.2 Questions and Contributions of this Thesis

This thesis mainly addresses the problem of unexpected timing uncertainties. It pro-
vides a framework for analyzing the real-time performance of multiple synchronous
distributed algorithms running independently and in parallel on a common distributed
system. We extend the common perception of computing nodes in a distributed system
to allow them to execute processes of multiple distributed algorithms concurrently. By
using a multi-core argument, we can motivate that the nodes’ computational power
is sufficient to run all the algorithms in parallel (i.e., we assign every algorithm its
dedicated processor). As usual for distributed algorithms, the problem arises at the
communication between the processing nodes where the cumulative bandwidth de-
mand of the distributed algorithms executed on a node may (temporarily) exceed the
capacity of the shared communication channels. We propose an approach that splits
the problem into two parts.

On the transmitter side, sending various messages from multiple distributed al-
gorithms via an unreliable shared communication channel may exceed the channel’s
capacity. Hence, not all messages will always be sent and thus received. However,
this does not necessarily prohibit the fault-tolerant distributed algorithm to operate
correctly system-wide. Our goal is to analyze the performance of message scheduling
algorithms at the transmitter. To do so, we model the messages as real-time jobs with
firm deadlines, i.e., jobs that do not harm if they miss their deadline (which is the end
of the synchronous round), but do not provide any utility to the system in this case.
A good scheduling algorithm is one which maximizes the cumulative utility in the
worst-case scenario. This is reflected by a high competitive ratio w.r.t. the cumulated
utility achieved by a clairvoyant scheduler that knows the future, which is determined
by competitive analysis. We utilize a novel approach based on graph games here, which
reduces the competitive analysis of a given on-line scheduling algorithm to solving
certain problems on multi-objective graphs.

4http://webs.cs.berkeley.edu/800demo/, accessed: 12/05/2014.

http://webs.cs.berkeley.edu/800demo/

1.3 Road Map of this Thesis: 7

Classically, the competitive analysis of an on-line algorithm involved considerable
effort to find and to analyze worst-case scenarios, which are usually very problem
specific. Using our algorithmic approachwe can replace human ingenuity by computing
power.

The analysis and modeling of the real-time scheduling problem was done in a joint
work with Krishnendu Chatterjee, Andreas Pavlogiannis, and Ulrich Schmid. The
author’s contribution covers the modeling and the automated generation of the on-line
algorithms’ state spaces. The credits for the contributions of the state space reduction
and solving the resulting graph problems are awarded to Andreas Pavlogiannis.

On the other hand, when it comes to receiving messages, we observe message loss
as a result of the abandoned jobs by the real-time scheduler, as well as the typically
unreliable communication channel. There are two ways to overcome this issue: The first
one is to use a synchronous distributed algorithm that can tolerate receive omissions.
The second one, which is the one pursued in this thesis, is to build a synchronous round
abstraction (without receive omissions) atop the imperfect communication system,
using a so-called synchronizer. Introduced by Awerbuch [Awe85], a synchronizer
triggers the next round of the algorithm’s process on each node only after (i) it is aware
that all neighbors have received its associated message of the current round and (ii)
that it has received all neighbors’ messages of the current round. Clearly, the real-
time performance of an atop running synchronous algorithm heavily depends on the
performance of this synchronizer.

Abstracting both the dropped messages of the real-time scheduler as well as the lost
messages of the unreliable channel via a probabilistic link failure model, parametrized
by the results of the real-time scheduling analysis and the channel characteristics,
finally allows us to derive non-trivial results on the expected round durations of the
synchronous algorithms running atop.

The performance analysis of the synchronizer was done in joint work with Matthias
Függer, Thomas Nowak, Ulrich Schmid, and Martin Zeiner.

The core results of this thesis have been published in several papers that appeared
in proceedings of international conferences and journals: [CKS13, CPKS14, NFK13,
FKN+13].

The two parts considered in this thesis are thus “linked” by the probabilistic as-
sumption on the link failures. In this thesis, we take the simplistic approach of just
assuming that the dropping of messages by themessage scheduler at the transmitter can
be modeled this way at the receiver. An interesting goal of future work is to extend the
game-theoretic competitive analysis framework appropriately to automatically provide
the matching probability assumptions.

1.3 Road Map of this Thesis:

Two different ways to model distributed computations are introduced in Chapter 2.
First, “classic” distributed computing models widely used in literature are explained
together with their pros and cons. The notion of synchrony is motivated and introduced,

8 Introduction

and by examples it is shown how to simulate strong synchrony guarantees, i.e., a round
structure, on top of systems providing only weaker synchrony assumptions. Second,
the Real-Time Distributed Computing Model is introduced, which models distributed
systems more accurately by removing some of the strong restrictions of the “classic”
models, e.g., zero-time computing steps. We then identify shortcomings of the classic
models compared to the real-time model by means of an instance of the one-shot clock
synchronization problem.

By giving a brief introduction to real-time scheduling, the prerequisites for the
following chapters are established. Finally, we give a high-level overview about the
main contribution of this thesis: A newmodel allowing the analysis of the real-time per-
formance of a distributed system running multiple independent distributed algorithms
simultaneously, and suitable analysis methods and tools.

Chapter 3 deals with themessage scheduling aspects of runningmultiple distributed
algorithms simultaneously on the same distributed system, which is the underlying part
of the new model. Messages are modeled as real-time jobs and have to be scheduled on
the finite capacity channels between the processes of the distributed system. Modeling
schedulers as labeled transition systems enables a reduction of the competitive analysis
problem to decision problems on multi-objective graphs, which provides quantitative
measures about their performance. Moreover, a reduction to partial-information graph
games allows to synthesize an optimal on-line algorithm, albeit this is computationally
hard.

Chapter 4 presents a synchronizer approach that takes actionmainly on the reception
of messages, which compensates the messages dropped by the scheduler and provides a
virtual round structure to the atop-running distributed algorithms. Most of this chapter
is devoted to the performance analysis of this synchronizer approach. Using Markov
chain modeling and probability theory gives specific and general results about the
real-time performance of the resulting synchronous system abstraction.

Finally, Chapter 5 summarizes the contributions of this thesis and explains how
they can be applied. It concludes by giving a glimpse of future work.

Chapter 2
Modeling Distributed Systems

WHEN IT COMES TO the modeling of computing systems, abstractions are in-
evitable. While Maxwell’s Equations [Max65] accurately describe the physical

effects within electrical circuits, nobody will use those for describing a complete 8-bit
adder. Usually, there are already a multitude of abstraction levels between the digital
design of the circuitry and the physical structure of the system. Figure 2.1 shows the
most common abstractions in computer engineering as described in [AL05]. Even more
abstraction is used beyond the computer engineering level: Pseudo code is used to
specify algorithms independent from specific programming languages, directed graphs
provide abstractions from physical communication channels [CCJ90], etc.

Nature

Laws of physics

Lumped circuit abstraction

Digital abstraction

Logic gate abstraction

Memory abstraction

Finite-state machine abstraction

Microprocessor abstraction

Assembly language abstraction

Programming language abstraction

. . .

Ph
ys

ic
s

C
ir

cu
its

an
d

el
ec

tr
on

ic
s

D
ig

ita
ll

og
ic

C
om

pu
te

r
ar

ch
ite

ct
ur

e

Pr
og

ra
m

m
in

g

Figure 2.1: Abstraction in Computer Engineering.

10 Modeling Distributed Systems

In general, multiple abstraction levels allow to capture the essential properties of
very complex systems without the need to care about all the underlying entities. In case
of a distributed algorithm, a flat model would have to incorporate the algorithm itself,
the operating system running the algorithm, the computer architecture of the processor
executing the algorithm, the network controller used for communication including the
waiting queues in the receiver and transmitter, and the communication network of the
system itself. Clearly, without abstraction, (nowadays) it is not possible to pack all those
involved parameters into a mathematical model and, even less, to reason about it.

Distributed computingmodels allowus to abstract from all low-level details and thus
to focus on the analysis of and the reasoning about distributed algorithms. This chapter
gives an introduction, kept informal for the most part, into the “classical” approaches
for modeling distributed systems and their computations. It illustrates how small
changes in the model assumption impact worst case bounds and even the solvability
of problems. In addition, the chapter motivates the need for a more detailed analysis,
including the process and/or message scheduling, by means of the example of clock
synchronization in real-time distributed computing systems, and introduces the basics
of real-time scheduling along with its challenges. It thereby lays the foundations for
the rest of this thesis.

2.1 Classic Distributed Computing Models

In the context of this thesis, a distributed system consists of N spatially distributed
processing nodes coupled by a message passing network. A distributed algorithm is
a collection of (not necessarily identical) processes 1, 2, . . . ,N, each of them executed
concurrently by a dedicated processing node. Processes are modeled as independent
state machines, performing state transitions at computing steps. A state transition maps
the process’ current state together with some input to a successor state and some output.
While a state represents a certain valuation of local variables, the output are messages put
into the out-buffer of a process, denoted as sending, while the input consists of messages
received from the in-buffer of a process. In a deterministic distributed algorithm, for every
current state and input there exists exactly one state transition that can be performed,
while in randomized distributed algorithms there may be more than one state transition
possible. Which of the state transitions is performed at a computing step is chosen
probabilistically, e.g., by flipping a coin. This thesis focuses on deterministic distributed
algorithms. A message is delivered via the message passing system by removing it from
the senders out-buffer and placing it into the receivers in-buffer. Note that this action is
usually externally triggered, controlled by an adversary, and not within the scope of a
process.

A communication graph specifies which processes can directly exchange messages.
Therefore, processes are modeled as vertices and a directed edge between two vertices
indicates a possible communication flow. The diameter of the communication graph is
the longest shortest path between any two vertices of the graph, whereas the length
of a path is given by the number of the edges it contains. Communication is usually

2.1 Classic Distributed Computing Models 11

1 2

3

4

Figure 2.2: Example for the communication graph of a distributed system.

assumed to be reliable, except when the sender or receiver process are faulty (see
Section 2.1.3). For now, we will assume that all processes are correct. If communication
is symmetric, the directed edges are usually substituted by undirected ones. A fully
connected message passing system corresponds to a complete communication graph,
i.e, its diameter is 1.

An example of the communication graph of a distributed systemwith four processes
is shown in Figure 2.2. While process 2 is able to send messages directly to all other
processes, process 1 can sendmessages to processes 3 and 4 only by using other processes
as relays. The diameter of the graph shown in the example is 2.

The transmission delay denotes the time between the sending of a message and the
delivery of a message, where delivery denotes placing the message in the receiver’s
in-buffer and therefore enabling it as an input for the next computing step. Furthermore,
the end-to-end delay of a message denotes the time between sending the message and
actually processing it at the receiver. We will see later in this chapter that there is a
fundamental difference between the transmission delay and the end-to-end delay when
it comes to the timing analysis of distributed algorithms.

In classic distributed computing models, the state transition of a computing step
is assumed to happen instantly and take no time to be completed. Differences arise in
the occurrence times of state transitions. In discrete time models, as in [DLS88], state
transition happen only at certain points in time, whereas they can occur at arbitrary
times in continuous time models, as in [AW04]. Bounds on the number of state transi-
tions some process can perform while another process performs two successive state
transitions, as well as bounds on the transmission delay of the messages, determine the
synchrony of a distributed system.

2.1.1 Synchrony

In this section, the most common synchrony models used in distributed computing,
namely synchrony, asynchrony, andpartial synchrony, are reviewed. Algorithms solving
consensus, one of the most important problems in distributed computing, are used to
point out the differences between the models, and to show canonical ways to prove
algorithms correct. There exist different versions of the consensus problem in literature,
differing for example in the set of the possible input values or whether the processes
may decide only on values present in the set of the actual inputs (and in “who must

12 Modeling Distributed Systems

decide” in the presence of faults). In this section, we adhere to a variant based on the
definition of the consensus problem given in [AW04].1

The Consensus Problem

The state of every process i in the distributed system has special components
xi, the input of the consensus problem, and yi, the output of the consensus
problem. Initially, xi holds a value from some well ordered set of possible
inputs, e.g., N, {0, 1}, . . . , and yi is undefined. Any assignment of a value to
yi is irreversible and is called decision. A solution to the consensus problem
has to guarantee the following three properties:

Termination: Eventually, every process i assigns yi a value.
Agreement: If yi and yj are assigned, then yi = yj, for all processes i and j.

Informally, all processes decide on the same value.
Validity: If, for some value v, xi = v for all processes i, and if yj is assigned

by some process j, then yj = v. Informally, if all processes have the
same input, any value decided upon must be that input.

Lock-step synchronous systems

In lock-step synchronous systems, processes perform their state transitions in lockstep.
This can for example be achieved by attaching perfectly synchronized hardware clocks
to the processes, triggering the state transitions simultaneously on all processes. Al-
ternatively, as discussed in Section 2.2, lock-step rounds can also be built (simulated)
atop of approximately synchronized clocks. If the time between computation steps is
longer than the upper bound on the end-to-end delay, it is guaranteed that all messages
sent by the computing steps can be processed in the next computing steps. Figure 2.3
shows part of a synchronous execution as it could occur in the distributed system shown
in Figure 2.2, in a time/space diagram. Horizontal arrows depict the advance of time
simultaneously at all vertically aligned processes. The aligned marks on the time lines
show the synchronized clock ticks at which the state transitions of the processes happen,
while the dashed arrows visualize the transmission delay of messages. The tail of the
arrows show the process from which and the instant of time when a message is sent.
The head of the arrow points to the receiver of the message and to the time instance of
the delivery of the message to the receiver’s in-buffer.

Due to the alignment of the state transitions and the timing constraints on the trans-
mission delays of the messages, synchronous executions can be abstracted by a round

1The definition of the consensus problem in [AW04, Section 5.1.2] is taking faults into account. However,
in this part we consider only fault-free executions and therefore the set of non-faulty processes from the
original definition is naturally extended to the set of all processes. Also the exact notion of an execution is
dismissed, allowing an intuitive description in this informal part of the thesis.

2.1 Classic Distributed Computing Models 13

Process 4 t

Process 3 t

Process 2 t

Process 1 t

round i − 1 round i round i + 1

Figure 2.3: Example of a part of a synchronous execution as it could occur in the
distributed system shown in Figure 2.2.

Algorithm 1: Solving consensus in synchronous systems of diameter D
Code for processes i, 1 6 i 6 N :
Variables: xi ∈ N, yi := undef., valuei := xi, in-bufferi

1 Initial State: in-bufferi = ∅

2 for round r, 1 6 r 6 D + 1 do
3 receive V, the set of values sent by the neighbors from in-bufferi
4 valuei ← min(V ∪ {valuei})
5 send valuei to neighbors
6 if r = D + 1 then
7 yi ← valuei

structure, allowing distributed algorithms to be specified round-wise. Algorithm 1
states an example for a consensus algorithm for synchronous message passing sys-
tems on arbitrary undirected but connected communication graphs.2 The algorithm
terminates after D + 1 rounds, where D denotes the diameter of the communication
graph that has to be provided to the algorithm. Note that the algorithm is anonymous,
that is, the index i of a process is only used to name the variables but not directly in
the algorithm. To show canonical ways to prove algorithms correct, the proof of the
algorithm is sketched in the following.

Theorem 1. Algorithm 1 solves the consensus problem in synchronous systems with arbitrary
but finite and connected undirected communication graphs with diameter D.

Proof. In the case of a consensus algorithm, three things have to be proven:

Termination: The termination of the algorithm in round D + 1 follows directly from
lines 6 and 7 of the algorithm.

2This algorithm only works in a fault-free scenario.

14 Modeling Distributed Systems

Agreement: Without loss of generality, assume process j is among the processes with
the minimal initial value. Per induction it follows that, at the end of round k, all
processes in the k− 1-hop neighborhood3 of process j have set their variable valuei
to this minimum (see lines 3 and 4 of the algorithm). At the end of round D + 1
this neighborhood spans the whole system, as the communication graph has to
be connected.

Validity: Follows directly from the proofs of termination and agreement. �

Asynchronous systems

If the time between two processing steps and the transmission delay of messages is
finite but can not be bounded, the system is called asynchronous. This is the weakest of
the classic execution models for distributed algorithms and, as a result, an algorithm
designed for an asynchronous system can be employed in any system, including a syn-
chronous one. In an asynchronous system, it is assumed that the processes do not have
access to local or global clocks, hence the only feasible mechanism for synchronization
in such a system is communication between processes. In the following, we restrict
ourselves to message-driven algorithms, i.e., computing steps are triggered only by
reception of messages. Figure 2.4 shows a time/space diagram of an execution in an
asynchronous system.

Process 4 t

Process 3 t

Process 2 t

Process 1 t

Figure 2.4: Example of an asynchronous execution.

Algorithm 2 is a consensus algorithm for an asynchronous distributed message
passing system.4 Line 2 of the algorithm points out the message-driven nature of the
algorithm. Compared to the algorithm solving consensus in the synchronous model,
the proposed asynchronous algorithm needs more information about the distributed
system. In addition to the exact number of processes involved in the distributed systems
it also needs every process to have a unique identifier used as an index for the processes’
values. Again, we give a sketch of the proof for the asynchronous algorithm:

3The k-hop neighborhood defined by induction: The 0-hop neighborhood of a process is the process
itself. The k-hop neighborhood of a process is the k− 1-hop neighborhood and all processes connected by
an edge to it.

4Like the synchronous algorithm, this one also requires a fault-free system as [FLP85] shows the
impossibility of consensus in asynchronous systems with faults.

2.1 Classic Distributed Computing Models 15

Algorithm 2: Asynchronous algorithm solving consensus (in the fault-free case)
Code for processes i, 1 6 i 6 N :
Variables: xi ∈ N; yi := undef.; terminatedi := false; Valuesi := {}, in-bufferi

1 Initial State: 〈i, xi〉 is initially in in-bufferi

2 on receiving W :
3 Valuesi ← Valuesi ∪W
4 send Valuesi to all neighbors
5 if |Valuesi| = N and terminatedi = false then
6 yi ← minj vj from 〈j, vj〉 ∈ Valuesi
7 terminatedi ← true

Theorem 2. Algorithm 2 solves the consensus problem in asynchronous systems with N
processes, unique IDs, and arbitrary but connected undirected communication graphs.

Proof. The same three properties have to be proven:

Termination: The key to the proof of the algorithm is the set Valuesi, which eventually
holds the initial values of all processes. Assume by contradiction that process
i does not decide. This can only happen, if the size of Valuesi never becomes
N . Without loss of generality, assume the initial value of process j is among the
missing ones. By induction on the hop-distance, we can show that process i will
eventually receive the initial value of process j. At its first step, process j will
receive its own initial value as it is initially placed in the in-buffer (cf. line 1) and
send it to all neighbors (at hop-distance 1).
Eventually, every process at hop-distance k will receive the initial value of process
j and send it to all its neighbors.
By the system assumption, every process will eventually receive its own value
(placed in the in-buffer initially) and thus every process will send its initial value
to its neighbors. As the communication graph is connected, eventually process i
will receive sets that, if merged, contain the initial values of all N processes. A
contradiction to the assumption that process i will not decide.

Agreement: Every terminating process has the same set Valuesi and therefore decides
on the same value right before terminating.

Validity: Follows directly from the proofs of termination and agreement. �

Partially synchronous systems

Partial synchrony, introduced in [DLS88], is located between the previously discussed
cases of lock-step synchronous and asynchronous systems and tries to provide a more
realistic execution model. In their partial synchronous system model [DLS88], Dwork
et al. assume a globally consistent notion of a discrete time, i.e., there exists a (virtual)
global real-time clock, and on every tick some of the processes perform one step of their

16 Modeling Distributed Systems

state machine. Note that their notion of a step andmessage delivery differs slightly from
the models introduced earlier. Every step of a process can be either a send step, placing a
message in the receiver’s in-buffer, or a receive step, removing some (possibly empty) set
of messages of the process’s in-buffer and processing (delivering) them. For every tick of
the real-time clock, an adversary decides (1) which processes make a step and (2) if the
step is a receive step, the set of messages that are delivered. There exist two restrictions
on the adversary determining the level of synchrony in this model: Communication
synchrony, determined by the parameter ∆, denoting a fixed upper bound on the number
of real-time clock ticks until a message is delivered; and Processor synchrony, determined
by the parameter Φ, denoting an upper bound on the relative processor speed (during
Φ consecutive real-time clock ticks, every process has to perform at least one step).

Dwork et al. investigate multiple variants of partial synchrony: For example, ∆
and/or Φ exist, but are not known5 and thus cannot be exploited by the algorithm,
e.g., as a timeout. Alternatively, ∆ and/or Φ are known but do not hold right from the
beginning but only after some unknown time, called global stabilization time.

In [DLS88], Dwork et al. provide a generic way to implement synchronized clocks
and hence to simulate lock-step rounds on the processes in all those model variants.
Given simulated lock-step rounds, Algorithm 1 could be used to solve consensus in the
absence of failures; actually, [DLS88] also considers Byzantine failures.

2.1.2 Execution and Communication Primitives

Natural performance measures of distributed algorithms are the (worst case) message
complexity, i.e., the number of messages that need to be sent in the worst case to solve
a problem, and the (worst case) time complexity: In synchronous systems, the time
complexity can be determined by counting the number of rounds until an algorithm has
solved a certain problem. In asynchronous systems, the time complexity is determined
by normalizing the largest end-to-end delay of a message to some unit-time, whereas
the transmission times of the other messages sent are scaled appropriately. The time
complexity of the asynchronous algorithm is then expressed as the termination time
for the worst case scenario.

Which problems are solvable in a distributed system and how “good” algorithms can
solve problems depends on the assumptions on the allowed executions. System features
like unique identifiers, the ability to send different messages to different neighbors, or
communication graphs a priori known to the processes can improve the (worst case)
complexity of algorithms solving certain problems in a distributed system, or might
even be mandatory for solving certain problems. In the following, we will elaborate on
some of those features.

5In this manifestation of partial synchrony, in every run of the algorithm it holds that there exists a
upper bound, while in synchronous systems there exists an upper bound holding in every run of the
algorithm.

2.1 Classic Distributed Computing Models 17

Unique identifiers

If the communication system provides unique identifiers (IDs), every process can be
identified explicitly. For example, the previously illustrated Algorithm 2 uses such
unique IDs in the tuples sent to the neighbors to distinguish between the initial values
of the processes and therefore enables termination. Without unique IDs, the stated
algorithm would not work. Furthermore, unique IDs are often used for (deterministic)
symmetry breaking, for example, in the leader election problem.

The Leader Election Problem

In the leader election problem, exactly one process has to elect itself as leader,
e.g., by irreversibly assigning the value leader to a state variable. In some
definitions of the problem, it is also required for all other processes to know
the id of the leader.

The well-known impossibility result for deterministic anonymous leader election
in distributed systems with a ring as communication graph, e.g., presented by [AW04,
Theorem 3.2] and [Lyn96, Theorem 3.1], was first proven by Angluin [Ang80].

On the other hand, algorithms for anonymous systems, i.e., systems lacking unique
identifiers, do have interesting applications. The fact that the same algorithm is run-
ning on all the processes makes it easier to replace defective processes, as no care has
to be taken for altered IDs. Additionally, large sensor networks, consisting of tiny
agents, like the ones proposed in [AAD+06], do not even support identifiers. Finally,
today more than ever, privacy might need to be protected by forbidding any form of
identity [BFK00].

While an algorithm designed to run anonymously can of course be executed in a
systemwith IDs by just ignoring them, the previously mentioned impossibility of leader
election in rings without IDs shows that anonymous systems are strictly weaker than
systems providing unique IDs.

Sending messages

In distributed systems where the processes are connected by a network with dedicated
(or at least virtual) point-to-point links, a process can typically address all its neighbors
individually (see Figure 2.5b, where the small numbers represent port numbers used
for addressing). This means that a process can send different messages to different
neighbors. In case of wireless sensor networks, messages are usually sent in a broadcast
fashion to all neighbors at once. This is illustrated in Figure 2.5a.

Again, the provided send primitive of the communication network directly influ-
ences the solvability of problems. [Sak99] and [YK96] have shown that in an anonymous
distributed system with unknown communication graphs, the existence of a unique
leader combined with addressable neighbors is enough to establish unique identifiers

18 Modeling Distributed Systems

〈A〉

〈A〉

〈A〉

〈A〉

(a) Broadcast paradigm for sending messages.
The same message is sent to all neighbors.

〈A〉

〈B〉

〈B〉

1

4 2

3

(b) Individual messages can be sent do differ-
ent neighbors. Port numbers can be used for
addressing.

Figure 2.5: Two different paradigms for sending messages.

for all processes. Note carefully that port numbers only support local neighbor addresses:
The same process i may be connected to different ports at process j and process l. In
sharp contrast, unique IDs support global addressing. However, the authors of [YK99]
have shown that, if a broadcast primitive is used for sending messages, a unique leader
is not sufficient to generate unique identifiers in the same setting. Furthermore, Dolev
et al. have shown in [DDS87] that there is also a difference in the solvability of consen-
sus in systems with various different synchrony assumptions for communication and
computation depending on whether processes are able to send a message to at most
one single neighbor per computing step, or if they have access to a broadcast primitive
and are thus able to send a message to all their neighbors in a single computing step.

Receiving messages

At the beginning of the current section, message delivery was described as “placing
the message in the receiver’s in-buffer”. As shown in Figure 2.6, this in-buffer can
either be shared among all neighbors or dedicated, providing explicit access to the
messages sent by a certain neighbor. While the second variant (shown in Figure 2.6b) is
restricted to distributed systems with dedicated point-to-point links, e.g., in [AW04], the
first version (Figure 2.6a) is also used in [DKMP95] to model wireless sensor networks.
In their work, [DKMP95] have shown that both paradigms of receiving messages are
computationally equivalent in terms of the class of Boolean functions6 they can compute,
if the communication network is a ring.

The problem of leader election in the case of not necessarily unique process IDs with
different sending and receiving paradigms was studied in [YK99]. The authors have
shown that, by using broadcast as the sending paradigm, the sets of communication
graphs in which the problem is solvable with both receiving paradigms are the same. If

6Boolean functions describe the class of functions of variables over an arbitrary Boolean algebra which
can be constructed from constants and the variables by superpositions of the basic algebra operations
(cf. [Rud74]).

2.1 Classic Distributed Computing Models 19

〈A〉

〈B〉

〈B〉

〈B〉
〈A〉
〈B〉

(a) Combined in-buffer for all neighbors. Re-
lating a message to a specific neighbor is not
possible without unique IDs.

〈A〉

〈B〉

〈B〉

〈A,1〉

1

4

〈B,2〉

2

〈B,3〉

3

(b) Every neighbor has a distinct in-buffer. A
receivedmessage can bemapped to a neighbor
by the port number.

Figure 2.6: Two different paradigms for receiving messages.

individual messages can be sent to the neighbors, the set of communication graphs in
which the problem is solvable with a combined in-buffer is a real subset of the distinct in-
buffers case. In [DDS87], Dolev et al. have investigated the difference in the solvability
of consensus in systems with different synchrony assumptions for communication
and computation. They have shown that allowing atomic receive/send steps, i.e.,
receiving messages and sending messages can be done in the same computing step,
or forcing separate receive and send steps, i.e., in one processing step messages can
either be received or sent, but not both only makes a difference for asynchronous
computation, i.e., there are no bounds on the relative processor speeds, combined with
synchronous communication, i.e, there exists an upper bound on the end-to-end delay
of the messages.

Information about the system

The more information an algorithm has available about the distributed system it is
executed in, the more efficient it can solve a problem. Take as an example algorithms
solving the consensus problem: If every process has a unique ID and is aware of
the communication graph, the consensus problem can be solved very efficiently with
respect to the message complexity: Every process can calculate an identical spanning
tree, without sending messages, just by using the largest ID as root and applying a
deterministic spanning tree algorithm on the communication graph. By sending at most
two messages over the edges contained in the spanning tree and no messages over the
other edges, the algorithm by Fusco and Pelc [FP11] solves consensus by sending at most
O(N) messages. Note that the system model used in [FP11] differs slightly from the
previously introduced one, as initially all processes are inactive. The adversary wakes
up a subset of the processes and assigns them the input values over which consensus
has to be established. Furthermore, all processes have to decide (and terminate) in the
same round.

20 Modeling Distributed Systems

Removing unique IDs increases the lower bound of the message complexity to
Ω(N logN) and an algorithm sending at most O(N 3/2log2N)messages is introduced
in [FP11]. In the case where only the number of processes is known to the algorithm, the
authors prove a tight lower bound of Ω(N 2) messages that need to be sent for solving
the consensus problem. Interestingly, even the presence of unique IDs is not enough to
improve the lower bound if the communication graph is unknown for the algorithm.

For the case of executing a leader election algorithm in a distributed system whose
communication graph is a ring, Hirschberg and Sinclair [HS80] give a uniform7 com-
parison-based8 algorithm sending at most O(N logN) messages, which is later shown
in [Bur80] to be asymptotically optimal for the asynchronous case. For the synchronous
case, Frederickson and Lynch [FL87] show that processes cannot exploit the synchrony
to further reduce the number of messages sent by proving the Ω(N logN) lower bound
for comparison-based algorithms together with an asymptotically optimal algorithm.
By using the process IDs directly in the algorithm, i.e., removing the restriction of
being comparison-based, Frederickson and Lynch [FL87] give an algorithm that has a
message complexity in O(N). However, in their algorithm the number of rounds until
termination grows exponentially with the value of the smallest identifier.

If nothing about the system is known, neither consensus nor leader election can
be solved, as both depend on the distributed system as a whole, and [Suo13, NS95]
showed that such problems cannot be solved locally.

2.1.3 Modeling Faults

If processes of a distributed system do not adhere to their algorithm, they are called
faulty. This deviation can manifest itself in many ways. The most important ones, e.g.,
used in [PT86, DLS88, AW04], are explained in the following.

Crash faults: If a process crashes, it stops prematurely performing state transitions.
In particular, once crashed, a process does not send any messages. The most
restrictive version of crash faults allows only clean crashes, where a computing step
is either executed completely (sending all messages) or not executed at all (sending
no messages at all). A more general version of crash faults enables processes to
crash unclean during the execution of a computing step, thereby sending a subset
of the messages to their neighbors only. This can lead to inconsistent states among
the non-faulty receiver processes. However, a message cannot be corrupted by an
unclean crash, i.e., all sent messages are in accordance with the algorithm.

Omission faults: If a receive omission happens at a faulty process, some of the mes-
sages it receives are dropped and therefore not placed in the in-buffer. This can

7A uniform algorithm does work unchanged for arbitrarily large networks. Therefore, it does not use
the number of processes in the code. See [AW04, Capter 3.4.1].

8In a comparison-based algorithm, the generated message pattern is not determined by the absolute
values of the unique IDs but rather by the order pattern of the identifiers. Informally, a comparison-based
algorithm running on order-equivalent rings will “behave the same”, with order-equivalent and “behave
the same” defined as in [AW04, Capter 3.4.2].

2.1 Classic Distributed Computing Models 21

be motivated by a buffer overflow of the receiver’s in-buffer, or by a message that
got corrupted during transmission and discarded at the receiver due to a failed
checksum test. Analogously, a send omission at a faulty process manifests itself by
sending only a subset of the messages specified by the state transition of the pro-
cess, possibly caused by a buffer overflow in the send buffer or by an exhausted
capacity constraint on a communication channel. Processes suffering general
omission faults may experience a combination of send and receive omissions.

Byzantine faults: A Byzantine faulty process can behave arbitrarily, i.e, it is not re-
stricted at all. In particular, it can send arbitrary messages to its neighbors, alter
messages that should be relayed or just drop them. Byzantine faults are the most
general ones, and an algorithm designed to cope with a certain number of Byzan-
tine faulty processes will also work if the system only suffers omission or crash
faults.

All fault models introduced by now tie faults to certain processes and are static in
nature. That is, while the algorithm does not know in advance which of the processes
are faulty, it can rely on the fact that the set of faulty processes does not change during
the execution.

Santoro and Widmayer [SW89] proposed a synchronous system model, where all
processes are correct, but communication between the processes may fail. Additionally,
the transmission faults in their model can be dynamic, i.e., the pairs of processes which’s
communication fail can change in each round. The introduced fault model is more
general than the previously mentioned fault models as, for example, the perception of a
crash faulty process by its neighbors can be simulated by static faults on all links from
(and to) the process whereas the valid situation of one faulty link per process results in a
system configurationwhere all processes have to be declared faulty rendering the system
useless for any analysis. Hybrid fault models like [BSW11] combine different types of
process and communication faults. There are several attempts to model communication
faults in a more general way, e.g., in [CDP96, Sch01, BWCB+07, SW07, CBS09, SWK09].

Typically, it is assumed that an adversary controls when and where faults occur and
in which way they manifest themselves. In the case of process faults, for example, the
adversary controls which and when processes crash, or, in the case of Byzantine faulty
processes, which messages they send. The power of the adversary can be restricted, for
example by a limit on the number of faulty processes or links in a system. For example,
synchronous consensus is impossible to solve if more than N−1

3 processes are Byzantine
faulty [LSP82].

Probabilistic faults

A completely different approach is to use a probabilistic fault model, where manifes-
tation of faults is not controlled by an adversary but rather by a random process. For
example, in the analysis of wireless networks [KLB04, BV07, PP07] it is often assumed
that a message sent via a link is dropped with a certain probability.

22 Modeling Distributed Systems

Probabilistic fault models have the advantage that they extend solvability of prob-
lems beyond the limits of adversarial fault models. However, bounds on measures
like time complexity or solvability can be stated at most “almost surely”, i.e., with
probability 1.

Two problems that are well studied with respect to probabilistic process faults are (1)
the broadcast problem, where a message initially only available at one process (called
source) has to be delivered to every process in the system, and (2) the gossip problem,
where every process has to receive the initial messages of all processes in the system.
Those problems are usually studied in discrete time systemmodels where every process
is able to send a message to at most one neighbor per time unit, e.g., in the case of the
randomized broadcast algorithm push, introduced in [DGH+87]. In the push algorithm,
at every unit time, every process that has already received the initial message chooses
randomly one of its neighbors to forward a copy of the message.

As one example, Elsässer and Sauerwald [ES09] investigated the push algorithm
under the presence of random send omission failures where a process may fail in
some step with probability 1− p to send the message. They proved that introducing
probabilistic failures increases the broadcasting time by at most a factor 6/p.

In wireless and ad-hoc sensor networks, locally computable variants of distributed
algorithms, such as the ones described in [SP04], are preferred as they can be executed
in large networks with arbitrary communication graph structures albeit a single process
has only local knowledge of the structure. For example, when considering average
consensus it is sufficient for the processes to reach asymptotic agreement, i.e., in every
computing step, a process updates its value with the (weighted) average of its own
value and the values received by its neighbors. The average consensus problem, com-
bined with a stochastic link failure model, leads to interesting questions such as the
convergence speed of the processes’ values [HM05, KM08] or the search for optimized
communication graph structures [KM09].

The analysis of distributed algorithms with probabilistic fault models is usually
done by stochastic approximation arguments and Markovian analysis [ES09, HM05,
KM08, KM09]. This thesis will use a probabilistic link fault model as an abstraction for
messages that were discarded by the message scheduler due to an overload scenario on
the communication links.

2.2 Achieving a Round Structure

There are many reasons why it is beneficial to achieve synchrony in a distributed system.
Due to its round structure, the possible behavior of a synchronous system is more re-
stricted than the possible behavior of an asynchronous system, which allows amultitude
of different interleavings of computing steps. This makes designing and understanding
algorithms for synchronous systems easier than algorithms for asynchronous systems.

Another benefit of synchrony can be observed by taking a look on the termination
time of Algorithm 1 solving consensus in a synchronous distributed system. Every
instance of the algorithm will terminate after exactly D + 1 rounds. If the algorithm

2.2 Achieving a Round Structure 23

Algorithm 3: Pseudo code of the Synchronizer α introduced by Awerbuch
Code for processes i, 1 6 i 6 N :
Variables: Rndi := 1; RcvAcki[·][·] := false; RcvSafei[·][·] := false;

1 Initial State: Pulse〈1〉 is initially in transit to all neighbors

2 When receiving Pulse〈r〉 from neighbor jdo
3 SendAck〈r〉 to neighbor j
4 When receiving Ack〈r〉 from neighbor jdo
5 RcvAcki[r][j]← true
6 if RcvAcki[Rndi][·] = true for all neighbors then
7 SendSafe〈Rndi〉 to all neighbors
8 When receiving Safe〈r〉 from neighbor jdo
9 RcvSafei[r][j]← true
10 if RcvSafei[Rndi][·] = true for all neighbors then
11 Rndi ← Rndi + 1
12 SendPulse〈Rndi〉 to all neighbors

is used repeatedly in a replicated state machine for obtaining consensus on the states
of the replicas, the next instance of the algorithm and thus the next state transition of
the replicated state machine can be executed back to back after the previous one. In
the asynchronous Algorithm 2, a simultaneous termination of the algorithm cannot be
guaranteed, which implies the need for buffering transactions.

While a large number of solutions to problems in distributed computing assume lock-
step rounds, for example in [Lub86, ST87, Lyn96, Dob03, AW04, CBS09], and thus can be
executed directly if such a round structure is present, real-world distributed systems are
usually not perfectly synchronous. There are several ways to generate round structures
in various different system and failure models, e.g., [Awe85, DLS88, BHPW07, BH09,
WS09]. In the following, three examples of how a round structure can be established are
given. While in the first two examples the systems use previously introduced synchrony
assumptions, in the final example processes have access to approximately synchronized
hardware clocks.

Asynchronous systems: In [Awe85], Awerbuch introduces the principle of using a
so-called synchronizer to simulate consistent rounds, enabling the execution of any syn-
chronous algorithm, in any fault-free asynchronous system. To this end, processes use
explicit handshake messages to inform the sender about the delivery of sent messages.
If a process is aware that all its messages sent in the current round have been delivered
successfully, and if it has acknowledged the reception of messages affiliated with the
current round for all its neighbors, it proceeds to the next round.

Awerbuch presents two different synchronizers, optimized for either time com-
plexity (named Synchronizer α) or message complexity (named Synchronizer β), and a
third combined version (Synchronizer γ) optimized for both. The pseudo code of the

24 Modeling Distributed Systems

α-synchronizer is given in Algorithm 3. The algorithm uses three types of messages:
Pulse messages indicate the start of a new round; Ack messages are sent as acknowl-
edgment of Pulse messages; and Safe messages indicate that a process has received Ack
messages from all its neighbors. If a process has received Safe messages from all its
neighbors it can proceed to the next round.

Awerbuch’s α-synchronizer serves as the basis for the retransmission-based syn-
chronizer used in Chapter 4 of this thesis.

Partial synchrony: As described in Section 2.1.1, the partial synchronous system
model introduced in [DLS88] makes use of two parameters, namely ∆ and Φ for de-
scribing bounds on the message delay and the relative speed of processes. That bounds
might be either unknown or they might not hold right from the beginning. In [DLS88],
Dwork et al. establish a Byzantine fault-tolerant algorithm to implement synchronized
distributed clocks, based on the synchronization algorithm published by Lamport
in [Lam78] and very similar to the clock synchronization algorithm by Srikanth and
Toueg [ST87]. The pseudo code of a variant of this algorithm for fully-connected systems
with N > 3 f processes, where f processes may behave arbitrary (Byzantine faulty), is
given in Algorithm 4. Initially, every process broadcasts tick〈1〉. If a process receives
f + 1 tick〈l〉 messages, at least one of them was sent by a correct process. Thus the
process may catch up and send the missing ticks. If a process receives 2 f + 1 tick〈k〉
messages, it starts the next round by broadcasting a tick〈k + 1〉message. These (approx-
imately) synchronized clocks can be used directly to simulate lock-step rounds, e.g.,
using the approach below.

The Clock Synchronization Problem

In the (classic) clock synchronization problem, a read-only hardware clock
HCi is attached to every process i. A special state variable can be used to
adjust the hardware clock, i.e., apply an offset correction. The goal of the
processes in the clock synchronization problem is to calculate this correction
value for their hardware clock such that a synchrony condition is satisfied,
e.g., minimizing the difference between the value of the adjusted clocks of
any pair of processors (called skew). Additionally, the adjusted clocks have
to satisfy some progress condition, usually requiring them to stay in some
linear envelope of real-time (cf. [ST87]).

Using approximately synchronized clocks: If processes have access to a hardware
clock (or a comparable mechanism), Srikanth and Toueg provide a solution to generate
lock-step rounds in [ST87].

Assume the (adjusted) clocks are synchronized with precision π, i.e., the (real-)time
difference when any pair of clocks reach (clock-)time T is at most π. Furthermore, the

2.3 The Real-Time Distributed Computing Model 25

Algorithm 4: Fault-tolerant algorithm for generating approximately simultaneous
tick messages in a fully-connected network
Code for processes i, 1 6 i 6 N :
Variables: k := 1;

1 Initial State: send tick〈1〉 to all [once]
2 if received tick〈l〉 from at least f + 1 distinct processes with l > k then
3 Send tick〈k + 1〉, . . . , tick〈l〉 to all [once]
4 k← l
5 if received tick〈k〉 from at least 2 f + 1 distinct processes then
6 Send tick〈k + 1〉 to all [once]
7 k← k + 1

end-to-end delay of a message is upper-bounded by δ. A lock-step round structure
can be generated by starting round k on a process when its clock reaches the value
R · k, where R > π + δ. Note, that this assumes that the hardware clocks progress
with the same rate as real-time. If the hardware clocks suffer clock-drift, i.e., the rate
of the clocks are slightly slower or faster than real-time, this scaling factor has to be
incorporated to ensure that even the process with the fastest clock does not start the
next round while there might be a message in transit. Additionally, drifting clocks have
to be resynchronized periodically to maintain the precision bound. Figure 2.7 shows
the basic idea of how the rounds are generated.

t1(kR)

t2(kR)

t3(kR)

t1((k + 1)R)

t2((k + 1)R)

t3((k + 1)R)
t

t

t

π δ π

Round k Round k + 1

Process 3

Process 2

Process 1

Figure 2.7: Generating rounds from approximately synchronized clocks.

2.3 The Real-Time Distributed Computing Model

The previously introduced computing models are coarse abstractions of distributed sys-
tems in the real world. Two simplifications made in all these models are instantaneous
state transitions and encapsulation of timing-related parameters, such as network delay,
message queuing, scheduling overhead, and sender/receiver processing time in a fixed
transmission or end-to-end delay bound of a message.

26 Modeling Distributed Systems

In [Mos09a, Mos09b, MS14], Moser introduced a new distributed computing model
where zero-time computing steps are replaced by non-zero-time atomic jobs. It explicitly
incorporates the processing time for the state transitions and the actual transmission
delays which allows to compute the actual end-to-end delays, as shown in Figure 2.8b.
It is apparent that this refined modeling allows to incorporate both queuing effects
and scheduling disciplines in the real-time analysis of the resulting end-to-end delays.
For comparison, an equivalent execution in the classic distributed computing model is
shown in Figure 2.8a, which highlights the “masking effects” of the end-to-end delay
(equal to the transmission delay) in this model.

Process 2 t

Process 1 t
m1

m2

m3

(a) Execution in classic distributed computing models. The dashed arrows
denote transmission delays of messages identical to the end-to-end delays.

Process 2 t

Process 1 t
m1

proc m1

m2

proc m2

m3

proc m3

queuing

(b) Execution in the real-time distributed computing model. The dashed
arrows denote the actual transmission delays of messages.

Figure 2.8: Comparison of an execution in classic distributed computing models vs. an
execution in the real-time distributed computing model.

The Time Complexity—Precision “Paradox” of Clock-Synchronization

The problem of terminating fault-free clock synchronization is well suited to reveal
one of the main issues with classic distributed system models. To this end, a read-only
hardware clock is attached to every process. While the clock rates of the individual
clocks are exactly the same, the absolute values may differ. Clearly, this is a one-shot
problem as, due to the identical clock rates, the clocks stay synchronized after the
correction values are computed once and applied.

In [LL84], Lundelius and Lynch prove a lower bound of ε(c)(1− 1/N) on the achiev-
able precision in a distributed system with N processes and an uncertainty of ε(c) in
the end-to-end delay, i.e., the difference between the upper bound and the lower bound
on the end-to-end delay. They also provide an optimal algorithm that achieves this

2.4 Basics of Real-Time Scheduling 27

precision in a fully connected setting and in constant time. However, regarding the time
complexity, this algorithm heavily exploits the fact that it is able to process an arbitrary
number of messages in zero-time.

Moser and Schmid [MS06] analyzed Lundelius and Lynch’s algorithm in the con-
text of the real-time distributed computing model. They observed that using a naive
transformation results in a suboptimal precision, as the time-correlated broadcast trans-
missions of the algorithm introduce additional uncertainty due to the queuing and
scheduling decisions at the receiver of the messages. Furthermore, due to the (non-
zero) time needed for processing the received messages, the time complexity of the
algorithm grows from Θ(1) in the classic distributed computing model to Θ(N) in the
real-time distributed computing model, which is shown to be optimal as each process
needs to receive at least one message from all other processes. Moser and Schmid also
present a lower bound of ε(rt)(1− 1/N) for the achievable precision for a non-zero step
time, where ε(rt) is the uncertainty of the transmission delay in their real-time model.
This does not look too impressive, but while ε(c) in the classic distributed computing
model incorporates the end-to-end delay and hence all timing related parameters of
the distributed system, ε(rt) consists of the uncertainty of the transmission delay in the
real-time model only, which does not include any queuing and processing times and is
therefore much smaller.

Additionally, Moser and Schmid give a more sophisticated transformation that, by
enforcing a message pattern that actively avoids queuing effects on the receiver side,
achieves the optimal precision while still maintaining the optimal time complexity
of Θ(N). This is possible because the classic computing model empowers both the
algorithm and the adversary. While the algorithm is able to process a large number of
messages in no time, the adversary can enforce transmission delays not justified by the
actual message patterns. In [MS14], the transformations between classic and real-time
distributed system model are extended to also work in the presence of Byzantine faults.

These insights regarding the real-time distributed computing model reveal two
facts: First, classic distributed system models mask important real-time characteristics
of distributed systems that cannot be neglected. Secondly, scheduling decisions have to
be taken into account when analyzing real-time properties of distributed algorithms
in a sound way. As mentioned earlier, this is one of the issues this thesis is trying to
address, and therefore an introduction into real-time scheduling is essential for the
further analysis.

2.4 Basics of Real-Time Scheduling

Scheduling addresses the allocation of a shared resource, e.g., a processor or a commu-
nication link, to multiple consumers, e.g., jobs to be processed or messages to be sent.
Real-time scheduling additionally takes timing constraints into account [SSRB98, But11].

In real-time systems research, a real-time job Ji is defined by at least three parameters:
the absolute release time ri, describing when the job gets ready for execution, its worst

28 Modeling Distributed Systems

JA t
1 2 3 4 5 6 7 8

Figure 2.9: Illustration of a real-time job.

case execution time Ci, describing how long the job has to be allocated to the processor
before it is completed, and the absolute deadline di, describing the latest point in time
until the job has to be completed.

In the following we assume a discrete time model with time-slots of unit-time ε,
i.e., ri and di are Integer multiples of ε; typically, we will assume ε = 1 for simplicity.
Figure 2.9 shows real-time job JA with rA = 1, CA = 4, dA = 8, where the upwards
pointing arrow denotes the release of the job, the downwards pointing arrow denotes
the deadline of the job, and the colored rectangle shows the allocation of the processor.

If multiple jobs are to be executed on a single processor, the processor has to be
assigned to the jobs according to a certain strategy, the scheduling policy. The goal is
to create such an assignment, a schedule, optimized for different application-specific
objectives, for example, maximizing the cumulative execution time of the jobs meeting
their deadlines, minimizing the number of deadline misses, or minimizing the average
response time.9

Adding a second job JB with rB = 4, CB = 2, dB = 6 to the previously introduced ex-
ample reveals some possible scheduling scenarios shown in Figure 2.10. In Figure 2.10a,
a preemptive scheduling policy is used, allowing both jobs to complete timely before
their deadlines. In preemptive scheduling, at every unit-time, a scheduling decision is
made and a currently scheduled job can be preempted in favor of another job, e.g., a
newly released job with a more urgent deadline. However, preemptive scheduling is
not always possible, for example, when scheduling data packets on a communication
link. In such cases, a non-preemptive scheduling policy has to be used, where a job,
once its execution has started, can only be aborted but not preempted. Therefore, at
unit-time t = 4, a scheduling decision has to be made: Either the execution of job JA is
continued, resulting in a violation of job JB’s deadline, shown in Figure 2.10b, or job JA
has to be abandoned in favor of job JB, shown in Figure 2.10c.

The release times of the jobs are specified by their arrival pattern, which can be

periodic, where jobs are released regularly every k timeslots, where k is called the period,

sporadic, where jobs are released irregularly but no two within less than k timeslots,
where k is called the sporadicity interval, or

aperiodic, where jobs are released without any timing restrictions.

Usually, jobs are not specified individually, but rather considered as multiple in-
stances of a periodic/sporadic/aperiodic task τi, specified by at least the worst case

9The response time of a job is the time between its release and the finishing time (when the job is
executed completely.

2.4 Basics of Real-Time Scheduling 29

JA JB JA t
1 2 3 4 5 6 7 8

(a) Preemptive schedule of jobs JA and JB meeting all deadlines.

JA JB JB t
1 2 3 4 5 6 7 8

(b) Deadline violation of job JB due to non-preemptive scheduling.

JA JB t
1 2 3 4 5 6 7 8

(c) Dropping job JA in favor of job JB due to non-preemptive scheduling.

Figure 2.10: Different scheduling scenarios for jobs JA and JB.

execution time of its corresponding jobs Ci and the relative deadline Di with respect to
the release time of its jobs.

2.4.1 Selection of On-line Scheduling Algorithms

In this section, we will briefly introduce some of the most commonly used single
processor scheduling algorithms, ranging from very simple ones like FIFO (First In First
Out) to very involved ones like DOVER [KS95].

Notation on Job Sequences

If no scheduler (neither on-line nor off-line) is able to generate a schedule
for a certain sequence of jobs in a way that all the jobs’ deadlines are met,
the system is called overloaded, otherwise it is called underloaded. A schedule
meeting all the jobs’ deadlines is called feasible.

FIFO: The First In First Out scheduler processes released jobs in order of their absolute
release times ri. Thereby always the jobwith the smallest release time is scheduled,
ties broken arbitrarily. Note that this scheduler does not take deadlines into
account for its scheduling decision. Therefore, a very urgent job10 released shortly
after a very demanding one will certainly not make its deadline.

SP: The Static Priority scheduler processes released jobs in order of a fixed priority
assigned to every job. In preemptive scheduling the release of a higher priority

10We denote jobs with “short” relative deadlines urgent.

30 Modeling Distributed Systems

job interrupts the execution of a lower priority job. Note that this scheduler also
does not take deadlines into account for its scheduling decisions, however, by
assigning the priorities w.r.t. the relative deadlines of the jobs, urgent jobs can be
favored (see next item).

RMS: Rate Monotonic Scheduling is a special case of SP scheduling for preemptive jobs
with periodic arrival patterns and relative deadlines equal to the period. In RMS
the priority of a job is related to the period of the job, i.e., the shorter the period,
the higher the priority. Liu and Leyland introduced a sufficient condition for
schedulability in [LL73].

EDF: In Earliest Deadline First scheduling, the scheduler processes released jobs in the
order of their absolute deadlines, i.e., the job with the most urgent deadline is
scheduled. For preemptive uniprocessor scheduling, in [Der74] it has been shown
that EDF is optimal with respect to feasibility, i.e., if there exists a feasible schedule
for a certain job sequence, using EDF will also meet all the deadlines.

LL: A Least Laxity scheduler prefers jobs with smaller slack time, i.e., the maximum
time a job can be delayed after its release while still completing within its deadline.
At the release time of a job its laxity Li can be calculated by Li = Di − Ci.

SRT: The classic Shortest Remaining Time scheduler does not take deadlines into account
for its scheduling, instead it prefers jobs with a smaller amount of remaining time
until completion. One advantage of SRT scheduling is that very short jobs are
executed quickly.

While EDF is optimal in underloaded systems, it tends to perform very poorly in
overloaded systems: the arrival of a very urgent jobmay start a domino effect that causes
all currently preempted jobs to miss their deadlines. In the presence of overload, it thus
makes sense to distinguish between urgency and importance of task instances. More
specifically, each task is assigned a utility value Vi that is rewarded to the scheduler if an
instance of the task is completely scheduled prior to its deadline. The “importance” of
a task can be expressed by its value density, which is defined as the utility value of a task
divided by its computation time and was first introduced in [BKM+91]. The importance
ratio of a taskset is the ratio of the largest value density to the smallest value density of
its tasks. If the importance ratio is 1, the taskset is called uniform.

The goal of an on-line scheduler is to maximize the cumulated utility of a job
sequence. The utility values are used in more involved schedulers like TD1 [BKM+92],
DSTAR [BKM+91] or DOVER [KS95].

TD1: TD1 is an on-line scheduler specifically designed to guarantee that at least 1/4
of the overload duration is used for jobs that actually finish not later than their
deadlines. The simpler version introduced by Baruah et al. in [BKM+92] only
works for zero-laxity tasks (i.e., Ci = Di), however they also introduced a more
complex version relaxing this constraint. The pseudo code of the simpler version
is shown in Algorithm 5 and intuitively works like this:

2.4 Basics of Real-Time Scheduling 31

Algorithm 5: Pseudo code of scheduling algorithm TD1 (simple version)
Variables: ∆′ := 0; ∆ := 0; vrun = 0; Jrun := ∅

1 When Jnext is released, where k > 0 is remaining processing time of Jrun do
2 ∆← max{∆, ∆′ − k + Cnext}
3 if vrun < ∆/4 then
4 abort Jrun

5 ∆′ ← ∆
6 schedule Jnext

7 Jrun ← Jnext; vrun ← Cnext

8 When Jrun completesdo
9 ∆′ ← 0; ∆← 0; vrun ← 0
10 Jrun ← ∅

TD1 keeps track of the time spent for the current and previously discarded jobs (cf.
∆′ in the pseudo code). Whenever a new job is released, TD1 checks if scheduling
the new job is worth discarding the currently running job. It only discards the
current job, if the time for executing the new job in addition to the time spent for
discarded jobs is more than four times higher than the current job’s execution
time (cf. Line 3). If the execution time of the new task is high enough to satisfy
this condition, the algorithm discards the currently running job, updates the
bookkeeping of the time for the current and the discarded jobs, and schedules
the new job. Otherwise the new job is discarded. If a job is successfully finished,
the time spent for discarded and currently running jobs is reset to zero.

Similarly as TD1 does with the execution time of discarded jobs, DSTAR andDOVER
keep track of the cumulative utility guaranteed by currently preempted jobs. As the
pseudo codes for the algorithms are quite extensive they are not explicitly stated in
this work. Hence we refer to the corresponding publications (DSTAR in [BKM+91] and
DOVER in [KS95]) and provide only an intuitive description of the algorithms:

A currently running job is preempted only in two cases: (1) a new job with a
more urgent deadline is released that can be scheduled without making any currently
preempted job violating its deadline (i.e., the new job does not generate an overload
scenario together with the currently preempted jobs). (2) A previously released but
currently not scheduled or preempted job reaches zero-laxity and this job’s utility is
high enough that it is worth discarding all currently preempted and the running job
in favor of it (e.g., for DOVER the utility of this job must be more than 1 +

√
k times

the “guaranteed” utility that is rewarded to the scheduler if it would be sticking to the
already started jobs). While (1) corresponds to the behavior of EDF in an underloaded
system, (2) guarantees a “sufficiently large” cumulative utility.

32 Modeling Distributed Systems

2.4.2 Time/Utility Functions

Previously we introduced the utility value of a task as the reward given to the scheduler
if an instance of the task is completely scheduled prior to its deadline. This timing
constraint of a job regarding its finishing time can be generalized to a time/utility
function, as described in [JLT85]. To this end, the utility value assigned to a task τi is
substituted by a utility function vi[fi,j − ri,j] specifying the utility value rewarded to the
corresponding job Ji,j, parametrized by its release time ri,j and its finishing time fi,j.11
Depending on the type of the function different classes of tasks can be distinguished;
four commonly used ones are shown in Figure 2.11 and described in the following.

Non real-time task: If a task does not have time constraints on its finishing time, it
always contributes to the system and therefore has a constant utility value, no
matter when it completes its execution, visualized in Figure 2.11a.

Soft real-time task: A task with a soft deadline can contribute to the system even
though its deadline has already passed, at least providing a reduced utility value
as shown in Figure 2.11b.

Firm real-time task: If a task does not provide any utility value after its deadline but a
deadline miss does not have catastrophic consequences, it is called a firm deadline
task. It corresponds to a utility function that drops to zero when the last piece of
work is not finished by the deadline, as shown in Figure 2.11c.

Hard real-time task: If a deadline miss might have catastrophic consequences [Kop97],
a task is called a hard real-time task and the value of the corresponding utility
function drops to minus infinity when the last piece of work is not finished by the
deadline, shown in Figure 2.11d. Thus, one missed deadline makes all previously
and future gained utility void.

In the remainder of this thesis, we will assume that the jobs of all tasks can be
preempted and that they have firm deadlines. To simplify our notation, we say that we
assign a utility value Vi to task τi if we actually assign the utility function vi[fi,j − ri,j] =
Vi for fi,j − ri,j ∈ [1, Di] and 0 else.

2.4.3 Comparing Schedulers

In an environment, where the arrival patterns of the jobs are not predictable, an on-line
scheduler is required that makes scheduling decisions only based on present and past
job invocations. In particular, it does not know anything about future job releases at the
time of the decision. In contrast, an off-line or clairvoyant scheduler is aware of all past
and future job releases.

As noted before, for preemptive uniprocessor scheduling (without overload), EDF
is optimal with respect to feasibility, i.e., if there exists a feasible schedule for a certain

11Note that fi,j > ri,j + 1 due to the discrete time model.

2.4 Basics of Real-Time Scheduling 33

fi,j − ri,j

vi [fi,j − ri,j]

Di1

(a) Non real-time task.

fi,j − ri,j

vi [fi,j − ri,j]

Di1

(b) Soft real-time task.

fi,j − ri,j

vi [fi,j − ri,j]

Di1

(c) Firm real-time task.

fi,j − ri,j

vi [fi,j − ri,j]

Di1

(d) Hard real-time task.

Figure 2.11: Time/utility functions of different kinds of real-time tasks.

scheduling instance, using EDF will meet all the deadlines. If no feasible schedule
exists, that is, if the system is overloaded, it can easily be shown that there can be
no optimal on-line algorithm for most problems such as maximizing the cumulative
utility. Figure 2.12 gives an intuition for this fact using the example of cumulative
utility. It shows three different scheduling scenarios, each with one instance of task
τA : {CA = 4, DA = 5, VA = 4}, released at t = 1 and denoted JA,1, and two instances
of task τB : {CB = 3, DB = 4, VB = 3}, denoted JB,j where j is the release time of the
corresponding jobs. While the first job is released at t = 1 and thus denoted JB,1, the
second one is released at t > 2, differently for each scenario. The example demonstrates
that without the knowledge of the release time of the second instance of task τB already
at time t = 1, there is no way to maximize the cumulative utility. Assuming that the
second instance of τB is released at time t = 2, the maximum cumulative utility is 4 and
is achieved by scheduling JA,1. However, if it is released at time t = 3, the maximum
cumulative utility is 6, achieved by scheduling both instances of task τB. If the second
job is released at time t = 4 or later, the maximum cumulative utility is 7, achieved by
scheduling JA,1 and JB,j with j > 4. At time t = 1, when the first scheduling decision
has to be made, all three scenarios are indistinguishable for an on-line scheduler. Thus,
no on-line scheduler can guarantee the optimal cumulative utility in all cases.

The dominant approach to characterize the performance of a scheduling algorithm
for firm deadline tasks, and therefore to compare different scheduling algorithms,
is to evaluate its worst case performance with respect to an optimal solution, called
competitive analysis [BEY98].

34 Modeling Distributed Systems

JA,1

JB,1

JB,2
t

t

t

1 2 3 4 5 6 7 8

(a) Scheduling the instance of task τA gains a utility value of 4.

JA,1

JB,1

JB,3
t

t

t

1 2 3 4 5 6 7 8

(b) Scheduling both instances of task τB gains a cumulative utility of 6.

JA,1

JB,1

JB,4
t

t

t

1 2 3 4 5 6 7 8

(c) Scheduling the instance of task τA together with the second instance of task τB gains a
cumulative utility of 7.

Figure 2.12: Three different scheduling scenarios indistinguishable at time t = 1. Taskset
consists of τA : {CA = 4, DA = 5, VA = 4}, τB : {CB = 3, DB = 4, VB = 3}.

Competitive Ratio vs. Competitive Factor

We introduce the notion of the competitive ratio as the worst case utility ra-
tio a on-line scheduler can achieve with respect to an optimal clairvoyant
algorithm on a certain taskset. To the best of our knowledge, nobody has inves-
tigated this problem before. However, Baruah et al. [BKM+91] introduced
the more general concept of the competitive factor of an on-line scheduler as
the worst case utility ratio a on-line scheduler can achieve with respect to an
optimal clairvoyant algorithm for any taskset, i.e., without the restriction on
a certain taskset. The only restriction in the analysis is a finite duration of
overload, as the competitive factor would always be zero otherwise. Clearly,
the competitive factor is a lower bound on the competitive ratio.

2.5 Putting it all Together 35

Baruah et al. have shown the general result that in the case of an overloaded system
for a taskset consisting of tasks with firm deadlines and with importance ratio k, no
on-line scheduler can guarantee a competitive ratio of more than 1/(1+

√
k)2, i.e., there

is an upper bound on the competitive factor of 1/4. Note that this upper bound on the
competitive factor is based on constructing a specific job sequence, which takes into
account the on-line algorithm’s actions and thereby forces it to deliver a sub-optimal
cumulative utility. Note that the competitive ratio of some given algorithm is usually
higher, as it is very unlikely that the tasks needed to construct the quite exotic worst
case job sequence of [BKM+91] are actually available in the given taskset.

EDF, as an on-line scheduling algorithm that, in the case of an underloaded system,
has a competitive factor of 1, turns out to have a particularly bad competitive ratio
(and therefore also a bad competitive factor) of 0 in the general case.
Several algorithms have been proposed that were optimized for achieving a com-
petitive factor that comes close to or matches the upper bound during overloads.

DSTAR [BKM+91] achieves a competitive factor of 1/5 during overload and a com-
petitive factor of 1 if the system is not overloaded. However, the algorithm is
restricted to uniform tasksets (k = 1), thus leaving a gap to the upper bound of
1/4.

DDSTAR [KS91] achieves a competitive factor of 1/4 during overload and 1 if the
system is not overloaded; as it is also restricted to uniform tasksets, it matches the
upper bound with respect to cumulative utility.

TD1 [BKM+92] comes in two versions. One that only works for zero-laxity tasks, and
one without this restriction. It guarantees a competitive factor of 1 if the system is
not overloaded and a competitive factor of 1/4 in overloaded systems for uniform
tasksets.

DOVER [KS95], as a worst-case optimal algorithm, guarantees not only the upper
bound on the competitive factor during overloads for tasksets with arbitrary
importance ratios, but also a competitive factor of 1 if the system is not overloaded.

2.5 Putting it all Together

The aim of this thesis is to introduce a new method to build and analyze the real-
time performance of a distributed system running processes of multiple independent
synchronous distributed algorithms simultaneously on the processing nodes. The
high-level system architecture is shown in Figure 2.13. In our system model we assume
that every process performs computing steps at every integer multiple of some unit
time, i.e., we assume lock-step synchronous processes (Φ = 1). As we can assume that
every node in the distributed system has enough processing power to execute the state
transitions of all distributed algorithms timely, e.g., by assigning every algorithm’s

36 Modeling Distributed Systems

finite bandwidth (virtual) point-to-point message passing network

Node iNetwork Interface

Processor 1 Processor 2 . . . Processor `

sync.
DA1

sync.
DA2

sync.
DA3

. . . sync.
DAk

.

Node NNode 1

Figure 2.13: Proposed system architecture of the distributed system. Consisting of N
processing nodes, where each node is running one of the processes of k independent
synchronous distributed algorithms on its processors.

process a dedicated processor, we can focus our analysis on the communication between
the processes.

As for the communication, we assume that nodes are connected with each other by a
finite bandwidth message passing system shared between all the distributed algorithms’
processes running on a node. As shown in Figure 2.13, every node has a network
interface taking care of the access to the message passing system, which provides either
dedicated or virtual point-to-point links to all other nodes.

If a message sent from an algorithm process on node p to an algorithm process
running on node q takes not longer than ∆ time units, communication closed lock-step
rounds can be built by starting a new round simultaneously every R > ∆ time units
on the processes. As an example, Figures 2.14a–2.14c illustrate the communication of
three distributed algorithms. For simplicity, only the messages between two processing
nodes are shown. Note that, as also shown in Figure 2.14, two different synchronous
distributed algorithms executed in the system may have a different round durations R:
While DA1 starts a new round every four time units, DA2 and DA3 start new rounds
every five respectively every six time units. The algorithms may send messages of
different size and given the finite bandwidth of the communication channel, different
message sizes may result in different transmission durations of the messages. Further-
more, the executed algorithms do not need to be synchronized with respect to their
rounds, not even when their round duration is the same.

Determining ∆ for a distributed system is usually a non-trivial task. Hence, typically,
one fixes R and hopes that R > ∆. If the executed distributed algorithm is fault-tolerant
this approach is often enough for the algorithm to work. Therefore, it may happen
that in some rounds the choice of R was not large enough, as shown in Round 4 in
Figure 2.14a.

In our system model we use a more systematic approach: We explicitly model the
messages of the algorithms as firm deadline real-time jobs released at the beginning
of a round and with a deadline corresponding to the end of the round. A real-time
scheduling algorithm is managing the access to the communication medium. In an
overload scenario, where the channel capacity is not always sufficient for all messages
that have to be sent, the scheduler will drop messages. Figure 2.15 shows the three
algorithms executed on processing node 1 from the previously introduced example and

2.5 Putting it all Together 37

Round1 Round2 Round3 Round4 Round5 Round6

R > ∆

tDA11

tDA12

1 5 9 13 17 21 25

(a) Round structure of distributed algorithm DA1 using R = 4.

Round1 Round2 Round3 Round4 Round5

R > ∆

tDA21

tDA22

1 6 11 16 21

(b) Round structure of distributed algorithm DA2 using R = 5.

Round1 Round2 Round3 Round4

R > ∆

tDA31

tDA32

1 7 13 19 25

(c) Round structure of distributed algorithm DA3 using R = 6.

Figure 2.14: Communication between two processes of three synchronous distributed
algorithms running on the distributed system.

their generated messages. Thereby it is assumed that algorithm DA1 and DA3 generate
messages that need two time units to be transmitted while algorithm DA3 generates
larger messages that need three time units. In this example, processing node 1 uses
a non-preemptive earliest deadline first algorithm as its message scheduling strategy
where ties are broken by the index of the algorithms. The resulting message scheduling
on the channel is also shown in Figure 2.15. The messages sent by DA1 are highlighted
in blue and directly correspond to the blue arrows in Figure 2.14a.

Additionally, the unreliable communication channels introduce a probability that a
message gets lost during transmission (e.g., it gets corrupted and therefore does not
make it through the receiver’s parity check).

The send omissions from the real-time scheduler, as well as the link failures can
either be handled directly by a fault-tolerant distributed algorithm or, as in the model
proposed in this thesis, handled by a synchronizer algorithm, providing a virtual round
structure without message loss to the distributed algorithm. To this end, we abstract
dropped messages together with the link failures by a probabilistic link failure model.
Sticking to the previous example, the analysis of the hyper-period generated by the
three algorithms results in a probability of 13/15 that a message sent by DA1’s process
is successfully scheduled.

Analyzing the performance of the synchronizer, parametrized by a suitable prob-
ability of successful message transmission, thus allows to state the expected round

38 Modeling Distributed Systems

Using a non-preemptive EDF real-time scheduler

tDA31

tDA21

tDA11

tChannel
1 6 11 16 21

Figure 2.15: Messages generated by the three distributed algorithms on processing
node 1 and how they get scheduled on the shared channel to another processing node.

Message Passing Interface

Real-time Message Scheduler

Sync.1

DA1

Sync.2

DA2

. . .

. . .

Sync.k

DAk

Figure 2.16: Layered structure of one node in the proposed system model, running
processes of k independent distributed algorithms. Contributions of this thesis are
colored.

duration of the synchronous distributed algorithm running atop. To achieve this goal,
we suggest a layered approach described in the following.

The general structure of every processing node can be divided into four layers shown
in Figure 2.16. While the message passing interface and the distributed algorithms are
only of minor interest, the real-time message scheduler and the synchronizer (both
highlighted in the figure) form the major contributions of this thesis. The four layers
are described more in detail in the following.

Message passing interface

As mentioned before, we assume a fully connected synchronous message passing
network. Therefore we either need dedicated or virtual point-to-point links between
all processes and thus nodes. The requirements of anonymity heavily depend on the
distributed algorithms finally running on the uppermost level. For the results in this
thesis it is sufficient if received messages can be traced back to their incoming port. As
for the sending it is sufficient if the message passing interface provides a send-to-all
primitive. The presence of unique IDs to identify a process is not needed. Furthermore,

2.5 Putting it all Together 39

we assume that the links between the nodes are full-duplex, each direction has a finite
bandwidth shared by all distributed algorithms running on a node, and that they
are unreliable. Therefore, two origins of message loss can be identified: (i) Messages
dropped by the scheduler due to the finite bandwidth constraint of the link, and (ii)
messages lost due to the unreliable communication. For tractability, we assume that
both effects can be jointly abstracted via a probabilistic link failure model, where a
message is received only with a certain (non-zero) probability.

Real-time message scheduler

Finite bandwidth on the channels of the message passing system implies the need for
some scheduling whenever the demand exceeds the available bandwidth. As round-
based distributed systems assume communication closedness, i.e., all messages are
delivered before the next round starts, a message does not provide any value if it is
delivered late. Thus, we use a real-time scheduling algorithm and model messages as
jobs where the release times of the jobs correspond to the time of the processing step at
which the messages are sent, the deadline corresponds to the time of the processing
step starting a new round, and the worst case execution time is proportional to the
amount of bandwidth needed to transmit the message.

As a message does not provide any value to the system after the next round has
started, but due to the synchronizer at the receiver does not harm, a firm deadline job
is a well suited model for it. If, because of an overload scenario, a message cannot be
delivered timely it is dismissed by the scheduler, corresponding to an omission fault in
classic distributed systems.

In this work we provide a game theoretic framework, in particular using multi-
objective graphs and graph games, to automatically analyze the competitiveness of
on-line scheduling algorithms with respect to a given taskset. Using this framework
we can compare different scheduling algorithms w.r.t. their worst case average utility
on a particular taskset. Furthermore, we can also restrict the adversary by applying
constraints on release patterns of tasks (such as periodic tasks, maintaining a sporadicity
interval, or restriction on the maximum workload released in a certain time), as well
as constraints on the long run behavior of the system (such as limiting the released
workload on average). We also give a generic, but computationally very expensive
method to synthesize the optimal on-line scheduler for a specific taskset.

Chapter 3 is devoted to these real-time scheduling aspects.

Round synchronization

A retransmission-based synchronizer is used to regain a consistent round structure on
top of the omission and link failure affected communication.

To reduce complexity, the message losses of the previous layers (the message drops
by the real-time scheduler as well as the probabilistic link failures) are combined and
abstracted by a probabilistic link failure model. Therefore, we assume a (non-zero)
probability that a message is successfully received. The analysis of the synchronizer

40 Modeling Distributed Systems

focuses on the processing steps of the synchronizer where it actually processes received
messages and sends new messages. As the real-time performance of the atop running
synchronous distributed algorithm heavily depends on the performance of this syn-
chronizer, an accurate prediction of the durations of the simulated rounds is crucial for
drawing meaningful conclusions about the performance of the higher-level algorithm.

To this end we use probability analysis as well as Markov chain modeling to analyze
the expected round duration for the synchronizer. In general, these calculations are
computationally very expensive, therefore we introduce additional model restrictions
to get rid of the inherent complexity of the problemwithout weakening the applicability
too much, e.g., by assuming (m,k)-firm deadline scheduling for the real-time scheduler
to bound the number of retransmissions to a finite number.

The performance of the synchronizer is studied in Chapter 4.

Distributed algorithms

Processes of different synchronous algorithms can run simultaneously on the distributed
system. As the round synchronization layer below provides a round structure, the
strongest canonic synchrony assumption, all distributed algorithms can be run as long
as their needs of execution and communication primitives are matched by the message
passing system, or can at least be simulated atop.

The modeling approach introduced in this thesis provides expected values for
the round durations of the algorithms with respect to real-time. The synchronizer
analysis, carried out with a suitable probability of successful message transmission
extracted from the real-time scheduling and link failure analysis, combined with a
classic performance analysis of the algorithms (i.e., round complexity for a synchronous
algorithm or maximum number of processing steps for an asynchronous algorithm)
thus allows to state the expected real-time performance of the synchronous distributed
algorithm.

Communication between the processes of a distributed algorithm

Figure 2.17 provides deeper insights into how the communication between the pro-
cesses of a distributed algorithm actually works. It shows part of a distributed system
with three nodes running three distributed algorithms simultaneously. In this exam-
ple we retain the timing properties of the algorithms as in the previous Figures 2.14
and 2.15. Algorithm DA1 performs a processing step every four time units where it
sends messages that need two time units for successful transmission. Messages of DA1
are solidly filled in blue and events related to the distributed algorithm DA1, the main
point of interest in the figure, are marked in blue. Algorithms DA2 and DA3 perform
their processing steps every five respectively six time units. DA2 sends messages that
need three time units for transmission (filled with diagonal stripes in the image) while
DA2 sends messages that need two time units for transmission (filled with a dotted
pattern).

2.5 Putting it all Together 41

Round1

Round1

Round1

Round2

Round2

Round2

Round3

Channel13

SendSync11

DA11

Channel23

SendSync12

DA12

DA13

RcvSync13

	

t

t

t

t

t

t

t

t

Figure 2.17: Detailed communication schema for sending messages within an execution
of distributed algorithm DA1. Events and messages related to DA1 are colored.

The upper part of the time/space diagram is devoted to the transmitter part of
node 1 containing the synchronous distributed algorithm DA1, the transmitter part of
the synchronizer, as well as the communication channel between node 1 and 3. The
middle part of the diagram shows the transmitter part of node 2, and the lower part
of the diagram shows the receiver part of node 3 containing the receiver part of the
synchronizer and the distributed algorithm DA1. The snake-arrows in the diagram
denote the start of a new round of DA1 on the respective node. At such a round
switch the process of the distributed algorithm performs its state transition, generating
messages that need to be sent. Therefore, the process of DA1 triggers the transmitter part
of the retransmission-based synchronizer (labeled SendSync1 in the figure) and provides
the algorithm messages for the new round to it. As noted before, the synchronizer
performs its computation steps every four time units, marked by the gray vertical lines.
In every step, it tries to send the message of DA1 via the message passing system to
the corresponding receiver. In the figure, only the (virtual) channels to node 3 are
shown, labeled Channelx3. As shown in Figure 2.15, the bandwidth of the channel is
not sufficient to transmit the messages of all algorithms timely.

The transmitter part of the synchronizer sends the messages generated by the
algorithm in every step, i.e., it periodically releases jobs corresponding to the messages
at every step, each with a relative deadline equal to the period duration of the steps.In
case of node 1, the channel allocation results from using the same non-preemptive

42 Modeling Distributed Systems

earliest deadline first scheduler as in Figure 2.15 while node 2 uses a different scheduling
strategy.

In the first step of the illustrated execution of the system, themessage sent by DA1 on
node 1 is successfully scheduled on the channel but gets corrupted during transmission
and does not make it to its receiver (illustrated by the 	 symbol). The message is
retransmitted in the next step of the synchronizer, again scheduled on the channel,
and this time successfully received by the process running on node 3 timely before the
next processing step. The delivery of the message triggers an round switch at process
DA13 (illustrated by the snake arrow), as the round 1 message from DA12 was already
received earlier (both attempts were successful).

Note that the round 2 message of the process running on node 1 also needs two
transmission attempts as in the first attempt the message sent by DA2 is more urgent.
Therefore the DA1 message is discarded in favor of the DA2 message.

Chapter 3
Real-Time Scheduling

IN THIS CHAPTER, we study the well-known problem of scheduling a sequence
of dynamically arriving real-time task instances with firm deadlines on a single

processor. The problem is analogous to the originally introduced problem of message
scheduling on a communication channel; in literature, however, task scheduling is more
common than message scheduling and thus we go with this slightly shifted focus.

As pointed out in the previous chapter, in firm deadline scheduling, a task instance
(a job) that is completed by its deadline contributes a positive utility value; a job that
does not meet its deadline does not harm, but does not add any utility. The goal of
the scheduling algorithm is to maximize the cumulated utility. Firm deadline tasks
arise in various application domains, e.g., machine scheduling, multimedia and video
streaming, QoS management in switches and data networks, and other systems that
may suffer from overload [KS95].

Competitive analysis [BEY98] has been the primary tool for studying the perfor-
mance of such scheduling algorithms [BKM+92]. In general, it allows to compare the
performance of an on-line algorithm A, which processes a sequence of inputs without
knowing the future, with what can be achieved by an optimal off-line algorithm C that
does know the future (a clairvoyant algorithm): The competitive factor gives the worst-case
performance ratio of A vs. C over all possible scenarios.

Since the taskset arising in a particular application is usually known, this thesis
focuses on the competitive analysis problem for given tasksets: Rather than from all
possible tasksets as in [BKM+92], the job sequences used for computing the competitive
ratio are chosen from a taskset given as an input. There are two relevant problems for
the automated competitive analysis for a given taskset: (1) The synthesis question asks
to find an algorithm with optimal competitive ratio; and (2) the analysis question asks
to compute the competitive ratio of a given on-line algorithm. In this chapter we will
address both questions.

44 Real-Time Scheduling

More specifically, on the analysis side, we provide a flexible, automated analysis
framework that also supports additional constraints on the adversary, such as sporadic-
ity constraints and longrun-average load. We show that the analysis problem (with
additional constraints) can be reduced to a multi-objective graph problem, which can be
solved in polynomial time. We also present several optimizations and an experimental
evaluation of our algorithms that demonstrates the feasibility of our approach, which
effectively allows to replace human ingenuity (required for finding worst-case scenar-
ios) by computing power: Using our framework, the application designer can analyze
different scheduling algorithms for the specific tasksets arising in her/his particular
application, and compare their competitive ratio in order to select the best one.

On the synthesis side, we provide a reduction from labeled transition systems, our
preferred way to model scheduling algorithms to partial-observation graph games. We
furthermore show that deciding whether there is an on-line algorithm with competitive
ratio above some threshold is Np-complete.

Detailed Road Map of this Chapter:

This chapter is based on the published articles [CKS13] and [CPKS14] in a joint work
with Krishnendu Chatterjee, Andreas Pavlogiannis, and Ulrich Schmid. While the
author’s contribution covers the modeling and the automated generation of the on-line
algorithms’ state spaces, the credits for the contributions of the state space reduction
and solving the resulting graph problems are awarded to Andreas Pavlogiannis.

In Section 3.1, we will formally define our scheduling problem along the relevant
additional constraints that can optionally restrict the power of the adversary. In Sec-
tion 3.2, we introduce labeled transition systems as a formal model for specifying on-line
and off-line scheduling algorithms. In Section 3.3, we present the formal framework
to specify the constraints on the adversary, and argue how it allows to model a wide
variety of constraints. We also give an overview of all the steps involved in our approach
in Section 3.4.

In Section 3.5, we present the multi-objective graphs used by our solution algorithm.
Multiple objectives are required to represent the competitive analysis problem with
various constraints. In Section 3.6, we describe a theoretical reduction of the competi-
tive analysis problem to solving a multi-objective graph problem, where the graph is
obtained as a product of the on-line algorithm, an off-line algorithm, and the constraints
specified as automata. Our algorithmic solution is polynomial in the size of the graph;
however, the product graph can be large for representative tasksets. In Section 3.7, we
present both general and implementation-specific optimizations, which considerably
reduce the size of the resulting graphs. In Section 3.8, we provide competitive ratio
analysis results obtained by our method. More specifically, we present a compara-
tive study of the performance of several existing firm deadline real-time scheduling
algorithms. Our results show that, for different tasksets (even with no constraints),
different algorithms achieve the highest competitive ratio (i.e., there is no universal
optimal algorithm). Moreover, even for a fixed taskset and varying constraints on the

3.1 Formal Problem Definition 45

adversary, different algorithms achieve the highest competitive ratio. This highlights the
importance of our framework for selecting optimal algorithms for specific applications.
Furthermore, we construct a series of the worst-case task sets for the scheduler TD1
using the recurrence given in [BKM+92] and show the convergence of the competitive
ratio to 1/4.

In Section 3.9, we introduce graph games as a formal model to describe the intro-
duced real-time scheduling problems and their objectives. In Section 3.10, we give a
reduction from 3-SAT to partial-information games and thus show that the synthesis
problem is Np-complete. In Section 3.11, we show that the general partial-information
game model with ratio objectives is suitable to construct an on-line scheduler with
optimal competitive ratio. Finally, Section 3.12 provides additionally bibliographic
information about this chapter.

3.1 Formal Problem Definition

We consider a finite set of tasks T = {τ1, . . . , τN}, to be executed on a single processor.
We assume a discrete notion of real-time t = kε, k > 1, where ε > 0 is both the unit
time and the smallest unit of preemption (called a slot). Since both task releases and
scheduling activities occur at slot boundaries only, all timing values are specified as
positive integers. Every task τi releases countably many task instances (called jobs)
Ji,j := (τi, j) ∈ T ×N+ (where N+ is the set of positive integers) over time (i.e., Ji,j
denotes that a job of task i is released at time j). All jobs, of all tasks, are independent of
each other and can be preempted and resumed during execution without any overhead.
Every task τi, for 1 6 i 6 N, is characterized by a 3-tuple τi = (Ci, Di, Vi) consisting
of its non-zero worst-case execution time Ci ∈ N+ (slots), its non-zero relative deadline
Di ∈ N+ (slots) and its non-zero utility value Vi ∈ N+ (rational utility values V1, . . . , VN
can be mapped to integers by proper scaling). We denote with Dmax = max16i6N Di
the maximum relative deadline in T . Every job Ji,j needs the processor for Ci (not
necessarily consecutive) slots exclusively to execute to completion. All tasks have firm
deadlines: only a job Ji,j that completes within Di slots, as measured from its release
time, provides utility Vi to the system. A job that misses its deadline does not harm
but provides zero utility. The goal of a real-time scheduling algorithm in this model is
to maximize the cumulated utility, which is the sum of Vi times the number of jobs Ji,j
that can be completed by their deadlines, in a sequence of job releases generated by the
adversary.

46 Real-Time Scheduling

Notation on Sequences

Let X be a finite set. For an infinite sequence x = (x`)`>1 = (x1, x2, . . .) of
elements in X, we denote by x` the element in the `-th position of x, and
denote by x(`) = (x1, x2, . . . , x`) the finite prefix of x up to position `. We
denote by X∞ the set of all infinite sequences of elements from X. Given a
function f : X → Z (where Z is the set of integers) and a sequence x ∈ X∞,
we denote with f (x, k) = ∑k

`=1 f (x`) the sum of the images of the first k
sequence elements under f .

Job Sequences

When generating a job sequence, the adversary releases at most one new job from
every task in every slot. Formally, the adversary generates an infinite job sequence
σ = (σ`)`>1 ∈ Σ∞, where Σ = 2T . If a task τi belongs to σ`, for ` ∈ N+, then a (single)
new job Ji,j of task i is released at the beginning of slot `: j = ` denotes the release time of
Ji,j, which is the earliest time Ji,j can be executed, and di,j = j + Di denotes its absolute
deadline.

Admissible Job Sequences

We present a flexible framework where the set of admissible job sequences that the
adversary can generate may be restricted. The set J of admissible job sequences from
Σ∞ can be obtained by imposing one or more of the following (optional) admissibility
restrictions:

(S) Safety constraints, which are restrictions that have to hold in every finite prefix of
an admissible job sequence; e.g., they can be used to enforce job release constraints
such as periodicity or sporadicity, and to impose temporal workload restrictions.

(L) Liveness restrictions, which assert infinite repetition of certain job releases in a
job sequence; e.g., they can be used to force the adversary to release a certain task
infinitely often.

(W) Limit-average constraints, which restrict the long run average behavior of a job se-
quence; e.g., they can be used to enforce that the average load in the job sequences
does not exceed a threshold.

Schedule

Given an admissible job sequence σ ∈ J , the schedule π = (π`)`>1 ∈ Π∞, where
Π = ((T × {0, . . . , Dmax − 1}) ∪∅), computed by a real-time scheduling algorithm
for σ, is a function that assigns at most one job for execution to every slot ` > 1: π` is

3.1 Formal Problem Definition 47

either∅ (i.e., no job is executed) or else (τi, j) (i.e., the job Ji,`−j of task τi released j slots
ago is executed). The latter must satisfy the following constraints:

1. τi ∈ σ`−j (the job has been released),

2. j < Di (the job’s deadline has not passed),

3. |{k : k > 0 and π`−k = (τi, j′) and k + j′ = j}| < Ci (the job released in slot `− j
has not been completed).

Note that our definition of schedules uses relative indexing in the scheduling algorithms:
At time point `, the algorithm for schedule π` uses index j to refer to slot `− j. Recall that
π(k) denotes the prefix of length k > 1 of π. We define γi(π, k) to be the number of jobs
of task τi that are completed by their deadlines in π(k). The cumulated utility V(π, k)
(also called utility for brevity) achieved in π(k) is defined as V(π, k) = ∑N

i=1 γi(π, k) ·Vi.

Competitive Ratio

We are interested in evaluating the performance of deterministic on-line scheduling
algorithms A, which, at time `, do not know any of the σk for k > ` when running
on σ ∈ J . In order to assess the performance of A, we will compare the cumulated
utility achieved in the schedule πA to the cumulated utility achieved in the schedule
πC provided by an optimal off-line scheduling algorithm, called a clairvoyant algorithm
C, working on the same job sequence. Formally, given a taskset T , let J ⊆ Σ∞ be the
set of all admissible job sequences of T that satisfy given (optional) safety, liveness, and
limit-average constraints. For every σ ∈ J , we denote with πσ

A (resp. πσ
C) the schedule

produced by A (resp. C) under σ. The competitive ratio of the on-line algorithm A for
the taskset T under the admissible job sequence set J is defined as

CRJ (A) = inf
σ∈J

lim inf
k→∞

1 + V(πσ
A, k)

1 + V(πσ
C , k)

(3.1)

that is, the worst-case ratio of the cumulated utility of the on-line algorithm versus
the clairvoyant algorithm, under all admissible job sequences. Note that adding 1 in
numerator and denominator simply avoids division by zero issues.

Remark 1. Since, according to the definition of the competitive ratio CRJ in Equation (3.1),
we focus on worst-case analysis, we do not consider randomized algorithms (such as Locke’s
best-effort policy [Loc86]). Generally, for worst-case analysis, randomization can be handled
by additional choices for the adversary. For the same reason, we do not consider scheduling
algorithms that can use the unbounded history of job releases to predict the future (e.g., to capture
correlations).

48 Real-Time Scheduling

3.2 Labeled Transistion Systems as Models for Algorithms

We will consider both on-line and off-line scheduling algorithms that are formally
modeled as labeled transition systems (LTSs): Every deterministic finite-state on-line
scheduling algorithm can be represented as a deterministic LTS, such that every input
job sequence generates a unique run that determines the corresponding schedule. On
the other hand, an off-line algorithm can be represented as a non-deterministic LTS,
which uses the non-determinism to guess the appropriate job to schedule.

Labeled Transition Systems (LTSs)

Formally, a labeled transition system (LTS) is a tuple L = (S, s1, Σ, Π, ∆), where
S is a finite set of states, s1 ∈ S is the initial state, Σ is a finite set of input
actions, Π is a finite set of output actions, and ∆ ⊆ S × Σ × S ×Π is the
transition relation. Intuitively, (s, x, s′, y) ∈ ∆ if, given the current state s and
input x, the LTS outputs y and makes a transition to state s′. If the LTS is
deterministic, then there is always a unique output and next state, i.e., ∆ is
a function ∆ : S× Σ→ S×Π. Given an input sequence σ ∈ Σ∞, a run of L
on σ is a sequence ρ = (p`, σ`, q`, π`)`>1 ∈ ∆∞ such that p1 = s1 and for all
` > 2, we have p` = q`−1. For a deterministic LTS, for each input sequence,
there is a unique run.

3.2.1 Deterministic LTS for an On-line Algorithm

For our analysis, on-line scheduling algorithms are represented as deterministic LTSs.
Recall the definition of the sets Σ = 2T , and Π = ((T × {0, . . . , Dmax− 1})∪∅). Every
deterministic on-line algorithm A that uses finite state space (for all job sequences)
can be represented as a deterministic LTS LA = (SA, sA, Σ, Π, ∆A), where the states SA
correspond to the state space of A, and ∆A correspond to the execution of A for one
slot. Note that, due to relative indexing, for every current slot `, the schedule π` of A
contains elements from the set Π, and (τi, j) ∈ π` uniquely determines the job Ji,`−j.
Finally, we associate with LA a reward function rA : ∆A → N such that rA(δ) = Vi if
the transition δ completes a job of task τi, and rA(δ) = 0 otherwise. Given the unique
run ρσ = (δ`)`>1 of LA for the job sequence σ, where δ` denotes the transition taken at
the beginning of slot `, the cumulated utility in the prefix of the first k transitions in ρσ

is V(ρσ, k) = ∑k
`=1 rA(δ`).

Most scheduling algorithms (such as EDF, FIFO, DOVER, TD1) can be represented
as a deterministic LTS. An illustration for EDF is given in the following example.

Example 1. Consider the taskset T = {τ1, τ2}, with D1 = 3, D2 = 2 and C1 = C2 = 2.
Figure 3.1 represents the EDF (Earliest Deadline First) scheduling policy as a deterministic LTS
for T . Each state is represented by a matrix M, such that M[i, j], 1 6 i 6 N, 1 6 j 6 Dmax− 1,

3.2 Labeled Transistion Systems as Models for Algorithms 49

0 0
1 0

2 0
0 0

0 1
0 0

0 0
0 0

1 0
0 0

{t1}
(t1, 1)

{t1, t2}
(t1, 1)

-

{}
(t1, 2)

{t2}
(t1, 2)

{t1}
(t1, 2)

{t1, t2}
(t1, 2)

{}
(t1, 1)

{t1}
(t1, 1)

{t2}
(t1, 1)

{t1, t2}
(t1, 1)

{}
(t2, 1)

{t2}
(t2, 1)

{t1}
(t1, 0)

{t1}
(t2, 1)

{t1, t2}
(t2, 1)

{}
(t1, 1)

{t2}
(t1, 1)

{t2}
(t2, 0)

{t1, t2}
(t2, 0)

Figure 3.1: EDF for T = {τ1, τ2} with D1 = 3, D2 = 2 and C1 = C2 = 2, represented as
a deterministic LTS.

denotes the remaining execution time of the job of task τi released j slots ago. Every transition is
labeled with a set T ∈ Σ of released tasks as well as with (τi, j) ∈ Π, which denotes the unique
job Ji,`−j to be scheduled in the current slot `. Released jobs with no chance of being scheduled
are not included in the state space.

3.2.2 The Non-deterministic LTS

The clairvoyant algorithm C is formally a non-deterministic LTS LC = (SC , sC , Σ, Π, ∆C)
where each state in SC is a N × (Dmax − 1) matrix M, such that for each time slot `, the
entry M[i, j], 1 6 i 6 N, 1 6 j 6 Dmax − 1, denotes the remaining execution time of the
job Ji,`−j (i.e., the job of task i released j slots ago). For matrices M, M′, subset T ∈ Σ of
newly released tasks, and scheduled job P = (τi, j) ∈ Π, we have (M, T, M′, P) ∈ ∆C iff
M[i, j] > 0 and M′ is obtained from M by

1. inserting all τi ∈ T into M,

2. decrementing the value at position M[i, j], and

3. shifting the contents of M by one column to the right.

That is, M′ corresponds to M after inserting all released tasks in the current state,
executing a pending task for one unit of time, and reducing the relative deadlines

50 Real-Time Scheduling

0

1

2

sr

{}

{τ1}, {τ2}

{}, {τ1}, {τ2}, {τ1, τ2}

{τ1}, {τ2}

{τ1, τ2}

{}

{τ1, τ2}

{}
{τ1}, {τ2}, {τ1, τ2}

Figure 3.2: Example of a safety LTS LS that restricts the adversary to release at most 2
units of workload in the last 2 rounds.

of all tasks currently in the system. The initial state sC is represented by the zero
N × (Dmax − 1) matrix, and SC is the smallest ∆C-closed set of states that contains
sC (i.e., if M ∈ SC and (M, T, M′, P) ∈ ∆C for some T, M′ and P, we have M′ ∈ SC).
Finally, we associate with LC a reward function rC : ∆C → N such that rC(δ) = Vi if the
transition δ completes a task τi, and rC(δ) = 0 otherwise.

3.3 Admissible Job Sequences

Our framework allows to restrict the adversary to generate admissible job sequences
J ⊆ Σ∞, which can be specified via different constraints. Since a constraint on job
sequences can be interpreted as a language (which is a subset of infinite words Σ∞

here), we will use automata as acceptors of such languages. Since an automaton is a
deterministic LTS with no output, all our constraints will be described as LTSs with an
empty set of output actions. We allow the following types of contraints:

(S) Safety constraints are defined by a deterministic LTS LS = (SS , sS , Σ,∅, ∆S), with
a distinguished absorbing reject state sr ∈ SS . An absorbing state is a state that has
outgoing transitions only to itself. Every job sequence σ defines a unique run ρσ

S
in LS , such that either no transition to sr appears in ρσ

S , or every such transition is
followed solely by self-transitions to sr. A job sequence σ is admissible to LS , if ρσ

S
does not contain a transition to sr. To obtain a safety LTS that does not restrict J
at all, we simply use a trivial deterministic LS with no transition to sr.
Safety constraints restrict the adversary to release job sequences, where every
finite prefix satisfies some property (as they lead to the absorbing reject state sr of
LS otherwise). Some well-known examples of safety constraints are (i) periodicity
and/or sporadicity constraints, where there are fixed and/or a minumum time

3.3 Admissible Job Sequences 51

sa

{}, {τ1} {τ2}, {τ1, τ2}
{τ2}, {τ1, τ2}

{}, {τ1}

Figure 3.3: Example of a liveness LTS LL that forces τ2 to be released infinitely often.

between the release of any two consecutive jobs of a given task, and (ii) absolute
workload constraints [Gol91, Cru91], where the total workload released in the last
k slots, for some fixed k, is not allowed to exceed a threshold λ. For example, in
case of absolute workload constraints, LS simply encodes the workload in the last
k slots in its state, and makes a transition to sr whenever the workload exceeds λ.
Figure 3.2 shows an example of a constraint LTS for the taskset T = {τ1, τ2} with
C1 = C2 = 1 that restricts the adversary to release at most 2 units of workload in
the last 2 rounds.

(L) Liveness constraints are modeled as a deterministic LTS LL = (SL, sL, Σ,∅, ∆L)
with a distinguished accept state sa ∈ SL. A job sequence σ is admissible to the
liveness LTS LL if ρσ

L contains infinitely many transitions to sa. For the case where
there are no liveness constraint in J , we use a LTS LL consisting of state sa only.
Liveness constraints force the adversary to release job sequences that satisfy some
property infinitely often. For example, they could be used to guarantee that
the release of some particular task τi does not eventually stall; the constraint is
specified by a two-state LTS LL that visits sa whenever the current job set includes
τi. A liveness constraint can also be used to prohibit infinitely long periods of
overload [BKM+92]. Figure 3.3 shows an example of a constraint LTS for the
taskset T = {τ1, τ2} that forces the adversary to release τ2 infinitely often.

(W) Limit-average constraints are defined by a deterministic weighted LTS LW =
(SW , sW , Σ,∅, ∆W) equipped with a weight function w : ∆W → Zd that assigns
a vector of weights to every transition δW ∈ ∆W . Given a threshold vector~λ ∈
Qd, where Q denotes the set of all rational numbers, a job sequence σ and the
corresponding run ρσ

W = (δ`W)`>1 of LW , the job sequence is admissible to LW if
lim infk→∞

1
k · w(ρσ

W , k) 6~λ with w(ρσ
W , k) = ∑k

i=1 w(δ`W).
Consider a relaxed notion of workload constraints, where the adversary is re-
stricted to generate job sequences whose average workload does not exceed a
threshold λ. Since this constraint still allows “busy” intervals where the work-
load temporarily exceeds λ, it cannot be expressed as a safety constraint. To
support such interesting average constraints of admissible job sequences, where
the adversary is more relaxed than under absolute constraints, our framework
explicitly supports limit-average constraints. Therefore, it is possible to express
the average workload assumptions commonly used in the analysis of aperiodic

52 Real-Time Scheduling

{}, w = 0

{τ1, τ2}, w = 2

{τ1}, w = 1{τ2}, w = 1

Figure 3.4: Example of a limit-average LTS LW that tracks the average workload of jobs
released by the adversary.

task scheduling in soft-real-time systems [AB98, HCL90]. Other interesting cases
of limit-average constraints include restricting the average sporadicity, and, in
particular, average energy: ensuring that the limit-average of the energy consump-
tion is below a certain threshold is an important concern in modern real-time
systems [AMMMA04]. Figure 3.4 shows an example of a constraint LTS for the
taskset T = {τ1, τ2} with C1 = C2 = 1 that can be used to restrict the average
workload the adversary is allowed to release in the long run.

Remark 2. While in general constraints are encoded as independent automata, it is often possible
to encode certain constraints directly in the non-deterministic LTS of the clairvoyant scheduler
instead. In particular, this is true when restricting the limit-average workload, generating finite
intervals of overload, and releasing a particular job infinitely often.

3.4 Overall Approach for Computing CR
Our goal is to determine the worst-case competitive ratio CRJ (A) for a given on-line
algorithm A. The inputs to the problem are the given taskset T , an on-line algorithm
A specified as a deterministic LTS LA, and the safety, liveness, and limit-average con-
straints specified as deterministic LTSs LS , LL and LW , respectively, which constrain
the admissible job sequences J . Our approach uses a reduction to a multi-objective
graph problem, which consists of the following steps:

1. Construct a non-deterministic LTS LC corresponding to the clairvoyant off-line
algorithm C. Note that since LC is non-deterministic, for every admissible job
sequence σ, there are many possible runs in LC , of course also including the runs
with maximum cumulative utility.

2. Take the synchronous product LTS LA × LC × LS × LL × LW . By doing so, a
path in the product graph corresponds to identically labeled paths in LTSs, and

3.5 Graphs with Multiple Objectives 53

thus ensures that they agree on the same job sequence σ. This product can be
represented by a multi-objective graph (as introduced in Section 3.5).

3. Determine CRJ (A) by reducing the computation of the ratio given in Equa-
tion (3.1) to solving a multi-objective problem on the product graph.

4. Finally, we employ several optimizations in order to reduce the size of product
graph (see Sections 3.6 and 3.7).

3.5 Graphs with Multiple Objectives

In this section, we define various objectives on graphs and outline the algorithms to
solve them. We later show how the competitive analysis of on-line schedulers reduces
to the solution of this section.

Notation on Multi-Graphs
Amulti-graph G = (V, E), hereinafter called simply a graph, consists of a finite
set V of n nodes, and a finite set of m directed multiple edges E ⊂ V ×V ×N+.
For brevity, we will refer to an edge (u, v, i) as (u, v), when i is not relevant.
We consider graphs in which for all u ∈ V, we have (u, v) ∈ E for some v ∈ V,
i.e., every node has at least one outgoing edge. An infinite path ρ of G is an
infinite sequence of edges e1, e2, . . . such that for all i > 1 with ei = (ui, vi),
we have vi = ui+1. Every such path ρ induces a sequence of nodes (ui)i>1,
which we will also call a path, when the distinction is clear from the context,
and ρi refers to ui instead of ei. Finally, we denote with ρ∞ the set of all paths
of G.

3.5.1 Objectives

Given a graph G, an objective Φ is a subset of ρ∞ that defines the desired set of paths.
We will consider safety, liveness, mean-payoff (limit-average), and ratio objectives, and
their conjunction for multiple objectives.

Safety and liveness objectives: We consider safety and liveness objectives, both de-
fined with respect to some subset of nodes X, Y ⊆ V. Given X ⊆ V, the
safety objective defined as Safe(X) = {ρ ∈ ρ∞ : ∀i > 1, ρi 6∈ X}, represents
the set of all paths that never visit the set X. The liveness objective defined as
Live(Y) = {ρ ∈ ρ∞ : ∀j∃i > j s.t. ρi ∈ Y} represents the set of all paths that visit
Y infinitely often.

Mean-payoff and ratio objectives: We consider the mean-payoff and ratio objectives,
defined with respect to a weight function and a threshold. A weight function

54 Real-Time Scheduling

1 2 3

4

5

−1, 3

−1,−1

7, 7

6, 6

0,−1

−5, 0

1, 0

9, 9 8, 82, 1

Figure 3.5: An example of a multi-graph G.

w : E → Zd assigns to each edge of G a vector of d integers. A weight function
naturally extends to paths, with w(ρ, k) = ∑k

i=1 w(ρi). The mean-payoff of a path ρ
is defined as:

MP(w, ρ) = lim inf
k→∞

1
k
· w(ρ, k);

i.e., it is the long-run average of the weights of the path. Given a weight function
w and a threshold vector~ν ∈ Qd, the corresponding objective is given as:

MP(w,~ν) = {ρ ∈ ρ∞ : MP(w, ρ) 6 ~ν};

that is, the set of all paths such that the mean-payoff (or limit-average) of their
weights is at most~ν (where we consider pointwise comparision for vectors). For
weight functions w1, w2 : E→ Nd, the ratio of a path ρ is defined as:

Ratio(w1, w2, ρ) = lim inf
k→∞

~1 + w1(ρ, k)
~1 + w2(ρ, k)

,

which denotes the limit infimumof the coordinate-wise ratio of the sum ofweights
of the two functions; ~1 denotes the d-dimensional all-1 vector. Given weight
functions w1, w2 and a threshold vector~ν ∈ Qd, the ratio objective is given as:

Ratio(w1, w2,~ν) = {ρ ∈ ρ∞ : Ratio(w1, w2, ρ) 6 ~ν}

that is, the set of all paths such that the ratio of cumulative rewards w.r.t w1 and
w2 is at most~ν.

Example 2. Consider the multi-graph shown in Figure 3.5 with a weight function of dimension
d = 2. Note that there are two edges from node 3 to node 5 (represented as edges (3, 5, 1) and
(3, 5, 2)). In the graph we have a weight function with dimension 2. Note that the two edges
from node 3 to node 5 have incomparable weight vectors.

3.5 Graphs with Multiple Objectives 55

3.5.2 Decision Problem

The decision problem we consider is as follows: Given the graph G, an initial node
s ∈ V, and an objective Φ (which can be a conjunction of several objectives), determine
if there exists a path ρ that starts from s and belongs to Φ, i.e., ρ ∈ Φ. For simplicity
of presentation, we assume that every u ∈ V is reachable from s (unreachable nodes
can be discarded by preprocessing G in O(m) time). We first present algorithms for
each of safety, liveness, mean-payoff, and ratio obejctives separately, and then for their
conjunction.

Algorithms for safety objectives

The algorithm for the objective Safe(X) is straightforward. We first remove the set X of
nodes, and iteratively remove nodes without outgoing edges. In the end, we obtain a
graph G = (VX, EX) such that X ∩VX = ∅, and every node in VX has an edge to a node
in VX. Thus, in the resulting graph, the objective Safe(X) is satisfied, and the algorithm
answers yes iff s ∈ VX. The algorithm requires O(m) time.

Algorithms for liveness objectives

To solve for the objective Live(Y), initially perform an SCC (maximal strongly connected
component) decomposition of G. We call an SCC VSCC live, if (i) either |VSCC| > 1, or
VSCC = {u} and (u, u) ∈ E; and (ii) VSCC ∩ Y 6= ∅. Then Live(Y) is satisfied in G iff
there exists a live SCC VSCC that is reachable from s (since every node in a live SCC
can be visited infinitely often). Using for example the algorithm of [Tar72] for the SCC
decomposition also requires O(m) time.

Algorithms for mean-payoff objectives

We distinguish between the case when the weight function has a single dimension
(d = 1) versus the case when the weight function has multiple dimensions (d > 1).

Single dimension: In the case of a single-dimensional weight function, a single weight
is assigned to every edge, and the decision problem of the mean-payoff objective
reduces to determining the mean weight of a minimum-weight simple cycle in
G, as the latter also determines the mean-weight by infinite repetition. Using
the algorithms of [Kar78, Mad02], this process requires O(n ·m) time. When the
objective is satisfied, the process also returns a simple cycle C, as a witness to the
objective. From C, a path ρ ∈ MP(w,~ν) is constructed by infinite repetitions of C.

Multiple dimensions: When d > 1, the mean-payoff objective reduces to determining
the feasibility of a linear program (LP). For u ∈ V, let IN(u) be the set of incoming,
and OUT(u) the set of outgoing edges of u. As shown in [VCD+12], G satisfies

56 Real-Time Scheduling

MP(w,~ν) iff the following set of constraints on ~x = (xe)e∈ESCC with xe ∈ Q is
satisfied simultaneously on some SCC VSCC of G with induced edges ESCC ⊆ E.

xe > 0 e ∈ ESCC

∑
e∈IN(u)

xe = ∑
e∈OUT(u)

xe u ∈ VSCC (3.2)

∑
e∈ESCC

xe · w(e) 6 ~ν

∑
e∈ESCC

xe > 1

The quantities xe are intuitively interpreted as “flows”. The first constraint speci-
fies that the flow of each edge is non-negative. The second constraint is a flow-
conservation constraint. The third constraint specifies that the objective is satisfied
if we consider the relative contribution of the weight of each edge, according to
the flow of the edge. The last constraint asks that the preceding constraints are
satisfied by a non-trivial (positive) flow. Hence, when d > 1, the decision problem
reduces to solving a LP, and the time complexity is polynomial [Kha79].

Witness construction: The witness path construction from a feasible solution
consists of two steps:

1. Construction of a multi-cycle from the feasible solution; and
2. Construction of an infinite witness path from the multi-cycle.

We describe the two steps in detail. Formally, a multi-cycle is a finite set of cycles
with multiplicityMC = {(C1, m1), (C2, m2), . . . , (Ck, mk)}, such that every Ci is
a simple cycle and mi is its multiplicity. The construction of a multi-cycle from
a feasible solution ~x is as follows. Let E = {e : xe > 0}. By scaling each edge
flow xe by a common factor z, we construct the set X = {(e, z · xe) : e ∈ E}, with
X ⊂ ESCC×N+. Then, we start withMC = ∅ and apply iteratively the following
procedure until X = ∅:

(i) find a pair (ei, mi) = arg min(ej,mj)∈X mj,
(ii) form a cycle Ci that contains ei and only edges that appear in X (because of

Equation (3.2), this is always possible),
(iii) add the pair (Ci, mi) in the multi-cycleMC,
(iv) subtract mi from all elements (ej, mj) of X such that the edge ej appears in

Ci,
(v) remove from X all (ej, 0) pairs, and repeat.

Since VSCC is an SCC, there is a path Ci Cj for all Ci, Cj inMC. Given the multi-
cycleMC, the infinite path that achieves the weight at most~ν is not periodic, but
generated by Algorithm 6.

3.5 Graphs with Multiple Objectives 57

Algorithm 6:Multi-objective witness
Input: A graph G = (V, E), and a multi-cycleMC = {(C1, m1), (C2, m2), . . . , (Ck, mk)}
Output: An infinite path ρ ∈ MP(w,~ν)

1 `← 1
2 while True do
3 Repeat C1 for ` ·m1 times
4 C1 C2
5 Repeat C2 for ` ·m2 times
6 . . .
7 Repeat Ck for ` ·mk times
8 Ck C1
9 `← `+ 1
10 end

Algorithms for ratio objectives

We now consider ratio objectives, and present a reduction to mean-payoff objectives.
Consider the weight functions w1, w2 and the threshold vector~ν = ~p

~q as the component-
wise division of vectors ~p,~q ∈ Nd. We define a new weight function w : E→ Zd such
that for all e ∈ E, we have w(e) = ~q ·w1(e)−~p ·w2(e) (where · denotes component-wise
multiplication). It is easy to verify that Ratio(w1, w2,~ν) = MP(w,~0), and thus we solve
the ratio objective by solving the new mean-payoff objective, as described above.

Algorithms for conjunctions of objectives

Finally, we consider the conjunction of a safety, a liveness, and a mean-payoff objective
(note that we have already described a reduction of ratio objectives to mean-payoff
objectives). More specifically, given a weight function w, a threshold vector ~ν ∈ Q,
and sets X, Y ⊆ V, we consider the decision problem for the objective Φ = Safe(X) ∩
Live(Y) ∩MP(w,~ν). The procedure is as follows:

1. Initially compute GX from G as in the case of a single safety objective.

2. Then, perform an SCC decomposition on GX.

3. For every live SCCVSCC that is reachable from s, solve for themean-payoff objective
in VSCC. Return yes, if MP(w,~ν) is satisfied in any such VSCC.

If the answer to the decision problem is yes, then the witness consists of a live SCC
VSCC, along with a multi-cycle (resp. a cycle for d = 1). The witness infinite path is
constructed as in Algorithm 6, with the only difference that at end of each while loop
a live node from Y in the SCC VSCC is additionally visited. The time required for the
conjunction of objectives is dominated by the time required to solve for the mean-payoff
objective. Figure 3.5 provides a relevant example.

58 Real-Time Scheduling

Example 3. Consider the graph in Figure 3.5. Starting from node 1, the mean-payoff-objective
MP(w,~0) is satisfied by the multi-cycleMC = {(C1, 1), (C2, 2)}, with C1 = ((1, 2), (2, 1))
and C2 = ((3, 5), (5, 3)). A solution to the corresponding LP is x(1,2) = x(2,1) = 1

3 and
x(3,5) = x(5,3) =

2
3 , and xe = 0 for all other e ∈ E. Procedure 6 then generates a witness path

for the objective. The objective is also satisfied in conjuction with Safe({4}) or Live({4}). In the
latter case, a witness path additionally traverses the edges (3, 4) and (4, 5) before transitioning
from C1 to C2.

Theorem 3 summarizes the results of this section.

Theorem 3. Let G = (V, E) be a graph, s ∈ V, X, Y ⊆ V, w : E → Zd, w1, w2 E → Nd

weight functions, and~ν ∈ Qd. Let Φ1 = Safe(X)∩Live(Y)∩MP(w,~ν) and Φ2 = Safe(X)∩
Live(Y) ∩ Ratio(w1, w2,~ν). The decision problem of whether G satisfies the objective Φ1 (resp.
Φ2) from s requires

1. O(n ·m) time, if d = 1.

2. Polynomial time, if d > 1.

If the objective Φ1 (resp. Φ2) is satisfied in G from s, then a finite witness (an SCC and a cycle
for single dimension, and an SCC and a multi-cycle for multiple dimensions) exists and can be
constructed in polynomial time.

3.6 Reduction to Multi-Objective Graphs

We present a formal reduction of the computation of the competititve ratio of an on-line
scheduling algorithm with constraints on job sequences to the multi-objective graph
problem. The input consists of the taskset, a deterministic LTS for the on-line algorithm,
and optional deterministic LTSs for the constraints. We first describe the process of
computing the competitive ratio CRJ (A)where J is a set of job sequences only subject
to safety and liveness constraints. We later show how to handle limit-average constraints.

3.6.1 Reduction for Safety and Liveness Constraints

Given the deterministic and non-deterministic LTS LA and LC with reward functions
rA and rC , respectively, and optionally safety and liveness LTS LS and LL, let L =
LA × LC × LS × LL be their synchronous product (refer to the end of this section for
the formal definition of the synchronous product). Hence, L is a non-deterministic
LTS (S, s1, Σ, Π, ∆), and every job sequence σ yields a set of runs R in L, such that
each ρ ∈ R captures the joint behavior of A and C under σ. Note that for each such
ρ the behavior of A is unchanged, but the behavior of C generally varies, due to non-
determinism. Let G = (V, E) be the multi-graph induced by L, that is, V = S and

3.6 Reduction to Multi-Objective Graphs 59

(M, M′, j) ∈ E for all 1 6 j 6 i iff there are i transitions (M, T, M′, P) ∈ ∆. Let wA
and wC be the weight functions that assign to each edge of G the reward that the
respective algorithm obtains from the corresponding transition in L. Let X be the
set of states in G whose LS component is sr, and Y the set of states in G whose LL
component is sa. It follows that for all ν ∈ Q, we have that CRJ (A) 6 ν iff the objective
Φν = Safe(X) ∩ Live(Y) ∩ Ratio(wA, wC , ν) is satisfied in G from the state s1. As the
dimension in the ratio objective is one, Case 1 of Theorem 3 applies, and we obtain the
following:

Lemma 1. Given the product graph G = (V, E) of n nodes and m edges, a rational ν ∈ Q,
and a set of job sequences J admissible to safety and liveness LTSs, determining whether
CRJ (A) 6 ν requires O(n ·m) time.

Since 0 6 CRJ (A) 6 1, the problem of determining the competitive ratio reduces
to finding v = sup{ν ∈ Q : Φν is satisfied in G}. Because this value corresponds to
the ratio of the corresponding rewards obtained in a simple cycle in G, it follows that
v is the maximum of a finite set, and can be determined exactly by an adaptive binary
search (the algorithm used for the adaptive binary search is explained at the end of this
section).

Synchronous product of LTSs

The synchronous product of two LTSs L1 = (S1, s1, Σ, Π, ∆1) and L2 = (S2, s2, Σ, Π, ∆2) is
an LTS L = (S, s, Σ, Π′, ∆) such that:

1. S ⊆ S1 × S2,

2. s = (s1, s2),

3. Π′ = Π×Π, and

4. ∆ ⊆ S× Σ× S×Π′ such that ((q1, q2), T, (q′1, q′2), (P1, P2)) ∈ ∆ iff (q1, T, q′1, P1) ∈
∆1 and (q2, T, q′2, P2) ∈ ∆2.

The set of states S is the smallest ∆-closed subset of S1 × S2 that contains s (i.e.,
s ∈ S, and for each q ∈ S, if there exist q′ ∈ S1 × S2, T ∈ Σ and P ∈ Π′ such that
(q, T, q′, P) ∈ ∆, then q′ ∈ S). That is, the synchronous product of L1 with L2 captures
the joint behavior of L1 and L2 in every input sequence σ ∈ Σ∞ (L1 and L2 synchronize
on input actions). Note that if both L1 and L2 are deterministic, so is there synchronous
product. The synchronous product of k > 2 LTSs L1, . . . , Lk is defined iteratively as the
synchronous product of L1 with the synchronous product of L2, . . . , Lk.

Adaptive Binary Search

Algorithm AdaptiveBinarySearch (Algorithm 7) implements an adaptive binary search for
the competitive ratio in the interval [0, 1]. The algorithmmaintains an interval [`, r] such

60 Real-Time Scheduling

that ` 6 CRJ (A) 6 r at all times, and exploits the nature of the problem for refining
the interval as follows: First, if the current objective ν ∈ [`, r] (typically, ν = (`+ r)/2)
is satisfied in G, i.e., Lemma 1 answers “yes”, and provides the current minimum cycle
C as a witness, the value r is updated to the ratio ν′ of the on-line and off-line rewards in
C, which is typically less than ν. This allows to reduce the current interval for the next
iteration from [`, r] to [`, ν′], with ν′ 6 ν, rather than [`, ν] (as a simple binary search
would do). Second, since CRJ (A) corresponds to the ratio of rewards on a simple cycle
in G, if the current objective ν ∈ [`, r] is not satisfied in G, the algorithm assumes that
CRJ (A) = r (i.e, the competitive ratio equals the right endpoint of the current interval),
and tries ν = r in the next iteration. Hence, as opposed to a naive binary search, the
adaptive version has the advantages of (i) returning the exact value of CRJ (A) (rather
than an approximation), and (ii) being faster.

Algorithm 7: AdaptiveBinarySearch
Input: Graph G = (V, E) and weight functions wA, wC
Output: minC∈G

wA(C)
wC (C)

1 `← 0, r ← 1, ν← (`+r)
2

2 while True do
3 Solve G for obj. Φν and find min simple cycle C
4 ν1 ← wA(C), ν2 ← wC(C)
5 if ν = v1

v2
then

6 return ν
7 else
8 if ν > v1

v2
then

9 r ← ν1
ν2
, ν← (`+r)

2
10 else
11 `← ν, r ← min

(
ν1
ν2

, r
)
, ν← r

12 end
13 end
14 end

3.6.2 Reduction for Limit-Average Constraints

Finally, we turn our attention to limit-average constraints and the LTS LW . We follow
a similar approach as above, but this time including LW in the synchronous product,
i.e., L = LA × LC × LS × LL × LW . Let wA and wC be weight functions that assign to
each edge e ∈ E in the corresponding multi-graph a vector of d + 1 weights as follows.
In the first dimension, wA and wC are defined as before, assigning to each edge of G
the corresponding rewards of A and C. In the remaining d dimensions, wC is always
1, whereas wA equals the value of the weight function w of LW on the corresponding
transition. Let~λ be the threshold vector of LW . It follows that for all ν ∈ Q, we have that
CRJ (A) 6 ν iff the objective Φν = Safe(X)∩ Live(Y)∩Ratio(wA, wC , (ν,~λ)) is satisfied

3.7 Optimized Reduction 61

in G from the state s that corresponds to the initial state of each LTS, where (ν,~λ) is
a d + 1-dimension vector, with ν in the first dimension, followed by the d-dimension
vector~λ. As the dimension in the ratio objective is greater than one, Case 2 of Theorem 3
applies, and we obtain the following:

Lemma 2. Given the product graph G = (V, E) of n nodes and m edges, a rational ν ∈ Q,
and a set of job sequences J admissible to safety, liveness, and limit average LTSs, determining
whether CRJ (A) 6 ν requires polynomial time.

Again, since 0 6 CRJ (A) 6 1, the competitive ratio is determined by an adaptive
binary search similar to Algorithm 7. However, this time CRJ (A) is not guaranteed
to be realized by a simple cycle (the witness path in G is not necessarily periodic, see
Algorithm 6), and is only approximated within some desired error threshold ε > 0.

3.7 Optimized Reduction

In Section 3.6, we have established a formal reduction from determining the competitive
ratio of an on-line scheduling algorithm in a constrained adversarial environment
to solving multiple objectives on graphs. In the current section, we present several
optimizations in this reduction that significantly reduce the size of the generated LTSs.

3.7.1 Clairvoyant LTS

Recall the clairvoyant LTS LC with reward function rC from Section 3.2 that non-
deterministically models a scheduler. Now we encode the off-line algorithm as a
non-deterministic LTS L′C = (S′C , s′C , Σ,∅, ∆′C) with reward function r′C that lacks the
property of being a scheduler, as information about released and scheduled jobs is lost.
However, it preserves the property that, given a job sequence σ, there exists a run ρσ

C in
LC iff there exists a run ρ̂σ

C in L′C with V(ρσ
A, k) = V(ρ̂σ

A, k) for all k ∈ N+. That is, there
is a bisimulation between LC and L′C that preserves rewards.

Intuitively, the clairvoyant algorithm need not partially schedule a task, i.e., it will
either discard it immediately, or schedule it to completion. Hence, in every release of
a set of tasks T, L′C non-deterministically chooses a subset T′ ⊆ T to be scheduled, as
well as allocates the future slots for their execution. Once these slots are allocated, L′C is
not allowed to preempt those in favor of a subsequent job.

The state space S′C of L′C consists of binary strings of length Dmax. For a binary string
B ∈ S′C , we have B[i] = 1 iff the i-th slot in the future is allocated to some released job,
and s′C =~0. Informally, the transition relation ∆′C is such that, given a current subset
T ⊆ Σ of released jobs, there exists a transition δ from B to B′ only if B′ can be obtained
from B by non-deterministically choosing a subset T′ ⊆ T, and for each task τi ∈ T′

allocating non-deterministically Ci free slots in B. Finally, set r′C = ∑τi∈T′ Vi.
By definition, |S′C | 6 2Dmax . In laxity-restricted tasksets, we can obtain an even

tighter bound. Let Lmax = maxτi∈T (Di − Ci) be the maximum laxity in T , and I :

62 Real-Time Scheduling

S′C → {⊥, 1, . . . , Dmax − 1}Lmax+1 a function such that I(B) = (i1, . . . , iLmax+1) are the
indexes of the first Lmax + 1 zeros in B. That is, ij = k iff B[k] is the j-th zero location in
B, and ij = ⊥ if there are less than j free slots in B.

Claim 1. The function I is bijective.

Proof. Fix a tuple (i1, . . . , iLmax+1) with ij ∈ {⊥, 1, . . . , Dmax − 1}, and let B ∈ S′C be any
state such that I(B) = (i1, . . . , iLmax+1). We consider two cases.

1. If iLmax+1 = ⊥, there are less than Lmax + 1 empty slots in B, all uniquely deter-
mined by (i1, . . . , ik), for some k 6 Lmax.

2. If iLmax+1 6= ⊥, then all ij 6= ⊥, and thus any job to the right of iLmax+1 would have
been stalled for more than Lmax positions. Hence, all slots to the right of iLmax+1

are free in B, and B is also unique.

Hence, I(B) always uniquely determines B, as desired. �

For x, k ∈ N+, denote with Perm(x, k) = x · (x − 1) . . . (x − k + 1) the number of
k-permutations on a set of size x.

Lemma 3. Let T be a taskset with maximum deadline Dmax, and Lmax = maxτi∈T (Di − Ci)

be the maximum laxity. Then, |S′C | 6 min(2Dmax ,Perm(Dmax, Lmax + 1)).

Hence, for zero and small laxity environments [BKM+92], as e.g. arising in worm-
hole switching in NoCs [LJ07], S′C has polynomial size in Dmax (also see Section 3.8.4
for zero-laxity tasksets with large Dmax).

3.7.2 Clairvoyant LTS Generation

We now turn our attention on efficiently generating the clairvoyant LTS L′C as described
in the previous paragraph. There is non-determinism in two steps: both in choosing
the subset T′ ⊆ T of the currently released tasks for execution, and in allocating slots
for executing all tasks in T′. Given a current state B and T, this non-determinism leads
to several identical transitions δ to a state B′. We have developed a recursive algorithm
called ClairvoyantSuccessor (Algorithm 8) that generates each such transition δ exactly
once.

The intuition behind ClairvoyantSuccessor is as follows. It has been shown that the
earliest deadline first (EDF) policy is optimal in scheduling job sequences where every
released task can be completed [Der74]. By construction, given a job sequence σ1, L′C
non-deterministically chooses a job sequence σ2, such that for all `, we have σ`

2 ⊆ σ`
1 ,

and all jobs in σ2 are scheduled to completion by L′C . Therefore, it suffices to consider a
transition relation ∆′C that allows at least all possible choices that admit a feasible EDF
schedule on every possible σ2, for any generated job sequence σ1.

3.7 Optimized Reduction 63

Algorithm 8: ClairvoyantSuccessor
Input: A set T ⊆ T , state B, index 1 6 k 6 Dmax
Output: A set B of successor states of B

1 if T = ∅ then return {B};
2 τ ← arg minτi∈T Di, C ← execution time of τ
3 T′ ← T \ {τ}
// Case 1: τ is not scheduled

4 B ← ClairvoyantSuccessor(T′, B, k)
// Case 2: τ is scheduled

5 F ← set of free slots in B greater than k
6 foreach F ⊆ F with |F| = C do
7 B′ ← Allocate F in B
8 k′ ← rightmost slot in F
9 B′ ← ClairvoyantSuccessor(T′, B′, k′)

// Keep only non-redundant states
10 foreach B′′ ∈ B′ do
11 if B′′[1] = 1 and knapsack(B′′, T) then
12 B ← B ∪ {B′′}
13 end
14 end
15 end
16 return B

In more detail, ClairvoyantSuccessor is called with a current state B, a subset of
released tasks T and an index k, and returns the set B of all possible successors of B that
schedule a subset T′ ⊆ T, and every job of T′ is executed later than k slots in the future.
This is done by extracting from T the task τ with the earliest deadline, and proceeding
as follows: The set B is obtained by constructing a state B′ that considers all the possible
ways to schedule τ to the right of k (including the possibility of not scheduling τ at
all), and recursively finding all the ways to schedule T \ {τ} in B′, to the right of the
rightmost slot allocated for task τ.

Finally, we exploit the following two observations to further reduce the state space
of L′C . First, we note that as long as there is some load in the state of L′C (i.e., at least one
bit of B is one), the clairvoyant algorithm gains no benefit by not executing any job in
the current slot. Hence, besides the zero state~0, every state B must have B[1] = 1. In
most cases, this restriction reduces the state space by at least 50%. Second, it follows
from our claims on the off-line EDF policy of the clairvoyant scheduler that for every
two scheduled jobs J and J′, it will never have to preempt J for J′ and vice versa. A
consequence of this is that, for every state B and every continuous segment of zeros in
B that is surrounded by ones (called a gap), the gap must be able to be completely filled
with some jobs that start and end inside the gap. This reduces to solving a knapsack
problem [Kar72] where the size of the knapsack is the length of the gap, and the set of
items is the whole taskset T (with multiplicities). We note that the problem has to be

64 Real-Time Scheduling

Taskset A1 A2 A3 A4 A5 A6
τ1 τ2 τ3 τ4 τ1 τ2 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Ci 1 4 1 3 2 2 2 1 1 1 2 1 2 6 1 1 2 1
Di 2 6 3 4 3 2 2 5 5 2 3 6 2 6 1 5 2 1
Vi 3 2 3 3 5 1 1 2 2 3 2 1 1 10 2 5 4 1

Table 3.1: The tasksets used to generate Figure 3.6.

solved on identical inputs a large number of times, and techniques such as memoization
are employed to avoid multiple evaluations of the same input.

These two improvements were found to reduce the state space by a factor up to 90%
in all examined cases (see Section 3.8 and Table 3.4), and despite the non-determinism,
in all reported cases the generation of LC was done in less than a second.

3.7.3 On-line State Space Reduction

Typically, most on-line scheduling algorithms do “lazy dropping” of the jobs, where
a job is dropped only when its deadline passes. To keep the state space of the LTS
small, it is crucial to only store those jobs that have the possibility of being scheduled,
at least partially, under some sequence of future task releases. We do so by first creating
the LTS naively, and then iterating through its states. For each state s and job Ji,j in s
with relative deadline Di, we perform a depth-limited search originating in s for Di steps,
looking for a state s′ reached by a transition that schedules Ji,j. If no such state is found,
we merge state s to s′′, where s′′ is identical to s without job Ji,j.

3.8 Experimental Results

We have implemented our approach for automated competitive ratio analysis, and
applied it to a range of case studies: four well-known scheduling policies, namely, EDF
(Earliest Deadline First), SRT (Shortest Remaining Time), SP (Static Priorities), and FIFO
(First-in First-out), as well as some more elaborate algorithms that provide non-trivial
performance guarantees, in particular, DSTAR [BKM+91], and DOVER [KS95], are
analyzed under a variety of tasksets. For the scheduling algorithm TD1 [BKM+92], we
constructed a series of task sets according to the recurrence given in [BKM+92] that
lead to its competitive ratio of 1/4.

Our implementation is done in Python and C, and uses the lp_solve [BEN] package
for linear programming solutions. All experiments are run on a standard 2010 computer
with a 3.2GHz CPU and 4GB of RAM running Linux.

3.8.1 Varying Tasksets Without Constraints

The algorithm DOVER was proved in [KS95] to have optimal competitive factor, i.e.,
optimal competitive ratio under the worst-case taskset. However, our experiments

3.8 Experimental Results 65

Taskset A1 Taskset A2 Taskset A3 Taskset A4 Taskset A5 Taskset A6
0

0.5

1

5
9

1
5

2
3

3
7

1
10

1
41

6

5
6

1
4

5
7

1
22

1
2

1
6

3
5

3
4

1
3

1
12

5
9

1
3

1
5

1
4

6
7

1
10

1
4

1
14

1
2

1
2

1
2

1
2

15
28

1
6

3
5

8
13

1
2

1
4

8
11

C
om

pe
tit

iv
e

Ra
tio

SRT SP FIFO EDF DSTAR DOVER

Figure 3.6: The competitive ratio of the examined algorithms in various tasksets under
no constraints. Every examined algorithm is optimal in some taskset, among all others.

no constraints t = 3, w = 2
0

0.5

1
2
3

1
3
4

4
53

4
4
52

3

1

2
3

1

2
3

1

C
om

pe
tit

iv
e

Ra
tio

SRT SP FIFO EDF DSTAR DOVER

Figure 3.7: Restricting the absolute workload generated by the adversary typically
increases the competitive ratio, and can vary the optimal scheduler. On the left, the
performance of each scheduler is evaluated without restrictions: FIFO, SP behave best.
When restricting the adversary to at most 2 units of workload in the last 3 rounds, FIFO
and SP become suboptimal, and are outperformed by other schedulers.

reveal that this performance guarantee is not universal, in the sense that DOVER is
outperformed by other schedulers for specific tasksets. This observation applies to
all on-line algorithms examined: As shown in Figure 3.6, even without constraints on
the adversary, for every scheduling algorithm, there are tasksets in which it achieves
the highest competitive ratio among all others. Note that this high variability of the
optimal on-line algorithm across tasksets makes our automated analysis framework
an interesting tool for the application designer. Table 3.1 lists the tasksets A1-A6 used
for Figure 3.6. The tasks are ordered by their static priorities, which determine the SP
scheduler, as well as the way ties are broken by other schedulers. Along with each
tasket its importance ratio k is shown.

66 Real-Time Scheduling

1.5 1 0.8 0.6 0.4 0.3 0.1 0.78 0.05

FIFO X X X X X X
SP X X X
SRT X X X X X X

Table 3.2: Columns show the mean workload restriction. The check-marks indicate
that the corresponding scheduler is optimal for that mean workload restriction, among
the six schedulers we examined. We see that the optimal scheduler can vary as the
restrictions are tighter, and in a non-monotonic way. EDF, DSTAR and DOVER were
not optimal in any case and hence not mentioned.

τ1 τ2 τ3

Ci 1 1 1
Di 1 2 1
Vi 3 3 1

τ1 τ2 τ3

Ci 2 5 5
Di 7 5 6
Vi 3 2 1

Table 3.3: Taskset of Figure 3.7 (left) and Table 3.2 (right).

3.8.2 Fixed Taskset with Varying Constraints

We also consider fixed tasksets under various constraints (such as sporadicity or work-
load restrictions) for admissible job sequences. Figure 3.7 shows our experimental
results for workload safety constraints, which again reveal that, depending on workload
constraints, we can have different optimal schedulers. Finally, we consider limit-average
constraints and observe that varying these constraints can also vary the optimal sched-
uler for a fixed taskset: As Table 3.2 shows, the optimal scheduler can vary highly and
non-monotonically with stronger limit-average workload restrictions. The tasksets for
both experiments are shown in Table 3.3

3.8.3 Running Times

Table 3.4 summarizes some key parameters of our various tasksets, and gives some
statistical data on the observed running times in our respective experiments. Even
though the considered tasksets are small, the very short running times of our prototype
implementation reveal the principal feasibility of our approach. We believe that further
application-specific optimizations, augmented by abstraction and symmetry reduction
techniques, will allow to scale to larger applications.

3.8.4 Competitive Ratio of TD1

We have also considered the performance of the on-line scheduler TD1 in zero laxity
tasksets with uniform value-density (i.e., for each task τi, we have Ci = Di = Vi).
Following [BKM+92], we have constructed a series of tasksets parametrized by some

3.8 Experimental Results 67

Taskset N Dmax
Size (nodes) Time (s)

Clairv. Product Mean Max

B01 2 7 19 823 0.04 0.05
B02 2 8 26 1997 0.39 0.58
B03 2 9 34 4918 10.02 15.21
B04 3 7 19 1064 0.14 0.40
B05 3 8 26 1653 0.66 2.05
B06 3 9 34 7705 51.04 136.62
B07 4 7 19 1711 2.13 6.34
B08 4 8 26 3707 13.88 34.12
B09 4 9 44 10 040 131.83 311.94
B10 5 7 19 2195 5.73 16.42
B11 5 8 32 9105 142.55 364.92
B12 5 9 44 16 817 558.04 1342.59

Table 3.4: Scalability of our approach for tasksets of various sizes N and Dmax. For each
taskset, the size of the state space of the clairvoyant scheduler is shown, along with the
mean size of the product LTS, and the mean and maximum time to solve one instance
of the corresponding ratio objective.

Taskset η Taskset Comp. Ratio

C1 2 {1, 1} 1
C2 3 {1, 2, 3} 1/2
C3 3.1 {1, 3, 7, 13, 19} 7/25
C4 3.2 {1, 3, 7, 13, 20, 23} 1/4
C5 3.3 {1, 3, 7, 14, 24, 33} 1/4
C6 3.4 {1, 3, 7, 14, 24, 34} 1/4

Table 3.5: Competitive ratio of TD1.

positive real η < 4, which guarantee that the competitive ratio of every on-line scheduler
is upper bounded by 1

η . Given η, each taskset consists of tasks τi such that Ci is given
by the following recurrence, as long as Ci+1 > Ci.

(i) C0 = 1 (ii) Ci+1 = η · Ci −
i

∑
j=0

Cj

In [BKM+92], TD1 was shown to have competitive factor 1
4 , and hence a competitive

ratio that approaches 1
4 from above, as η → 4 in the above series of tasksets. Table 3.5

shows the competitive ratio of TD1 in this series of tasksets. Each taskset is represented
as a set {Ci}, where each Ci is given by the above recurrence, rounded up to the first
integer. We indeed see that the competitive ratio drops until it stabilizes to 1

4 .

68 Real-Time Scheduling

Finally, note that the zero-laxity restriction allows us to process tasksets where Dmax
is much higher than what we report in Table 3.4. The results of Table 3.5 were produced
in less than a minute in total.

3.9 Modeling as a Graph Game

Obviously, the real-time scheduling problem can be viewed as an instance of a game
between the on-line algorithm (Player 1) and an adversary (Player 2) that determines
the task sequence. In the last sections of this chapter we will show how the powerful
“framework” of graph games [Mar75, Sha53] can be utilized for competitive analysis of
real-time scheduling algorithms.

Notation on Graph Games
A partial-observation game (or simply a game) is a tuple G =

〈SG, ΣG
1 , ΣG

2 , δG,OS,OΣ〉 with the following components:

State space: The set SG is a finite set of states.

Actions: ΣG
i (i = 1, 2) is a finite set of actions for Player i.

Transition function: The transition function δG : SG × ΣG
1 × ΣG

2 → SG

given the current state s ∈ SG, an action α1 ∈ ΣG
1 for Player 1, and

an action α2 ∈ ΣG
2 for Player 2, gives the next (or successor) state

s′ = δG(s, α1, α2). A shorter form to depict the previous transition is
to write the tuple (s, α2, α1, s′).

Observations: The set OS ⊆ 2SG is a finite set of observations for Player 1
that partitions the state space SG. The partition uniquely defines a
function obsS : SG → OS that maps each state to its observation such
that s ∈ obsS(s) for all s ∈ SG. In other words, the observation parti-
tions the state space according to equivalence classes. Similarly, OΣ is
a finite set of observations for Player 1 that partitions the action set ΣG

2 ,
and analogously defines the function obsΣ. Intuitively, Player 1 will
have partial observation, and can only obtain the current observation
of the state (not the precise state but only the equivalence class the
state belongs to) and current observation of the action of Player 2 (but
not the precise action of Player 2) to make her choice of action.

3.9.1 Plays

In a game, in each turn, first Player 2 chooses an action, then Player 1 chooses an action,
and given the current state and the joint actions, we obtain the next state following the
transition function δG.

3.9 Modeling as a Graph Game 69

A play in G is an infinite sequence of states and actions P = s1, α1
2, α1

1, s2, α2
2, α2

1,
s3, α3

2, α3
1, s4 . . . such that, for all j > 1, we have δG(sj, α

j
1, α

j
2) = sj+1. The prefix up to sn of

the play P is denoted by P(n) and corresponds to the starting state of the n-th turn.
The set of plays in G is denoted by P∞, and the set of corresponding finite prefixes is
denoted by Prefs(P∞).

3.9.2 Strategies

A strategy for a player is a recipe that specifies how to extend finite prefixes of plays. We
will considermemoryless strategies for Player 1 (where its next action depends only on the
current state, but not on the entire history) and general history-dependent strategies for
Player 2. A strategy for Player 1 is a function πG : OS×OΣ → ΣG

1 that given the current
observation of the state and the current observation on the action of Player 2, selects the
next action. A strategy for Player 2 is a function σG : Prefs(P∞)→ ΣG

2 that given the
current prefix of the play chooses an action. Observe that the strategies for Player 1 are
both observation-based and memoryless; i.e., depend only on the current observations
(rather than the whole history), whereas the strategies for Player 2 depend on the history.
A memoryless strategy for Player 2 only depends on the last state of a prefix. We denote
by ΠM

G , ΣG , ΣM
G the set of all observation-based memoryless Player 1 strategies, the set

of all Player 2 strategies, and the set of all memoryless Player 2 strategies, respectively.
In sequel when we write strategy for Player 1 we consider only observation-based
memoryless strategies. Given a strategy πG and a strategy σG for Player 1 and Player 2,
and an initial state s1, we obtain a unique play P(s1, πG, σG) = s1, α1

2, α1
1, s2, α2

2, α2
1, s3, . . .

such that, for all n > 1, we have σG(P(n)) = αn
2 and πG(obsS(sn), obsΣ(α

n
2)) = αn

1 .

3.9.3 Objectives

Very similar to the objectives introduced in the multi-graph representation that was
discussed in Section 3.5.1 we are defining mean-payoff (or long-run average or limit-
average) objectives, as well as ratio objectives on graph games. Safety and liveness
objective in graph games can be modeled easily by introducing additional winning
states for Player 1 and by Büchi states.

For mean-payoff objectives we will consider games with a reward function r :
SG × ΣG

1 × ΣG
2 × SG → Z that maps every transition to an integer valued reward. The

reward function naturally extends to plays, where r(P , k) = ∑k
i=1 r(si, αi

1, αi
2, s′i), for

k > 1 denote the sum of the rewards for the prefix P(k + 1), i.e., the sum of the rewards
for the first k turns. The mean-payoff of a play P is defined as:

MP(r, P) = lim inf
k→∞

1
k
· r(P , k).

In case of ratio objectives, we will consider games with two reward functions r1 :
SG × ΣG

1 × ΣG
2 × SG → N and r2 : SG × ΣG

1 × ΣG
2 × SG → N that map every transition

70 Real-Time Scheduling

to a non-negative valued reward. Using the same extension of reward functions to plays
as before, the ratio of a play P is defined as:

Ratio(r1, r2, P) = lim inf
k→∞

1 + r1(P , k)
1 + r2(P , k)

.

3.9.4 Decision Problems

Analogous to Section 3.5.2, we define the relevant decision problems on games as: given
a game G , a starting state s1, reward functions r, r1, r2, and a rational threshold ν ∈ Q,
whether it holds that

sup
πG∈ΠM

G

inf
σG∈ΣG

MP(r, P(s1, πG, σG)) > ν;

and
sup

πG∈ΠM
G

inf
σG∈ΣG

Ratio(r1, r2, P(s1, πG, σG)) > ν.

Remark 3. Note, that the decision problems of the graph game problem are defined over the
supπG∈ΠM

G
, taking all possiblememoryless strategies into account. This corresponds to all possible

on-line scheduling strategies, whereas the previously discussed multi-graph problem explicitly
used one deterministic strategy for the on-line scheduler.

3.9.5 Perfect-information Games

Games of complete-observation (or perfect-information games) are a special case of partial-
observation games where OS = {{s} | s ∈ SG} and OΣ = {{α2} | α2 ∈ ΣG

2 }, i.e.,
every individual state and action is fully visible to Player 1, and thus she has perfect
information. For perfect-information games, for the sake of simplicity, we will omit the
corresponding observation sets from the description of the game.

3.10 Complexity Results

In this section, we establish the complexity of the decision problems we consider for
partial-observation mean-payoff and ratio objectives. In particular, we will show that
for partial-observation games with memoryless strategies for Player 1 all the decision
problems are Np-complete.

3.10 Complexity Results 71

Transformation

We start with a simple transformation that will allow us to simplify the technical results
we prove. In the definition of games, we defined them in such a way that in every state
every action was available for the players for simplicity. For technical development, we
will consider games where, at certain states, some actions are not allowed for a player.
The transformation of such games to games where all actions are allowed is as follows:
we add two absorbing dummy states (with only a self-loop), one for Player 1 and the
other for Player 2, and assign rewards in a way such that the objectives are violated for
the player. For example, for mean-payoff objectives with threshold ν > 0, we assign
reward 0 for the only out-going (self-loop) transition of the Player 1 dummy state, and a
reward strictly greater than ν for the self-loop of the Player 2 dummy state; and in case
of ratio-objectives we assign the reward pairs similarly. Given a state s, if Player 1 plays
an action that is not allowed at s, we go to the dummy Player 1 state; and if Player 2
plays an action that is not allowed we go to the Player 2 dummy state. Thus we have a
simple linear time transformation. Hence, for technical convenience, we can assume in
the sequel that different states have different sets of available actions for the players.
We first start with the hardness result.

Lemma 4. The decision problems for partial-observation games with mean-payoff objectives
and ratio objectives, i.e, whether supπG∈ΠM

G
infσG∈ΣG

MP(r, P(s1, πG, σG)) > ν (respectively
supπG∈ΠM

G
infσG∈ΣG

Ratio(r1, r2, P(s1, πG, σG)) > ν), are Np-hard in the strong sense.

Proof. We present a reduction from the 3-SAT problem, which is Np-hard in the strong
sense [Pap93]. Let Ψ be a 3-SAT formula over n variables x1, x2, . . . , xn in conjunctive
normal form, with m clauses c1, c2, . . . , cm consisting of a disjunction of 3 literals (a
variable xk or its negation xk) each. We will construct a game graph GΨ as follows:

State space: SG = {sinit} ∪ {si,j | 1 6 i 6 m, 1 6 j 6 3} ∪ {dead}; i.e., there is an initial
state sinit, a dead state dead, and there is a state si,j for every clause ci and a literal
j of i.

Actions: The set of actions applicable for Player 1 is {true, false,⊥} and for Player 2 is
{1, 2, . . . , m} ∪ {⊥}.

Transitions: In the initial state sinit, Player 1 has only one action⊥ available, and Player 2
has actions {1, 2, . . . , m} available, and given action 1 6 i 6 m, the next state is si,1.
In all other states Player 2 has only one action ⊥ available. In states si,j Player 1
has two actions available, namely, true and false. The transitions are as follows:

• If the action of Player 1 is true in si,j, then (i) if the j-th literal in ci is xk, then
we have a transition back to the initial state; and (ii) if the j-th literal in ci

72 Real-Time Scheduling

Ψ = (x3 ∨ x4 ∨ x5)
c1

∧ · · · ∧ (x1 ∨ x4 ∨ x6)
cm

Player 1

Player 2

...

c1

cm

obsS(·) = 4 sinit

x3x4x5

x1x4x6

dead

true

false

false

true

false

true

true

false

true

false

false

true

Figure 3.8: Illustration of construction of the game from a 3-SAT formula.

is xk (negation of xk), then we have a transition to si,j+1 if j ∈ {1, 2}, and if
j = 3, we have a transition to dead.

• If the action of Player 1 is false in si,j, then (i) if the j-th literal in ci is xk

(negation of xk), then we have a transition back to the initial state; and (ii) if
the j-th literal in ci is xk, then we have a transition to si,j+1 if j ∈ {1, 2}, and if
j = 3, we have a transition to dead.

In state dead both players have only one available action ⊥, and dead is a state
with only a self-loop (transition only to itself).

Observations: First, Player 1 does not observe the actions of Player 2 (i.e., Player 1 does
not know which action is played by Player 2). The observation mapping for the
state space for Player 1 is as follows: the set of observations is {0, 1, . . . , n} and
we have obsS(sinit) = obsS(dead) = 0 and obsS(si,j) = k if the j-th variable of ci is
either xk or its negation xk, i.e., the observation for Player 1 corresponds to the
variables.

A pictorial description is shown in Fig 3.8. The intuition for the above construction is
as follows: Player 2 chooses a clause from the initial state sinit, and an observation-based
memoryless strategy for Player 1 corresponds to a non-conflicting assignment to the
variables. Note that Player-1 strategies are observation-based memoryless; hence, for
every observation (i.e., a variable), it chooses a unique action (i.e., an assignment) and
thus non-conflicting assignments are ensured. We consider GΨ with reward functions
r, r1, r2 as follows: r2 assigns reward 1 to all transitions; r and r1 assigns reward 1 to all

3.10 Complexity Results 73

transitions other than the self-loop at state dead, which is assigned reward 0. We ask
the decision questions with ν = 1. Observe that the answer to the decision problems
for both mean-payoff and ratio objectives is “Yes” iff the state dead can be avoided by
Player 1 (because if dead is reached, then the game stays in dead forever, violating both
the mean-payoff as well as the ratio objective). We now present the two directions of
the proof.

Satisfiable implies dead is not reached: We now show that if Ψ is satisfiable, then
Player 1 has an observation-based memoryless strategy πG∗ to ensure that dead is never
reached. Consider a satisfying assignment A for Ψ, then the strategy πG∗ for Player 1
is as follows: given an observation k, if A assigns true to variable xk, then the strategy
πG∗ chooses action true for observation k, otherwise it chooses action false. Since the
assignment A satisfies all clauses, it follows that for every 1 6 i 6 m, there exists
si,j such that the strategy πG∗ for Player 1 ensures that the transition to sinit is chosen.
Hence the state dead is never reached, and both the mean-payoff and ratio objectives
are satisfied.

If dead is not reached, then Ψ is satisfiable: Consider an observation-based memory-
less strategy πG∗ for Player 1 that ensures that dead is never reached. From the strategy
πG∗ we obtain an assignment A as follows: if for observation k, the strategy πG∗ chooses
true, then the assignment A chooses true for variable xk, otherwise it chooses false.
Since πG∗ ensures that dead is not reached, it means for every 1 6 i 6 m, that there
exists si,j such that the transition to sinit is choosen (which ensures that ci is satisfied
by A). Thus since πG∗ ensures dead is not reached, the assignment A is a satisfying
assignment for Ψ.

Thus, it follows that the answers to the decision problems are “Yes” iff Ψ is satisfiable,
and this establishes the Np-hardness result. �

Remark 4. Note that our reduction used only weight values 0 and 1. This implies that Np-hardness
holds also for the case where weight values are bounded by a constant. This is also true for
objectives with multiple dimensions as introduced in Section 3.5.2.

The Np upper bounds

We now present the Np upper bounds for the problems. In both cases, the polynomial
witness for the decision problem is a memoryless strategy (i.e., if the answer to the

74 Real-Time Scheduling

decision problem is “Yes”, then there is a witness memoryless strategy πG for Player 1,
and the Np algorithm just guesses the witness strategy πG). Once the memoryless strat-
egy is guessed and fixed, we need to show that we have a polynomial time verification
procedure. The polynomial time verification procedures are as follows:

Mean-payoff objectives: Once the memoryless strategy for Player 1 is fixed, the game
problem reduces to a problemwhen there is only Player 2. Therefore, the problem
reduces to the path problem in directed graphs analyzed and shown to be solvable
in polynomial time in the Section 3.5.2.

Ratio objectives: Again once the memoryless strategy for Player 1 is fixed, the game
problem reduces to a decision problem on directed graphs. The same reduction
from ratio objectives to mean-payoff objectives introduced in Section 3.5.2 can be
applied, giving an polynomial time verification algorithm for ratio objectives.

We summarize the result in the following theorem.

Theorem 4. The decision problems for partial-observation games with mean-payoff objectives
and ratio objectives, i.e., whether supπG∈ΠM

G
infσG∈ΣG

MP(r, P(s1, πG, σG)) > ν respectively
supπG∈ΠM

G
infσG∈ΣG

Ratio(r1, r2, P(s1, πG, σG)) > ν, are Np-complete.

3.11 The Synthesis Problem

Devising an algorithm-specific LTS, like described in Section 3.2.1, is already sufficient
for computing its competitive ratio. For a general competitive analysis, a non-deterministic
LTS LG = (SG , sG , Σ, Π, ∆G) with an associated reward function rG that can simulate
all possible on-line algorithms in a memoryless way is required. Such an LTS is already
introduced in Section 3.2.2 for the clairvoyant algorithm. Unfortunately, this time we
cannot apply the Reductions introduced in Section 3.7 and thus not benefit of the
90% state space reduction. Obviously, this non-deterministic finite-state LTS LG can
simulate any possible real-time scheduling algorithm with a memoryless strategy, i.e.,
one that does not need to refer to the history of actions/transitions, as all required
history information is encoded in the state.

We can simply interpret such a non-deterministic transition system as a graph game
〈S , Σ1, Σ2, δ〉, where Σ1 (the actions of Player 1) correspond to the output actions Π
in the LTS and Σ2 (the actions of Player 2) correspond to the input actions Σ. That is,
Player 2 (the adversary) chooses the released tasks while Player 1 chooses the actual
transitions in δ. Thus we have a perfect-information game, and every memoryless
strategy correspond to a scheduling algorithm and vice-versa (i.e., every scheduling
algorithm is a memoryless strategy of the game).

For solving the synthesis problem, we construct a partial-observation game GCR
as follows: GCR = 〈SG = S× S, ΣG

1 = Σ1, ΣG
2 = Σ2 × Σ1, δG,OS,OΣ〉. Intuitively, we

construct a product game with two components, where Player 1 only observes the first
component and makes the choice of the transitions there; and Player 2 is in charge of

3.12 Bibliographic Remarks 75

choosing the input and also the transitions of the second component. However, due to
partial observation, Player 1 does not observe the choice of transitions in the second
component. We describe the transition and the observation mapping to capture this:

(i) the transition function δG : SG × ΣG
1 × ΣG

2 → SG is as follows:

δG((s1, s2), α1, (α2, α′1)) = (δ(s1, α1, α2), δ(s2, α2, α′1));

(ii) the observation for states for Player 1 maps every state to the first component, i.e.,
obsS((s1, s2)) = s1 and the observation for actions for Player 1 maps every state to
the first component as well (i.e., the input from Player 2), i.e., obsΣ((α2, α′1)) = α2.

The two reward functions needed for solving the ratio objective in the game are
as follows: the reward function r1 gives reward according to rG and the transitions of
the first component and the reward function r2 assigns reward according to rG and
the transitions of the second component. Note that the construction ensures that we
compare the utility of an on-line algorithm (transitions of the first component chosen
by Player 1) and an off-line algorithm (chosen by Player 2 using the second component)
that operate on the same input sequence. It follows that there is an on-line algorithm
with competitive-ratio at least ν iff supπG∈ΠM

G
infσG∈ΣG

Ratio(r1, r2)(P(s1, πG, σG)) > ν,
where s1 is the start state derived from the LTSs. By Theorem 4, the decision problem is
in Np in the size of the LTS. Since the strategy of Player 1 can directly be translated to a
scheduling algorithm the solution of the synthesis problemdirectly follows fromfinding
ν∗ = sup{ν ∈ Q : the answer to the decision problem is yes} and the corresponding
witness.

Theorem 5. For the class of scheduling problems defined in Section 3.1, the decision problem,
if there is an on-line scheduler with a competitive ratio at least a rational number ν is in Np in
the size of the LTS constructed from the scheduling problem.

3.12 Bibliographic Remarks

Algorithmic game theory [NRTV07] has been applied to classic scheduling problems
since decades, primarily in economics and operations research, see e.g. [Kou11] for
just one example of some more recent work. It has also been applied for real-time
scheduling of hard real-time tasks in the past: Besides Altisen et al. [AGS02], who
used games for synthesizing controllers dedicated to meeting all deadlines, Bonifaci
and Marchetti-Spaccamela [BMS12] employed graph games for automatic feasibility
analysis of sporadic real-time tasks in multiprocessor systems: Given a set of sporadic
tasks (where consecutive releases of jobs of the same task are separated at least by
some sporadicity interval), the algorithms provided in [BMS12] allow to decide, in
polynomial time, whether some given scheduling algorithm will meet all deadlines. A
partial-information game variant of their approach also allows to synthesize an optimal
scheduling algorithm for a given task set (albeit not in polynomial time).

76 Real-Time Scheduling

Whereas these approaches do not generalize to competitive analysis of tasks with
firm deadlines, we showed in [CKS13] that graph games with mean-payoff resp. ratio
objectives provide a very powerful and flexible framework for this purpose as well: In
case of a given on-line algorithm, like algorithm TD1 of [BKM+92], this results in a
perfect-information game that can be solved in polynomial time (in the size of the game
graph). In order to automatically determine optimal scheduling algorithms, which we
proved to be Np-complete, one has to resort to a partial-information game. We also
argued that any safety objective (prohibiting reachability of certain bad states), any
Büchi objective (ensuring infinite reachability of certain target states), and multiple
mean-payoff objectives (securing desired limit-average behaviors) can be added without
unduly increasing the complexity of the decision problems involved. In [CPKS14] we
extended our framework for the automated competitive analysis of on-line scheduling
algorithms to handle optional safety, liveness, and limit-average constraints along with
the reduction to multi-objective graphs.

Regarding firm deadline task scheduling in general, starting out from [BKM+92],
classic real-time systems research has studied the competitive factor of both simple
and extended real-time scheduling algorithms. The competitive analysis of simple
algorithms (see Section 3.8 for the references) has been extended in various ways later
on: Energy consumption [AMMMA04, DLA10] (including dynamic voltage scaling),
imprecise computation tasks (having both a mandatory and an optional part and asso-
ciated utilities) [BH98], lower bounds on slack time [BH97], and fairness [Pal04]. Note
that dealing with these extensions involved considerable ingenuity and efforts w.r.t.
identifying and analyzing appropriate worst case scenarios, which do not necessarily
carry over even to minor variants of the problem. Maximizing cumulated utility while
satisfying multiple resource constraints is also the purpose of the Q-RAM (QoS-based
Resource Allocation Model) [RLLS97] approach.

Chapter 4
Round Synchronization

ANALYZING THE time complexity of an algorithm is at the core of computer sci-
ence. Classically this is carried out by counting the number of steps executed by a

Turing machine. In distributed computing, computations are typically viewed as being
completed in zero time, focusing on communication delays only. This view is useful
for algorithms that communicate heavily, with local operations of negligible duration
between two communications.

Recall that this thesis is focusing on the implementation of an important subset of
distributed algorithms where communication and computation are highly structured,
namely synchronous, or round-based algorithms [Awe85, BK02, CBS09, RS94] where
each process performs its computations in consecutive rounds. Thereby a single round
consists of

(1) the processes exchanging data with each other and

(2) each process executing local computations.

In Section 2.1.1, we introduced the round-complexity of a distributed algorithm as
the number of rounds it takes to complete a task. We consider repeated instances
of a problem, i.e., a problem is repeatedly solved during an infinite execution. Such
problems arise when the distributed system under consideration provides a continuous
service to the top-level application, e.g., repeatedly solves distributed consensus [LSP82]
in the context of state-machine replication [Sch90]. A natural performance measure
for these systems is the average number of problem instances solved per round during
an execution. In case a single problem instance has round-complexity of a constant
number R > 1 of rounds, we readily obtain a rate of 1/R.

In this thesis we are interested in the time complexity in terms of Newtonian real-
time. We therefore can scale the round-complexity with the duration (bounds) of a
round, yielding a real-time rate of 1/RT, if T is the duration of a single round. Note

78 Round Synchronization

that the attainable accuracy of the calculated real-time rate thus heavily relies on the
ability to obtain a good measurement of T. In case the data exchange within a single
round comprises each process broadcasting messages and receiving messages from all
other processes, T can be related to message latency and local computation upper and
lower bounds, typically yielding precise bounds for the round duration T. However, in
the distributed systems in this thesis T cannot be easily related to message delays as
they are facing the problem of message loss, and it might happen that processes have
to resend messages several times before they are correctly received, and the next round
can be started.

Detailed Road Map of this Chapter:

This chapter is based on the published articles [NFK13] and [FKN+13] in a joint work
with Matthias Függer, Thomas Nowak, Ulrich Schmid, and Martin Zeiner. It is devoted
to the analysis of an retransmission-based synchronizer, i.e., a technique to cope with
message loss and to simulate a perfect round structure.

In Section 4.1, we specify the synchronizer algorithm and formally prove it correct. In
Section 4.2, we define probabilistic message loss and fair-lossy executions, our preferred
model for execution. Furthermore we will introduce a constraint on the maximum
number of retransmissions, which reduces the computational effort from exponentially
to polynomial w.r.t. the system size. In Section 4.3, we construct a Markov chain
suitable to calculate the expected round duration of the synchronizer and we provide
a generic way to solve it. First results are given in Section 4.4 together with a bound
on the rate of convergence of the Markov chain towards the expected round duration.
In Section 4.5, the constraint on the finite number of retransmissions is relaxed by
describing the problem in a dual way. As a drawback, the new model increases the
inherent complexity of the problem from polynomial to exponential. We therefore
introduce conditional forgetting as a way to reduce the complexity. In Section 4.6, we
derive explicit formulas for two cases of the conditional forgetting that can be solved
very efficiently. In Section 4.7, we specify theMarkov chain in this newmodel and derive
some general results for the derivative in p = 1 and for the order of growth for p→ 0.
Furthermore, we derive computationally feasible lower bounds for the computationally
exhaustive cases. In Section 4.8, we discuss the results of the analysis and compare them
to Monte-Carlo simulations. Finally, Section 4.9 provides additionally bibliographic
information about this chapter.

4.1 The Retransmission Scheme

In this section, we formally present the object of study: a general technique to cope with
message loss in distributed systems by retransmissions. Instead of handling message
loss directly in the algorithm, it is often more convenient for the algorithm’s designer
to separate concerns into (1) simulating perfect rounds, i.e., rounds without message
loss, on top of a system with message loss, and (2) to run a simpler algorithm on top

4.1 The Retransmission Scheme 79

of the simulated perfect rounds. Simulations that provide stronger communication
directives on top of a system satisfying weaker communication directives are commonly
used in distributed computing [DLS88, CBS09]. In this section we present one such
simulation—a retransmission scheme—and prove it correct. Note that the proposed
retransmission scheme is a modified version of the α synchronizer [Awe85]. However,
it does not use the acknowledgment message.

4.1.1 Computational Model

We assume a distributed system comprising a fully connected communication network
between processes taken from the set P = {1, 2, . . . ,N}. Each process i has a local state
si; a global state of the distributed system is a collection of local states (si)i∈P . Processes
communicate by message passing.

Formally, an algorithm A for the distributed system comprises the following parts:

(A1) For every process i, a set of possible local states Si, a set of possible initial local states
S0

i , and the set of possible messagesM, not containing ⊥. We assume without loss
of generality that the sets Si are pairwise disjoint.

(A2) A pair of functions (Sendi, Nexti) for every process i: The send function Sendi for
every process i, is from Si to 2M, and maps a local state to a nonempty finite
set of messages to send. The next state function Nexti for every process i, is from
Si× 2M×P to Si, andmaps a local state and a set R ⊆M×P of receivedmessages,
labeled with their respective sender, to the next local state.

Computation at processes is assumed to occur in sequences of steps locally happen-
ing at the processes. In a step, a process atomically

(E1) receives a set of messages,

(E2) computes its next local state, and

(E3) sends (broadcasts) a nonempty finite set of messages to all other processes.

Note that our definition of a step differs from classic definitions with respect to
(E3), potentially allowing an algorithm to broadcast a set of messages instead of a
single message per step. While in distributed systems without transmission failures,
algorithms for both kinds of definitions can be easily reduced to each other by joining
all messages to be sent in a step into a single message, this is not the case for distributed
systems that have to cope with transmission failures, like those we consider in this work.
There, the extension allows for finer grained modeling of benign transmission failures,
i.e., failures where contents of messages are not changed: Instead of the single message,
sent in a step, either being received in some other step or not, an arbitrary subset of
messages sent in a step can be received in some other step.

Formally we define: An event is a tuple (i, R), where i is a process and R is the
set of messages, tagged with their respective senders (i.e., R ⊆ M× P) that are

80 Round Synchronization

received by process i in the event. An execution E of an algorithm A is a sequence
of events and local states such that for every process i, the projection E(i) to pro-
cess i’s events and states is an alternating sequence of local states and events E(i) =
si(1), ei(2), si(2), . . . , ei(k), si(k), . . . , such that

(Ex1) every si(1) is an initial (local) state of process i and

(Ex2) for every k > 1 with ei(k) = (i, R), it is si(k) = Nexti
(
si(k− 1), R

)
.

In execution E, event e is before event e′ if e appears before e′ in sequence E. We say
that process i receivesmessage m from j in step k if (m, j) ∈ R where ei(k) = (i, R). We
further say that process i sends (broadcasts) message m in step k, if m ∈ Sendi

(
si(k)

)
.

It remains to specify the relation between message sends and receives that has to
hold during an execution. We do this by means of communication axioms which denote
a condition on the distributed system’s communication behavior: The system can either
satisfy an axiom or not. The following are communication axioms used in the sequel:

NoGen For all processes i and j, if j receives message m from i, then i broadcasted m
before.

FairLoss For all processes i and j, if i broadcasts the same message m in infinitely many
steps, then j receives m from i in infinitely many steps.

Further desirable axioms are that of communication closedness CommClosed [CBS09], per-
fect communication PerfComm, and perfect communication for self loops, i.e., PerfComm∗.
They are defined by:

CommClosed For all processes i and j, if j receives message m from i in step k > 1, then i
broadcasted m in step k− 1.

PerfComm For all processes i and j, if i broadcasts message m in step k− 1, k > 1, then j
receives m from i in step k.

PerfComm∗ For all processes i, if i broadcasts message m in step k − 1, k > 1, then i
itself receives m from i in step k.

Call an execution admissible if it satisfies NoGen, which is reasonable to assume for
benign communication, and for each process i, E(i) is infinite. A fair-lossy execution of
an algorithm A is an admissible execution that satisfies axiom FairLoss. A perfect round
execution is an admissible execution that satisfies axioms CommClosed and PerfComm.

4.1.2 Simulating Perfect Round Executions

Our goal is to determine the round duration of a retransmission scheme that simulates a
perfect round execution on top of a fair-lossy execution. We thus proceed by introducing
a notion of simulation. Let B be an algorithm (designed for perfect round executions).
We define what it means for an algorithm A (designed for fair-lossy executions) to

4.1 The Retransmission Scheme 81

simulate algorithm B. The idea is that algorithm A’s local state includes B’s local state
in a special variable Bstate. Further, in each event, algorithm A is allowed to trigger a
local event of algorithm B. It does this by setting a local variable trigger to true, and
handing over a set of received messages to its local instance of B. Algorithm B then
makes a step and updates Bstate.

Formally we define: Let S (B)
i andM(B) denote the sets of local states and the set of

messages of B, respectively. We demand of algorithm A that its local states contain the
variables Bstate, trigger, and Bevent. Variable Bstate’s type at process i is S (B)

i , variable
trigger is Boolean, and variable Bevent’s type is Σ(B), where Σ(B) is the set of events of
algorithm B. Given an execution E of algorithm A, we define the B-projection E � B of E
in the following way:

(P1) Let F denote the subsequence of E that arises when (a) deleting all events, and (b)
all states in which trigger = false.

(P2) We define E � B to be the sequence arising from F when replacing each processor’s
first state, si(1), by si(1)[Bstate], and every but each processor’s first state, si(r),
by the two elements si(r)[Bevent], si(r)[Bstate] where s[X] denotes the value of
variable X in state s.

Definition 1. We say that algorithm A simulates B in perfect rounds on top of fair-lossy
executions if, (S1) trigger = true in every initial state of A, (S2) for every initial state s(B)

i (1)
of B, there exists an initial state si(1) of A such that si(1)[Bstate] = s(B)

i (1), and (S3) for every
fair-lossy execution E of A, execution E � B is a perfect round execution of B.

4.1.3 The Algorithm

We are now ready to formally state a retransmission-based algorithm that simulates
perfect round executions on top of fair-lossy ones, and prove it correct.

For every algorithm B, consider algorithm A = A(B) presented in Algorithm 9.
The idea of the simulation is simple: Each process steadily broadcasts (B1) its current
(simulated) round number Rnd together with algorithm B’s messages for the current
round (Rnd) and, (B2) the previous round number Rnd− 1 together with algorithm B’s
messages for the previous round (Rnd− 1). A process waits in round Rnd until it has
received all processes’ round Rnd messages. When it does, it starts (simulated) round
Rnd + 1.

The intuition for a process sending both its current and its previous round messages
is the following: At some point during the execution, the value of any two processes’
Rnd variables may differ by one, because of transmission failures. That is, while some
process i already started simulated round K, and therefore waits for messages with
round number K, another process j may still be in simulated round K− 1, waiting for
messages with round number K− 1. Clearly, process i therefore must still send round
K− 1 messages to j, until j, too, starts round K. Messages with round number less than
K− 1, however, need not be sent by process i: It can be shown that at any point during

82 Round Synchronization

Algorithm 9: Process i’s code in simulation algorithm A(B)
Code for processes i, 1 6 i 6 N :
Variables: BState← s(B)

i (1); trigger← true; Bevent←⊥;
Variables: BStateold ← ⊥; ∀j ∀r: Rcv[j, r]← ⊥; Rnd← 1;

1 Next State Function() when receiving set of messages R
2 for received message (r, m) ∈ R from process j do
3 Rcv[j, r]← m
4 trigger← false
5 if for all j in Π: Rcv[j, Rnd] 6= ⊥ then
6 Bstateold ← Bstate
7 trigger← true
8 R′ ← {(Rcv[j, Rnd], j) | j ∈ Π}
9 Bevent← (i, R′)

10 Bstate← Next(B)
i
(
Bstate, R′

)
11 Rnd← Rnd + 1

12 Send Function()
13 broadcast

(
Rnd− 1, Send(B)

i (Bstateold)
)
; broadcast

(
Rnd, Send(B)

i (Bstate)
)

the execution, the values of any two processes’ Rnd variables differ by at most one (cf.
proof of Proposition 1).

Proposition 1. In every fair-lossy execution E of A(B) holds: If there exists a process i ∈ P
such that si(k)[Rnd] 6 K for all k, then sj(k)[Rnd] 6 K + 1 for all k and all j ∈ P .

Proof. By code line 13, i never sends a message of the form (r, m)with r > K. By NoGen,
no process receives a message of the form (r, m) with r > K from process i. Hence, by
lines 2–3, all processes always have Rcv[i, r] = ⊥ for all r > K, and, by lines 5 and 11,
do not set Rnd to a higher value than K + 1. �

Proposition 2. In every fair-lossy execution E of A(B) holds: If for all i ∈ P there exists a k
such that si(k)[Rnd] = K, then for all i ∈ P there exists a k′ such that si(k′)[Rnd] = K + 1.

Proof. Suppose, by means of contradiction, that there exists some process i such that
si(k′)[Rnd] 6 K for all k′. Then by Proposition 1, sj(k′)[Rnd] 6 K + 1 for all k′ and all
j ∈ P . Hence by code line 13 and the facts that every process j ∈ P has Rnd = K in
one of its steps and takes infinitely many steps, it follows that every process sends a
message of the form (r, m) infinitely often where r ∈ {K, K + 1}. By FairLoss, all of
these messages are received at least once. Then, by code line 13 and 2–3, process i has
Rcv[j, K] 6=⊥ for all processes j ∈ P during some step of the execution. But then, by
code line 11, also Rnd = K + 1. Contradiction. �

4.2 Round Durations under Probabilistic Message Loss 83

Proposition 3. In every fair-lossy execution E of A(B), for every process i ∈ P , the sequence
si(k)[Rnd] is unbounded as k→ ∞.

Proof. This is an immediate consequence of Proposition 2. �

From Propositions 1–3 we immediately obtain the correctness of the retransmission
scheme:

Theorem 6. For every algorithm B, algorithm A(B) simulates B in perfect rounds on top of
fair-lossy executions.

Proof. It remains to show that (S3a) E � B is an execution of B and (S3b) E � B is perfect
whenever E is fair-lossy. Property (S3a) follows from code lines 4, 7, and 8–10. Property
(S3b) follows from code line 5 and Proposition 3. �

4.2 Round Durations under Probabilistic Message Loss

We have presented a simple algorithm to simulate perfect rounds on top of fair-lossy
executions. In the rest of this chapter, we analyze the performance of this solution.

In a fair-lossy execution E of algorithm A(B), we define the start of simulated round r
at process i, denoted by Ti(r), to be the number of the step in E(i) in which the state
change from Rnd = r − 1 to Rnd = r was triggered; formally, Ti(r) = k if E(i) =
si(1), ei(2), si(2), . . . and k is the smallest index such that si(k)[Rnd] = r. L(r) is the
number of the step where the last process starts its simulated round r, i.e., L(r) =
maxi Ti(r). The duration of (simulated) round r at process i is Ti(r + 1)− Ti(r), that is, we
measure the round duration in the number of local process steps.

Define the effective transmission delay δj,i(r) to be the number of tries until process j’s
simulated round r message is successfully received by i. Formally, for any twoprocesses i
and j, let δj,i(r)− 1 be the smallest number ` > 0 such that

(D1) process j sends a message m in its (Tj(r) + `)-th step and

(D2) process i receives m from j in its (Tj(r) + `+ 1)-th step.

We thus obtain the following proposition relating the starts of simulated rounds:

Proposition 4. Let E be a fair-lossy execution of A(B). For each process i: Ti(1) = 1, and for
each r > 1:

Ti(r + 1) = max
16j6N

(
Tj(r) + δj,i(r)

)
(4.1)

Figure 4.1 depicts part of a fair-lossy execution of algorithm A(B). The arrows in the
figure indicate the time until the first successful reception of a message sent in round r:
The tail of the arrow is located at time Ti(r), when a process i starts round r and thus
broadcasts round-r messages for the first time. The head of the arrowmarks the smallest

84 Round Synchronization

Process 3 t

Process 2 t

Process 1 t

L(r − 1) L(r) L(r + 1)

T1(r − 1)

T2(r − 1)

T3(r − 1)

T1(r)

T2(r)

T3(r)

T1(r + 1)

T2(r + 1)

T3(r + 1)

δ1,2(r)

δ1,3(r)

Figure 4.1: Fair-lossy execution of A(B).

time after Ti(r) at which a process j receives a message from i. Messages from processes
to themselves are not explicitly shown in the figure. For example, processes 1 and 3 start
round r at time T{1,3}(r) sending round-r messages for the first time. While process 2
receives the message from 3 in the next step, it needs an overall amount of 4 time steps
and consecutive retransmissions to receive a message from process 1.

To allow for a quantitative assessment of the durations of the simulated rounds,
besides the trivial bounds of (0, ∞), we extend the modeling of the environment with a
probability space: We introduce probability spaces ProbLoss and ProbLoss∗, for which
we exemplarily calculate the expected average simulated round duration.

For all processes i and j, if process i sends message m in its (k− 1)-th step, k > 1,
then process j receives m from i in its k-th step with probability p, where 0 < p 6 1, is
called the probability of successful transmission.1

Formally, let ProbLoss(p) be the probability distribution on the set of fair-lossy
executions defined by: The random variables δj,i(r) are pairwise independent, and for
any two processes i, j, the probability that δj,i(r) = z is (1− p)z−1 · p. For computational
purposes we also introduce the probability distribution ProbLoss(p, M), where M ∈
N+ ∪ {∞}, which is obtained from ProbLoss(p) by modifying the distribution of the
δj,i(r): In contrast to ProbLoss(p) we bound the number of tries per simulated round
message until it is successfully received by M. Call M the maximum number of tries
per round.2 Variable δj,i(r) can take values in the set {z ∈ N+ | 1 6 z 6 M}. For any
two processes i, j, and for integers z with 1 6 z < M, the probability that δj,i(r) = z is
(1− p)z−1 · p. In the remaining cases, i.e., with probability (1− p)M−1, δj,i(r) = M. If
M = ∞, this case vanishes. In particular, ProbLoss(p, ∞) = ProbLoss(p). The analysis
for the case M = ∞ is postponed by now but is done in the Sections 4.5–4.7 by using a
dual description of the problem.

1In systems in which the probability of successful transmission is bounded from below by some p > 0,
axiom FairLoss holds with probability 1.

2In the setting of this thesis this is motivated by using (m, k)-firm deadline scheduling for the messages
of an algorithm, i.e., from k consecutive message releases at least m have to meet their deadline, with
m = 1 and k = M. The relaxation of this restriction to M = ∞ is analyzed later in this chapter starting
with Section 4.5.

4.3 Calculating the Expected Round Duration 85

In order to describe systems satisfying the realistic assumptionPerfComm∗, we define
ProbLoss∗(p) and ProbLoss∗(p, M) in the same way as ProbLoss(p) and ProbLoss(p, M),
except that always δi,i(r) = 1 for all r and processes i.

We will see in Sections 4.4 and 4.8, that the error we make when calculating the
expected duration of the simulated rounds in ProbLoss(p, M) with finite M instead of
ProbLoss(p) is small, even for small values of M. It is further shown in these sections
that for M > 4, ProbLoss(p, M) is a good approximation of ProbLoss∗(p, M).

Since for each process i and r > 1, it holds that Ti(r) 6 L(r) 6 Ti(r + 1), we obtain
the equivalence:

Proposition 5. If Ti(r)/r converges, then lim
r→∞

Ti(r)/r = lim
r→∞

L(r)/r. �

We can thus reduce the study of the processes’ average round durations to the study
of the sequence L(r)/r as r → ∞.

4.3 Calculating the Expected Round Duration

The expected round duration of the retransmission algorithm, in the case of fair-lossy
executions distributed according to ProbLoss(p, M) or ProbLoss∗(p, M), is determined
by introducing an appropriate Markov chain, and analyzing its steady state. To this
end, we define a Markov chain Λ(r), for an arbitrary round r > 1, that

(1) captures enough of the dynamics of round construction to determine the round
durations and

(2) is simple enough to allow efficient computation of each of the process i’s expected
round duration λi, defined by λi = E limr→∞ Ti(r)/r.

Because of Proposition 5, for any two processes i, j it holds that λi = λj = λ, where
λ = E limr→∞ L(r)/r.

The section is structured as follows: Section 4.3.1 provides the definition of the
Markov chain Λ(r). Section 4.3.2 develops a method to compute the expected round
duration using Λ(r). Section 4.4 shows the use of Λ(r) by giving several examples.
Section 4.4 presents lower bounds of the convergence speed of the round durations.
A certain familiarity with basic notions of probability theory is assumed; however, no
advanced knowledge is necessary for the comprehension of this section.

86 Round Synchronization

4.3.1 Round Durations as a Markov Chain

Markov Chain Facts
AMarkov chain is a stochastic process, i.e., a sequence

(
X(r)

)
r>0 of random

variables, such that the value of X(r) does not depend on the value of the
full history

(
X(0), X(1), . . . , X(r − 1)

)
, but only on the value of X(r − 1);

more formally, X(r)’s conditional probability distribution for fixed values of(
X(0), . . . , X(r− 1)

)
is the same as for the sole fixed value X(r− 1).

Given the set X of possible values for X(r) (its state space) and a distribution
for X(0), the Markov chain

(
X(r)

)
is fully determined once we fix a transition

probability distribution P, i.e., a collection (PX)X∈X of probability distributions
on X . We denote the transition probability from state Y ∈ X to state X ∈ X
by PX,Y .
Let X(r) be aMarkov chain with state spaceX . We say that X(r) is aperiodic if,
for every X ∈ X , the integers in the set

{
r : P

(
X(r) = X | X(0) = X

)
> 0

}
are relatively prime. We say that X(r) is irreducible if for all X, Y ∈ X , there
exists an r such thatP

(
X(r) = Y | X(0) = X

)
> 0. We say that X(r) isHarris

recurrent if, for every X ∈ X , P
(
X(r) = X for infinitely many r

)
= 1.

A Markov chain that, by definition, fully captures the dynamics of the round dura-
tions is T(r), where T(r) is defined to be the collection of local round finishing times
Ti(r) from Equation (4.1). However, directly using Markov chain T(r) for the calcula-
tion of λ is impossible since Ti(r), for each process i, grows without bound in r, and
thereby its state space is infinite. For this reason we introduce Markov chain Λ(r)
which optimizes T(r) in two ways and which we use to compute λ: One can achieve
a finite state space by considering differences of T(r), instead of T(r); for a process
executing algorithm A(B) decides to increment its variable Rnd in step k based only on
the round numbers it receives in step k and the value of its variable Rnd in step k− 1.
Thus the probability that T(r) = X given that T(r− 1) = Y is equal to the probability
that T(r) = X − c given that T(r− 1) = Y − c, if c ∈ N. Choosing c = L(r− 1), and
observing that Ti(r)− L(r− 1) is upper bounded by M, yields a finite state space for
finite M, which enables us to calculate the expected round duration.

Also, we do not record the local round finishing times (resp. the difference of local
round finishing times) for every of the N processes, but only record the number of
processes that are associated a given value. This is feasible because the system is
invariant under permutation of processes: The probability that T(r) = X given that
T(r− 1) = Y is equal to the probability that T(r) = X′ given that T(r− 1) = Y′, where
X′i = Xφ(i) and Y′i = Yφ(i) for an arbitrary permutation φ of P . This optimization further
reduces the size of the state space from MN to (N+M−1

M−1), which is polynomial in N ; in
practical situations, it suffices to use modest values of M as will be shown in Section 4.8.
We show in Theorem 7 that the information recorded in the states of Markov chain Λ(r)
suffices to determine the expected round duration λ.

4.3 Calculating the Expected Round Duration 87

We are now ready to formally define Λ(r). Its state space L is defined to be the set
of M-tuples (σ1, . . . , σM) of nonnegative integers such that ∑M

z=1 σz = N . The M-tuples
in L are related to T(r) as follows: Let #X be the cardinality of the set X, and set

σz(r) = #
{

i | Ti(r)− L(r− 1) = z
}

(4.2)

for r > 1, where we set L(0) = 0 to make the case r = 1 in Equation (4.2) well-defined.
Note that Ti(r)− L(r− 1) is always greater than 0, because δj,i(r) in Equation (4.1) is
greater than 0. Finally, set

Λ(r) =
(
σ1(r), . . . , σM(r)

)
. (4.3)

The intuition forΛ(r) is as follows: For each z, σz(r) captures the number of processes
that start simulated round r, z steps after the last process started the last simulated
round, namely r − 1. For example, in case of the execution depicted in Figure 4.1,
σ1(r) = 0, σ2(r) = 1 and σ3(r) = 2. Since algorithm A(B) always waits for the last
simulated roundmessage received, and themaximum number of tries until the message
is correctly received is bounded by M, we obtain that σz(r) = 0 for z < 1 and z > M.
Knowing σz(r), for each z with 1 6 z 6 M, thus provides sufficient information

(1) on the processes’ states in order to calculate the probability of the next state
Λ(r + 1) = (σ1, . . . , σM), and

(2) to determine L(r + 1)− L(r) and by this the simulated round duration for the
last process.

We first obtain:

Proposition 6. Λ(r) is a Markov chain.

Proof. On the set of collections (xi) of numbers indexed by P = {1, 2, . . . ,N}, we
introduce equivalence relation ∼ by defining (xi) ∼ (yi) if and only if there exists a
bijection φ : P → P such that xi = yφ(i) for every i ∈ P . We have (xi) ∼ (yi) if and
only if the multisets {xi | i ∈ P} and {yi | i ∈ P} are equal. Denote by

[
(xi)

]
the

equivalence class of collection (xi). Every state Λ ∈ L naturally corresponds to such an
equivalence class.

Let r > 0 and Λ1, Λ2, . . . , Λr−1 ∈ L. We need to show that the conditional dis-
tribution for Λ(r), given Λ(1), . . . , Λ(r − 1) ≡ Λ1, . . . , Λr−1, is the same as the con-
ditional distribution for Λ(r), given only Λ(r − 1) ≡ Λr−1. By Equations (4.3) and
(4.2), it suffices to show that the conditional distributions for A(r) =

[(
Ai(r)

)]
where

Ai(r) = Ti(r)− L(r− 1), are equal.
We claim that the distribution of A(r) only depends on B(r) =

[(
Bi(r)

)]
where

Bi(r) = Ti(r− 1)− L(r− 1). From Equation (4.1) it follows that Ai(r) = maxj
(

Bj(r) +

88 Round Synchronization

δj,i(r− 1)
)
. Let B̃(r) ∈ B(r), i.e., B̃i(r) = Bφ(i)(r) for a bijection φ : P → P and define

Ãi(r) = maxj
(

B̃j(r) + δj,i(r − 1)
)
. We show that there exists a bijection ψ : P → P

such that the distributions for Ai(r) and Ãψ(i)(r) are equal. It suffices to set ψ = φ−1.
Then, Ãψ(i)(r) = maxj

(
Bφ(j)(r) + δj,ψ(i)(r− 1)

)
= maxj

(
Bj(r) + δψ(j),ψ(i)(r− 1)

)
. Since

(j, i) 7→
(
ψ(j), ψ(i)

)
is a permutation of P2, and δψ(j),ψ(i)(r − 1) and δj,i(r − 1) are

identically distributed for all (j, i) ∈ P2, the claim follows.
Equivalence class B(r), in turn, is completely determined by Λr−1 because of the

identity Bi(r) = Ai(r− 1)−maxj Aj(r− 1). This concludes the proof. �

In fact, Proposition 6 holds for a wider class of delay distributions δj,i(r), namely
those invariant under permutation of processes. Likewise, many results in the remainder
of this section are applicable to a wider class of delay distributions: For example, we
might drop the independence assumption on the δj,i(r) for fixed r and assume strong
correlation between the delays, i.e., for each process j and each round r, δj,i(r) = δj,i′(r)
for any two processes i, i′.3

Let X(r) be aMarkov chain with countable state spaceX and transition probabilities
P. A probability distribution π on X is a stationary distribution for X(r) if π(X) =

∑Y∈X π(Y) · PX,Y for all X ∈ X . Intuitively, π(X) is the asymptotic relative amount of
time in which Markov chain X(r) is in state X.

Definition 2. Call a Markov chain good if it is aperiodic, irreducible, Harris recurrent, and
has a unique stationary distribution.

Proposition 7. Λ(r) is a good Markov chain.

Proof. Λ(r) is aperiodic because every state can be reached from every other in two and
in three steps with nonzero probability: The transition probability from every state to
state (N , 0, . . . , 0) is nonzero, for this transition occurs if all messages arrive on their
first try. Also, the transition probability from state (N , 0, . . . , 0) to every other state is
nonzero.

Harris recurrence follows from the fact that every state can be reached in two steps
with nonzero probability, together with the fact that the state space is finite.

Existence and uniqueness of the stationary distribution follows from recurrence
[MT93, Theorem 10.0.1]. �

Denote by π the unique stationary distribution of Λ(r), which exists because of
Proposition 7. Define the function σ : L → R by setting σ(Λ) = max{z | σz 6= 0}
where Λ = (σ1, . . . , σM) ∈ L. By abuse of notation, we write σ(r) instead of σ

(
Λ(r)

)
.

From the next proposition it follows that σ(r) = L(r)− L(r− 1), i.e., knowing σ(1) to
σ(r) suffices to determine L(r). For example, σ(r + 1) = 5 in the execution in Figure 4.1.

3This is the case of “negligible transmission delays” considered by Rajsbaum and Sidi [RS94].

4.3 Calculating the Expected Round Duration 89

Proposition 8. L(r) = ∑r
k=1 σ(k)

Proof. The proof is by induction on r. The case r = 1 is trivial. We are done if we show
L(r) = L(r − 1) + σ(r) for all r > 1. By definition, we have L(r − 1) + σ(r) = L(r −
1) + maxi

(
Ti(r)− L(r− 1)

)
. Noting the rule A + maxi Bi = maxi(A + Bi) concludes

the proof. �

Proposition 9. Let X(r) be good Markov chain with state space X and stationary distribution
π. Further, let g : X → R be a function such that ∑X∈X |g(X)| · π(X) < ∞. Then,

lim
r→∞

1
r

r

∑
k=1

g
(
X(k)

)
= ∑

X∈X
g(X) · π(X)

with probability 1 for every initial distribution.

Proof. [MT93, Theorem 17.0.1(i)] �

Proposition 10. Let X(r) be a good Markov chain with finite state space X and stationary
distribution π. Then there exists some ρ, 0 < ρ < 1, such that for all X ∈ X :

P
(
X(r) = X

)
= π(X) + O (ρr)

as r → ∞.

Proof. [MT93, Theorem 13.0.1(i)], [MT93, Theorem 16.0.2(iii)] �

The following theorem is key for calculating the expected simulated round duration
λ. We will use the theorem for the computation of λ starting in Section 4.3.2. The
theorem states that the simulated round duration averages L(r)/r up to some round r
converge to a finite λ almost surely as r goes to infinity. This holds even for M = ∞,
that is, if no bound is assumed on the number of tries until successful reception of a
message. The theorem further relates λ to the steady state of Λ(r). Let Lz ⊆ L denote
the set of states Λ such that σ(Λ) = z. Then:

Theorem 7. L(r)/r converges to λ with probability 1. Furthermore, λ = ∑M
z=1 z ·π(Lz) < ∞.

Proof. We use Proposition 9 and prove that its hypothesis holds by showing ∑z>1 z ·
π(Lz) 6 2N

2
p−2.

As a first step, we show π(Lz) 6 2N
2
(1− p)z−1. Because P

(
σ(r) = z

)
converges to

π(Lz) as r → ∞ (Proposition 10), it suffices to prove this inequality for P
(
σ(r) = z

)
.

The event σ(r) = z implies the event ∃i, j : δi,j(r) > z, i.e., the complement of the event

90 Round Synchronization

∀i, j : δi,j(r) 6 z− 1. The events δi,j(r) 6 z− 1 each have probability 1− (1− p)z−1.
Hence

P
(
σ(r) = z

)
6 1−

(
1− (1− p)z−1

)N 2

(4.4)

for all r > 1.
We now manipulate the right-hand side of Equation (4.4) with operations that

preserve the inequality. We invoke the binomial theorem and the triangle inequality,
arriving at ∑N

2

k=0 (
N 2

k)(1− p)k(z−1). Finally, we substitute k(z− 1) by z− 1 and use the
identity ∑k (

n
k) = 2n to prove the claimed inequality π(Lz) 6 2N

2
(1− p)z−1.

Using the derivative of the geometric sum formula, we calculate ∑∞
z=0 z(1− p)z−1 =

1/p2. This concludes the proof. �

4.3.2 Using Λ(r) to Compute λ

Wenow state amethod that, given parameters M 6= ∞,N , and p, computes the expected
simulated round duration λ (see Theorem 7). In its core is a standard procedure to
compute the stationary distribution of a Markov chain, in form of a matrix inversion.
In order to utilize this standard procedure, we need to explicitly state the transition
probability distributions PX,Y, from each state Y to each state X, which we regard as
a matrix P. We will do this using two different assumptions on the communication
system:

(i) for the simpler case ProbLoss(p, M) of a system with probabilistic loop-back links,
i.e., where we do not assume that PerfComm∗ holds, and

(ii) for a system ProbLoss∗(p, M) with the (more realistic) assumption of PerfComm∗.

A first observation, that is valid for both systems, yields that matrix P bears some
symmetry, and thus some of the matrix’ entries can be reduced to others. In fact we
first consider the transition probability from normalized Λ states only, that is, Λ =
(σ1, . . . , σM) with σM 6= 0.

In a second step we observe that a non-normalized state Λ can be transformed to a
normalized state Λ′ = Norm(Λ)without changing its outgoing transition probabilities,
i.e., for any state X in L, it holds that PX,Λ = PX,Λ′ : Thereby Norm is the function
L → L defined by:

Norm(σ1, . . . , σM) =

{
(σ1, . . . , σM) if σM 6= 0
Norm(0, σ1, . . . , σM−1) otherwise

For example, assuming that M = 5, and considering the execution in Figure 4.1,
it holds that Λ(r) = (0, 1, 2, 0, 0). Normalization, that is, right alignment of the last
processes, yields Norm(Λ(r)) = (0, 0, 0, 1, 2).

4.3 Calculating the Expected Round Duration 91

Probabilistic loop-back links ProbLoss

For any Λ = (σ1, . . . , σM) in L with σM 6= 0, and any 1 6 z 6 M, let P(6 z | Λ) be the
conditional probability that a specific process i is in the set {i | Ti(r + 1)− L(r) 6 z},
given that Λ(r) = Λ, i.e.,

P(6 z | Λ) = P(Ti(r + 1)− L(r) 6 z | Λ(r) = Λ) . (4.5)

Since the right-hand side is independent of i and r, P(6 z | Λ) is well-defined. We
easily observe that Ti(r + 1) − L(r) 6 z, given that Λ(r) = Λ, if and only if all the
following M conditions are fulfilled: For each u, 1 6 u 6 M: for all processes j for
which Tj(r)− L(r− 1) = u (this holds for σu(r) many) it holds that δj,i(r) 6 z + M− u.
Therefore we obtain:

P(6 z | Λ(r)) = ∏
16u6M

P(δ 6 z + M− u)σu(r) , (4.6)

for all z, 1 6 z 6 M. Let P(z | Λ) be the conditional probability that a specific process
is in the set {i | Ti(r + 1)− L(r) = z}, given that Λ(r) = Λ, i.e.,

P(z | Λ(r)) = P(Ti(r + 1)− L(r) = z | Λ(r) = Λ) . (4.7)

From Equations (4.5) and (4.7), we immediately obtain:

P(1 | Λ) = P(6 1 | Λ) and,
P(z | Λ) = P(6 z | Λ)− P(6 z− 1 | Λ) , (4.8)

for all z, 1 < z 6 M. We may finally state the transition matrix P: for each X, Y ∈ L, the
probability that the system makes a transition from state Y = Λ(r) = (σ1, . . . , σM) to
state X = Λ(r + 1) = (σ′1, . . . , σ′M) is given by the probability that of the N processes,
there are σ′1 processes in the set {i | Ti(r + 1)− L(r) = 1}, of the N − σ′1 remaining
processes, there are σ′2 processes in the set {i | Ti(r + 1)− L(r) = 2}, etc. Finally, the
remaining σ′M = N −∑M−1

z=1 σ′z processes are in the set {i | Ti(r + 1)− L(r) = M}. This
yields,

PX,Y =

(
N

σ′1, σ′2, . . . , σ′M

)
∏

16z6M
P(z | Norm(Y))σ′z , (4.9)

where for any finite sequence a1, . . . , am with m > 1 and elements from N, the multino-
mial coefficient (∑m

`=1 ai
a1,a2,...,am

) is equal to ∏16`6m (∑`
k=1 ak
a`

), i.e., the number of possibilities to
distribute ∑m

`=1 ai processes into m bins of sizes a1, . . . , am.

92 Round Synchronization

Deterministic loop-back links ProbLoss∗

Note that for a system where PerfComm∗ holds, in Equation (4.6), one has the account
for the fact that a process i definitely receives its own message after 1 step. In order
to specify a transition probability analogous to Equation (4.6), it is thus necessary
to know to which of the σk(r) in Λ(r), process i did count for, that is, for which k,
Ti(r) − L(r − 1) = k holds. We then replace σk(r) by σk(r) − 1, and keep σu(r) for
u 6= k. Formally, let P(6 z | Λ, k), with 1 6 k 6 M, be the conditional probability
that process i is in the set {j | Tj(r + 1)− L(r) 6 z}, given that Λ(r) = Λ, as well as
Ti(r)− L(r− 1) = k. Then:

P(6 z | Λ(r), k) = ∏
16u6M

P(δ 6 z + M− u)σu(r)−1{k}(u)

where 1{k}(u) is the indicator function, having value 1 for u = k and 0 otherwise.
Equation (4.8) can be generalized in a straightforward manner to obtain expressions
for P(z | Λ, k), i.e., for the conditional probability that process i is in the set {i |
Ti(r + 1)− L(r) = z}, given that Λ(r) = Λ, as well as Ti(r)− L(r− 1) = k.

When stating a formula for PX,Y analogous to Equation (4.9), one has to account
for the dependency of P(z | Λ, k) on k. For that purpose let PX,Y(Q), where Q is an
M×M matrix with elements fromN, be the transition probability from state Y = Λ(r)
with Norm(Y) = (σ1, . . . , σM) to state X = Λ(r + 1) = (σ′1, . . . , σ′M), provided that
Qz,k is the number of processes which are in both {i | Ti(r + 1) − L(r) = z} and
{i | Ti(r)− L(r− 1) = k}. By definition, PX,Y(Q) is nonzero only if ∑M

z=1 Qz,k = σk, for
1 6 k 6 M, and ∑M

k=1 Qz,k = σ′z, for 1 6 z 6 M. We readily obtain,

PX,Y(Q) = ∏
16k6M

((
σk

Q1,k, Q2,k, . . . , QM,k

)
∏

16z6M
P(z | Norm(Y), k)Qz,k

)
. (4.10)

To calculate PX,Y one has to account for all possible choices of Q, each of which
occurs with probability PX,Y(Q). WithQ being the set of M×M matrices with elements
fromN for which ∑M

z=1 ∑M
k=1 Qz,k = N , we finally obtain

PX,Y = ∑
Q∈Q

PX,Y(Q) . (4.11)

While the calculation of the transition probabilities PX,Y depends on the specific
communication assumptions made, the method to obtain λ from the expressions for
PX,Y is independent from all these assumptions. It is presented in the following. Let
Λ1, Λ2, . . . , Λn be any enumeration of states in L. We write Pi,j = PΛi ,Λj and πi = π(Λi)
to view P as an n× n matrix and π as a row vector. By definition, the unique stationary
distribution π satisfies

(1) π = π · P,

4.4 Results for Finite Retransmission Bounds 93

(2) ∑i πi = 1, and

(3) πi > 0.

It is an elementary linear algebraic fact that these properties suffice to characterize π by
the following formula:

π = e ·
(

P(n→1) − I(n→0))−1 (4.12)

where e = (0, . . . , 0, 1), P(n→1) is matrix P with its entries in the n-th column set to 1,
and I(n→0) is the identity matrix with its entries in the n-th column set to 0.

After calculating π, we can use Theorem 7 to finally determine the expected simu-
lated round duration λ. The time complexity of this approach is determined by (T1)
building transition matrix P, and (T2) the matrix inversion of P. For both probability
spaces (i) ProbLoss(p, M) and (ii) ProbLoss∗(p, M), matrix P is of the same size n× n,
where n = (N+M−1

M−1) is the number of states in the Markov chain Λ(r). Thus the time
complexity of (T2) is within O(n3), which is polynomial in N . With respect to (T1) a
naïve implementation of the procedure presented in (ii) has time complexity at least
#Q = (N+M2−1

M2−1), which outweighs (T2), in contrast to the method presented in (i).
In Sections 4.4 and 4.8 we show that already small values of M yield good approx-

imations of λ, that quickly converge with growing M. This leads to a tractable time
complexity of the proposed method.

4.4 Results for Finite Retransmission Bounds

The presented method allows to obtain analytic expressions for λ for fixed M and N in
terms of probability p. Denote by λprob(N , p, M) respectively λdet(N , p, M) the value of
λ for probability space ProbLoss(p, M) respectively ProbLoss∗(p, M) with N processes.
Figure 4.2 contains λdet(N , p, M) for M = 2 and N equal to 2 and 3. For larger M
and N , the expressions already become significantly longer.

λdet(2,p,2)= 6−6p+p2
3−2p

λdet(3,p,2)= 2−8p+18p2−16p3+12p4+24p5−64p6+22p7+30p8−22p9+3p10

1−4p+9p2−8p3+6p4+12p5−27p6+6p7+12p8−6p9

Figure 4.2: Expressions for λdet(N , p, M) with M = 2 and N = {2, 3}.

Clearly for all p, M and N , λdet(N , p, M) is less or equal to λprob(N , p, M), since
ProbLoss differs from ProbLoss∗ only by restricting δi,i(r) to attain the minimum value of
1 for each process i in each simulated round r. So if one is interested in nontrivial upper
bounds of deterministic loop-back systems, probabilistic loop-back systems are a good
choice. Figures 4.3a–4.3d even suggest that λprob(N , p, M) is a good approximation
for λdet(N , p, M) for N > 4: Figures 4.3a and 4.3b show solutions of λprob(2, p, M)
and λdet(2, p, M) while Figures 4.3c and 4.3d show solutions for λprob(4, p, M) and
λdet(4, p, M) respectively.

94 Round Synchronization

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

p

ex
p.

ro
un

d
du

ra
tio

n
λ

pr
ob
(2

,p
,M

) M = 6
M = 5
M = 4
M = 3
M = 2

(a) N = 2, probabilistic loop-backs

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

p

ex
p.

ro
un

d
du

ra
tio

n
λ

de
t(

2,
p,

M
) M = 6

M = 5
M = 4
M = 3
M = 2

(b) N = 2, deterministic loop-backs

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

p

ex
p.

ro
un

d
du

ra
tio

n
λ

pr
ob
(4

,p
,M

) M = 6
M = 5
M = 4
M = 3
M = 2

(c) N = 4, probabilistic loop-backs

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

p

ex
p.

ro
un

d
du

ra
tio

n
λ

de
t(

4,
p,

M
) M = 6

M = 5
M = 4
M = 3
M = 2

(d) N = 4, deterministic loop-backs

Figure 4.3: λprob(N , p, M) and λdet(N , p, M) versus p for N = {2, 4} and 2 6 M 6 6.

We further observe that for high values of the probability of successful communica-
tion p, systems with different M have approximately the same slope. The derivative
of λdet for M = ∞ and p → 1 is analyzed in Section 4.7.2. Since real distributed
systems typically have a high p value, we may approximate λdet(N , p, M) as well as
λprob(N , p, M) for higher M values with that of significantly lower M values. The effect
is further investigated in Section 4.8 by means of Monte Carlo simulation.

Rate of Convergence

We know from Theorem 7 that L(r)/r converges to λ. The purpose of this section is
to establish results on the rate of this convergence. As a particular result, we will see
that also σ(r) converges to λ. Our main result of this section will be a lower bound on
the probability for the event |L(r)/r− λ| < A (Theorem 8). We assume M < ∞ in this
section.

4.4 Results for Finite Retransmission Bounds 95

The first proposition shows exponential convergence of σ(r)’s expected value to λ.
It is the consequence of a standard result in Markov theory.

Proposition 11. There exists some ρ, 0 < ρ < 1, such that E σ(r) = λ +O(ρr) as r → ∞.

Proof. By definition of the expected value, E σ(r) = ∑M
z=1 z ·P

(
Λ(r) ∈ Lz

)
. By Propo-

sition 10, it is P
(
Λ(r) ∈ Lz

)
= π(Lz) +O(ρr) for some ρ, 0 < ρ < 1. Combining the

two equations yields the claimed formula by Theorem 7. �

Having established the rate of convergence of σ(r), we may conclude something
about the rate of convergence of L(r)/r, i.e., its averages. However, we do not arrive at
exponential convergence of L(r)/r towards λ, but only O(r−1). This can be seen as a
consequence of the tendency of averages to even out drastic changes. The mathematical
reason for it is that the sum ∑r

k=1 ρk does not tend to zero as r → ∞.

Proposition 12. E L(r)/r = λ +O(1/r) as r → ∞.

Proof. By Proposition 8, we have E L(r)/r = 1/r ∑r
k=1E σ(k). Now, using Proposi-

tion 11 and noting that ∑r
k=1 ρk = O(1) as r → ∞ concludes the proof. �

Next, we investigate the variance of σ(r).

Proposition 13. There exists some ρ, 0 < ρ < 1, such that Var
(
σ(r)

)
= β− λ2 +O(ρr) as

r → ∞, where β = ∑M
z=1 z2 · π(Lz).

Proof. The proposition follows by the same means as Proposition 11 after using the
formula Var(X) = EX2 − (EX)2. �

The next proposition provides two insights:

(1) As r tends to infinity, the variance of L(r)/r tends to zero; in contrast, the variance
of σ(r) tends to β− λ2 (Proposition 13). This is a common phenomenon when
considering averages of random variables (cf. Law of Large Numbers).

(2) We show a rate of convergence of O(1/r) for the variance of L(r)/r. This is an
improvement over standard Markov theoretic results, which are able to show that
the variance is O(log log r/r) [MT93, Theorem 17.0.1(iv)-LIL].

Proposition 14. Var
(

L(r)/r
)
= O(1/r) as r → ∞.

Proof. We subdivide the proof into a sequence of claims, which we prove separately.

Claim 2. E σ(k) · σ(`) = λ2 +O
(

ρmin(k,`−k)
)
uniformly for all k < `.

96 Round Synchronization

By definition of the expected value, E σ(k) · σ(`) is equal to

M

∑
z=1

M

∑
u=1

z · u ·P
(
Λ(k) ∈ Lz ∧Λ(`) ∈ Lu

)
. (4.13)

But P
(
Λ(k) ∈ Lz ∧Λ(`) ∈ Lu

)
is equal to

∑
Λ∈Lz

P
(
Λ(k) = Λ

)
·P
(
Λ(`) ∈ Lu | Λ(k) = Λ

)
. (4.14)

Proposition 10 states that there exists a ρ, 0 < ρ < 1 such that P
(
Λ(k) = Λ

)
=

π(Λ) +O(ρk) and P
(
Λ(`) ∈ Lu | Λ(k) = Λ

)
= π(Lu) +O(ρ`−k).

Substituting this last equality into (4.14), together with π(Lz) = ∑Λ∈Lz
π(Λ) and

Theorem 7, yields that (4.13) is equal to λ2 +O
(

ρmin(k,`−k)
)
. We have thus proved

Claim 2.

Claim 3. Cov
(
σ(k), σ(`)

)
= O

(
ρmin(k,`−k)

)
uniformly for all k < `.

This claim follows from the formula Cov(X, Y) = E(X · Y)−EX ·EY, together with
Claim 2 and Proposition 11.

Claim 4. ∑
16k<`6r

ρmin(k,`−k) = O(r)

Define a(k, `) = ρmin(k,`−k). Denote by A(r) the set of pairs (k, `) such that 1 6 k < ` 6 r.
Further define B(r) to be the set of pairs (k, `) in A(r) that satisfy 2k < ` and C(r) to
be the set of pairs (k, `) in A(r) that satisfy 2k > `. It is A(r) = B(r) ∪ C(r). For
(k, `) ∈ B(r), we have a(k, `) = ρk and for (k, `) ∈ C(r), we have a(k, `) = ρ`−k.

Hence,

∑
(k,`)∈B(r)

a(k, `) 6
r

∑
`=1

r

∑
k=1

ρk . (4.15)

We calculate ∑r
k=1 ρk = (ρ− ρr+2)/(1− ρ) = O(1), which implies that the right-hand

side of (4.15) is O(r).
Similarly,

∑
(k,`)∈C(r)

a(k, `) 6
r

∑
k=1

2k

∑
`=k+1

ρ`−k =
r

∑
k=1

k

∑
`=1

ρ` 6
r

∑
k=1

r

∑
`=1

ρ` (4.16)

is also O(r). This proves Claim 4.

Claim 5. Var
(

L(r)/r
)
= O(1/r)

4.5 Removing the Maximum Retransmission Bound 97

We use the formulas Var
(

∑i Xi
)
= ∑i Var(Xi) + 2 ∑i<j Cov(Xi, Xj) and Var(aX) =

a2 ·Var(X), which, together with Proposition 13 and Claims 3 and 4, implies Claim 5.
This concludes the proof. �

We can utilize the acquired knowledge about expected value and variance of L(r)/r
to explicitly state an asymptotic lower bound on the probability that L(r)/r has distance
at most α to the expected value λ. This is a standard procedure and uses Chebyshev’s
inequality, which can be stated as

P
(
|X−EX| > A

)
6 (Var X)2/A2 . (4.17)

In our case, however, we do not have one random variable, but countably many.
Thus, we do not limit ourselves to considering a single constant A, but we allow a
sequence αr instead of A. The case of a constant is a particular case.

Theorem 8. If M < ∞ and αr · r → ∞ as r → ∞, then

P (|L(r)/r− λ| > αr) = O
(
1/r2α2

r
)

as r → ∞.

Proof. Let E L(r)/r = λ + gr. Then, by Proposition 12, we have gr = O(1/r). The
condition |L(r)/r− λ| > αr is equivalent to |L(r)/r− λ| − |gr| > αr−|gr|, which, by
the triangle inequality, implies |L(r)/r− (λ + gr)| > αr − |gr|.

Hence, P
(
|L(r)/r− λ| > αr

)
is less or equal to P

(
|L(r)/r− (λ + gr)| > αr − |gr|

)
,

which, by Chebyshev’s inequality (4.17), yields

P (|L(r)/r− λ| > αr) 6
Var(L(r)/r)2

(αr − |gr|)2 ,

which is O
(
1/r2α2

r
)
. Here we used Proposition 14 and the fact that αr − |gr| = Ω(αr),

which follows from gr = O(1/r) and αr · r → ∞. �

Corollary 1. For all A > 0, the probability that |L(r)/r− λ| > A is O
(
r−2). �

4.5 Removing the Maximum Retransmission Bound

In the previous sections of this chapter we used the time series limr→∞ Ti(r)/r, intro-
duced in Section 4.2, to calculate the expected round duration. As one consequence we
had to limit the number of retransmissions until successful reception of a message for
being able to compute the steady state of the Markov chain. To overcome this limitation

98 Round Synchronization

Process 3 t

Process 2 t

Process 1 t

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

R1(t1) = R − 1

R2(t0) = R − 1

R3(t0) = R − 1

R1(t4) = R

R2(t3) = R

R3(t4) = R

R1(t9) = R + 1

R2(t8) = R + 1

R3(t7) = R + 1

Figure 4.4: Fair-lossy execution of A(B) in the dual space (cf. Figure 4.1).

we can switch to a dual description using limt→∞ t/Ri(t), where Ri(t) denotes the local
round number of process i at time t, to calculate the expected round duration instead.

The same execution of the simulated algorithm A(B) already shown in Figure 4.1 is
depicted in Figure 4.4 using the new model annotations. For the analysis we have to
change the system model slightly as unfortunately we cannot stick to the same compact
state space as before. Moving to the dual space introduces the need to explicitly store
the last received message of every channel within the state of the Markov chain. This
makes solving the Markov chain computationally very exhaustive and therefore we
will investigate in some complexity reductions measures. By discarding a part of the
local state of the processes from time to time, we call it “forgetting”, we obtain systems
with degraded performance but computationally feasible analysis.

4.5.1 SystemModel in the Dual Space

In the updated system model, the synchronizer algorithm uses two local variables,
specified for every process i at time t: The local round number Ri(t) and the knowledge
vector

(
Ki,1(t), Ki,2(t), . . . , Ki,N (t)

)
. Processes continuously broadcast their local round

number. The knowledge vector contains information on other processes’ local round
numbers, accumulated via received messages. A process increments its local round
number, and thereby starts the next round, after it has gained knowledge that all other
processes have already started the current round. The round increment rule again
assures a precision of 1, i.e., |Ri(t)− Rj(t)| 6 1 for all t. Dually to L(r) = maxi Ti(r),
the step number where the last process starts to simulate round r, we define RG(t) =
mini Ri(t), the smallest round any process is simulating at time t, and call it the global
round number at time t.

After updating its local round number, a process may forget, i.e., lose its knowl-
edge about other processes’ local round numbers. We are considering four different
conditions COND, describing the times when process i forgets:

I. Never, i.e., COND := false.4

II. At every local round switch, i.e., COND :=
[
Ri(t) = Ri(t− 1) + 1

]
.

4This case corresponds to the original problem introduced earlier by the probability spaceProbLoss∗(p).

4.5 Removing the Maximum Retransmission Bound 99

III. At every global round switch, i.e., COND :=
[
RG(t) = RG(t− 1) + 1

]
.

IV. Always, i.e., COND := true.

Formally, we writeMi,j(t) = 0 if process j’s message to process i sent at time t was
lost, andMi,j(t) = 1 if it arrives (at time t + 1). Process i’s computation in its step at
time t consists of the following:

1. Update knowledge according to received messages:
Ki,j(t)← Rj(t− 1) ifMi,j(t− 1) = 1, and Ki,j(t)← Ki,j(t− 1) otherwise.

2. Increment round number if possible: Ri(t)← Ri(t− 1) + 1 if Ki,j(t) > Ri(t− 1) for
all j, and Ri(t)← Ri(t− 1) otherwise.

3. Conditional forget: Ki,j(t)← 0 if COND is true.

Initially, Ki,j(1) = 0, and no messages are received at time 1. In particular, Ri(1) = 1. In
the remainder of this chapter, when we refer to Ki,j(t), we mean its value after step 3.

We assume that theMi,j(t) are pairwise independent random variables with

P
(
Mi,j(t) = 1

)
= p if i 6= j and P

(
Mi,i(t) = 1

)
= 1 . (4.18)

Figure 4.4 shows part of an execution for condition I on forgetting, the original
version of the problem introduced in Section 4.2 (cf. Figure 4.1 for the figure in the
original model). Times are labeled t0 to t10 and directly corresponds to the processes
computing steps. Processes 1 and 3 start their local round R at time t4 while process 2
has already started its local round R at time t3. Again, the arrows in the figure indicate
the time until the first successful reception of a message sent in round R.

Note that we are only analyzing the case of deterministic loop-back links in the
dual space. We introduced probabilistic loop-back earlier for the purpose to reduce the
analysis complexity. In the current state space deterministic loop-backs can be modeled
without increasing the complexity and therefore we stick to the more realistic case.

4.5.2 Performance Measure

For a system with N processes and probability p of successful transmission, we define
the expected round duration of process i by λi(N , p) = E limt→∞ t/Ri(t). Since our
synchronization algorithm guarantees precision 1, it directly follows that λi(N , p) =
λj(N , p) for any two processes i and j. We will henceforth refer to this common value
as λ(N , p), or simply λ if the choice of parameters N and p is clear from the context.
To distinguish the four proposed conditions on forgetting, I to IV, we will write λI, λII,
λIII, and λIV, respectively.

Note that the condition in case III cannot be detected locally and thus does not allow
for a distributed implementation. We rather use λIII as a bound (cf. Equation (4.19)).
For case IV, where processes always forget, and for case III, where processes forget on
global round switches, λ can be calculated efficiently with explicit formulas, which

100 Round Synchronization

we give in Section 4.6 in Theorems 9 and 10. For the remaining cases, I and II, we
compute λ(N , p) by means of a steady state analysis of a finite Markov chain with time
complexity exponential in N . We show how to do this in Section 4.7.1. The Markov
chainmodel is also useful to study the behavior of λ, for all four conditions on forgetting,
when p→ 1 and p→ 0. We do this in Sections 4.7.2 and 4.7.3, respectively. We derive
explicit lower bounds on λI and λII in Section 4.7.4.

Proposition 15. For all four conditions on forgetting, λ = E lim
t→∞

t/Ri(t) = E lim
r→∞

Ti(r)/r.

Proof. From the equality Ti(r) = inf{t | Ri(t) = r} we obtain Ri(Ti(r)) = r. It fol-
lows that (Ti(r)/r)r>1 = (Ti(r)/Ri(Ti(r)))r>1. Since the latter is a subsequence of
(t/Ri(t))t>1, both converge to the same value, which is equal to λ by definition. �

By comparing Ti(r) for every fixed choice of the sequenceMi,j(t) one can show that

λI 6 λII 6 λIII 6 λIV . (4.19)

4.6 Explicit Formulas for λIII and λIV

In this section, by elementary probability theory and calculations, we derive explicit
formulas for λIII and λIV in Theorems 9 and 10, respectively. Both use a formula for
the expected maximum of geometrically distributed random variables (Proposition 16).
For that purpose define for pairwise independent with parameter p geometrically
distributed random variables Gi(p)

ξ(M, p) = E max
16i6M

Gi(p) .

We will make use of the following well-known proposition [KP93, SR90].

Proposition 16. ξ(M, p) =
M

∑
i=1

(
M
i

)
(−1)i 1

(1− p)i − 1

Consider case III, i.e., processes forget on global round switches. Initially, all pro-
cesses i are in round Ri(1) = 1, and their knowledge is Ki,j(1) = 0. Observe that
processes switch to round 2 as messages are received. At the time t at which the last pro-
cess switches to round 2, it holds that (i) all processes i have Ri(t) = 2, (ii) all processes
have knowledge Ki,j(t) > 1 for all j before forgetting, and (iii) all processes forget, since
a global round switch occurred, ultimately resulting in Ki,j(t) = 0. The only difference
between the initial state and the state at time t is the constant round number offset
Ri(t) = Ri(1) + 1. By repeated application of the above arguments we obtain that the
system is reset to the initial state modulo a constant offset in round numbers Ri, each
time a global round switch occurs. This allows to determine the expected average round
duration by analyzing the expected time until the first round switch.

4.7 Markovian Analysis 101

We will now state explicit formulas for the expected round duration in cases III
and IV. We will use these formulas in particular in Section 4.7.3 when studying the
behavior of λ for p→ 0.

Theorem 9. λIII(N , p) = ξ
(
N (N − 1), p

)
=
N (N−1)

∑
i=1

(
N (N − 1)

i

)
(−1)i

(1− p)i − 1

Proof. Recall that the events that process i receives a message from process j at time t
are pairwise independent for all i, j and times t. Thus the smallest time t, at which i
receives a message from j is geometrically distributed with parameter p. Noting that
the first global round switch occurs at time L(2) = maxi(Ti(2)), we obtain

λ(N , p) = E lim
r→∞

L(r)/r = EL(2) = E max
16i6N (N−1)

Gi(p)

where the Gi are geometrically distributed with parameter p. The theorem now follows
from Proposition 16. �

Theorem 10. λIV(N , p) = ξ
(
N , pN−1) = N

∑
i=1

(
N
i

)
(−1)i 1

(1− pN−1)i − 1

Proof. Observe that the first global round switch occurs at the minimum time t bywhich
each of the processes has received messages from all processes simultaneously; and that
Ri(t) = 2 as well as Ki,j(t) = 0 holds at this time. Again the state at time t is identical to
the initial state with all round numbers incremented by 1. Repeated application of the
above arguments allows to calculate the expected round duration by λ(N , p) = EL(2).
The first time i receives a message from all processes simultaneously is geometrically
distributed with parameter pN−1. Since we have N processes, we take the maximum
over N such geometrically distributed random variables. The theorem now follows
from Proposition 16. �

4.7 Markovian Analysis

Determining λI and λII, the expected round duration in the cases that processes never
forget or forget at local round switches, is more involved. In the following, we will
calculate λ by modeling the system as a finite Markov chain and analyzing its steady
state distribution. Additionally, we derive the asymptotic behaviors for p→ 1 and for
p → 0 from the Markov chain model. As the computation of the chain’s steady state
distribution is computationally very expensive, we will give analytical lower bounds in
Section 4.7.4.

Let A(t) be the sequence of matrices with Ai,i(t) = Ri(t) and Ai,j(t) = Ki,j(t)
for i 6= j. It is easy to see that A(t) is a Markov chain, i.e., the distribution of A(t + 1)

102 Round Synchronization

depends only on A(t). Since both Ri(t) and Ki,j(t) are unbounded, the state space of
Markov chain A(t) is infinite. We therefore introduce the sequence of normalized states
a(t), defined by A(t)−mink Ak,k(t) cropping negative entries to −1, i.e.,

ai,j(t) = max
{

Ai,j(t)−min
k

Ak,k(t) , −1
}

. (4.20)

Normalized states belong to the finite set {−1, 0, 1}N×N .
The sequence of normalized states a(t) is a Markov chain: The probability that

A(t + 1) = Y, given that A(t) = X, is equal to the probability that A(t + 1) = Y + c,
given that A(t) = X + c. We may thus restrict ourselves without loss of generality to
considering the system being in state X−mini(Xi,i) at time t. Further, by the algorithm
and the fact that the precision is 1, cropping the entries of X −mini(Xi,i) at −1 does
not lead to different transition probabilities: the probability that A(t + 1) = Y given
that A(t) = X−mini(Xi,i) is equal to the probability that A(t + 1) = Y given that A(t)
is X −mini(Xi,i) cropped at −1. It follows that a(t) is a finite Markov chain, for the
algorithm with any of the four conditions on forgetting.

We will repeatedly need to distinguish whether there is a global round switch at
time t or not. Let â(t) be the Markov chain obtained from a(t) by adding to each state
a an additional flag Step such that Step(â(t)) = 1 if there is a global round switch at
time t, and 0 otherwise.

4.7.1 Using â(t) to Calculate λ

Recall the definition of a good Markov chain, i.e., one that is aperiodic, irreducible,
Harris recurrent, and has a unique steady state distribution (Definition 2). It is not
difficult to see that â(t) is good for all four conditions on forgetting. A standard method,
given the chain’s transition matrix, to compute the steady state distribution is by matrix
inversion, as already shown in Equation (4.12)

We next utilize Proposition 9 to obtain that limt→∞ Ri(t)/t converges to a constant
with probability 1. We call a processes i a 1-process in state â if âi,i = 1. Likewise, we
call i a 0-process in â if âi,i = 0. Denote by #−1(â) the number of −1 entries in rows of
matrix â that correspond to 0-processes in â.

Proposition 17. For all conditions of forgetting, Ri(t)/t→ 1/λ with probability 1 as t→ ∞.
Furthermore, λ = 1/

(
∑â p#−1(â) · π(â)

)
.

Proof. It holds that RG(t) = ∑t
k=1 Step

(
â(k)

)
. By Proposition 9, with probability 1 it

holds that:

lim
t→∞

Ri(t)/t = lim
t→∞

RG(t)/t = lim
t→∞

1
t

t

∑
k=1

Step(â(k)) = ∑̂
a

Step(â) · π(â) .

4.7 Markovian Analysis 103

Since â(t) is a finite Markov chain, the last sum is finite. It follows that Ri(t)/t converges
to a constant, say c, with probability 1. Thus t/Ri(t) converges to 1/c with probability 1.
By definition of λ, it follows that λ = 1/c. This shows the first part of the proposition.

The second part of the proposition is proved by the following calculation:

1/λ = E lim
t→∞

Ri(t)/t = E lim
t→∞

RG(t)/t = E lim
t→∞

1
t

t

∑
k=1

Step
(
â(k)

)
= ∑̂

a
lim
t→∞

1
t

t

∑
k=1

P
(
â(k− 1) = â

)
·E
(

Step(â(k)) | â(k− 1) = â
)

= ∑̂
a

p#−1(â) lim
t→∞

1
t

t

∑
k=1

P
(
â(k− 1) = â

)
= ∑̂

a
p#−1(â) · π(â) . �

4.7.2 Behavior of λ for p→ 1

The next theorem provides means to approximate the expected round duration for all
conditions on forgetting when messages are successfully received with high probability.
Since this is typically the case for real-world systems, it allows to characterize their
expected round duration very efficiently.

Theorem 11. For all four conditions on forgetting, d
dp

λ(N , p)
∣∣

p=1 = −N (N − 1).

Proof. Let p ∈ (0, 1). Let πN ,p(â) be the steady state probability of state â of Markov
chain â(t). From Proposition 17, 1/λ(N , p) = ∑â p#−1(â) · πN ,p(â). Then

d
dp

1/λ(N , p) = ∑̂
a

#−1(â) · p#−1(â)−1 · πN ,p(â) + ∑̂
a

p#−1(â) · d
dp

πN ,p(â) .

Evaluation of the derivative at p = 1 leads to

d
dp

1/λ(N , p)
∣∣∣

p=1
= ∑̂

a
#−1(â) · πN ,1(â) + ∑̂

a

d
dp

πN ,p(â)
∣∣∣

p=1
.

Observe that as p goes to 1, πN ,p(â) goes to 0 for all states â, except for â0, the state
with 0 in the diagonal, −1 everywhere else, and Step(â) = 1. It is #−1(â0) = N (N − 1).
Moreover, as p goes to 1, πN ,p(â0) approaches 1. Hence,

= N (N − 1) +
d

dp

(
∑̂

a
πN ,p(â)

) ∣∣∣∣∣
p=1

= N (N − 1) + 0 ,

as the sum of the steady state probabilities over all states a equals 1. The theorem
follows from d

dp λ(N , p)
∣∣

p=1 = − d
dp 1/λ(N , p)

∣∣
p=1 · λ

2(N , 1) and λ(N , 1) = 1. �

104 Round Synchronization

4.7.3 Behavior of λ for p→ 0

In systems with unreliable communication, in which Theorem 11 is not valuable, the
following theorem on the asymptotic behavior of the expected round duration for all
our conditions on forgetting, is useful. It turns out that λI, λII, and λIII have the same
order of growth for p→ 0, namely p−1, while λIV has a higher order of growth.

Theorem 12. For p→ 0, λI(N , p), λII(N , p) and λIII(N , p) are in Θ
(

p−1), and λIV(N , p)
is in Θ

(
p−(N−1)).

Proof. We first show the statement for λIII. It is (1− p)i − 1 = ∑i
j=1 (

i
j)(−p)j = Ω(p)

for p→ 0. Hence by Theorem 9, λIII(N , p) = O(p−1) for p→ 0.
For all conditions on forgetting, all transition probabilities of the Markov chain â(t)

are polynomials in p. Hence by Equation (4.12), all steady state probabilities π(â) are
rational functions in p. Proposition 17 then in particular implies that λI(N , p) is also
rational in p. Clearly, λI(N , p) → ∞ as p → 0. Hence λI(N , p) has a pole at p = 0 of
order at least 1. This implies λI(N , p) = Ω(p−1). From the inequalities λI 6 λII 6 λIII,
the first part of the theorem follows.

To show the asymptotic behavior of λIV(N , p), observe that by (1 − p)i − 1 =

−p ∑i
j=1 (

i
j)(−p)j−1 ∼ −p · i for p→ 0 and by Proposition 16, we have

p · ξ(M, p) ∼
M

∑
i=1

(
M
i

)
(−1)i+1 1

i
.

As shown in the textbook byGraham et al. [GKP89, (6.72) and (6.73)] this sum equals HM,
denoting the M-th harmonic number. This concludes the proof. �

4.7.4 Lower Bounds on λI and λII

Determining the expected round duration for cases I and II by means of the Markov
chain a(t) is computationally intensive, even for small system sizesN . We can, however,
compute efficient lower and upper bounds on λ(N , p): For both, case I and II, λIII(N , p)
is an upper bound. We will next derive computationally feasible lower bounds for
λI(N , p) and λII(N , p).

From Propositions 15 and 9 follows, by considering the conditional expectation
of L(r):

λ =
1

∑â Step(â) · π(â) ∑̂
a

Step(â) · π(â) ·E(L(2) | â(1) = â) ,

where E(L(2) | â(1) = â) is the expected time until the first global round switch, given
that the system initially is in state â. It holds that E(L(2) | â(1) = â) = ξ(#−1(â), p).

Let [n] denote the set of states â with #−1(â) = n and Step(â) = 1, and denote by
⋃
[n]

the union of all [n] for 0 6 n 6 N (N − 1). Further let π̂(n) = ∑â∈[n] π(â)/(∑â Step(â) ·

4.7 Markovian Analysis 105

π(â)). It follows that π̂(n) = 0 for n < 2N − 2 in case II and π̂(n) = 0 for n < N − 1
in case I.

The basic idea of the bounds on λ is to bound π̂(n). LetP(â [n]) be the probability
that, given the system is in state â at some time t, for the minimum time t′ > t at which
a global round switch occurs, â(t′) ∈ [n]. We obtain for π̂(n):

π̂(n) = ∑̂
a

Step(â) · π̂(â) ·P(â [n]) = ∑
â∈⋃[n] π̂(â) ·P(â [n])

= ∑
â∈[n]

π̂(â) ·P(â [n]) + ∑
â∈⋃[n]\[n] π̂(â) ·P(â [n])

> π̂(n)min
â∈[n]

P(â [n]) + (1− π̂(n)) min
â∈⋃[n]\[n] P(â [n])

> π̂(n)cn + (1− π̂(n))dn

for cn, dn suitably chosen. One can derive valid choices for both parameters for cases I
and II by excessive case inspection of transition probabilities for all state equivalence
classes [k], k > 0 which we will do in Sections 4.7.5 and 4.7.6.

Partitioning the above sum into a one term from states in [n] to states in [n], and one
remaining term, allows us to finally state inequality

π̂(n) >
dn

1 + dn − cn
=: πn . (4.21)

The resulting lower bounds on π̂(n), denoted by πI
n and πII

n for cases I and II respectively,
finally yield lower bounds on λ. Since ξ is nondecreasing in its first argument, we can
bound λ(N , p) by(

1−
N (N−1)

∑
n=N

πI
n

)
ξ(N − 1, p) +

N (N−1)

∑
n=N

πI
nξ(n, p) 6 λI(N , p) (4.22)

in case I. For case II we obtain(
1−

N (N−1)

∑
n=2N−1

πII
n

)
ξ(2N − 2, p) +

N (N−1)

∑
n=2N−1

πII
n ξ(n, p) 6 λII(N , p) . (4.23)

4.7.5 Lower Bound on Parameters for λII

We next show how to derive bounds on parameters cn and dn, in the following denoted
by dIIn and cIIn . From these we obtain bounds on πN (N−1) from (4.21).

We start our analysis with determining πN (N−1). Since P(â [N (N − 1)]) is
greater than the probability that â(t+ 1) ∈ [N (N − 1)], given that â(t) = â, for arbitrary

106 Round Synchronization

t, we have P(â [N (N − 1)]) > p#−1(â). Thus we may choose cIIN (N−1) = pN (N−1),
dIIN (N−1) = pN (N−1)−1 and obtain

πN (N−1) =
pN (N−1)−1

1 + pN (N−1)−1(1− p)
.

Next we turn to the analysis of πN (N−1)−1. Since it is not possible to make a direct
transition from a state â ∈ ⋃[n] to a state in [N (N − 1)− 1], we consider bounds on
the probability that the system is in a state within [N (N − 1)− 1] at time t + 2, given
that â(t) = â. Fix in â one column j whose all non-diagonal entries equal −1. Clearly
such a column must exist, since Step(â) = 1. Given that â(t) = â, assume that at time
t + 1, all messages from processes i 6= j to all processes i′ with Ki′,i(t) = −1, and one
message from process j to some fixed j′ 6= j, are received. That is,N (N − 2) + 2− #0(â)
messages are received. Moreover, at time t + 1, k (up to N − 3) of the remaining N − 2
message sent by j are received. By construction, k + 2 of the processes are 1-processes
at time t + 1. For â(t + 1) ∈ [N (N − 1) − 1] to hold, it is sufficient that: For all 0-
processes i with âi,j(t + 1) = −1, process i must receive a message from j at time t + 2;
exactly one of the messages from a 1-process to a 1-process is received. Since at time
t + 1 there are (k + 2)(k + 1) messages from 1-processes to 1-processes, we obtain: For
all â ∈ ⋃[n],

P(â [N (N − 1)− 1]) >

>
N−3

∑
k=0

(
N − 2

k

)
pN (N−2)+2−#0(â)+k(1− p)N−2−k·

· pN−2−k · p · (1− p)(k+2)(k+1)−1 · ((k + 2)(k + 1))

= pN (N−1)−#0(â)+1·

·
N−3

∑
k=0

(
N − 2

k

)
((k + 2)(k + 1))(1− p)N+k2+2k−1

=: β(#0(â)) .

So we choose cIIN (N−1)−1 = β(1) and dIIN (N−1)−1 = β(0).

Finally we turn to the analysis of πn for n = 2(N − 1) + x, where 0 6 x 6 (N −
2)(N − 1)− 2. Again we bound P(â [2(N − 1) + x]), for â ∈ ⋃[n], by analyzing the
probability that â(t + 2) ∈ [2(N − 1) + x], given that â(t) = â. Fix a row j of â with
T non-diagonal entries equal to 0. Given that â(t) = â, assume that at time t + 1, all
messages to processes i 6= j from all processes i′ with Ki,i′(t) 6= 0 are received. That is,
(N − 1)(N − 1)− #0(â) + T messages are received. Moreover, at time t + 1, k (up to
N − T− 2) of the remainingN − T− 1 messages to j are received. Hence, all processes
different from j are 1-processes at time t + 1. At time t + 2 all remaining messages
to process j are received. From the (N − 2)(N − 1) messages sent by 1-processes to

4.7 Markovian Analysis 107

1-processes exactly x are not allowed to be received for â(t + 2) ∈ [2(N − 1) + x] to
hold. Thus, for fixed row j and â ∈ ⋃[n],

P(â [2(N − 1) + x] | row j) >

>
N−2−T

∑
k=0

(
N − T − 1

k

)
pk+(N−1)2−#0(â)+T

· (1− p)N−1−k−T pN−1−k−T p(N−2)(N−1)−x(1− p)x

·
(
(N − 1)(N − 2)

x

)
=

(
(N − 1)(N − 2)

x

)
(1− p)x pN (N−1)−#0(â)+(N−2)(N−1)−x

·
(
(2− p)N−1−T − 1

)
=: γ(#0(â), T, x) .

Note that γ is nonincreasing in its second and third argument. Every state â has at
least one row with T = 0 non-diagonal entries equal to 0. All other rows must have
T 6 N − 2 non-diagonal entries equal to 0, since a row must have at least one entry
equal to −1. Thus, we have

P(â [2(N − 1) + x]) >
γ(#0(â), 0, x) + (N − 1) · γ(#0(â),N − 2, x) =: γ̃(#0(â), x) .

We thus choose cII2(N−1)+x = γ̃((N − 1)(N − 2)− x, x) and dII2(N−1)+x = γ̃(0, x).

The lower bound on λII follows from Equations (4.21) and (4.23).

4.7.6 Lower Bound on Parameters for λI

In this section we derive bounds on parameters cn and dn for cases I, denoted by cIn and
dIn respectively. From these bounds we obtain analytic lower bounds for πn and thus
on λI, as detailed in Section 4.7.4.

For πN (N−1) we may choose dIN (N−1) = dIIN (N−1) and cIN (N−1) = cIIN (N−1), by the
same arguments as in Section 4.7.5.

108 Round Synchronization

To determine πN (N−1)−1, we use the same construction as in Section 4.7.5, with
the modification that at time t + 2, exactly one of the (k + 2)(N − 1) messages sent by
1-processes is received. We thus obtain for all â ∈ ⋃[n],

P(â [N (N − 1)− 1]) >

>
N−3

∑
k=0

(
N − 2

k

)
pN (N−2)+2−#0(â)+k(1− p)N−2−k·

· pN−2−k p(1− p)(k+2)(N−1)−1(k + 2)(N − 1)

= pN (N−1)−#0(â)+1
N−3

∑
k=0

(
N − 2

k

)
(k + 2)(N − 1)

· (1− p)N−2−k+(k+2)(N−1)−1

=: β′(#0(â)) .

So we choose cIN (N−1)−1 = β′(1) and dIN (N−1)−1 = β′(0).

Next consider πn with n = (N − 1) + x, and 0 6 x 6 (N − 2)(N − 1) + 1. Choose
an arbitrary â ∈ [n]. It holds that â has at least N − 1 non-diagonal entries equal to 0.
Now fix a row j with T 6 N − 2 non-diagonal entries equal to 0. We use the same
construction as in case II, but note that at time t + 2, the messages received by j lead to
0-entries. Thus,

P(â (N − 1) + x | row j) >

>
N−2−T

∑
k=0

(
N − T − 1

k

)
pk+(N−1)2−#0(â)+T·

· (1− p)N−1−k−T pN−1−k−T·
· pN (N−1)−(N−1)−x−(N−1−k−T)·

· (1− p)(N−1)2−(N (N−1)−(N−1)−x)·

·
(
(N − 1)2 − (N − 1− k− T)

x

)
> p2N 2−4N+T−x+2−#0(â)(1− p)x

(
(N − 1)(N − 2)

x

)
·
N−2−T

∑
k=0

(
N − T − 1

k

)
pk(1− p)N−1−k−T

= p2N 2−4N+T−x+2−#0(â)(1− p)x
(
(N − 1)(N − 2)

x

)
·

· (1− pN−1−T)

=: γ(#0(â), T, x) .

4.8 Discussion of Results 109

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2

4

6

8

10

12

14

16

1

p

ex
pe

ct
ed

ro
un

d
du

ra
tio

n
λ

slope in p = 1
λIV(3, p)
λIII(3, p)
λII(3, p)
Ω(λII)

λI(3, p)
Ω(λI)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2

4

6

8

10

12

14

16

1

p

ex
pe

ct
ed

ro
un

d
du

ra
tio

n
λ

slope in p = 1
λIV(3, p)
λIII(3, p)
λII(3, p)
Ω(λII)

λI(3, p)
Ω(λI)

Figure 4.5: Expected round durations for N = 3 and lower bounds for cases I and II.

Note that γ is nonincreasing in its second argument. Every state â ∈ [n] has at least
one row with dn/Ne non-diagonal entries equal to −1. Such a row must have T 6
N − 1− dn/Ne non-diagonal entries equal to 0. Thus, we have

P(â [(N − 1) + x]) > γ(#0(â),N − 1− dn/Ne, x) .

We may thus choose cIn = γ((N − 1)2 − x,N − 1− dn/Ne, x) and dIn = γ(0,N − 1−
dn/Ne, x).

The lower bound on λI follows from the Equations (4.22) and letting πn = 0 for
N (N − 1)−N + 2 6 n 6 N (N − 1)− 2.

4.8 Discussion of Results

In this section we present the results obtained by calculating the expected round du-
ration λ for the four conditions on forgetting that we consider. Additionally, we used
Monte-Carlo simulations to estimate λ.

Figure 4.5 shows, with varying probability p, the exact value of the expected round
duration for conditions on forgetting I–IV in a system with N = 3 processes. As stated
in Section 4.7.3, the figure shows the gap between the cases I, II, and III, having an
asymptotic growth in Θ(1/p) when p approaches 0, and the case IV, which has an
asymptotic growth in Θ(1/pN−1). Furthermore, as depicted in Section 4.7.2, all the

110 Round Synchronization

2 3 4 5 6 7 8 9 10 11 12

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n
Calc: λIII

Sim: λI

Calc: Ω(λI)

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n

Calc: λIII

Sim: λI

Calc: Ω(λI)

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n

Calc: λIII

Sim: λI

Calc: Ω(λI)

(c) p = 0.99

Figure 4.6: Monte-Carlo simulation results for case I compared against the calculated
lower bound and the calculated expected round duration of case III serving as an upper
bound.

plots have the same slope in the point p = 1 resulting in a good approximation for the
hard to calculate cases I and II in a system with reliable communication.

In settings with unreliable communication, for which the approximation result on
the derivative of λ at p = 1 is not valuable, cases I and II can be approximated by
their analytical lower bounds (Section 4.7.4), and bounded from above by the λ for
case III (Theorem 9). A comparison between the lower bounds and the actual systems
is illustrated in Figure 4.5.

Simulations

As the calculations of the exact values for the expected round duration using theMarkov
chain model are computationally very expensive, we used Monte-Carlo simulations
to compare them with our calculations. To this end, we simulated systems with 2 6
N 6 12 processes for 100 000 steps and averaged over 30 runs. The simulations were
done using three different values for p. Figures 4.6 and 4.7 show the obtained average
round durations with the calculated lower bound and with case III as upper bound.
The average round durations for case I (where processes never forget) — corresponding
to λdet(p,N) — is shown in Figures 4.6a to 4.6c and the case II (where processes forget
after a local round switch) is shown in Figures 4.7a to 4.7c. Figures 4.8a to 4.8c depict
the calculated expected round duration for case IV, i.e., the synchronizer variant that
forgets at each time step. Note that it is significantly higher than all the other variants
when message loss is considerable and thus not usable as a bound.

The method presented in Section 4.3.2 allows to calculate λprob(N , p, M) as well as
λdet(N , p, M) if M < ∞ with reasonable effort. Therefore, the question arises whether
the solutions for finite M yield good approximations for M = ∞. In this section, we

4.8 Discussion of Results 111

2 3 4 5 6 7 8 9 10 11 12

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n

Calc: λIII

Sim: λII

Calc: Ω(λII)

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n

Calc: λIII

Sim: λII

Calc: Ω(λII)

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n

Calc: λIII

Sim: λII

Calc: Ω(λII)

(c) p = 0.99

Figure 4.7: Monte-Carlo simulation results for case II compared against the calculated
lower bound and the calculated expected round duration of case III serving as an upper
bound.

study the behavior of the random process T(r)/r for increasing r, for different M, with
Monte Carlo simulations carried out in Matlab.

In Figure 4.9 we considered the behavior of deterministic loop-back systems with
N = 5 processes, for different parameters M and p. The results of the simulation are
plotted in Figures 4.9a–4.9c. Each of them includes:

(1) The expected round duration λdet, computed by the method presented in Sec-
tion 4.3.2 for a deterministic loop-back system with M = 4, drawn as a constant
function.

(2) The simulation results of sequence T1(r)/r, that is process 1’s average round dura-
tion, normalized to the calculated λdet, for rounds 1 6 r 6 150, for two systems: one
with parameter M = 4, the other with parameter M = ∞, both averaged over 1000
runs.

Considering λprob instead of λdet resulted in similar graphs.
In all three cases, it can be observed that the simulated sequence with parameter

M = 4 rapidly approximates the theoretically predicted rate for M = 4. From the
figures we further conclude that calculation of the expected simulated round duration
λ for a system with finite, and even small, M already yields good approximations of
the expected rate of a system with M = ∞ for p > 0.75, while for practically relevant
p > 0.99 one cannot distinguish the finite from the infinite case.

In Figure 4.10 we compared the calculated values λprob(N , p, M) and λdet(N , p, M)
for p = 0.5, 0.75, 0.99,N 6 9, and M 6 4 to simulated values of T1(1000)/1000 obtained
from 100 Monte Carlo simulations of a deterministic loop-back system with M = ∞.
The results of the simulation are depicted as box-plots. Note that for p = 0.75 the
discrepancy between the analytic results for λdet(N , p, 4) and the simulation results for

112 Round Synchronization

2 3 4 5 6 7 8 9 10 11 12

0

1,000

2,000

3,000

4,000

5,000

6,000

Number of processes N

ex
p.

ro
un

d
du

ra
tio

n
λ

IV

Calc: λIV

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

Number of processes N
ex

p.
ro

un
d

du
ra

tio
n

λ
IV

Calc: λIV

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12

1

1.2

1.4

1.6

1.8

Number of processes N

ex
p.

ro
un

d
du

ra
tio

n
λ

IV

Calc: λIV

(c) p = 0.99

Figure 4.8: Calculated expected round duration of case IV.

M = ∞ is already small, and for p = 0.99 the analytic results for all choices of M are
in-between the lower quartile and the upper quartile of the simulation results.

Furthermore, the convergence of the average round times from the deterministic
loop-back system and the probabilistic loop-back system can be observed, the higherN
gets. Intuitively, this can be explained by the decreasing percentage of the deterministic
loop-back links. Since the overall number of links are in O(N 2), but the number of
deterministic loop-back links is only O(N). Again, the upper-bound characteristics of
probabilistic loop-back systems versus deterministic loop-back systems can be seen.

4.9 Bibliographic Remarks

The notion of simulating a stronger system on top of a weaker one is common in the
field of distributed computing [AW04, Part II]. For instance, Neiger and Toueg [NT90]
provide an automatic translation technique that turns a synchronous algorithm B that
tolerates benign failures into an algorithm A(B) that tolerate more severe failures.
Dwork, Lynch, and Stockmeyer [DLS88] use the simulation of a round structure on top
of a partially synchronous system, andCharron-Bost and Schiper [CBS09] systematically
study simulations of stronger communication axioms in the context of round-based
models.

In contrast to randomized algorithms, like Ben-Or’s consensus algorithm [BO83],
the notion of a probabilistic environment, as we use it, is less common in distributed
computing: One of the few exceptions is Bakr and Keidar [BK02] who provide practical
performance results on distributed algorithms running on the Internet. On the theoreti-
cal side, Bracha and Toueg [BT85] consider the Consensus Problem in an environment,
for which they assume a nonzero lower bound on the probability that a message m sent
from process i to j in round r is correctly received, and that the correct reception of m
is independent from the correct reception of a message from i to some process j′ 6= j

4.9 Bibliographic Remarks 113

1 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rounds r

av
er

ag
e

ro
un

d
du

ra
tio

n
no

rm
al

iz
ed

to
λ

de
t(

0.
50

,4
,5
)

Sim: p = 0.50 M = 4
Sim: p = 0.50 M = ∞
Calc:p = 0.50 M = 4

(a) p = 0.5

1 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rounds r

av
er

ag
e

ro
un

d
du

ra
tio

n
no

rm
al

iz
ed

to
λ

de
t(

0.
75

,4
,5
)

Sim: p = 0.75 M = 4
Sim: p = 0.75 M = ∞
Calc:p = 0.75 M = 4

(b) p = 0.75

1 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rounds r

av
er

ag
e

ro
un

d
du

ra
tio

n
no

rm
al

iz
ed

to
λ

de
t(

0.
50

,4
,5
)

Sim: p = 0.99 M = 4
Sim: p = 0.99 M = ∞
Calc:p = 0.99 M = 4

(c) p = 0.99

Figure 4.9: Simulated T1(r)/r versus r for N = 5 and M = {4, ∞} in deterministic
loop-back systems with p = {0.5, 0.75, 0.99}, normalized to λdet(5, p, 4).

in the same round r. While we, too, assume independence of correct receptions, we
additionally assume a constant probability p > 0 of correct transmission, allowing us
to derive exact values for the expected round durations of the presented retransmission
scheme, which was shown to provide perfect rounds on top of fair-lossy executions.
The presented retransmission scheme is based on the α-synchronizer introduced by
Awerbuch [Awe85] together with correctness proofs for asynchronous (non-faulty)
communication networks of arbitrary structure. However, since Awerbuch did not
assume a probability distribution on the message receptions, only trivial bounds on the
performance could be stated. Rajsbaum and Sidi [RS94] extended Awerbuch’s analysis
by assuming message delays to be negligible, and a process i’s processing time to be dis-
tributed. They consider (1) the general case as well as (2) exponential distribution, and
derive performance bounds for (1) and exact values for (2). In terms of our model their
assumption translates to assuming maximum positive correlation between message
delays: For each (sender) process j and round r, δj,i(r) = δj,i′(r) for any two (receiver)
processes i, i′. They then generalize their approach to the case where δj,i(r) comprises
a dependent (the processing time) and an independent part (the message delay), and
show how to adapt the performance bounds for this case. However, only bounds and no
exact performance values are derived for this case. Rajsbaum [Raj94] presented bounds
for the case of identical exponential distribution of transmission delays and processing
times. Bertsekas and Tsitsiklis [BT89] state bounds for the case of constant processing
times and independently, exponentially distributed message delays. However, again,
no exact performance values were derived.

Our model comprises negligible processing times and transmission faults, which
result in a discrete distribution of the effective transmission delays δj,i(r). Interestingly,

114 Round Synchronization

2 3 4 5 6 7 8 9

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n
λ

λprob(N , 0.5, 2)
λdet(N , 0.5, 2)
λprob(N , 0.5, 3)
λdet(N , 0.5, 3)
λprob(N , 0.5, 4)
λdet(N , 0.5, 4)
λdet(N , 0.5, ∞)

(a) p = 0.5

2 3 4 5 6 7 8 9

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n
λ

λprob(N , 0.75, 2)
λdet(N , 0.75, 2)
λprob(N , 0.75, 3)
λdet(N , 0.75, 3)
λprob(N , 0.75, 4)
λdet(N , 0.75, 4)
λdet(N , 0.75, ∞)

(b) p = 0.75

2 3 4 5 6 7 8 9

1.0

1.1

1.2

1.3

1.4

1.5

Number of processes N

ex
p.

/a
vg

.r
ou

nd
du

ra
tio

n
λ

λprob(N , 0.99, 2)
λdet(N , 0.99, 2)
λprob(N , 0.99, 3)
λdet(N , 0.99, 3)
λprob(N , 0.99, 4)
λdet(N , 0.99, 4)
λdet(N , 0.99, ∞)

(c) p = 0.99

Figure 4.10: λprob, λdet for M 6 4 and simulations (deterministic loop-backs, M = ∞)
versus N for p = {0.5, 0.75, 0.99}.

with one sole exception [RdVH+90] which considers the case of a 2-processor system
only, we did not find any published results on exact values of the expected round
durations in this case. The nontriviality of this problem is indicated by the fact that
finding the expected round duration is equivalent to finding the exact value of the
Lyapunov exponent of a nontrivial stochastic max-plus system [Hei06], which is known
to be a hard problem (e.g., [BH00]). In particular, our results can be translated into
novel results on stochastic max-plus systems.

The notion of knowledge we introduced differs from that of Fagin et al. [FMHV95],
who studied the evolution of knowledge in distributed systems with powerful agents; in
particular, their agents do not forget. While Jayaram and Varghese [JV96] use crashing
processes and the forgetting during reboot in a destructive way, we use forgetting in a
constructive manner.

Chapter 5
Conclusion and Future Work

ANALYZING THE time complexity of an algorithm is at the core of computer sci-
ence. Algorithms are usually modeled as state machines; when executed in a

centralized system, counting the numbers of state transitions until an instance of a
problem is solved is a suitable measurement for its time complexity. Unfortunately,
centralized systems have an intrinsic problem: they cannot be designed without a single
point of failure. This is a significant issue whenever the robustness of a system is of
concern. A popular way to overcome this deficiency is to employ space redundancy,
by distributing the algorithm among multiple independent processes. In distributed
systems using message passing, this processes are distributed among a set of processing
nodes connected via a message passing network used for communication.

Synchronous round-based algorithms facilitate a natural time complexity measure
by the number of rounds needed to solve a problem. However, when it comes to
the actual implementation of such an algorithm in a real-world application, timing
uncertainties originating in simplifying assumptions in the analysis like dedicated point-
to-point links, no bandwidth limit on the channels, or the assumption of a homogeneous
execution environment arise. Dealing with these timing uncertainties, especially when
evaluating the performance of an algorithm in the context of Newtonian real-time, was
the focus of this thesis.

Furthermore, by distinguishing between a distributed computing node and the
distributed algorithm’s process, we were able to analyze distributed systems running
the processes of multiple independent distributed algorithms concurrently on a shared
distributed system. Applying a multi-core argument, i.e., assigning every process of a
distributed algorithm its own dedicated processor on a computing node, allowed us to
focus our analysis on the communication between the processes which, in this thesis,
was assumed to take place via unreliable finite bandwidth channels. For the analysis,
we split the problem into two parts.

116 Conclusion and Future Work

The transmitter side

On the transmitter side, it might happen that the cumulative bandwidth demand of
the executed distributed algorithms on a computing node (temporarily) exceeds the
capacity of a communication channel. Therefore, the first part of the thesis covered
the performance analysis of message scheduling algorithms at the transmitter side.
Messages were modeled as real-time jobs (released at the beginning of the synchronous
rounds) with firm deadlines (set to the end of the synchronous rounds). If a firm
deadline real-time job does not meet its deadline it does not harm (i.e., it has no severe
consequences), but it does not provide any utility to the system, making it a natural
match for messages in a synchronous system. A good scheduling algorithm tries
to maximize the cumulative utility gained by successfully scheduling released jobs.
The performance of an scheduling algorithm is usually evaluated by performing a
competitive analysis, i.e., determining the ratio of the cumulative utility of the algorithm
with respect to an optimal clairvoyant scheduler that knows the future.

Wepresented a flexible framework for automated competitive analysis of on-line firm
deadline scheduling algorithms for a given taskset. We introduced labeled transition
systems as a suitable way to model scheduling algorithms, while additional (optional)
restrictions on the adversary-generated job sequences can be specified as safety, liveness,
and limit average automata. We gave a reduction of the competitive analysis problem,
incorporating all the specified restrictions, to a multi-objective graph problem that can
be solved automatically. The algorithmic approach for solving the emerging multi-
objective graph problems presented in our solution does not involve human ingenuity
at all. This constitutes a significant improvement over previous approaches, which
involved considerable effort to analyze worst case scenarios that do not necessarily carry
over even to minor variants of the problem.

Whereas computing the competitive ratio of a given on-line algorithm can be done
in polynomial time, the utility of our approach for the automated construction of an
optimal on-line algorithm and its competitive analysis is currently severely impaired by
the exponential time complexity.

Another limitation of our approach, though not relevant in practice, follows from
the required finiteness of the state space of the LTS (without which all problems of
interest are undecidable). In particular, we cannot deal with an unbounded number
of tasks. Consequently, we could not prove 1/4 to be the competitive factor (i.e., the
worst-case utility ratio an on-line scheduler can achieve with respect to an optimal
clairvoyant algorithm over all possible tasksets), as this effectively requires countably
many tasks [BKM+92]. What we could show, however, is the competitive ratio (i.e.,
the worst-case utility ratio an on-line scheduler can achieve with respect to an opti-
mal clairvoyant algorithm with respect to a fixed taskset) rapidly approaches 1/4, by
applying our approach to a series of tasksets determined by the recurrence specified
in [BKM+92].

Our experimental results demonstrate that our framework allows to solve small-
sized problem instances efficiently. Moreover, they highlight the importance of our
automated approach, as there is neither a “universally” optimal algorithm for all tasksets

117

(even in the absence of additional constraints) nor an optimal algorithm for different
constraints for the same taskset.

The receiver side

On the receiver side, we are facing message loss not only as a result of the abandoned
jobs by the real-time message scheduler at the transmitter, but also by the unreliable
communication channel. This issue can either be dealt with by restricting the applica-
bility to executing only omission-tolerant distributed algorithms (therefore, shifting
the real-time analysis problem to the algorithm designer), or by introducing a so-called
synchronizer that simulates a synchronous round abstraction on top of the imperfect
communication. Clearly, in the latter case the real-time performance of a synchronous
algorithm running on top of this abstraction layer heavily depends on the performance
of the synchronizer. We studied the more general approach of using a synchronizer in
this thesis, thus the second part is devoted to the performance analysis of synchronizer
variants based on the α-synchronizer introduced by Awerbuch [Awe85].

We used a simplifying approach by assuming that both sources of message loss,
the lost messages of the unreliable channel as well as the messages dropped by the
real-time scheduler, can be modeled together by a probabilistic link failure model. This
abstraction allowed us to calculate the expected round duration using Markov theory.

We analyzed the time-series of the round starting times by modeling them as a
Markov chain and calculating its stationary distribution. By initially limiting the number
of consecutive transmission faults on a channel by a finite number (i.e., limiting the
number of retransmissions of amessage that are needed until it is received correctly), we
were able to come up with a state space description of the Markov chain whose steady-
state analysis is computationally feasible. The assumption can be motivated by using a
scheduler with an imposed restriction on the maximum number of drops of consecutive
job releases (such as in (m,k)-firm scheduling) and reliable communication links. A
comparison to simulations without this limitation suggest that distributed systems
restricted to a small number of retransmissions already yield good approximations
(with respect to the expected round duration) of the distributed system in which the
number of retransmissions until a message is correctly received is not bounded.

Subsequently, we removed the restriction on the number of consecutive transmission
faults on a channel and again used a Markov chain to describe this dual system.

As hinted before, the modeling of the state space, and in particular the analysis of
the Markov chain’s steady-state, get computationally very expensive. We focused
on non-trivial lower bounds on the expected round duration and discovered that
discarding part of the local memory state of processes as a promising method to reduce
the computational complexity of the system, albeit degrading the performance of the
synchronizer and thus also of the distributed algorithm running atop.

By parametrizing the synchronizer analysis with the probability of successful mes-
sage transmission over a channel we are able to state non-trivial formulas for the ex-
pected round duration of the distributed algorithms running on top of our framework.

118 Conclusion and Future Work

Future work

The presentedwork sets up the basic framework for a novel way of analyzing distributed
systems running more than one synchronous distributed algorithm simultaneously. By
now, we assume that every distributed algorithm has its dedicated processor where it
is executed. This restriction allows us to neglect the task scheduling of the distributed
algorithms and to focus on the message scheduling only. The first interesting research
question for future work arises in limiting the number of processors to also enforce the
need to incorporate task scheduling in the real-time analysis of the distributed system.

Currently, the applicability of the introduced automated competitive analysis of real-
time scheduling is limited to tasksetswith rather short tasks, as the graph instances grow
considerably with increased relative deadlines as well as laxities of the tasksets. This is
an inherent property of the problem and originates in the increasing number of possible
interleaving patterns between the released jobs. Furthermore, when considering the
labeled transition systems used tomodel the off-line algorithm, the number of transitions
per state grows exponentially with the number of tasks in the tasksets. One idea to
cope with this complexity issues in the future is to identify dispensable states as early
as possible and remove them. By using an optimized state space representation, the
applicability can be increased even further. Combined with abstraction, similarly as it
is used in formal verification, and by using symmetry reduction techniques, we expect
our approach to also scale to larger instances.

Furthermore, we want to investigate the nature of the worst-case scenarios as our
analysis highlights that there is no “universally” optimal algorithm. We expect that
a deeper understanding of the worst-case scenarios leads to a more efficient way to
synthesize optimal algorithms or at least results in suitable heuristics.

Further extensions of our real-time analysis approach could also incorporate more
involved time/utility functions and constraints not only on the adversary but also on
the algorithms, e.g., energy restrictions.

One particularly promising possibility for further research is to explore the “linking”
assumption that ties together the two parts of our work: Can the dropped messages
indeed bemodeled as probabilistic link failures, and if so, could our competitive analysis
be automated to also provide the loss parameter p? If not, which generalization would
provide a better “linking”?

For the round synchronization algorithm, we plan to extend the analysis to a Byzan-
tine fault-tolerant variant (like the one presented in [WS09]) in the future, increasing
the applicability of our abstraction model.

Finally, wewant to remove the restriction of (virtual) fully-connected communication
graphs and investigate different structures of the communication graph, e.g., such as
mesh networks.

Bibliography

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René
Peralta. Computation in networks of passivelymobile finite-state sensors.
Distributed Computing, 18(4):235–253, 2006.

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications
in hard real-time systems. In Proceedings of the 19th IEEEReal-Time Systems
Symposium, RTSS ’98, pages 4–13, December 1998.

[AGS02] Karine Altisen, Gregor Gößler, and Joseph Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Real-Time Systems, 23(1-
2):55–84, 2002.

[AL05] Anant Agarwal and Jeffrey Lang. Foundations of Analog and Digital Elec-
tronic Circuits. The Morgan Kaufmann Series in Computer Architecture
and Design. Elsevier Science, 2005.

[AMMMA04] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejía-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE Transactions
on Computers, 53(5):584–600, May 2004.

[Ang80] Dana Angluin. Local and global properties in networks of processors
(extended abstract). In Proceedings of the 12th annual ACM Symposium on
Theory of Computing, STOC ’80, pages 82–93, New York, NY, USA, 1980.
ACM.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals,
Simulations, and Advanced Topics. Wiley Series on Parallel and Distributed
Computing. Wiley, 2004.

[Awe85] Baruch Awerbuch. Complexity of network synchronization. Journal of
the ACM, 32(4):804–823, October 1985.

[BBC+06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Licht-
enberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Ab-
dullah Ustuner. Thorough static analysis of device drivers. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, EuroSys ’06, pages 73–85, New York, NY, USA, 2006. ACM.

120 Bibliography

[BEN] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lpsolve : Open source
(Mixed-Integer) Linear Programming system. Version 5.0.0.0, May 2004.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[BFK00] Oliver Berthold, Hannes Federrath, and Marit Köhntopp. Project “ano-
nymity and unobservability in the internet”. In Proceedings of the 10th
Conference on Computers, Freedom and Privacy: Challenging the assumptions,
CFP ’00, pages 57–65, New York, NY, USA, 2000. ACM.

[BH97] Sanjoy K. Baruah and Jayant R. Haritsa. Scheduling for overload in real-
time systems. IEEE Transactions on Computers, 46:1034–1039, September
1997.

[BH98] SanjoyK. Baruah andMary EllenHickey. Competitive on-line scheduling
of imprecise computations. IEEE Transactions on Computers, 47(9):1027–
1032, September 1998.

[BH00] François Baccelli and Dohy Hong. Analytic expansions of max-plus
lyapunov exponents. The Annals of Applied Probability, 10(3):779–827, 08
2000.

[BH09] Martin Biely and Martin Hutle. Consensus when all processes may be
byzantine for some time. In Stabilization, Safety, and Security of Distributed
Systems, volume 5873 of Lecture Notes in Computer Science, pages 120–132.
Springer Berlin Heidelberg, 2009.

[BHPW07] Martin Biely, Martin Hutle, Lucia D. Penso, and Josef Widder. Relating
stabilizing timing assumptions to stabilizing failure detectors regarding
solvability and efficiency. In Stabilization, Safety, and Security of Distributed
Systems, volume 4838 of Lecture Notes in Computer Science, pages 4–20.
Springer Berlin Heidelberg, 2007.

[BK02] Omar Bakr and Idit Keidar. Evaluating the running time of a communi-
cation round over the internet. In Proceedings of the 21st annual Symposium
on Principles of Distributed Computing, PODC ’02, pages 243–252, New
York, NY, USA, 2002. ACM.

[BKM+91] Sanjoy Baruah, Gilad Koren, Bhubaneswar Mishra, Arvind Raghu-
nathan, Lou Rosier, and Dennis Shasha. On-line scheduling in the
presence of overload. In Proceedings of the 32nd annual Symposium on
Foundations of Computer Science, FOCS ’91, pages 100–110, Oct 1991.

[BKM+92] Sanjoy Baruah, Gilad Koren, Decao Mao, Bhubaneswar Mishra, Arvind
Raghunathan, Lou Rosier, Dennis Shasha, and Fuxing Wang. On the
competitiveness of on-line real-time task scheduling. Real-Time Systems,
4(2):125–144, 1992.

Bibliography 121

[BMS12] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility anal-
ysis of sporadic real-time multiprocessor task systems. Algorithmica,
2012.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the 2nd
annual ACM Symposium on Principles of Distributed Computing, PODC ’83,
pages 27–30, New York, NY, USA, 1983. ACM.

[BSW11] Martin Biely, Ulrich Schmid, and Bettina Weiss. Synchronous consensus
under hybrid process and link failures. Theoretical Computer Science,
412(40):5602 – 5630, 2011.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM, 32(4):824–840, October 1985.

[BT89] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Com-
putation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[Bur80] James E. Burns. A formal model for message passing systems. Technical
Report 91, Computer Science Department, Indiana University, Bloom-
ington, September 1980.

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer Publishing Company,
Incorporated, 3rd edition, 2011.

[BV07] Vartika Bhandari and Nitin H. Vaidya. Reliable broadcast in wireless
networks with probabilistic failures. In Proceedings of the 26th IEEE Inter-
national Conference on Computer Communications, INFOCOM ’07, pages
715–723, May 2007.

[BWCB+07] Martin Biely, Josef Widder, Bernadette Charron-Bost, Antoine Gaillard,
Martin Hutle, and André Schiper. Tolerating corrupted communication.
InProceedings of the 26th annual ACMSymposium on Principles of Distributed
Computing, PODC ’07, pages 244–253, New York, NY, USA, 2007. ACM.

[CBS09] Bernadette Charron-Bost and André Schiper. The Heard-Of model: com-
puting in distributed systems with benign faults. Distributed Computing,
22(1):49–71, 2009.

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk
graphs. Discrete Mathematics, 86(1–3):165–177, 1990.

[CDP96] Bogdan S. Chlebus, Krzysztof Diks, and Andrzej Pelc. Broadcasting in
synchronous networks with dynamic faults. Networks (New York, NY),
27(4):309–318, 1996. eng.

122 Bibliography

[CKS13] Krishnendu Chatterjee, Alexander Kößler, and Ulrich Schmid. Auto-
mated analysis of real-time scheduling using graph games. In Proceedings
of the 16th ACM international conference on Hybrid Systems: Computation
and Control, HSCC ’13, pages 163–172, New York, NY, USA, 2013. ACM.

[CPKS14] Krishnendu Chatterjee, Andreas Pavlogiannis, Alexander Kößler, and
Ulrich Schmid. A framework for automated competitive analysis of on-
line scheduling of firm-deadline tasks. RTSS ’14, 2014. To be published.

[Cru91] Rene L. Cruz. A calculus for network delay. I. network elements in
isolation. IEEE Transactions on Information Theory, 37(1):114–131, Jan
1991.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of the ACM,
34(1):77–97, January 1987.

[Der74] Michael L. Dertouzos. Control robotics: The procedural control of phys-
ical processes. In IFIP Congress, pages 807–813, 1974.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated databasemaintenance. InProceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC
’87, pages 1–12, New York, NY, USA, 1987. ACM.

[DKMP95] Krzysztof Diks, Evangelos Kranakis, AdamMalinowski, and Andrzej
Pelc. Anonymous wireless rings. Theoretical Computer Science, 145(1-2):95
– 109, 1995.

[DLA10] Vinay Devadas, Fei Li, and Hakan Aydin. Competitive analysis of online
real-time scheduling algorithms under hard energy constraint. Real-Time
Syst., 46(1):88–120, September 2010.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus
in the presence of partial synchrony. Journal of the ACM, 35(2):288–323,
1988.

[Dob03] Stefan Dobrev. Communication-efficient broadcasting in complete net-
works with dynamic faults. Theory of Computing Systems, 36(6):695–709,
2003.

[ES09] Robert Elsässer and Thomas Sauerwald. On the runtime and robustness
of randomized broadcasting. Theoretical Computer Science, 410(36):3414–
3427, 2009.

Bibliography 123

[FFS09] Gottfried Fuchs, Matthias Függer, and Andreas Steininger. On the
threat of metastability in an asynchronous fault-tolerant clock genera-
tion scheme. In Proceedings of the 15th IEEE International Symposium on
Asynchronous Circuits and Systems, ASYNC ’09, pages 127–136, Chapel
Hill, N. Carolina, USA, May 2009.

[FFSS08] Gottfried Fuchs, Matthias Függer, Ulrich Schmid, and Andreas Stein-
inger. Mapping a fault-tolerant distributed algorithm to systems on chip.
In Proceedings of the 11th Euromicro Conference on Digital System Design
Architectures, Methods and Tools, DSD ’08, pages 242–249, Parma, Italy,
September 2008.

[FKN+13] Matthias Függer, Alexander Kößler, Thomas Nowak, Ulrich Schmid,
and Martin Zeiner. The effect of forgetting on the performance of a
synchronizer. InAlgorithms for Sensor Systems, LectureNotes in Computer
Science, pages 185–200. Springer Berlin Heidelberg, 2013.

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a syn-
chronous ring. Journal of the ACM, 34(1):98–115, January 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[FMHV95] Ronald Fagin, Yoram Moses, Joseph Y. Halpern, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[FP11] Emanuele G. Fusco and Andrzej Pelc. Communication complexity of
consensus in anonymous message passing systems. In Proceedings of the
15th International Conference on Principles of Distributed Systems, volume
7109 of Lecture Notes in Computer Science, pages 191–206. Springer-Verlag,
Berlin, Heidelberg, 2011.

[FS12] Matthias Függer and Ulrich Schmid. Reconciling fault-tolerant dis-
tributed computing and systems-on-chip. Distributed Computing,
24(6):323–355, 2012.

[Fü10] Matthias Függer. Analysis of On-Chip Fault-Tolerant Distributed Algorithms.
PhD thesis, Technische Universität Wien, 2010.

[Gho06] Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. Chapman
& Hall/CRC Computer & Information Science Series. Taylor & Francis,
2006.

[GKP89] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
mathematics: A foundation for computer science. Addison-Wesley, 1989.

124 Bibliography

[Gol91] S. Jamaloddin Golestani. A framing strategy for congestion manage-
ment. IEEE Journal on Selected Areas in Communications, 9(7):1064–1077,
Sepember 1991.

[HCL90] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. On being opti-
mistic about real-time constraints. In Proceedings of the 9th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’90,
pages 331–343, New York, NY, USA, 1990. ACM.

[Hei06] Bernd F. Heidergott. Max-Plus Linear Stochastic Systems and Perturba-
tion Analysis (The International Series on Discrete Event Dynamic Systems).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[HM05] Yuko Hatano and Mehran Mesbahi. Agreement over random networks.
IEEE Transactions on Automatic Control, 50(11):1867–1872, Nov 2005.

[HS80] Daniel S. Hirschberg and James B. Sinclair. Decentralized extrema-
finding in circular configurations of processors. Communications of the
ACM, 23(11):627–628, November 1980.

[JKS+13] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and JosefWidder.
Parameterized model checking of fault-tolerant distributed algorithms
by abstraction. In Formal Methods in Computer-Aided Design, FMCAD ’13,
pages 201–209. IEEE, Oct 2013.

[JLT85] E. Douglas Jensen, C. Douglass Locke, and Hideyuki Tokuda. A time-
driven scheduling model for real-time operating systems. In Proceedings
of the 6th IEEE Real-Time Systems Symposium, pages 112–122. IEEE Com-
puter Society, 1985.

[JV96] Mahesh Jayaram andGeorgeVarghese. Crash failures can drive protocols
to arbitrary states. In Proceedings of the 15th annual ACM Symposium on
Principles of Distributed Computing, PODC ’96, pages 247–256, New York,
NY, USA, 1996. ACM.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In
Complexity of Computer Computations. Springer US, 1972.

[Kar78] Richard M. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 1978.

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademii Nauk SSSR, 244, 1979.

[KLB04] Santosh Kumar, Ten H. Lai, and József Balogh. On k-coverage in a mostly
sleeping sensor network. In Proceedings of the 10th annual International
Conference on Mobile Computing and Networking, MobiCom ’04, pages
144–158, New York, NY, USA, 2004. ACM.

Bibliography 125

[KM08] Soummya Kar and José M.F. Moura. Sensor networks with random
links: Topology design for distributed consensus. Signal Processing, IEEE
Transactions on, 56(7):3315–3326, July 2008.

[KM09] Soummya Kar and José M.F. Moura. Distributed consensus algorithms
in sensor networks with imperfect communication: Link failures and
channel noise. Signal Processing, IEEE Transactions on, 57(1):355–369, Jan
2009.

[Kop97] Hermann Kopetz. Real-time Systems: Design Principles for Distributed
Embedded Applications. Kluwer international series in engineering and
computer science. Kluwer Academic Publishers, 1997.

[Kou11] Elias Koutsoupias. Scheduling without payments. In Proceedings of the
4th international conference on Algorithmic game theory, SAGT’11, pages
143–153, Berlin, Heidelberg, 2011. Springer-Verlag.

[KP93] Peter Kirschenhofer and Helmut Prodinger. A result in order statistics
related to probabilistic counting. Computing, 51(1):15–27, 1993.

[KS91] Gilad Koren and Dennis Shasha. An optimal scheduling algorithm with
a competitive factor for real-time systems. Technical report, New York
University, New York, NY, USA, 1991.

[KS95] Gilad Koren and Dennis Shasha. Dover: An optimal on-line scheduling
algorithm for overloaded uniprocessor real-time systems. SIAM Journal
on Computing, 24(2):318–339, April 1995.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[LJ07] Zhonghai Lu and Axel Jantsch. Admitting and ejecting flits in wormhole-
switched networks on chip. IET Computers & Digital Techniques, 1, 2007.

[LL73] Chang L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, January 1973.

[LL84] Jennifer Lundelius and Nancy A. Lynch. An upperand lower bound for
clock synchronization. Information and Control, 62:190–204, 1984.

[Loc86] Carey Douglass Locke. Best-effort Decision-making for Real-time Scheduling.
PhD thesis, CMU, Pittsburgh, PA, USA, 1986.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems,
4:382–401, 1982.

126 Bibliography

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM Journal of Computing, 15(4):1036–1055, November
1986.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. The Morgan Kaufmann Series
in Data Management Systems. Elsevier Science, 1996.

[Mad02] Omid Madani. Polynomial value iteration algorithms for deterministic
MDPs. In Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence, UAI ’02, 2002.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):pp.
363–371, 1975.

[Max65] James Clerk Maxwell. A dynamical theory of the electromagnetic field.
Philosophical Transactions of the Royal Society of London, 155:459–512, 1865.

[Mos09a] HeinrichMoser. Amodel for distributed computing in real-time systems. PhD
thesis, Technische Universität Wien, 2009.

[Mos09b] HeinrichMoser. Towards a real-time distributed computingmodel. Theo-
retical Computer Science, 410(6–7):629 – 659, 2009. Principles of Distributed
Systems.

[MS06] Heinrich Moser and Ulrich Schmid. Optimal clock synchronization
revisited: Upper and lower bounds in real-time systems. In Principles
of Distributed Systems, volume 4305 of Lecture Notes in Computer Science,
pages 94–109. Springer Berlin Heidelberg, 2006.

[MS14] Heinrich Moser and Ulrich Schmid. Reconciling fault-tolerant dis-
tributed algorithms and real-time computing. Distributed Computing,
27(3):203–230, 2014.

[MT93] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic
Stability. Springer, Heidelberg, 1993.

[NFK13] Thomas Nowak, Matthias Függer, and Alexander Kößler. On the per-
formance of a retransmission-based synchronizer. Theoretical Computer
Science, 509:25–39, 2013.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algo-
rithmic Game Theory. Cambridge University Press, New York, NY, USA,
2007.

[NS95] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM
Journal of Computing, 24(6):1259–1277, December 1995.

Bibliography 127

[NT90] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance
of distributed algorithms. Journal of Algorithms, 11(3):374–419, September
1990.

[Pal04] Michael A. Palis. Competitive algorithms for fine-grain real-time schedul-
ing. In Proceedings of the 25th IEEE Real-Time Systems Symposium, RTSS
’04, pages 129–138. IEEE Computer Society, 2004.

[Pap93] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1993.

[PP07] Andrzej Pelc and David Peleg. Feasibility and complexity of broad-
casting with random transmission failures. Theoretical Computer Science,
370(1–3):279 – 292, 2007.

[PT86] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence
of processor and communication faults. IEEE Transactions on Software
Engineering, SE-12(3):477–482, 1986.

[Raj94] Sergio Rajsbaum. Upper and lower bounds for stochastic marked graphs.
Information Processing Letters, 49(6):291 – 295, 1994.

[RdVH+90] J.A.C. Resing, R.E. de Vries, G. Hooghiemstra, M.S. Keane, and G.J.
Olsder. Asymptotic behavior of randomdiscrete event systems. Stochastic
Processes and their Applications, 36(2):195 – 216, 1990.

[RLLS97] Ragunathan Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek. A
resource allocation model for qos management. In Proceedings of the 18th
IEEE Real-Time Systems Symposium, RTSS ’97, pages 298 –307, 1997.

[RS94] Sergio Rajsbaum and Moshe Sidi. On the performance of synchronized
programs in distributed networks with random processing times and
transmission delays. IEEE Transactions on Parallel and Distributed Systems,
5(9):939–950, 1994.

[Rud74] Sergiu Rudeanu. Boolean functions and equations. North-Holland, 1974.

[Sak99] Naoshi Sakamoto. Comparison of initial conditions for distributed al-
gorithms on anonymous networks. In Proceedings of the 18th annual
ACM Symposium on Principles of Distributed Computing, PODC ’99, pages
173–179, 1999.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Computing Surveys, 22(4):299–319,
1990.

[Sch01] Ulrich Schmid. How to model link failures: A perception-based fault
model. In International Conference on Dependable Systems and Networks,
DSN ’01, pages 57–66, July 2001.

128 Bibliography

[Sha53] Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy
of Sciences, 39(10):1095–1100, 1953.

[SP04] Dzulkifli S. Scherber and Haralabos C. Papadopoulos. Locally con-
structed algorithms for distributed computations in ad-hoc networks. In
Third International Symposium on Information Processing in Sensor Networks,
IPSN ’04, pages 11–19, April 2004.

[SR90] Wojciech Szpankowski and Vernon Rego. Yet another application of a
binomial recurrence order statistics. Computing, 43(4):401–410, 1990.

[SSRB98] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C.
Buttazzo. Deadline Scheduling for Real-Time Systems: Edf and Related Algo-
rithms. Real-time systems series. Springer US, 1998.

[ST87] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of
the ACM, 34(3):626–645, July 1987.

[Suo13] Jukka Suomela. Survey of local algorithms. ACM Computing Surveys,
45(2):24:1–24:40, March 2013.

[SW89] Nicola Santoro and Peter Widmayer. Time is not a healer. In Proceedings
of the 6th annual Symposium on Theoretical Aspects of Computer Science,
STACS ’89, pages 304–313, London, UK, 1989.

[SW07] Nicola Santoro and Peter Widmayer. Agreement in synchronous net-
works with ubiquitous faults. Theoretical Computer Science, 384(2–3):232 –
249, 2007.

[SWK09] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results
and lower bounds for consensus under link failures. SIAM Journal on
Computing, 38(5):1912–1951, 2009.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1972.

[VCD+12] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Hen-
zinger, Alexander Rabinovich, and Jean-François Raskin. The complexity
ofmulti-mean-payoff andmulti-energy games. Computing Research Repos-
itory (CoRR), abs/1209.3234, 2012.

[WS09] Josef Widder and Ulrich Schmid. The theta-model: achieving synchrony
without clocks. Distributed Computing, 22(1):29–47, 2009.

[YK96] Masafumi Yamashita and Tsunehiko Kameda. Computing on anony-
mous networks: Part I–Characterizing the solvable cases. IEEE Transac-
tions on Parallel and Distributed Systems, 7(1):69–89, 1996.

Bibliography 129

[YK99] Masafumi Yamashita and Tsunehiko Kameda. Leader election problem
on networks in which processor identity numbers are not distinct. IEEE
Transactions on Parallel and Distributed Systems, 10(9):878–887, 1999.

Curriculum Vitae

Alexander Kößler

Personal Information
Date of Birth February 10, 1983

Place of Birth Waidhofen an der Ybbs

Address Wasserburgergasse 5/5, 1090 Wien

Email koe@itcorner.net

Education
since 04/2009 Doctoral studies, Vienna University of Technology, Austria.

21/04/2009 Finished master studies with highest distinction.

10/2007 – 06/2008 Participation at “TUtheTOP—Das High Potential Programm der
TU Wien”. High-potential program.

03/2007 – 04/2009 Master studies: Computer Science, Vienna University of Technol-
ogy, Austria, Degree: Dipl.-Ing.

22/02/2007 Finished bachelor studies with highest distinction.

10/2003 – 02/2007 Bachelor studies: Computer Science, Vienna University of Tech-
nology, Austria, Degree: BSc.

09/2002 – 04/2003 Military service.

09/1997 – 06/2002 Technical High School, Höhere Technische Bundeslehranstalt Steyr,
elektronics and computer engineering. Final exam passed with
highest distinction.

Working Experience
since 05/2013 Research assistant (Projektassistent), Vienna University of Tech-

nology, Embedded Computing Systems Group (Austria), funded by
FWF.

05/2009 – 04/2013 Assistant professor (Universitätsassistent), Vienna University of
Technology, Embedded Computing Systems Group (Austria), universi-
ty-funded position that includes teaching and research, partly
funded by FWF.

05/2008 – 01/2009 Trainer, Berufsförderungsinstitut (BFI) Wien (Austria), teaching
subjects: mathematics, hardware, and electrical engineering.

02/2008 – 08/2008 Teaching assistant (Studienassistent), Vienna University of Tech-
nology, Department of Computer Engineering (Austria), university-
funded position.

02/2007 – 08/2007 Teaching assistant (Studienassistent), Vienna University of Tech-
nology, Department of Computer Engineering (Austria), university-
funded position.

10/2005 – 02/2007 Scholarship, Vienna University of Technology, Department of Com-
puter Engineering (Austria), granted for project participation.

Publications
2014 K. Chatterjee, A. Pavlogiannis, A. Kößler, and U. Schmid. A

framework for automated competitive analysis of on-line sched-
uling of firm-deadline tasks. Submitted to the IEEE Real-Time
Systems Symposium (RTSS’14).

2013 K. Chatterjee, A. Kößler, and U. Schmid. Automated analysis of
real-time scheduling using graph games. In: Proceedings of the
16th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC’13), ACM, (2013), pp. 163–172.
M. Függer, A. Kößler, T. Nowak, U. Schmid, and M. Zeiner. The
effect of forgetting on the performance of a synchronizer. In:
Algorithms for Sensor Systems (ALGOSENSORS’13), LNCS, (2013),
pp. 185–200.
T. Nowak, M. Függer, and A. Kößler. On the performance of
a retransmission-based synchronizer. In: Theoretical Computer
Science, vol. 509, (2013), pp. 25–39.

2012 M. Függer, A. Kößler, T. Nowak, and M. Zeiner. Brief Announce-
ment: The degrading effect of forgetting on a synchronizer. In:
Stabilization, Safety, and Security of Distributed Systems (SSS’12),
LNCS, 7596 (2012), pp. 90–91.

2011 T. Nowak, M. Függer, and A. Kößler. On the performance of a
retransmission-based synchronizer. In: Proceedings of the 18th In-
ternational Colloquium on Structural Information and Communication
Complexity, (SIROCCO’11), LNCS, vol. 6796, Springer, Heidelberg
(2011), pp. 234–245.

2010 A. Kößler, H. Moser, and U. Schmid. Real-time analysis of round-
based distributed algorithms. In: Proceedings of the 1st Interna-
tional Real-Time Scheduling Open Problems Seminar (RTSOPS’10), in
conjunction with 22nd Euromicro Conference on Real-Time Systems
(ECRTS’10), (2010).

2009 A. Kößler. A platform for teaching and researching distributed
real-time systems. Master Thesis. Technische Universität Wien.

2007 A. Kößler, T. Mair, M. Hofer, and W. Elmenreich. A platform for
teaching and research on distributed real-time systems. Poster at
the 5th International Conference on Industrial Informatics (INDIN’07),
Vienna, Austria. Winner of the best poster award.

2006 G. Klingler, A. Kößler, and W. Elmenreich. The smart car – a
distributed controlled autonomous robot. In: Proceedings of the
Junior Scientist Conference 2006, (2006), pp. 33–34.
A. Kößler and W. Elmenreich. Automated solution evaluation
during a practical examination. In: Proceedings of the Junior Scien-
tist Conference 2006, (2006), pp. 35–36.
G. Klingler and A. Kößler. Das ‘Smart Car’ – ein verteilt kon-
trollierter, autonomer Roboter. Invited Talk: more@Informatics,
Vienna, Austria.

2005 W. Elmenreich, G. Klingler, A. Kößler and S. Krywult. Time-
triggered smart transducer networks. Poster at the Siemens PSE
Technology Day, Vienna, Austria.

	Introduction
	Synchronous Distributed Systems: Theory vs. Reality
	Questions and Contributions of this Thesis
	Road Map of this Thesis:

	Modeling Distributed Systems
	Classic Distributed Computing Models
	Synchrony
	Execution and Communication Primitives
	Modeling Faults

	Achieving a Round Structure
	The Real-Time Distributed Computing Model
	Basics of Real-Time Scheduling
	Selection of On-line Scheduling Algorithms
	Time/Utility Functions
	Comparing Schedulers

	Putting it all Together

	Real-Time Scheduling
	Formal Problem Definition
	Labeled Transistion Systems as Models for Algorithms
	Deterministic LTS for an On-line Algorithm
	The Non-deterministic LTS

	Admissible Job Sequences
	Overall Approach for Computing CR
	Graphs with Multiple Objectives
	Objectives
	Decision Problem

	Reduction to Multi-Objective Graphs
	Reduction for Safety and Liveness Constraints
	Reduction for Limit-Average Constraints

	Optimized Reduction
	Clairvoyant LTS
	Clairvoyant LTS Generation
	On-line State Space Reduction

	Experimental Results
	Varying Tasksets Without Constraints
	Fixed Taskset with Varying Constraints
	Running Times
	Competitive Ratio of TD1

	Modeling as a Graph Game
	Plays
	Strategies
	Objectives
	Decision Problems
	Perfect-information Games

	Complexity Results
	The Synthesis Problem
	Bibliographic Remarks

	Round Synchronization
	The Retransmission Scheme
	Computational Model
	Simulating Perfect Round Executions
	The Algorithm

	Round Durations under Probabilistic Message Loss
	Calculating the Expected Round Duration
	Round Durations as a Markov Chain
	Using the Markov Chain Lambda(r) to Compute lambda

	Results for Finite Retransmission Bounds
	Removing the Maximum Retransmission Bound
	System Model in the Dual Space
	Performance Measure

	Explicit Formulas for lambda-three and lambda-four
	Markovian Analysis
	Using the Markov Chain a(t) to Calculate lambda
	Behavior of lambda for p to 1
	Behavior of lambda for p to 0
	Lower Bounds on lambda-one and lambda-two
	Lower Bound on Parameters for lambda-two
	Lower Bound on Parameters for lambda-one

	Discussion of Results
	Bibliographic Remarks

	Conclusion and Future Work
	Bibliography

