
Path Planning in Augmented
Reality Indoor Environments

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Media Informatics and Visual Computing

by

Karl Platzer, BSc
Registration Number 0626768

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc. Prof. Dr. Hannes Kaufmann
Assistance: Dipl.-Ing. Mag. Georg Gerstweiler

Vienna, 12th December, 2017
Karl Platzer Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Karl Platzer, BSc
Meravigliagasse 1/9, 1060 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Dezember 2017
Karl Platzer

iii

Kurzfassung

Legt man einen virtuellen Pfad auf die reale Umgebung innerhalb eines Gebäudes, kann
sich eine Person darin besser zurechtfinden und somit schneller an den gewünschten
Ort gelangen. Mit der Veröffentlichung von Augmented Reality (AR) Bibliotheken für
Android- und Apple-Smartphones und der Verfügbarkeit von Head Mounted Display
(HMD), erlangt AR immer mehr Aufmerksamkeit am Massenmarkt. Der größte Nachteil
von modernen AR-Visualisierungsgeräten ist jedoch das kleine Sichtfeld. Als Sichtfeld
bezeichnet man den Bereich der Umgebung, der von der Kamera eines mobilen Geräts
erfasst und auf dem AR-fähigen Gerät dargestellt wird. Dies korrespondiert mit dem
Bereich, in dem virtuelle Objekte über die reale Umgebung gelegt werden können. Den
berechneten Pfad innerhalb des Sichtfeldes des AR-fähigen Geräts zu halten, ist der
besondere Ansatz dieser Masterarbeit. Der Pfad sollte sich an der Blickrichtung des
mobilen Gerätes ausrichten, sodass dem Benutzer durchgehend ein Weg angezeigt wird.
Die vorliegende Arbeit präsentiert das Design und die Implementierung des Field of View
(FOV) assisted path planning Algorithmus. Ein 3D-Modell des Inneren eines Gebäudes
und Lokalisierungsdaten der Benutzer werden hierzu verwendet, um den FOV assisted
path zu berechnen. Die begehbaren Bereiche der Umgebung werden aus dem 3D-Modell
der Umgebung berechnet. Begehbare Bereiche beschreiben all jene Bereiche, die ein Benut-
zer auch wirklich begehen kann. Die begehbaren Bereiche werden in einem sogenannten
Navigation Mesh dargestellt. Pfade werden nur innerhalb begehbarer Bereiche berechnet.
Die Erzeugung eines Navigation Mesh ist nicht Teil der vorliegenden Masterarbeit. Diese
Arbeit setzt die Recast Library von Mononen zur Navigation Mesh-Generierung ein. Für
den implementierten Pfadfindungsalgorithmus werden Positions- und Orientierungsdaten
der mobilen Endgeräte aufgezeichnet und bereitgestellt. Der berechnete Pfad besteht aus
einem Pfad außerhalb und innerhalb des Sichtfelds des mobilen Geräts. Das Hauptaugen-
merk der vorliegenden Masterarbeit liegt darauf, den Pfad innerhalb des Sichtfeldbereichs
zu berechnen und ihn mit dem Pfad außerhalb des Sichtfelds zu verknüpfen. Im Zuge
der Forschung wurden dazu verschiedene Strategien zum Berechnen und Verknüpfen der
Teilpfade erarbeitet. Abhängig von der Blickrichtung werden verschiedene Pfadberech-
nungsmethoden und Spezialfälle implementiert und die daraus entstehenden Teilpfade
miteinander verbunden. Außerdem sind im Pfadplanungsprozess dynamische Objekte, also
Objekte die nicht im 3D-Modell des Gebäudes inkludiert sind, berücksichtigt. In dieser
Arbeit wird ein laufzeiteffizienter Ansatz zur Einbettung von dynamischen Objekten in
das statische Navigation Mesh einer 3D-Umgebung vorgestellt. Ein anderer Fokus liegt

v

hier auf einem für den Benutzer intuitiv verfolgbaren Pfad. Dafür wurde der FOV assisted
path mit ausreichend Abstand zu Wänden und Objekten berechnet. Weiters wird der
Pfad am Ende des Algorithmus geglättet, um einen anschaulicheren Pfad zu visualisieren.
Zur Evaluierung der Performance sowie der Benutzerfreundlichkeit des implementierten
Algorithmus wurde eine Performance-Analyse und eine Benutzerstudie durchgeführt. 22
Teilnehmer nahmen an einer Aufgabe teil, bei der sie durch ein Gebäude navigieren
mussten. Die Teilnehmer der Studie trugen dabei eine Microsoft Hololens. Die Microsoft
Hololens erfasste die Position und Orientierung der Teilnehmer und visualisierte den
berechneten Pfad. Ein Vergleich zwischen dem implementierten FOV assisted path und
der Implementierung eines shortest path-Algorithmus ohne Berücksichtigung von FOV-
Informationen wurde dabei durchgeführt. Die Ergebnisse geben einen Hinweis darauf,
dass der implementierte Pfad die Orientierung der Benutzer innerhalb eines Gebäudes
vereinfacht, wenn die Richtung zum Ziel nicht bekannt ist. Darüber hinaus wurde die
Benutzerfreundlichkeit des FOV assisted planning Algorithmus und die Eignung von
AR-Visualisierungsgeräten für Navigation innerhalb von Gebäuden evaluiert.

Abstract

Superimposing a virtual path onto a real indoor environment assists a person walking
through a building towards a requested destination. With the release of AR toolkits
for Android and Apple mobile devices and the availability of see-through head mounted
displays, AR gains attention on the mass market. The main drawback of state-of-the-
art AR visualization devices is the small FOV. The FOV represents the area of the
environment displayed on the mobile device. This corresponds with the area where
virtual objects are superimposed onto the real environment. Keeping the calculated path
inside the FOV of the AR visualization device is the novel approach introduced in this
thesis. The path should adopt to the view direction of the mobile device; hence, a path
is visualized to the user at all times.
This thesis presents the design and implementation of the FOV assisted path planning
algorithm. A 3D model of the indoor environment and tracking data of the user are
applied to calculate the FOV assisted path. The 3D model of the environment is processed
to represent the walkable areas of the environment. Walkable areas describe all surfaces
of the indoor environment a user is able to walk on; they represent the areas in a
so-called navigation mesh. Paths are only calculated inside walkable areas. Generation
of a navigation mesh is not part of the work at hand. This thesis applies the Recast
Library by Mononen. Position and orientation data of the mobile device are tracked
and provided to the implemented path planning algorithm. The FOV assisted path
consists of a path inside and outside the FOV. The main focus of the work at hand is to
calculate the path inside the FOV area and concatenate it to the path outside the FOV.
Concatenating the two sub paths introduces different special cases for path calculation.
Depending on the view direction, different path calculation stages and special cases are
implemented and the resulting sub paths are concatenated. Moreover, dynamic obstacles
not represented in the 3D model of the indoor environment are incorporated in the path
planning process. A runtime efficient approach to include dynamic obstacles into the
large static navigation mesh of a 3D environment is presented in this thesis. Another
focus of this thesis is a visually pleasing and intuitive walkable path. Therefore, the FOV
assisted path is calculated with clearance to walls and obstacles. Furthermore, a path
smoothing algorithm is presented in this thesis.
A performance analysis and a user study was conducted to assess the performance and
usability of the implemented algorithm. 22 participants were guided through an indoor
environment wearing a Microsoft Hololens. The Microsoft Hololens tracks the participants’

vii

movements and visualizes the calculated paths. A comparison between the implemented
FOV assisted path and a shortest path implementation not including FOV information
was conducted. Results indicate that the implemented path increases orientation of
the user within the indoor environment when the direction towards the destination is
unknown. Moreover, the usability of the FOV assisted path planning algorithm and the
suitability of AR visualization devices for indoor navigation are assessed.

Contents

Kurzfassung v

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation and Aim of the Thesis . 2
1.2 Structure of the Thesis . 3

2 Related Work 5
2.1 Indoor Navigation in an AR Setting . 5
2.2 Path Planning with Navigation Meshes . 10

3 System Design 15
3.1 Unity3D Project . 15
3.2 Tracking . 16
3.3 Output Devices for AR Applications . 18
3.4 FOV Assisted Path Planning Library . 20

3.4.1 Recast Library . 23
3.4.2 Navigation Meshes . 24
3.4.3 FOV Assisted Path Planning Algorithm Stages 25

4 Implementation 31
4.1 DLL . 32
4.2 Recast Navigation Mesh Generation Process 34

4.2.1 3D Model Rasterization . 34
4.2.2 Region Generation . 36
4.2.3 Contour Generation . 37
4.2.4 Navigation Mesh Generation . 38

4.3 Implementation of the FOV Assisted Path Planning Algorithm 41
4.3.1 Path Corridor and Shortest Path 41
4.3.2 Middle Path . 44
4.3.3 FOV Navigation Mesh with Dynamic Obstacles 46

ix

4.3.4 FOV Path . 48
4.3.5 FOV Assisted Path . 51
4.3.6 Path Smoothing . 53
4.3.7 Wall Path . 56

4.4 Unity3D Implementation . 58

5 Results 61
5.1 Performance Analysis . 61
5.2 User Study . 65

5.2.1 User Study Design . 65
5.2.2 User Study Results and Analysis 70

6 Summary and future work 79

List of Figures 81

List of Tables 83

List of Algorithms 85

Acronyms 87

Bibliography 89

CHAPTER 1
Introduction

Navigation from a current location to a destination is a common task in many areas
of application. In computer games virtual characters or other moveable entities are
guided through a virtual environment for an immersive experience or to simulate human
behavior [8]. In real life scenarios the Global Positioning System (GPS) assists a person
walking through a city on foot or driving a car to reach a destination [23]. A path
connects two locations, considering the walkable areas of the environment as valid areas
for the path, whereas unwalkable areas are excluded from the path planning process.
This thesis focuses on planning a path within an indoor environment. The path guides
the users along the floor of the environment representing walkable areas and avoids
unwalkable areas like walls or obstacles. Locating shops inside a shopping mall, finding
the departure gate of a flight in an airport or assisting a service technician to reach his
next maintenance task inside a warehouse are areas of application for this algorithm.
Due to the development of see-through HMD and the release of AR toolkits for mobile
devices, AR technologies push into the mass market. AR is the combination of virtual
objects with the real environment [3]. Superimposing a virtual path onto the real indoor
environment emerges as the visualization goal of the work at hand. A major drawback
of state-of-the-art mobile devices and see-through HMD’s is that these devices are only
able to superimpose virtual information in a small area of the real environment. In other
words, the mobile device has a narrow FOV. Calculating a path that is inside the device’s,
hence the user’s, FOV at all time is the main topic of the work at hand.
Path planning inside a building has three different fields of focus. It starts with the
localization of the user inside the indoor environment, then the calculation of the path
from a predefined starting point or current position to a destination and the visualization
of the calculated path. Many publications on navigation inside buildings focus on tracking
the user. Algorithms using fiducial markers [33, 40] or markerless visual features [28]
are presented to provide accurate positions of the user. Markers or feature hotspots are
spread around the environment and are used as reference points to locate the user. The

1

1. Introduction

final path consists of a chain of reference points and the user is guided from reference
point to reference point with directional information. The focus of the work at hand is to
use position and orientation information as well as a 3D model of the indoor environment
to calculate a continuous path to the destination. The 3D model data is used to separate
walkable areas from unwalkable areas to provide the user with a collision-free path.
The orientation information is applied to calculate paths with regard to the small FOV
of state-of-the-art AR visualization devices. The narrow FOV introduces special path
planning cases. Different solutions for these special cases are presented in this thesis.
Furthermore, the path is optimized so that it enhances the advantages of AR visualization.

1.1 Motivation and Aim of the Thesis

The motivation behind this thesis is to analyze the challenges and possibilities that
state-of-the-art AR technology introduces to path planning within indoor environments.
The biggest challenge when using AR technology is the limited FOV of AR devices. Due
to the small FOV of the mobile device, different situations lead to entirely different paths.
Pointing the mobile device towards the destination, distractions that shift the focus
of the user away from the optimal path or loosing orientation inside the environment
entirely describe only some of the possible situations. Providing a reliable path to the
user for different situations is a challenge for this thesis. Comparing different path
planning publications led to an idea for the algorithm at hand. Some indoor navigation
publications use tracking data to calculate coarse directions towards the destination,
whereas other publications use precise knowledge about the indoor environments to plan
accurate paths. In this thesis the position and orientation data of a localization technique
and the 3D model of the indoor environment are combined and used in the path planning
algorithm. Combining the results of an initial literature research and the ideas of the
author of this thesis led to the following research goal:

A path planning algorithm that uses localization data and the 3D model of the indoor
environment, with special focus on AR challenges like limited FOV, is implemented to
provide a final path suitable for visualization on AR capable devices.

The implemented algorithm is referred to as FOV assisted path planning algorithm for
the remainder of this thesis. The algorithm has to adapt to the view direction of a mobile
device and has to have clearance to walls and obstacles to avoid collisions. The algorithm
has to work inside buildings with multiple floors and has to adapt to dynamic obstacles.
Existing path planning algorithms are reviewed and analyzed, and the question whether
it is possible to use them in an AR setting is answered. The algorithm is developed in a
simulated environment and further evaluated in a real world environment. Besides the
evaluation of the FOV assisted path planning algorithm against the defined requirements,
the algorithm is compared to the often used A* algorithm introduced by Hart et. al. [20].
In addition to performance tests a user study is conducted. The user study results provide

2

1.2. Structure of the Thesis

feedback on the usability of the implemented path planning algorithm and the following
questions should be answered. Are the user test participants able to navigate through
the test environment and reach the destination at all? Is the FOV assisted path intuitive
enough, so that the user is able to reach the destination? Is the path calculated with
enough clearance or is the user hitting obstacles or walls along the path? Is the user able
to react to changes in the environment, hence a change in the calculated path?
The algorithm uses tracking data provided by a localization technique. Implementation
of a localization method or the discussion of advantages and disadvantages of different
localization methods is not part of this thesis. The generation of the used 3D model is
also outside the scope of this thesis.

1.2 Structure of the Thesis
In Chapter 2 state-of-the-art methods with regard to AR path planning algorithms
are reviewed. The review is split in a review of AR related path planning algorithms
and a review of general path planning concepts used to implement the FOV assisted
path planning algorithm. Basic algorithms and their extensions are presented. The
literature review is followed by the definition of requirements and the system design for
the algorithm itself in Chapter 3. A short introduction on the localization of the user
within the indoor environment and visualization devices for the FOV assisted path is
also presented. In Chapter 4 every stage of the implemented FOV assisted path planning
algorithm is presented in detail. The algorithm is implemented in C++. Next, a technical
evaluation and the results of a user study conducted as part of this thesis are presented.
The focus of the technical evaluation are the effects of certain input parameters on the
overall runtime of the algorithm. The algorithm has to be fast enough to allow the
user a delay-free navigation towards the destination. During the user tests the system
is evaluated in a real life scenario on a Microsoft Hololens. The user study provides
feedback on the usability of the system and the user workload to solve a path planning
task. The thesis concludes with a summary of the work at hand and supplies an outlook
on possible areas of improvement for future work in Chapter 6.

3

CHAPTER 2
Related Work

This chapter focuses on related work associated with this thesis. The chapter starts with
a review on indoor navigation algorithms in the context of AR. AR indoor navigation
starts with locating the user inside the environment, then a path to the destination is
calculated before visualizing the path on an AR capable device. The work at hand uses
localization data without introducing a unique localization technique and focuses entirely
on the path planning algorithm. Particular algorithms in relation to the path planning
algorithm implemented as part of this thesis are reviewed in the second part of this
chapter.

2.1 Indoor Navigation in an AR Setting
Indoor navigation describes the concept of finding a route between two points and in
addition the visualization of the route. AR capable devices introduce new opportunities for
the visualization of calculated paths. Azuma defines AR as virtual objects superimposed
onto or combined with the real world [3]. Azuma further states three characteristics to
describe AR [3]:

• Combines real and virtual

• Interactive in real time

• Registered in 3D

All of the above points have a connection to the work at hand. The combination of real
and virtual implies that the user is able to see the real environment superimposed with a
visualization of the virtual path. As the user moves through the indoor environment, the
path is updated or recalculated in real time. Thus the visualization of the path has to

5

2. Related Work

be updated in real time as well. Registration of the virtual path in respect to the real
environment deals with the third point in Azuma’s definition. Errors in the registration
lead to paths cutting through walls or paths colliding with obstacles. The position of the
visualization of the virtual path is also related to registration with the real world. When
the path is visualized slightly above the ground level of the real environment it should
never cut through the environment as users get irritated by visualization errors related
to registration.
A main factor for correct registration in relation to the real environment is accurate
tracking of the user. A majority of publications for indoor navigation in an AR setting
present localization techniques and add path planning on top of the localization method.
Localization data and directional information is often correlated to each other as Rehman
et. al. [39] and Alnabhan et. al. [2] describe in their publications. Prerecorded features
are matched with the features captured from the live feed of a mobile device camera to
track the user. At specific reference points of the indoor environment directional infor-
mation guiding the user towards the destination is added to the prerecorded localization
features. As the user moves through the environment the user’s position is detected and
the prerecorded direction information is visualized to the user.
Rehman and Cao use feature matching along predefined paths in their tracking algo-
rithm [39]. Visual features, specifically 3D point clouds, are captured with a mobile
device and matched with prerecorded features stored in a database to localize the user. At
certain points along a predefined path directional information is added to the prerecorded
localization features. Alnabhan and Tomaszweski present a similar approach in their
indoor navigation algorithm called Indoor Navigation System Using Augmented Reality
(INSAR) [2]. The features used for localization differ between Rehman’s approach and
Alnabhan’s approach. Whereas Rehman uses visual features, Alnabhan uses Wi-Fi
fingerprints. Every reference point entry consists of a Wi-Fi fingerprint as a localization
reference and directions towards every destination point in the indoor environment for
path planning. For both approaches the paths are predefined and directional information
is added to every reference point. When new paths or destinations are added, all reference
points inside the environments have to be updated. For the work at hand paths should
be calculated on the fly for all reachable destinations within the indoor environment.
In addition to the static direction information at reference points INSAR uses the orien-
tation of the mobile device to calculate the direction towards the destination. Applying
both orientation values assures that the path is always pointing towards the destination
independent of the rotation of the mobile device. The adaption of the path direction
in relation to the view direction of the mobile device is also implemented in the FOV
assisted path planning algorithm of this work, but with a fundamental difference. Instead
of keeping the path direction the same regardless of the mobile device rotation, the
path direction is adapted to the mobile device’s rotation in the implemented algorithm.
This means that for INSAR the user has to turn around to look towards the destination
again, whereas for the implemented algorithm the calculated path adjusts towards the
destination. Figure 2.1 visualizes the difference between INSAR and the FOV assisted
path. The red arrow is the reference direction, where the user is looking straight forward

6

2.1. Indoor Navigation in an AR Setting

towards the door. The blue arrow visualizes the concept of INSAR. In INSAR the path
always points towards the destination hence the door, regardless of the rotation of the
mobile device. The FOV assisted path adapts the path in relation to the view direction
of the mobile device before adjusting back to the door.

Figure 2.1: Three different directions towards the door, with the reference direction (red
arrow) and two directions for different concepts (INSAR - blue arrow, FOV assisted path
- green arrow)

Instead of predefined paths or directions towards the destination a variety of algorithms
generate a graph based on the indoor environment and facilitate a graph search to
calculate a path in real time. Rooms, corridors or other points of interest represent the
nodes of the graph. Neighboring nodes are connected with edges. Indoor navigation
algorithms relying on graph-based path planning algorithms differ in the techniques
they use to track the position of the user inside the environment. Localization with
fiducial markers [33, 40, 25], markerless visual features [28] or hybrid methods applying
a variation of marker and markerless, inertial and ultrasonic tracking schemes [24, 9, 31]
are used to track the users. Based on the graph, shortest path algorithms like Dijkstra’s
algorithm [12], the A* algorithm [20] or variations of these algorithms are implemented
to calculate a path. Path planning starts at the graph node closest to the current user
position and heads towards the graph node closest to the destination. Figure 2.2 visualizes
an indoor environment with a user defined graph. Nodes for the graph are placed in the
middle of rooms, hallways or at hallway branches. This graph is the input for shortest
path algorithms to calculate a path. Although the resulting path describes the briefest
connection between points on the graph, no detailed directions how to follow the path are

7

2. Related Work

calculated. Reitmayr and Schmalstieg present a two part indoor navigation system called
Signpost [40], where the shortest path is extended with detailed directional information.
At first, Reitmayr generates an adjacency graph connecting neighboring rooms (rooms
are nodes of the graph connected by edges). A shortest path algorithm is performed on
the graph to calculate the route to the destination. Furthermore, directional feedback
to find the connection of the user’s current room towards the next room on the path is
provided. Every connection between two rooms is called a portal. In Signpost an arrow
points towards the next portal on the path to assist the user with orientation inside the
environment. The implemented FOV assisted path planning algorithm also extends an
initial shortest path. The path is extended to provide a path with clearance to objects,
adjusting to the view direction of a mobile device and avoiding dynamic obstacles. A
shortest path is the briefest connection between two points resulting in paths heading
along walls or close to obstacles. For the implemented algorithm clearance to obstacles
is required to assure the user is not hitting the objects. The work at hand calculates a
path with clearance based on the initial path. As stated in the introduction the effect of
the small FOV of AR visualization devices is the main focus of this thesis. Therefore,
this thesis expands the initial path and alters the path with FOV area information. This
results in a path adapting to the view direction of the mobile device.

Figure 2.2: Indoor environment with a user defined graph

Another active field of research for AR path planning applications is the visualization of
the path. A suitable visualization assists the user following the path. Common visual-
ization forms are arrows pointing towards the destination [39, 2, 33, 40], a continuous
line visualizing the path or more unique solutions like the particle system presented later
in the user study for the FOV assisted path (see Figure 5.4a). Directional Arrows only
indicate a coarse direction towards the destination. No feedback about avoiding walls or
obstacles along the path is visualized either. The user has to decide the exact movements
without visual assistance as only the direction is visualized. Another drawback with
directional arrows are irritating directional visualizations. In Figure 2.3 it is not clear

8

2.1. Indoor Navigation in an AR Setting

if the user has to go through the door or follow the corridor and turn to the left. To
prevent irritations the work at hand uses a continuous path visualization.
The implemented path planning algorithm adapts to the view direction of the user. The
path points towards two different directions. First, the path points towards the user’s
view direction. Then the user is led towards the destination. To visualize the combination
of both directions a continuous path visualization is chosen. The final path is a continuous
path visualization with separation to walls and obstacles.

Figure 2.3: Irritating visualization with directional arrows

The following techniques are not implemented in the work at hand but should provide
an overview on additional techniques used in path planning publications. For better
orientation in the indoor environment Mulloni et. al. use a spatially registered World-In-

9

2. Related Work

Miniature (WIM) map view at info points [33]. The WIM map view visualizes the current
location, a path to the destination and the destination. In Signpost a WIM map displays
the shortest path from the current room to the destination room as well [40]. All rooms
along the shortest path are colored in the same unique color. Delail et. al. visualize
room numbers or room names in addition to path information to support orientation
within the indoor environment [9]. Other techniques such as activity-based instructions
like "move 10 steps" or "change floor" [33] or voice commands [39] are used in addition to
AR visualization techniques.

2.2 Path Planning with Navigation Meshes

The idea for the implemented FOV assisted path planning algorithm is a continuous path
that is walkable for the user at all times. All walkable surfaces are extracted from the
3D model of the indoor environment. The FOV path is calculated inside the walkable
area. All walkable areas of the indoor environment are represented with a data structure
called navigation mesh. The definition of the term navigation mesh was first introduced
by Snook [41] and Tozour [46]. Different navigation mesh representations characterize
the indoor environment with unique properties. Various navigation mesh techniques and
their effects on path planning algorithms are presented in this section.
Wein et. al. present a navigation mesh combining shortest path information and clearance
to obstacles information [52]. The navigation mesh data structure is called Visibility-
Voronoi complex. The navigation mesh combines a visibility graph and a voronoi diagram.
The visibility graph represents shortest paths between obstacles in the indoor environment.
The voronoi diagram on the other hand represents paths with maximum clearance to
obstacles. The combination of the two graphs, hence the Visibility-Voronoi complex,
represents all global shortest paths between two points in the indoor environment with
arbitrary clearances [52]. The work at hand splits up the generation of the navigation
mesh and the path planning algorithm. As a consequence the navigation mesh for the
indoor environment will typically be calculated only once, whereas the path planning
algorithm is repeated whenever the position of the user changes. Breaking up the
navigation mesh generation process and the path planning algorithm speeds up the
path planning algorithm if the navigation mesh generation process is slow. Furthermore,
navigation meshes often do not change, as they represent the static walkable areas of an
indoor environment. Repeating the navigation mesh generation process for every path
planning task is not necessary in such cases.
Kallmann [26, 27] and Geraerts [14] also divide the navigation mesh generation process and
the path planning algorithm into separate stages. Kallmann uses Delaunay triangulation
of the input geometry with an added clearance value to generate a triangulated navigation
mesh called Local Clearance Triangulation (LCT) [26, 27]. Geraerts and van Toll et. al.
generate a navigation mesh called Explicit Corridor Maps (ECM) [14, 48] based on the
medial axis [37]. The medial axis is related to the voronoi diagram and represents points
which are equidistant to two or more polygon obstacles. In other words, the medial axis

10

2.2. Path Planning with Navigation Meshes

represents maximum clearance to obstacles and walls of the environment. The medial
axis in combination with exact clearance values at unique points on the medial axis form
the navigation mesh called ECM. The LCT and the ECM work on planar surfaces. A
3D model of a multistory indoor environment is split up in multiple planar layers and a
separate navigation mesh is generated for each layer. Van Toll et. al. extend the ECM for
multilayer environments [47, 48] through connecting different layers at connection points.
Both the LCT and ECM require planar surfaces to begin the navigation mesh generation
process. Extracting planar surfaces from the 3D model of the indoor environment is not
topic of the cited algorithms. Separating multistory buildings into separate layers and
later connecting them is not preferred for the algorithm at hand as the FOV of the user
might be spread over two floors.
Near optimal generator of navigation meshes (NEOGEN) by Oliva and Pelechano [34]
and the Recast library by Mononen [32] present algorithms which generate multilayer
navigation meshes based on a 3D model of the indoor environment. In a voxelization stage
the 3D model is registered to a voxel grid. The voxelized indoor environment is processed
and the walkable surface is represented as convex polygons. For an in depth review of
the navigation mesh process the reader is referred to [34] for a detailed description of
NEOGEN. In Section 4.2 an overview on the navigation mesh generation process of the
Recast library is presented. The Recast library is used to generate the navigation mesh
for the FOV assisted path planning algorithm.
NEOGEN and the Recast library combine multistory buildings in one navigation mesh,
whereas LCT and ECM have a navigation mesh for every floor of a building which
might be combined. Due to the voxelization process in NEOGEN and the Recast library
the precision of the walkable surfaces in relation to the real 3D structure of the indoor
environment depends on the voxel grid size. Contrary to that, LCT and ECM produce
an exact representation of the walkable areas in their navigation meshes [49]. For a more
in depth analysis of different navigation mesh generation algorithms the reader is referred
to a comparative study on different navigation meshes [49]. Van Toll et. al. present
different navigation meshes and define metrics to compare navigation mesh generation
algorithms [49].
Dynamic obstacles alter walkable surfaces of an indoor environment, thus the navigation
mesh is altered. LCT [27] and ECM [50, 48] locally alter the navigation mesh to include
dynamic obstacles. Including dynamic obstacles implies a change of the static navigation
mesh. Especially for large navigation meshes this is a time consuming task. For the
work at hand a novel approach including dynamic obstacles is implemented. Dynamic
obstacles are only considered inside the FOV area of the user.

The path planning stage of the work at hand is based on planning paths inside path
corridors [27, 14]. A path corridor is a subset of a navigation mesh and characterizes the
walkable area of the indoor environment from the current location to the destination.
Path planning algorithms based on path corridors often use a global path planning
algorithm followed by a local path planning algorithm. Global path planning calculates
the shortest path with sufficient clearance to obstacles between the current location and
the destination. Local path planning adapts the initial path to avoid dynamic obstacles

11

2. Related Work

or other users in crowd simulation scenarios [27, 14, 48]. The FOV assisted path planning
algorithm calculates a global path to find the shortest path corridor with clearance
between the current location and the destination. Local path planning includes the FOV
information of the user and avoids dynamic obstacles.
Shortest path algorithms are applied for the global path. The A* algorithm introduced
by Hart, Nilsson and Raphael in 1968 is a graph-based shortest path algorithm [20]. A
common A* implementation is to split up the environment into a grid-based representation
of the environment. Based on the generated graph a shortest path between two points on
the grid is calculated. A* always finds the shortest path as long as a connection exists at
all. Due to the fact that the A* algorithm results in the shortest path to the destination,
the path lacks clearance to obstacles or walls. Additional techniques are used to provide
paths with clearance.
Kallmann generates an adjacency graph of the triangulated indoor environment in the
LCT path planning algorithm [27]. The A* implementation of LCT calculates a corridor
of triangles from the start point to the destination. Besides using the Euclidean distance
measure to calculate the shortest triangle corridor, the clearance values of the triangles
are checked. Validating the clearance results in a corridor where all triangles have a
clearance value of at least the user’s radius. All triangles with to little clearance are
excluded from the A* algorithm. Once a global triangle corridor is found, a local path
planning algorithm is used to find the shortest path inside the triangle corridor. Figure 2.4
shows the triangulated input geometry of LCT. Every triangle of the navigation mesh has
a clearance value describing the distance to the closest obstacle. The algorithm uses the
radius of the user, a start point and a destination to generate a path corridor. The path
corridor is represented through a sequence of triangles calculated with the A* algorithm.
Figure 2.4 visualizes the shortest path for a certain radius from the start point to the
destination.

The Recast library also generates a navigation mesh with clearance to obstacles. The
navigation mesh with clearance is used in the implemented algorithm and thus a global
path corridor with clearance to obstacles is generated. Calculating a valid global path
with enough clearance saves time as the local path planning is started only if a global
path with clearance exists.
Similar to LCT a global path corridor is generated for path planning in ECM(yellow
colored area in Figure 2.5a). The path corridor relies on the medial axis (red line in
Figure 2.5a) of the navigation mesh. The part of the medial axis inside the corridor
is referred to as backbone path. Inside the corridor the local path planner calculates
a smoothed path with arbitrary clearance. The smoothed path (blue doted line in
Figure 2.5b) is based on the backbone path. Path smoothing generates an intuitive
and visually pleasing looking path for the user. A smoothed path is easier to follow
for the user in the AR setting of this thesis. The implemented FOV assisted path uses
a potential field approach for path smoothing. Potential field algorithms make use of
different forces which steer the user towards the destination [29]. Attracting forces steer
the agent towards the destination, whereas rejecting forces push the agent away from

12

2.2. Path Planning with Navigation Meshes

Figure 2.4: LCT navigation mesh and path. Source: [26]

walls and obstacles. The implemented FOV assisted path planning algorithm steers the
user towards the destination based on a backbone path.

(a) Backbone path (red), clearances to obsta-
cles (black, blue) and path corridor of ECM.
Source: [14]

(b) Smooth path with minimal clearance based
on the backbone path. Source: [14]

Figure 2.5: Visualization of global and local path planning in ECM

13

CHAPTER 3
System Design

The main contribution of this thesis is the implementation of the FOV assisted path
planning algorithm. The implemented algorithm is part of an AR indoor navigation
system consisting of the following three parts:

• Localization of the user

• Path planning between the user’s current position and the destination

• Visualization of the path

Figure 3.1 visualizes the main parts of the navigation system. A Unity3D project
reads tracking data from a localization technique and loads the 3D model of the indoor
environment. This information is provided to the path planning library. The implemented
path planning algorithm extends the Recast library by Mononen [32]. The resulting path
is then prepared for visualization in the Unity project and displayed on AR visualization
devices.

This chapter presents the Unity3D project components first. An introduction of Unity3D
is followed by requirements for localization techniques. Next, an AR visualization toolkit
and device is presented. The second big block of this chapter represents the implemented
path planning library. It starts with an introduction of the Recast library. At the end
of this chapter the main contribution of this thesis, the FOV assisted path planning
algorithm, is presented. Information about basic requirements of the algorithm and the
design of the unique stages are discussed.

3.1 Unity3D Project
Unity3D is a cross-platform game engine developed by Unity Technologies [45]. It sup-
ports over 20 different platforms i.e. Windows, Linux, macOs, iOs, Android and many

15

3. System Design

Figure 3.1: Visualization of the different parts of the AR navigation system. Green
blocks are implemented as part of this thesis, red blocks are existing libraries

more. It also supplies easy access to HMD’s like the Occulus Rift or the Microsoft
Hololens. This feature makes Unity3D a suitable tool for this thesis as the user tests
presented in Chapter 5 feature the Microsoft Hololens. Unity3D provides a powerful editor
to design 2D or 3D environments. It also features scripting through C# and JavaScript.
The scripts for this project are written in C#. Figure 3.2 visualizes all the functions the
Unity3D project handles. In Unity3D the 3D model of the indoor environment is loaded
and prepared for the path planning library. The library uses the vertex and triangle
index information of the imported 3D model. Besides the 3D model the path planning
library also requires position and orientation data from the user. The Unity3D project
processes tracking data from a localization technique and provides it to the library. In
the user study tracking data is provided by the Microsoft Hololens, processed by the
Unity3D project and then used in the path planning library. The path recalculation
logic controls how often the path planning library is invoked. The remaining functions in
Figure 3.2 are implemented for visualization of the results of the path panning library.
The recalculation logic and the visualization methods are presented in detail in Section 4.4.

3.2 Tracking

Localization data is a requirement for the FOV assisted path planning algorithm. The
algorithm uses the position and orientation of the user, therefore, a six degree of freedom
(DOF) tracking system is necessary. Without the position information of the user the
path planning algorithm is unable to start the path calculation and no path is calculated
to begin with. Discontinuity of tracking data once a path is calculated leads to confusion
of the user and might misguide the user towards an incorrect direction. Therefore,

16

3.2. Tracking

Figure 3.2: Different functions of the Unity3D project

reliability of the tracking algorithm is a base requirement for the FOV assisted path
planning algorithm.
Another requirement is the accuracy of the tracking data. Accurate tracking is necessary
for a correspondence of the user’s position in the real indoor environment and the true
to scale 3D model of the indoor environment. The AR visualization of the resulting path
also requires accurate tracking. The following problems arise with inaccurate tracking:

• Faulty positioning leads to orientation problems for the user especially when wearing
a see-through HMD.

• A deviation of the user’s position in the real environment and the 3D model falsifies
the calculated path and confuses the user.

• Erroneous tracking of the user’s current position misplaces the user and leads to
the user potentially hitting a wall or an obstacle and no path is calculated.

• Inaccurate positioning of the user leads to paths leading through walls in the real
environment, hence the user is unable to traverse the path.

For the remainder of this section, a tracking algorithm called HyMoTrack [16] is presented.
Gerstweiler et. al. combine three separate tracking approaches to provide a reliable and
accurate six DOF indoor tracking algorithm.
HyMoTrack combines visual feature tracking with inertial feature tracking as a fallback,
if the visual feature tracking fails to provide continuous tracking data. For visual feature

17

3. System Design

tracking two separate feature types are used to provide centimeter accuracy[16]. The two
visual feature tracking methods are based on mapping 3D point features and 2D image
markers of signs, advertisements or paintings. For a detailed description of the tracking
methods the user is referred to [16].
As does the FOV assisted path planning algorithm, HyMoTrack is developed to run
on mobile devices in real time. To provide real time tracking, the system is split up
in an offline map generation to generate a feature map and an online tracking part.
The online tracking part uses the features to localize the user. In a potential fusion
of the HyMoTrack tracking system and the implemented path planning algorithm, the
navigation mesh generation could be added to the offline section of the combined system
and the path planning algorithm could be added to the online part.

3.3 Output Devices for AR Applications

There are two interesting topics for the visualization of a path in an AR setting. The
first topic focuses on the visualization of a path in an AR setting. The second topic are
toolkits and devices applied for AR visualization. There are different ways to visualize the
path itself, like arrows, continuous lines or special visualization techniques like particle
systems. Besides the visualization form, the position of the visualization has to be defined.
The implemented FOV assisted path is visualized slightly above the floor of the indoor
environment with continuous lines or a continuous particle system. Comparing different
visualization forms and positions is not part of this thesis. The feedback of the conducted
user study confirms the chosen visualization form and position as the participants gave
positive remarks.

Google AR Toolkits

Google offers two different AR toolkits named Google Tango [18] and the newer Google
ARCore [17]. Google Tango was introduced first and focuses on calculating the mobile
device’s position in relation to the real world [19] and visualizing AR content on the
mobile device. Google Tango requires mobile devices with special hardware like depth
sensors or additional cameras to locate the user inside the environment. Devices featuring
Google Tango are the Lenovo Phab2 Pro or the Asus Zenfone AR. Google Tango is based
on three core technologies [19]:

• Motion Tracking: Responsible for tracking the mobile device’s position and
orientation. Google Tango provides 6 DOF tracking.

• Area Learning: Registers and recalls the indoor environment previously scanned.
This technology also improves the accuracy of motion tracking in known environ-
ments.

18

3.3. Output Devices for AR Applications

• Depth Perception: Learn shape of the indoor environment. Virtual objects are
registered with real world objects. Thus the virtual objects can interact with the
real environment.

Google ARCore is the successor of Google Tango. ARCore differs from Tango as it
works without requiring mobile devices with special hardware. Google ARCore uses the
mobile device’s camera for motion tracking and depth perception. These two technologies
have the same functionality as in Google Tango. In addition to that ARCore uses light
estimation to calculate the current lighting conditions of the environment.

Microsoft Hololens

For Virtual Reality (VR) environments HMD’s are the state-of-the-art technology for VR
visualization. The Microsoft Hololens is a see-through HMD designed for AR applications.
The Microsoft Hololens(see Figure 3.3) is a stand-alone holographic computer that
visualizes 3D holographic objects, allows the user to move around the objects and enables
interaction with these objects [44].

Figure 3.3: Microsoft Hololens

The Microsoft Hololens features three processor units. Whereas a CPU and a GPU are
common parts in state-of-the-art PC’s, the (holographic processing unit (HPU)) is a
unique processor developed exclusive for the Microsoft Hololens.
The Hololens is equipped with a depth camera to record depth information, four additional
cameras to track head movement in relation to the environment, an ambient light sensor
to measure the environments light intensity and a forward facing video camera, which is
used for head tracking and also to capture videos and images of the real environment.
The video data of the front camera is superimposed with the virtual objects in the user’s
view to provide the mixed reality experience for external viewers. The depth camera
is based on structured light technology. A special infrared pattern is emitted onto the
environment and scanned with an infrared sensor to calculate depth information of the

19

3. System Design

environment.
In addition to the cameras the Microsoft Hololens has additional sensors like an ac-
celerometer, a gyroscope and a magnetometer. A microphone for voice commands and
speakers to simulate spatial sound are also included.
A waveguide based display visualizes the virtual objects. The holograms are emitted
from a light source onto a transparent lens consisting of an array of small grooves. The
grooves reflect the light beams into the user’s eyes and the holograms appear at varying
positions and distances in the environment. Holograms are projected at a minimum rate
of 30 frames per second and the FOV of the lenses is around 30◦ horizontal times 20◦

vertical. The small FOV of the Microsoft Hololens compared to the human visual field
which is over 180◦ horizontal times 140◦ vertical [42] is the major drawback of current
AR visualization devices. The small FOV was the main motivation to introduce the FOV
assisted path planning algorithm presented in the next section.

3.4 FOV Assisted Path Planning Library
The AR indoor navigation system guides a user through an indoor environment. The
system visualizes the calculated path on an AR visualization device like a smartphone,
tablet or see-through HMD. One advantage of using AR is preserving the relation to
the real environment while adding guidance with the virtual path. The mobile device
superimposes the path onto the live camera feed. The implementation of the navigation
system in an AR setting also introduces the main drawback of current AR output devices.
Virtual objects can only be visualized in a small area of the environment as the FOV of
current AR devices is small. E.g. the Microsoft Hololens has a FOV of approximately 30◦

horizontal times 20◦ vertical. In comparison the human visual field is over 180◦ horizontal
and 140◦ vertical [42]. The main focus of the implemented path planning algorithm is
to calculate a path visualized inside the FOV of the mobile device at all times. The
path guiding the user towards the destination has to adapt to the view direction of the
mobile device. In algorithms where the FOV is not included in the calculation, the user
has to locate the path by turning around before following the path. Possible areas of
application for the implemented algorithm are the location of shops in a large shopping
mall, finding departure gates at an airport or assisting a maintenance worker to locate
the next service task in a warehouse.
Figure 3.4 shows two concept images of path planning in an AR indoor environment.
Figure 3.4a shows the 3D model of an indoor environment. The red path in Figure 3.4a
is the shortest path from the user’s current location to the destination. The green path
is a concept path featuring path properties like clearance to obstacles or using the view
direction for path calculation. Figure 3.4b displays a drafted virtual path superimposed
onto a real world environment. The aim of the implemented FOV assisted path planning
algorithm results in a path similar to the green path in Figure 3.4a. The calculated path
is visualized on an AR visualization device as drafted in Figure 3.4b.

The shortest path (red path in Figure 3.4a) visualizes an unintended result for the
implemented path planning algorithm. Although the red path represents the shortest

20

3.4. FOV Assisted Path Planning Library

(a) 3D model of an indoor environment with two
paths. Red path visualizes shortest path, green
path visualizes concept path of the FOV assisted
path planning algorithm

(b) Concept visualization of a path superimposed
onto a real environment

Figure 3.4: Concept visualizations for the FOV assisted path planning algorithm

distance from the current position to the destination, the path does not offer the requested
guidance for the implemented AR scenario. The following requirements have been defined
for the implemented FOV assisted path planning algorithm:

FOV assisted path
The implemented algorithm calculates the final path with regard to the viewing
direction of a person respectively a mobile device and gives feedback via an user
interface. The algorithm not only has to take account of the position of a person,
but rather apply the orientation of a person. The calculated path has to be updated
with regard to the viewing direction of the person. The final path has to be inside
the user’s FOV at all time. This means that the path adapts to the user’s FOV,
instead of the user having to adapt to the calculated path. A FOV assisted path is
calculated, if the view direction faces towards a walkable surface of the environment.
When the user faces a wall, fallback paths are calculated.

Clearance to walls and obstacles
The final path has to have sufficient clearance to obstacles or walls along the way.
The user should be able to traverse the path without the danger of hitting any
objects. Due to this requirement the final path is not the global shortest path. The
algorithm should still prevent unnecessary detours.

Dynamic path updates
The algorithm has to adapt the calculated path in a dynamic scenario. Whether
it is dynamically appearing obstacles or a person changing the path on purpose,
the algorithm has to adapt to new circumstances. Dynamic obstacles are objects
which are not part of the 3D model of the indoor environment. The algorithm
alters the path, if dynamic obstacles are provided. Detecting dynamic obstacles is

21

3. System Design

not scope of this thesis. The path is calculated on the fly, meaning that neither
precalculated paths, nor predefined reference points between the current position
and the destination are used.

AR Visualization
The calculated path is visualized on an AR capable mobile device like a smartphone,
tablet or see-through HMD. The limited FOV of a mobile device is a challenge for
visualizing the path. Proper visualization of the path is necessary for an easy to
use navigation experience for the user.

Smooth path
The calculated path for an AR setting must have smooth motions with clearance to
an obstacle. Smooth motion means that a person is able to follow the path in an
intuitive way. If a straight hallway represents the indoor environment, the algorithm
has to calculate a straight line through the hallway, not a staircase-shaped path.

Real time performance
Real time performance in the sense of this thesis is defined as a person has to
be able to traverse the path without visible delays during the visualization of the
path. When the user changes the view direction, the path has to be updated
and visualized without any visible delay. It is also important that the user is
not confused with too many path updates. Very frequent path updates result in
jumping paths which confuse the user. A middle ground on the amount of updates
for the final path is requested.

These properties are considered in the design for every stage of the FOV assisted path
planning algorithm shown in Figure 3.5. At first, the 3D model of the indoor environment
is applied to generate a representation of the walkable areas of the indoor environment.
The data structure representing these walkable areas is called a navigation mesh. The
navigation mesh represents the foundation for path planning and holds information
about the clearance to static obstacles and walls. An overview on navigation meshes
is introduced later in this chapter (Section 3.4.2). The Recast library by Mononen [32]
generates the navigation mesh for the FOV assisted path planning algorithm. The Recast
library is presented in Section 3.4.1 and an in depth introduction of the navigation mesh
generation process is provided in the implementation chapter(Section 4.2). The second
step of the path planning algorithm is to calculate the FOV area of the mobile device.
The FOV area represents the part of the indoor environment displayed on the display of
the AR visualization device. The FOV area is represented with a separate navigation
mesh. The generation of the FOV area hence the FOV navigation mesh is described in
Section 4.3.3. Dynamical obstacles are only considered while inside the FOV of the user
and thus are only part of the FOV navigation mesh. The FOV navigation mesh is altered
to include dynamic obstacles. The last step is the calculation of the FOV assisted path
based on the walkable areas of the indoor environment and the FOV area. The FOV
assisted path consists of a path inside and outside the FOV area. The generation of the

22

3.4. FOV Assisted Path Planning Library

final path is composed in several stages with special cases for certain conditions. The
final path is smoothed to provide an intuitive and comprehensible path for the user. The
unique stages to compose the FOV assisted path are presented in Section 3.4.3 and the
implementation details are described in the implementation chapter(Section 4.3).

Figure 3.5: Concept stages of FOV assisted path planning algorithm

3.4.1 Recast Library

The Recast Library is a toolset for navigation mesh generation and is used to generate
the navigation mesh for this thesis. Recast also includes a toolset for path planning
and crowd simulation [32]. These two core features are split up into two packages: The
Recast package handles the navigation mesh construction and the Detour package is
responsible for path planning and crowd simulation. Detour is a standalone package and
is able to process different kinds of navigation meshes, although it is optimized to fit
the Recast data. The library is open source and licensed under ZLib license [32]. Key
features of the library are [32]:

• Automatic: Recast is able to construct the navigation mesh from the 3D model
of an environment without any user interaction. This process will be discussed in
Section 4.2.

• Solo and tiled navigation mesh: Navigation meshes are computed in one big
navigation mesh (solo) or can be split up in several smaller navigation meshes
(tiled) to allow changes and recreation of smaller parts of the navigation mesh.

• Multi-layer navigation mesh: Multistory buildings are represented in one connected
navigation mesh

• Temporary Obstacles can be added and deleted from tiled navigation meshes.

• Path planning: The library provides an implementation of A* shortest path algo-
rithm

• Off-Mesh Connections: Create connections between physically not adjacent areas

• Crowd Simulation: Create multiple agents with independent path finding and
collision avoidance

23

3. System Design

The implemented FOV assisted path planning algorithm extends the existing Recast
Library. The algorithm at hand uses the navigation mesh generation pipeline and the
shortest path implementation of Recast. These core methods are expanded to include
the FOV information in the final path.

3.4.2 Navigation Meshes

The navigation mesh data structure is the basis for Recast path planning hence for the FOV
assisted path planning algorithm. The 3D model represents the entire indoor environment
hence the floor, walls, ceilings and other objects within the indoor environment. Usually
not all the objects of the 3D model are necessary for the path planning algorithm. A
path planning algorithm is only processing the areas of the indoor environment the user
is able to walk on. Using only walkable areas of the 3D model saves time and memory
for the path planning algorithm. Once the walkable surface is extracted, a representation
of the area is required. The most basic representation of walkable space is to divide the
environment into a grid of squares(Figure 3.6a). Large environments result in a high
amount of squares resulting in high memory usage and longer path calculation times.
These drawbacks make a grid based representation of large indoor environments less
suitable for mobile devices. A data structure called navigation mesh [41] solves these
disadvantages and represents the indoor environment. A navigation mesh is defined with
the following attributes:

• A navigation mesh represents the walkable surface of a 2D or 3D environment. A
walkable surface is defined as all areas of the environment traversable for the user.

• The walkable surface is described as a set of connected polygons.

• In addition to the representation of the walkable surface a graph with adjacency
information of neighboring polygons is generated.

Figure 3.6 shows a square grid based representation and a navigation mesh based
representation of the 3D model of an indoor environment. The amount of squares in
Figure 3.6a is much higher than the amount of blue polygons in Figure 3.6b. The sum of
all blue polygons represents the walkable surface of the indoor environment.

In their comparative study of navigation meshes van Toll et. al. classify two different
types of navigation meshes named exact methods and voxel-based methods [49]. Exact
methods assume that the 3D model of a multistory building is split into multiple exact
defined layers before the construction of the navigation mesh. Van Toll et. al. describe
exact methods as more accurate than voxel-based methods, whereas voxel-based algo-
rithms represent multistory buildings in a single navigation mesh [49].
The Recast library used for this thesis belongs to the category of voxel-based methods.
Voxel-based methods represent the 3D model of the indoor environment in a 3D grid
of voxels. After the voxelization of the 3D model, all voxels belonging to the walkable

24

3.4. FOV Assisted Path Planning Library

(a) 3D model with a square based grid represen-
ation of the indoor environment

(b) 3D model with a navigation mesh representa-
tion of the indoor environment

Figure 3.6: Comparison of the representation of walkable space of the 3D model of an
indoor environment

surface of the indoor environment are flagged for further processing. At the end of
the navigation mesh generation process the walkable surface of the indoor environment
is represented with a set of convex polygons. For a more detailed description of the
navigation mesh generation process the reader is referred to Section 4.2.

3.4.3 FOV Assisted Path Planning Algorithm Stages

The implemented path planning algorithm consists of two different navigation meshes.
The first navigation mesh represents the walkable surfaces of the entire 3D model of the
indoor environment. The second navigation mesh represents the mobile device’s FOV.
Just as there are two navigation meshes, there are also two different paths, a path inside
and outside the FOV area. The narrow FOV of state-of-the-art AR visualization devices
is the main reason to retain the path inside the FOV of the AR visualization device. A
path has to be visible on the display of the mobile device at all times. Thus the user is
able to follow the path constantly, instead of searching for the path before following it.
This means the path has to adapt to the view direction of the mobile device resulting
in different path planning scenarios. Figure 3.7 visualizes three different scenarios of
FOV assisted paths. The red line visualizes the shortest path calculated with the Recast
Library. The shortest path represents a fixed path without accounting for the view
direction of the mobile device. When a user does not point the AR visualization device
towards the direction of the shortest path, no path is visualized on the display. The
green and blue arrows are outlines of possible FOV assisted paths that keep the path
inside the FOV of the mobile device.

25

3. System Design

Figure 3.7a emulates a simple scenario, where the user’s view direction is similar to the
direction of the shortest path but the shortest path is outside the FOV of the AR device.
The path outline follows the FOV and then diverts back to the shortest path. The user
should be able to follow the path towards the current view direction, but should also
have an indication where the destination is located. Figure 3.7b illustrates a scenario,
where the user’s view direction is in the opposing direction compared to the direction of
the shortest path. One solution would be to visualize a loop for the user that indicates
a continuous traversable path towards the view direction (green arrow in Figure 3.7b).
Another solution is to calculate a path starting in the middle of the FOV navigation
mesh area, heading towards the destination via the user’s current position (blue arrow
in Figure 3.7b). Figure 3.7c visualizes a scenario simulating the user’s view direction
heading towards a different direction than the shortest path. The shortest path directs
the user towards the right side of the hole in the 3D model. Following the view direction
could guide the user towards the left side around the hole (green arrow in Figure 3.7c).
This might lead to unwanted detours for the user. The blue arrow in Figure 3.7c visualizes
a solution similar to the blue arrow in Figure 3.7b. The path starts in the middle of
the FOV navigation mesh area and heading towards the shortest path via the user’s
current position. These are only three scenarios indicating the challenges of adding FOV
information to the path planning algorithm.
The amount of different scenarios result in a final path concatenated of sub paths and
several special cases included in the generation of the FOV assisted path. Figure 3.8
visualizes the individual stages including all special cases. A detailed description on the
implementation of the algorithm is presented in Section 4.3.
The main factor for the different stages and special cases of the algorithm is the view
direction of the mobile device. The yellow boxes in Figure 3.8 visualize the standard
path calculation process. The standard scenario represents the user looking towards a
walkable surface of the indoor environment and towards the shortest direction to the
destination (comparable to Figure 3.7a). In this case the path starts at the user’s position
heads towards and through the FOV of the user and then heads towards the destination
once it exits the FOV of the user. The blue boxes in Figure 3.8 describe special cases,
for which the standard path calculation process does not result in desired paths. The
FOV assisted path planning algorithm distinguishes the following special cases:

• No walkable surface inside FOV: The user looks towards a wall or obstacle.
There are no walkable surfaces inside the user’s FOV. The path starts in the middle
of the unwalkable FOV area, heads towards the nearest walkable surface of the
indoor environment with regard to the user’s position and then heads towards the
destination. Implementation details for this case are introduced in Section 4.3.7.

• Destination inside FOV: The destination is located inside the user’s FOV. The
path is calculated from the user’s current position towards the FOV area and then
heading towards the destination inside the FOV area.

• Destination between user and FOV: The destination is located between the

26

3.4. FOV Assisted Path Planning Library

user’s current position and the FOV area of the user. This special case often occurs
when the user approaches the destination and looks past the destination. In this
special case the start of the path is located in the middle of the FOV area and
heads towards the destination.

• User looks away from shortest path direction: The ideal path direction is
defined as the direction towards the shortest path to the destination. If the angle
between the user’s view direction and the ideal path direction exceeds a predefined
threshold, the start point of the algorithm changes from the user’s current position
to the middle of the FOV area. Thus the path starts in the middle of the FOV
area heading towards the user until it exits the FOV area and then heads towards
the destination. The blue arrow in Figure 3.7b drafts the idea of this special case.
Implementation details are presented in Section 4.3.5.

The standard path calculation process as well as the special cases always calculate paths
with clearance to walls and obstacles. If the algorithm concept presented in this section
fails to calculate a path altogether, fallback paths are calculated to provide a valid path
to the user at all times. Implementation details for the fallback paths and the presented
algorithm concept are described in Section 4.3.

27

3. System Design

(a) Outline of a simple scenario for a FOV assisted path

(b) Different outlines for a 180◦ direction change

(c) Different outlines to the same end point

Figure 3.7: Three scenarios of FOV assisted paths

28

3.4. FOV Assisted Path Planning Library

Start

Calculate FOV

Walkable surface inside

FOV?

Calculate wall path

Destination inside FOV?

Calculate path from FOV exit

to destination

Destination between

user and FOV

Users view direction

towards ideal path

direction?

Calculate path from user to

FOV and inside FOV

Smooth path

End

No walkable surface inside FOV

Walkable surface inside FOV

Calculate path

from user to

destination inside

FOV

Destination inside FOV

Destination outside FOV

Destination not between user and FOV

User looks towards ideal path direction

Calculate path from

inside FOV to

destination

Destination between user and FOV

Calculate path from

inside FOV towards

user

User looks away from

 ideal path direction

Figure 3.8: Path calculation stages (yellow) including special cases (blue) in the FOV
assisted path planning algorithm

29

CHAPTER 4
Implementation

This chapter presents the implementation of the FOV assisted path planning library.
The library is compiled to a Dynamic Link Library (DLL). This DLL is included in
the Unity3D project to access the Recast library and the implemented path planning
algorithm. The DLL is presented at the beginning of this chapter(Section 4.1). The
generation of the Recast navigation mesh is discussed in Section 4.2. Next, a detailed
description of the implemented FOV assisted path planning algorithm is presented
(Section 4.3). The implementation of a path recalculation logic and details on the path
visualization in Unity3D conclude this chapter (Section 4.4).

Figure 4.1: Three main modules of the implemented AR navigation system.

31

4. Implementation

4.1 DLL
The FOV assisted path planning library is compiled to a DLL. The DLL facilitates
access to generate the Recast navigation mesh and calculate the FOV assisted path. The
navigation mesh generation is separated from the path planning. The navigation mesh is
only generated once at the beginning of the algorithm. This speeds up the runtime of
the algorithm since the generation of the navigation mesh in the library is slower than
the path calculation. For the 3D model applied in the user study it can take several
seconds or even up to a minute depending on the parameters used in the navigation
mesh generation process. For a detailed analysis on the runtime the reader is referred to
Section 5.1.
The DLL provides a method to calculate a navigation mesh for the 3D model of the
indoor environment. The method generates the navigation mesh for the path planning
algorithm inside the library and returns the navigation mesh for visualization in Unity3D.
Recast requires the geometry of the 3D model of the indoor environment and a set of
Recast specific parameters to start the navigation mesh generation process. The geometry
consists of all vertices and triangles representing the 3D model. The Recast specific
parameters are parameters needed in separate stages of the navigation mesh generation
process which is explained in detail in Section 4.2:

• cell_size: width of a voxel for the rasterization stage (Section 4.2.1)

• cell_height: height of a voxel for the rasterization stage (Section 4.2.1)

• agent_height: height of the user (Section 4.2.1)

• agent_radius: radius of the user (Section 4.2.2)

• max_climb: the maximum step height the user is able to step up or down (Section 4.2.1)

• max_slope: the maximum slope of a surface the user is able to traverse (Section 4.2.1)

• min_region_size: size of a region before it gets excluded from the navigation mesh process
(Section 4.2.2)

• merged_region_size: size of a region qualifying for merging with another region (Section 4.2.2)

• max_edge_length: length of an edge which is split up to generate shorter navigation mesh edges
(Section 4.2.3)

• max_edge_error: parameter for the Douglas-Ramer-Peucker algorithm (Section 4.2.3)

• verts_per_poly: maximum amount of vertices per navigation mesh polygon (Section 4.2.4)

• sample_distance: sample distance to generate PolyMeshDetail triangles (Section 4.2.4)

• max_sample_error: offset between PolyMesh vertex and 3D model for PolyMeshDetail generation
(Section 4.2.4)

• max_edge_error_fov: parameter for the Douglas-Ramer-Peucker algorithm (Section 4.3.3)

• tile_size_fov: tile size for the FOV navigation mesh (Section 4.3.3)

32

4.1. DLL

• step_size_smoothing: distance between backbone path points for path smoothing (Section 4.3.6)

• scale: scale between source geometry scale and recast library scale

The DLL also provides a method for the FOV assisted path planning algorithm. The
method requires user specific parameters and optional dynamic obstacles information
to calculate the FOV assisted path. The position and radius of dynamic obstacles are
provided to the library, if dynamic obstacles are applied. The user specific parameters
describe the position and size of the user, the destination and FOV related parameters of
the mobile device:

• start point for the path calculation

• position from where the FOV is calculated

• view direction to calculate the FOV

• destination for the path calculation

• horizontal FOV of the mobile device

• vertical FOV of the mobile device

• nearViewPlane for the FOV

• farViewPlane for the FOV

• height of the user

• radius of the user

• maximum movement velocity of the user (see Section 4.3.6)

• Perimeter around destination to stop path planning (see Section 4.3.6)

• angle for path rebuild (see Section 4.3.5)

• enable wall path algorithm (see Section 4.3.7)

The path planning library returns three different paths. The specific paths and potential
fallback paths are presented at the end of this chapter (Section 4.4). Fallback paths
are returned when the generation of the FOV assisted path fails. In addition to the
paths a status code and FOV information for visualization on the mobile device are
returned. The status code provides information about the success of the path calculation
or predefined error codes for error states to the Unity3D project.

33

4. Implementation

4.2 Recast Navigation Mesh Generation Process

This section focuses on the generation of the navigation mesh inside the Recast library.
The Recast library splits the navigation mesh generation process in several stages. An
overview on every stage is presented to grasp the navigation mesh generation process.
Moreover, the result of the navigation mesh process and thus the path planning algorithm
relies to a great degree on parameters presented in this section.
Figure 4.2 shows the process from the rasterization of the 3D model of the indoor
environment to the finished navigation mesh. The Recast navigation mesh process starts
with a rasterization stage. The 3D model is rasterized into a 3D voxel grid. This 3D
voxel grid is called a voxel heightfield. The next stage is a filter stage, where voxels
are flagged as belonging to walkable or unwalkable surfaces of the indoor environment.
Walkable surfaces are all areas of the 3D model, the user is able to traverse. A navigation
mesh consists of a set of connected convex polygons. To form these polygons neighboring
walkable voxels are merged to regions. The borders of these regions are simplified to
speed up the final navigation mesh process. The following sections present the navigation
mesh generation process in more detail.

4.2.1 3D Model Rasterization

The rasterization stage of the navigation mesh generation process rasterizes the 3D model
of the indoor environment into a 3D voxel grid called the voxel heightfield. The amount of
voxels in the heightfield is defined with the width and height of a single voxel (parameter
cell_size and cell_height in Section 4.1). Lower width and height of a voxel thus a higher
amount of voxels in the voxel heightfield result in a better match between the walkable
areas of the navigation mesh and the real indoor environment. The drawback of a denser
voxel heightfield are longer navigation mesh generation times and higher memory cost.
Figure 4.3a visualizes the 3D model and the corresponding 3D voxel heightfield of the
3D model in Figure 4.3b.
After the initial rasterization the single voxels in the voxel heightfield are merged to

so-called spans. A span is formed from connected voxels in a column of the 3D voxel grid.
These spans are used to split the 3D heightfield into two categories, the walkable and
unwalkable spans. A navigation mesh represents the walkable surfaces of the 3D model,
therefore, only walkable spans are used for further processing. The walkable surface of
a span is represented by the top voxel of the span. The spans are divided using the
following 3 characteristics:

• The distance between two unconnected spans in one column is bigger than the
agents height(parameter agent_height in Section 4.1). (e.g. The user is able to
stand on the floor (first span) without hitting the ceiling(second span)

• The slope of a ramp in the 3D model represented by two neighboring spans is
smaller than a predefined value(parameter max_slope in Section 4.1). (e.g. A user

34

4.2. Recast Navigation Mesh Generation Process

Rasterize 3D
modell

Generate regions

Generate
Contours

Generate
navigation mesh

Build navigation mesh

Figure 4.2: Activity diagram for the generation of a navigation mesh

is able to traverse a ramp from one span to the next)

• The height difference between two neighboring spans is smaller than a predefined
value(parameter max_climb in Section 4.1). (e.g. An agent is able to traverse the
ledge from one span to the next)

Figure 4.4a visualizes the 3D model and the corresponding walkable (blue) or unwalkable
(gray) surfaces of the source geometry in Figure 4.4b. The area below the ramp close
to the start of the ramp is gray because the height difference between the floor and the
ramp is smaller than the agent_height. once the height difference is bigger than the
defined agent_height the voxel color turns blue. In this particular scene the slope of the
ramp is higher than the max_slope value thus the ramp is unwalkable. The gray voxels
at the edge of the platform mark ledges and as a result the border spans are marked as
unwalkable.

35

4. Implementation

(a) 3D model of the indoor environment (b) Voxel heightfield of the corresponding 3D
model

Figure 4.3: Comparison between the 3D model of an indoor environment and its voxel
heightfield.

(a) 3D model of the indoor environment. (b) Voxel heightfield of the 3D model with walk-
able (blue) and unwalkable (gray) spans.

Figure 4.4: Walkable and unwalkable spans of 3D model.

This stage of the algorithm rasterizes the 3D model of the indoor environment into a
voxel heightfield. The voxel heightfield is then split up into walkable and unwalkable
spans and the walkable spans are used for further processing.

4.2.2 Region Generation

A recast navigation mesh is represented as a set of convex polygons. In this stage walkable
spans are formed to walkable regions which are ultimately formed to convex polygons
in later stages. At the beginning of the region generation stage separation to walls and
other obstacles is assured for further processing. Every Recast navigation mesh provides

36

4.2. Recast Navigation Mesh Generation Process

at least the user’s radius(parameter agent_radius in Section 4.1) distance to the closest
wall or other obstacles. As the FOV path is always inside the navigation mesh the user
will never hit a wall or an obstacle traversing the FOV assisted path. All walkable spans
which are closer than the user’s radius to a wall or obstacle are marked as unwalkable.
The Recast library offers three different methods to generate regions. The implemented
algorithm uses watershed partitioning, furthermore, Recast includes monotone partition-
ing and layer partitioning which are not discussed as part of this thesis. The watershed
transform [11] is a method used for image segmentation [4, 22]. The method considers
image information as a heightfield. The basins of the heightfield are center points of
a region and are used as sources for a flooding process to fill the basins. During the
flooding process two or more floods from different regions will merge. These border lines
are defined as the region borders. The implemented watershed partitioning starts with
calculating a distance field. The distance field represents the distance of a span to the
closest obstacle using Chamfer distance transform [36, 5]. Chamfer distance transform
is a two pass distance transform algorithm to approximate Euclidean distance. The
resulting distance field is blurred to make it less prone to noise and generate less regions.
The walkable span with the maximum distance of the entire distance field is the first
basin of the watershed algorithm. The flooding process iterates through the distance
values and assigns every walkable span to an existing connecting region. If the span has
no connecting region a new region is generated.
After the flooding process is finished additional filtering is applied. Regions below
a minimum size not connected to other regions are marked as unwalkable(parameter
min_region_size in Section 4.1). Regions below a minimum size connected to other
regions are merged with these regions(parameter merged_region_size in Section 4.1).
Figure 4.5 shows the distance field of a 3D model and its corresponding regions. White
areas in Figure 4.5a represent new region points for the watershed algorithm. These new
region points are highlighted with red circles in Figure 4.5.

In this stage of the algorithm walkable spans are merged to walkable regions. These
regions represent a basic partition of the walkable surface and are roughly correlated to
the convex regions of the final navigation mesh.

4.2.3 Contour Generation

The contour generation stage detects border contours between walkable regions and
simplifies those border contours to speed up the following navigation mesh generation
stage. The borders of walkable regions consist of too many vertices (see staircase effect
in Figure 4.6a), therefore, unnecessary vertices along region borders are excluded and
simplified borders are generated. To simplify the contours the Ramer-Douglas-Peucker
algorithm [38, 13] is used. The contour simplification starts with selecting the start
and endpoints of contour edges between regions. A selection of mandatory points is
highlighted with yellow circles in Figure 4.6. The simplification algorithm connects the
mandatory vertices with a virtual line. All vertices along the contour edge are checked

37

4. Implementation

(a) Distance field of the 3D model. (b) Walkable regions after watershed partitioning.

Figure 4.5: Distance field of a 3D model of an indoor environment and the corresponding
walkable regions.

against the virtual edge. If the distance between a border vertex and the virtual line
exceeds a predefined value(parameter max_edge_error in Section 4.1), the vertex is
added to the virtual line. This continues until no vertex exceeds the deviation and the
virtual line is the resulting simplified contour. A walkable region with simplified contours
is called a simplified polygon.
In an additional step long thin contours are split up in shorter contour lines. The
threshold for contour splitting is a predefined value as well(parameter max_edge_length
in Section 4.1). The Recast Library only applies the contour splitting to contours at
navigation mesh borders.

Figure 4.6 shows the contours of regions before and after simplification. Figure 4.6a
highlights mandatory vertices used in the Ramer-Douglas-Peucker algorithm with yellow
circles. The simplified contours are shown in Figure 4.6b. Every simplified polygon is
shown in a different color. Edges that are shared between different regions have a higher
color saturation.

This stage simplifies the borders of walkable regions to speed up the now following
navigation mesh process.

4.2.4 Navigation Mesh Generation

This is the final stage of the navigation mesh generation process. Recast navigation
meshes are represented in form of connected convex polygons and this information is
stored in two data structures called PolyMesh and PolyMeshDetail. The PolyMesh data
structure stores the convex polygons and neighborhood information to adjacent convex
polygons. The PolyMeshDetail data structure contains triangle sub-meshes for every
convex polygon in a PolyMesh and stores additional height information. Figure 4.7 shows

38

4.2. Recast Navigation Mesh Generation Process

(a) Region contours before simplification process. (b) Region contour after simplification process.

Figure 4.6: Region contours before and after the simplification algorithm

a visualization of both data structures.
The PolyMesh generation has two phases. At first, the simple polygons (convex and
concave polygons) from the last stage are triangulated. The second phase takes triangles
and polygons of already merged triangles and merges them to convex polygons using
three conditions:

• Triangles or polygons of merged triangles must share an edge and the merging
always starts with the longest shared edge.

• The resulting polygon must still be convex.

• The resulting polygon has a maximum amount of vertices(parameter verts_per_poly
in Section 4.1).

Figure 4.7a shows a visualization of the PolyMesh information. The data structure stores
all the vertices (black points) of the convex polygons, all the edges (thick and thin blue
lines) and the neighborhood information for the convex polygons.
The triangulation for the PolyMesh is only done in the xz-plane, thus the PolyMesh
might have a large offset from the original 3D model. Figure 4.7a visualizes the offset.
On the lower end of the ramp the PolyMesh has a height offset from the 3D model and
on the upper end of the ramp the PolyMesh cuts through the 3D model. To solve this
offset problems, the PolyMeshDetail data structure is introduced.
The PolyMeshDetail subdivides the convex polygons of the PolyMesh to represent
height offsets between the 3D model and the navigation mesh more accurate. The
PolyMeshDetail generation starts with sampling the outer edges (thick blue lines in
Figure 4.7a) of the PolyMesh (parameter sample_distance in Section 4.1) and adding
vertices, where the height difference between sample point and the corresponding point
in the 3D model exceeds a threshold (parameter max_sample_error in Section 4.1).

39

4. Implementation

A triangulation algorithm is used to represent the 3D model with a set of triangles.
The PolyMeshDetail data structure stores references to the vertices already used in the
PolyMesh and adds the new generated vertices and triangles. The result of this process is
shown in Figure 4.7b. Triangles with the same color belong to the corresponding convex
polygon in a PolyMesh. Outer vertices (green circles) and inner vertices (red circles) are
added at both sides of the ramp, thus the PolyMeshDetail data structure adds height
information representing the 3D model more accurate.

(a) Visualization of convex polygons stored in the
PolyMesh data structure

(b) Visualization of triangle sub-meshes stored in
the PolyMeshDetail data structure.

Figure 4.7: Comparison of the PolyMesh and PolyMeshDetail data structure.

The navigation mesh generation process described in this section, generates one large
navigation mesh representing the 3D model. The Recast Library also features tiled
navigation meshes which represent the 3D model as tiled squares of sub navigation
meshes. For the implemented algorithm the FOV navigation mesh is generated as a tiled
navigation mesh as only tiled navigation meshes support dynamic obstacles.
This is the end of the navigation mesh generation process. The navigation mesh informa-
tion is stored in the PolyMesh and PolyMeshDetail data structures. The Detour package
of the library combines the PolyMesh and PolyMeshDetail information in one navigation
mesh data structure called NavMesh. This NavMesh data structure is used in Section 4.3
for the FOV assisted path planning algorithm.

40

4.3. Implementation of the FOV Assisted Path Planning Algorithm

4.3 Implementation of the FOV Assisted Path Planning
Algorithm

At this point a navigation mesh representing all the walkable areas of the indoor environ-
ment has already been generated. Furthermore, the current position and view direction
of the mobile device and the destination are provided to the library. The position and
size of dynamic obstacles are optional input values. For the remainder of this section the
main contribution of this thesis, the implemented FOV assisted path planning algorithm
is presented in detail. The aim of the work in hand is to calculate a path with clearance
to walls and static obstacles, avoid dynamic obstacles and most important alter the path
according to the view direction of the mobile device. The final path is calculated over
several stages each introduced in detail as part of this section. Figure 4.8 shows the
individual stages of the implemented path planning algorithm. The algorithm generates
a path corridor first. The path corridor consists of all polygons along the shortest path
connecting the user’s current position to the destination. A Recast method is used to
calculate the shortest path and the path corridor. At this point the Recast functionality
is expanded by the author of this thesis to calculate the FOV assisted path. At first, a
path improving separation to walls and static obstacles is calculated inside the corridor.
This path is referred to as middle path for the rest of this thesis. The FOV assisted
path consists of two concatenated paths. The first sub path represents the middle path
through the FOV area of the user. The second sub path describes the middle path outside
the FOV area. The implemented algorithm calculates the path inside the FOV area first.
The position and view direction information of the mobile device is used to calculate the
FOV area of the mobile device. A navigation mesh for the FOV area is generated to
calculate the path inside the FOV area. The FOV navigation mesh also includes dynamic
obstacles at this stage of the algorithm. After the calculation of the path inside the FOV
is finished, a middle path towards the destination is created. This middle path represents
the path outside the FOV area. According to the logic presented in Figure 3.8 the FOV
assisted path is concatenated from the FOV path and the outside path. The final stage
of the FOV assisted path planning algorithm is a path smoothing stage. In this stage
the FOV assisted path is smoothed to provide a more intuitive looking path to the user.
Figure 4.8 visualizes the standard pipeline to calculate the FOV assisted path.

4.3.1 Path Corridor and Shortest Path

The first stage of the FOV assisted path planning algorithm is the calculation of the path
corridor from the user’s current position to the destination. A path corridor consists of a
sequence of navigation mesh polygons which represent the shortest polygon path from
the current position to the destination. Only the polygons included in the path corridor
are applied for further path planning. The path corridor represents the foundation for all
subsequent path planning stages.
Recast uses an optimized A* algorithm implementation [10] to construct the path corridor.
The A* algorithm is a graph searching algorithm introduced by Hart et. al. [20]. The

41

4. Implementation

Calculate path
corridor and shortest

path

Calculate middle
path

Generate FOV
navmesh with

dynamic obstacles

Calculate FOV path

FOV assisted path planning algorithm

Smooth path

Concatenate final
path

Figure 4.8: Activity diagram for the implemented path planning algorithm

algorithm combines known costs from a graph with estimated costs from a predefined
heuristic to find the shortest path from a start node to a goal node. The cost function
used for every node is:

f(x) = g(x) + h(x)

where g(x) are the costs from the start node to the current node and h(x) represents the
estimated value from the current node to the goal node. In Recast the graph for the A*
algorithm consists of the edge midpoints of border edges (called portals for the remainder
of this paper) between two neighboring polygons. The edge midpoints of portals represent
the nodes of the graph. Each polygon of the navigation mesh also provides information

42

4.3. Implementation of the FOV Assisted Path Planning Algorithm

to neighboring convex polygons in the navigation mesh (edges connecting the nodes).
The Recast search graph is visualized in Figure 4.9. The cost function is based on the
euclidean distance between the nodes. The optimized A* algorithm adds pre-allocated
node lists for faster memory access and a priority queue to speed up the A* algorithm [10].
Figure 4.9 visualizes a path corridor. The dark yellow shaded polygons (including the
polygons with the current position and the destination) visualize the path corridor. The
brighter yellow polygons display polygons processed by the A* algorithm but not added
to the path corridor. The blue polygons represent parts of the navigation mesh not
used for path corridor calculation at all. The yellow graph shows the graph used in the
A* algorithm. The nodes of the search graph visualize the edge midpoints of portals
between two neighboring polygons. The red path displays the shortest path inside the
path corridor from the current position to the destination.

Figure 4.9: Path corridor with A* search graph

The funnel algorithm [7] is implemented in the Recast Library to calculate the shortest
path. Figure 4.10 visualizes the steps of the funnel algorithm to generate a new vertex
along the shortest path. The algorithm starts with creating a funnel (orange and blue
lines in Figure 4.10) between the start point and the endpoints of the nearest portal (red
dashed line in Figure 4.10). Portals are border edges between two convex polygons of the
navigation mesh. The algorithm then iterates through all portals, creating new funnel
edges between the start point and the portal end points and checks the new funnel edges
against the existing funnel:

• Narrow the right/left side of funnel if the corresponding right/left testing edge is

43

4. Implementation

inside the funnel (step 2,3 and 4 in Figure 4.10).

• Skip edge if the right/left testing edge is outside the corresponding right/left side
of funnel (step 5 in Figure 4.10)

• Add the left funnel end point as path vertex if the right testing edge is on the
left side of the funnel and vice versa with the right funnel end point (step 6 in
Figure 4.10).

The new path vertex (image B in Figure 4.10) is the new start point and the algorithm
continues until the end point is reached.

Figure 4.10: Steps of the Funnel Algorithm. Left image shows phases to first path vertex.
Right image visualizes the first path vertex

In this section the path corridor and the shortest path representing the basis for the
FOV assisted path planning algorithm are introduced. The path corridor is a chain of
polygons which is the foundation for path planning algorithms like the shortest path and,
moreover, for the FOV assisted path. The shortest path is one of the three return paths
provided by the DLL to the Unity3D project. As long as a connection between the user
and the destination exists, a shortest path is returned by the DLL. This path represents
a viable fallback path if the calculation of the FOV assisted path fails.

4.3.2 Middle Path

Based on the path corridor a path with clearance to obstacles and static walls, referred to
as middle path, is presented in this section. The middle path is calculated by traversing
the path corridor and adding a vertex to the middle path on the edge midpoints of every
portal of the path corridor. The blue path in Figure 4.11 shows the middle path and the
blue points are the corresponding edge midpoints.

The advantage of this middle path calculation is that it is fast (see Section 5.1) and the
middle path is in the middle of rooms and hallways with enough separation to walls and

44

4.3. Implementation of the FOV Assisted Path Planning Algorithm

Figure 4.11: Middle path between current position and destination

obstacles. The disadvantage is a high dependence on the calculated navigation mesh
and hence the path corridor. Figure 4.12 shows two scenarios in which the implemented
middle path calculation shows its limitations. Figure 4.12a displays a detour of the
middle path. Due to the fact that the middle path calculation adds a vertex on every
edge midpoint of the path corridor, unfortunate path corridor portals may lead to detours.
The smoothing algorithm from Section 4.3.6 solves the detour limitations of the middle
path at the end of the algorithm, so that no countermeasures are introduced at this point.
Figure 4.12b visualizes a middle path close to the border of the navigation mesh. As the
path is still inside the navigation mesh, the path remains valid and has enough clearance
for the user to follow the path without colliding with the wall. The navigation mesh
is always at least the user’s radius away from walls and obstacles. Hence as long as a
path is inside the navigation mesh, the path is valid. Although the path remains valid,
the unfortunate path corridor leads to minimum clearance. A potential workaround for
unfortunate middle paths is to change the parameters (see Section 4.1) applied in the
navigation mesh generation process.

The middle path adds clearance to walls and static obstacles which is a required feature
for the FOV assisted path planning algorithm. The middle path is the second path
provided by the DLL to the Unity3D project.

45

4. Implementation

(a) Detour of middle path due to unfortunate
navigation mesh

(b) Middle path with little clearance to navigation
mesh boundary

Figure 4.12: Two scenarios where the middle path calculation shows its limitations

4.3.3 FOV Navigation Mesh with Dynamic Obstacles

At this point of algorithm the novel approach of the work at hand is added to the path
calculation process. The path is altered to include the view direction of the mobile device.
To implement the viewing direction an additional navigation mesh is generated. Whereas
the main navigation mesh represents all walkable areas of the indoor environment, the
FOV navigation mesh is only generated for the FOV of the mobile device. The global
navigation mesh is only generated at the beginning of the FOV assisted path planning
algorithm. The FOV navigation mesh is generated for each path calculation invocation.
The 3D model of the indoor environment is rendered into a depth texture to generate
the FOV navigation mesh. The render pass uses the position, view direction and FOV
information of the mobile device to calculate depth information representing the mobile
device’s FOV. A navigation mesh only represents the walkable surfaces of the 3D model.
The pixels from the depth texture are divided into floor pixels used for navigation mesh
generation and other pixels no longer processed. The remaining floor pixels are filtered so
that only the contour pixels of the depth texture remain (see blue pixels in Figure 4.14).
These contour pixels are reduced again until only corner pixels of the contour remain.
The remaining pixels are provided to calculate the FOV navigation mesh (Figure 4.14).
Figure 4.13 shows a visualization of the depth texture pixels. White pixels are flagged as
floor pixels and these floor pixels are applied for further processing. Red pixels on the
other hand represent walls or other obstacles and are discarded. The border pixels of
the depth textures are always flagged as red pixels. This states a requirement for the
Moore-Neighbor tracing algorithm [35]. The Moore-Neighbor tracing algorithm and the
Douglas-Peucker algorithm [38, 13] are used to reduce the floor pixels and speed up the
FOV navigation mesh generation process.

The Moore-Neighbor tracing algorithm is used to generate the outer contour of the floor

46

4.3. Implementation of the FOV Assisted Path Planning Algorithm

Figure 4.13: Projected depth texture to visualize FOV of user

pixels. The algorithm is based on the Moore neighborhood, which represents the 8 pixels
sharing an edge or vertex with a middle pixel. At first, a start pixel (white floor pixel)
for the contour is searched and added to the final contour. Then the algorithm checks
one Moore-neighborhood pixel after the other in a clockwise rotation. The clockwise
rotation stops when the first white floor pixel in the Moore-neighborhood of the starting
pixel is detected. That pixel is added to the final contour and represents the next start
pixel. This procedure is repeated until the initial start pixel is reached again. The result
of the Moore-Neighborhood algorithm are all contour pixels of the floor pixels (see blue
pixels in Figure 4.14).
The contour pixels are then reduced again in the contour generation described in Sec-
tion 4.2.3 before a FOV navigation mesh is generated(see Section 4.2.4). Figure 4.14
shows the final FOV navigation mesh. The blue pixels are the contour pixels generated
with the Moore-Neighbor tracing algorithm. The generated FOV navigation mesh is the
foundation for the FOV path calculated in Section 4.3.4.

Contrary to the global navigation mesh representing the walkable surfaces of the entire
3D model of the indoor environment, the navigation mesh for the FOV also includes
dynamic obstacles. Dynamic obstacles are obstacles not included in the static 3D model
of the indoor environment. One of the requirements defined in Section 3.4 requires the
FOV assisted path planning algorithm to incorporate dynamic obstacles in the path
planning process. The Recast library only supports circular dynamic obstacles. Hence
the position and radius of a dynamic obstacle are provided to the Recast Library via the
DLL. Recast generates a navigation mesh without the dynamic obstacles in an initial
pass and then adds dynamic obstacles to the navigation mesh. Figure 4.15 shows a
FOV navigation mesh with two dynamic obstacles. The radius of the user is added
to the radius of the dynamic obstacle, thus the algorithm always provides a minimum

47

4. Implementation

Figure 4.14: FOV navigation mesh with contour pixels

required clearance to dynamic obstacles. Generating the global navigation mesh is slow in
comparison to the generation of the FOV navigation mesh. A runtime analysis presented
in Section 5.1 reveals that it takes up to several seconds to generate the global navigation
mesh, whereas the FOV navigation mesh generation only takes up to 100ms. Generating
two independent navigation meshes speeds up the path planning process, as the slow
global navigation mesh remains static and is only generated once, whereas the FOV
navigation mesh is generated continuously. The FOV navigation mesh is generated for
every path calculation anyway, as it changes when the view direction of the mobile device
changes. Thus adding dynamic obstacles to the FOV navigation mesh adds no additional
navigation mesh generations. Furthermore, as the FOV assisted path planning algorithm
only incorporates dynamic obstacles while inside the FOV, only dynamic obstacles inside
the FOV have to be provided to the DLL.

4.3.4 FOV Path

Keeping the path inside the AR visualization device’s FOV is the main incentive of the
FOV path. The path is calculated based on the FOV navigation mesh generated in the
last section. Another incentive for the FOV path is the seamless transition to the path
outside the mobile device’s FOV. A seamless transition provides an intuitive final path
for the user. Three points of interest are calculated inside the FOV navigation mesh.
The entry and exit point for the FOV are calculated to provide the seamless connection
to the middle paths outside the FOV area. The centroid of the FOV navigation mesh

48

4.3. Implementation of the FOV Assisted Path Planning Algorithm

Figure 4.15: FOV navigation mesh with dynamic obstacles

represents a support point for the calculation of the other two points. The entry and
exit point illustrate the start and end point of the path inside the FOV navigation mesh.
Figure 4.16a displays the FOV navigation mesh with the three points of interest (red
circles in Figure 4.16a).
At first, the centroid of the FOV navigation mesh is calculated. The PolyMeshDetail
information calculated in Section 4.2.4 is used to calculate the centroid. The centroid
of the navigation mesh is the sum of all the triangle centroids of the PolyMeshDetail
representation provided by the navigation mesh. The entry point should be centered on
the near side of the FOV to provide an intuitive path. The entry point is the intersection
of the navigation mesh contour with the ray connecting the user’s current position and
the centroid of the navigation mesh (red dashed line in Figure 4.16a).
The calculation of the exit point is more complex. The exit point should provide a
seamless connection between the FOV path and the middle path towards the destination.
The exit point calculation starts with a middle path calculation from the centroid of the
FOV navigation mesh to the destination (blue path in Figure 4.16a). The vertices of this
middle path are then matched against the FOV navigation mesh and the first vertex
outside the FOV navigation mesh is flagged for further processing. The calculation of
the exit point is then separated between two cases:

• Case A: The exit point is the intersection of the navigation mesh contour with
the line between the centroid and the flagged vertex outside the FOV navigation
mesh (green dashed line in Figure 4.16a). Figure 4.16a shows the interest points

49

4. Implementation

(red circles) and the intersections (red, green dashed line) used to calculate them.

• Case B: If the line between the centroid and the flagged outside vertex intersects
a wall or obstacle of the 3D model of the indoor environment (see dashed red line
in Figure 4.16b), the exit point is calculated with a different logic. In this case
the exit point is the intersection of the line connecting the flagged outside point
with the last point inside the FOV navigation mesh and the contour of the FOV
navigation mesh (dashed green line in Figure 4.16b).

(a) FOV navigation mesh with points of interest.
Exit point is calculated with case A

(b) FOV navigation mesh with exit point calcu-
lation for case B

Figure 4.16: FOV navigation mesh with points of interest

For dynamic obstacles an additional special case for the entry and exit point calculation
is implemented. Dynamic obstacles are included in the FOV navigation mesh. The
special case is invoked if the dynamic obstacle is on the border of the navigation mesh
and overlaps with the position of the entry or exit points. Then the respective point
has to be recalculated. Figure 4.17 shows a FOV navigation mesh without the dynamic
obstacle(4.17a) and with a dynamic obstacle at the position of the entry point 4.17b).
In this case the entry point is recalculated.

The entry and exit point is calculated twice to detect this special case. At first, the points
are calculated for the FOV navigation mesh without dynamic obstacles and then again
including dynamic obstacles. If the position of one of the points changed, that entry
or exit point is recalculated. The Euclidean distance from a predefined point to every
vertex of the FOV navigation mesh is calculated. The vertex with the lowest distance
to the predefined point is the new entry or exit point. For the entry point the user’s
current position is the predefined point. For the exit point the first point of the middle
path outside the FOV navigation mesh is the selected point. The vertex with the lowest
distance to the user’s position represents the new entry point. The vertex with the lowest
distance to the point outside the FOV navigation mesh represents the new exit point.
Once the entry and exit points for the FOV navigation mesh are calculated, the middle
path calculation (Section 4.3.2) is invoked to calculate the middle path inside the FOV

50

4.3. Implementation of the FOV Assisted Path Planning Algorithm

(a) FOV navigation mesh without dynamical ob-
stacle

(b) FOV navigation mesh with dynamical obsta-
cle at entry point

Figure 4.17: Navigation meshes with and without dynamical obstacles including respective
points of interest

navigation mesh. Figure 4.18 shows the FOV assisted path (orange path) from the user’s
current position to the destination. The highlighted part of the path represents the FOV
path inside the FOV area presented in this section. The concatenation of the FOV path
with the path outside the FOV area is presented in the next section.

4.3.5 FOV Assisted Path

In this section the FOV assisted path from the user’s current position to the destination
is concatenated. Figure 3.8 shows all the different concatenation scenarios. The standard
concatenation process results in a FOV assisted path consisting of the FOV path and the
path from the exit point of the FOV area to the destination. The standard process is
invoked when the view direction of the mobile device heads towards the same direction
as the shortest path. The orange path in Figure 4.19 represents a visualization of the
standard process of the FOV assisted path. The first part of the path is the FOV path
(inside the green rectangle in Figure 4.19). The second part is the middle path from the
exit point of the FOV to the destination (inside the blue rectangle in Figure 4.19). A
special case for the FOV assisted path is invoked when the path destination is inside the
FOV navigation mesh. In this case no exit point is necessary. A middle path from the
entry point of the FOV area to the destination is calculated immediately.

Figure 3.7b displays the user’s view direction heading towards the opposing direction
than the shortest path hence the path corridor. For this special usecase a separate

51

4. Implementation

Figure 4.18: FOV assisted path (orange) with highlighted FOV path (red shaded)

path concatenation logic was implemented. The special concatenation is triggered once
the angle between the user’s view direction and the shortest path exceeds a predefined
threshold. The threshold is an input value of the DLL and is provided by the user.
Once the angle exceeds the threshold, the starting point for the path calculation changes
from the user’s current position to the centroid of the FOV navigation mesh. The path
calculation is then split up into three parts:

• Middle path from the centroid of the FOV navigation mesh to the entry point
of the FOV navigation mesh. The calculation of the entry point is described in
Section 4.3.4

• Middle path from the entry point to the user’s current position

• Middle path from the user’s current position to the destination

The three sub paths are concatenated to form the FOV assisted path. Figure 4.20 shows
a path calculated with the special concatenation logic (orange path). The gray path is
the smoothed version of FOV assisted path. The smoothing algorithm is presented in
the next section. The final special case of Figure 3.8 called wall path is introduced in
Section 4.3.7.

52

4.3. Implementation of the FOV Assisted Path Planning Algorithm

Figure 4.19: Two sub paths (green rectangle highlights the FOV path, blue rectangle
highlights the finish path) of the FOV assisted path.

4.3.6 Path Smoothing

The final stage of the FOV assisted path planning algorithm represents a path smoothing
stage. The FOV assisted path is smoothed to provide a more intuitive looking path to
the user. The implemented smoothing algorithm is related to an algorithm used for local
movement presented by Geraerts in his corridor map method paper [15].
The path smoothing is based on an attraction point which proceeds along a path towards
the destination. This attraction point forces the user towards the destination. The
backbone path, on which the attraction point proceeds, corresponds to the FOV assisted
path with waypoints added at a constant distance. For every waypoint on the backbone
path the distance to the nearest obstacle or wall is calculated. The attraction point
α(x) is a waypoint along the backbone path. The attraction point represents the point
with the highest possible distance to the user’s current position in relation to the closest
obstacle of the attraction point. In other words, the distance between the attraction
point and the user has to be smaller than the distance between the attraction point and
the nearest obstacle including the user radius:

euclideandistance(x,B[t]) = R[t]− r, (4.1)

where x is the current position of the user, B[t] a candidate attraction point on the
backbone path, R[t] the distance of that point to the nearest obstacle or wall and r
is the radius of the user. Figure 4.21 visualizes an attraction point (white dot). The
brown path is the backbone path with the waypoints(brown dots). The brown circles

53

4. Implementation

Figure 4.20: Unsmoothed (orange) and smoothed (grey) FOV assisted path calculated
with the special concatenation logic.

visualize the radii of circles to the nearest obstacles. In Figure 4.21 only the first five
radii are visualized for a clearer visualization. In a loop every waypoint is verified with
Equation 4.1. The loop stops at the white dot. The white dot on the backbone path
marks the attraction point including the white circle for the distance R[t] to the closest
obstacle. The white circle surrounds the gray circle which represents the user’s current
position including the user’s radius. The attraction point is defined as the point on the
backbone path, the furthest away from the user, where the white circle still surrounds
the gray circle representing the radius of the user.

After the attraction point calculation a force pulling the user towards the attraction
point is calculated:

F = f
α(x)− x
‖α(x)− x‖ , (4.2)

where α(x) represents the position of the attraction point and x expresses the position
of the user. f describes a parameter related to the Euclidean distance d between the
attraction point and the user. f is small when the user is close to the attraction point
and large when the user is nearly R[t] away from the attraction point:

f = 1
R[t]− r − d −

1
R[t]− r , (4.3)

where R[t] represents the distance to the nearest obstacle of the attraction point, r
expresses the radius of the user and d describes the Euclidean distance between attraction
point and user.
Integrating the force F over time leads to the new position of the user. In every iteration
a new attraction point, a new velocity and a new position for the user is calculated. A

54

4.3. Implementation of the FOV Assisted Path Planning Algorithm

Figure 4.21: Visualizes the calculation of an attraction point

velocity form [43] of the Verlet integration method [51] is used to compute the smooth
path:

~xt+∆t = ~xt + ~vt∆t+ 1
2 ~at∆t2, (4.4)

~vt+∆t = ~vt + ~at + ~at+∆t

2 ∆t, (4.5)

where xt is the position of the user, vt is the velocity of the user and due to Newton’s
laws of motion where F = m ∗ a with a mass m = 1, at corresponds with the force
F . The maximum velocity of the user is capped at 1.2m/s. This speed represents the
average walking speed of a human [30]. The path smoothing ends when the user reaches
the perimeter of the destination. This perimeter is defined by the user (see Section 4.1).
The following listing summarizes the smoothing process:

1. Calculate backbone path B with waypoints B[t] and distance to nearest obstacle R[t] for every
waypoint

2. Calculate new position using velocity verlet (Equation 4.4)

3. Calculate attraction point for the new position (Equation 4.1)

4. Calculate force to attract the user (Equation 4.2)

55

4. Implementation

5. Calculate velocity (Equation 4.5)

6. Go to 2 until reaching the destination

Figure 4.22 visualizes the final smooth FOV assisted path of the FOV assisted path
planning algorithm. The orange path is the FOV assisted path before the path smooth-
ing algorithm and the gray path is the smoothed FOV assisted path. The smoothed
FOV assisted path represents the result of the implemented algorithm and fulfills the
requirements defined as part of this thesis. The smoothed FOV assisted path is the final
path returned by the DLL.

Figure 4.22: The final smooth path of the FOV assisted path planning algorithm

As mentioned in Section 4.3.4 the path smoothing algorithm is applied on two sub paths.
Keeping the path inside the user’s FOV is a main requirement for the implemented FOV
assisted path planning algorithm. Therefore, the FOV path and the path outside the
FOV area are smoothed in two separate steps. Figure 4.23 visualizes the result of the
path smoothing algorithm, when the smoothing is applied on a single FOV assisted path.
The smoothed path avoids the FOV area of the mobile device and thus the user is unable
to see the path without adjusting the view direction.

4.3.7 Wall Path

The definition of a navigation mesh states that a navigation mesh represents only the
walkable surfaces of the 3D model of an indoor environment. Inside of buildings users

56

4.3. Implementation of the FOV Assisted Path Planning Algorithm

(a) smoothing for entireFOV assisted path (b) smoothing split up in two sub parts

Figure 4.23: Comparison of the smooth FOV assisted path with and without two part
calculation

might look towards a wall or an obstacle and have no walkable surface inside their FOV. In
this special case the path is concatenated from two different paths. At first, a connection
from the wall or obstacle to the global navigation mesh of the indoor environment is
calculated. Inside the navigation mesh a middle path towards the destination is calculated.
This middle path is smoothed and returned as a smoothed FOV assisted path. For the
remainder of this section this path is called wall path.
The wall path calculation is activated when the FOV navigation mesh generation process
returns no valid FOV navigation mesh. When there are not at least 3 contour pixels or
no floor pixels at all inside the FOV depth texture (see Section 4.3.3) the FOV navigation
mesh generation fails. Three points represent the connection to the navigation mesh.
These three points also describe the first three points of the wall path:

1. When no FOV navigation mesh is calculated, the middle pixel of the depth texture
represents the first point of the wall path. This point represents the center of the
FOV of the mobile device.

2. The second point of the wall path illustrates the intersection of the ray between
the user’s current position and the middle pixel of the depth texture with the

57

4. Implementation

navigation mesh boundary. This guides the path from the center of the user’s FOV
to the floor hence the walkable surface of the 3D model of the indoor environment.

3. The third point represents a point, at least the user’s radius away from the second
point and the navigation mesh border. The third point is necessary to prevent
errors in the smoothing stage 4.3.6 of the path calculation.

The third point represents the starting point for the middle path calculation and the
resulting middle path is smoothed to get the final wall path. Figure 4.24 visualizes the
wall path (gray line). The first 3 points are marked with numbers. The wall path logic is
activated because all depth texture pixels are on an unwalkable surface(red pixels).

Figure 4.24: Visualization of the wall path logic with the first 3 wall path points and the
remaining part of the wall path (gray)

4.4 Unity3D Implementation
This section presents a special path recalculation logic implemented in Unity3D and the
visualization of the results in Unity3D. The recalculation logic controls how often the
path calculation of the FOV assisted path planning library is invoked. For the user study
conducted as part of this thesis (see Section 5.2), calculating a new path for every frame
is not required. The recalculation logic is based on the visible path points of the FOV
assisted path inside the FOV of the mobile device in relation to the sum of all path points

58

4.4. Unity3D Implementation

in a predefined area around the user. Figure 4.25 visualizes the path recalculation logic.
The idea is to invoke the path calculation when the path visible inside the mobile device’s
FOV is below a user defined threshold. Turning away from the path results in less path
points inside of the FOV of the mobile device. The implemented logic counts all path
points inside a predefined radius (yellow and cyan lines in Figure 4.25) and separates
points inside the FOV (yellow lines in Figure 4.25) from points outside the FOV (cyan
lines in Figure 4.25). The borders of the FOV of a mobile device are visualized with blue
and green lines in Figure 4.25. In addition to the path points outside the FOV, path
points inside the FOV which are occluded by walls or obstacles are flagged as outside
the FOV. The ratio of points inside the mobile device’s FOV to all points inside the
predefined radius is used to decide whether the path is recalculated or not. If the ratio
is above a predefined threshold the path is recalculated. When the ratio is below the
threshold the old path is still valid. The threshold is defined in the Unity3D project.

Figure 4.25: Path recalculation logic in Unity. The image shows the user’s view direction
(red line) with the borders of the FOV (blue, thin green line), the path (thick green line)
and the path point rays (yellow and cyan lines) which are used for the path recalculation
logic

The Unity3D project also includes a visualization of the FOV assisted path. The Unity3D
project applies permanent lines from the user’s position to the destination. The path
is visualized slightly above the floor of the indoor environment. The implemented path
planning library returns three different paths, the smoothed FOV assisted path, an

59

4. Implementation

unsmoothed middle path and an unsmoothed shortest path. If the algorithm is unable
to calculate the smoothed FOV assisted path a smoothed middle path is returned in
addition to the two unsmoothed paths. Figure 4.26 visualizes the three different paths
returned from the FOV assisted path planning algorithm. The green path represents the
smoothed FOV assisted path, the blue path represents the middle path and the yellow
path represents the shortest path. At the transitions between the FOV area and the
rest of the environment the path is not smoothed. This emerges due to the smoothing
problem described in Section 4.3.6. The path at the entry point into the FOV (Point
1 in Figure 4.26) and at the exit point out of the FOV (Point 2 in Figure 4.26) is not
smoothed. The path inside the FOV area and from the exit point to the destination is
smoothed. In addition to the path visualization, methods to display the navigation mesh
and the FOV area are provided in the Unity3D project.

Figure 4.26: Visualization of the three paths returned from the FOV assisted path
planning algorithm. Shortest path (yellow), middle path (blue) and FOV assisted
path(green)

60

CHAPTER 5
Results

This chapter describes the evaluation of the implemented FOV assisted path planning
algorithm. In Section 5.1 a detailed performance analysis is conducted. The effects
of different indoor environments and cell sizes (see Section 4.2.1) on the generation of
the navigation mesh and the path planning algorithm are discussed. Furthermore, the
performance evaluation presents the impact of the FOV area size and the path length
on the path calculation duration. At last, the runtimes of the different implementation
stages presented in Section 4.3 are compared. The usability of the implemented algorithm
was evaluated in a user study conducted as part of this thesis. The results of the user
study are presented and discussed in Section 5.2.

5.1 Performance Analysis

The performance of the FOV assisted path planning library is evaluated in performance
tests presented in this section. Performance requirements vary between different areas
of application of an algorithm. The minimal performance requirement for the imple-
mented FOV assisted path planning algorithm depends on how often the path needs
to be recalculated and how fast the path reacts to changes of the view direction. For
different areas of application the amount of recalculations can change between every
frame, only once per second or the recalculation is only triggered on special events like
the recalculation logic presented in Section 4.4. The path recalculation has to provide a
correct registration of the path in relation to the real world.
The following runtime evaluations are performed on the C++ FOV assisted path planning
library as it provides the key functionality of the algorithm. The algorithm is evaluated
on a notebook with an Intel i7− 4940MX3.30GHz Quadcore CPU with 16.0GB RAM
and a Geforce GTX 880M GPU with 8GB RAM. For the evaluations two 3D models of
an indoor environment at the Technical University of Vienna are selected (see Figure 5.1).

61

5. Results

(a) 3D model Institut 3rd floor TU Vienna (b) 3D model Institut ground floor TU Vienna

Figure 5.1: 3D models used for runtime analysis

In Table 5.1 the duration of the navigation mesh generation process is compared with
the duration of the path planning process. For both models the FOV area and the path
length are constant at 8m2 and 45m.
Table 5.1 shows that the generation of the navigation mesh for the entire 3D model of
the environment is much slower than the path planning algorithm. The duration of the
navigation mesh generation process depends on the cell size and cell height of a voxel
used to generate the navigation mesh(see Section 4.2.1) and the size of the walkable area
of the 3D model. The smaller the cell size the longer it takes to generate the navigation
mesh due to a higher amount of processed voxels. For the second model it takes up to 60
seconds to generate the navigation mesh for a cell size and height of 20cmx20cm. All
of the navigation mesh generation times in Table 5.1 show that the navigation mesh
generation is too slow for real-time path planning. To assure real-time performance
the navigation mesh generation is independent from the path planning algorithm. The
navigation mesh is only generated at the beginning of the implemented algorithm and
forms the basis for the continuous calculation of the FOV assisted path. For the two
evaluated 3D models the path calculation times are stable for cell sizes between 50cm
and 80cm and slow down for very small cell sizes.

The path length and the FOV area are the main focus of the path planning algorithm
analysis. Table 5.2 and Table 5.3 show results for variable path length with constant
FOV area and vice versa. Both tests are conducted on the 3D model in Figure 5.1b. The
cell size and cell height are constant at 50cm.
Table 5.2 shows the results for constant FOV area at 10m2 and a variable path length
between 10− 160m. The path length represents a minor factor in the calculation times
for the FOV assisted path planning algorithm. For a path length of up to 80m the FOV
assisted path planning algorithm computes 10 new paths per second. 10 path recalcu-
lations per second are enough to provide a correct registration of the path in relation

62

5.1. Performance Analysis

Map #verts #tris #cell size/ height (cm)
navmesh
genera-
tion(ms)

path calcu-
lation(ms)

Institut 3rd floor 11.0k 9.7k 80x80 391.6 50.4
Institut 3rd floor 11.0k 9.7k 50x50 974.3 61.8
Institut 3rd floor 11.0k 9.7k 20x20 6317.8 177.5
Institut EG 1.0k 2.2k 80x80 2988.3 56.8
Institut EG 1.0k 2.2k 50x50 7872.4 61.8
Institut EG 1.0k 2.2k 20x20 58829.5 145.9

Table 5.1: Runtime comparison between navigation mesh generation process and path
calculation

to the real world. This means that when the mobile device is rotated and, therefore,
the view direction changes, the calculated path is visualized on the AR visualization
device withouth any noticeable delay. For long path lengths of over 100m the path
calculation slows down. For such long distances a limitation of the path smoothing is a
possible solution. The algorithm could calculate the path corridor up to the destination
to calculate a traversable path but restrict the path smoothing up to a predefined value.

Map FOV area (m2) path length(m) path calcu-
lation(ms)

Institut EG 10.0 10.8 59.0
Institut EG 10.0 32.3 67.6
Institut EG 10.0 46.3 75.2
Institut EG 10.0 79.1 99.1
Institut EG 10.0 113.1 142.1
Institut EG 10.0 159.0 219.0

Table 5.2: Runtime comparison with variable path lengths and fixed FOV area

Table 5.3 shows the results for constant path length of 50m. The simulated FOV has a
horizontal and vertical FOV of 45 degrees and a far view plane of 20m. The results show
that for a FOV area of around 20m2 the calculation time is already at 100ms. The size
of the FOV area is the main factor for the calculation time of the FOV assisted path
planning algorithm. In large open areas, and thus a large FOV, the calculation time is
up to 300ms. The solution to speed up the navigation mesh generation for large open
areas is to restrict the size of the FOV area.

Figure 5.2 shows two graphs with variable path lengths and a constant FOV area and vice
versa. For continuous path recalculation at least 10 recalculations per second, hence a
calculation time of up to 100ms are enough to visualize the path without visible artifacts.
In Figure 5.2a path lengths of up to 80m are calculated in up to 100ms. Path calculations
in large single-story buildings or path calculations on multistory levels are possible in
relation to the path length.
The size of the FOV area is the bottleneck of the algorithm. For buildings with narrow

63

5. Results

Map FOV area (m2) path length(m) path calcu-
lation(ms)

Institut EG 3.1 50.0 72.8
Institut EG 12.4 50.0 75.1
Institut EG 22.8 50.0 105.5
Institut EG 53.2 50.0 166.9
Institut EG 75.3 50.0 216.3
Institut EG 92.6 50.0 249.4
Institut EG 117.3 50.0 311.2

Table 5.3: Runtime comparison with variable FOV area and fixed path lengths

hallways or rooms of up to 50m2 FOV the path calculation times are under 150ms leading
to around 7 path recalculations per second. For large open areas the path recalculations
drop significantly.

(a) Runtime analysis for constant FOV area and
variable path length

(b) Runtime analysis for constant path length
and variable FOV area

Figure 5.2: Effects of path length and FOV area on runtime of FOV assisted path
planning algorithm

At the end of the performance analysis the individual stages presented in Section 4.3
are evaluated. Table 5.4 visualizes the individual stages and the respective runtimes.
The test is conducted on the 3D model in Figure 5.1b. The cell size and cell height are
constant at 50cm. For Run1 and Run2 the FOV area is constant at 10m2 and a variable
path length of 50m and 160m is selected. For Run3 and Run4 the path length is constant
at 50m and the FOV area size is variable at 20m2 and 120m2.
The results in Table 5.4 show that the generation of the FOV navigation mesh and the
path smoothing for long paths are the bottlenecks of the algorithm. In Run2 the path
length of 160m results in a long path outside the FOV area. A solution for the long
runtime is the restriction of the path smoothing outside the FOV area. This is a plausible
solution as the user does not see the path outside the FOV and, therefore, no benefit
is gained from a smooth path. Due to the generation of the path outside the FOV, the
path is still calculated until the end.

64

5.2. User Study

For larger FOV areas the generation of the FOV navigation mesh is the bottleneck of the
algorithm. The generation time is speeded up through filtering the floor pixels before
starting the FOV navigation mesh generation. The generation of the separate FOV
navigation mesh is still beneficial in relation to recalculating the navigation mesh for the
entire 3D model for every path recalculation. Generation of the FOV navigation mesh in
Run4 takes 262.8ms whereas the generation of the global navigation mesh takes 7.8s.

algorithm stage Run1 (ms) Run2 (ms) Run3 (ms) Run4 (ms)
Calculate path corridor 0.06 0.20 0.05 0.05
Calculate middle path 0.03 0.05 0.02 0.02
Render FOV 22.1 22.2 22.2 23.8
Filter floor pixels 0.12 0.10 0.27 0.09
Generate FOV navmesh 25.0 26.6 44.8 262.8
Calculate FOV path 0.03 0.04 0.07 0.05
Smooth FOV path 0.4 0.5 0.24 2.1
Calculate outside path 0.12 0.4 0.10 0.08
Smooth outside path 17.9 159.9 19.4 14.6
Calculate FOV assisted
path 70.5 216.1 92.0 308.3

Table 5.4: Runtime analysis of the individual stages of the algorithm

Using the Recast library by Mononen as basis for the FOV assisted path planning
algorithm proved to be a good decision. The separation of the path planning algorithm
from the navigation mesh is easy to implement and the navigation mesh eases the
calculation of the FOV assisted path. One drawback of calculating a Recast navigation
mesh is the amount of variables it takes to generate a navigation mesh. When generating
a navigation mesh for a new 3D model, it takes some time to calibrate the navigation
mesh generation process with suitable parameters.

5.2 User Study
In order to evaluate the usability of the implemented system a user study was conducted.
This section provides an overview of the design of the user study before discussing the
results of the user study.

5.2.1 User Study Design

The goal of the user study was to guide participants through a real life scenario with
the assistance of the implemented FOV assisted path planning algorithm. Therefore, an
AR indoor navigation challenge was implemented where the participants had to follow
a calculated path to different targets. Figure 5.3 shows the 3D model of the indoor
environment applied in the user study. The test environment was the ground floor of a
university building of the Technical University of Vienna. The area was a set of rooms
and hallways, thus open rooms as well as narrow hallways have been part of the user study.

65

5. Results

Figure 5.3: 3D model of the indoor environment used in the user study

The main task of the two-part user study was to locate 5 targets distributed around
the test environment. The FOV assisted path was calculated to guide the participants
towards the targets. The path is calculated from the participant’s current position to the
next target. Once a participant reached a target, they had to write down a code hidden
on the target before moving on to the next target.
While the user is walking around in a real environment, the path information as well
as the targets are virtual objects superimposed onto the real environment. Figure 5.4
shows the path visualization and a virtual target with the requested code on it. The path
in Figure 5.4a is a particle system composed of floating spheres. The floating spheres
float towards the target. Hence the flow direction of the spheres describes the path
direction. The path was only visualized for the participants while a remote control button
was pressed. The targets are two different virtual objects. A green ring on the floor is
displayed for the user continuously, whereas the cylinder with the ghost texture (see
Figure 5.4b) is activated when the participant is approaching the target’s position.

The user study setup was implemented on a notebook and a Microsoft Hololens see-
through HMD. The navigation mesh generation and the path calculation were executed
on the notebook. The notebook is equiped with an Intel i7−4940MX3.30GHz Quadcore
CPU with 16.0GB RAM and a Geforce GTX 880M GPU with 8GB RAM.
The tracking of the participant’s current position and orientation and the visualization
of the virtual objects were facilitated with the Microsoft Hololens. A small remote
control belonging to the Microsoft Hololens was used to activate the path visualization
as described above. The Microsoft Hololens sends the participant’s current position and
orientation to the notebook. The notebook uses the Hololens data and the precomputed

66

5.2. User Study

(a) Virtual path superimposed onto real environ-
ment

(b) Virtual target with code

Figure 5.4: Virtual objects visualized to the participant on the Microsoft Hololens

navigation mesh to calculate the path towards a target. The path points are then sent
back to the Microsoft Hololens and visualized to the participant.
The user study was divided into two separate scenarios and a pre-study to test the
scenarios. The pre-study was conducted to evaluate the tracking accuracy of the Hololens
and to test the process of the user study. During the first scenario called the navigation
challenge, the user had to locate 5 targets, write down a code and then move on to the
next target. The visualization was activated with clicking the remote control button. The
participants had to accomplish the navigation challenge twice. The difference between
the two runs was the visualized path. In one run the FOV assisted path was visualized to
the participant, whereas in the other run the shortest path implementation provided from
the implemented FOV assisted path planning algorithm was displayed on the Microsoft
Hololens. The selected path for the first run was alternated between every participant.
Every run had 5 unique positions for the targets. Before the run started the participant
was able to get used to the path and target visualization in a small testing area. Once
the participant was familiar with the system, the evaluated run started.
The goal of the second scenario referred to as orientation challenge, was to find different
targets again. Instead of moving around in the indoor environment, the participant was
standing on a predefined location and had to find 8 predefined targets distributed around
the participant’s location. The participants had to turn around their own axis to find
the targets. Once a target was found, the participant had to activate the next target
by pressing the button on the Hololens remote control. The orientation challenge was
once again split up into two runs. The difference between the two runs was again the
visualization of the FOV assisted path in one run and the shortest path in the other run.
The activation order of the 8 targets was changed between the two runs.
Figure 5.5 shows the indoor environment and targets of both scenarios. In Figure 5.5a
the environment of the navigation challenge is visualized. Five targets (black cylinders

67

5. Results

and green rings) are distributed in the indoor environment and the participant had to
find one after the other. For the second run five different targets are positioned around
the indoor environment.
Figure 5.5b visualizes the environment of the orientation challenge. The predefined
location of the participant is the larger ring in the middle and the 8 targets are located
around the participant. The targets are activated one after the other with the click of
the remote control button. The participants had to remain at the predefined location
and find the targets by rotating around their own axis.

(a) 5 Targets of the navigation challenge dis-
tributed within the indoor environment

(b) 8 Targets (small green rings) and predefined
participant position (large green ring)

Figure 5.5: Environments of both scenarios including targets

In order to evaluate the user study, a questionnaire was handed to the user study partici-
pants. The questionnaire starts with a general section on previous experience with AR
technology and experience with regard to navigation (see Table 5.5).

Q1 I have experienced Augmented Reality before...
Q2 If yes, in what way (device, applications)?
Q3 I feel uneasy interacting with the Microsoft Hololens...
Q4 I have a good sense of orientation...
Q5 I feel easy navigating through unknown indoor environments...

Table 5.5: General questions of the user study

The questions listed in Table 5.5 are rated on a 5-part Likert scale ranging from ‘Not at
all‘ to ‘Very much‘ except for Q2. Q2 is an open text field where participants write down
their previous experiences with AR devices and applications.
After each run of the navigation challenge the experience was evaluated with three differ-
ent questionnaire parts. The first part were individual questions about the experience

68

5.2. User Study

during the corresponding run (see Table 5.6).

Q6 How good did the virtual path lead you towards the targets?
Q7 Was the visualized path intuitive to follow?
Q8 To what extent did the visualized path irritate or confuse you, so you did not

know where to go?
Q9 At which point in time did you get used to the guiding path?
Q10 Did you feel save when moving around during the task?
Q11 Have you perceived the environment while being navigated?

Table 5.6: Individual questions for every run in the navigation challenge

The questions listed in Table 5.6 are rated on a 7-part Likert scale ranging from ‘Not
at all (Q6,Q7,Q10,Q11) / At no time (Q8) / Not until the end (Q9)‘ to ‘Very much
(Q6,Q7,Q10,Q11) / All the time (Q8) / Immediately (Q9)‘.
The next part of the questionnaire consists of standardized tests to evaluate usability
and workload of each run are in the questionnaire. The System Usability Scale (SUS) is
included to evaluate the usability of the test setup [6]. The SUS persists of ten questions
rated on a 5-part Likert scale ranging from ‘Strongly disagree‘ to ‘Strongly agree‘. The
final SUS score is a value between 0 − 100, where a higher value indicates a higher
usability of the system.
The NASA Task Load Index (TLX) is a tool to evaluate the subjective workload of
the task at hand [21]. The NASA TLX is a two-phase evaluation tool. The first phase
consists of rating 6 individual categories on a 21-part scale. The second part is rating
the six categories against each other to evaluate which category the participant indicates
as more important for the task. For the analysis in this paper only the first part of the
NASA TLX was conducted. After both runs of the navigation challenge the participants
had to compare both runs and were able to give positive, negative and general feedback
(see Table 5.7).

Q12 Do you find superimposing a virtual path onto the real environment helpful?
Q13 After finishing both scenarios, please rate the scenario again. Would you like

to use the path visualization for a way finding task? First run
Q14 After finishing both scenarios, please rate the scenario again. Would you like

to use the path visualization for a way finding task? Second run

Q15 Please note the incidents you found most positive during this experience?
Q16 Please note the incidents you found most negative during this experience?
Q17 Please feel free to add any comments, suggestions, criticism....

Table 5.7: Final part of the questionnaire with comparison of the two runs and feedback

69

5. Results

The questions Q12 - Q14 in Table 5.7 are rated on a 7-part Likert scale ranging from
‘Not at all‘ to ‘Very much‘. In addition Q13 and Q14 have text fields to state a reason
for the answers. Q15 - Q17 are open text fields for comments.

The orientation was evaluated with a different set of scenario specific questions (see
Table 5.8).

Q18 How much did it help you that in one scenario the path adapted to your view
direction?

Q19 How good could you anticipate the direction to the target? First run
Q20 How good could you anticipate the direction to the target? Second run

Table 5.8: questionnaire for the orientation challenge

The questions Q18 - Q20 in Table 5.8 are rated on a 7-part Likert scale ranging from
‘Not at all‘ to ‘Very much‘. In addition Q19 and Q20 have text fields to state a reason
for the answers.

The following research questions were determined before the user study was conducted:

• Is the FOV assisted path suitable for the user study environment?

• What are the advantages and disadvantages of the FOV assisted path with regard
to a shortest path implementation?

• Is AR a suitable area of application for path planning?

5.2.2 User Study Results and Analysis

The navigation and orientation challenge described in the last section have been conducted
in separate user studies, with some participants taking part in both user studies. 16
participants entered the user study for the navigation challenge. The visualized path for
run FOV path and run shortest path was alternated between every participant, so that
half of the participants started with the FOV assisted path first and the other half with
the shortest path.
The participants were 4 females and 12 males between the ages of 24 and 50. For 8 of
the 16 participants it was the first AR experience at all. Two participants had used
the Microsoft Hololens before, whereas other participants used mobile phone or tablet
AR applications. Despite most of the participants not being familiar with the Microsoft
Hololens or other AR applications, the participants had no reservations about using
the Microsoft Hololens. Q3 had an average score of 1.375 with a standard deviation of
σ = 0.99. The participants of the user study had an above average sense of orientation

70

5.2. User Study

(Q4: average score of 3.56 with σ = 1.06) and above average sense of navigating through
an indoor environment (Q5: average score of 3.31 with σ = 1.10).
Every participant was able to find all 5 targets in both runs of the navigation challenge.
No participant hit any walls or obstacles and no test run failed due to hardware failure
or participant related reasons like dizziness or nausea. For the FOV assisted path run
the participants walked on average 90.6m and it took them 152sec. For the shortest
path run the participants walked on average 92.9m and it took them 148.8sec. The
participants had no time limits to finish the runs so that no evaluation of times and
speed were conducted during the user study.
The FOV assisted path was the main contribution of this thesis. Figure 5.6 visualizes
the participants’ ratings for Q6 - Q9 for the FOV assisted path planning algorithm.
Overall the results indicate that the FOV assisted path is helpful to find targets in an
indoor environment. 13 of the 16 participants stated that the FOV assisted path leads
towards the targets very much. The adaption of the path with regard to the participant’s
view direction keeps the participant heading towards the target at all time. This is
reiterated as the participants stated that they hardly ever did not know where to go. The
path is recalculated when the view direction of the participant changes. The constant
path changes are not a problem for a majority of the participants as they did get used to
the path immediately and indicate that it is intuitive to follow. Some participants stated
that they had to get used to the changing of the path or even thought that two different
paths were visualized to them. Nevertheless the participants also stated that once they
figured out how the path adaption worked, they got used to it. A fading animation
between two different path visualizations might solve problems, the participants had with
the allegedly double visualized paths.

The second research goal of the user study was to compare the FOV assisted path with
the shortest path implementation. The shortest path does not adjust to the participant’s
view direction, thus the user has to adjust to the path. The FOV assisted path adjusts the
path to the view direction of the participant. The comparison between the shortest path
and the FOV assisted path indicate that the participants consider both implementations
as useful. Figure 5.7 shows a comparison of both evaluated paths. Only one participant
gave a significantly lower rating for the FOV assisted path without explaining his rating.
In talks after the participants finished the navigation challenge, a large amount of
participants reported that the difference between the two runs is minor and was hardly
recognized. This explains the equal results in Figure 5.7. The results of Q13 and Q14
indicate that there was no difference for most of the participants between them adjusting
to the path or the path adjusting to their view direction for the navigation challenge.
Despite equal ratings for Q13 and Q14 some participants stated in the open text fields
of the two questions that they did not like searching for the path after they found a
target. Searching for the path after the target was found is necessary, when the path
leads towards the opposite direction of the participant’s view direction. Exactly that
case is prevented with the FOV assisted path planning algorithm. One participant stated
that the lack of clearance to the wall for the shortest path is a problem. This problem is

71

5. Results

Figure 5.6: Ratings for Q6 - Q9 for the FOV assisted path

also solved with the FOV assisted path as it adds clearance to walls to the path.

The third research question of the user study focuses on the AR aspect of the FOV
assisted algorithm. A Microsoft Hololens see-through HMD was used in the user study
to visualize the paths. Figure 5.8 visualizes the results of the user study with regard to
AR. The Microsoft Hololens superimposes the virtual paths onto the real environment.
Therefore, the participants perceive the real environment around them. The participants

72

5.2. User Study

(a) Ratings for Q13 and Q14. Comparison be-
tween the shortest and FOV assisted path.

(b) Boxplot for Q13 and Q14. Comparison be-
tween the shortest and FOV assisted path.

Figure 5.7: Comparison between the shortest and FOV assisted path indicating if the
participants would like to use the visualized path.

indicated an above average rating for the perception of the environment. Moreover,
that resulted in a likewise high score for feeling save moving around inside the test
environment. One participant indicated that wearing the Microsoft Hololens let him
perceive the environment as very dark, thus he did not perceive the environment very
well.
All three scores in Figure 5.8 indicate that using AR technologies and superimposing
virtual path information onto real environments is helpful and an important area of
application for AR. In the general feedback of the user study many of the participants
criticized the small FOV of the Microsoft Hololens and some of them indicated that the
Hololens is too heavy.

The usability of the implemented path planning algorithm was evaluated with the
standardized usability test SUS. Figure 5.9 shows a comparison of all the SUS categories
between the two path implementations. The results indicate that the implemented system
for both paths is easy and quick to learn and that the participants felt confident in using
the system.
It is interesting that the participants gave a higher inconsistency level to the shortest
path implementation, although the path changes less often in comparison to the FOV
assisted path. This might be due to the fact that the participants do not know where
to go immediately after they find a target, when the path leads towards the opposite
direction.
The official webpage of the SUS test states that an algorithm with a SUS score above
68 is considered an algorithm with above average usability [1]. With an average SUS
score of 87.66 (standard deviation σ = 10.06) for the FOV assisted path and 84.84
(standard deviation σ = 12.58) for the shortest path both runs score above average
usability according to the SUS test.

73

5. Results

Figure 5.8: Ratings for Q10 - Q12 for the FOV assisted path

The subjective workload of the navigation challenge is assessed with the NASA TLX
test [21]. Figure 5.10 shows a visualization of the 6 main categories of the NASA TLX
test for the FOV assisted path and the shortest path. The difference between the ratings
for the two path implementations are once again minor. The ratings show that the
participants felt that they accomplished the given task to a high degree. The low mental
demand and effort score indicates that the algorithm was easy to learn for the participants
and the visualization helped them to accomplish the target search. The biggest difference
between the two paths persists in the physical demand category. The difference might
once again be due to the participants not knowing where to go after they found a target,
when the path direction is in the opposite direction as the participant’s view direction.
The slightly higher mental demand for the FOV assisted path might be due to the fact
that the path changes more often for the FOV assisted path.

The orientation challenge was evaluated in a separate user study. 12 participants (3 female
and 9 male) between the ages of 24 and 50 participated in the second user study. Instead
of moving around inside the test environment to find the targets, the participants stood
on a predefined position and had to find the targets located around the participants.
Figure 5.11 visualizes the comparison of the shortest path and FOV assisted path
implementation in the orientation challenge. The results indicate that the FOV assisted
path helps the participants in locating the targets very much, whereas the shortest path
has a significant lower score. The reasoning of the participants for the lower score is

74

5.2. User Study

Figure 5.9: Comparison of the raw SUS data for FOV assisted path and shortest path

that the FOV assisted path guides them towards the target immediately, whereas the
participant has to find the direction, and thus the target, on their own with the shortest
path. This is in accordance with the definition of the FOV assisted path, as the path
calculation adopts to the view direction of the participant; as such, a valid path is visible
to the user at all time. The participant who rated the FOV assisted path as not helpful
at all, stated that he ignored the path to solve the task. Therefore, for the participant
both runs result in the same experience.

The results of Figure 5.12 confirm the positive effects of the FOV assisted path for the
orientation challenge. Contrary to the low score of two participants for Q18, they still
stated that the adaption of the view direction was helpful.

Comparing the results between the navigation and orientation challenge it stands out
that the participants do not indicate much of a difference between the shortest and FOV
assisted path for the navigation challenge. In contrast, for the orientation challenge,
there is a significant difference between the scores of the two paths. The orientation
challenge focuses on the uncertainty of the participants when they do not know which
direction to go after the target position changed. During the navigation challenge the
time of orientating towards a new target in respect to following the path towards the
target is small. In the orientation challenge the target’s location and thus the participant
not knowing the target location changes quickly.

75

5. Results

Figure 5.10: Comparison of the NASA TLX data for FOV assisted path and shortest
path

Therefore, the FOV assisted path is most helpful as long as the direction towards a target
is not clear to the participant. When the direction towards the target is allegedly clear
to the participants, both path implementations are perceived as helpful.

Another interesting perception of the user study led to an expansion of the algorithm.
During a run in the navigation challenge the participant is looking towards both walkable
and unwalkable areas. Walkable surfaces of the indoor environment consist of areas
where the participant is able to walk, such as the floor of the building. Unwalkable
areas, in contrast, consist of walls or obstacles. When the participants activate the path
visualization, they focus on the ground and, therefore, look towards walkable areas of the
environment. As long as the algorithm detects a walkable area, the FOV assisted path is
calculated. When a participant is not looking towards a walkable surface, a fallback path
without the FOV information was visualized to the participant during the user study.
The fallback path visualization is invoked when participants loook towards a wall or an
obstacle. This is often invoked when the participant knows where to go and neglects
looking towards the floor or in narrow hallways. The expansion of the FOV assisted path
implemented after the user study was conducted, calculates a FOV assisted path even
when no walkable area is inside the FOV of the user. The so-called wall path is presented
in Section 4.3.7.

76

5.2. User Study

(a) Ratings for the orientation challenge. Com-
parison between the shortest and FOV assisted
path.

(b) Boxplot for the orientation challenge. Com-
parison between the shortest and FOV assisted
path.

Figure 5.11: Comparison between the shortest and FOV assisted path indicating how
good the participants could anticipate the direction to the target.

Figure 5.12: Ratings for Q18

77

CHAPTER 6
Summary and future work

In this thesis, a path planning algorithm for an AR indoor environment was designed
and implemented. The algorithm is called FOV assisted path planning algorithm. The
novel approach of this thesis is to include FOV information of a mobile device into the
path planning process. The FOV area is the area of the indoor environment captured
with the mobile device’s camera. The final path should be inside the FOV of the mobile
device at all times. The algorithm is implemented for the usage with AR visualization
devices such as smartphones, tablets or a see-through HMD. Allowing for collision-free
movement through the indoor environment the FOV assisted path is calculated with
clearance to walls and obstacles. In addition to avoiding walls and static obstacles within
the indoor environment, the FOV assisted path planning algorithm avoids collisions with
dynamic obstacles.
The implemented algorithm uses the 3D model of the indoor environment to calculate the
walkable areas of the indoor environment. Walkable areas represent all areas of the indoor
environment the user is able to walk on. The walkable areas are combined in a data
structure called navigation meshes. The Recast library implemented by Mononen [32]
is applied to generate the navigation mesh. The navigation mesh combined with the
tracking data of the user and the destination information are the input parameters for
the path planning algorithm. The tracking data represent the current position of the
user, hence the mobile device and the view direction of the mobile device. At first, the
shortest corridor from the current position to the destination is calculated. Then a path
with clearance to static obstacles and walls is calculated. This path with clearance is
then extended to include the FOV information of the mobile device. Therefore a separate
navigation mesh of the FOV area including dynamic obstacles is generated. Based on
this FOV navigation mesh a path through the FOV of the mobile device is calculated
and concatenated with the path towards the destination. The work at hand presents
several special cases where the paths are calculated and concatenated in a particular way.
Special cases depend on the view direction of the mobile device or on a lack of walkable

79

6. Summary and future work

areas. The final FOV assisted path is smoothed to provide a more intuitive looking path
to the user.
To evaluate the performance and usability of the FOV assisted path planning algorithm
a user study was conducted. A navigation challenge where participants had to find
different targets within an indoor environment was conducted. The see-through HMD
Microsoft Hololens was used to track the participants inside the building and the AR
path was visualized on the Microsoft Hololens. During the user study the FOV assisted
path itself, the FOV assisted path planning algorithm in comparison to a shortest path
implementation and the overall AR experience was evaluated. A majority of the par-
ticipants liked using the FOV assisted path for the navigation task and the algorithm
was awarded with high usability ratings. The FOV assisted path was preferred to the
shortest path implementation in situations where the user did not know the direction
towards the destination. The main advantage of the FOV assisted path is the availability
of a path inside the user’s FOV at all times. Therefore, the user has permanent feedback
on the direction towards the target. The participants also gave positive reviews about
the AR setting of the navigation challenge and confirmed path planning as an area of
application for AR visualization devices.

In future work all the stages of the FOV assisted path planning algorithm need further
testing in real life scenarios. During the user study certain positions and orientations led
to subpar FOV assisted paths.
The implementation of the wall path functionality presented in Section 4.3.7 displays
the problem of no available walkable surfaces. The wall path implementation is a very
basic method to combine unwalkable surfaces with walkable areas within the indoor
environment. In future work a data structure similar to navigation meshes for walkable
areas could be implemented for unwalkable areas to plan paths along walls or other
obstacles.
The Recast library is limited to circular dynamic obstacles. Due to the fact that the
Recast library is open source, the library could be extended to support other shapes of
dynamic obstacles.
The user study was conducted without dynamic obstacles and multistory buildings. The
goal of the user study was to evaluate the core functionality of the FOV assisted path
planning algorithm. Dynamic obstacles and multistory buildings add an extra level of
difficulty for the participants of the user study. Future evaluation should be expanded to
incorporate dynamic obstacles and multistory buildings.
Experiencing different visualization techniques for the FOV assisted path was not part of
this study’s scope. Evaluating different visualization techniques to find a visualization
technique suitable for an AR visualization device is an interesting topic for future work.
Frequent fast changes of the view direction of the mobile device might lead to paths that
jump around on the AR visualization device. Fading between jumping paths could result
in a clearer visualization for the user. Other techniques to solve the jumping paths are
also tasks for future work.

80

List of Figures

2.1 Three different directions towards the door, with the reference direction (red
arrow) and two directions for different concepts (INSAR - blue arrow, FOV
assisted path - green arrow) . 7

2.2 Indoor environment with a user defined graph 8
2.3 Irritating visualization with directional arrows 9
2.4 LCT navigation mesh and path. Source: [26] 13
2.5 Visualization of global and local path planning in ECM 13

3.1 Visualization of the different parts of the AR navigation system. Green blocks
are implemented as part of this thesis, red blocks are existing libraries 16

3.2 Different functions of the Unity3D project . 17
3.3 Microsoft Hololens . 19
3.4 Concept visualizations for the FOV assisted path planning algorithm 21
3.5 Concept stages of FOV assisted path planning algorithm 23
3.6 Comparison of the representation of walkable space of the 3D model of an

indoor environment . 25
3.7 Three scenarios of FOV assisted paths . 28
3.8 Path calculation stages (yellow) including special cases (blue) in the FOV

assisted path planning algorithm . 29

4.1 Three main modules of the implemented AR navigation system. 31
4.2 Activity diagram for the generation of a navigation mesh 35
4.3 Comparison between the 3D model of an indoor environment and its voxel

heightfield. 36
4.4 Walkable and unwalkable spans of 3D model. 36
4.5 Distance field of a 3D model of an indoor environment and the corresponding

walkable regions. 38
4.6 Region contours before and after the simplification algorithm 39
4.7 Comparison of the PolyMesh and PolyMeshDetail data structure. 40
4.8 Activity diagram for the implemented path planning algorithm 42
4.9 Path corridor with A* search graph . 43
4.10 Steps of the Funnel Algorithm. Left image shows phases to first path vertex.

Right image visualizes the first path vertex 44

81

4.11 Middle path between current position and destination 45
4.12 Two scenarios where the middle path calculation shows its limitations 46
4.13 Projected depth texture to visualize FOV of user 47
4.14 FOV navigation mesh with contour pixels . 48
4.15 FOV navigation mesh with dynamic obstacles 49
4.16 FOV navigation mesh with points of interest 50
4.17 Navigation meshes with and without dynamical obstacles including respective

points of interest . 51
4.18 FOV assisted path (orange) with highlighted FOV path (red shaded) 52
4.19 Two sub paths (green rectangle highlights the FOV path, blue rectangle

highlights the finish path) of the FOV assisted path. 53
4.20 Unsmoothed (orange) and smoothed (grey) FOV assisted path calculated

with the special concatenation logic. 54
4.21 Visualizes the calculation of an attraction point 55
4.22 The final smooth path of the FOV assisted path planning algorithm 56
4.23 Comparison of the smooth FOV assisted path with and without two part

calculation . 57
4.24 Visualization of the wall path logic with the first 3 wall path points and the

remaining part of the wall path (gray) . 58
4.25 Path recalculation logic in Unity. The image shows the user’s view direction

(red line) with the borders of the FOV (blue, thin green line), the path (thick
green line) and the path point rays (yellow and cyan lines) which are used for
the path recalculation logic . 59

4.26 Visualization of the three paths returned from the FOV assisted path planning
algorithm. Shortest path (yellow), middle path (blue) and FOV assisted
path(green) . 60

5.1 3D models used for runtime analysis . 62
5.2 Effects of path length and FOV area on runtime of FOV assisted path planning

algorithm . 64
5.3 3D model of the indoor environment used in the user study 66
5.4 Virtual objects visualized to the participant on the Microsoft Hololens 67
5.5 Environments of both scenarios including targets 68
5.6 Ratings for Q6 - Q9 for the FOV assisted path 72
5.7 Comparison between the shortest and FOV assisted path indicating if the

participants would like to use the visualized path. 73
5.8 Ratings for Q10 - Q12 for the FOV assisted path 74
5.9 Comparison of the raw SUS data for FOV assisted path and shortest path . . 75
5.10 Comparison of the NASA TLX data for FOV assisted path and shortest path 76
5.11 Comparison between the shortest and FOV assisted path indicating how good

the participants could anticipate the direction to the target. 77
5.12 Ratings for Q18 . 77

82

List of Tables

5.1 Runtime comparison between navigation mesh generation process and path
calculation . 63

5.2 Runtime comparison with variable path lengths and fixed FOV area 63
5.3 Runtime comparison with variable FOV area and fixed path lengths 64
5.4 Runtime analysis of the individual stages of the algorithm 65
5.5 General questions of the user study . 68
5.6 Individual questions for every run in the navigation challenge 69
5.7 Final part of the questionnaire with comparison of the two runs and feedback 69
5.8 questionnaire for the orientation challenge . 70

83

List of Algorithms

85

Acronyms

AR Augmented Reality. v–viii, 1–3, 5, 6, 8, 10, 12, 15–22, 25, 26, 31, 48, 63, 65, 68, 70,
72, 73, 79–81

DLL Dynamic Link Library. 31–33, 44, 45, 47, 48, 52, 56

DOF degree of freedom. 16–18

ECM Explicit Corridor Maps. 10–13, 81

FOV Field of View. v–viii, 1–3, 6–8, 10–13, 15–18, 20–29, 31–33, 37, 40, 41, 44–54,
56–67, 70–77, 79–83

GPS Global Positioning System. 1

HMD Head Mounted Display. v, 1, 16, 17, 19, 20, 22, 66, 72, 79, 80

HPU holographic processing unit. 19

INSAR Indoor Navigation System Using Augmented Reality. 6, 7

LCT Local Clearance Triangulation. 10–13, 81

NEOGEN Near optimal generator of navigation meshes. 11

SUS System Usability Scale. 69, 73, 75, 82

TLX Task Load Index. 69

VR Virtual Reality. 19

WIM World-In-Miniature. 9, 10

87

Bibliography

[1] System Usability Score, accessed December 2, 2017. https://www.usability.
gov/how-to-and-tools/methods/system-usability-scale.html.

[2] Ahmed Alnabhan and Brian Tomaszewski. INSAR: Indoor Navigation System using
Augmented Reality. In Proceedings of the Sixth ACM SIGSPATIAL International
Workshop on Indoor Spatial Awareness, pages 36–43. ACM, 2014.

[3] Ronald T Azuma. A Survey of Augmented Reality. Presence: Teleoper. Virtual
Environ., 6(4):355–385, 1997.

[4] Serge Beucher and Fernand Meyer. The morphological approach to segmentation:
the watershed transformation. Mathematical Morphology in Image Processing, pages
433–481, 1993.

[5] Gunilla Borgefors. Another comment on "a note on ’distance transformations in
digital images’". CVGIP: Image Understanding, 54(2):301–306, 1991.

[6] John Brooke. SUS - A quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[7] Bernard Chazelle. A theorem on polygon cutting with applications. In Foundations
of Computer Science, 1982. SFCS ’08. 23rd Annual Symposium on, SFCS ’82, pages
339–349, Washington, DC, USA, 1982. IEEE Computer Society.

[8] Xiao Cui and Hao Shi. A*-based Pathfinding in Modern Computer Games. Interna-
tional Journal of Computer Science and Network Security, 11(1):125–130, 2011.

[9] Buti Al Delail, Luis Weruaga, and M. Jamal Zemerly. CAViAR: Context aware
visual indoor augmented reality for a University Campus. In Proceedings of the
2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology Workshops, WI-IAT 2012, volume 3, pages 286–290, 2012.

[10] Mark DeLoura. Game Programming Gems. Charles River Media, Inc., Rockland,
MA, USA, 2000.

89

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

[11] H Digabel and Christian Lantuejoul. Iterative Algorithms. In Proceedings of the 2nd
European Symposium Quantitative Analysis of Microstructures in Material Science,
Biology and Medicine, volume 19, pages 85–89. Stuttgart, West Germany: Riederer
Verlag, 1978.

[12] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[13] David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or its Caricature. In
Classics in Cartography: Reflections on Influential Articles from Cartographica,
pages 15–28. 2011.

[14] Roland Geraerts. Planning short paths with clearance using explicit corridors. In
Proceedings - IEEE International Conference on Robotics and Automation, pages
1997–2004, 2010.

[15] Roland Geraerts and Mark H. Overmars. The corridor map method: Real-time
high-quality path planning. In Proceedings - IEEE International Conference on
Robotics and Automation, pages 1023–1028, 2007.

[16] Georg Gerstweiler, Emanuel Vonach, and Hannes Kaufmann. HyMoTrack: A mobile
AR navigation system for complex indoor environments. Sensors (Switzerland),
16(1), 2015.

[17] Google Inc. Google ARCore, accessed December 2, 2017. https://developers.
google.com/ar/.

[18] Google Inc. Google Tango, accessed December 2, 2017. https://get.google.
com/tango/.

[19] Google Inc. Google Tango Developers, accessed December 2, 2017. https://
developers.google.com/tango/overview/concepts.

[20] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[21] Sandra G. Hart and Lowell E. Staveland. Development of NASA-TLX - Results of
empirical and theoretical research. Human mental workload, 52:239–250, 1988.

[22] Denis Haumont, Olivier Debeir, and François Sillion. Volumetric cell-and-portal
generation. In Computer Graphics Forum, volume 22, pages 303–312, 2003.

[23] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and James Collins. Global
positioning system : theory and practice. Springer-Verlag Wien, 2001.

90

https://developers.google.com/ar/
https://developers.google.com/ar/
https://get.google.com/tango/
https://get.google.com/tango/
https://developers.google.com/tango/overview/concepts
https://developers.google.com/tango/overview/concepts

[24] Tobias H. Höllerer, Drexel Hallaway, Navdeep Tinna, and Steven Feiner. Steps
toward accommodating variable position tracking accuracy in a mobile augmented
reality system. 2nd International Workshop on Artificial Intelligence in Mobile
Systems, (September 2015):31–37, 2001.

[25] Low Chee Huey, Patrick Sebastian, and Micheal Drieberg. Augmented reality based
indoor positioning navigation tool. 2011 IEEE Conference on Open Systems, pages
256–260, 2011.

[26] Marcelo Kallmann. Shortest Paths with Arbitrary Clearance from Navigation Meshes.
Proceedings of the Eurographics SIGGRAPH Symposium on Computer Animation
SCA, pages 159—-168, 2010.

[27] Marcelo Kallmann. Dynamic and Robust Local Clearance Triangulations. Acm
Transactions on Graphics, 33(5):17, sep 2014.

[28] Sebastian Kasprzak, Andreas Komninos, and Peter Barrie. Feature-based indoor
navigation using Augmented Reality. Proceedings - 9th International Conference on
Intelligent Environments, IE 2013, pages 100–107, 2013.

[29] Oussama Khatib. Real time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics and Research, 5(1):90–98, 1986.

[30] Richard Knoblauch, Martin Pietrucha, and Marsha Nitzburg. Field Studies of
Pedestrian Walking Speed and Start-Up Time. Transportation Research Record:
Journal of the Transportation Research Board, 1538:27–38, 1996.

[31] C.G. Low and Y.L. Lee. SunMap+: an intelligent location-based virtual indoor
navigation system using augmented reality. In International Conference on Frontiers
of Communications, Networks and Applications (ICFCNA 2014 - Malaysia), 2014.

[32] Mikko Mononen. Recast Library, accessed December 2, 2017. https://github.
com/recastnavigation/recastnavigation.

[33] Alessandro Mulloni, Hartmut Seichter, and Dieter Schmalstieg. Handheld augmented
reality indoor navigation with activity-based instructions. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile Devices and
Services - MobileHCI ’11, MobileHCI ’11, page 211, New York, NY, USA, 2011.
ACM.

[34] Ramon Oliva and Nuria Pelechano. NEOGEN: Near optimal generator of navigation
meshes for 3D multi-layered environments. Computers and Graphics (Pergamon),
37(5):403–412, 2013.

[35] Theo Pavlidis. Algorithms for graphics and image processing. Springer Science &
Business Media, 1982.

91

https://github.com/recastnavigation/recastnavigation
https://github.com/recastnavigation/recastnavigation

[36] John L. Pfaltz. Sequential Operations in Digital Picture Processing. Journal of the
ACM, 13(4):471–494, 1966.

[37] Franco P. Preparata. The medial axis of a simple polygon. In Mathematical
Foundations of Computer Science 1977, volume 53 of Lecture Notes in Computer
Science, pages 443–450. Springer, 1977.

[38] Urs Ramer. An iterative procedure for the polygonal approximation of plane curves.
Computer Graphics and Image Processing, 1(3):244–256, 1972.

[39] Umair Rehman and Shi Cao. Augmented-Reality-Based Indoor Navigation: A
Comparative Analysis of Handheld Devices Versus Google Glass. IEEE Transactions
on Human-Machine Systems, 47(1):140–151, feb 2017.

[40] Gerhard Reitmayr and Dieter Schmalstieg. Location based applications for mobile
augmented reality. In Proceedings of 4th Australasian user interface conference on
User interfaces, AUIC ’03, pages 65–73, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc.

[41] Greg Snook. Simplified 3D movement and pathfinding using navigation meshes.
Game Programming Gems, 1(1):288–304, 2000.

[42] Robert H Spector. Visual Fields. Clinical methods: the history, physical, and
laboratory examinations 3rd edition, pages 565–572, 1990.

[43] William C. Swope, Hans C Andersen, Peter H Berens, and Kent R Wilson. A
computer simulation method for the calculation of equilibrium constants for the
formation of physical clusters of molecules: Application to small water clusters.
Journal of Chemical Physics, 76(1):637–649, 1982.

[44] Allen G Taylor. Develop Microsoft HoloLens Apps Now. Apress, Berkely, CA, USA,
1st edition, 2016.

[45] Unity Technologies. Unity3D - Game Engine, accessed December 2, 2017. https:
//unity3d.com/de.

[46] Paul Tozour. The Evolution of Game AI. Ai Game Programming Wisdom, 1:3–15,
2002.

[47] Wouter Van Toll, Atlas F. Cook IV, and Roland Geraerts. Navigation meshes for
realistic multi-layered environments. In IEEE International Conference on Intelligent
Robots and Systems, pages 3526–3532. IEEE, 2011.

[48] Wouter van Toll, Atlas F. Cook IV, Marc J. van Kreveld, and Roland Geraerts. The
Medial Axis of a Multi-Layered Environment and its Application as a Navigation
Mesh. pages 1–33, 2017.

92

https://unity3d.com/de
https://unity3d.com/de

[49] Wouter van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria
Pelechano, Julien Pettré, and Roland Geraerts. A comparative study of navi-
gation meshes. In Proceedings of the 9th International Conference on Motion in
Games - MIG ’16, MIG ’16, pages 91–100, New York, NY, USA, 2016. ACM.

[50] Wouter G. Van Toll, Atlas F. Cook IV, and Roland Geraerts. A navigation mesh
for dynamic environments. Computer Animation and Virtual Worlds, 23(6):535–546,
2012.

[51] Loup Verlet. Computer "experiments" on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules. Physical Review, 159(1):98–103, 1967.

[52] Ron Wein, Jur P. Van Den Berg, and Dan Halperin. The visibility-Voronoi complex
and its applications. Computational Geometry: Theory and Applications, 36(1):66–87,
2007.

93

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Aim of the Thesis
	Structure of the Thesis

	Related Work
	Indoor Navigation in an AR Setting
	Path Planning with Navigation Meshes

	System Design
	Unity3D Project
	Tracking
	Output Devices for AR Applications
	FOV Assisted Path Planning Library
	Recast Library
	Navigation Meshes
	FOV Assisted Path Planning Algorithm Stages

	Implementation
	DLL
	Recast Navigation Mesh Generation Process
	3D Model Rasterization
	Region Generation
	Contour Generation
	Navigation Mesh Generation

	Implementation of the FOV Assisted Path Planning Algorithm
	Path Corridor and Shortest Path
	Middle Path
	FOV Navigation Mesh with Dynamic Obstacles
	FOV Path
	FOV Assisted Path
	Path Smoothing
	Wall Path

	Unity3D Implementation

	Results
	Performance Analysis
	User Study
	User Study Design
	User Study Results and Analysis

	Summary and future work
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

