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Abstract

Abstract dialectical frameworks (ADFs) constitute
one of the most powerful formalisms in abstract ar-
gumentation. Their high computational complexity
poses, however, certain challenges when designing
efficient systems. In this paper, we tackle this is-
sue by (i) analyzing the complexity of ADFs un-
der structural restrictions, (ii) presenting novel al-
gorithms which make use of these insights, and
(iii) empirically evaluating a resulting implemen-
tation which relies on calls to SAT solvers.

1 Introduction

Over the last decade, argumentation has become a major
field in AI research [Bench-Capon and Dunne, 2007] and
an increasing number of applications (see [Atkinson et al.,
2017] for a survey) encourages the development of compu-
tational models of argumentation. Within this field, Dung’s
abstract argumentation frameworks (AFs for short) [Dung,
1995] have received notable attention which resulted in a
multitude of methods for solving reasoning problems in such
frameworks [Charwat ef al., 2015]. Systems implementing
such methods participate in a dedicated competition [Thimm
and Villata, 20171, where procedures which rely on (multiple)
calls to SAT solvers have been proven successful [Dvorak et
al., 2014; Cerutti et al., 2014].

Despite the popularity of AFs, their conceptual simplic-
ity — an AF is just a directed graph with nodes as abstract
arguments and edges representing individual attacks — has
also often turned out to be overly limiting. Therefore, gen-
eralizations of AFs introducing further link types such as
support or collective attacks [Nielsen and Parsons, 2007,
Cayrol and Lagasquie-Schiex, 2013] or imposing quantita-
tive aspects have been presented. Abstract dialectical frame-
works (ADFs for short) [Brewka and Woltran, 2010; Brewka
et al., 2017b] constitute one of the most comprehensive gen-
eralizations of AFs available. By equipping every argument
with an acceptance condition, ADFs are capable of model-
ing arbitrary relations between arguments. Potential applica-
tions in legal reasoning [Al-Abdulkarim et al., 2016], online
dialog systems [Neugebauer, 2017], text exploration [Cabrio
and Villata, 2016], and the instantiation of defeasible theo-
ries [Strass, 2014] have already been proposed.

The power of ADFs comes with a price: compared to AFs,
the computational complexity increases by one step in the
polynomial hierarchy for nearly all reasoning tasks [Strass
and Wallner, 2015], with the hardest problems being I'Ig-
complete. Therefore, the identification of fragments which
yield decreased complexity, or even tractability, is of high in-
terest. So far, only the class of bipolar ADFs [Brewka and
Woltran, 2010] has been shown to be unaffected by the in-
crease in complexity compared to AFs. Recent work [Ke-
shavarzi, 2017] has investigated further subclasses but with-
out an explicit complexity analysis. Existing implementa-
tions of ADFs deal with the complexity by employing reduc-
tions either to QBF [Diller et al., 2015] or to ASP [Strass and
Ellmauthaler, 2017; Brewka et al., 2017al, but barely exploit
potential shortcuts for ADFs of lower complexity.

In this work, we aim towards more efficient systems for
ADFs and provide (1) a careful complexity analysis of ADF
subclasses together with investigations whether ADFs be-
ing “close” to a subclass remain easier; and (2) SAT-based
implementations which make use of these insights. For
AFs such analyses can be found in [Dvofdk er al., 2012;
2014] and have been implemented in the Cegartix system.

More specifically, our main contributions are as follows:

e We investigate the complexity of two further subclasses:
acyclic ADFs and concise ADFs. The first class, which re-
stricts the graph underlying the ADF to be acyclic, yields dra-
matic gains in complexity for the majority of reasoning tasks.
The second class is defined with respect to a semantics for
which the ADFs are required to yield only a single solution.
This also leads to a certain decrease in the complexity. As all
these fragments impose rather strict requirements, we further
show that many of the computational advantages also hold for
ADFs which have constant distance to these subclasses (for
this analysis we also include bipolar ADFs).

e Based on our observations we design novel algorithms for
ADF reasoning, in particular, for the problems of skeptical
and credulous acceptance under preferred semantics. We pro-
vide an implementation based on incremental SAT solving,
which is not only novel in combining ADF solving with SAT,
but is also complexity sensitive as it takes advantage of the in-
put ADFs being in (low distance to) advantageous fragments.
e Finally, we provide an experimental evaluation of our new
approach which shows that it is capable of outperforming
state-of-the-art systems for ADFs.



2 Background

We recall the syntax and semantics of ADFs from [Brewka
et al., 2017b]. We assume a fixed and finite set of arguments
A. An interpretation is a function I mapping arguments to
one of the three truth values 7 : A — {t,f,u}. Thatis, an
interpretation maps each argument to either true (t), false (f),
or undefined (u). An interpretation I is wo-valued if I(a) €
{t,f} for all a € A, and trivial (denoted I,) if I(a) = u for
all a € A. For a two-valued interpretation I, I () extends to
the evaluation of a formula ¢ under I as usual. [ is equally or
more informative than .J, denoted by J <, I,if J(a) € {t,f}
implies J(a) = I(a) for all a € A. We denote by <; the
strict version of <;,ie., J <; [if J <; I and da € A s.t.
J(a) =uand I(a) € {t,f}.

An ADF is a tuple D = (A, L,C) where A is a set of
arguments, L C A x A is a set of links, and C' = {¢, }aca
is a collection of acceptance conditions for arguments a € A,
each given by a propositional formula over the parents of an
argument: parp(a) ={b€ A| (b,a) € L}.

The semantics of ADFs are based on the characteristic op-
erator I'p mapping interpretations to updated interpretations
and defined for an ADF D as I'p(I) = J with

t if 4 [I] is a tautology
f if v, [I] is unsatisfiable
u otherwise

J(a) =

where [I] is the formula obtained from ¢ with each argu-
ment that [ assigns to either true or false being replaced by
the corresponding truth constant, i.e., ¢[I] = ¢z — T |
I(z) = t][x — L | I(z) = f]; arguments assigned to unde-
fined are not modified in the resulting formula.

The intuition behind the characteristic operator is that an
argument a is assigned true (false) if all completions of the
given interpretation I satisfy (do not satisfy) the acceptance
condition of a. A completion of an interpretation [ is a two-
valued interpretation J such that I <; J.

Definition 2.1. Given an ADF D, an interpretation 1
o is admissible in D iff I <; T'p(I);
e is complete in D iff I = T'p(I);
o is grounded in D iff I is the least fixed-point of I p;
e is preferred in D iff I is <;-maximal admissible in D.

Conflict-free interpretations are defined by weakening the
condition of admissible interpretations: I is conflict-free in
D if, foralla € A, I(a) = t implies o, [I] is satisfiable, and
I(a) = f implies @, [I] is refutable (a formula is refutable if
it is not a tautology). This differs from admissibility by re-
quiring satisfiability instead of a tautology and refutability in-
stead of unsatisfiability. A conflict-free interpretation I is a
naive interpretation in D if there is no conflict-free interpreta-
tion J in D s.t. I <; J. We refer to the set of all conflict-free,
naive, admissible, complete, grounded, and preferred inter-
pretations of an ADF D as ¢f(D), nai(D), adm(D), com(D),
grd(D), and prf(D), respectively. In any ADF D, it holds
that prf(D) C com(D) C adm(D) C c¢f(D).

We denote the update of an interpretation I with truth value
x € {t,f,u} for argument b by 1%, ie., I|5(b) = x and

X

o Cred, Skept,  Exists, Ver,
cf NP-c trivial NP-c NP-c
nai NP-c nb-c NP-c DP-c
adm | ¥S-c  wivial  ¥H-c  coNP-c
grd | coNP-c  coNP-c  coNP-c DP-c
com | ¥YS-c  coNP-c XP-c DP-c
prf ¥h-c ne-c ¥h-c nb-c

Table 1: Complexity of ADF reasoning [Strass and Wallner, 2015].

I%(a) = I(a) fora # b. Inan ADF D = (A,L,C), a
link (b,a) € L is called (i) supporting (in D) if for every
two-valued interpretation I, I(,) = t implies I|2(p,) = t;
(ii) attacking (in D) if for every two-valued interpretation I,
I(p,) = f implies I%(p,) = f. D is called bipolar if each
link (b, a) € L is attacking or supporting.

The most important reasoning problems in ADFs are cred-
ulous and skeptical acceptance, existence of a non-trivial in-
terpretation, and verification of an interpretation. They are
defined as follows for semantics o, given ADF D=(A4, L, C):

e Cred,: Givena € A,istherean ] € o(D)s.t. I(a) = t?
Skept,: Givena € A, is I(a) =t forall I € o(D)?

o Exists,: Is there an I € (D) with I # I,,?

e Ver,: Given an interpretation I, is I € o(D)?

Example 2.2. Letr D = ({a,b,c},L,C) be an ADF with
Yo = b, wp = a, and p. = —a. It holds that I = {a —
t,b—=t,e—fland I’ = {a— £,b— f,c — t} are pre-
ferredin D and I, is grounded in D. Further, a is credulously
but not skeptically accepted under preferred semantics.

The known complexity results are shown in Table 1.

3 Complexity of Subclasses

In this section we present our complexity results for sub-
classes of ADFs, which are summarized in Table 2 (top).

Bipolar ADFs. It has been shown that reasoning in bipolar
ADFs is easier [Strass and Wallner, 2015], when for each link
its type is known. The results are shown in Table 2 (top left).

Acyclic ADFs. This class is defined as follows.

Definition 3.1. An ADF D = (A, L,C) is acyclic if the di-
rected graph (A, L) is acyclic.

In acyclic ADFs we have arguments without parents (initial
arguments) whose acceptance conditions are constant. This
implies that |com(D)| = 1 [Keshavarzi, 20171, which follows
from a bottom-up propagation of the acceptance conditions.

Proposition 3.2 ([Keshavarzi, 2017]). Any acyclic ADF has
a unique two-valued complete interpretation.

Based on this result, one can compute the grounded
(unique preferred) interpretation in polynomial time. Further-
more, credulous and skeptical reasoning coincide for com-
plete based semantics and can be decided in polynomial time.

Corollary 3.3. For acyclic ADFs, Cred,, Skept,, Ver. are in
P for o € {adm, grd, com, prf} and T € {grd, com, prf}.



bipolar [Strass and Wallner, 2015] acyclic o-concise
o Cred, Skept, Exists, Ver, Cred, Skept, Exists, Ver, Cred, Skept, Exists, Ver,
cf inP  trivial inP in P NP-c  trivial  trivial  NP-c trivial ~ trivial  trivial  trivial
nai inP coNP-c inP in P NP-c  coNP-h trivial DP-c NP-c NP-c NP-c DP-c
adm | NP-c trivial NP-c in P in P trivial inP  coNP-c | trivial trivial trivial trivial
grd in P inP in P in P in P inP in P in P coNP-c coNP-c coNP-c DP-c
com | NP-c inP NP-c inP inP inP inP inP coNP-c coNP-c coNP-c  DP-c
prf | NPc NS¢ NP-c coNP-c | inP in P in P in P ¥hcr ¥Per Ther Mbc*
k-bipolar k-acyclic k-o-concise
cf inP  trivial in P in P NP-c  trivial inP NP-c NP-c  trivial NP-c NP-c
nai inP  coNP-c inP in P NP-c  coNP-h inP DP-c NPc inAF NPc DP<
adm | NP-c trivial NP-c in P in A} trivial in A} coNP-c | ¥f-c* wivial Xf-c* coNP-c
grd in P inP in P in P coNP-c  coNP-c coNP-c coNP-h | coNP-c coNP-c coNP-c DP-c
com | NP-c inP NP-c inP in A} coNP-c in A} coNP-h | ¥H-c* coNP-c XF-c* DP-c
prf NP-c Mf-c NP-c coNP-c | inAF inAY inAF inAf ¥P-c* inAF  ¥Fcr NBc*

Table 2: Complexity of subclasses of ADFs. C* means that hardness for C is under randomized reductions.

Acyclicity does not help in verifying whether an interpre-
tation is admissible (or conflict-free): e.g., asking whether it
is admissible to assign a non-initial argument to true and its
parents to undefined still requires to consider all completions.

Proposition 3.4. For acyclic ADFs, Ver g, is coNP-complete
and Ver is NP-complete.

However, existence of non-trivial conflict-free or naive in-
terpretations is trivial: an initial argument has a constant ac-
ceptance condition (can always be true or false).

In contrast, credulous acceptance under cf and nai remains
as hard as in the general case. An argument may be false in
the unique preferred interpretation, but true in a naive one.

Example 3.5. Let D = (X U {y},L,C) be an ADF with
g = T forx € X and ¢y = ¢. Then, {x — u | z €
X} U{y — t} € ¢fAD) iff ¢ is satisfiable (J(y) = f for
J € prf(D) if ¢ evaluates to £ when all X are assigned true).

Proposition 3.6. For acyclic ADFs, Cred, is NP-complete
(oc€{cf,nai}); Very, is DP-complete; Skept,; is coNP-hard.

nai

Concise ADFs. The subclass of concise ADFs is character-
ized by the existence of exactly one o-interpretation.

Definition 3.7. An ADF D is concise for semantics o (or o-
concise) if |o(D)| = 1.

For cf-concise (resp. adm-concise) ADFs there is only one
interpretation that is conflict-free (resp. admissible), namely
I,,. Hence, problems Cred,,, Skept ., Exists, (o € {cf,adm})
are always false, while Ver, is positive only for I,,.

Proposition 3.8. For o € {cf,adm}, it holds that Cred,,
Skept ,, Exists,, and Ver, are trivial for o-concise ADFs.

In o-concise ADFs Cred,, and Skept, coincide. Complex-

ity under nai, except Skept,,;, does not deviate from ADFs.

Proposition 3.9. For nai-concise ADFs, Cred,,;, Skept,,,
and Exists,,; are NP-complete; Ver,,; is DP-complete.

Proof (Sketch). Given a formula ¢ over X, let Dy = (X U
{z},L,C) with ¢, = -z forz € X, and p, = ¢ V —z. For
any I € ¢f(Dy) we have I(z) = u. We have I(z) = t for

some I € c¢f(Dy) iff .[I] is satisfiable iff ¢ is satisfiable.
Finally, I(z) # f in every I € ¢f(Dy), as ¢,[I] is then a
tautology. Hence, cf(Dy) = {Iy,{z = t}U{z —u |z €
X}}if ¢ is satisfiable and ¢f(Dy) = {I,} otherwise. O

Since grounded semantics is a unique-status semantics it
holds that any ADF is grd-concise. Further, the grounded in-
terpretation is the least complete interpretation, and, thus, rea-
soning under grd and com coincides for com-concise ADFs.

Proposition 3.10. For com-concise ADFs, Cred,,,, Skept,

com’
and Exists o, are coNP-complete; Ver ., is DP-complete.

Due to Valiant and Vazirani [1986] the SAT problem is
NP-hard under randomized reductions if the formula has at
most one model. Briefly, these reductions produce a set
of instances s.t. “yes” instances are translated to a set with
a certain lower bound on the number of “yes” instances.
The result was generalized to quantified Boolean formulas
by Dunne [2009]. Using [Strass and Wallner, 2015, Reduc-
tion 3.2], we can show the following result.

Proposition 3.11. For prf-concise ADFs, Cred,,y, Skept,,,
and EXists,y are 25 -complete under randomized reductions;
Ver s is N5 -complete under randomized reductions.

4 Distance to Subclasses

In this section we extend our subclasses to ones containing
ADFs that have a constant distance to bipolar ADFs, acyclic
ADFs, or concise ADFs (for results see Table 2 (bottom)).

Distance to Bipolar ADFs. We analyze the complexity of
ADFs which have a limited number of non-bipolar links.

Definition 4.1. An ADF D is k-bipolar for some integer k >
0 if for each a € A it holds that |{(b,a) € LL}| < k.

For a k-bipolar ADF D, the (non-)polarity of links is
known and L), LE, and L?D denote the links of D which
are attacking, supporting and neither of the two, respectively.

The main ingredient for the complexity of k-bipolar ADFs
is a generalization of why BADFs exhibit milder complex-
ity [Strass and Wallner, 2015]: to test validity of o[I], fix the



values of bipolar parents and check the remaining comple-
tions of I, the number of which is bounded by 2.

Lemma 4.2. Given a k-bipolar ADF D, an interpretation I,
and an argument a € A, deciding whether p,[I] is a tautol-
ogy and deciding whether o, [I is unsatisfiable is in P.

It follows that reasoning on k-bipolar and bipolar ADFs
has the same complexity; the proof uses the generic results
of [Strass and Wallner, 2015, Theorem 3.18] and Lemma 4.2.

Theorem 4.3. Let k > 0 be a constant and o € {cf, nai, adm,
com, grd, prf}. It holds that the complexity of Ver,, Exists,,
Skept,,, and Cred,, coincides for k-bipolar and bipolar ADFs.

Distance to Acyclic ADFs. An ADF is k-acyclic if remov-
ing links from parents of k arguments results in acyclicity.

Definition 4.4. An ADF D = (A, L, C) is k-acyclic if there
isaset B C Awith |B| < ks.t. (A, L\ (A x B)) is acyclic.
By fixing a truth value assignment on B and then comput-
ing the grounded interpretation on the resulting acyclic ADF
(via polynomially many NP oracle calls) we get a potential
preferred interpretation of the original ADF. By trying out all
such assignments (bounded by 3*), we enumerate prf(D).

Proposition 4.5. For k > 0, Cred,, Exists,, Skeptp,f, Ver,s
are in A, for k-acyclic ADFs and o € {adm, com, prf}.

Reasoning under grd is not easier on k-acyclic ADFs,
since, intuitively, the undefined value may be propagated.

Proposition 4.6. For 1-acyclic ADFss, it holds that Cred,,y,
Skept,,,, and Existsg,y are coNP-complete.

The proof of this result relies on a small odd-attack-cycle
so that an argument can be assigned to true iff a formula is un-

satisfiable. This can be generalized to show the next results.

Corollary 4.7. For 1-acyclic ADFs, Cred,, Skept,, Exists,,
Very, and Verg,y are coNP-hard for o € {adm, com, prf}.

Existence of non-trivial conflict-free (naive) interpretations
in k-acyclic ADFs is trivial if & < |A| and decidable in poly-
nomial time if & > |A|. In the former case, there is an argu-
ment not depending on itself (which can be assigned true or
false without conflict). In the latter case, one can enumerate
all truth value assignments and check for conflict-freeness.

Distance to Concise ADFs. An ADF has distance £ to a
o-concise ADF if there are at most k o-interpretations.

Definition 4.8. An ADF D is k-o-concise for a semantics o
and some integer k > 0 if |o(D)| < k.

In terms of complexity, membership carries over from gen-
eral ADFs and hardness follows from concise ADFs. We can
recycle the reduction from the proof of Proposition 3.9 to ob-
tain the hardness part of the following result.

Proposition 4.9. For k-cf-concise ADFs it holds that Cred,y,
Exists., and Vers are NP-complete for every k > 2.

An upper bound on the number of interpretations is bene-
ficial for skeptical acceptance. Under prf, it allows to decide
the problem with a polynomial number of ¥5-oracle calls.
Key is that ¥5-membership of Exists,q, can be adapted to
the problem EXxists,, . asking whether there is an adm inter-
pretation strictly more informative than a given interpretation.

Theorem 4.10. For k-prf-concise ADFs, Skept,; is in AF.

Proof (Sketch). Let Z = (). Construct a preferred interpreta-
tion [ of D = (A, L, C) by starting with [ = I, and ask a X5
oracle whether there is a J € adm(D) with J >; I and no
J' € ITwith J <; J'. If yes, set I = J and repeat the oracle
call. Otherwise, if I # I, add I to Z and proceed to find the
next preferred interpretation. |prf( D)| is constant and a linear
number of calls suffices to find a preferred interpretation. [

Corollary 4.11. For k-nai-concise ADFs, Skept, ; is in A.

nai
For admissible and complete semantics, we consider it
rather unlikely that Exists, or Cred, get easier for k-o-
concise ADFs with £k > 2. While we are not able to show
ZS -hardness under standard reductions, we can show it under
randomized reductions giving rise to a slightly weaker result.

Proposition 4.12. Let 0 € {adm,com}. For k-o-concise
ADFs it holds that Exists, and Cred, are 25 -complete under
randomized reductions for every k > 2.

Finally, verifying admissibility of an interpretation does
also not benefit from a bounded number of interpretations.

Proposition 4.13. For k-adm-concise ADFs it holds that
Ver,am is coNP-complete for every k > 2.

Inspecting Theorem 4.3, the only problem for (k-)bipolar
which is hard for the second level of the polynomial hierarchy
is Skept,,. 1If, in addition to bipolarity, also the number of
preferred interpretations is bounded, we can again show that
a polynomial number of NP-oracle calls is sufficient.

Theorem 4.14. For ky-bipolar and ky-prf-concise ADFs it
holds that Skept,, is in AF.

5 Algorithms

We now present novel algorithms for ADF reasoning tasks
based on results from Sections 3 and 4. We focus on Skept,,
and Cred, (= Cred,y), for which we present different ap-
proaches. The backbone of our algorithms are SAT solvers,
to which we delegate (sub)problems that are in NP. A cen-
tral subproblem is Exists?, which asks for a o-interpretation
strictly more informative than a given interpretation.

Proposition 5.1. Given o € {cf, nai,grd, adm,com, prf},
complexity of Exists; and Exists, coincide for general, (k)-
bipolar, and (k)-concise ADFs.

In what follows, we first define and discuss the encodings
utilized in SAT calls, then present the base algorithms for the
considered problems, and finally outline different concrete
solving procedures resulting from the algorithms.

Encodings. Figure 1 shows the building blocks for the en-
codings, given an ADF D = (A, L, C) and an interpretation
I. The formulas range over variables U = {st,sf | s €
AY U {p- | (r,s) € L}. Moreover, ¢} denotes the accep-
tance condition ¢ where each occurrence of r € parp(s)
is replaced by p’. The encoding for Existsgc is then given by

@3’1 = oL A Nsea(@h A @2 Itis satisfiable iff there is a

J € ¢f(D) with I <; J. Intuitively, atoms s* and sf repre-
sent the guess of an interpretation J, indicating that J(s) =t



qbii:/\(—\st\/ﬂsf)/\ /\st/\ /\sz \/(st\/sf)

sEA I(s)=t I(s)=f I(s)=u
r f
¢s =(s" = @) A (s" = =l)

;’—(s - /\pT) (sf—> A ﬂpi)

(s,m)EL (s,m)EL
oo =\r* = ( NGsT = n A st =) A
reA (s,r)EL% (s,r')GL%
o (NGt o)A At o)
(S,T)EL% (s,r)eL%
o :(st — ( /\ (cpi‘lx \Y \/ rfv \/ rt))) A
IxeV(Xs) Ix(r)=t Ix(r)=f
(sf — /\ (wpi"lx \Y, \/ rfv \/ rt)))
Ix €V(Xs) Ix(r)=t Ix(r)=f

Figure 1: Building blocks for encodings, given ADF D and inter-
pretation I. Thereby, LG = L, \ L}, and L = L} \ L.

(resp. J(s) = f). Subformula ¢I<i ensures I <; J. In or-
der to have J € ¢f(D), it must hold that, if J(s) = t (resp.
J(s) = f) then p,[J] is satisfiable (resp. refutable). To this
end, atoms pj represent the guess of a two-valued interpreta-
tion Js with Js >; J (cf. ¢2") aiming to satisfy (resp. refute)
¢s. By that, o} being true (resp. false) is equivalent with
¢s[J] being satisfiable (resp. refutable), as is encoded by ¢..

For bipolar ADFs, Exists~, isin NP. We use the encoding

adm
‘I’iz;f,bip = L A dpip N Nyea(@d A @77) which is satisfiable
iff there is a J € adm(D) with I <; J. For J € adm(D),
©r[J] now has to evaluate to true (resp. false) under every
completion of J if J(r) = t (resp. J(r) = f). Due to bipo-
larity, it suffices to check this for one particular completion
of J, represented by p? for each s € A. That is, if for some
s € par p(r) neither s* nor s is true, we can set p? according
to the polarity of the link (s, r) and the value of I(r), as done
by ¢pip- If all ¢} evaluate according to the guess .J under this
particular valuation, J is admissible (cf. ¢£).

By Thm. 4.3, Exlstsa "m € NP for k-bipolar ADFs (formula
size exponential in k). For s € Alet X; = {r | 3(r,s) €
L%, I(r) = u} and V(X) be the set of two-valued inter-
pretations over X,. For Ix € V(Xy), let pbIx = ¢ [r —
ph | (rys) € Lyr ¢ X()[r — Ix(r) | (r,s) € L,r € Xg].
Let q)zlz:ajl;r{ Kbip = L A Gpip A Nyea (@55 A @7), which differs

from <I>ad;n bip DY @L*, which is equal to ¢! if s has only bipo-
lar incoming links and ¢ else. The values of the parents
r connected through non-bipolar links (up to k; identified by
py) are not determined by ¢;,. Instead, all completions [x
of those r with J(r) = u (approximated by X) must be
checked to satisfy (resp. refute) pt/x. This check can be
disregarded if the values of Ix(r) and J(z) differ for some
non-bipolar parent r (done by the disjunctions in ¢.?).
Recall that the encodings not only decide the respective
Exists_ -problems, but also yield concrete 1nterpretat1ons J e
o(D) With <; J via assignments to variables s* and sf
Checking admissibility of an interpretation is also solved

via SAT. We encode the complement, =Ver,4,, by oP =

- Ve Tadm

Algorithm 1 Skept, (D, «)

I: p+ 0

2: while I + ExlSlSadm(D I, p) do

3: while " < Exists_,,(D,1,p)do I < I'

4 if () # t then reject else p < p A Refine” (I)
5

. if p = () then reject else accept

Aro=e 2" A Nigsy=e 7P° A Vi)=e 795 V V(s =g #% with
ot = @s[r = p" | (r,8) € L]. Variables p® represent a
guess of an interpretation J >; I that acts as a witness for
I ¢ adm(D) if either I(s) = t but p,[J] = f (then —¢} is
true), or I(s) = f but ¢,[J] = t (then ¢ is true) for some
s € A. Then, 21 is satisfiable iff I ¢ adm(D).

—Veruam

Algorithms. Algorithm 1 solves Skept,,. (which is |_|P-C)
by implementing the idea of the membersh1p proof of The-
orem 4.10. It iteratively calls Exists_,, until a preferred in-
terpretation is reached. Thereby, preferred interpretations al-
ready visited are ruled out by maintaining the formula p. This
formula is refined in line 4 by Refine” (I) = Vi(s)=t stv
V)= 5°V Vi(s)=u(s* V s7), ie., all J <; I are excluded
from now on. This is done internally, enabling incremental
calls to the SAT solver. The algorithm rejects an instance if it
finds a preferred interpretation such that the query argument
is not mapped to t (or if it finds prf(D) = {I,,}) and accepts
otherwise. By Theorem 4.10 the number of iterations in Al-
gorithm 1 is polynomial in k for k-prf-concise ADFs, i.e., it
is polynomially bounded by the number of interpretations.
Algorithm 2 implements the ¥5-hard problem Exists,,
for the general case. As an add1t1onal parameter, it takes the
formula p encoding the search space of interpretations. Us-
ing the encoding CIDC?’I, a SAT solver is employed to get a
conflict-free interpretation J. If .J is then found to be admis-
sible by another SAT call using <I>ﬁVer _» we canreturn J, oth-
erwise we exclude J from the search space via refining p by

Refine” (J) = Vo=t 75 VV ()= 75TVV s zu (st Vsh).

Solvers. We denote Algorithm 1 by PRF-3, which uses Al-
gorithm 2 for the Exzstsadm subprocedure, and employs three
levels of SAT which is in line with worst-case complexity. If
the given ADF is bipolar, a SAT call with <I’a dm bip decides

Exists_, , giving rise to PRF-BIP. Otherwise, the polarity of
each link can be determined by two SAT calls as a prepro-
cessing step, enabling Exists,, to be decidable via a SAT

Algorithm 2 Exists_, (D, I, p)

I: p<+ p/\<l>?’1
2: while true do

3:  (7,sat) + SAT(p)

4:  if sat then

5 J  Extract(t)  # get interpretation by values of s°, s*
6: if SAT(®2; ) then p < p A Refine” (J) else return .J
7:  else return fail




Credydm Skept,,
Domain | ADM-K-BIP ADM-2 goDiamond QADF YADF PRF-K-BIP-OPT  PRF-K-BIP PRF-3 goDiamond QADF YADF
ABA2AF | 11.20(15) T16.12(12) 19.84(54) 40.58(55) 78.92 (75) 25.90 (16) 3738 (16) 34.84 (42) 68.06 (54) 18.13 (86) 165.74 (75)
Planning 0.14 (0) 13.95 (14) 6.72 (0) 4.6 (87) 193.25 (47) 11.14 (3) 30.23(5)  135.18 (73) 17.52 (0) NA (100)  281.32 (84)
Traffic 0.05 (0) 10.62 (9) 6.42 (0) 10.56 (37) 3547 (21) 17.18 (1) 25.61 (1) 12.33 (35) 28.42 (0) 172.88 (82) 110.77 (42)

Table 3: Mean running times for ADF reasoning tasks (timeouts excluded). Number of timeouts (out of 100 instances) in brackets.
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Figure 2: Running times for ADM-K-BIP vs. ADM-2 on Credq, (left); solver comparison for Cred,q, (middle) and Skeptprf (right).

call using (D(Z;,{ wip- WWe call this variant PRF-K-BIP. Adding

shortcuts by (i) computing Cred,4y, (rejecting if not accepted)
and (ii) pre-computing grd(D) gives rise to PRF-K-BIP-OPT.

For Cred,4, with query argument s we get the procedure
ADM-2 by adding s* to ®)" in Algorithm 2 with parameters
I =1,and p = (. In the k-bipolar case ADM-K-BIP decides

the problem by a single SAT call using @a’;;f:;(bip A st

6 Experiments

We implemented above algorithms resulting in the system
k+ADF, available in open source at www.cs.helsinki.fi/
group/coreo/k++adf. The implementation currently sup-
ports credulous and skeptical reasoning, and enumeration,
under the semantics cf, nai, adm, com, prf, and grd, and in-
cludes MiniSAT 2.2.0 [Eén and Sorensson, 2003] as the SAT
solver. Here, we present an overview of the scalability of the
approach, and a comparison to existing ADF systems.

We selected the most challenging instances from the
YADF system page (www.dbai.tuwien.ac.at/proj/
adf/yadf/). These ADFs were generated from the AFs
of domains ABA2AF, Planning, and Traffic from IC-
CMA 2017 (argumentationcompetition.org/2017/)
as follows [Brewka et al., 2017al. Given AF graphs, accep-
tance conditions are constructed by splitting parents into 5
groups, each constituting a subformula representing attack,
group-attack, support, group-support, and exclusive or. The
subfomulas are connected via A or V with equal probability,
resulting in 300 ADFs (10 to 150 arguments for ABA2AF; 10
to 300 arguments else). Query arguments were selected by
sampling uniformly at random from the set of all arguments.

For the experiments we used 2.83GHz Intel Xeon E5440
quad-core machines with 32GB RAM running Debian
GNU/Linux, enforcing a 1800-sec. timeout per instance. We

compared the performance of our system with goDiamond
0.6.6 [Strass and Ellmauthaler, 2017] with clingo 5.2.1 [Geb-
ser et al., 2016], QADF 2.9.3 [Diller et al., 2015] with blo-
qger 037 [Biere et al., 2011] and DepQBF 6.03 [Lonsing and
Egly, 2017], and YADF 0.1.0 [Brewka et al., 2017a] with
Ipopt 2.2 [Bichler et al., 2016] and clingo 5.2.1.

We considered Cred,,,, and Skeptprf. Table 3 presents an
overview of the mean running times and the number of time-
outs, for each domain and solver considered. In the case of
Cred g, ADM-K-BIP (a single SAT solver call) has the lowest
mean running times (see also Figure 2 (center)). However, for
the ABA2AF instances the algorithm ADM-2 produces less
timeouts, albeit being slower on average. For Skept,,,, the
procedure PRF-K-BIP-OPT performs exceptionally well with
the ABA2AF instances, also having the lowest mean running
time for Planning. As can be seen also in Figure 2 (right), the
experiments clearly demonstrate the viability and efficiency
of our SAT-based approach, in particular when making use of
k-bipolarity in PRF-K-BIP. The shortcuts used in PRF-K-BIP-
OPT then give another minor performance improvement.

The case of the ADM-K-BIP encoding vs the ADM-2 proce-
dure for credulous reasoning under adm is shown in Figure 2
(left). The second level procedure performs better for some
ABA2AF instances, even solving some of those for which the
k-bipolar encoding produces a memory-out. We noticed that
this happens when the parameter k exceeds a value of 15, and
hypothesize this to be due to the size of the encoding.

7 Conclusion

In this work, we studied the complexity of subclasses of
ADFs and incorporated these insights into a novel and com-
petitive system based on incremental SAT solving. For future
work, we plan to include further subclasses (see, e.g. [Pol-
berg, 2016]) and tune the system by exploiting acyclicity.
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