FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Haptic Feedback in Room-Scale
VR

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Visual Computing
eingereicht von

Philipp Erler
Matrikelnummer 01426424

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Markus Schitz

Wien, 18. Juli 2017

Philipp Erler Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Haptic Feedback in Room-Scale
VR

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Visual Computing
by

Philipp Erler
Registration Number 01426424

to the Faculty of Informatics
at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Markus Schiitz

Vienna, 18" July, 2017

Philipp Erler Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Philipp Erler
LassallestraBe 30/22, 1020 Wien

Hiermit erklare ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der Arbeit — einschlieBlich
Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich

gemacht habe.

Wien, 18. Juli 2017

Philipp Erler

Acknowledgements

This work would not have been possible without the support of many great people. At least, it
would have taken much more time.

First of all, I want to thank my parents, Karin and Uwe Erler, for supporting me during my entire
studies. Thanks to them, I could concentrate on my academic career. Next, I thank Lisa Fellinger
for proofreading all my texts and improving my English. I thank Stefan Zaufl for pointing out
fundamental flaws in my plans, and I thank him for our nice and productive conservations.

From the TU Wien, I thank Michael Wimmer for the smooth execution of this thesis, Markus
Schiitz for his good ideas and his constructive feedback, and Annette Mossel for sharing her
experience with user studies.

I thank the staff of the VRVis in general and the Semantic Modelling and Acquisition group
in particular. Most importantly, I thank Andreas Walch, Attila Szabo, Bernhard Rainer, Georg
Haaser, Harald Steinlechner, Michal Domanski, Michael Schwirzler, and Stefan Maierhofer for
their good ideas, as well as their help with F# and Aardvark.

Last but not least, I thank all 26 testers for their time, sweat, and feedback.

vii

Kurzfassung

Virtuelle Realitdt (VR) wird im Moment zu einem verbreiteten Medium. Aktuelle Systeme
wie die HTC Vive bieten ein genaues Tracking des HMD und der Controller. Dies ermoglicht
extrem immersive Interaktionen mit der virtuellen Umgebung. Diese Interaktionen konnen durch
Feedback weiter verbessert werden. Zum Beispiel kann ein Controller vibrieren, wenn er in der
Nihe eines aufnehmbaren Balles ist.

Wir haben eine Nutzerstudie durchgefiihrt, um Folgendes zu analysieren:

1. Das Aufnehmen und Werfen mit Controllern in einem einfachen Basketball-Spiel.

2. Den Einfluss von haptischen und optischen Feedback auf Leistung, Prasenz, Benutzer-
freundlichkeit und Arbeitsbelastung.

3. Die Vorteile von Punktwolken-Bearbeitung in VR gegeniiber Punktwolken-Bearbeitung
am Computer.

Durch die Entwicklung den Punktwolken Editors fiir VR sind einige neue Verfahren entstan-
den. Unsere neue Betrachtungsmethode, die beidhdndige Zwick-Geste, erweitert die Handgriff-
Metapher, um Punktwolken in VR effizient zu bewegen, drehen und skalieren. Unsere neue
Renderingtechnik nutzt den Geometry Shader, um diinn besetzte Punktwolken schnell zu zeich-
nen. Selektionvolumen am Controller sind unsere neue Methode, um Punkte in der Punktwolke
effizient zu selektieren. Die sich ergebende Selektion kann in Echtzeit dargestellt werden.

Die Ergebnisse der Nutzerstudie zeigen, dass:

1. das Aufnehmen mit einem Controllerknopf intuitiv ist, das Werfen aber nicht. Den Knopf
loszulassen ist eine schlechte Metapher fiir das Loslassen eines virtuellen Objekts, um es
zu werfen.

2. das Hinzufiigen von haptischen, optischen oder beiden Feedbacktypen zum Aufnehmen
die Leistung der Nutzer und die Prisenz verbessert. Allerdings sind nur Teilbereiche wie
Genauigkeit und Vorhersagbarkeit signifikant verbessert. Das Feedback hat fast keinen
Einfluss auf Benutzerfreundlichkeit und Arbeitsbelastung.

3. das Editieren von Punktwolken in VR mit der beidhdndigen Zwick-Geste und den Selekti-
onsvolumen ist signifikant besser als am Computer mit Orbitkamera und Lasso-Selektionen.

ix

Abstract

Virtual reality (VR) is now becoming a mainstream medium. Current systems like the HTC
Vive offer accurate tracking of the HMD and controllers, which allows for highly immersive
interactions with the virtual environment. The interactions can be further enhanced by adding
feedback. As an example, a controller can vibrate when it is close to a grabbable ball.

As such interactions are not exhaustingly researched, we conducted a user study. Specifically, we
examine:

1. grabbing and throwing with controllers in a simple basketball game.

2. the influence of haptic and optical feedback on performance, presence, task load, and
usability.

3. the advantages of VR over desktop for point-cloud editing.

Several new techniques emerged from the point-cloud editor for VR. The bi-manual pinch gesture,
which extends the handlebar metaphor, is a novel viewing method used to translate, rotate, and
scale the point-cloud. Our new rendering technique uses the geometry shader to draw sparse
point clouds quickly. The selection volumes at the controllers are our new technique to efficiently
select points in point clouds. The resulting selection is visualized in real time.

The results of the user study show that:

1. grabbing with a controller button is intuitive but throwing is not. Releasing a button is a
bad metaphor for releasing a grabbed virtual object in order to throw it.

2. any feedback is better than none. Adding haptic, optical, or both feedback types to the
grabbing improves the user performance and presence. However, only sub-scores like
accuracy and predictability are significantly improved. Usability and task load are mostly
unaffected by feedback.

3. the point-cloud editing is significantly better in VR with the bi-manual pinch gesture and
selection volumes than on the desktop with the orbiting camera and lasso selections.

X1

Contents

Kurzfassung ix
Abstract xi
Contents xiii

1 Introduction

1.1 Problem Statement e 1
1.2 Contributions 2
2 Related Work 3
2.1 VRTechnology 3
2.2 Interaction Techniques 5
2.3 Movement Techniques 6
24 Presence e e e 7
2.5 Feedback 8
2.6 PointClouds. e 10
3 System Design 13
3.1 BasketballGame 14
3.2 Grabbing Test e 20
3.3 Point-Cloud Editing 21
4 Implementation 27
4.1 Software Architecture e 27
42 Rendering 28
43 HapticFeedback 29
4.4 PhysSiCS o e e e e 31
4.5 Out-of-Core Point-Cloud Rendering 32
4.6 Bi-Manual Pinch Gesture 34
4.7 Real-Time Point Selection Visualization 36
5 User Study Design 39
5.1 UserlInformation 40

Xiii

5.2 Simulator Sickness L
53 Presenceo
54 Usability e
5.5 TaskLoad e
5.6 ODbjective SCOTeS v i e e e e e e
6 Results
6.1 Simulator Sickness
6.2 Basketball Game
6.3 Grabbing Test L
6.4 Point-Cloud Editing
7 Conclusion and Future Work
7.1 Grabbing and Throwing with Hand-Held Controllers
7.2 The Influence of Haptic and Optical Feedback
7.3 Innovations for Point-Cloud Editingin VR
7.4 The Advantages of Point-Cloud Editingin VR

A Grabbing Test Results

Bibliography

45
47
47
51
61

71
71
71
72
72

73

77

CHAPTER

Introduction

After being around for 60 years, virtual reality finally evolved from a hyped research area to a
rather common medium. The current room-scale VR systems, like the HTC Vive [HTC16], are
now affordable for consumers and allow for highly immersive virtual worlds with a strong feeling
of presence. Natural interactions are easy to learn and therefore improve the usability of VR
applications. The interactions can be further enhanced with feedback, for example, vibration of a
controller when it is close to a grabbable ball. This improves the efficiency of the interaction and
can strengthen the presence. Viewing and editing point clouds in VR are a new field of research,
which may benefit from more natural interaction methods.

1.1 Problem Statement

It is important to have intuitive and efficient methods of interaction with the virtual world. The
choice of interaction techniques can greatly improve the feeling of immersion and presence.
There are many interaction techniques, most of them have been known for more than 10 years.
The most important one is the virtual hand [WJ88], which maps the position and rotation of the
real controller directly onto its virtual counterpart. It is used to select and manipulate objects in
VR.

One interaction that occurs frequently is grabbing an object with the virtual hand. There is a
variety of input methods for this: real hands with gesture recognition [LS16], finger tracking
with data gloves [SZ94], and hand-held controllers [FHKHO6]. However, grabbing and throwing
physically simulated objects, e.g. balls, with hand-held controllers is a combination that is not
sufficiently researched. Thanks to the many current VR systems like the HTC Vive [HTC16]
and Oculus Rift [Ocul6], such hand-held controllers have become the most common input
methods. Therefore, our first research question is “whether grabbing and throwing virtual balls
with hand-held controllers is intuitive”.

1. INTRODUCTION

Often, interaction and movement techniques can be further improved with different kinds of
feedback. As an example, simple vibrations of a hand-held controller are enough to convey a
sense of touch and make it easier for the player to grab virtual objects. Another example is optical
feedback. A highlight on an object shows that it can be grabbed. However, the effect of such
feedback has not been adequately quantified with current VR systems. Therefore, our second
research question is “whether feedback has a statistically significant influence on grabbing”.

Some techniques are better suited for certain tasks than others. Interacting with rigid bodies is well
researched, while interactions with point clouds have not yet been studied sufficiently. One reason
is that algorithms to render large point clouds efficiently were proposed quite recently [RLOO].
Rendering dense point clouds requires high computation power, especially in VR. The necessary
graphics hardware to efficiently display millions of points 90 times per second for both eyes only
became available in the last few years. Additionally, the VR systems before the HTC Vive and
Oculus Rift were experimental and certainly not fit for regular use. Simply put, VR and point
clouds were challenging research areas on their own. Now, their basic problems are solved and
it is possible to combine them, but it is unclear whether this is beneficial. Therefore, our third
research question is “whether point-cloud editing is better in VR than on the desktop”.

1.2 Contributions

To answer the three research questions posed above, we conducted a large user study. Specifically,
the goal of the user study was to examine:

1. grabbing and throwing with controllers in a simple basketball game.

2. the influence of haptic and optical feedback on performance, presence, task load, and
usability.

3. the advantages of VR over desktop for point-cloud editing.

For the user study, we implemented three VR applications, which led to further contributions:

1. An efficient and easy-to-understand software architecture.

2. A new method to render sparse point clouds using the geometry shader. Compared with
the technique by Schiitz and Wimmer [SW15], the rendering time of our new method is
only about a tenth but still produces a similar visual quality.

3. A new method using selection volumes at controllers to efficiently select points of a point
cloud in VR.

4. A combination of selection volumes with the instant selection visualization by Rainer [Rail6]
to enable point-cloud selections in real time.

5. A new viewing method for point clouds in VR, the bi-manual pinch gesture, which extends
the handlebar metaphor [SGH™'12].

Chapter 2 describes the state-of-the-art in VR technology, interaction and movement techniques,
presence, feedback, and point clouds. The design decisions for the three applications created
for this thesis are explained in Chapter 3, and Chapter 4 gives details of the implementation.
Chapter 5 describes how the user study was conducted, and Chapter 6 presents its results. Finally,
Chapter 7 concludes the thesis and proposes possible future work.

CHAPTER

Related Work

Virtual reality brings computer science and humans together. Therefore, it is a very broad field
incorporating knowledge from the realms of mechanics, electronics, physiology, psychology, and
especially computer science. The focus of this thesis is on human-machine interaction in VR.
Therefore, already known interaction and movement techniques as well as an analysis of the
presence are described in detail.

2.1 VR Technology

This section is dedicated to VR hardware. It gives a brief overview of some current VR systems
with their input and output devices. Additionally, some groundbreaking concepts and devices are
described.

In 1965, Sutherland described a theoretical ’ultimate display’ that would provide input to all
senses [Sut65]:

The ultimate display would, of course, be a room within which the computer can
control the existence of matter. A chair displayed in such a room would be good
enough to sit in. Handcuffs displayed in such a room would be confining, and a
bullet displayed in such a room would be fatal. With appropriate programming such
a display could literally be the Wonderland into which Alice walked.

A few years later, he developed one of the first head mounted displays, called *The Sword
of Damocles’ [Sut68]. It featured one miniature cathode ray tube for each eye, and it also
used mechanical or ultrasonic head tracking to control the view in the virtual environment.
Afterwards, VR has found applications in flight simulators [Mos93], education [DSL96], and
phobia treatment [GPHCT02].

2. RELATED WORK

Between 1990 and 2000, many HMDs for consumers and professionals were developed. One
example is the Forte VFX1 [Min98] [Hel98], which was released in 1995 for 695$. It had an
LCD with 263x230 pixels for each eye and could track the head orientation. Another example is
the Sony Glasstron PLM-S700 [Son98], which was announced in 1998 for 298,000 yen, around
2,5008%. It featured an LCD with 800x600 pixels per eye and optional see-through ability but no
head tracking at all.

As an alternative to HMDs, the CAVE was introduced in 1992 [CNSD192]. It uses beamers
projecting stereo images onto the sides of a room. The user simply needs to wear light-weight
anaglyph or shutter glasses and has a complete field of view. The disadvantages of CAVEs over
HMDs include a higher computation effort, more required space, and higher costs.

The current generation of VR devices began with the Kickstarter campaign of the Oculus
Rift [Ocul6]. Two major improvements of the Rift are precise, low-latency head tracking with
6 Degrees of Freedom (DoF) and low-persistence OLEDs with high resolution [Ocul4]. Other
companies jumped on the newly sparked hype and started their own products, for example the
HTC Vive [HTC16] and PlayStation VR [Son17]. These three VR systems are compared in

Table 2.1.
‘ Property ‘ Oculus Rift Touch ‘ HTC Vive PlayStation VR ‘
Price 750$ (+2nd camera) 800% 400%
Display OLED OLED OLED
Resolution 2160 x 1200 2160 x 1200 1920 x 1080
Refresh rate 90Hz 90Hz 120 Hz
Field of view 110° 110° 100°
Tracking area | 1.5m x 3.4m (5.1m?) | 3.5m x 3.5m (12.25m?) | 3m x 1.9m (5.7m?)

Table 2.1: The Oculus Rift, HTC Vive, and PlayStation VR are compared. The displays are similar,
but the HTC Vive has a much larger tracking area. The data is taken from the manufacturers and
Digital Trends [HTC17a] [Digl6] [Digl7] [Son16].

The displays are quite similar. However, the HTC Vive has the largest tracking area and is
the most expensive of the listed products. The Rift and Vive require a computer with a strong
graphics card, which is about 1000$ [Log17]. The PlayStation VR requires only a PlayStation 4,
which costs roughly 350$ plus PlayStation Move controllers for another 1003$. So, a good VR
experience can still be expensive, at least for the average consumer, but enthusiasts and companies
can easily obtain a decent VR system. VR has not yet arrived at the mass market, but maybe
one game could achieve this like Pokemon Go did for AR in 2016 [Nial6] — hopefully in a more
sophisticated way and with more persistence.

Data collection of the VR platforms is becoming more and more important. Among other data
like location information, Oculus collects “Information about the games, content, or other apps
installed on your devicel...]” and “Information about your physical movements and dimensions
when you use a virtual reality headset” [Ocul7]. Both Valve with SteamVR [Vall17b] and Sony

2.2. Interaction Techniques

with PlayStationVR on the other side, only collect personal billing information. Therefore, the
data collection of Oculus can be a deal breaker, especially for professional uses.

Many current VR systems aim for seated or standing experiences and have only a small tracking
volume. This is perfect, e.g. for sitting in a cockpit and flying a plane. These applications
are especially prone to cyber sickness, which is caused through perceiving visual movement
without feeling the expected forces [Dra98]. There is no general solution for this cause of cyber
sickness. Mapping real walking to virtual locomotion provides some relief but creates other
problems, for example how to deal with a limited tracking area. In experimental set-ups, users
walked in place [TDS99] or were strapped to devices to keep them on the spot [ITYTO7]. There
are treadmill-like input devices, which suffer from slow and loud mechanics [Iwa99]. Then
again, there are also systems like the Virtualizer [Cyb13], where users walk almost naturally on a
slippery plate. Most games and experiences for the HTC Vive pursue another approach: to adapt
the virtual space to the limited real space. Users can specify a free space within the tracking
space, which is the so-called chaperone. When the users are too close to its bounds, a transparent
grid is displayed as a wall in the virtual environment.

In “VR Funhouse” by NVIDIA [NVI16], “Space Pirate Trainer” by I-Illusions [I-116], and “The
Brookhaven Experiment” by Phosphor Games Studios [Pho16], the players can move in a limited
virtual space and are teleported between the levels. In “Tiltbrush” by Google [Goo16], users can
move their "paintings’ faster than themselves. Therefore, they just have no reason to walk. When
the accessible virtual space is much larger than the real space, the users usually teleport to a new
location by pointing with a controller, as they do in “The Lab” by Valve [Vall6].

A variety of different input methods for grabbing in VR is described. The first one was the ‘bat’
introduced in 1988 by Ware [WJ88]. It is a space mouse with six DoF and a button. Hand-held
controllers also have six DoF but can be mapped directly to their virtual representation, which
makes interactions with them more natural [FHKHO06]. Hands and gestures can be tracked, as
well, for example with Leap Motion [LS16]. Tracking fingers is also possible, e.g. with data
gloves [SZ94].

2.2 Interaction Techniques

This section describes many interaction techniques for VR, most of which have been proposed in
the 1990s. The referenced work deals with questions like “How can users select and manipulate
objects efficiently?” or “Which technique is the best to interact with small, fast, or overlapping
objects?”.

The classical virtual hand implements a linear mapping from physical to virtual space [WJ88].
The Go-Go interaction technique enhances the virtual hand with non-linear extension of the virtual
arm beginning at about 2/3 of the maximal physical arm extension [PBWI96]. The HOMER
interaction technique combines ray casting with teleporting the virtual hand to the selected object
in order to simplify rotations around the object axes [BH97]. Donaldson and Whiting developed
another extension to the virtual hand interaction: They extend the hand grab volume along
the bisector of head to hand and wrist direction [DW16]. Worlds in miniature [SCP95] is an

2. RELATED WORK

interaction metaphor proposed by Stoakley et al., which gives users a miniature of the scene to
interact with. For example, they can pick up an avatar representation and put it down somewhere
else to teleport.

Cutler et al. proposed multiple one-handed and two-handed interaction methods for work-
benches [CFH97]. As an example, they introduced the pinch gesture for one hand to select a
single object and move it, and they modified the pinch gesture for both hands to enable scaling as
well. Song et al. condense the idea of the two-handed pinch gesture to a handlebar metaphor,
which can be used with the hand tracking of the Kinect [SGH™12].

The well-known 2D user interfaces (menus) from desktop applications can be used in VR as well.
Rather than pointing with a mouse, the users point with a wand at the menu elements [SRHOS5].
However, Northway states that simple 2D-menus should be avoided, especially floating head-
locked ones because they break the presence [Norl6a]. Instead, they should be part of the
virtual environment, for example as objects to interact with. One example is “Fantastic Con-
traption” [Nor16b], where the players can build vehicles, which move around obstacles and into
target areas. The parts they need to build those objects can be taken from the cat-shaped toolbox
shown in Figure 2.1. Changing the scene, for example to a level where players can select and load
previous games, is done by putting on a virtual helmet. A motion like pulling an arrow from a
quiver on your back can be used as a shortcut. In “Fantastic Contraption” for example, the players
can pull the last used part from their back and do not need to walk back to the cat. These two
interactions, to change the level with a helmet and to pull a copy of the last used object from your
back, may become standards like Ctrl + Z to undo and Ctrl + Y to redo in desktop applications.

2.3 Movement Techniques

This section is about movement of users in a virtual environment. Different techniques have
been proposed for different applications. Some cause less simulator sickness, others cause less
disorientation, and others are more accurate. Some techniques let the users walk naturally in a
limited physical space and use inaccuracies in human perception to extend the accessible virtual
space.

Flying techniques require a target direction and a way to change the velocity. Teleportation
changes the user’s location instantaneously to e.g. a ray-cast hit point. The users can act as input
devices by tracking their physical walking or with the leaning technique. Bowman et al. compares
these movement techniques and many others [BKH97]. They find that pointing directed steering
is more comfortable but slightly less accurate and harder to learn than gaze directed steering.

Redirected walking scales the amount of virtual rotation and movement compared to the phys-
ical rotation and movement. This allows the users to explore virtual spaces much larger than
the tracked space [RKWO1]. This technique is hardly noticeable when applied within certain
limits [SBJ™10]. The flexible spaces approach by Vasylevska et al. exploits change blindness
by using a dynamic layout of the virtual rooms and corridors to fit more virtual space into the
physical space [VKBS13]. The change blindness can be increased with twisted corridors. The
overlap of rooms can then be more than 60% and still be unnoticed [VK15].

2.4. Presence

Figure 2.1: A cat as a toolbox in “Fantastic Contraption”. The balloons can be taken to build
a vehicle. The needles can be taken to pop used balloons. The balloons and needles on the cat
regrow.

XinReality is a Wiki for AR and VR. It contains a list of established and experimental movement
techniques [Xin16]. One interesting technique is to freeze the game when the user approaches
the tracking area bounds, rotate the scene with the user, and unfreeze the game [Reil6]. This
technique displays the remaining space in front of the user and suggests a turn direction to prevent
cord tangling. WalkAbout by Tekton Games is similar, but here the users freeze the game with a
controller button [Tek16].

2.4 Presence

This section describes the feeling of presence in VR. It can be measured through questionnaires
or indirectly through physiological reactions. Certain factors of a VR experience can improve
the player’s presence. However, it can be broken easily by minor errors. For simplicity, social

2. RELATED WORK

presence is ignored here.

Presence can be defined in different ways. One popular definition is the “feeling of being
there” in the virtual environment [SVdAM99]. A good, immersive virtual environment features
a strong presence. One basic principle is that presence comes from continuity and not from
complexity [Fos15]. Therefore, less is more, especially when considering limited development
resources. With a deep presence, players automatically follow the rules of the virtual world.
Hackett et al. state that objects should be consistent. For example, if one object can be interacted
with, all similar objects should be as well. Otherwise, the expectations of the users are broken
what results in less presence [HHH ' 16].

The depth of presence can be measured through questionnaires, for example the Presence Ques-
tionnaire (PQ) by Witmer et al. [WS98], by Slater et al. [S1a99], and Schubert [Sch03]. The
igroup presence questionnaire [igr16] has some items from the mentioned questionnaires plus
two more. With its 14 items, it is rather short. The PQ used by the UQO Cyberpsychology
Lab is based on the one by Witmer, but it is shorter with 24 items [UQO13]. It is controversial
whether arousal, measured through e.g. heart rate and skin conductivity, is linked to presence or
not [DKFDOO].

Slater et al. found that dynamic shadows improve the presence [SUC95]. Steed et al. found that
an avatar might have an important influence on presence and embodiment, but they could not get
statistically significant results [SFL T 16]. Usoh et al. compared natural walking, walking-in-place,
and flying [UAW99]. Flying results in significantly worse presence than walking-in-place and
natural walking. Natural walking creates a better presence than walking-in-place. They also
found that people who play games more often feel less present.

Some developers of current VR experiences give insights in their practical work, for example at
the Virtual Reality Developers Conference, Vision VR/AR Summit, Oculus Connect, or Steam
Dev Days. Padget and Hamm recommended some ways to improve presence at the Vision
VR/AR Summit 2016 [PH16]. From their experience in real-world applications, they found that
an avatar helps improving the presence. However, there is an uncanny valley in avatar quality,
which means that a less realistic avatar can be better. The avatar should match the expectations
of the users. Therefore, developers should either provide different realistic hand models with
various sizes and skin tones or simply provide stylized hands, gloves, or tools. Since current
VR projects are rather small compared to AAA games, the latter solution is more popular. In
the case of the Oculus Rift and HTC Vive, showing models of the controllers in VR is fine for
many applications. Huebner and Johansson suggest replacing the avatar’s hand with the grabbed
object [HJ16]. Padget and Hamm recommend avoiding arms or even full-body avatar because
pose estimation is very difficult and inaccurate with the Rift and Vive. A failing estimation can
easily break the presence [PH16].

2.5 Feedback

Feedback, in this context, means that a system sends information to the user, instead of only
receiving inputs. Among others, the feedback can change the users’ performance and feeling of

2.5. Feedback

presence. One and the same information can be transmitted to different senses. Typical feedback
types are: optical, haptic, and auditory. There are also experimental devices for olfactory and
gustatory output. Optical output is usually the main source of information in VR experiences, but
auditory and haptic outputs can be very important. The most common forms of haptic feedback
are vibrations (vibration alarm), forces (force-feedback joystick), and tactile feedback (braille
display).

The experience of Hacket et al. from “Tilt Brush” shows what happens when feedback is
entirely missing. A completely black or white environment makes the users feel lost. Therefore,
they recommend to have at least a ground and sky-box [HHH"16]. Donaldson and Whiting
recommend to fade to white and play an acoustic signal in order to reduce the simulator sickness
caused through teleportation [DW16]. They also suggest fading out and in when users expect
acceleration.

The research of force feedback input started in 1971 with Project GROPE [BJOYBJK90], around
the same as the first HMD. Its aim was and is to let chemists feel the forces of molecules.
Okamura et al. proposed a model for the macroscopic effects of microscopic surface texture. To
be more exact, they describe the vibrations caused by tapping, stroking, and puncturing various
materials [ODH98] and how vibrating devices can display feedback based on this model [OCDO1].
Vuskovic et al. describe an advanced haptic feedback model for cutting through tissues in a
surgeon simulation with a scalpel-like input device [VKSRO00]. Some data gloves can produce
vibrations for individual fingers, and they enable finger and sometimes arm tracking. For example,
Manus-VR [Man16] and Cyberglove Systems [Cyb17] produce such gloves. Other gloves are
like an exoskeleton and can apply strong forces to the fingers [Bur99]. Some gloves focus on
tactile feedback [SZ94].

Sallnis et al. show that the force feedback produced by a pencil-like input device can significantly
improve task performance and presence [SRGS00]. The Vive controllers can give haptic feedback
in the form of vibrations. Padget and Hamm [PH16] claim that the vibration feedback of current
VR systems has a huge effect on presence but it looks like it has not yet been quantified.

Hoffman et al. found that using real objects in a virtual environment improves the real-
ism [HHS'98]. This is done by tracking real objects and mapping their position and orientation
onto a virtual object with a similar appearance. Such objects are called props. For example, a
real fire extinguisher can make a fire fighter simulation in VR much more realistic. HTC offers
additional trackers for the Vive [HTC17b], which can be attached to an extinguisher to create a
prop. An industrial robot attached to props can produce realistic force feedback [Joh16].

Padget and Hamm recommend using vibration feedback when picking up objects or moving
through static geometry in order to include the haptic sense for a better performance and pres-
ence [PH16]. Donaldson and Whiting recommend vibrating the controller when it is within an
object [DW16]. Also, they suggest highlighting objects that can be grabbed.

For audio, Padget and Hamm suggest adding multiple sound sources for ambient sounds to the
scene at different locations. This is a simple way to make the ambient sound change with the head
movement [PH16]. Podkosova et al. propose a sound model for real-time use, which can simulate
sound reflections [PUK16]. With this model, users are guided around walls significantly better

2. RELATED WORK

10

than with the baseline model, which only simulates distances with attenuation and obstacles with
a low-pass filter.

2.6 Point Clouds

Laser scans aim to capture buildings with sub-millimeter accuracy and entire landscapes with
centimeter accuracy. The results are large point clouds, often with billions of points. Rendering
such massive amounts of points requires special techniques like level-of-detail (LoD) handling.

The basic idea of the point-cloud rendering algorithms is that the points are not seen as objects
without volume, but they are assumed to be samples of a 2D-surface. The algorithms aim to
reconstruct this surface with an approximation. The onscreen size of this approximation is often
determined through the LoD level of the rendered points.

QSplat [RLOO] was the first system that could handle such amounts of data. It uses a bounding-
sphere hierarchy, in which a bounding sphere represents the average of its contained points. It
traverses the hierarchy downwards until the covered area on the screen becomes too small. The
last traversed bounding sphere is seen as a surface sample and therefore rendered as a square
or circle primitive (splat). With this approach, it can render the necessary points efficiently for
different levels of detail, and it guarantees a hole-free reconstruction of continuous surfaces.

Sequential point trees [DVS03] are a data structure that gives the computational effort of rendering
point clouds completely to the GPU. Sequential processing on the GPU replaces the hierarchical
rendering traversal. This requires the entire point cloud to be loaded into the graphics card
memory.

Layered Point Clouds (LPC) [GM04] is an approach that stores a subsample of the children
nodes’ points in their parent node. Its hierarchy is traversed until a suitable number of points for
the current LoD is reached. The slow upload of the subsamples to the GPU is done only once.
Afterwards, the points can be rendered in parallel by the GPU.

XSplat [PSLO5] introduced a block-based sequential multiresolution point hierarchy with an
efficient LoD-block paging mechanism and dynamic mapping into video-cache. This makes for
an efficient out-of-core system. However, its internal structure creates some memory and GPU
overhead.

Instant points [WS06] is a system that can render unprocessed point clouds with only little
preprocessing. It is based on sequential point trees but reduces the memory consumption through
less overhead and omitting e.g. normals. The system uses two octrees, one for visibility
calculations and the other one for the subsamples. Like in LPC, the instant points store sub-
samples in the nodes, but the sub-sampling is defined by the octree. This means that the traversal
depth determines the size of the splats.

The octree structure by Wand et al. [WBB107] distributes the points in leaf nodes and simplified
multiresolution representations in inner nodes. The depth of the octree is defined by a maximal
number of points per leaf node.

2.6. Point Clouds

Surfels [PZVBGO0O0] are new primitives for rendering points with normals. They are oriented
disks or ellipses and have the attributes like depth, texture color, and normal. They require
pre-processing but can be drawn quickly and with high quality.

Surface splatting [ZPVBGO1] is a rendering technique that uses filtering for projected points. The
points contributing to a pixel are convolved with an elliptical, weighted average filter in screen
space. With this, points farther away from a pixel have less influence on its color. Also, a depth
threshold for points ensures that only points belonging the same surface are filtered.

Botsch et al. [BHZKO0S5] proposed an approximation of the filtering in surface splatting. The
filtering is split and calculated in multiple render passes, which allows them to render their point
clouds on the GPU while the original surface splatting was done with a software renderer.

Scheiblauer [SP11] takes a different approach. Surfels and other previous techniques for point
rendering require normals. However, most point clouds do not provide this information. Therefore,
Scheiblauer suggested drawing points as screen-aligned circles. The rest of the rendering pipeline
works like surface splatting but with a Gaussian weighting.

Auto Splats [PJW12] is another approach to deal with the missing normals. It calculates the
normals in screen space without any pre-processing involved. This allows for higher image
quality with surface splatting than with screen-aligned circles.

Schiitz and Wimmer [SW15] present a technique that uses a fast interpolation to fill in holes in
point clouds without occluding details. The points are rendered as flat squares in the beginning.
Then, the fragment shader assigns a depth value in a way that a sphere, cone, or paraboloid is
created. In the end, the normal depth test creates sharp boundaries. The final result is similar to a
Voronoi diagram.

Wand et al. [WBB™07] propose a method for editing point clouds, which can be adding, deleting,
and tagging points, for example. This makes it necessary to select the points before such an
operation. Wand et al. show how this can be done when storing the points in leaf nodes and
the LoD information in the inner nodes of an octree. This has one major drawback: points
that are currently not loaded are ignored in the selection. Another approach, modifiable nested
octree [SW11], uses an additional octree for the selection, which eliminates this drawback.

11

CHAPTER

System Design

POWERED

Figure 3.1: The HTC Vive comes with one HMD, two lighthouse base stations, and two controllers.
Image by BagoGames [Bagl16].

This chapter describes the applications created for this thesis and the involved design decisions.
The applications are a simple basketball game, the grabbing test, and point-cloud editing tools
for desktop and VR. The basketball game is a VR game in which the players throw a ball into a
basket. In the grabbing test, the users grab one of four balls to score. Different feedback types

13

3. SYSTEM DESIGN

14

Figure 3.2: The HTC Vive controller: (1) menu button, (2) trackpad, (3) system button, (4) status
light, (5) USB charging adapter, (6) tracking sensor, (7) trigger, (8) grip button. Imagen taken
from Vive PRE User Guide [HTC17a].

support the users in their attempts to grab one of the balls. In the point-cloud editor, the users can
delete points from the laser scan of a building.

The applications are developed and run on a PC with Microsoft Windows 10, HTC Vive, NVIDIA
GeForce GTX 1070, 16 GB RAM, and an Intel i5-4690K. Figure 3.1 shows the HTC Vive, and
Figure 3.2 illustrates the buttons of its controllers. The applications of this thesis use the trigger
for grabbing and the trackpad for advanced interactions.

3.1 Basketball Game

The basketball game demonstrates the level of human-machine interactions that can be achieved
with the current technology and minimal development resources. The goal is to create a simple yet
fun game that creates a strong feeling of presence. Additionally, it can be used as a basic testing
suite for future research in interaction and movement techniques. It is a simple but complete

3.1. Basketball Game

Figure 3.3: Throwing in the basketball game.

game containing a higher-level goal. Figure 3.3 displays a user throwing the ball towards the
basket.

As the name suggests, the basketball game is about throwing a ball as often as possible into a
basket. In this simple version, only one player throws a single ball again and again into one
basket. There is a warm-up phase that lasts until the player has scored three times. Five rounds
follow, each 60 seconds long. The basket behaves differently in each of these rounds:

1. the basket stands still in the center of the goal room.

2. the basket jumps to a random position in the goal room after each goal. All players get the
same positions in the same order to ensure comparable scores.

3. the basket moves constantly from the left to the right end of the goal room based on a
sinusoid function.

4. the basket moves in a circle through the goal room.

5. the basket moves fast in a circle through the goal room.

The basketball game can also be started in a short mode with a command-line parameter. Then, it
contains only round 1 and 4. This is useful for a short introduction.

15

3. SYSTEM DESIGN

16

Figure 3.4: The layout of the rooms in the basketball game. The smaller room is the tracking
room where the player stands, grabs the ball, and throws it. The basket is in the bigger room, the
goal room.

The user stands in a room of 2.9m x 2.9m, which is about the size of the Vive’s tracking area. Its
height is 4.2m, which should be enough to not cause claustrophobia, but still let its contained
light source illuminate everything nicely. In the user’s room, the basketball lies on a pedestal
and can be grabbed by users of all sizes. The tracking room is enclosed by three walls and the
goal room, which is 4.5m x 4.5m wide and 5.5m high. The walls also give a visual hint of the
physical space without breaking the presence. The goal room is set roughly one meter below the
user’s room to discourage the user from entering. This height difference is just one meter because
the edge should not occlude anything, and it should not cause fear of heights. The goal room
contains the basket and a score board. In an average game, the player has to throw the ball about
4m far and 0.5m above the head. Figure 3.4 shows the rooms from above.

A goal counts only when the ball enters the basket from above and falls down to at least the level
of the ring. This is adapted from the official basketball rules [FIB17]. Since the goal room is not
accessible for the players, they cannot take the ball back. Therefore, the ball is re-spawned at the
pedestal one second after it scored or three seconds after it hit the ground of the goal room. It is
highlighted in red to signal the imminent re-spawn.

The used interaction technique is the virtual hand. This means that the position and orientation of
the real HMD and controllers are directly applied to their virtual representations, the camera and
controller models. With this simple direct mapping, the users need to learn very little before they
can start playing. Only a single button of the controller is needed. The users can grab the ball
by keeping the trigger pulled and moving the controller near the ball. The ball then moves as

3.1. Basketball Game

Score® 000

Start iﬁ 3

| ——

Figure 3.5: The Go-Go technique makes it too easy for users to score or is unintuitive for
throwing.

Figure 3.6: The flying makes it too easy for users to score, and it can also cause cyber sickness.

17

3. SYSTEM DESIGN

Figure 3.7: The blue cone represents the HMD after the teleportation. When using a ray-cast hit
point as the target position, users cannot leave such a closed in-door scene.

Figure 3.8: The blue field represents the tracking area after the teleportation. This makes it easier
for users to make plans but can decrease the presence.

18

3.1. Basketball Game

if attached to the controller. When the trigger is released, the ball is detached and moves with
the velocity of the controller. This way, the trigger state encodes the grabbing intention of the
players.

Some other interaction and movement techniques have been tried, mostly out of curiosity and to
test the software architecture. As an example, the Go-Go technique (exponential extension of the
virtual arm) made the basketball game too simple, because users could simply let the ball fall
into the basket. Depending on the settings, the extension could also be short enough to not break

the game but still make the throwing less intuitive. The Go-Go technique is shown in Figure 3.5.

Another experiment was flying by pointing with the controller in a direction and pressing the
trigger. Looking down while flying up is very nauseating, even for a developer who is used to
VR. Flying in the basketball game does not make sense. It breaks the game since they can just fly
to the basket and drop the ball, or the players are confined within the tracking room. Figure 3.6
depicts a user who has flown to the basket. Teleportation moves the current view to the hit point

of aray cast. A cone above the hit point represents the position of the HMD after the teleport.

Allowing teleports to vertical walls and the ceiling can be nauseating but also very fun, especially
when changing the virtual gravity accordingly. In closed indoor scenes like in the basketball
game, the players cannot leave the scene through this kind of teleportation. Figure 3.7 displays
the HMD position after the teleportation. Displaying not only the HMD but also the tracking area
position enables ’strategic’ teleporting but might be bad for the presence. Therefore, users can
teleport just far enough to reach their target but are reminded of the physical space limits all the
time. Figure 3.8 shows the representation of the tracking area and HMD after the teleportation.

For a deep presence, an experience should serve as many different senses as possible. With the
HTC Vive, the possible senses are optical, auditory, and haptic. The graphics are as good as
possible in the limited development time. High-resolution textures and real-time shadows are
a must, as well as maintaining 90 frames per second. Therefore, complex shading and effects
have to be omitted. There should be some representation for the controllers. Some other games
use hand or glove models. Using such representations can cause problems when users have to
work with hands of a strange color or size [PH16]. Many applications, like the basketball game,
use the controller models provided by Steam VR. The model quality is good and can be further
enhanced with a texture, occlusion, and specular mapping.

For the auditory output, sound sources in 3D space are playing sound samples. Being the most
important object in the scene, the ball must have a fitting bounce sound. This sound is played at
the contact point when the ball collides with any other object. The pitch is changed randomly
by up to +40% to create more varying sounds. Additional sound feedback is given in the form
of a siren located at the basket. which is triggered when the player scores. Also, a pop sound is
played at the pedestal when the ball re-spawns. There are two sources of ambient sound located
outside the rooms. The ambient sounds are rather quiet and placed in roughly opposite directions
from the tracking room. This improves the player’s orientation, as suggested by Padget and
Hamm [PH16]. Surround sound would be simple to implement. Unfortunately, the Vive’s HMD
has only one port for stereo sound.

Haptic feedback is given by letting the controllers vibrate when they overlap with other objects.

The vibrations are stronger when the relative velocity is higher. A short and strong vibration

19

3. SYSTEM DESIGN

is triggered when a controller hits a virtual object, where the vibration strength depends on the
impact strength. They also vibrate when the user can grab the ball. One experiment was to let
both controllers vibrate with a certain pattern, e.g. when the player scores. This pattern can be,
for example, a sinusoid or saw function. However, hallway testing showed that this feedback for
scoring is considered unintuitive and annoying. Therefore, it was removed in the end. Vibration
patterns for the other haptic feedback sources were removed as well, because they lower the
perceived maximal vibration strength, which is already too low.

The controllers have physics colliders to allow for dribbling without grabbing. Additionally, there
is a sphere collider for the head on the HMD. This prevents balls from flying through the head,
which is the main source of clipping as the users usually avoid sticking their heads into walls.
The head collider also allows them to shoot the ball with their head. The comments of users who
tried it indicate that this increases the presence a lot.

3.2 Grabbing Test

Score: 000
Start in: 3

Figure 3.9: In the grabbing test application, there are four different balls, one in each corner of
the room. The ball at the basket shows, which one has to be thrown into the basket next.

While the basketball game is suited for a first analysis of the quality of human-machine interac-

20

3.3. Point-Cloud Editing

tions, we found that the focus is too much on throwing to allow for an analysis of feedback for
grabbing. Therefore, another application is needed. This application is called grabbing test and
shares the concept of the warm-up phase and round structure, the sound, vibrations, and physics
with the basketball game.

In the grabbing test, the basket is easily accessible in the tracking room and the goal room is
removed. Four balls lie on top of thin rods in each corner of the room. The next ball to be thrown
into the basket is displayed on the basket, as illustrated in Figure 3.9. After each goal, the target
ball changes and all balls are reset. To ensure comparable results, the same seed for the random
number generator is used for every tester. This way, the basket always displays the required
balls in the same order. The scoring is simpler than in the basketball game. The ball must only
touch the volume in the ring without being grabbed. This is because the users in the hallway tests
sometimes released the ball only below the ring.

The grabbing is more difficult in the grabbing test. In the basketball game, the users can pull the
trigger first and then move the controller to the ball in order to grab it. In the grabbing test, they
must first move the controller to the ball and then pull the trigger. Different kinds of feedback
indicate whether the controller is close enough to the ball. If the user fails to grab the ball at the
right time, the controller may hit the ball and push it from the rod instead. The ball will then roll
and bounce on the ground causing the player to lose time while chasing the ball. The feedback
types can be set with a command-line parameter when starting the application:

1. No feedback at all.

2. Haptic feedback, which is the same vibration model as in the basketball game, described in
Section 3.1.

3. Optical feedback, which is highlighting like in the basketball game, described in Section 3.1

4. Both haptic and optical feedback.

One session consists of a warm-up phase until the user has scored three times, followed by four
rounds of 30 seconds each with increasing difficulty. Increasing difficulty means that the grabbing
volume around the controller shrinks after each round. In the beginning, it is scaled to 150%,
which shrinks down to 105% in the last round. In Figure 3.10, the grabbing volume is shown as a
transparent blue version of the controller model. The scaling origin is placed so that the distance
between the surfaces of the controller and the selection volume is almost the same at any point.

The point-light source is yellow during the warm-up phase and white during the test. This makes
it possible for the users to notice when the game is over without looking at the remaining time.
However, the yellow light was obviously not striking enough. Many testers, especially the most
motivated and concentrated ones, did not notice it. Also, there was an experiment with a short
green flash when a new round begins. Some testers were confused and thought the test was
already over. Therefore, the green flash was removed.

3.3 Point-Cloud Editing

Point clouds contain information, usually colors, sampled at different points in space. Going
one step further, people may want to add, modify, tag, and delete certain points manually. This

21

3. SYSTEM DESIGN

22

Figure 3.10: The transparent blue model is a visualization of the grabbing volume. The balls
can be grabbed when they intersect with this volume. If the user fails to do so, the ‘real’ black
controller can push the balls away.

section explains how this editing can be done efficiently in VR. In the case we study in this
thesis, the goal is to delete outliers and vegetation from the laser scan of a building. A user
study is performed to find the differences in efficiency and usability between the desktop and
VR versions of a point-cloud editing tool. The users were asked to select all points which do
not belong to the house. Their selections are compared to a ground truth. The selections and the
ground truth base their coordinates on the most common reference system in Austria, which uses
GauB3-Kriiger coordinates [Kriil12]. This allows the comparison to work with different scans of
the same object but only one ground-truth selection. The comparison decides whether a point is:
correctly selected, wrongly selected, correctly non-selected, or wrongly non-selected.

Both, the desktop and VR versions, use the Aardvark rendering engine with its data structures
and rendering algorithms for point clouds. The point clouds can contain billions of points, which
is too much data to fit into the main and graphics memory at once. Therefore, the applications
need to be able to handle out-of-core data, more on this in Section 4.5. Reading and changing the
point-cloud data must be done as fast as possible. However, the data cannot be changed in real
time, even with current SSDs.

3.3.1 Desktop

The point-cloud editing application for desktops is a trimmed version of the Virtual Geodetic
Mapper (VGM) developed at the VRVis [Rot16], which is shown in Figure 3.11.

The controls are as specified by a contractor of the VRVis, presumably to keep everything the

3.3. Point-Cloud Editing

Datei Projekt Fenster Optionen Evaluation

,"‘r N Current mode: START NEW LASSO
& @‘

ctrl + left mouse button = remove from selection
i = invert selection

ctrl + 2 = undo

ctil +y = redo

Figure 3.11: The point cloud is rendered in the central part of the window. The controls are
described on the right. The menu allows users to load point clouds and start the comparison. The
red points are already selected. The points enclosed by the red line will be selected, too.

way the users are used to from other applications. It implements an orbiting camera like in
Potree [Sch15] and CloudCompare [GM15]. The orbiting center can be moved by pressing the
mouse wheel and moving the mouse. The viewing direction, or to be more exact, the spherical
coordinates of the camera can be changed by pressing the right mouse button and moving the
mouse. A new selection is made by pressing the left mouse button and drawing a curve on the
point cloud. The start and end points are connected when the button is released. This lasso
forms a polygon. The points that are inside the polygon on the screen plane, whether visible or
occluded, are selected. The winding number algorithm is used to check whether they are inside
or not [AM95].

Selections can be unified by keeping the shift-key pressed while releasing the left mouse button.
When the ctrl-key is pressed instead, the new selection is subtracted from the previous selections.
Pressing the i-key inverts the current selection. These interactions encode Boolean OR, AND,
and NOT operations. The full version of the VGM provides additional operations, such as XOR,
which are left out for simplicity. User actions can be undone and redone with ctrl+z and ctrl+y.

3.3.2 Virtual Reality

Point-cloud editing in VR is a novel technology. Therefore, the interactions used in this application
are one main contribution of this thesis. Figure 3.12 shows the point cloud while a user selects
points. Haptic feedback is used to support selecting single points.

As with the balls in the grabbing test, the point cloud can be grabbed with the trigger. The point

23

3. SYSTEM DESIGN

24

Figure 3.12: The user has already selected the red points. The green points are selected as soon
as the trackpad is released.

cloud is then attached to the controller, which means that it is rotated and translated with the
controller. When the point cloud is grabbed with both controllers, it can be scaled by moving
the controllers together or apart. This is much like the pinch gesture known from touch-screen
interactions, e.g., on smartphones. An important part of this gesture is that the controllers stay in
their relative place within the point cloud, no matter how it is scaled, translated, or rotated.

Early hallway testing showed that some users seem not to understand the movement of single
points when they scale the entire point cloud. There are three factors probably causing this
confusion:

1. The scaling moves some points closer and the others farther.
2. The scaling is usually accompanied by a translation.
3. The points are rendered as disks. Due to occlusions, their size cannot be compared easily.

However, when the points become occluded by the walls, their movement becomes obvious.
Therefore, the point-cloud editing is done in the same virtual room as the grabbing test. Another
reason to introduce a virtual room is that the users would feel lost in a completely white or black
environment [HHH16].

At first, the point cloud sat on top of a pedestal to offer a fixed point of interest. However, some
testers found the pedestal annoying because it blocked their sight. The point of interest seemed
unimportant, so the pedestal was removed, leaving only an empty room and the point cloud. The
point cloud is reasonably scaled to give the users a quick overview before they start to interact.

A transparent blue sphere is attached to the center of the ring of both controllers. This sphere

3.3. Point-Cloud Editing

acts as a selection volume. Points inside this volume can be interacted with. Selecting points is
done by pressing the trackpad, moving the controller through the point cloud and releasing the
trackpad. The green instant selection visualization disappears, and the red selection appears as
soon as the data is updated.

Points are selected by pressing the left part of the trackpad. When pressing the right part, selected
points can be un-selected. The upper and lower parts can be pressed to scale the selection volume
between diameters of about one centimeter to one meter. Users tend to move their thumbs too
close to the edge. Then, the controller loses the thumb position and assumes the middle, which
could cause a rather random behavior. Because of this, the center of the trackpad is ignored.
The selected points can be turned invisible by pressing the app-menu button. This also starts the
comparison of the user’s selection with the ground truth.

The strength of the haptic feedback changes with the number of points in the selection volume.
The difference between zero and one point is the most important, and everything beyond three
points does not need to be felt very accurately. Therefore, a limited growth function is used.
Hallway testing showed that the controllers are vibrating almost the entire time. This becomes
quite annoying after a while. Also, the constant vibrations mess with the controllers’ tracking by
causing the inertial sensors to drift. Therefore, the vibration strength was limited at one fourth of
the maximal strength.

25

CHAPTER

Implementation

The source code of the three applications for this thesis is available on Github: https://
github.com/ErlerPhilipp/VR_DA. They are written in F# [F#05], a functional-first
programming language on top of the Common Language Infrastructure (CLI) [Int12]. Because
of the CLI, F# can use all libraries that are available for C#, such as Bullet Physics [Real7] and
OpenVR [Vall15b]. However, these object-oriented libraries clash with the functional paradigm.
Fortunately, F# also supports object-oriented programming.

4.1 Software Architecture

The software architecture is explained on the example of the basketball game. The grabbing test
application is very similar. The point-cloud editor does not need physics, and is therefore mostly
a sub set of the basketball game.

The most basic type is the scene object, for example balls and walls. It stores information about
the physical properties, geometry, appearance, rotation, and translation of the object.

The applications consist of three main parts: logical scene, physics scene, and graphics scene.
Each scene has its own representation of the virtual world, according to its responsibilities. The
current logical scene containing the game state is passed to the physics and graphics scenes,
which update their representation. This structure may seem unnecessarily redundant, but it creates
manageable views of the whole scene. Additionally, it could be parallelized easily. The structure
is illustrated in Figure 4.1.

The logical scene contains the game state with the game objects, sound sources, lights, and
settings for the physics simulation. An updated game state is the result of a function taking the
old game state and an event. As an example, it can receive a button press event from a controller.
Then, it checks whether a ball is near the controller. If there is one, the ball is grabbed by returning
the new game state with a changed object type.

27

https://github.com/ErlerPhilipp/VR_DA
https://github.com/ErlerPhilipp/VR_DA

4. IMPLEMENTATION

28

Update World, Tick Simulation

[Physics Scene |« i Bullet)

Game StateT i Geometry, Shaders, Trafos
?

Render Results Aardvark

OpenVR

rigger Haptic Feedback

Logical Scene
OpenAL
’ Play Sounds

Figure 4.1: The applications consist of three main parts: graphical, logical, and physical scene.
Information about the game state (red) are passed between the scene views. This information,
e.g. position of objects, is also given to Bullet Physics and Aardvark. The rendering results of
Aardvark are submitted to OpenVR to be displayed on the HMD. The old game state is updated
with events from the physics simulation, tracking or other inputs. The logical scene also triggers
haptic feedback and plays sounds.

Graphics Scene

Render Results

New Game State Old Game State

The physics scene takes care of the physics simulation with its properties like gravity. It contains
physics objects such as spherical rigid bodies for the balls and mesh colliders for the basket. The
physics scene also manages ray casts and collision events.

The graphics scene not only handles the rendering, but it is also the interface between the hardware
and the application. It manages the main loop, where it receives inputs, for example tracking data
and button states. The inputs are converted to events and result in an updated logical scene. The
physics simulation is also updated by the graphics scene. Its events then update the logical scene.
The graphics scene creates additional events like the start and end of a frame for clean-up, as well
as a timer event for time-dependent processes.

4.2 Rendering
Aardvark is an open-source rendering engine developed by the VRVis research center [VRV17].

It updates the rendering only when the relevant inputs change [HSMT15], which reduces unnec-
essary calculations. It has a functional API for F#.

4.3. Haptic Feedback

Aardvark uses FShade [Haal4] for shader programming. The shaders can then be written with
the F#-syntax, which is converted to GLSL-syntax and then compiled. Also, partial shader
programs can be combined to use the entire shading pipeline. As an example, one partial shader
program makes a subdivision sphere at a given position, another calculates the UV-coordinates
and normals, the next one transforms the sphere to normalized device coordinates, yet another
shader adds texturing, and a final shader implements Phong-shading [Pho75]. Partial shader
programs, like the texturing and lighting, can be shared with other non-spherical objects.

The rendering results of Aardvark are submitted to the HMD via OpenVR. OpenVR is a collection
of header files, which define interfaces to the VR hardware. OpenVR is implemented by SteamVR
supporting the Oculus Rift and HTC Vive. SteamVR also manages the so-called chaperone, a
grid representing the boundaries of a pre-defined space. Users should remove all obstacles from
this space so that they can move safely. Simply put, the chaperone prevents the players from
running into real objects. OpenVR is on the hardware side and provides more basic functions.
For example, programs can call OpenVR functions to obtain the tracking results of the HMD and
the controllers. OpenVR also provides a stencil mesh [Vall5a], which can be applied in order
to prevent rendering to invisible pixels. Pixels can be invisible because the rendered image is
distorted to revert the effect of the lenses.

4.3 Haptic Feedback

Haptic feedback has exactly one function in the C# wrapper of OpenVR [Vall7a]:

public void TriggerHapticPulse (
uint unControllerDevicelIndex,
uint unAxisId,
char usDurationMicroSec

)7

All the information from the official documentation is [Lud15]:

1. uint unControllerDeviceIndex - The tracked device index of the controller to
trigger a haptic pulse.

2. uint unAxisId - The ID of the axis to trigger a haptic pulse.

3. char usDurationMicroSec - The duration of the desired haptic pulse in microsec-
onds.

4. Trigger a single haptic pulse on a controller.
Note: After this call the application may not trigger another haptic pulse on this controller
and axis combination for 5Sms.

uint unAxisId is always zero when using the HTC Vive.

char usDurationMicroSec should not be a ’char’ but a "ushort’ [M-C16]. Both types are
16 Bits wide in C#, but char’ has some hidden interpretation attached, which causes the vibration
to be very weak. This bug has been known since May 2016 and still exists one year later. This

29

4. IMPLEMENTATION

30

duration is probably the time in which the vibration unit receives electricity. This would mean
that a short duration delivers not sufficient energy to overcome the inertia, and a long duration
causes the vibration unit to turn back and weaken its previous impulse. Simply put, the duration
is actually the vibration strength with meaningful values between 0 and 2000. Sometimes, when
the function is called frequently with strongly varying durations, the vibration stops for about a
second. This might be a bug in the controllers.

When keeping the update rate at 90 FPS, it suffices to call this function in every frame. Being
closer to the Sms cool-down does not increase the vibration strength. Therefore, no extra thread
is needed for the vibration control.

EE

Vibration Str_englth _

Po'rpts in Selection Vollume

0 50 1(5)0

Figure 4.2: The number of points in the selection volume is converted to vibration strength with a
limited growth function: strength(numPoints) = clamp(1 — e~ 0-05xnumboints (1)

In the basketball game and grabbing test, there are multiple ’channels’ for vibrations:

1. Vibrate shortly and strongly when the controller hits another object.

2. Vibrate constantly when the controller overlaps with another object. The vibration strength
depends on the relative velocity.

3. Vibrate with a pattern when the player scores. This was removed because some users found
it distracting and annoying.

A list contains the vibration events, which store their channel, duration in seconds, and strength.
The events for overlaps are removed and re-added in each frame after all other channels. So, the
vibration always represents the controller’s overlap, but only if no other vibration source fires.

In the point-cloud editor, the overlap vibration depends on the number of points within the
selection volume. The point cloud is searched until 100 of such points are found. The number
of points is converted to a vibration strength via a clamped limited growth function as shown in
Figure 4.2. The idea behind the function is that the difference between zero and one points is the

4.4. Physics

most interesting and should have a large influence on the vibration. The difference between one
and two points is already much less important. Due to the Level-of-Detail (LoD) system, one
visible point can be multiple times in the data. Therefore, the function is not too steep.

The vibrations can mess with the inertial sensors of the controllers. This makes the virtual
controllers drift away from their actual position, especially when the line-of-sight to both cameras
is blocked. This is one reason, why the vibrations in the point-cloud editor are relatively weak.
Another reason is that haptic feedback is perceived rather subconsciously, and some people find it
annoying. See Section 6 for more information.

4.4 Physics

The applications use Bullet Physics, an open-source physics engine by Erwin Coumans [Real7].
Among others, it features rigid and soft-body dynamics, constraints, ray casts, and destructible
objects. The rigid-body simulation is used for the ball movement and collision detection. The ray
casts are used for the teleportation.

Bullet allows various combinations of settings and flags enabling different behaviors. The useful
kinds of physics objects are: static object, kinematic object, rigid body, and ghost. All of them
need a collider to define their shape. This can be a geometric body like a sphere, or it can be
a mesh. For performance reasons, collider meshes should be much simpler than meshes for
rendering. Typical collider meshes contain only a few hundred vertices. They must be concave,
water tight, and consist only of triangles.

Static objects are objects that should never move, for example walls. They do not react to
collisions, as if they had infinite mass. Kinematic objects do not react to collisions either, but
they can be moved by the game logic. The game controllers are kinematic objects updated with
their tracking position. The velocity of kinematic objects is calculated from the time step and
the distance of their jumps. In contrast, the velocity of static objects is assumed to be zero.
Rigid bodies are physically simulated including inertia, friction, and restitution. Continuous
collision detection (CCD) makes sure that they do not jump from one frame to the other through
flat colliders. It tests collisions not only with the ball itself but also with a cylinder around its
trajectory. Rigid bodies can be set asleep when no moving body is near them, which accelerates
the simulation. Ghosts do not react to collisions, just like static objects. The difference is that
objects colliding with ghosts also ignore the collision. Some kinds of ghosts store the collision
and penetration data. This can be used for trigger volumes, which check if a ball flies through the
basket, for example.

Not all physics objects should collide with each other. Therefore, collision groups can be defined.
As an example, the trigger volume of the basket does not need to check collisions with the walls
or controllers. This also applies to ray casts, which search the first hit of a ray with certain
objects. This can be used to find teleportation targets. With the right collision groups, the users
can teleport to walls but not to controllers.

Rigid bodies penetrating other non-ghost objects are pushed outwards. Due to the discrete time
steps, this happens during practically every collision. The push force and collision forces are

31

4. IMPLEMENTATION

32

added, which adds energy. Simply put, a perfectly bouncing ball flies higher after each hit with
the ground. To prevent this, the split-impulse technique needs to be activated, which introduces
some instability for stacked objects [Cou08].

Constraints restrict the translation and / or rotation of physics objects. For example, a stick can
be attached to a wall with a ball-socket constraint. This lets the stick rotate around the socket
but keeps the distance constant. However, *constant’ is only a theoretical optimal case because
solving the constraints can be inaccurate or even unstable. This is a bigger issue when a light
object is attached to a heavy object, or when a chain of objects is created. This possible instability
is the reason why the controllers are kinematic objects, instead of rigid bodies attached to the
controllers’ positions like in the NVIDIA Funhouse.

4.5 Out-of-Core Point-Cloud Rendering

Point clouds often contain billions of points. For the rendering, each point has 3D-coordinates,
typically with one 4-byte float per axis. Usually, they also have an RGB-color assigned, which
is 15 bytes (3 * 4B + 3 * 1B = 15B) per point. 1 billion (15 GB) points are already enough to
make them fit only into the memory of very few non-consumer graphics cards, such as the current
NVIDIA Quadro [NVI17]. Also, the main memory of many consumer PCs would not suffice to
contain all the data at once. Therefore, so-called out-of-core data structures are required. This
means that the data is loaded continuously from the hard drive to the graphics memory, replacing
other data that is not needed anymore.

Aardvark contains such out-of-core data structures. However, making all data accessible for
rendering is not enough. No current graphics card can render billions of points in real time.
Therefore, an efficient LoD structure is needed. Aardvark implements an octree structure similar
to nested octrees [WS06]: The leaf nodes contain the original points, and the other nodes contain
a random sub-set of their children’s points. This way, the LoD system does not require a lot of
pre-processing but contains redundant data.

The octree itself is always in main memory. However, the contents of its nodes are only loaded if
necessary. When a node’s contained points are accessed, a cache is searched. If the points are not
cached, they are loaded from the hard drive into the cache. A separate octree stores additional
LoD information, e.g. the bounding box of each octree node.

The traversal itself dependents strongly on its purpose and can be tuned in numerous ways. The
point-cloud editing tool in VR uses the same traversal for rendering as the VGM. The traversal
depth depends on the size of the octree node on the near plane. The arrays of points of all
traversed nodes are collected in a hash set. This hash set of arrays contains the positions and
colors of all points that are to be rendered. The arrays are then split equally and converted to
Vertex Buffer Objects (VBO) in parallel. These VBOs are cached for a while.

The comparison of the user selection with the ground truth requires a point-in-sphere test for each
point with each selection volume (see Section 4.7) in each operation. With a point cloud of just 2
million points and a short operation with only 20 spheres, this comparison already takes many
minutes. Therefore, a rather small point cloud is used for this thesis.

4.5. Out-of-Core Point-Cloud Rendering

A small point cloud has the disadvantage that the points can be sparse, which means that the
rendering can leave holes between the points. These holes can be filled in, typically with view-
aligned primitives like squares or circles. However, when such primitives are too large, they
occlude each other and hide details. Also, when the camera is turned just a little, the occlusion
can jump. With the jitter of the HMD tracking, this causes a constant flickering in VR.

The high-quality interpolation technique by Schiitz and Wimmer [SW15], which is implemented
in the VGM, solves this problem by turning the flat primitives into spheres, cones, or paraboloids.
This is done by assigning depth values in the fragment shader, which creates a pixel-accurate
shape. However, setting the depth in the fragment shader makes the normal early z-test impossible,
which results in more load for the fragment shader and therefore slower rendering.

(9,1,0)

(-0.7,0.7,0) (0.7,0.7,0)

(-0.7,-0.7,0) (0.7,-0.7,0)

(6, '1)6)

Figure 4.3: The points in the VR point-cloud editing tool are rendered as imposter cones. Such a
cone consists of 8 triangles in a triangle fan with an elevated center vertex. This cone is simple,
fast, has an almost circular outline, and enables large points without much flickering from overlap.

Due to the extreme overdraw in point clouds, the early z-test would give a considerable speed-up.

Therefore, we propose a new point-cloud rendering method that moves shape generation from
the fragment to the geometry shader. To keep the shader fast, the generated geometry should
be as simple as possible while maintaining a good visual quality. Cones are the best choice
because they are more “pointed” than spheres and paraboloids and therefore preserve more
details. Additionally, their tip makes an approximation of cones with triangles easier than an

33

4. IMPLEMENTATION

34

approximation of spheres and paraboloids. The cones here are basically octagons made out of a
triangle fan with eight pieces. Only the center vertex is moved closer to the camera. Figure 4.3
shows the cone as it is produced by the geometry shader at a point’s position.

The old and new rendering techniques are compared in Section 6.4.5.

4.6 Bi-Manual Pinch Gesture

c |
‘DT 2T

Figure 4.4: The point cloud is transformed depending on the changing controller transformations.
This creates a viewing method like the pinch gesture known from touchscreens.

There are two basic approaches for viewing point clouds: let the user move through the point
cloud or move the point cloud around the user. The metaphor used here is the bi-manual pinch

4.6. Bi-Manual Pinch Gesture

gesture, which implements the second approach. It is similar to the pinch gesture used with
touchscreens but with both hands in 3D instead of fingers in 2D. Because most people know
the 2D version from their smartphones, it easy to learn. The 3d-version is already implemented
in some experimental VR programs, but it is not yet described in detail in the literature. The
handlebar metaphor by Song et al. [SGH " 12] is very similar but works with rigid bodies instead
of point clouds.

The basic idea of the bi-manual pinch gesture is to keep the translation, rotation, and scaling
linear. Then, the relative positions of the controllers within the point cloud stay the same after the
interaction. This viewing technique worked well in the closed in-door scene. However, it may
not work as well in out-door scenes. The design decisions are described in Section 3.3.2 and the
results in Section 6.4.5. Figure 4.4 illustrates the transformation of the point cloud during the
pinch gesture.

Clp, C2¢9, C1n, and C2x are 4x4 transformation matrices of both controllers with their

previous and current transformations. The matrices contain a rotation, scale, and translation.

PC is the old model matrix of the point cloud, and PCy is the new one.

The new scale of the point cloud is defined by the distance between the controllers’ old and
new transformations. The uniform scaling is the new distance divided by the old distance. The
point cloud moves with the geometrical center of both controllers. The point cloud is rotated
with the axis through both controllers. A matrix that rotates the old axis onto the new axis is
applied to the point cloud. This rotation step contains a superfluous DoF: the rotation around the
axis. Controlling this DoF in a meaningful way is future work. The three partial transformations
transform the point cloud to its new state. The center point of both controllers acts as a pivot

point for the combined transformation. Algorithm 4.1 shows the involved calculations in detail.

Note that Aardvark applies transformation matrices from left to right.

Algorithm 4.1: Pinch Gesture

1 Function calcPinchInfo (C1, C2)
2 cl1=0C1-(0,0,0,1)"

3 | ¢2=0C2-(0,0,0,1)T

4 m=(cl +c2)/2

5 cl2 =c2—cl
6
7
8
9

return m, c12

Function calcNewPointCloudTrafo (Clg, C2¢9, Cin, C2n,PCp)
mo,cl2p =calcPinchInfo (Clg, C2p)

mpy,cl2ny =calcPinchInfo (Cln, C2yN)

10 S =Matrix4D.Scale(|c12yn]|/|c120]|)

1 R =Matrix4D.RotateInto(c12¢9/|c120|,c12n/|c12n]|)

12 T =Matrix4D.Translation(my — mo)

13 Pivot = MatrizdD . Translation(mpy)

14 | PCy=PCo-Pivot™!-S-R-T- Pivot

15 return PCy

35

4. IMPLEMENTATION

36

4.7 Real-Time Point Selection Visualization

For any user interaction, immediate feedback is mandatory. This applies to selections in point
clouds as well. However, changing the data according to the selection in any way still takes too
long, even with modern SSDs. Consider a point cloud in which each point has a single bit storing
whether it is selected. Assuming a low update rate of 20 FPS for the interactions and a modern
SSD with a theoretical write speed of about 2 GB/s [Sam17], 800 million points could be selected
or unselected at once. This applies only if no other reading or writing happens and if the file
system is neglected. However, different states might be required, the update rate should be at least
90 FPS in VR, and at least one read traversal is done in each frame for the rendering. Therefore,
just a few million points can be selected or unselected per frame in practice. The LoD-structure
of Aardvark’s point clouds and its caches must be updated, as well. Then, not even one hundred
thousand points can be selected at once. All in all, the duration until the result of only a single
selection is shown can be several seconds, which is much too long for real-time use. Therefore, a
fast visualization of the selection gives the feedback until the data is updated.

The instant selection visualization we build upon was originally developed by Rainer in a student
project for the VRVis [Rail6]. It works like shadow volumes [Cro77]: the stencil buffer is used
to efficiently categorize a pixel’s state as inside or outside a selection volume. This selection
visualization supports multiple operations to combine volumes, such as union, subtract, and XOR.
However, only union is used for the VR point clouds. The necessary render passes for Rainer’s
selection visualization are:

Render selectable geometry, e.g. point cloud

Render selection volumes to stencil buffer with depth test enabled
Color all pixels with non-zero stencil value

Render non-selectable geometry

Render non-selectable transparent geometry

MY

In render pass 1, the point cloud is rendered as described in Section 4.5.

Render pass 2 requires more explanation. The selection volume is a geometric object that
represents the controller’s selection volume along its trajectory during an operation. Figure 4.5
illustrates this selection volume path. On the data side, the path is an array that contains the
selection volume scale and position relative to the point cloud in discrete time steps. More
exactly, when OpenVR delivers a new tracking result for the controller, the program checks if
there already is an element in the path near the new controller position. If there is none, the
new position and scale are added to the path. The necessary distance between path elements is a
trade-off between performance and accuracy. 1 mm was accurate enough during the user study.
Alternatively, path segments could be rendered as cylinders with hemispheres at the ends, which
would allow longer segments. The selection volume path is rendered to only the stencil buffer
with the default depth test enabled.

In render pass 3, only the visible pixels within the selection volume are colored. This is done by
rendering a full-screen quadrangle filled with a selection color. The stencil test must be set to
succeed at one or greater. Afterwards, the stencil buffer can be reset to zero.

4.7. Real-Time Point Selection Visualization

Figure 4.5: The blue spheres represent the controller’s selection volume during an operation.
Together, they form the selection volume of the entire operation. The points inside this selection
volume are colored green by the instant selection visualization. When the operation is finished
and the data updated, the selected points become red.

Render pass 4 is dedicated to the normal geometry like the controllers and room walls. This is
done after rendering the point cloud with its selection. Otherwise, the controllers or walls would
also appear selected.

Render pass 5 finally takes care of normal transparent geometry like the selection volume attached
to the controller. Also, the thumb representation on the trackpad is a transparent sphere.

The only visible difference between the instant and the data selection is, apart from the different
colors, that it is possible for points to be only partly covered by the instant selection visualization.
When the center of a point is covered, it will be selected in the actual data. This inaccuracy
becomes less important the smaller the points are rendered.

37

CHAPTER

User Study Design

In this chapter, we describe the main contribution of this thesis, a user study to analyze

1. grabbing and throwing with controllers in a simple basketball game.

2. the influence of haptic and optical feedback on performance, presence, task load, and
usability.

3. the advantages of VR over desktop for point-cloud editing.

Such a user study is necessary to see how real people use our systems. Also, we can perform a
statistical analysis in order to check if differences between groups are significant or just random.
One group consists of all results with haptic feedback enabled, for example.

The differences in objective measures like scores and error rates are compared as well as the
differences in subjective measures like usability, task load, and presence. The objective measures
are saved in log files, and the subjective measures are taken by means of questionnaires after
each test. Each questionnaire has a field for optional comments. Verbal comments and apparent
problems were noted for later analysis.

Performing the user study required three iterations: hallway tests, pre-tests, and the actual user
study. For the hallway tests, random colleagues were asked to give quick feedback to features and
experiments. This was done with many features but most extensively when developing the VR
point-cloud interactions. Testing the user study with colleagues and friends helped to optimize
the tests. One tester found that the IGroup presence questionnaire [igr16] contains redundant
questions. For example, item 4 “I did not feel present in the virtual space” and item 6 “I felt
present in the virtual space” are just inverted. The answers might not be mutually exclusive but
still confused the testers. The actual user study was performed with unbiased testers from different
backgrounds. The appointments were made per e-mail or Doodle MeetMe page [Doo17], where
availability was shown with a linked calendar. The users are described in detail in Section 6.

The typical process of one session is: the basketball game first, the grabbing test second, and the
point-cloud editing third. After each program, the users fill out the corresponding questionnaires.

39

5. USER STUDY DESIGN

40

The entire session took around 1.5 to 2 hours. The basketball part required roughly 15 minutes,
the grabbing test 30, and the point clouds 45.

The testers play the short version of the basketball game with only two rounds. Afterwards,
the testers fill in the user information, simulator sickness, task load, usability, and presence
questionnaires. Apart from the grabbing and throwing analysis, the basketball game also serves
as a ’calibration’ phase for the testers. In this phase, the testers could adapt to the Vive. Also,
the questions were explained, which is important because the questionnaires were in English but
not a single tester was an English native speaker. This introduction was meant to decrease the
amount of erroneous answers and with it the variance within the test groups.

Next comes the grabbing test with four rounds, one for each feedback type: none, haptic, optical,
and both. The order of the different feedback types is randomized to take learning and fatigue into
account. The randomization is done by choosing one of the 24 permutations of the four feedback
types. For each feedback type, the tester did the grabbing test and then answered the presence,
usability, and task load questionnaires. The simulator sickness questionnaire is answered only
once after all four grabbing tests.

Finally, the point-cloud editing is tested. Some testers did the desktop version first and VR second,
others did it the other way around. After the desktop version, the tester filled in the task load and
usability questionnaires, and after the VR version, the simulator sickness, task load, usability, and
presence questionnaires.

The questionnaires were online forms made with Google Forms [Goo17]. Other providers were
considered, but only Google Forms offers users to export the answers for free. Export, especially
as a comma-separated file, was necessary to perform the analysis.

5.1 User Information

To gather more context information about the testers, they were asked to provide their:

1. name, which also serves as a key to associate all questionnaire responses.

2. e-mail address to share the anonymized results afterwards.

3. gender and age to see if the tester sample is representative for certain groups.

4. usage of computers, digital games, augmented reality, and virtual reality. This helps to
estimate their experience and affinity for technology. Possible answers are: never, rarely
(about once a year), sometimes (about once a month), regularly (about every week), and
often (almost every day).

5.2 Simulator Sickness

The questionnaire for simulator sickness is the one by Bouchard [BRR0O7], which is based on
the one by Kennedy [KLBL93]. The testers are to select how much — none, slight, moderate, or
severe — each symptom is affecting them. The symptoms are:

1. general discomfort

5.3. Presence

0.
10.
11.
12.
13.
14.
15.
16.

NN R WD

fatigue

headache

eye strain

difficulty focusing

salivation increasing

sweating

nausea

difficulty concentrating

« fullness of the head »

blurred vision

dizziness with eyes open

dizziness with eyes closed

vertigo (experienced as loss of orientation with respect to vertical upright)
stomach awareness (indicates a feeling of discomfort which is just short of nausea)
burping

The categorical answers are converted to a linear numerical scale: none -> 0.0, slight -> 0.33,
moderate -> 0.66, and severe -> 1.0. This allows testing the significance with ANalysis Of
VAriance (ANOVA).

5.3

Presence

The used questionnaire for presence is the one by the UQO Cyberpsychology Lab [UQO13],
which is based on the one by Witmer [WS98]. It consists of 24 items to be answered on a 7-point
Likert scale. The Likert scale is a linear scale, typically with 5 or 7 segments. For example,
“How much were you able to control events?” has possible answers between “Not at all (0)” and
“Completely (6)”. The items of the presence questionnaire are:

NNk W=

10.
11.
12.
13.
14.

How much were you able to control events?

How responsive was the environment to actions that you initiated (or performed)?

How natural did your interactions with the environment seem?

How much did the visual aspects of the environment involve you?

How natural was the mechanism which controlled movement through the environment?
How compelling was your sense of objects moving through space?

How much did your experiences in the virtual environment seem consistent with your real
world experiences?

Were you able to anticipate what would happen next in response to the actions that you
performed?

How completely were you able to actively survey or search the environment using vision?
How compelling was your sense of moving around inside the virtual environment?

How closely were you able to examine objects?

How well could you examine objects from multiple viewpoints?

How involved were you in the virtual environment experience?

How much delay did you experience between your actions and expected outcomes?

41

5. USER STUDY DESIGN

15.
16.

17.
18.
19.
20.
21.
22.

23.
24.

How quickly did you adjust to the virtual environment experience?

How proficient in moving and interacting with the virtual environment did you feel at the
end of the experience?

How much did the visual display quality interfere or distract you from performing assigned
tasks or required activities?

How much did the control devices interfere with the performance of assigned tasks or with
other activities?

How well could you concentrate on the assigned tasks or required activities rather than on
the mechanisms used to perform those tasks or activities?

How much did the auditory aspects of the environment involve you?

How well could you identify sounds?

How well could you localize sounds?

How well could you actively survey or search the virtual environment using touch?

How well could you move or manipulate objects in the virtual environment?

The total score is calculated by averaging all items. Items 14, 17, and 18 must be reversed before.
The following grouping is described by the authors of the questionnaire:

NNk LD =

54

Realism: Items 3 +4 +5+6+7+ 10+ 13
Possibility to act: Items 1 +2 +8 +9

Quality of interface: Items (all reversed) 14 + 17 + 18
Possibility to examine: Items 11 + 12 + 19
Self-evaluation of performance: Items 15 + 16
Sounds: Items 20 + 21 + 22

Haptic: Items 23 + 24

Usability

The usability is measured with the System Usability Scale (SUS) by Brooke [Bro96]. It consists
of 10 items to be answered on a 5-point Likert scale between “strongly disagree” and “strongly
agree”. The items are:

O NN A W=

©

10.

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.
I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

In the context of this thesis, “system” refers to the software only. The testers are not expected
to think about setting up the Vive. The individual scores are summed and multiplied by 2.5.

42

5.5. Task Load

Although the total score is then in a range of 0-100, it should not be interpreted as percentage.
Instead, it should be considered for a percentile ranking. A score of 68 or higher is above average.

5.5 Task Load

The used questionnaire is the NASA Task Load Index by Hart and Staveland [HS88]. It consists
of 6 items to be answered on a 5-point Likert scale. The version used in this thesis is the raw
TLX [Har06], which omits the weighting. All items except for item 4 are inversed. The items are:

Mental Demand - How mentally demanding was the task?

Physical Demand - How physically demanding was the task?

Temporal Demand - How hurried or rushed was the pace of the task?

Performance - How successful were you in accomplishing what you were asked to do?
Effort - How hard did you have to work to accomplish your level of performance?
Frustration - How insecure, discouraged, irritated, stressed, and annoyed were you?

Al

5.6 Objective Scores

Each of the three application stores certain objective user scores in text files. The basketball game
only stores how often the player has thrown the ball into the basket.

The grabbing test logs:

when the program started.
which feedback type was enabled.
when a new round started.
for each round:
a) when the user scored.
b) how often the user tried to grab a ball.
¢) how often the user successfully grabbed a ball.

Sl e

In the point-cloud editing tools, the selections of the testers are compared to a manually created
ground-truth selection. The correctly selected, wrongly selected, correctly non-selected, or
wrongly non-selected points are counted. Also, the start-up time of the program and the time
when the comparison is started are noted. Since the application and test were explained to the
testers by reference to the running application, the comparison time minus the start-up time is
only approximately the working time.

The results of this user study are presented in Chapter 6.

43

CHAPTER

Results

Age Distribution

ki

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Age

N

Number of Participants

Figure 6.1: This age distribution chart shows that many testers were between 20 and 30 years old,
and several testers were around 50.

26 testers were recruited from colleagues, friends, sport club mates, and others. The information
about the user study was spread by asking them personally, in social networks, and with posters.
Most testers have an academic background, and all of them were fit and healthy. The user study

45

6. RESULTS

46

was carried out over a period of two months, allowing word-of-mouth and recommendations to
bring more testers. Trying out VR was enough motivation since no compensation has been paid.

How often do you use
I Never M Rarely Sometimes Il Regularly Il Often
22.5

15.0

75

0.0

Computers Digital games Augmented Reality Virtual Reality

Figure 6.2: This chart shows how often the testers use computers, digital games, augmented
reality, and virtual reality.

Of the 26 participants of the user study, 16 were male and 10 female. Many testers were between
20 and 30 years old, and several testers were around 50, as displayed in Figure 6.1. Figure 6.2
shows how often the testers use computers, digital games, augmented reality, and virtual reality.
Almost every tester uses computers on a daily basis. About half the testers play digital games at
least every week. One half never had contact to augmented reality, most of the other half played
or had played Pokemon Go [Nial6] to some extent. The usage of VR is similar. About one half
has never tried VR, the others tried it once at least.

The significance is tested with one-way ANOVA [Fis18]. The results are expressed in the
following pattern: Group 1 (M = 0.3, SD = 0.1) is significantly [F(1, 100) = 64.7, p = 0.001] better
than Group 2 (M = 0.1, SD = 0.13). M is the arithmetic mean. Higher means are better, except
for the durations. The SD is the standard deviation. An SD near zero means that random errors
like the weather during the tests had only a minor influence on the results. [F(1, 100) = 64.7, p =
0.001] describes the significance calculated with ANOVA. F(1, 100) means that the DoF between
the groups is 1 (number of groups - 1), and the DoF within the groups is 100 (participants per
group - 1 summed). The 64.7 is the so-called F-ratio, which is the mean squares between the
groups divided by the mean squares within the groups. The critical value (not shown) is taken
from a table based on the DoF. Since the table is always the same and the DoF are known, writing
the critical value would be redundant. The F-ratio must be at least equal to the critical value.
Otherwise, the analyzed effect is not significant for the tested probability level. The p = 0.001 is
the probability that the effect is caused by random errors. The significance levels are p < 0.001, p
< 0.01, and p < 0.05. 5% probability or more are considered insignificant.

For the analysis, a small program was written, which assembles the questionnaire responses
to sessions and performs the analysis on different data series. All questionnaire scores are
normalized from the Likert scale to a 0-1 range, where 0.0 is bad and 1.0 is good.

6.1. Simulator Sickness

6.1 Simulator Sickness

Simulator sickness was not a problem in this user study, even though the air conditioning and
ventilation did not work properly. Only one tester wanted slightly longer breaks and another
reported nausea and headache for a few hours after the user study. Both testers are around 50
years old.

Basketball (M =0.12, SD = 0.21) causes slightly less simulator sickness than the grabbing test
(M =0.13, SD = 0.19). Point-cloud editing (M = 0.08, SD = 0.14) creates the least simulator
sickness. However, the differences are not statistically significant. Every bit of optical flow can

increase the simulator sickness. Turning the head creates optical flow over the entire field-of-view.

This is in accordance with the basketball and grabbing test generating more simulator sickness.

6.2 Basketball Game

The results of the basketball game allow for an analysis of grabbing and throwing. Also, it gives
insights into what is important for a physics-based VR game.

The scores are between 3 and 23 (M = 11.38, SD = 5.26), which is a wide range with a high
variance. This indicates that some players could get along much better with the throwing than
others.

6.2.1 Presence

The average overall presence score (M = 0.79, SD = 0.09) is assembled from its components:
realism (M = 0.81, SD = 0.09), possibility to act (M = 0.79, SD = 0.10), quality of interface (M =
0.85, SD = 0.13), possibility to examine (M = 0.84, SD = 0.11), self-evaluation of performance
M =0.83, SD = 0.18), sounds (M = 0.69, SD = 0.29), and haptic (M = 0.71, SD = 0.21).

When analyzing each single question of the presence questionnaire, one finds that:

1. Q: How much were you able to control events?
A: The players’ control of events (M = 0.68, SD = 0.24) was surely affected by the flawed
throwing.

2. Q: How responsive was the environment to actions that you initiated (or performed)?
A: Responsiveness was no big issue (M = 0.81, SD = 0.12).

3. Q: How natural did your interactions with the environment seem?
A: The interactions felt not too natural (M = 0.69, SD = 0.21), probably caused by the
throwing.

4. Q: How much did the visual aspects of the environment involve you?
A: The visual aspects involved surprisingly well (M = 0.76, SD = 0.20), considering that
rather basic graphics with simple geometry and only normal mapping were used. Adding
higher details to the geometry and some effects like bloom should improve this factor even
more.

47

6. RESULTS

48

10.

11.

12.

13.

14.

15.

16.

17.

. Q: How natural was the mechanism which controlled movement through the environment?

A: The movement mechanism was natural walking and therefore quite good (M = 0.87, SD
=0.16).

Q: How compelling was your sense of objects moving through space?

A: The objects moved rather compellingly (M = 0.78, SD = 0.17). Some users found
that the ball flies as if it had lost some air, but most users liked it. The issue is to model
air resistance with one factor for the linear damping. Linear damping is an exponential
decrease of the velocity over time.

Q: How much did your experiences in the virtual environment seem consistent with your
real world experiences?

A: The VR experience seemed rather consistent with the real world (M = 0.74, SD = 0.17).

. Q: Were you able to anticipate what would happen next in response to the actions that you

performed?

A: The players could anticipate the response to their actions quite well (M = 0.79, SD =
0.17). The reasons are probably that the game is very simple and the physics are assessable.
Q: How completely were you able to actively survey or search the environment using
vision?

A: The users could completely survey the environment with vision (M = 0.90, SD = 0.14).
Q: How compelling was your sense of moving around inside the virtual environment?

A: The users found their own movement compelling (M = 0.91, SD = 0.13). This benefits
from the 90 FPS and low persistence display of the Vive.

Q: How closely were you able to examine objects?

A: The users could examine the objects very closely (M = 0.88, SD = 0.11). This is
unexpectedly good, but it can be improved even more, for example with displacement
mapping.

Q: How well could you examine objects from multiple viewpoints?

A: The testers could examine objects from multiple viewpoints (M = 0.86, SD = 0.14).

Q: How involved were you in the virtual environment experience?

A: The players felt very involved in the virtual environment (M = 0.93, SD =0.11).

Q: How much delay did you experience between your actions and expected outcomes?
A: Delay was no big problem (M = 0.86, SD = 0.18). Sometimes, the game froze after a
score for about one second. This hints that the logging with writing on the hard drive is not
as asynchronous as it should be.

Q: How quickly did you adjust to the virtual environment experience?

A: Most players adapted very quickly to the virtual environment (M = 0.85, SD = 0.25).
This is surely supported by using natural movement and the virtual hand.

Q: How proficient in moving and interacting with the virtual environment did you feel at
the end of the experience?

A: Most players felt proficient in moving and interacting in the end (M = 0.81, SD = 0.17).
Improving the grabbing should increase this score even further.

Q: How much did the visual display quality interfere or distract you from performing
assigned tasks or required activities?

A: The players were mostly happy with the visual display quality (M = 0.88, SD = 0.13).

6.2. Basketball Game

18.

19.

20.

21.

22.

23.

24.

The resolution is still too low for a display as close to the eyes as this. The effect is made
worse by the strong Fresnel lenses. Still, this does not disturb the fun. After all, gamers
thinking of good games usually think of old, ugly games.

Q: How much did the control devices interfere with the performance of assigned tasks or
with other activities?

A: The control devices did not hinder the players much (M = 0.81, SD = 0.22). The most
annoying issue was the cable. Regardless whether it was lying or hanging, some players
kept ensnaring themselves.

Q: How well could you concentrate on the assigned tasks or required activities rather than
on the mechanisms used to perform those tasks or activities?

A: The players could concentrate on the task instead of the mechanisms for the most part
M =0.77, SD = 0.23). Some players needed to concentrate on releasing the trigger at the
right time.

Q: How much did the auditory aspects of the environment involve you?

A: The auditory aspects did not involve the players all too well (M =0.61, SD =0.33). When
asking the testers which sounds they noticed, all heard the ball bounce sound, and most of
them noticed the score horn. However, only some testers perceived the re-spawn popping
sound consciously and very few even noticed the ambient sound. The problem is probably

not the sound volume. Instead, it seems like audio is perceived rather subconsciously.
Maybe, many quieter sources for the ambient sound are better than only two louder ones.

Also, there was a bug causing very loud bounce sounds on some collisions.

Q: How well could you identify sounds?

A: The players could easily identify the sounds (M = 0.78, SD = 0.34), at least the sounds
they noticed.

Q: How well could you localize sounds?

A: The players had trouble to localize the sounds (M = 0.67, SD = 0.36). The main reason
is probably that the Vive has only one port for stereo sound. A surround sound headset
would surely improve the localization. Also, a more advanced sound model, such as the
one by Podkosova [PUK16] might help.

Q: How well could you actively survey or search the virtual environment using touch?

A: Surveying the environment with touch did not work very well (M = 0.60, SD = 0.35).
The analysis of haptics proved difficult because the vibrations are felt rather subconsciously.

When asking the testers about the haptic feedback, some asked if there were any. The
average score of 60% is still surprisingly good, considering that the vibration does not
encode the texture of objects, and it encodes only roughly the shape and velocity. Real
force feedback and tactile feedback, for example with props, would largely improve the
haptics scores.

Q: How well could you move or manipulate objects in the virtual environment?

A: Even with the flawed haptic feedback, the players could move objects very well (M =
0.82, SD = 0.18).

49

6. RESULTS

50

6.2.2 Task Load

The task load questionnaire shows that the basketball game creates a somewhat high task load (M
=0.62, SD =0.15). It is mentally demanding (M = 0.77, SD = 0.20), mostly caused by adapting
to VR. It is somewhat physically demanding as well (M = 0.62, SD = 0.24). Most players started
sweating slightly, and one player hurt his elbow a bit when throwing. The task felt quite rushed
(M =0.56, SD = 0.29) because of the countdown. The players did not feel very successful (M
=0.55, SD =0.27), which is mostly caused by the difficult throwing. Accordingly, they had to
work quite hard for their performance (M = 0.46, SD =0.19).

6.2.3 Usability

The game’s usability is quite high (M = 0.83, SD = 0.14). Still, the players would rather not play
the game frequently (M = 0.61, SD = 0.33). This is mostly caused by the throwing and the lack
of content in the short version. The game is not unnecessarily complex (M = 0.92, SD = 0.13). It
is quite easy to use (M = 0.82, SD = 0.27), and only few players would need a technical person
(M =0.80, SD = 0.34). The system seemed well integrated (M = 0.82, SD = 0.26). The game is
not very inconsistent (M = 0.89, SD = 0.21). The players think that most people would learn to
use the system very quickly (M = 0.83, SD = 0.21). Despite the throwing, most players found the
game not very cumbersome to use (M = 0.89, SD =0.21) and felt very confident (M = 0.83, SD =
0.23). The players did not need to learn a lot (M =0.90, SD = 0.14).

6.2.4 Summary

To summarize the experience with the basketball game, a single programmer and a few months
are enough to create a highly involving game with a deep presence. Actually, most of the time
was spent on adding a proper VR and physics support to the rendering engine. However, creating
a game that motivates for more than three minutes requires more content and an artist for better
models.

Although the grabbing was no problem for the players, it can still be improved. As an example, the
grabbing trigger volume could be around the balls instead of the controllers. This would ensure
that the grabbing volume has the same distance to the physics collider at any point. Otherwise,
the grabbing volume could be an extruded controller mesh, which has the disadvantage that
the distance cannot be changed at runtime. Also, the grabbed object could move to an optimal
position at the controller to make the throwing afterwards more consistent.

When objects are grabbed, there are basically two possibilities to manipulate them: with physics
enabled or disabled. Enabled physics means that the objects are connected to the hand via
physical constraints. This lets the objects collide with other objects while moving, which makes
the overall experience more natural. The virtual forces, e.g. friction, acting on the grabbed object
and the virtual hand could be used for force feedback. On the other hand, the constraints can
make the physics simulation unstable, which then leads to jumps. This is even more risky when
the hand representation is also attached via a constraint to the actual hand. Without physics, the
grabbed objects and hand can penetrate other objects without any collisions. This prevents the

6.3. Grabbing Test

instabilities but feels like a ghost hand. The problems with enabled physics mainly come from
one source: the hand representation in VR has basically infinite strength, except if force feedback
limits the movement of the real hands. A soft-body simulation could help to lessen the impact of
this infinite force. A virtual soft basketball would deform when squeezed between two hands. In
contrast, a virtual rigid basketball would just jump uncontrollably. Combining finger tracking
with a soft-body simulation should make decent ball games in VR possible. However, these ideas
require validation.

The user study revealed that releasing the ball willingly does not feel like throwing a basketball.
This is because the real ball is too large to be held by one hand before throwing. Instead, it
simply lies on the hand, which requires no releasing. Some players also tried to do the real
basketball shoot with its fast wrist rotation in VR. At the end of the motion, the controller is moved
downwards. When the virtual ball is released in this very moment, the ball flies downwards,
instead of upwards as expected. Therefore, a natural throwing interaction for basketball requires
a different grabbing system. Maybe, a more realistic hand representation would help. The grab
could attach the ball to an open palm of the hand with a physics constraint. When the hand is
palm-up, the constraint could be removed and the ball stays on the hand just through gravity and
collisions. The throwing would then be completely natural. Finger tracking with data gloves
and a soft-body simulation for the balls might also work. However, this solution is prone to
instabilities of the physics simulation and this needs to be verified in future work.

6.3 Grabbing Test

The grabbing test is used to examine the influence of different feedback types on performance,
presence, usability, and task load. The feedback types are: haptic feedback, optical feedback,
both haptic and optical, and no feedback. The derived hypotheses are:

H1 Comparing haptic, optical, both, and no feedback shows significantly different
(a) performance, (b) presence, (c) usability, (d) task load.

H2 Haptic feedback compared to no feedback shows significantly improved
(a) performance, (b) presence, (c) usability, (d) task load.

H3 Optical feedback compared to no feedback shows significantly improved
(a) performance, (b) presence, (c) usability, (d) task load.

H4 Both feedback compared to no feedback shows significantly improved
(a) performance, (b) presence, (c) usability, (d) task load.

HS5 Haptic feedback compared to optical feedback shows significantly improved
(a) performance, (b) presence, (c) usability, (d) task load.

H6 Both feedback compared to haptic feedback shows significantly improved
(a) performance, (b) presence, (c) usability, (d) task load.

H7 Both feedback compared to optical feedback shows significantly improved
(a) performance, (b) presence, (c) usability, (d) task load.

The means and standard deviations of the performance can be seen in Table A.1, the presence
scores in Table A.2, the task load scores in Table A.3, and the usability scores in Table A.4 in
Appendix A.

51

6. RESULTS

52

6.3.1 Haptic vs. Optical vs. Both vs. No Feedback

H1a - Comparing haptic, optical, both, and no feedback shows significantly different per-
formance - is rejected.

Figure 6.3 illustrates the scores in each round, and Figure 6.4 shows the average accuracy of
grabbing. The differences between the overall scores with no feedback (M = 21.15, SD = 7.25),
haptic feedback (M = 23.35, SD = 6.79), optical feedback (M = 24.96, SD = 7.37), and both
feedback types (M = 24.54, SD = 7.53) are not significant.

H1b - Comparing haptic, optical, both, and no feedback shows significantly different pres-
ence - is partly confirmed.

Figure 6.5 displays all presence scores from the questionnaires. The overall presence with no
feedback (M = 0.76, SD = 0.09), haptic feedback (M = 0.81, SD = 0.14), optical feedback (M =
0.81, SD = 0.11), and both feedback types (M = 0.83, SD = 0.10) is not significantly different.

The possibility to act with no feedback (M = 0.74, SD = 0.12), haptic feedback (M = 0.79, SD =
0.18), optical feedback (M = 0.82, SD = 0.17), and both feedback types (M = 0.84, SD = 0.14) is
not significantly different. Still, the answers to item 8 “Were you able to anticipate what would
happen next in response to the actions that you performed?” with no feedback (M = 0.61, SD =
0.22), haptic feedback (M = 0.74, SD = 0.23), optical feedback (M = 0.77, SD = 0.24), and both
feedback types (M = 0.79, SD = 0.19) are significantly different [F(3, 100) = 3.54, p = 0.05].

The group of questions on haptics with no feedback (M = 0.48, SD = 0.19), haptic feedback (M =
0.77, SD = 0.17), optical feedback (M = 0.60, SD = 0.27), and both feedbacks (M =0.76, SD =
0.21) is answered significantly different [F(3, 100) = 10.55, p = 0.001].

1. The answers to item 23 with no feedback (M = 0.37, SD = 0.41), haptic feedback (M =
0.81, SD = 0.17), optical feedback (M = 0.45, SD = 0.43), and both feedbacks (M = 0.74,
SD =0.29) “How well could you actively survey or search the virtual environment using
touch?” are significantly different [F(3, 100) = 10.40, p = 0.001].

2. The answers to item 24 “How well could you move or manipulate objects in the virtual
environment?” with no feedback (M = 0.59, SD = 0.19), haptic feedback (M = 0.72, SD =
0.21), optical feedback (M = 0.75, SD = 0.25), and both feedbacks (M = 0.77, SD = 0.20)
are significantly different [F(3, 100) = 3.62, p = 0.05].

Hlc - Comparing haptic, optical, both, and no feedback shows significantly different us-
ability - is rejected.

The differences of the usability and its items are not significant.

H1d - Comparing haptic, optical, both, and no feedback shows significantly different task
load - is rejected.

The differences of the task load and its items are not significant.

6.3. Grabbing Test

Scores in Different Rounds

===
=
Ty ————=—=
T

o 1 2 3 4 5 6 7 8 9 10 11 12
Points

No m Haptic M Optical W Both

Figure 6.3: This graph displays the average scores in each round for all feedback types.

Grabbing Accuracy

No I
Haptic I
Optical |

Both I

0% 10% 20% 30% 40% 50% 60% 70% 80%
Probability of Successful Grab

Figure 6.4: This graph displays the average success rate of grabbing for all feedback types.

53

6. RESULTS

Q)
=S
QD
o
S.
S
0a
-]
(D
w
—
o
=
(D
(%)
(D
-
(@
D
o
c
D
wn
=,
O
S
S
Q
=S
™

Overall
Realism
Act

Interface

Examine

Performance

Sound

Haptic
ltem 1

Iltem 2
ltem 3
Item 4

ltem 5

ltem 6

ltem 7

ltem 8

ltem S
ltem 10
ltem 11
ltem 12
ltem 13
ltem 14
ltem 15
ltem 16
ltem 17
ltem 18
ltem 19
ltem 20
ltem 21
ltem 22

tem 23 e
Iltem 24

N
W UL A

-0.1

o

01 02 03 04 05 06 07 08 09
Mean Questionnaire Score

[EEN
[y
[y

1.2

Both M Optical W Haptic B None

Figure 6.5: This graph displays the average presence and its sub-scores reported with the presence
questionnaire.

54

6.3. Grabbing Test

6.3.2 Haptic vs. No Feedback

H2a - Haptic feedback compared to no feedback shows significantly improved performance
- is partly confirmed.

The final scores with haptic feedback (M = 23.35, SD = 6.79) are not significantly better than
with no feedback (M = 21.15, SD = 7.25). However, the performance in the first round without
feedback (M = 5.77, SD = 2.55) is significantly lower [F(1, 50) = 5.20, p = 0.05] than in the
first round with haptic feedback (M = 7.23, SD = 1.95). The grabbing success rates with no
feedback (M = 0.42, SD = 0.12) are significantly lower [F(1, 50) = 5.08, p = 0.05] than with
haptic feedback (M =0.51, SD =0.17).

H2b - Haptic feedback compared to no feedback shows significantly improved presence -
is partly confirmed.

The overall presence with no feedback (M = 0.74, SD = 0.09) is not significantly lower than with
haptic feedback (M = 0.81, SD =0.14).

The possibility to act with no feedback (M = 0.74, SD = 0.12) is not significantly lower than with
haptic feedback (M = 0.79, SD = 0.18). Still, the answers to item 8 “Were you able to anticipate
what would happen next in response to the actions that you performed?” with no feedback (M =
0.61, SD = 0.22) are significantly worse [F(1, 50) = 3.54, p = 0.05] than with haptic feedback (M
=0.74, SD = 0.23).

The group of questions on haptics with no feedback (M = 0.48, SD = 0.19) is answered sig-
nificantly worse [F(1, 50) = 31.77, p = 0.001] than with haptic feedback (M = 0.77, SD =
0.17).

1. Naturally, the answers to item 23 “How well could you actively survey or search the virtual
environment using touch?” with no feedback (M = 0.37, SD = 0.41) are significantly worse
[F(1, 50) = 25.51, p = 0.001] than with haptic feedback (M = 0.81, SD =0.17).

2. The answers to item 24 “How well could you move or manipulate objects in the virtual
environment?” with no feedback (M = 0.59, SD = 0.19) are significantly worse [F(1, 50) =
3.62, p = 0.05] than with haptic feedback (M = 0.72, SD = 0.21).

H2c - Haptic feedback compared to no feedback shows significantly improved usability - is
rejected.

The differences of the usability and its items are not significant.

H2d - Haptic feedback compared to no feedback shows significantly improved task load -
is rejected.

The differences of the task load and its items are not significant.

6.3.3 Optical vs. No Feedback

H3a - Optical feedback compared to no feedback shows significantly improved perfor-
mance - is partly confirmed.

55

6. RESULTS

56

The final scores with optical feedback (M = 24.96, SD = 7.37) are not significantly better than
with no feedback (M = 21.15, SD = 7.25). However, the performance in the second round with
no feedback (M = 6.42, SD = 2.60) is significantly lower [F(1, 50) = 6.53, p = 0.05] than the
second round with optical feedback (M = 8.35, SD = 2.72). The grabbing success rates with no
feedback (M = 0.42, SD = 0.12) are significantly lower [F(1, 50) = 5.81, p = 0.05] than with
optical feedback (M = 0.54, SD = 0.22).

H3b - Optical feedback compared to no feedback shows significantly improved presence -
is partly confirmed.

The overall presence with no feedback (M = 0.76, SD = 0.09) is not significantly lower than with
optical feedback (M = 0.81, SD =0.11).

The possibility to act with no feedback (M = 0.74, SD = 0.12) is not significantly lower than with
optical feedback (M = 0.82, SD = 0.17). However,

1. The answers to item 2 “How responsive was the environment to actions that you initiated
(or performed)?” with no feedback (M = 0.75, SD = 0.19) are significantly worse [F(1, 50)
=3.37, p = 0.05] than with optical feedback (M = 0.85, SD = 0.15).

2. The answers to item 8 “Were you able to anticipate what would happen next in response to
the actions that you performed?” with no feedback (M = 0.61, SD = 0.22) are significantly
worse [F(1, 50) = 6.13, p = 0.05] than with optical feedback (M = 0.77, SD = 0.24).

The group of questions on haptics with no feedback (M = 0.48, SD = 0.19) is not answered
significantly worse than optical feedback (M = 0.60, SD = 0.19). However, the answers to item 24
“How well could you move or manipulate objects in the virtual environment?” with no feedback
M = 0.59, SD = 0.19) are significantly worse [F(1, 50) = 6.61, p = 0.05] than with optical
feedback (M = 0.75, SD = 0.25).

H3c - Optical feedback compared to no feedback shows significantly improved usability -
is rejected.

The differences of the usability and its items are not significant.

H3d - Optical feedback compared to no feedback shows significantly improved task load -
is rejected.

The differences of the task load and its items are not significant.

6.3.4 No vs. Both Feedback

H4a - Both feedback compared to no feedback shows significantly improved performance
- is partly confirmed.

The final scores with both feedback types (M = 24.54, SD = 7.53) are not significantly better than
with no feedback (M = 21.15, SD = 7.25). However, the grabbing success rates with no feedback
(M =0.42, SD = 0.12) are significantly lower [F(1, 50) = 6.35, p = 0.05] than with both feedback
types (M =0.53, SD =0.19).

6.3. Grabbing Test

H4b - Both feedback compared to no feedback shows significantly improved presence - is
confirmed.

The overall presence with no feedback (M = 0.76, SD = 0.09) is significantly lower [F(1, 50) =
6.77, p = 0.05] than with both feedback types (M = 0.83, SD = 0.10).

The possibility to act with no feedback (M = 0.74, SD = 0.12) is significantly lower [F(1, 50) =
7.36, p = 0.01] than with both feedback types (M = 0.84, SD = 0.14).

1. The answers to item 2 “How responsive was the environment to actions that you initiated
(or performed)?” with no feedback (M = 0.75, SD = 0.186) are significantly worse [F(1,
50) = 4.80, p = 0.05] than with both feedback types (M = 0.859, SD = 0.165).

2. The answers to item 8 “Were you able to anticipate what would happen next in response to
the actions that you performed?” with no feedback (M = 0.61, SD = 0.22) are significantly
worse [F(1, 50) = 10.30, p = 0.01] than with both feedback types (M = 0.79, SD = 0.19).

The self-evaluation of performance with no feedback (M = 0.81, SD = 0.15) is not significantly
lower than with both feedback types (M = 0.89, SD = 0.12). However, the answers to item 16
“How proficient in moving and interacting with the virtual environment did you feel at the end
of the experience?” with no feedback (M = 0.70, SD = 0.21) are significantly worse [F(1, 50) =
5.11, p = 0.05] than with both feedback types (M = 0.82, SD = 0.17).

The group of questions on haptics with no feedback (M = 0.48, SD = 0.19) is answered sig-
nificantly worse [F(1, 50) = 24.02, p = 0.001] than with both feedback types (M = 0.76, SD =
0.21).

1. Naturally, the answers to item 23 “How well could you actively survey or search the virtual
environment using touch?”” with no feedback (M = 0.37, SD = 0.41) are significantly worse
[F(1, 50) = 14.15, p = 0.001] than with both feedback types (M = 0.74, SD = 0.29).

2. The answers to item 24 “How well could you move or manipulate objects in the virtual
environment?” with no feedback (M = 0.59, SD = 0.19) are significantly worse [F(1, 50) =
10.99, p = 0.05] than with both feedback types (M = 0.77, SD = 0.20).

Hd4c - Both feedback compared to no feedback shows significantly improved usability - is
partly confirmed.

The overall usability with both feedback types (M = 0.84, SD = 0.11) is not significantly better
than with no feedback (M = 0.77, SD = 0.16). However, the answers to item 3 “I thought the
system was easy to use” with no feedback (M = 0.76, SD = 0.25) are significantly worse [F(1, 50)
=7.06, p = 0.05] than with both feedback types (M = 0.91, SD = 0.14).

H4d - Both feedback compared to no feedback shows significantly improved task load - is
rejected.

The differences of the task load and its items are not significant.

6.3.5 Haptic vs. Optical Feedback

HS5a - Haptic feedback compared to optical feedback shows significantly improved perfor-
mance - is rejected.

57

6. RESULTS

58

The differences of the scores are not significant.

H5b - Haptic feedback compared to optical feedback shows significantly improved pres-
ence - is partly confirmed.

The overall presence with haptic feedback (M = 0.81, SD = 0.14) is not significantly higher than
with optical feedback (M = 0.81, SD =0.11).

Nevertheless, the group of questions on haptics with optical feedback (M = 0.60, SD = 0.27) is
answered significantly worse [F(1, 50) = 6.99, p = 0.05] than with haptic feedback (M = 0.77, SD
= 0.17). Naturally, the answers to item 23 “How well could you actively survey or search the
virtual environment using touch?” with optical feedback (M = 0.45, SD = 0.43) are significantly
worse [F(1, 50) = 15.92, p = 0.001] than with haptic feedback (M = 0.81, SD =0.17).

HS5c - Haptic feedback compared to optical feedback shows significantly improved usability
- is rejected.

The differences of the usability and its items are not significant.

H5d - Haptic feedback compared to optical feedback shows significantly improved task
load - is rejected.

The differences of the task load and its items are not significant.

6.3.6 Both vs. Haptic Feedback

Héa - Both feedback compared to haptic feedback shows significantly improved perfor-
mance - is rejected.

The differences of the scores are not significant.

H6b - Both feedback compared to haptic feedback shows significantly improved presence -
is rejected.

The differences of the presence and its items are not significant.

Hé6c - Both feedback compared to haptic feedback shows significantly improved usability -
is rejected.

The differences of the usability and its items are not significant.

Hé6d - Both feedback compared to haptic feedback shows significantly improved task load
- is rejected.

The differences of the task load and its items are not significant.

6.3.7 Both vs. Optical Feedback

H7a - Both feedback compared to optical feedback shows significantly improved perfor-
mance - is rejected.

The differences of the scores are not significant.

6.3. Grabbing Test

H7b - Both feedback compared to optical feedback shows significantly improved presence
- is partly confirmed.

The overall presence with both feedback types (M = 0.83, SD = 0.10) is not significantly higher
than with optical feedback (M = 0.81, SD =0.11).

Again, the group of questions on haptics with optical feedback (M = 0.60, SD = 0.27) is answered
significantly worse [F(1, 50) = 5.37, p = 0.05] than with both feedback types (M = 0.76, SD
= 0.21). The answers to item 23 “How well could you actively survey or search the virtual
environment using touch?” with optical feedback (M = 0.45, SD = 0.43) are significantly worse
[F(1, 50) = 8.20, p = 0.001] than with both feedback types (M = 0.74, SD = 0.29).

H7c¢ - Both feedback compared to optical feedback shows significantly improved usability
- is rejected.

The differences of the usability and its items are not significant.

H7d - Both feedback compared to optical feedback shows significantly improved task load
- is rejected.

The differences of the task load and its items are not significant.

6.3.8 Summary and Analysis

Despite the competitive setting and the chocolate promised for good scores, the testers’ motivation
and patience was diverse. This affected their performance, which caused higher variances within
the results and with it less significant statistics.

The testers used different strategies. For example, some testers used both controllers simultane-
ously. This did not necessarily improve their scores. Still, it had an impact on their grabbing
success rate, mostly because the ball can only be held in one controller at once. If they fail to
grab the ball, it is often squeezed between both controllers leading to very high forces. These
forces then make the ball dash away and bounce wildly through the room. This makes the physics
less predictive and makes the testers chase the ball longer.

Another strategy is grab spamming, which means that the users press and release the trigger
repeatedly and fast. Simply put, this replaces accuracy with luck. The spamming did not
necessarily increase their scores because they did not always notice when they successfully
grabbed the ball and released it accidentally. Such testers complained more about the grabbing
being unresponsive or even broken. The connection might also be the other way around. The
testers failed in grabbing, which made the grabbing feel unresponsive and broken, which in turn
made them start spamming.

A simpler test could probably produce more significant results. For example, the testers could
only use one controller to take the different strategies into account. Also, the test could be
simplified by doing only the actual grabbing, so without throwing. Trigger spamming could be
resolved by only allowing the grabbing every few seconds. Also, the questionnaires could be
re-formulated so that good results are always on the right.

59

6. RESULTS

60

Performance

The influence of the different feedback types on the final scores is not significant. The average
scores suggest that any feedback leads to better performance than no feedback at all. Haptic
feedback has the highest scores in the first round. This is not significant but hints haptic feedback
might be more intuitive than optical feedback. Optical feedback alone results in the highest
overall scores, even higher than both haptic and optical feedback. This indicates that combining
different feedback types does not necessarily improve the performance.

The influence of feedback is significant in only two cases: no feedback vs. haptic feedback in
round 1 and no feedback vs. optical feedback in round 2. The scores of each round are shown
in Figure 6.3. Haptic feedback is better than no feedback in the first two rounds, while optical
feedback is better than no feedback in the first three rounds. This indicates that haptic feedback is
perceived with more delay than optical feedback and helps more in the easier rounds.

The fourth round is almost the same for each feedback type. The distance between the controller
and its grabbing volume approaches the tracking accuracy of the Vive. Therefore, the scores in
the fourth round are dominated by random effects, such as jitter. However, these effects are not
significant and require further analysis.

The second round has the best scores of all rounds. This implies that the learning effect dominates
from round one to two. Afterwards, the increasing difficulty dominates.

Presence

The overall presence scores of both feedback types are significantly better than no feedback. All
other comparisons are not significant. However, the average presence scores suggest that haptic
feedback creates a deeper presence than optical feedback. This implies that adding feedback for
another sense might be better than adding feedback for a sense that is already used.

The ability to act with both feedback types is reported significantly higher than without any
feedback. This comes mostly from two questions: “How responsive was the environment to
actions that you initiated (or performed)?” and “Were you able to anticipate what would happen
next in response to the actions that you performed?”. Also, the self-evaluation of performance
plays a role, especially through the question “How proficient in moving and interacting with
the virtual environment did you feel at the end of the experience?”’. The influence of one or
both feedback types compared with no feedback is significant. However, when comparing one
feedback type with the other or with both, the influence is not significant. This means that, in the
grabbing test, no feedback is especially bad.

Not surprisingly, the haptics scores are significantly better with vibrations enabled than without.
The question “How well could you actively survey or search the virtual environment using
touch?” with only haptic feedback is answered better than with both feedback types, although not
significantly so. This suggests that the haptic feedback is superseded by optical feedback to some
degree.

6.4. Point-Cloud Editing

Not in a single aspect is Haptic feedback alone significantly different than both feedback types
together. The same applies to optical feedback, except for the haptics scores of the presence
questionnaire. Therefore, combining both feedback types does not necessarily increase presence.

Usability

Overall usability with no feedback is worse than with any other feedback type. However, the
difference is not significant. The usability scores for haptic, optical, and both feedback types are
almost the same. Only the answers to the question “I thought the system was easy to use” without
feedback are significantly worse than with both feedback types.

Task Load

The feedback type has no significant influence on task load. The average scores of the overall
questionnaire and all its items are almost the same with a high variance. Only the question
“Performance - How successful were you in accomplishing what you were asked to do?” suggests
that no feedback is the worst option. This is similar to the self-evaluation of performance in the
presence questionnaire.

6.4 Point-Cloud Editing

Comparing point-cloud editing on the desktop with VR shows that the users are much more
accurate and motivated in VR. The performance is measured by counting wrong points. The
selected and non-selected points are compared with a manually created ground-truth selection.
The task is to select all points that do not directly belong to the house in a laser scan. The
performance, usability and task load of the VR and desktop versions are compared. The presence
of the VR version is compared to the basketball game, because comparing it with a desktop
program makes no sense. The hypotheses are:

H1 Point-cloud editing in VR has a significantly higher user performance than on the desktop.

H2 Point-cloud editing in VR has a significantly lower task load than on the desktop.

H3 Point-cloud editing in VR has a significantly better usability than on the desktop.

H4 Point-cloud editing in VR does not have a significantly worse presence than the basketball
game.

6.4.1 HI1 - Point-cloud editing in VR has a significantly higher user performance
than on the desktop - is confirmed.

The users achieve significantly [F(1, 50) = 14.96, p = 0.001] fewer wrong points in VR (M =
859.35, SD = 781.49) than on the desktop (M = 2546.00, SD = 2035.25). The wrong points
are a sum of wrongly selected points and wrongly non-selected points. The number of wrongly
selected points is significantly [F(1, 50) = 6.89, p = 0.05] lower in VR (M = 259.77, SD = 310.30)
than on the desktop (M = 1314.88, SD = 1985.78). Also, the number of wrongly non-selected
points is significantly [F(1, 50) = 15.25, p = 0.001] lower in VR (M = 599.58, SD = 685.95) than

61

6. RESULTS

62

Wrong Points over Duration

5000 tt
£ 4000
£ ‘
S 3000 o
£ 2000 T -
E .: .. L ‘ . ’
< 1000 : . e

0
0.00 10.00 20.00 30.00 40.00 50.00
. Desktop - VR Duration [minutes]

Figure 6.6: This scatter plot shows the working duration on the x-axis and the number of wrong
points on the y-axis. The point-cloud editing in VR results in significantly fewer wrong points
than on the desktop with similar durations.

on the desktop (M = 1231.12, SD =428.12)s. Figure 6.6 shows a scatter plot of the number of
wrong points with the working duration.

One reason for the considerable differences is that the testers could up-scale the point cloud in
VR much further and therefore select much more accurately. In the desktop version, the camera
has a minimal distance to the orbiting center of about 3 virtual meters. With moving the orbiting
center, the users can in theory view some points very closely. However, this takes time and is very
sensitive to minimal mouse movements. In VR, however, the users can move and scale the house
from a bird’s to a snail’s perspective within seconds and with full control. This can leave several
centimeters between single points, which makes the selection very easy. Another reason might be
that just viewing the point cloud in VR gives more information, for example about edges.

An operation in the desktop version is to draw a lasso while an operation in the VR version is to
press the trigger, move the controller through the points and release the trigger again. Although
the operations are not completely comparable, their number is a hint for how often the view is
suitable for selecting more points. The number of operations in VR is (M = 169.00, SD = 110.54)
significantly higher [F(1, 50) = 26.76, p = 0.001] than on the desktop (M = 51.77, SD = 24.85).
The main reason is that in VR, the view can be changed — either by moving the head or moving
the point cloud — while selecting points. Therefore, the view in VR can always be suitable for
selecting more points. In contrast, one can only select or change the view at a time in the desktop
version.

The average duration in seconds in the desktop version (M = 1058.23, SD = 573.43) is not

6.4. Point-Cloud Editing

significantly longer than in the VR version (M = 1029.85, SD = 456.98). The duration on the
desktop ranges from 6 to 40 minutes, while it ranges from 7 to 44 minutes in VR. This means
that the users were able to get significantly better results in about the same time in VR.

6.4.2 H2 - Point-cloud editing in VR has a significantly lower task load than on
the desktop - is confirmed.

Point-Cloud Editing Task Load

Overall === —
e L
ICyway ____________________ —
M 3 ==
e 4 | —————
em S
rem O

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Mean Questionnaire Score

B VR H Desktop

Figure 6.7: This graph displays the results of the task load questionnaire for point-cloud editing
on the desktop and in VR.

Figure 6.7 illustrates the results of the task load questionnaire. Some questions are inversed.
Therefore, high scores of up to 1.0 mean good results, while low scores of down to 0.0 mean bad
results. The overall task load in VR (M = 0.76, SD = 0.16) is significantly [F(1, 50) =6.91, p =
0.05] lower than on the desktop (M = 0.63, SD = 0.20).

1. Q: Mental Demand - How mentally demanding was the task?
A: The mental demand in VR (M = 0.55, SD = 0.31) is not significantly lower than on the
desktop (M = 0.48, SD = 0.29).

2. Q: Physical Demand - How physically demanding was the task?
A: The physical demand in VR (M = 0.73, SD = 0.31) is slightly, but not significantly,
higher than on the desktop (M = 0.85, SD = 0.27).

3. Q: Temporal Demand - How hurried or rushed was the pace of the task?
A: Although both tasks had no time limit, the users felt significantly [F(1, 50) =5.13,p =
0.05] more rushed in the desktop version (M = 0.86, SD = 0.24) than in the VR version
M =0.97, SD = 0.08). One tester even compared the VR version to a Zen garden and
suggested adding relaxing music.

63

6. RESULTS

4. Q: Performance - How successful were you in accomplishing what you were asked to do?
A: The testers were not only more relaxed in VR, but they also felt significantly [F(1, 50) =
14.73, p = 0.001] more successful (M = 0.88, SD = 0.17) than on the desktop (M = 0.64,
SD =0.26).

5. Q: Effort - How hard did you have to work to accomplish your level of performance?

A: The testers worked significantly [F(1, 50) = 5.88, p = 0.05] less hard in VR (M = 0.52,
SD = 0.31) than on the desktop (M = 0.33, SD = 0.25).

6. Q: Frustration - How insecure, discouraged, irritated, stressed, and annoyed were you?
A: The testers were significantly [F(1, 50) = 15.39, p = 0.001] more frustrated in the
desktop version (M = 0.60, SD = 0.36) than in the VR version (M = 0.91, SD = 0.18).

6.4.3 H3 - Point-cloud editing in VR has a significantly better usability than on
the desktop - is confirmed.

Point-Cloud Editing Usability

Overall |
[tem] g __———
iy
e e —————
Gy
oM S
iy
e 7 e ——I——————
e O
M O |

e D

02 -0.1 0 01 02 03 04 05 06 07 08 09 1 1.1 1.2
Mean Questionnaire Score

B VR M Desktop

Figure 6.8: This graph displays the results of the usability questionnaire for point-cloud editing
on the desktop and in VR.

Figure 6.7 illustrates the results of the usability questionnaire. The overall usability of the VR
version (M = 0.87, SD = 0.16) is significantly [F(1, 50) = 38.20, p = 0.001] better than the
usability of the desktop version (M = 0.52, SD = 0.24).

1. Q: I think that I would like to use this system frequently.
A: The testers like to use the VR version (M = 0.80, SD = 0.29) significantly [F(1, 50) =
54.69, p = 0.001] better than the desktop version (M = 0.21, SD = 0.27).

64

6.4. Point-Cloud Editing

[\

. Q: I found the system unnecessarily complex.
A: The testers found the desktop version (M = 0.64, SD = 0.30) significantly [F(1, 50) =
20.55, p = 0.001] more complex than the VR version (M = 0.94, SD = 0.13).

3. Q: I thought the system was easy to use.

A: The testers found the VR version (M = 0.90, SD = 0.16) significantly [F(1, 50) = 33.06,
p = 0.001] easier to use than the desktop version (M = 0.46, SD = 0.35).

4. Q: I think that I would need the support of a technical person to be able to use this system.
A: The testers also think that they would need significantly [F(1, 50) = 7.32, p = 0.01] less
support for the VR version (M = 0.83, SD = (0.28) than for the desktop version (M = 0.60,
SD =0.33).

5. Q: I found the various functions in this system were well integrated.

A: The testers found the functions in VR (M = 0.88, SD = 0.16) significantly [F(1, 50) =
41.21, p = 0.001] better integrated than on the desktop (M = 0.47, SD = 0.27).

6. Q: I thought there was too much inconsistency in this system.

A: The testers found significantly [F(1, 50) = 13.43, p = 0.001] more inconsistency on the
desktop (M =0.73, SD = 0.29) than in VR (M =0.95, SD =0.10).

7. Q: I would imagine that most people would learn to use this system very quickly.

A: The testers think that most people would learn the VR version (M = 0.84, SD = (0.22)
significantly [F(1, 50) = 12.16, p = 0.01] faster than the desktop version (M = 0.56, SD =
0.33).

8. Q: I found the system very cumbersome to use.

A: The testers found the desktop version (M = 0.40, SD = 0.34) significantly [F(1, 50) =
21.23, p = 0.001] more cumbersome than the VR version (M = 0.83, SD = 0.31).
9. Q: I felt very confident using the system.
A: The testers were significantly [F(1, 50) = 21.07, p = 0.001] more confident in VR (M =
0.87, SD = 0.23) than on the desktop (M = 0.49, SD = 0.34).
10. Q: I needed to learn a lot of things before I could get going with this system.
A: The testers needed to learn significantly [F(1, 50) = 9.93, p = 0.01] less for the VR
version (M = 0.85, SD = 0.22) than for the desktop version (M = 0.61, SD = 0.31).

6.4.4 H4 - Point-cloud editing in VR does not have a significantly worse presence
than the basketball game - is confirmed.

The focus in this task is on user performance, which does probably not depend on presence.
Therefore, presence is only a secondary goal, but its scores are still surprisingly good compared
to the basketball game, which has a focus on presence. The presence of the point-cloud editing in
VR M =0.75, SD = 0.10) is not significantly worse than in the basketball game (M = 0.79, SD =
0.09).

The ability to act is rated significantly [F(1, 50) = 12.41, p = 0.001] better in the point-cloud
editing (M = 0.90, SD = 0.11) than in the basketball game (M = 0.79, SD = 0.10). Surprisingly,
the haptics in the point-cloud editing (M = 0.82, SD = 0.17) are also rated significantly [F(1, 50)
=4.66, p = 0.05] better than in the basketball game (M = 0.71, SD = 0.21).

Going into more detail, the testers reported that they were able to control the events in point-

65

6. RESULTS

66

cloud editing (M = 0.93, SD = 0.12) significantly [F(1, 50) = 20.84, p = 0.001] better than in
basketball (M = 0.68, SD = (0.24). Also, they found the point-cloud editing (M = 0.90, SD = 0.12)
significantly [F(1, 50) = 6.06, p = 0.05] more responsive than the basketball game (M = 0.81, SD
= (.12). The testers found the interactions in the point-cloud editing (M = 0.90, SD = 0.12) more,
but not significantly, natural than the basketball game (M = 0.81, SD = 0.12). This is surprising,
too, considering that surely nobody has ever scaled a real house with his bare hands. They could
anticipate what happened significantly [F(1, 50) = 5.02, p = 0.05] better in the point-cloud editing
(M =0.89, SD = 0.15) than in the basketball game (M = 0.79, SD = 0.17). The testers could
examine the object significantly [F(1, 50) = 6.24, p = 0.05] closer in point-cloud editing (M =
0.95, SD = 0.09) than in the basketball game (M = 0.88, SD = 0.11). Also, they could examine
the objects significantly [F(1, 50) = 7.00, p = 0.05] better from multiple viewpoints in point-cloud
editing (M = 0.95, SD = 0.09) than in the basketball game (M = 0.86, SD = 0.14). The testers
could not survey significantly better with touch in the point-cloud editing (M = 0.72, SD = 0.29)
than in the basketball game (M = 0.60, SD = 0.35). However, they could manipulate the objects
significantly [F(1, 50) = 5.56, p = 0.05] better in the point-cloud editing (M = 0.92, SD = 0.12)
than in the basketball game (M = 0.82, SD = 0.18).

6.4.5 Summary and Analysis

The user study gives a first hint that point-cloud editing might be easier and more efficient
in VR than on the desktop. The testers liked the VR version, and they disliked the desktop
version. Especially viewing and selecting seem to be better in VR, which results here in better
performance, usability and task load. The testers had significantly fewer wrong points in VR in
about the same time as on the desktop.

One tester stated that 15 minutes is the maximum time to work comfortably. All in all, fatigue
was no big problem because the testers were relaxed, and most of them finished quickly enough.
In theory, the system could also be used while sitting in a chair, which would make this even less
of an issue.

Another tester found the controller buttons hard to hit. When more options are added, a different
assignment of buttons is necessary. This could also help when the trackpad loses the thumb
position at the edges. A better button assignment could be, for example, to use the trackpad to
control a toolbox and switch between different options like select and un-select. The grip button
could then be pressed to actually select the points.

Point-Cloud Rendering

In order to reduce overlap and also show more details of a point cloud, the individual points are
drawn as cones. While the old rendering technique created the cone geometry in the fragment
shader, the new technique does it in the geometry shader.

The draw time of the old and new cones was measured 900 times, 3 seconds after the start-up.
This was done three times in separate runs on the same NVIDIA GeForce GTX 1070. Figure 6.9
shows the same point cloud rendered with both techniques and their average draw time. The
visual quality of the new cones is very similar to the old ones, which shows that the difference

6.4. Point-Cloud Editing

(b) New cones - 1.858 ms

Figure 6.9: The slightly tilted grass of the house scan with about 700,000 points is shown from
above. The old cones are view-aligned squares that are turned into pixel-accurate cones in the
fragment shader, while the new cones are points turned into approximated, triangulated cones in
the geometry shader. Both techniques produce similar visual quality, but the new version is much
faster.

67

6. RESULTS

68

between pixel-accurate cones and small approximated cones is negligible. Also, the new cones
need less than 2 ms draw time, while the old cones need more than 13 ms. To summarize these
results, rendering a rather sparse point cloud with big points is faster using the geometry shader
than setting the depth in the fragment shader, at least on the NVIDIA GeForce GTX 1070.

The LoD system for rendering points should be improved because it led to frequent popping
when the house was scaled large. This is probably caused by the LoD being sensitive to the jitter
of the HMD tracking. When the scale of the house is small, the LoD often made accidentally
non-selected points obvious. This is caused by the strong contrast between selected and non-
selected points. The LoD system renders too many points when the point cloud is scaled very
small and the view is close. In future work, an overall budget for the rendered points should be
introduced, similar to the point-in-selection-volume check. This budget could also be multiplied
with a quality factor for different GPUs.

Bi-Manual Pinch Gesture

The viewing seems to be one major advantage of VR over desktop in our user study. This finding
cannot be generalized yet because other viewing methods still need to be compared. For example,
a fly-through method may work both in VR and on desktop.

The orbiting camera of the VGM has a minimal distance to the orbiting center. Therefore, the
results may not be completely applicable to other desktop applications such as Potree [Sch15] and
CloudCompare [GM15], which have an orbiting camera without a minimal distance. However,
the three point-cloud viewers for desktop share the fundamental flaw that controlling the 6 DoF
requires two different but not independent operations. To be more exact, the problems are:

1. Moving the orbiting center and changing the camera direction is partly redundant because
both move the camera.
2. When moving the orbiting center, the possible directions depend on the camera direction.

With the bi-manual pinch gesture, however, all 6 DoF can be controlled with one operation. Only
rotation around the axis between the controllers cannot be controlled accurately at the moment. If
necessary, this rotation can be done very quickly with one hand after the scaling, which seems
to suffice for most users. Also, future work may add control over this axis by incorporating the
controllers’ rotation.

Most testers could learn the bi-manual pinch gesture very quickly. However, some of them were
confused in the beginning, probably because the scaling moves some points closer and some
farther. The walls of the in-door scene seem to help, considering that no tester lost the point cloud.
However, this is probably different in open scenes without walls.

Point-Cloud Selections

The selection technique seems to be the second major advantage of VR over desktop in our user
study. The task to select vegetation in a house scan did not even use the full potential of the VR
selection technique. Consider a scan of a multi-story building with the task to delete the furniture.
The desktop version would require at least two operations, select the object from one direction

6.4. Point-Cloud Editing

and limit the range of the selection from another direction, for each piece of furniture. In the VR
version, there would be no difference. One tester, an archeologist, said that he would have liked
the software to remove cables from a mine scan.

The strategy that was used most often was to make a rough selection first and then make it more
and more detailed. Most of the testers always looked onto the house scan from above, even when
they had the controllers below the ground.

Some testers did not recognize the selection volume as a sphere. Instead, they thought it was

a disk. This could be improved simply by using a better shading than transparent flat shading.

However, the highlights of e.g. Phong shading could confuse the users. Also, different selection

volumes would help. A cube or cone would be especially useful when selecting points in a corner.

The selection visualization could be improved by tinting the selected points instead of overwriting
their colors. This could help with differentiating points made of different materials.

One tester scaled the house very small, so that the entire point-cloud was displayed with only
a few visible points. She then mistook it for outliers and selected everything, overriding the
previous selection. Therefore, an undo / redo system is necessary.

One tester suggested to activate the vibration only when currently selecting or un-selecting. Then,
the already selected or un-selected points could be ignored for the vibration. On the other hand,
the users would not get the feedback for the number of points inside the selection volume before
they select. Therefore, the vibration would not display a predicting of the action, but instead,
it would give feedback for the result. Some testers probably did not perceive the vibrations
consciously, and one tester just found the vibration annoying.

The pinch gesture scaling and selection-volume scaling are somewhat redundant. Most testers
appreciated it, anyway. The pinch gesture was used regularly, while the volume scaling was done
only a few times in one session. Some testers used differently scaled selection volumes in each
hand for rough and fine selections.

69

CHAPTER

Conclusion and Future Work

This thesis focuses on interactions in room-scale VR. We created a simple basketball game to
analyze grabbing and throwing with controllers. Furthermore, we developed an application to
examine the influence of haptic and optical feedback for grabbing. The third application created
for this thesis, point-cloud editing in VR, allows users to view a point cloud as well as select and
delete points of it.

We conducted a user study to answer our three research questions:

1. Is grabbing and throwing virtual balls with hand-held controllers intuitive?
2. Has feedback a statistically significant influence on grabbing?
3. Is editing point clouds better in VR than on desktop?

7.1 Grabbing and Throwing with Hand-Held Controllers

The first task for the participants of our user study was to play the basketball game. The testers
grabbed the ball and threw it into the basket as often as they could in the given time.

The user study showed that grabbing with a controller button is intuitive but throwing is not.
Releasing a button is a bad metaphor for releasing a grabbed virtual object in order to throw it. In
future work, we could test whether a method with a focus on physics helps. The controller would
then have a model of an open hand as its virtual representation and the ball is only attached to the
hand via a physics constraint until the hand is palm-up. Then, the throwing could be completely
natural. The greatest challenge of this method would probably be a stable collision handling.

7.2 The Influence of Haptic and Optical Feedback

After the basketball game, the testers did the grabbing test four times, with no, haptic, optical,
and both feedback enabled in random order.

71

7. CONCLUSION AND FUTURE WORK

72

The study revealed that any feedback is better than none. Adding haptic, optical, or both feedback
types to the grabbing improves the user performance and presence. However, only sub-scores
like accuracy and predictability are significantly improved. Usability and task load are mostly
unaffected by feedback. A future user study should focus even more on the grabbing by omitting
the second controller and without throwing the balls into a basket. Then, one might find more
significant differences between the feedback types.

7.3 Innovations for Point-Cloud Editing in VR

The development of the point-cloud editing tool in VR did not only serve as basis for the third
task of the user study, but also led to three new technical contributions. The first innovation is the
bi-manual pinch gesture, a viewing technique for translating, rotating, and scaling point clouds.
Our testers could learn this viewing technique very quickly, and they were able to use it efficiently
in most cases. This technique should be improved in future work by incorporating wrist rotation
into the rotation around the axis between the controllers.

The second novelty is a fast rendering technique for sparse point clouds. We draw the points as
not-so-small cones to fill in holes and keep the overlap small at the same time. This helps reduce
the flickering caused by jitter of the HMD tracking. To speed-up the drawing, the cones are not
created in the fragment shader like in previous techniques but in the geometry shader. In future
work, we will test whether instance-drawing is even faster than the geometry shader.

The third new technique is a method for efficient point selections and the visualization of these
selections in real time. Users can move a selection volume, a sphere in our user study, through
the point cloud. The position of the selection volume is stored in discrete steps, which creates an
array of positions. This array can be rendered to the stencil buffer, and with the correct stencil test,
every point inside the trajectory of the selection volume can be colored as part of the selection.
When the user finishes the selection operation, the array of sphere positions can be used for
point-in-sphere checks to update the state of only the selected points.

7.4 The Advantages of Point-Cloud Editing in VR

The last task of the user study was to clear a point cloud in VR and on desktop. The testers
removed everything that did not directly belong to the house in the laser scan, most importantly
soil and vegetation.

The results of the user study indicate that the point-cloud editing in VR with our innovations
is indeed better than on desktop with an orbiting camera and lasso selections. However, to say
that point-cloud editing in VR is better in general requires more validation. For example, other
viewing methods for VR and desktop need to be compared, most of all a fly-through camera.
If VR convinces in these tests as well, new challenges and questions may arise. For example,
when users clear point clouds for an hour or more, is the increased efficiency worth the possible
simulator sickness and fatigue? Or can the work in VR even keep the users fit and healthy?

Grabbing Test Results

APPENDIX

Feedback None Haptic Optical Both
M SD M SD M SD M SD

Score All Rounds 21.15 7.25 | 2335 6.79 | 2496 7.37 | 2454 7.53
Score Round 1 577 255 | 723 195 | 696 236 | 7.00 2.24
Score Round 2 642 260 | 7.38 268 | 835 272 | 746 298
Score Round 3 550 204 | 565 229 | 642 237 | 635 209
Score Round 4 346 206 | 3.08 1.62 | 323 1.60 | 3.73 1.87
Score Grabs 2542 8.62 | 27.19 7.50 | 28.54 834 |28.62 9.62
Score Grab Attempts | 61.54 16.27 | 57.42 21.61 | 59.19 23.07 | 58.08 20.64
Score Success Rate 042 012 | 051 0.17 | 054 022 | 053 0.19

Table A.1: Means and standard deviations of the grabbing test score results.

73

A. GRABBING TEST RESULTS

74

Feedback None Haptic Optical Both

M SD M SD M SD M SD
Presence Overall 0.76 0.09 | 0.81 0.14 | 0.81 0.11 | 0.83 0.10
Presence Realism 079 0.12 | 0.81 0.14 | 0.83 0.12 | 0.84 0.11
Presence Act 074 0.12 1079 0.18 | 0.82 0.17 | 0.84 0.14
Presence Interface 085 0.11 | 0.87 0.12 | 0.88 0.11 | 0.88 0.11
Presence Examine 0.83 0.15] 083 0.17 | 0.86 0.14 | 0.86 0.12
Presence Performance | 0.81 0.15 | 0.87 0.16 | 0.87 0.16 | 0.89 0.12
Presence Sound 072 029|073 025|074 0221|074 0.21
Presence Haptic 048 0.19 | 0.77 0.17 | 0.60 0.27 | 0.76 0.21
Presence Item 1 071 025|074 021|078 025|081 0.19
Presence Item 2 075 0.19 1079 0.18 | 0.85 0.15] 0.86 0.16
Presence Item 3 066 025|073 022|078 0.18 | 0.75 0.19
Presence Item 4 0.85 0.16 | 0.83 0.18 | 0.79 0.23 | 0.87 0.17
Presence Item 5 079 020|083 020|085 023|085 0.17
Presence Item 6 0.78 020 1]0.79 021|086 0.15] 087 0.16
Presence Item 7 062 0251070 021072 021|071 0.18
Presence Item 8 0.61 0221074 023077 0241079 0.19
Presence Item 9 090 0.15] 087 0.19 | 0.88 0.18 | 0.90 0.12
Presence Item 10 092 0.13 090 0.15|090 0.14 | 090 0.15
Presence Item 11 0.86 0.19 | 0.85 020 | 0.88 0.14 | 0.88 0.15
Presence Item 12 086 024|088 020|084 0.27 | 0.88 0.16
Presence Item 13 090 0.09 | 088 0.16 | 091 0.12 | 092 0.11
Presence Item 14 0.88 0.12 | 092 0.08 | 0.88 0.18 | 0.93 0.09
Presence Item 15 092 0.17 1092 0.13] 094 0.15| 096 0.10
Presence Item 16 070 021|081 022|080 024|082 0.17
Presence Item 17 0.88 0.18 | 094 0.12 | 092 0.12 | 090 0.14
Presence Item 18 078 0221076 026 | 083 020 | 0.81 0.19
Presence Item 19 076 021|078 021|085 0.15] 081 0.17
Presence Item 20 0.69 031] 067 030|065 030|065 0.33
Presence Item 21 079 033|081 029|085 024|082 0.23
Presence Item 22 0.67 036|070 032072 033|074 0.25
Presence Item 23 037 041|081 0.17 | 045 043 |0.74 0.29
Presence Item 24 059 0.19 072 021075 025|077 0.20

Table A.2: Means and standard deviations of the grabbing test presence results.

Feedback None Haptic Optical Both
M SD| M SOD| M SD| M SD

Task Load Overall | 0.55 0.20 | 0.58 0.17 | 0.62 0.20 | 0.61 0.22
Task Load Item 1 | 0.66 0.25 | 0.71 0.25 | 0.77 0.25 | 0.71 0.27
Task Load Item2 | 0.60 0.28 | 0.56 0.23 | 0.61 0.26 | 0.62 0.27
Task Load Item 3 | 0.44 0.32 | 044 0.26 | 042 0.31 | 046 0.33
Task Load Item 4 | 0.57 0.28 | 0.69 0.25 | 0.72 0.27 | 0.68 0.26
Task Load Item 5 | 0.40 0.28 | 0.38 0.22 | 0.46 0.27 | 045 0.30
Task Load Item 6 | 0.64 033 | 0.70 0.29 | 0.75 0.32 | 0.74 0.31

Table A.3: Means and standard deviations of the grabbing test task load results.

Feedback None Haptic Optical Both
M SO/ M SD| M SD| M SD

Usability Overall | 0.77 0.16 | 0.81 0.16 | 0.82 0.16 | 0.84 0.11
Usability Item 1 | 0.56 031 | 0.62 0.31 | 0.63 0.30 | 0.63 0.29
Usability Item2 | 0.88 0.21 | 0.89 0.14 | 091 0.14 | 093 0.11
Usability Item3 | 0.76 0.25 | 0.84 0.26 | 0.87 0.22 | 0.91 0.14
Usability Item 4 | 0.81 0.29 | 0.81 0.27 | 0.78 0.29 | 0.84 0.26
Usability Item 5 | 0.80 0.21 | 0.86 0.21 | 0.88 0.17 | 0.86 0.16
Usability tem 6 | 0.85 0.23 | 0.87 0.23 | 0.88 0.21 | 0.88 0.17
Usability Item 7 | 0.77 0.24 | 0.82 0.23 | 0.79 0.27 | 0.84 0.21
Usability Item 8 | 0.73 0.28 | 0.79 0.27 | 0.77 0.28 | 0.84 0.25
Usability Item 9 | 0.68 0.27 | 0.80 0.22 | 0.82 0.24 | 0.77 0.18
Usability Item 10 | 0.87 0.25 | 0.85 0.23 | 0.87 0.21 | 0.89 0.19

Table A.4: Means and standard deviations of the grabbing test usability results.

[AMO5]

[Bagl6]

[BHI97]

[BHZKO5]

[BJOYBJK90]

[BKH97]

[Bro96]

[BRRO7]

[Bur99]

Bibliography

David G Alciatore and Rick Miranda. A winding number and point-in-polygon
algorithm. Glaxo Virtual Anatomy Project Research Report, Department of
Mechanical Engineering, Colorado State University, 1995.

BagoGames. HTC Vive Now Up For Pre-Order, 2016. Ac-
cessed: 2017-05-03. URL: https://www.flickr.com/photos/
bagogames /25845851080, published under CC BY 2.0 (https://
creativecommons.org/licenses/by/2.0/).

Doug A Bowman and Larry F Hodges. An evaluation of techniques for grab-
bing and manipulating remote objects in immersive virtual environments. In
Proceedings of the 1997 symposium on Interactive 3D graphics, pages 35—f.
ACM, 1997.

Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt. High-
quality surface splatting on today’s gpus. In Point-Based Graphics, 2005. Euro-
graphics/IEEE VGTC Symposium Proceedings, pages 17-141. IEEE, 2005.

Frederick P Brooks Jr, Ming Ouh-Young, James J Batter, and P Jerome Kilpatrick.
Project gropehaptic displays for scientific visualization. In ACM SIGGraph
computer graphics, volume 24, pages 177-185. ACM, 1990.

Doug A Bowman, David Koller, and Larry F Hodges. Travel in immersive virtual
environments: An evaluation of viewpoint motion control techniques. In Virtual
Reality Annual International Symposium, 1997., IEEE 1997, pages 45-52. IEEE,
1997.

John Brooke. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189:4-7, 1996.

Stéphane Bouchard, Genevi¢ve Robillard, and Patrice Renaud. Revising the factor
structure of the simulator sickness questionnaire. Annual review of cybertherapy
and telemedicine, 5:128—-137, 2007.

Grigore C Burdea. Haptic feedback for virtual reality. In Virtual reality and
prototyping workshop, volume 2, pages 17-29. Citeseer, 1999.

77

https://www.flickr.com/photos/bagogames/25845851080
https://www.flickr.com/photos/bagogames/25845851080
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

[CFHI97]

[CNSD192]

[Cou08]

[Cro77]

[Cyb13]

[Cyb17]

[Dig16]

[Digl7]

[DKFDO0O0]

[Dool7]

[Dra98]

[DSLI6]

78

Lawrence D Cutler, Bernd Frohlich, and Pat Hanrahan. Two-handed direct ma-
nipulation on the responsive workbench. In Proceedings of the 1997 symposium
on Interactive 3D graphics, pages 107-114. ACM, 1997.

Carolina Cruz-Neira, Daniel J Sandin, Thomas A DeFanti, Robert V Kenyon, and
John C Hart. The cave: audio visual experience automatic virtual environment.
Communications of the ACM, 35(6):64-73, 1992.

Erwin Coumans. Bouncing ball, 2008. Accessed: 2017-05-18. URL: http:
//www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?
f=9&t=3003.

Franklin C Crow. Shadow algorithms for computer graphics. In Acm siggraph
computer graphics, volume 11, pages 242-248. ACM, 1977.

Cyberith. Virtualizer, 2013. Accessed: 2017-04-19. URL: http://cyberith.
com/product/.

CyberGlove Systems. CyberTouch, 2017. Accessed: 2017-04-19. URL: http:
//www.cyberglovesystems.com/cybertouch/.

Digital Trends. Spec Comparison: Does the Rift’s Touch update
make it a true Vive competitor?, 2016. Accessed: 2017-04-19.
URL: http://www.digitaltrends.com/virtual-reality/
oculus-rift-vs—-htc-vive/.

Digital Trends. Spec Comparison: Can the plucky PlayStation
VR upset HTC’s Vive?, 2017. Accessed: 2017-04-25. URL:
http : / / www . digitaltrends . com / virtual-reality /
playstation-vr-vs—htc-vive-spec—-comparison/.

Cath Dillon, Edmund Keogh, Jonathan Freeman, and Jules Davidoff. Aroused and
immersed: the psychophysiology of presence. In Proceedings of 3rd International
Workshop on Presence, Delft University of Technology, Delft, The Netherlands,
pages 27-28, 2000.

Doodle. MeetMe page, 2017. Accessed: 2017-05-03. URL: http://doodle.
com/meetmne.

Mark Heider Draper. The adaptive effects of virtual interfaces: vestibulo-ocular
reflex and simulator sickness. PhD thesis, University of Washington, 1998.

Chris Dede, Marilyn C Salzman, and R Bowen Loftin. Sciencespace: Virtual
realities for learning complex and abstract scientific concepts. In Virtual Reality
Annual International Symposium, 1996., Proceedings of the IEEE 1996, pages
246-252. IEEE, 1996.

http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=3003
http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=3003
http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=3003
http://cyberith.com/product/
http://cyberith.com/product/
http://www.cyberglovesystems.com/cybertouch/
http://www.cyberglovesystems.com/cybertouch/
http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
http://www.digitaltrends.com/virtual-reality/playstation-vr-vs-htc-vive-spec-comparison/
http://www.digitaltrends.com/virtual-reality/playstation-vr-vs-htc-vive-spec-comparison/
http://doodle.com/meetme
http://doodle.com/meetme

[DVS03]

[DW16]

[F#05]

[FHKHO6]

[FIB17]

[Fis18]

[Fos15]

[GMO04]

[GM15]

[Goo16]

[Gool7]

[GPHC102]

[Haal4]

[Har06]

Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequential
point trees. In ACM Transactions on Graphics (TOG), volume 22, pages 657-662.
ACM, 2003.

Nick Donaldson and Nick Whiting. Going Off the Rails: The Making of *Bullet
Train’, 2016. Accessed: 2017-04-19. URL: http://www.gdcvault.com/
play/1023648/Going-0Off-the-Rails—The/.

F# Software Foundation. Fi#, 2005. Accessed: 2017-05-15. URL: http:
//fsharp.org/.

Bernd Frohlich, Jan Hochstrate, Alexander Kulik, and Anke Huckauf. On 3d
input devices. IEEE Comput. Graph. Appl., 26(2):15-19, March 2006.

FIBA. 2014 Official Basketball Rules, 2017. Accessed: 2017-04-25. URL: http:
/ /www . fiba .com/documents/2015/0fficial_Basketball __
Rules_2014_Y.pdf.

Ronald Fisher. The Correlation Between Relatives on the Supposition of
Mendelian Inheritance. Philosophical Transactions of the Royal Society of
Edinburgh, 1918.

John Foster. About VR: Designing for Believability, 2015. Accessed:
2017-04-19. URL: http://www.gdcvault.com/play/1022815/
About-VR-Designing-for/.

Enrico Gobbetti and Fabio Marton. Layered point clouds: a simple and efficient
multiresolution structure for distributing and rendering gigantic point-sampled
models. Computers & Graphics, 28(6):815-826, 2004.

Daniel Girardeau-Montaut. CloudCompare, 2015. Accessed: 2017-07-09. URL:
http://www.danielgm.net/cc/.

Google. Tilt Brush, 2016. Accessed: 2017-04-19. URL: https://www.
tiltbrush.com/.

Google. Forms, 2017. Accessed: 2017-05-03. URL: https://www.google.
com/forms/about/.

Azucena Garcia-Palacios, H Hoffman, Albert Carlin, TA u Furness, and Cristina
Botella. Virtual reality in the treatment of spider phobia: a controlled study.
Behaviour research and therapy, 40(9):983-993, 2002.

Georg Haaser. FShade, 2014. Accessed: 2017-05-15. URL: https://
github.com/krauthaufen/FShade.

Sandra G Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings
of the human factors and ergonomics society annual meeting, volume 50, pages
904-908. Sage Publications Sage CA: Los Angeles, CA, 2006.

79

http://www.gdcvault.com/play/1023648/Going-Off-the-Rails-The/
http://www.gdcvault.com/play/1023648/Going-Off-the-Rails-The/
http://fsharp.org/
http://fsharp.org/
http://www.fiba.com/documents/2015/Official_Basketball_Rules_2014_Y.pdf
http://www.fiba.com/documents/2015/Official_Basketball_Rules_2014_Y.pdf
http://www.fiba.com/documents/2015/Official_Basketball_Rules_2014_Y.pdf
http://www.gdcvault.com/play/1022815/About-VR-Designing-for/
http://www.gdcvault.com/play/1022815/About-VR-Designing-for/
http://www.danielgm.net/cc/
https://www.tiltbrush.com/
https://www.tiltbrush.com/
https://www.google.com/forms/about/
https://www.google.com/forms/about/
https://github.com/krauthaufen/FShade
https://github.com/krauthaufen/FShade

[Hel98]

[HHH'16]

[HHS 98]

[HJ16]

[HS88]

[HSMT15]

[HTC16]

[HTC17a]

[HTC17b]

[I-116]

[igr16]

[Int12]

[Iwa99]

80

Doug Helmer. Forte Technologies Inc. VEX1 HEADGEAR Virtual Reality
System, 1998. Accessed: 2017-04-25. URL: http://www.combatsim.
com/archive/htm/htm_arcd4/vEfxl.htm.

Patrick Hackett, Curtis Hickman, Tyler Hurd, Alex Schwartz, and Scott Stephan.
A Year in Roomscale: Design Lessons from the HTC VIVE and Beyond. VRDC
2016 Talk, 2016. Accessed: 2017-04-19. URL: http://www.gdcvault.
com/play/1023661/A-Year—-in—-Roomscale-Design/.

Hunter G Hoffman, Ari Hollander, Konrad Schroder, Scott Rousseau, and Tom
Furness. Physically touching and tasting virtual objects enhances the realism of
virtual experiences. Virtual Reality, 3(4):226-234, 1998.

Kai Huebner and Jakob Johansson. Enabling Hands in Virtual Reality, 2016.
Accessed: 2017-04-19. URL: http://www.gdcvault .com/play/
1023642 /Enabling-Hands—-in-Virtual/.

Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. Advances in psychology,
52:139-183, 1988.

Georg Haaser, Harald Steinlechner, Stefan Maierhofer, and Robert F. Tobler.
An incremental rendering vim. In Proceedings of the 7th Conference on High-
Performance Graphics, HPG ’15, pages 51-60, New York, NY, USA, 2015.
ACM.

HTC. Vive, 2016. Accessed: 2017-04-19. URL: https://www.vive.com/.

HTC. Vive PRE User Guide, 2017. Accessed: 2017-05-02. URL: http://
www .htc.com/managed-assets/shared/desktop/vive/Vive_
PRE_User_Guide.pdf.

HTC. Vive Tracker, 2017. Accessed: 2017-04-19. URL: https://www.
vive.com/anz/vive-tracker/.

I-Illusions. Space Pirate Trainer, 2016. Accessed: 2017-04-19. URL: http:
//www.spacepiratetrainer.com/.

igroup. Igroup Presence Questionnaire, 2016. Accessed: 2017-04-19. URL:
http://www.igroup.org/pqg/ipg/index.php.

International Organization for Standardization. ISO/IEC 23271:2012, 2012. Ac-
cessed: 2017-05-15. URL: https://www.iso.org/standard/58046.
html.

Hiroo Iwata. Walking about virtual environments on an infinite floor. In Virtual
Reality, 1999. Proceedings., IEEE, pages 286-293. IEEE, 1999.

http://www.combatsim.com/archive/htm/htm_arc4/vfx1.htm
http://www.combatsim.com/archive/htm/htm_arc4/vfx1.htm
http://www.gdcvault.com/play/1023661/A-Year-in-Roomscale-Design/
http://www.gdcvault.com/play/1023661/A-Year-in-Roomscale-Design/
http://www.gdcvault.com/play/1023642/Enabling-Hands-in-Virtual/
http://www.gdcvault.com/play/1023642/Enabling-Hands-in-Virtual/
https://www.vive.com/
http://www.htc.com/managed-assets/shared/desktop/vive/Vive_PRE_User_Guide.pdf
http://www.htc.com/managed-assets/shared/desktop/vive/Vive_PRE_User_Guide.pdf
http://www.htc.com/managed-assets/shared/desktop/vive/Vive_PRE_User_Guide.pdf
https://www.vive.com/anz/vive-tracker/
https://www.vive.com/anz/vive-tracker/
http://www.spacepiratetrainer.com/
http://www.spacepiratetrainer.com/
http://www.igroup.org/pq/ipq/index.php
https://www.iso.org/standard/58046.html
https://www.iso.org/standard/58046.html

[IYTO7]

[Johl6]

[KLBLI93]

[Kriil2]

[Log17]

[LS16]

[Lud15]

[M-C16]

[Man16]

[Min98]

[Mos93]

[Nial6]

[Norl6a]

[Norl6b]

Hiroo Iwata, Hiroaki Yano, and Masaki Tomiyoshi. String walker. In ACM
SIGGRAPH 2007 emerging technologies, page 20. ACM, 2007.

Leif Johnson. Watch How a $25,000 Robot Makes Virtual Reality Way Better,
2016. Accessed: 2017-05-30. URL: https://motherboard.vice.com/
en_us/article/VR-robot-feedback.

Robert S Kennedy, Norman E Lane, Kevin S Berbaum, and Michael G Lilienthal.
Simulator sickness questionnaire: An enhanced method for quantifying simulator
sickness. The international journal of aviation psychology, 3(3):203-220, 1993.

Louis Kriiger. Konforme Abbildung des Erdellipsoids in der Ebene. Verdf-
fentlichung des Koniglich Preuszischen Geoddtischen Instituts, 1912.

Logical Increments. Building a PC for Virtual Reality: Oculus Rift, HTC
Vive, and VR Gaming, 2017. Accessed: 2017-04-25. URL: http://www.
logicalincrements.com/articles/vrguide.

Jonathan Lin and Jiirgen P Schulze. Towards naturally grabbing and moving
objects in vr. Electronic Imaging, 2016(4):1-6, 2016.

Joe Ludwig. IVRSystem::TriggerHapticPulse, 2015. Accessed: 2017-05-
18. URL: https://github.com/ValveSoftware/openvr/wiki/
IVRSystem: :TriggerHapticPulse.

M-Ch. [C# wrapper] TriggerHapticPulse - type of argument unDurationMicroSec
should be ushort not char., 2016. Accessed: 2017-05-18. URL: https://
github.com/ValveSoftware/openvr/issues/123.

Manus-VR. Manus-VR, 2016. Accessed: 2017-05-30. URL: https://

manus-vr.com/.

Mindflux. VFX1 HEADGEAR, 1998. Accessed: 2017-04-25. URL.:
http://www.mindflux.com.au/products/iis/vEx1l-2.html#
specifications.

Michael Moshell. Three views of virtual reality: virtual environments in the us
military. Computer, 26(2):81-82, 1993.

Niantic. Pokemon Go, 2016. Accessed: 2017-04-19. URL: http://www.
pokemongo.com/.

Colin Northway. Menus Suck. VRDC 2016 Talk, 2016. Accessed: 2017-04-19.
URL: http://www.gdcvault.com/play/1023668/Menus/.

Northway Games. Fantastic Contraption, 2016. Accessed: 2017-04-19. URL:
http://fantasticcontraption.com/.

81

https://motherboard.vice.com/en_us/article/VR-robot-feedback
https://motherboard.vice.com/en_us/article/VR-robot-feedback
http://www.logicalincrements.com/articles/vrguide
http://www.logicalincrements.com/articles/vrguide
https://github.com/ValveSoftware/openvr/wiki/IVRSystem::TriggerHapticPulse
https://github.com/ValveSoftware/openvr/wiki/IVRSystem::TriggerHapticPulse
https://github.com/ValveSoftware/openvr/issues/123
https://github.com/ValveSoftware/openvr/issues/123
https://manus-vr.com/
https://manus-vr.com/
http://www.mindflux.com.au/products/iis/vfx1-2.html#specifications
http://www.mindflux.com.au/products/iis/vfx1-2.html#specifications
http://www.pokemongo.com/
http://www.pokemongo.com/
http://www.gdcvault.com/play/1023668/Menus/
http://fantasticcontraption.com/

[NVI16]

[NVI17]

[OCDO1]

[Ocul4]

[Ocul6]

[Ocul7]

[ODH98]

[PBWI96]

[PHI16]

[Pho75]

[Phol6]

[PIW12]

[PSLO5]

82

NVIDIA. VR Funhouse, 2016. Accessed: 2017-04-19. URL: http://www.
geforce.com/whats-new/tag/nvidia-vr-funhouse/.

NVIDIA. NVIDIA Quadro GP100, 2017. Accessed: 2017-05-22. URL: http:
//images .nvidia.com/content /pdf/quadro/data-sheets/
302049-NV-DS—-Quadro-Pascal-GP100-US—-NV-27Febl7-HR
pdf.

Allison M Okamura, Mark R Cutkosky, and Jack T Dennerlein. Reality-based
models for vibration feedback in virtual environments. IEEE/ASME Transactions
on Mechatronics, 6(3):245-252, 2001.

Oculus VR. Announcing the Oculus Rift Development Kit 2 (DK?2), 2014. Ac-
cessed: 2017-04-25. URL: https://www3.oculus.com/en-us/blog/
announcing-the-oculus-rift-development-kit-2-dk2/.

Oculus. Rift, 2016. Accessed: 2017-04-19. URL: https://www.oculus.
com/rift/.

Oculus. Privacy Policy, 2017. Accessed: 2017-04-19. URL: https://www.
oculus.com/legal/privacy-policy/.

Allison M Okamura, Jack T Dennerlein, and Robert D Howe. Vibration feedback
models for virtual environments. In Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on, volume 1, pages 674-679. IEEE, 1998.

Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The
go-go interaction technique: non-linear mapping for direct manipulation in vr. In
Proceedings of the 9th annual ACM symposium on User interface software and
technology, pages 79-80. ACM, 1996.

Ben Padget and Vincent Hamm. Pillars of Presence: Amplifying VR Immersion.
Vision VR/AR Summit 2016 Talk, 2016. Accessed: 2017-04-19. URL: https:
//www.youtube.com/watch?v=TdJf3X5tBvU.

Bui Tuong Phong. Illumination for computer generated pictures. Communications
of the ACM, 18(6):311-317, 1975.

Phosphor Games Studios. The Brookhaven Experiment, 2016. Accessed:
2017-04-19. URL: http://phosphorgames . com/blog/games /
the-brookhaven—-experiment/.

Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. Auto splats: Dynamic
point cloud visualization on the gpu. In EGPGYV, pages 139-148, 2012.

Renato Pajarola, Miguel Sainz, and Roberto Lario. Xsplat: External mem-
ory multiresolution point visualization. In Proceedings IASTED Invernational
Conference on Visualization, Imaging and Image Processing, pages 628—633,
2005.

http://www.geforce.com/whats-new/tag/nvidia-vr-funhouse/
http://www.geforce.com/whats-new/tag/nvidia-vr-funhouse/
http://images.nvidia.com/content/pdf/quadro/data-sheets/302049-NV-DS-Quadro-Pascal-GP100-US-NV-27Feb17-HR.pdf
http://images.nvidia.com/content/pdf/quadro/data-sheets/302049-NV-DS-Quadro-Pascal-GP100-US-NV-27Feb17-HR.pdf
http://images.nvidia.com/content/pdf/quadro/data-sheets/302049-NV-DS-Quadro-Pascal-GP100-US-NV-27Feb17-HR.pdf
http://images.nvidia.com/content/pdf/quadro/data-sheets/302049-NV-DS-Quadro-Pascal-GP100-US-NV-27Feb17-HR.pdf
https://www3.oculus.com/en-us/blog/announcing-the-oculus-rift-development-kit-2-dk2/
https://www3.oculus.com/en-us/blog/announcing-the-oculus-rift-development-kit-2-dk2/
https://www.oculus.com/rift/
https://www.oculus.com/rift/
https://www.oculus.com/legal/privacy-policy/
https://www.oculus.com/legal/privacy-policy/
https://www.youtube.com/watch?v=TdJf3X5tBvU
https://www.youtube.com/watch?v=TdJf3X5tBvU
http://phosphorgames.com/blog/games/the-brookhaven-experiment/
http://phosphorgames.com/blog/games/the-brookhaven-experiment/

[PUK16] Iana Podkosova, Michael Urbanek, and Hannes Kaufmann. A hybrid sound model
for 3d audio games with real walking. In Proceedings of the 29th International

Conference on Computer Animation and Social Agents, CASA ’16, pages 189—
192, New York, NY, USA, 2016. ACM.

[PZVBGOO] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross. Surfels:
Surface elements as rendering primitives. In Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pages 335-342.
ACM Press/Addison-Wesley Publishing Co., 2000.

[Rail6] Bernhard Rainer. SelectionVisualization, 2016. Accessed:
2017-05-15. URL: https : / / github . com / JimmyLaessig /
SelectionVisualization).

[Real7] Real-Time Physics Simulation. Bullet Physics Library, 2017. Accessed: 2017-
04-19. URL: http://bulletphysics.org/.

[Reil6] Sean Reilly. VR Locomotion Demo, 2016. Accessed: 2017-04-19. URL: https:
//github.com/qwv4851/Movement.

[RKWO01] Sharif Razzaque, Zachariah Kohn, and Mary C Whitton. Redirected walking. In
Proceedings of EUROGRAPHICS, volume 9, pages 105-106. Citeseer, 2001.

[RLOO] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pages 343-352. ACM
Press/Addison-Wesley Publishing Co., 2000.

[Rot16] Gerhard Franz Roth. VRVis: Was das neue K1-Zentrum fiir Visual Computing
kann, 2016. Accessed: 2017-05-02. URL: https://factorynet.at/a/
vrvis-was—das—neue-kl-zentrum-fuer-visual-computing-kann.

[Sam17] Samsung. Samsung SSD 960 EVO NVMe M.2 1TB, 2017. Ac-
cessed: 2017-07-08. URL: http ://www . samsung . com / us /
computing / memory-storage / solid-state-drives /
ssd-960-evo-m-2-1tb-mz-v6eltObw/.

[SBJT10] Frank Steinicke, Gerd Bruder, Jason Jerald, Harald Frenz, and Markus Lappe.
Estimation of detection thresholds for redirected walking techniques. /EEE
Transactions on Visualization and Computer Graphics, 16(1):17-27, 2010.

[Sch03] Thomas W. Schubert. The sense of presence in virtual environments: A
three-component scale measuring spatial presence, involvement, and realness.
Zeitschrift fiir Medienpsychologie, 15(2):69-71, 2003.

[Sch15] Markus Schiitz. Potree 1.3, 2015. Accessed: 2017-07-09. URL: http://www.
potree.org/.

83

https://github.com/JimmyLaessig/SelectionVisualization
https://github.com/JimmyLaessig/SelectionVisualization
http://bulletphysics.org/
https://github.com/qwv4851/Movement
https://github.com/qwv4851/Movement
https://factorynet.at/a/vrvis-was-das-neue-k1-zentrum-fuer-visual-computing-kann
https://factorynet.at/a/vrvis-was-das-neue-k1-zentrum-fuer-visual-computing-kann
http://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-evo-m-2-1tb-mz-v6e1t0bw/
http://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-evo-m-2-1tb-mz-v6e1t0bw/
http://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-evo-m-2-1tb-mz-v6e1t0bw/
http://www.potree.org/
http://www.potree.org/

[SCPY5]

[SFL*16]

[SGHT12]

[S1a99]

[Son98]

[Son16]

[Son17]

[SP11]

[SRGS00]

[SRHO5]

[SUC95]

84

Richard Stoakley, Matthew J Conway, and Randy Pausch. Virtual reality on a
wim: interactive worlds in miniature. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 265-272. ACM Press/Addison-
Wesley Publishing Co., 1995.

Anthony Steed, Sebastian Frlston, Maria Murcia Lopez, Jason Drummond,
Ye Pan, and David Swapp. An ‘in the wild’experiment on presence and em-
bodiment using consumer virtual reality equipment. IEEE transactions on visual-
ization and computer graphics, 22(4):1406-1414, 2016.

Peng Song, Wooi Boon Goh, William Hutama, Chi-Wing Fu, and Xiaopei Liu. A
handle bar metaphor for virtual object manipulation with mid-air interaction. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 1297-1306, New York, NY, USA, 2012. ACM.

Mel Slater. Measuring presence: A response to the witmer and singer presence

questionnaire. Presence: Teleoperators and Virtual Environments, 8(5):560-565,
1999.

Sony. Sony Announces New Personal LCD MonitorPC Glasstron, 1998. Ac-
cessed: 2017-04-25. URL: https://www.sony.net/SonyInfo/News/
Press_Archive/199809/98-101/.

Sony. PlayStation VR FAQ, 2016. Accessed: 2017-04-25. URL:
https : / / blog . eu . playstation . com / 2016 / 10 / 03 /
playstation-vr—-the-ultimate-faq/.

Sony. PlayStation VR, 2017. Accessed: 2017-04-19. URL: https://www.
playstation.com/en-us/explore/playstation-vr/.

Claus Scheiblauer and Michael Pregesbauer. Consolidated visualization of enor-
mous 3d scan point clouds with scanopy. In Proceedings of the 16th International
Conference on Cultural Heritage and New Technologies, pages 242-247, 2011.

Eva-Lotta Sallnids, Kirsten Rassmus-Grohn, and Calle Sjostrom. Supporting
presence in collaborative environments by haptic force feedback. ACM Trans.
Comput.-Hum. Interact., 7(4):461-476, December 2000.

Frank Steinicke, Timo Ropinski, and Klaus Hinrichs. Vr and laser-based interac-
tion in virtual environments using a dual-purpose interaction metaphor. In /IEEE
VR 2005 Workshop Proceedings on New Directions in 3D User Interfaces, pages
61-64, 2005.

Mel Slater, Martin Usoh, and Yiorgos Chrysanthou. The influence of dynamic
shadows on presence in immersive virtual environments. In Selected Papers of
the Eurographics Workshops on Virtual Environments ’95, VE °95, pages 8-21,
London, UK, UK, 1995. Springer-Verlag.

https://www.sony.net/SonyInfo/News/Press_Archive/199809/98-101/
https://www.sony.net/SonyInfo/News/Press_Archive/199809/98-101/
https://blog.eu.playstation.com/2016/10/03/playstation-vr-the-ultimate-faq/
https://blog.eu.playstation.com/2016/10/03/playstation-vr-the-ultimate-faq/
https://www.playstation.com/en-us/explore/playstation-vr/
https://www.playstation.com/en-us/explore/playstation-vr/

[Sut65]

[Sut68]

[SVAM99]

[SW11]

[SW15]

[SZ94]

[TDS99]

[Tek16]

[UAW99]

[UQO13]

[Vall5a]

[Vall5b]

[Vall6]

Ivan E Sutherland. The ultimate display. Multimedia: From Wagner to virtual
reality, 1965.

Ivan E Sutherland. A head-mounted three dimensional display. In Proceedings of
the December 9-11, 1968, fall joint computer conference, part I, pages 757-764.
ACM, 1968.

Martijn J Schuemie and CAPG Van der Mast. Presence: Interacting in virtual
reality. In Proceedings, Twente Workshop on Language Technology, volume 15,
pages 213-217, 1999.

Claus Scheiblauer and Michael Wimmer. Out-of-core selection and editing of
huge point clouds. Computers & Graphics, 35(2):342-351, April 2011.

Markus Schiitz and Michael Wimmer. High-quality point based rendering using
fast single pass interpolation. In Proceedings of Digital Heritage 2015 Short
Papers, pages 369-372, September 2015.

David J Sturman and David Zeltzer. A survey of glove-based input. IEEE
Computer graphics and Applications, 14(1):30-39, 1994.

James N Templeman, Patricia S Denbrook, and Linda E Sibert. Virtual locomo-
tion: Walking in place through virtual environments. Presence: teleoperators
and virtual environments, 8(6):598-617, 1999.

Tekton Games. WalkAbout, 2016. Accessed: 2017-04-19. URL: http://
tektongames.com/walkabout-presskit/.

Martin Usoh, Kevin Arthur, Mary C Whitton, Rui Bastos, Anthony Steed, Mel
Slater, and Frederick P Brooks Jr. Walking> walking-in-place> flying, in virtual
environments. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 359-364. ACM Press/Addison-Wesley
Publishing Co., 1999.

UQO Cyberpsychology Lab. Presence Questionnaire, 2013. Accessed: 2017-04-
19. URL: http://w3.ugo.ca/cyberpsy/docs/gaires/pres/PQ_
va.pdf.

Valve. IVRSystem::GetHiddenAreaMesh, 2015. Accessed: 2017-05-
18. URL: https://github.com/ValveSoftware/openvr/wiki/
IVRSystem: :GetHiddenAreaMesh.

Valve. OpenVR, 2015. Accessed: 2017-05-15. URL: https://github.
com/ValveSoftware/openvr.

Valve. The Lab, 2016. Accessed: 2017-04-19. URL: http://store.
steampowered.com/app/450390/.

85

http://tektongames.com/walkabout-presskit/
http://tektongames.com/walkabout-presskit/
http://w3.uqo.ca/cyberpsy/docs/qaires/pres/PQ_va.pdf
http://w3.uqo.ca/cyberpsy/docs/qaires/pres/PQ_va.pdf
https://github.com/ValveSoftware/openvr/wiki/IVRSystem::GetHiddenAreaMesh
https://github.com/ValveSoftware/openvr/wiki/IVRSystem::GetHiddenAreaMesh
https://github.com/ValveSoftware/openvr
https://github.com/ValveSoftware/openvr
http://store.steampowered.com/app/450390/
http://store.steampowered.com/app/450390/

[Vall7a]

[Vall7b]

[VK15]

[VKBS13]

[VKSRO0]

[VRV17]

[WBB'07]

[WI88]

[WS98]

[WSO06]

[Xin16]

[ZPVBGO1]

86

Valve. openvr_api.cs, 2017. Accessed: 2017-05-18. URL: https://github.
com/ValveSoftware/openvr/blob/master/headers/openvr_
api.cs.

Valve. Privacy Agreement, 2017. Accessed: 2017-04-19. URL: http://
store.steampowered.com/privacy_agreement/.

Khrystyna Vasylevska and Hannes Kaufmann. Influence of path complexity
on spatial overlap perception in virtual environments. In Proceedings of the
25th International Conference on Artificial Reality and Telexistence and 20th
Eurographics Symposium on Virtual Environments, pages 159-166. Eurographics
Association, 2015.

Khrystyna Vasylevska, Hannes Kaufmann, Mark Bolas, and Evan A Suma.
Flexible spaces: Dynamic layout generation for infinite walking in virtual en-
vironments. In 3D User Interfaces (3DUI), 2013 IEEE Symposium on, pages
39-42. IEEE, 2013.

V Vuskovic, M Kauer, Gabor Székely, and M Reidy. Realistic force feedback for
virtual reality based diagnostic surgery simulators. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, volume 2, pages
1592-1598. IEEE, 2000.

VRVis. Aardvark - An Advanced Rapid Development Visualization And Render-
ing Kernel, 2017. Accessed: 2017-04-19. URL: https://www.vrvis.at/
research/projects/aardvark/.

Michael Wand, Alexander Berner, Martin Bokeloh, Arno Fleck, Mark Hoffmann,
Philipp Jenke, Benjamin Maier, Dirk Staneker, and Andreas Schilling. Interactive
editing of large point clouds. In SPBG, pages 37-45, 2007.

Colin Ware and Danny R Jessome. Using the bat: A six-dimensional mouse for
object placement. IEEE Computer Graphics and Applications, 8(6):65-70, 1988.

Bob G Witmer and Michael J Singer. Measuring presence in virtual environments:
A presence questionnaire. Presence: Teleoperators and virtual environments,
7(3):225-240, 1998.

Michael Wimmer and Claus Scheiblauer. Instant points: Fast rendering of
unprocessed point clouds. In SPBG, pages 129-136, 2006.

XinReality. Locomotion Methods, 2016. Accessed: 2017-04-19. URL: https:
//xinreality.com/wiki/Locomotion_Methods.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Surface
splatting. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 371-378. ACM, 2001.

https://github.com/ValveSoftware/openvr/blob/master/headers/openvr_api.cs
https://github.com/ValveSoftware/openvr/blob/master/headers/openvr_api.cs
https://github.com/ValveSoftware/openvr/blob/master/headers/openvr_api.cs
http://store.steampowered.com/privacy_agreement/
http://store.steampowered.com/privacy_agreement/
https://www.vrvis.at/research/projects/aardvark/
https://www.vrvis.at/research/projects/aardvark/
https://xinreality.com/wiki/Locomotion_Methods
https://xinreality.com/wiki/Locomotion_Methods

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Contributions

	Related Work
	VR Technology
	Interaction Techniques
	Movement Techniques
	Presence
	Feedback
	Point Clouds

	System Design
	Basketball Game
	Grabbing Test
	Point-Cloud Editing

	Implementation
	Software Architecture
	Rendering
	Haptic Feedback
	Physics
	Out-of-Core Point-Cloud Rendering
	Bi-Manual Pinch Gesture
	Real-Time Point Selection Visualization

	User Study Design
	User Information
	Simulator Sickness
	Presence
	Usability
	Task Load
	Objective Scores

	Results
	Simulator Sickness
	Basketball Game
	Grabbing Test
	Point-Cloud Editing

	Conclusion and Future Work
	Grabbing and Throwing with Hand-Held Controllers
	The Influence of Haptic and Optical Feedback
	Innovations for Point-Cloud Editing in VR
	The Advantages of Point-Cloud Editing in VR

	Grabbing Test Results
	Bibliography

