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Abstract

Steering and guiding molecular reactions and molecular dynamics is a long standing goal
in chemistry and physics. Strong and ultrashort infrared pulses with intensities around
1014 W/cm2 and pulse lengths of less than 5 fs, corresponding to 1-2 optical cycles, allow
influencing the electronic and nuclear motion on femtosecond and even sub-femtosecond
timescales. In order to analyse and interpret experimental results, detailed theoretical
investigations are necessary.

This work focusses on three recent experiments, one addressing the electronic dynamics
in molecules subject to intense fields and two addressing the strong field control of nuclear
dynamics. This work provides an analysis of the processes involved in order to identify
the relevant physical mechanisms governing the dynamics. This is achieved by applying
a large variety of different approaches from physics and chemistry.

More precisely, the first part of this thesis deals with the strong field ionization of H+
2

in circularly polarized fields and the resulting photoelectron spectrum, which is studied
within a semi-classical model. The focus is to provide an analysis and interpretation of
the observed rotation of the photoelectron momentum distribution compared to predic-
tions from the strong-field approximation (SFA). The work shows that classical trajec-
tory Monte Carlo calculations can reproduce and explain many experimentally observed
features in the molecular strong-field ionization of H+

2 : the classical trajectory calcula-
tions thus provide a simple approach to testing the influence of the Coulomb potential
and multiple ionization bursts. For instance, the model allows interpreting the counter-
intuitive intensity independence of the angular photoelectron spectrum as a result of two
rivalling processes: the intensity dependence of the tunnel exit and the field interaction
in the continuum. The model also illustrates the importance of the initial momentum
distribution assigned to the trajectories on the momentum and angle resolved photoelec-
tron spectrum and the rotation thereof. Multiple ionization bursts are found not to be
responsible for the observed rotation of the photoelectron spectrum compared to SFA
predictions.

The second and third part of the thesis deal with the interpretation of experiments
investigating the possibility to control fragmentation reactions of C2H2 using strong
few-cycle laser pulses:

The second part deals with the reaction control of C2H2 using the carrier-envelope
phase of few-cycle infra-red laser fields as control tool. The combined analysis of quan-
tum chemical calculations, quantum dynamical calculations, and a semi-classical model
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for recollisional ionization allows identifying an energy threshold effect in recollisional
ionization as the main control mechanism. Other influences, such as field excitations,
are found to be of minor importance. The novel control mechanism discovered in the
course of this work is likely to allow fragmentation control for a large number of small
molecules.

In the third part of the thesis, the reaction control of C2H2 via molecular alignment is
investigated. A study of the alignment dependence of sequential ionization allows the
qualitative and quantitative reproduction of several experimentally observed features.
The alignment dependence of sequential ionization is thereby studied using both, a TD-
DFT approach and a tunnel-ionization approach based on the Dyson orbital formalism.
Although the two methods depend on different approximations and simplifications, the
results are found to be consistent. For some fragmentation channels, recollisional ion-
ization is found to play an important role. It is shown that the electron impact process,
which is often neglected in models, may have a significant influence on the alignment de-
pendence of recollisional ionization. This is illustrated by calculating singly-differential
electron-impact ionization cross-sections within several different approximations. Field
driven dipole transitions, which show a strong alignment dependence, have only little
influence on the resulting fragmentation yield at the experimentally relevant intensities
due to the small transition probabilities.
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Zusammenfassung

Chemische Reaktionen und molekulare Dynamik effizient zu kontrollieren und zu steuern
ist nicht nur ein großes Ziel in der Grundlagenforschung, sondern auch von großem in-
dustriellen Interesse. Starke, ultrakurze Laserpulse mit Intensitäten um 1014 W/cm2 und
Pulslängen, die nur wenige Schwingungsperioden umfassen, erlauben die Bewegung von
Elektronen und Kernen auf einer Femtosekunden-Skala und sogar darunter zu kontrol-
lieren. Die Analyse und Interpretation von Experimenten, die diese Möglichkeit belegen,
erfordert jedoch Modellbildungen, die nur auf theoretischen Ansätzen beruhen können.

Ziel dieser Arbeit ist die Analyse von drei jüngst durchgeführten Experimenten. Fokus
der Experimente war die Kontrolle sowohl der nuklearen als auch der elektronischen
Dynamik in kleinen Molekülen. Die vorliegende theoretische Arbeit gibt einen Einblick in
die zugrundeliegenden Prozesse und erlaubt es die relevanten Prozesse, die die Dynamik
grundlegend steuern, zu identifizieren und zu verstehen. Um das zu erreichen werden
verschiedene Ansätze aus der Physik und der Chemie angewandt und vereint.

Die Arbeit ist in drei Teilen strukturiert: Der erste Teil befasst sich mit der Starkfeld-
Ionisation von H+

2 . Die folgenden zwei Teile beschäftigen sich mit der Analyse von Ex-
perimenten zur Kontrolle von chemischen Reaktionen, namentlich mit der Kontrolle der
Fragmentierung von C2H2 mittels der “carrier-envelope” Phase von ultrakurzen Pulsen
und mittels der relativen Ausrichtung zwischen Molekül und Polarisationsachse.

Ziel des ersten Teiles der Arbeit ist es, Resultate von experimentell gemessenen Photo-
elektronspektren von H+

2 in zirkular polarisierten Feldern zu interpretieren. Der Fokus
liegt dabei auf der Analyse der experimentell beobachteten Rotation des winkelaufgelös-
ten Photoelectronspektrums relativ zu Vorhersagen, die auf Starkfeld-Näherungen be-
ruhen. Zu diesem Zweck wurde ein semi-klassisches Modell entwickelt. Die vorliegenden
Resultate zeigen, dass klassische Trajektorien Monte Carlo Rechnungen viele experi-
mentelle Resultate korrekt widerspiegeln. In Folge dessen erlauben die semi-klassischen
Rechnungen eine einfache und intuitive Interpretation von verschiedenen Einflussfak-
toren, wie dem anisotropen Coulomb Potential des Ions und dem komplexen zeitlichen
Verhalten der Ionisation. Dadurch ermöglichen die Rechnungen beispielsweise eine Inter-
pretation der auf den ersten Blick widersinnig erscheinenden sehr schwachen Intensitäts-
abhängigkeit des Photoelektronspektrums: Laut der semi-klassischen Analyse resultiert
diese aus zwei konkurrierenden Prozessen mit gegensinniger Intensitätsabhängigkeit.
Weitere Effekte illustrieren den Einfluss des Startimpulses der Trajektorien. Multiple-
Ionisationsereignisse pro Laserperiode spielen laut dem semi-klassischen Modell jedoch
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keine wesentliche Rolle für die resultierende Winkelabhängigkeit des Photoelektronspek-
trum.

Der zweite Teil der Arbeit beschäftigt sich mit größeren Molekülen. Die Experimente zur
Zerfallskontrolle von C2H2 durch gezielte Kontrolle der “carrier-envelope” Phase werden
anhand von quantenchemischen Rechnungen, Quantendynamik-Simulationen und semi-
klassischen Modellen interpretiert. Als grundlegender Regelungsmechanismus wurde ein
Energie-Schwellenwert-Effekt in der Doppelionisation via Elektronen-Rekollision identi-
fiziert. Andere Einflüsse, so wie die “carrier-envelope” Phasenabhängigkeit von Feldan-
regungen, sind zwar vorhanden, dürften aber eine untergeordnete Rolle spielen. Der neu
entdeckte Energie-Schwellenwert-Effekt könnte eine Fragmentierungskontrolle in einer
ganzen Reihe von Molekülen erlauben.

Der dritte Teil der Arbeit beschäftigt sich mit der Kontrolle des Zerfalls von C2H2

mittels der relativen Ausrichtung der Laserpolarisationsachse zur Molekülachse. Mittels
eines Modells, das die sequentielle Ionisation beschreibt, konnte sowohl qualitative als
auch quantitative Übereinstimmung mit den experimentellen Daten für mehrere Zer-
fallskanäle erzielt werden. Das Modell basiert auf TD-DFT Rechnungen und einem ef-
fektiven Einteilchenmodell zur Tunnel-Ionisation. Obwohl diese beiden Methoden auf
unterschiedlichen Näherungen beruhen, sind die so erzielten Ergebnisse konsistent. Für
einige Zerfallskanäle konnte gezeigt werden, dass Elektronenstoßionisation nach Elektro-
nenrückstreuung des primären Elektrons eine wesentliche Rolle spielt. In diesem Zusam-
menhang konnte anhand von vereinfachten differenziellen Wirkungsquerschnitten gezeigt
werden, dass der Stoßprozess selber einen nicht zu vernachlässigenden Einfluss auf die
Winkelabhängigkeit von Elektronen-Rückstoß-Ionisation haben könnte. Dieser Stoßpro-
zess wird üblicherweise in der Analyse der Winkelabhängigkeit von Elektronen-Rück-
stoß-Ionisation vernachlässigt. Die vorliegenden Rechnungen legen jedoch nahe, dass die
Winkelabhängigkeit der Stoßquerschnitte in eine Gesamtanalyse des Prozesses eingehen
sollte. Dagegen konnte gezeigt werden, dass die Winkelabhängigkeit von Dipolanregun-
gen zwar stark ist, jedoch aufgrund ihrer relativ kleinen Wahrscheinlichkeit bei den ver-
wendeten Intensitäten keine wesentliche Rolle in der Kontrolle des molekularen Zerfalls
spielt.
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Introduction

The interaction of strong and short infrared (IR) laser pulses with atoms, molecules and
solids is an active field of research since the late 1980s and 1990s. At that time, the
development of new, broad band laser materials [1], novel mode-locking techniques [2],
technological advances allowing dispersion control [3] and the concept of chirped-pulse
amplification [4] allowed for the first time the production of (sub)-10 fs pulses and pulses
with intensities up to 1× 1021 W/cm2 (see Ref. [5] for an excellent review on the early
development of these laser systems). The control [6] and shot-to-shot measurement [7]
of the carrier-envelope phase(CEP), nowadays allows to routinely generate CEP stable,
ultra-strong few-cycle laser pulses in scientific laboratories.

In the context of this work, laser pulses with intensities of around 1× 1014 W/cm2 and
pulse durations with a full-width at half-maximum of approximately 5 fs at a central
wavelength of around 800 nm are considered. Such pulses are sufficiently strong to
initiate besides excitation, (multiple) ionization and non-linear electronic response in
atomic and molecular systems. Due to their high intensity, such fields require a non-
perturbative treatment in theoretical calculations. On the other hand, these pulses are
sufficiently weak to allow neglecting the magnetic field and relativistic effects.

Within this laser intensity regime, many new and interesting laser driven processes have
been observed, using mainly atoms as targets. Some of the most important strong-field
phenomena observed are the above-threshold photoionization (ATI) [8] and the pres-
ence of an ATI plateau [9], tunnelling ionization [10], non-sequential double ionization
(NSDI) [11], the generation of high-harmonic radiation (HHG) [12] and the possibility
to create attosecond pulse trains in the extended ultra-violet (XUV) regime from HHG
[13]. Reviews can be found for example in Refs. [14, 15, 5, 16, 17, 18, 19].

From a theoretical point of view, dealing with such strong pulses required the devel-
opment of new theoretical approaches, since common approximations describing the
interaction of light with matter are insufficient: as the average energy of a free electron
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Introduction

in a field, the ponderomotive energy, becomes larger than the photon frequency, pertur-
bative approaches do not converge any more and become invalid [20]. Two milestones
in the theoretical understanding of strong-field processes were the development of the
Keldysh theory for strong-field ionization [10] and the classical three-step model [21],
which gives an intuitive physical motivation for the high energy ATI cut-off, HHG and
recollisional ionization and excitation. Nowadays, many analytical models and equations
(e.g. [21, 10, 22, 23, 20]) provide the basis to understand strong-field processes, while
numerical modelling has become increasingly important in order to describe effects be-
yond these approximations, such as electron-electron correlation effects, effects of the
Coulomb potential, etc.

Formerly, mainly the atomic response to strong fields was studied; more recently, the
attention has started to turn to more complex targets, such as molecules and nanostruc-
tures (e.g. [24, 25]). As opposed to atoms, molecular targets are far more difficult to
treat theoretically due to the non-spherically symmetric potential and its multi-center
nature as well as the presence of additional vibrational and rotational degrees of freedom.
Therefore, effects so far neglected become important: The symmetry of the wavefunc-
tion plays a role in ionization [26]; due to the closer energetic spacing, contributions
from several lower and higher electronic states become non-negligible; interatomic dis-
tances become relevant [27]; high-harmonic yields are influenced by orbital symmetry
[28]; multiple orbital contributions play a role [29]; ATI photoelectron spectra are in-
fluenced [30], etc. At the same time, strong-field physics and the possibility to align
molecules relatively to the laser polarization direction [31] open a new route to investi-
gate molecular properties and molecular dynamics. Prominent examples are the imprint
of molecular orbital symmetry on HHG and molecular orbital tomography [32, 33], prob-
ing molecular vibrational dynamics [34] and molecular reaction control in small molecules
(e.g. [35, 36, 37, 38, 39, 40]).

Molecular reaction control with strong laser pulses is both challenging and exciting due
to the fact that the dynamics in molecules take place on several timescales: while the
motion of electrons evolves on attosecond to femtosecond timescales, the nuclear motion
and thus chemical reactions proceed on much longer, femtosecond timescales. Early, light
induced control schemes for molecular reactions therefore utilized weak laser pulses with
a duration of hundreds of femtoseconds corresponding to the timescales of the nuclear
motion and shaped the envelope, phase and chirp of the pulse to gain control [41, 42].
Few-cycle IR pulses, on the other hand, are slightly shorter than typical molecular
vibrations and time shifts introduced by changing the carrier-envelope phase are even
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Introduction

on the timescale of the electronic motion. As a consequence, ultrashort pulses influence
the nuclear dynamics mainly via accessing the electronic response prior to vibrational
dynamics.

Ultrashort pulses are not only characterized by their envelope function and carrier fre-
quency. The exact field shape of a few-cycle pulse is determined by the relative phase
between the envelope function and the carrier wave, by the so called carrier-envelope
phase. The carrier-envelope phase (CEP) has an important influence on several strong-
field processes for systems ranging from atoms to nanostructures. To give a few exam-
ples, the carrier-envelope phase leads to an asymmetry in the ejection of photoelectrons
from atoms (e.g. [43]), influences the HHG structure in atoms (e.g. [6, 44]) and the ATI
photoelectron-spectrum from nanotips [25].

The CEP is also relevant for molecular processes (e.g. [35, 37, 38, 39, 40]), for which a
CEP dependent directional asymmetry of the proton or deuteron ejection from H+

2 , D+
2

and DCl was observed. The control scheme has been shown to be based on the coherent
superposition of the population of the ionic ground- and excited state. The coherent
superposition is thereby created via recollision and field-driven population transfer [36]
(see Figure). When the wavepacket reaches bond distances, where the energy spacing
between the ground and excited state goes to zero, the field driven electronic dynamics
are frozen, leading to a carrier-envelope phase dependent charge localization on one of
the nuclei [36].

Charge localization in H+
2 . Gray region: neutral; white region: cation; blue arrow: initial

ionization step; green arrow: recollisional excitation; yellow arrow: field-driven coupling
of the two states.

These experiments clearly show that molecular dynamics can be influenced and efficiently
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Introduction

controlled on a sub-cycle time scale using strong, ultrashort pulses. The reaction outcome
itself is, however, not investigated in the above described experiments. A first experiment
involving several different dissociation channels was performed by Liu et al. in Ref. [45].
In their experiment, they compared the asymmetry of the C2+ emission from CO for the
C2++O and the C2++O+ channels.

In this work, together with the experimentalists Dr. M. Kitzler and Dr. X. Xie from
the Vienna University of Technology, it has been shown for the first time that molecular
reaction control using strong, few-cycle pulses is not only achievable, control can even be
maintained for molecules significantly larger than diatoms [46, 47]. It is the goal of this
work to identify the underlying control mechanisms using theoretical modelling. The
challenge thereby lies in the necessity to combine molecular physics with strong-field
physics in order to find models suitable to describe the molecule–strong-field interaction
process.

Due to the different timescales involved, ranging from attoseconds to several tens of
femto-seconds, the investigation of reaction control using strong, few-cycle pulses requires
a multi-scale approach. Furthermore, the complexity of the problem, the presence of an
inhomogeneous, multi-center potential and the comparatively large number of molecular
degrees of freedom necessitate a multi-physics approach and the employment of several
different methods from different fields, including quantum chemistry, quantum dynamical
and semi-classical modelling, and scattering theory. Moreover, due to the complexity of
the problem, simplifications have to be introduced to describe the physics relevant to
the interaction of the molecules with intense few-cycle laser pulses.

The present work provides an interpretation of several recent experimental results, allows
the identification of the underlying physical mechanisms and provides physical pictures
enhancing our intuitive understanding of these new processes.

Still, many exciting questions in the topic of strong-field interaction with molecules
remain open or have not been touched upon yet. It can therefore be expected that
this field of research will continue to attract considerable attention in the scientific
community.
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Part I.

Theory
“It doesn’t matter how beautiful your theory is, it doesn’t matter

how smart you are. If it doesn’t agree with experiment, it’s
wrong.”

(Richard Feynman)

In this chapter, a brief introduction to the interaction of strong and short laser pulses
with atoms and molecules and a brief introduction to molecular dynamics and electronic
structure methods will be given. Throughout this chapter and in the entire work, atomic
units will be used, in which the electronic charge e, the electronic mass me and the
reduced Planck’s constant ~ are set to one. A summary and conversion table for the
atomic unit system is given in appendix A.

I.1. Ultra-short pulses and the
carrier-envelope phase

Advances in modern technology of designing ultra-broadband laser amplifiers and dis-
persion management allow today the routine generation of high intensity laser pulses
with pulse durations down to a few optical cycles. (See Ref. [5] for a review.). At in-
frared wavelengths with λ ≈ 800 nm, full-width at half maximum pulse durations of less
than 5 fs can be obtained. Much of the work presented in this thesis will focus on the
interaction of these extremely short pulses with molecules.

The short duration of the total pulse compared to the optical cycle implies that the pulse
envelope changes appreciably during one laser cycle. Therefore, the peak intensity and
the exact form of the field will depend on the relative phase, φCE , of the carrier wave
to the envelope (compare dark and light blue line in Fig. I.1.1). This carrier-envelope
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I.1. Ultra-short pulses and the carrier-envelope phase

Figure I.1.1.: Change of pulse shape with changing carrier-envelope phase. Dark blue:
symmetric pulse (φCE = 0◦) , light blue: anti-symmetric pulse (φCE = −90◦).

phase shift (CEP) can nowadays be efficiently controlled in experimental laser setups [6]
and measured on a shot-to-shot basis [7].

The vector potential A(r, t) of a few cycle field is thus fully defined by

A(r, t) = A0f(t) · cos(kr + ωt+ φCE)), (I.1.1)

where t is time, A0 the maximum of the vector potential, f(t) a smoothly varying
envelope function, ω the carrier frequency and φCE the carrier envelope phase. The
k-vector k = 2π

λ ê is defined through the wavelength λ = 2πc
ω and the propagation

direction ê. Since the envelope function, f(t) is zero for t → −∞ and t → ∞, this
definition ensures that the vector potential vanishes before and after the pulse. Within
the Coulomb gauge, the electric field is given by

E(t) = −1
c

∂

∂t
A(r, t) = E0

[ 1
ω
f ′(t) · cos(kr + ωt+ φCE)− f(t) · sin(kr + ωt+ φCE)

]
,

(I.1.2)
where c the speed of light and E0 = A0ω

c . For long pulses, the first term in the square
brackets is approximately zero and can be dropped.

Since the carrier-envelope phase-shift corresponds to effective time shifts on the sub-
wavecycle scale, few-cycle pulses with controlled CEP allow addressing dynamics on
a sub-cycle time scale. It has been shown that the carrier-envelope phase can indeed
have a substantial influence on the laser-driven dynamics of atoms and small molecules
[35, 48, 37, 38, 39, 40, 45, 49, 50].
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I.2. Strong-field molecule interaction

“A new laser material [...], and a new amplification technique
[...], made high-power lasers accessible to many university

laboratories. This research has become one of the most exciting
fields of research in atomic, molecular and optical physics.”

(Anne L’Huiller; Europhysics News, 33, 2002)

I.2.1. Strong-field physics

The most fundamental way to treat laser-matter interaction is to solve the Schrödinger
equation in the presence of an electromagnetic field. At low intensities, perturbative
approaches allow both, a large degree of physical understanding of the underlying field
driven processes as well as their quantitative description. However, as the intensity of the
laser field increases and as the ponderomotive potential, i.e. the cycle averaged energy of
a free electron in the electromagnetic field, increases and becomes much lager than the
energy of a single photon, perturbation theory breaks down [14]. The ponderomotive
energy, UP , that can easily be derived from the motion of a classical electron in a cw
field

UP = 1
2

(pmax)2

2 = 1
2
A2

2c2 = E2

4ω2 (I.2.1)

thus provides an important strong-field parameter.

I.2.2. Strong-field ionization

In the strong-field regime, ionization can usually not be understood in terms of single
or few photon absorption. While resonances may enhance ionization [51, 52], efficient
ionization by ultrastrong fields is also possible when the ionization potential is well above
the photon energy and when no resonances are present. A fundamental understanding
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I.2. Strong-field molecule interaction

of the strong field ionization process was first acquired by Keldysh [10]. Keldysh distin-
guished two strong field ionization regimes: the multi-photon regime and the tunnelling
regime. The tunnelling regime is thereby characterized by γ � 1 and the multi-photon
regime by γ � 1, where the Keldysh parameter γ is given by

γ =
√

IP
2UP

= ω
√

2Ip
E

, (I.2.2)

and IP is the ionization potential of the system.

The physical idea behind multi-photon ionization is that the electron is propelled to the
continuum by the simultaneous absorption of several photon as shown in Fig. I.2.1.a).
In this case, the ionization rate, Γ, can be expected to depend on the field strength, E,
according to a power law [53]

ΓMPI ∝ E2K , (I.2.3)

where K is the number of photons absorbed.

Figure I.2.1.: Physical picture of a.) multi-photon ionization and b.) tunneling ioniza-
tion.

Tunnelling ionization describes the limiting case when the electric field oscillates suffi-
ciently slowly that the electron can tunnel to the continuum through the barrier formed
by the combined atomic(molecular) and electric field as shown in Fig. I.2.1.b.) [54]. A
first approximation for the tunnelling rate can be obtained considering a narrow square
well potential in a static field and using the WKB-approximation [55]. This yields an
exponential dependence of the ionization rate, Γ, on the electric field, E.

ΓTU = e−
2
3

√
2IP

3

E . (I.2.4)

After Keldysh had discovered the tunnelling mechanism in the 1860’s, several refinements
to his model were suggested, taking into account, for example, the shape of the (atomic)
wavefunction, the time dependence of the field, Coulomb corrections, the suppression of
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I. Theory

the barrier or the molecular structure (e.g. [56, 57, 26, 58, 59]). A review can be found
in Ref. [60]. Early improvements to the Keldysh theory are due to Perelomov et al. [23].
Later, a different approach involving infinite sums over the number of photons absorbed
was developed by Faisal and Reiss, which is generally referred to as KFR (Keldysh, Faisal
and Reiss [10, 61, 20]) method. A widely used expression due to Ammosov, Delone and
Krǎınov, usually referred to as ADK-Rate, is only valid in the quasistatic regime. The
following expression, which was used in the course of this work, and which includes the
dependence on the initial momentum of the electron after tunnelling is due to Delone
and Krǎınov [59].

ΓADK ∝ e−
2
3

√
2IP

3

E
−
p2⊥
√

2IP
E

−
p2‖ω

2√2IP
3

3E3 , (I.2.5)

where all pre-exponential factors have been ignored, and p‖ and p⊥ denote the electronic
initial momentum after tunnelling parallel and orthogonal to the electric field. This
equation will be referred to as ADK-like ionization rate in the following.

I.2.3. Strong-field approximation (SFA)

Once the electron is propelled to the continuum by a strong field, it is often a reasonably
good approximation to neglect the interaction of the electron with the residual ion in
comparison with the (strong) interaction with the field. Within this approximation,
the continuum wavefunctions are Volkov states, which are solution to the Srchödinger
equation of a free electron in an electric field [62]

φk(r, t)length gauge = 1
√

2π3 e
i(k−A)r−

∫ t
0

1
2 (k−A(t′))2dt′ , (I.2.6)

where A(t) is the vector-potential.

In the classical formulation, the SFA implies that the momentum of an electron released
to the continuum at t = t0 is given by

pSFA(t) = p0 −
∫ t

t0
E(t′)dt′ = p0 + 1

c
(A(t)−A(t0)), (I.2.7)

where t0 is the moment of ionization and p0 is the initial momentum. The Coulomb force
is neglected in the equation of motion. After the end of the pulse, the final momentum
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I.2. Strong-field molecule interaction

of a classical electron starting with zero velocity is thus

pSFA
f = −1

c
A(t0). (I.2.8)

While the strong-field approximation often provides useful insight into physical problems,
its application is problematic since it is not gauge invariant. Furthermore, although
several important strong-field effects in which an interaction with the residual ion plays
a role are captured by the three-step model, due to the neglect of the Coulomb field in
the SFA, some physically relevant effects cannot be described (e.g. [63, 64, 65]).

I.2.4. The three step model

The three-step model by Corkum [21] is a semi-classical model that allows the interpre-
tation of several strong-field processes, including high-energy above-threshold ionization
(ATI), high-harmonic generation and nonsequential ionization. The semi-classical model
describes these processes in three steps:

1. An electron is released to the continuum by tunnelling ionization at time t1. The
tunnelling probability as a function of t1 is given by an ADK-like ionization rate.

2. The electron is propagated in the laser field using the strong-field approximation

x(t; t1) = x0 + v0 (t− t1)− 1
c
A(t1) (t− t1) + 1

c

∫ t

t1
A(t′)dt′. (I.2.9)

3. In linear polarized light, depending on the moment of ionization, the electron
may return to the origin, x(t2; t1) = 0, where it recollides with the nucleus. The
maximum possible recollision energy can be determined numerically and is given
by [21]

εmax
rec. = 3.17UP . (I.2.10)

At 800 nm and 1× 1014 W/cm2, this corresponds to approximately 20 eV.

Upon recollision, the electron may recombine with the ion or scatter elastically or
inelastically. Depending on the type of interaction, this may lead to high-harmonic
generation, high-energy ATI and recollisional excitation and ionization:
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I. Theory

• Recombination. If the electron recombines with the ion, the excess en-
ergy given by εrec + IP , where IP is the ionization potential, can be released
by emitting a photon. This is the origin of high-harmonic generation. A
more detailed, quantum-mechanical treatment of this process is given by the
Lewenstein model [22].

• Elastic scattering. While direct (i.e. not rescattered) photoelectrons can
have a maximum energy of 2UP after the end of the laser pulse, rescattered
photoelectrons can have an energy up to approximately 10UP . This can be
explained by the fact that, upon recollision, the electrons can be reflected by
a hard collision with the ion: p(t2) → −p(t2), leading to a final momentum
after the end of the pulse of

pf = −(A(t2)−A(t1))−A(t2), (I.2.11)

where the first term in brackets corresponds to the momentum the electron
has upon recollision, and the second term corresponds to the momentum the
electron gains thereafter due to the acceleration in the field. The times t2
and t1 are related by the recollision condition x(t2; t1) = 0. This explains
qualitatively the spectrum of the above threshold ionization photoelectrons,
which exhibits a cutoff at 10UP .

• Inelastic scattering. Inelastic scattering can lead to the excitation of the
residual ion and, possibly, subsequent field ionization (RESI - recollision-
excitation with subsequent ionization). If the recollision energy is sufficiently
high, the recolliding electron can even induce ionization via electron impact
ionization (RI - recollisional ionization).

I.2.5. Laser-matter interactions in the Schrödinger equation

While the above described physical pictures allow a basic analysis of several strong-
field processes, an exact treatment of laser-matter interactions can only be achieved
by solving the many-body Schrödinger equation in the presence of an electromagnetic
field1. The non-relativistic, quantum-mechanical treatment of laser-matter interactions

1It is noted parethetically that the solution of the full Schrödinger equation is only feasible for very
small systems such as the hydrogen atom, H+

2 or He. For larger system, approximations to the exact
expression have to be made in order to allow solving the equation analytically or numerically.
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I.2. Strong-field molecule interaction

would thereby require both, the correct treatment of the quantum nature of electrons
and nuclei and the quantization of the radiation field. However, if the number of photons
is high enough, a semi-classical description can be used in which the radiation field is
treated classically through Maxwell’s equations, while the atomic or molecular system
is described quantum-mechanically [66].

The non-relativistic Hamiltonian in velocity gauge representation

Within the Coulomb gauge, ∇A(r, t) = 0, the non-relativistic Hamiltonian of a charged
particle with mass m and charge q can be written as [67]

Hv = 1
2m

[
p− q

c
A(r, t)

]2
+ qU(r, t), (I.2.12)

where p denotes the canonical momentum and the subscript v stands for “velocity gauge”.
The electric field is fully described by the vector potential A. The potential U describes
the potential created by a static external charge distribution.

In general, one would have to include the Hamiltonian of the electromagnetic field,Hem =
1

8π
∫

(E2 + B2)d3r in the above expression [67]. In the external field approximation,
however, the influence of the quantum system on the electromagnetic field is neglected.
In this case, the field Hamiltonian can be dropped, as has been done in Eq. (I.2.12).

Relativistic effects, which are neglected in the above expression, will only become im-
portant when the energy gained by a classical electron in the field is comparable to mc2,
i.e. when I ≈ 2c4ω2, corresponding to I ≈ 8× 1018 W/cm2 for 800 nm radiation (see
Eq. (I.2.1)), which is several orders of magnitudes above the intensities considered in
this work.

Dipole Approximation

If the system size λc is much smaller than the wavelength λ of the electromagnetic field
(λc � λ) and if the interaction with the magnetic field B = ∇×A(r, t) can be neglected,
the spacial dependence in the vector potential can be dropped

A(r, t) ≈ A(t). (I.2.13)
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I. Theory

At infrared wave lengths with λ ≈ 800 nm, λc � λ for atoms and small molecules [68].
Neglecting the magnetic field can be expected to be a good approximation as long as the
trajectory described by a classical electron in the electromagnetic field is not strongly
distorted by the magnetic field. This limit is reached for intensities given by I ≈ 8cω3

[69, 70], which corresponds to I ≈ 7× 1015 W/cm2 for 800 nm radiation.

The Hamiltonian in length gauge representation

Within the dipole approximation,

E(r, t) = E(kx− ωt) ≈ E(ωt) = E(t), (I.2.14)

the velocity gauge expression, Eq. (I.2.12), can be transformed to the so-called length
gauge via

ψl = ei
q
c
A(t)rψv. (I.2.15)

This leads to the length gauge Hamiltonian [67]

Hl = 1
2mp2 − qrEe(t) + qUe(r). (I.2.16)

Hamiltonian of atoms and molecules in electromagnetic fields

Using Eq. (I.2.12), the Hamiltonian of an atom or molecule in an electromagnetic field
is given by

Hv =
∑
n

1
2Mn

[
pn −

Zn
c

A(r, t)
]2

+
∑
i

1
2

[
pi + 1

c
A(r, t)

]2
+

+ 1
2
∑
i,j

1
|ri − rj |

+ 1
2
∑
m,n

ZmZn
|Rm −Rn|

−
∑
m,i

Zm
|Rm − ri|

, (I.2.17)

where the Mn denote the nuclear masses, Rn the nuclear coordinates, Zn the nuclear
charges and ri the electronic coordinates. The sums over m and n run over all nuclei,
those over i and j over the electrons. The first two terms of this equation describe
the momenta of the nuclei and the electrons. The third and forth term are the repul-
sive electron-electron and nucleus-nucleus interaction. The fifth therm is the attractive
electron-nucleus interaction.
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I.2. Strong-field molecule interaction

After the transformation to the length gauge, the Hamiltonian is given by

H(ri,Ri, t) = H0 +
(∑

i

ri −
∑
n

ZnRn

)
E(t), (I.2.18)

where H0 denotes the field free Hamiltonian of the atom or molecule. As discussed
above, this expression is only valid within the dipole-approximation.
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I.3. Molecular quantum dynamics

Now we come to the heart of chemistry. If we can understand
what holds atoms together as molecules we may also start to
understand why, under certain conditions, old arrangements

change in favour of new ones. We shall understand structure,
and through structure, the mechanism of change.

(P. W. Atkins, Molecular Quantum Mechanics, 1983)

I.3.1. The field-free, non-relativistic molecular Hamiltonian

The non-relativistic Hamiltonian of a molecule with Nn nuclei and Ne electrons is given
by the sum of the nuclear and electronic kinetic energy operators, Tn and Te and the
nucleus-nucleus, electron-electron and nucleus-electron interactions, Vn,n, Ve,e and Vn,e:

H =
Nn∑
α

p2
α

2Mα︸ ︷︷ ︸
Tn

+
Ne∑
i

p2
i

2︸ ︷︷ ︸
Te

+1
2

Nn∑
α

Nn∑
β 6=α

ZαZβ
|Rα −Rβ|︸ ︷︷ ︸

Vn,n

+1
2

Ne∑
i

Ne∑
j 6=i

1
|ri − rj |︸ ︷︷ ︸

Ve,e

−
Nn∑
α

Ne∑
i

Zα
|Rα − ri|︸ ︷︷ ︸

Vn,e

.

(I.3.1)
The sums over Greek letters run over the nuclei, while sums over Latin letters run over
electrons. Equally, the Rα denote the spatial coordinates the nuclei and the ri the
spatial degrees of freedom of the electrons. The nuclear masses are given by Mα. The
momentum operator pα is given by p(Rα) = −i∇Rα and pi is given by p(ri) = −i∇ri .

The molecular wavefunction Ψ is a function of all nuclear and electronic degrees of
freedom and is defined through the Schrödinger equation

HΨ(R1, ...,RNn , r1, ..., rNe , t) = −i ∂
∂t

Ψ(R1, ...,RNn , r1, ..., rNe , t), (I.3.2)

where H is the Hamiltonian. If the Hamiltonian is time independent, as in Eq. (I.3.1),
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I.3. Molecular quantum dynamics

the equation is separable which leads to

HΨ(R, r) = EΨ(R, r), (I.3.3)

where Ψ(R, r, t) = Ψ(R, r)eiEt. (Here and in the following R denotes {R1, ...,RNN } and
r denotes {r1, ..., rNe}.)

The wave function Ψ(R, r), which depends on D = 3 · (NN +Ne) spatial degrees of
freedom, can be solved exactly neither analytically nor numerically for most physical
systems of interest. Even for the smallest of molecules, H2, simplifications such as the
Born-Oppenheimer approximation, discussed in the following, will be necessary to allow
the investigation of molecular electronic states and dynamics.

I.3.2. The Born-Oppenheimer and Born-Huang approximation

The mass ration of electrons to nuclei is Mnuc
melec

& 1836. The electrons thus move much
faster than the nuclei. One can therefore, at every moment in time, view the electrons
in a molecule to move in the quasi-static potential of the slow nuclei. This picture moti-
vates the (formally exact) expansion of the total wavefunction Ψ in a basis of electronic
wavefunctions ψ [71]

Ψ(R, r) =
∞∑
i=0

ψai (r; R) · χai (R), (I.3.4)

where the ψ are eigenfunctions of the electronic HamiltonianHe, which contains all terms
of the molecular Hamiltonian which explicitly depend on the electronic coordinates:

Heψ
a(r; R) = [Te + Ve,e + Vn,e]ψa(r; R) = Eelec(R)ψa(r; R) (I.3.5)

The superscript “a” denotes the “adiabatic representation” as opposed to the diabatic
representation, “d” introduced later.

Substituting the ansatz Eq. (I.3.4) into the time-independent Schrödinger equation,
Eq. (I.3.3) and using the Hamiltonian from Eq. (I.3.1), multiplication with 〈ψi|, leads
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I. Theory

to the following infinite set of coupled equations:

(
Tn +

Ua
i︷ ︸︸ ︷

Eelec
i (R) + Vn,n(R)

)
χa
i (R)

−
∞∑
j=0

[∑
α

1
2Mα

(
2

T(1)
ij︷ ︸︸ ︷

〈ψi|∇α|ψj〉 ·∇α +

T
(2)
ij︷ ︸︸ ︷

〈ψi|∇2
α|ψj〉

)]
χa
j (R)

= Eχa
i (R), (I.3.6)

where the integration 〈•〉 is performed over all electronic degrees of freedom. The nuclear
wavefunctions χa

i are thus the solutions of Schrödinger-like equations coupled via the non-
adiabatic coupling elements, the matrices T(1)

ij , and the scalar second order couplings,
T

(2)
ij , which depend on the derivatives of the electronic wavefunctions with respect to the

nuclear coordinates.

Born-Oppenheimer approximation

So far, the ansatz for the wavefunction and the coupled equations are exact. In the adi-
abatic Born-Oppenheimer approximation and the Born-Huang approximation, however,
the sum in Eq. (I.3.4) is truncated: in the adiabatic approximation to one electronic
state only (Nst = 1) and in the Born-Huang approximation to Nst states.

Additionally, in the Born-Oppenheimer approximation and often also in the Born-Huang
approximation, the first and second order couplings are neglected (T(1) = 0, T (2) = 0).
Due to their scaling with 1

Mα
, these couplings can be expected to be small and these

terms are usually only large in regions where electronic states are energetically close
and the character of the electronic wave function changes rapidly with changing nuclear
configuration [71].

In the Born-Oppenheimer approximation, the nuclear Schrödinger reads

(
Tn + Eelec(R) + Vn,n︸ ︷︷ ︸

U(R)

)
χ(R) = E χ(R). (I.3.7)

The nuclear wavefunction, χ(R), thus evolves on a single effective 3Nn-dimensional
potential energy landscape U(R). The potential U(R) = Eelec(R) + Vn,n(R) is thereby
defined via the electronic energy corresponding to the electronic eigenstate ψ as shown
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I.3. Molecular quantum dynamics

schematically in Fig. I.3.1. This eigenstate is assumed not to change throughout the
dynamical process.

Figure I.3.1.: Schematic of the Born-Oppenheimer (BO) and Born-Huang approximation.
In BO, only one electronic potential is taken into account.

Beyond Born-Oppenheimer

If the non-adiabatic couplings are large, and especially at conical intersections, where the
non-adiabatic couplings can have a singularity, the Born-Oppenheimer approximation is
not valid. In this case, the Born-Huang ansatz may be used, where the sum in Eq. (I.3.4)
is truncated at i = Nst, including all strongly coupled states. The infinite set of coupled
equations then reduces to a set of Nst equations, coupled via T(1)

ij and T (2)
ij .

(
Tn + Ua

i

)
χi(R)a

−
Nst∑
j=1

[∑
α

1
2Mα

(
2

T(1)
ij︷ ︸︸ ︷

〈ψi|∇α|ψj〉 ·∇α +

T
(2)
ij︷ ︸︸ ︷

〈ψi|∇2
α|ψj〉

)]
︸ ︷︷ ︸

N̂ij

χj(R)a

= Eχi(R)a, (I.3.8)

with i ∈ [1, Nst].

In time-dependent problems, in which χi(R) is replaced by χi(R, t) and E by −i ∂∂t ,
this means that during the time evolution, parts of the nuclear wavepacket can switch
the electronic state. The switching probability thereby depends on the size of the non-
adiabatic coupling terms, T(1)

ij and T (2)
ij .
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Diabatic representation

The coupled equations can either be solved directly, or, alternatively, can be transformed
to the diabatic representation. In the diabatic representation, the wavefunction is defined
as [72]

Ψ(R, r) =
∞∑
i=0

ψd
i (r; R) · χd

i (R), (I.3.9)

where the ψd
i are no longer eigenfunctions of the electronic Schrödinger equation, but

are related to the ψa
i via the unitary transform A

ψa
i (r; R) =

NSt∑
j=1

A†ij(R)ψd
j (r; R). (I.3.10)

The goal is to define the unitary transform, Aij(R), such that the new functions ψd
i have

vanishing derivative couplings. This leads to the requirement [72]

∇αAij(R) +
Nst∑
k=1

T(1)a
ik Akj(R) = 0. (I.3.11)

If a diabatic representation can be found, this leads to

(
Tn +

Nst∑
j=1

Ud
il︷ ︸︸ ︷

Nst∑
k,l

A†ijU
a
jkAkl

)
χd
l (R) = Eχd

i (R). (I.3.12)

This expression has the advantage that it does not depend on any derivative terms. The
cost is a full, i.e. non-diagonal, matrix expression for the potential Ud

il , compared to a
diagonal matrix Ua

jk = ∑Nst
j=1 U

a
j δjk in the adiabatic case.

I.3.3. Field excitations in Born-Huang approximation

With the approximations discussed in section I.2.5, the Hamiltonian of a molecule in an
electric field is given by (see Eq. (I.2.18))

H = Tn + Te + Vn,n + Ve,e + Vn,e +
(∑

i

ri −
∑
n

ZnRn

)
E(t), (I.3.13)
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I.3. Molecular quantum dynamics

where the abbreviations defined in Eq. (I.3.1) have been used, the sum over i runs over all
electrons with coordinates ri and n runs over all nuclei with charge Zn and coordinates
Rn. The external, time-dependent electric field is given by E(t).

Inserting the time-dependent Born-Huang ansatz

Ψ(R, r, t) =
Nst∑
i=0

ψai (r; R) · χai (R, t) (I.3.14)

and Eq. (I.3.13) into the time-dependent Schrödinger equation, leads to the following
set of equations coupled via the non-adiabatic couplings, N̂ij , and the dipole couplings,
dij(R):

(
Tn + Eelec

i (R) + Vn,n(R)
)
χi(R, t)

−
Nst∑
j=1

(
N̂ij +

〈
ψi(r; R)

∣∣∣∣∣∑
a

ra −
∑
n

ZnRn

∣∣∣∣∣ψj(r; R)
〉

︸ ︷︷ ︸
dij(R)

E(t)
)
χj(R, t)

= −i ∂
∂t
χi(R, t), (I.3.15)

where the indices i and j count electronic states, the index a runs over the electrons and
n over the nuclei with charge Zn.

Neglecting the nonadiabatic couplings, Eq. (I.3.15) can thus be written in a matrix
notation as


TN 0

. . .

0 TN

+


U1 + d1,1E(t) d1,2E(t) . . . d1,NstE(t)

d2,1E(t) . . .
. . .

...
...

. . .
. . . dNst−1,NstE(t)

dNst,1E(t) . . . dNst,Nst−1E(t) UNst + dNst,NstE(t)





χ1
...

χNst



= −i ∂
∂t


χ1
...

χNst

 , (I.3.16)

24



I. Theory

where Ui = Eelec
i + Vn,n. Restricting the basis to Nst electronic states is equivalent to

neglecting any dipole couplings to electronic states not included in the basis.
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I.4. Electronic structure Methods

Nuclear dynamics simulations and methods based on the knowledge of the electronic
wavefunction require the solution of the Ne-particle electronic Schrödinger equation,
Eq. (I.3.5):

He(r; R)ψ(x; R) = [Te + Ve,e + VN,e + VN,N ]ψ(x; R) = U(R)ψ(x; R), (I.4.1)

where x = (r, σ) denotes both, spacial and spin coordinates. (For convenience, the
parametric dependence on R will be dropped in the following.)

For systems with several electrons, this equation can be solved exactly neither analyt-
ically nor numerically. In the following, several different approximate methods will be
discussed. The idea behind most approximate ansätze is thereby to express the Ne-
electron wavefunction in a basis of several effective single-electron wavefunctions, while
fulfilling the Pauli principle, i.e. while being antisymmeric with respect to the exchange
of any two of the Ne electrons present in the molecular system.

I.4.1. Hartree-Fock method

The conceptionally simplest method is the Hartree-Fock method. In the Hartree-Fock
approximation, it is assumed that the electronic wavefunction can be written as an anti-
symmetrized product state of single particle functions, i.e. as a single Slater determinant
or configuration, Φ(x), of spin orbitals, φi(xi) [73, 74]

ψ(x) = Φ(x) = Â [φ1(x1)φ2(x2) . . . φNe(xNe)] (I.4.2)

= 1√
Ne!

∣∣∣∣∣∣∣∣∣
φ1(x1) . . . φNe(x1)
...

. . .
...

φ1(xNe) . . . φNe(xNe),

∣∣∣∣∣∣∣∣∣ (I.4.3)
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I.4. Electronic structure Methods

where the operator Â denotes the antisymmetrization operator and
∣∣∣•∣∣∣ denotes the de-

terminant.

The Hartree-Fock wavefunction minimizes the energy U(R).

U = 〈ψ|He|ψ〉
〈ψ|ψ〉

→ min. (I.4.4)

under the side condition 〈φi|φj〉 = δi,j for any i, j ∈ [1, Ne]. After minimization and a
unitary transform of the single particle wavefunctions φ, this variational ansatz leads to
a set of pseudo single particle equations, the Hartree-Fock equations [73]

Fi|φi〉 = (Ti + Vn,i)|φi〉︸ ︷︷ ︸
hi|φi〉

+
Ne∑
j=1
〈φj |g12|φj〉|φi〉︸ ︷︷ ︸

Jj |φi〉

−
Ne∑
j=1
〈φj |g12|φi〉|φj〉︸ ︷︷ ︸

Kjφi

= εi|φi〉,

where Fi denotes the Fock operator, Ti the single particle kinetic energy operator and
Vn,i the interaction of electron i with the nuclei. The integration implied by the bracket
notation runs over the spatial and spin coordinates of electron 2. The operator g12 is
given in real space representation as g12(r1, r2) = 1

|r1−r2| .

The pseudo single particle wavefunctions φi are thus defined through a Schrödinger-
like equation consisting of the sum of a single particle Hamiltonian, hi, the Coulomb
operator, Ji, and the exchange operator, Ki. The single particle wavefunctions φi(xi)
can be interpreted as molecular spin-orbitals and the Lagrange multipliers εi as orbital
energies. Since the Fock operator, Fi, which defines the single particle wavefunction
φi, depends on all other single particle wavefunctions φj , these equations have to be
solved self-consistently in an iterative way. This is generally done numerically using an
atom centred basis of Slater type or Gaussian shaped functions ϕα, φi = ∑

α ci;αϕα and
varying the coefficients ci;α. Special basis sets have been designed for different atoms
which ensure faster convergence than grid based approaches.

The total electronic energy in Hartree-Fock approximation is given by [73]

U =
Ne∑
i=1
〈φi|hi|φi〉+ 1

2

Ne∑
i=1

Ne∑
j=1

(〈φj |Ji|φj〉 − 〈φj |Kiφj〉) + VN,N . (I.4.5)
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I.4.2. Electron correlation methods

In many cases, the HF method is insufficient to describe the molecular electronic struc-
ture and electronic energies adequately and thus often only provides a starting point
for other more advanced methods. This is due to the fact that in Hartree-Fock, only
the Fermi correlation is considered, i.e. the correlation due to the Pauli principle which
prevents same-spin electrons from being at the same point in space. The Coulomb cor-
relation is not accounted for in Hatree-Fock, where every electron moves in the averaged
potential of the other electrons.

Including several, instead of one single determinant in the ansatz for the Ne particle
wavefunction can lead to the incorporation of Coulomb correlation effects. Including
infinity many determinants in the ansatz, would allow the exact representation of the
wavefunction. The following ansatz can thus provide an improvement over the Hartree-
Fock method [73]:

ψ(x) =
Ndet∑
i=1

ciΦi(x) =
NCSF∑
i=1

cCSFi ΦSCF
i (x), (I.4.6)

where the Φi denote different Slater determinants, corresponding to excitations. The
configuration state functions, ΦCSF

i (x), are linear combinations of Φi and are eigen-
functions of the spin S2 operator. While the description via Slater determinants and
configuration state functions is physically equivalent (if the same excitations are in-
cluded in the ansatz), the use of configuration state functions is numerically favourable
since the electronic eigenfunctions ψ(x) are eigenfunctions of the spin operator, if spin-
orbit coupling can be neglected. In this case, only ΦCSF

i corresponding to the required
spin quantum number have to be included in the ansatz, which reduces the number of
variational parameters ci in the wavefunction.

The total number of possible configurations depends exponentially on the system size
and it remains a difficult question to decide which configurations to include in the ansatz.
One very popular choice is known as complete active space self consistent field (CASSCF)
calculation.

I.4.2.1. Complete active space calculations (CAS)

In complete active space self consistent field (CASSCF) calculations, the complete space
of molecular orbitals (resulting for example from a Hartree-Fock calculation or from a
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I.4. Electronic structure Methods

Figure I.4.1.: Examples for determinants included in the multi-configuration ansatz in
a.) CAS and b.) CI-SD calculations. Arrows up denote spin-up electrons, arrows down
spin-down electrons.

previous run at a similar geometry) is split into three regions [73]. A CAS(Nact
e , Nact

orb)
includes

• Nocc
orb orbitals that are doubly occupied in all CSFs,

• Nact
orb active orbitals that are occupied in total by Nact

e = Ne − 2Nocc
orb electrons as

shown schematically in Figure I.4.1.a) and

• all other orbitals that are unoccupied in all CSFs.

In a CASSCF calculation, both the weights of the CSFs, cCSFi , and the molecular orbitals
φi(ri) (or, more specifically, the coefficients ci,α) are optimized to minimize the electronic
ground state energy of the molecular system. In a state averaged CAS (SA-CAS) cal-
culation, not only the electronic ground state energy is optimized, but the minimization
targets all states in the state average. This can be of interest, if a good description of
excited states is needed.

Overall, CASSCF calculation allow including what is usually termed static correlation
in quantum chemistry, but it completely misses the dynamic correlation, which refers
to the influence of many, highly excited determinants, and which is crucial in order to
obtain correct energies. Dynamic correlation can be recovered by MRCI calculations or
by using perturbative methods.

I.4.2.2. Configuration interaction singles-doubles (CI-SD)

In CI-SD calculations, all those determinants are taken into account that correspond to
single or double excitations form the single-determinant ground-state configuration. To
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reduce the number of determinants, sometimes “frozen” orbitals are defined from which
excitations are not allowed (see Fig. I.4.1.b).

In CI-SD calculations typically a much larger number of CSF and thus CSF-weights cCSFi

is taken into account compared to CASSCF calculations. However, unlike CASSCF cal-
culations, in CI-SD calculations only the weights cCSFi are optimized, while the molecular
wavefunctions are kept fixed. Furthermore, CI-SD suffers from a size consistency prob-
lem, i.e. twice the energy of system A calculated by CI-SD does not equal to the energy
of a system B consisting of two times system A at large distances. In total, the larger
the system, the less correlation energy is recovered by the CI-SD ansatz.

In multi-reference configuration interaction methods (MRCI-SD) a preselected set of
configurations is considered as reference configurations from which single and double
excitations are allowed. This greatly increases the number of CSF, but allows a better
description of excited states.

I.4.2.3. Perturbative methods

An alternative method to include dynamic correlation effects is the use of perturbative
methods. The underlying idea is to partition the electronic Hamiltonian, He, into a
reference Hamiltonian, H0, and a small perturbation, λH ′, where λ is a scalar scaling
the strength of the perturbation:

He = H0 + λH ′. (I.4.7)

The energy, Ua, of state a and the corresponding wavefunction |a〉 are expanded as

Ua = Ua0 + λUa1 + λ2Ua2 + . . . and (I.4.8)
|a〉 = |a0〉+ λ|a1〉+ λ2|a2〉+ . . . , (I.4.9)

with

U0 = 〈a0|H0|a0〉 (I.4.10)
U1 = 〈a0|H ′|a0〉 (I.4.11)
U2 = ∑

a6=b
〈a0|H′|b0〉
Ua0−Ub0 . (I.4.12)
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I.4. Electronic structure Methods

In Möller-Plesset perturbation theory [75], the reference wave function, |a0〉, is the
Hartree-Fock wavefunction and H0 is typically set to

H0 =
N∑
i=1

Fi, (I.4.13)

where Fi is the Fock operator of the i-th orbital and the sum runs over all occupied
orbitals. In this case, the first order energy U0 +U1 is equal to the Hartree-Fock energy
and the second order correction, U2 will gradually improve the Hartree-Fock result.
Higher order corrections are usually not taken into account. Möller-Plesset perturbation
theory usually gives good results for ground state calculations.

In CASPT2, the reference wave function is a CAS wavefunction and the partitioning of
the Hamiltonian becomes more complicated. The pricise form can be found in Ref. [76,
77] and will not be given in detail here.

I.4.3. Density functional theory (DFT) and time-dependent
DFT (TDDFT)

Density functional theory is a formally exact method to calculate the ground state energy
of a system and is computationally more efficient than the high level ab initio methods
(CAS, MRCI) described in the last section.

Time-independent DFT is based on the Hohenberg-Kohn theorems, which state that in
a non-degenerate system,

1. there is a one-to-one mapping of the electronic groundstate density, n(r) (which
depends only on three spatial coordinate) and the groundstate wavefunction (which
depends on 3Ne spatial coordinates and Ne spin coordinates) and

2. there is a one-to-one mapping between the the groundstate wavefunction and the
groundstate energy [78].

The energy is calculated from the energy functional

E[n(r)] = V [n(r)] + U [n(r)] + T [n(r)] + Exc [n(r)] , (I.4.14)
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where V is an external potential (i.e. Vn,e + Vn,n). The electron-electron interaction,
U [n(r)], is given by

U [n(r)] = 1
2

∫
dr
∫

dr′n(r)n(r′)
|r− r′| . (I.4.15)

T is the kinetic energy functional and Exc denotes the exchange-correlation potential.
If the functional form of T and Exc were known, density functional theory would yield
the exact groundstate energy.

Assuming that the density of this interacting system can also correspond to the density
of a yet unknown effective one particle Hamiltonian, one can write [78]

n(r) =
Ne∑
i=1

∣∣∣φKS
i (r)

∣∣∣2 , (I.4.16)

where the φKS
i are one-particle functions usually referred to as Kohn-Sham orbitals.

This assumption allows the evaluation of the kinetic energy functional using the following
expression: T = ∑

i

∫
d3rφKS∗

i (r)
(
−∇2

2

)
φKS
i (r). The functional T will then only account

for the kinetic energy of the effective non-interacting system and not for that of the
complete system. The contributions to the energy not included in T , V and U are
assumed to be taken care of by the unknown exchange-correlation functional Exc.

Several different functional forms of the exchange-correlation potential have been de-
vised, all of which are only approximations to the true and unknown functional. A
popular, but rather simple approximation is the local-density approximation (LDA). In
LDA [79, 80, 81, 82] the exchange functional Exc is an expression of the density n(r)
and does not depend for example on the derivative thereof. The LDA exchange energy
is generally calculated analytically from the Hartree-Fock result of the exchange energy
for a homogeneous electron gas. The correlation energy for a homogeneous electron gas
can only be derived analytically for the limiting cases of high and low density. Most
LDA exchange-correlation potentials interpolate between these two limits.

For time-dependent problems, the Runge-Gross theorems takes the role of the Hohenberg-
Kohn theorems on which DFT are based [83]. The exchange and correlation functionals
may now in principle depend on the entire time evolution of the density, a possibility that
is excluded in the adiabatic approximation [83]. A popular choice for a time-dependent
exchange-correlation functional is the adiabatic local-density approximation (ALDA).

TDDFT can not only be used to compute the time evolution of a system, TDDFT can
also be used to calculate the energies of excited states. This is attained by subjecting
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the system to a small time dependent perturbation field. The excitation energies can
then be extracted from the poles of the linear-response function of the density [83].

I.4.4. Quantum Chemistry software and basis sets

Several commercial and non-commercial software packages are available to solve the
electronic Schrödinger equation using the afore mentioned methods. In the course of
this work, the software package Columbus 7 [84, 85, 86, 87, 88], and Molcas [89] were
used for CASSCF, MRCI and CASPT2 methods. These programs are also capable
of calculating dipole transition elements and Columbus 7 can calculate nonadiabatic
couplings using analytic gradients. For density functional theory calculations (including
time dependent calculations) the software package Octopus [90, 91, 92] was used.

While Octopus is grid-based, Columbus and Molcas both make use of atomic basis sets as
spatial basis for the electron wavepacket. This limits the calculations to bound electrons,
but greatly reduces the numerical effort of the calculation.
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I.5. Electron scattering and impact
ionization

One could say that physicists just love to perform or interpret
scattering experiments.

(Clifford G. Shull; Nobel Banquet Speech (10 Dec 1994) in Tore
Frängsmyr (ed.), Les Prix Nobel)

In this chapter, a brief introduction to the calculation of electron impact ionization
cross-sections will be given.

Assuming the mass of the target to be large compared to the electron mass, the single
channel, triply differential cross-section for electron impact ionization is given by [93]

d3σ

dΩ1dΩ2dE1
∝ k1k2

k0
|Tfi|2 δ(Ef − Ei), (I.5.1)

where Tfi denotes the transition matrix element from the initial state with energy Ei
to the final state with energy Ef . The momenta of the two outgoing electrons are given
by k1 =

√
2E1 and k2; k0 denotes the momentum of the incident electron. (Note that

this cross-section is sometimes also referred to fivefold differential cross-section, since
Ω = (θ, φ).)

The transition matrix element is given by [94]

Tfi = 〈Ψ−f |Vint|Φi〉, (I.5.2)

where Vint is the interaction of the incoming electron with the target system. If the
target system is described via the Hamiltonian H0, then the total Hamiltonian is given
by

H = H0 +K + Vint = H̃ + Vint,

where K is the kinetic energy operator of the incident electron. The final wavefunction
Ψ−f is the solution of the full Hamiltonian H for outgoing boundary conditions. The
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I.5. Electron scattering and impact ionization

wavefunction Φi is a solution of the non-interacting Hamiltonian H̃ and is thus given
by an anti-symmetrized product of an incident plane wave with momentum k0 and the
N -particle target state, which is a solution to H0.

Equivalently, the transition matrix element can be written as

Tfi = 〈Φf |Vint|Ψ+
i 〉, (I.5.3)

where Φf is a solution of H̃ and Ψ+
i a solution for H with incoming boundary conditions.

In a two active electron picture, and random orientation of the spins of the incoming
particles, the triply differential cross-section should account for spin singlet and spin
triplet configurations and thus [95, 66]

d3σ

dΩsdΩedE
= keks

ki

[1
4 |T

+|2 + 3
4 |T

−|2
]
, (I.5.4)

where T+ corresponds to the transition matrix for a symmetrized spatial wavefunction
and T− the transition matrix for an anti-symmetrized wavefunction.
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Part II.

Numerical methods

II.1. Solving the nuclear time-dependent
Schrödinger equation

To study nuclear dynamics, it is necessary to integrate the nuclear Schrödinger equation

(
Tδab + Uab

)
χb(R, t) = −i ∂

∂t
χa(R, t), (II.1.1)

where here and in the following Einstein’s summation notation is used. The electronic
potential U may include dipole couplings and non-adiabatic couplings as in Eq. (I.3.15)
and Eq. (I.3.12). The indices a and b run over all Nst electronic states included in the
ansatz (I.3.14).

Even for a small number Nst of electronic states, if the molecule has many nuclear
degrees of freedom, it is neither feasible to calculate U(R), the dipole couplings and non-
adiabatic couplings for the entire space, nor to solve the nuclear Schrödinger equation
itself. One thus has to resort to approximate methods, such as multi-configurational
time dependent Hartree calculations [96] or classical simulations (e.g. [97, 98]). In few
dimensions, however, the full equation can be solved numerically.

II.1.1. Basis representation

The infinite dimensional Hilbert space of the nuclear Hamiltonian is represented in a
finite basis. This basis can either be a spectral basis, i.e. orthogonal functions such as
plane waves, or a pseudo-spectral basis, i.e. localized functions, which are related to
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II.1. Solving the nuclear time-dependent Schrödinger equation

the spectral basis functions via a unitary transform [71]. In quantum mechanics, both
basis representations have their advantages [71]: In spectral basis sets, the kinetic energy
operator T is usually simple to evaluate. In a plane wave basis set, for example, the
matrix element Tij is given by

Tij = 〈k|T |k′〉 = k2

2M δ(k − k′) (II.1.2)

and T forms a diagonal matrix, allowing fast evaluation of the matrix vector product
Tχ. Furthermore, this expression is more precise than evaluating the action of T via a
finite element representation of the derivative in real space.

Pseudo-spectral basis sets, on the other hand, allow easy evaluation of the potential
matrix

Uij = 〈fi|U |fj〉 ' U(xi)δij , (II.1.3)

where fi and fj are pseudo-spectral basis functions centred at i and j respectively.

One choice of pseudo-spectral basis, which is related to the plane wave basis, ki, via the
discrete Fourier transform, Fi {χ(xj)} = ∑

j e
ikixjχ(xj), is the evenly spaced grid, xi.

For this basis

〈xi|f(U)|χ〉 =
∑
j

〈xi|f(U)|xj〉〈xj |χ〉 = f(U(xi))χ(xi) (II.1.4)

〈xi|f(T )|χ〉 =
∑
j

〈xi|f(T )|xj〉︸ ︷︷ ︸∑
m
〈xi|km〉f(km)〈km|xj〉

〈xj |χ〉 = F−1
i

{
f(km)Fm

{
χ(xj)

}}
(II.1.5)

and

〈ki|f(T )|χ〉 =
∑
j

〈ki|f(T )|kj〉〈kj |χ〉 = f(ki)χ(ki) (II.1.6)

〈ki|f(U)|χ〉 =
∑
j

〈ki|f(U)|kj〉︸ ︷︷ ︸∑
m
〈ki|xm〉f(U(xm))〈xm|kj〉

〈kj |χ〉 = Fi
{
f(U(xm))F−1

m

{
χ(kj)

}}
, (II.1.7)

where f(X) denotes an arbitrary function of the operator X.

The split-operator method, which was used in the course of this work and which is
described below, can make use of this basis and the above stated relations.
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II.1.2. Time propagation and the split-operator method

To solve the time-dependent Schrödinger equation, several efficient propagation schemes
exist. Examples are second order differencing, the short iterative Lanczos scheme [99]
or, as applied in this work, the split-operator method, which will be explained in the
following [100].

For a sufficiently slowly varying Hamiltonian, H(t), and sufficiently small time steps,
∆t, the short time propagation t → t + ∆t of the wavefunction χ(t) can be written as
[101]

|χ(t+ ∆t)〉 ≈ e−iH(t)∆t|χ(t)〉, (II.1.8)

This equation can be solved by diagonalizing the Hamiltonian, which is numerically very
expensive. The spectral split-operator method, which makes use of the Fourier basis,
provides a possibility to avoid the diagonalization of the Hamiltonian. In the Fourier
basis, the kinetic energy operator is diagonal in k-space and the potential energy operator
is diagonal in real space. Therefore

e−iT∆t|k〉 = e−i
k2∆t

2 |k〉 (II.1.9)
e−iU∆t|x〉 = e−iU(x)∆t|x〉. (II.1.10)

Since T and U do not commute e−i(T+U)∆t 6= e−iT∆te−iU∆t. However, up to third order
in ∆t, the propagation operator e−iH∆t can be written approximately as split-operator
[71]

e−iH∆t ≈ e−
i
2U∆te−iT∆te−

i
2U∆t +O(∆t3) (II.1.11)

≈ e−
i
2T∆te−iU∆te−

i
2T∆t +O(∆t3). (II.1.12)

The split-operator method is both stable and norm conserving [99].

Using the split-operator Eq. (II.1.12), the Schrödinger equation
(
T+U)χ(R, t) = −i ∂∂tχ(R, t)

can easily be propagated using Eq. (II.1.8)


χ(k1, t+ ∆t)

...

χ(kN , t+ ∆t)

 ≈


e−

i
2
k2
1∆t
2 0

. . .

0 e−
i
2
k2
N

∆t
2

F−1 ·
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·


e−iU(x1)∆t 0

. . .

0 e−iU(xN )∆t

 ·

· F


e−

i
2
k2
1∆t
2 0

. . .

0 e−
i
2
k2
N

∆t
2




χ(k1, t)

...

χ(kN , t)

 . (II.1.13)

If multiple electronic states and couplings should be included in the calculation
(
Tδab +

Uab
)
χb(R, t) = −i ∂∂tχa(R, t) with a ∈ [1, Nst] , the potential Uab(xi) will in general

not be a diagonal matrix and an additional diagonalization step is necessary in the
propagation, i.e.

e−iUab(xi)∆tχb(xi, t)⇒Mabe
−iub(xi)∆tM †bcχc(xi, t), (II.1.14)

where ua(xi) are the eigenvalues to Uab(xi) with Uad(xi) = Mabub(xi)δbcMcd. Using this
transformation, Eq. (II.1.12) can be applied to every component χa.

II.1.3. Calculating eigenfunctions - Imaginary time propagation

Eigenfunctions can be obtained from the diagonalization of the nuclear Hamiltonian,
H. An alternative method is to use imaginary time propagation. In this method, a
reasonable start wave function is chosen and propagated according to

χ(t0 +N∆t) =
N∏
i1

N̂ie
−H∆tχ(t0), (II.1.15)

where N̂i renormalizes the wavefunction e−H∆tχ(ti−1). Apart from the necessary renor-
malization, this is equivalent to replacing ∆t → −i∆t in the propagation equation
Eq. (II.1.8) [102].

To see that this procedure yields the ground state, we write χ0 as a sum of eigenstates
φi of the Hamiltonian H

χ(t0) =
N0∑
i=1

ai(t0)φi. (II.1.16)
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It follows that

χ(t0 + ∆t) =
N0∑
i=1

e−εi∆tai(t0)︸ ︷︷ ︸
ai(t0+∆t)

φi. (II.1.17)

The coefficients ai are thus exponentially damped (or amplified) according to the eigenen-
ergy of the state φi. Since the ground state has the smallest energy, the damping of a0,
will be smallest and after a long enough propagation time, the wavefunction χ(t) will
approximate the vibrational ground state: χ(t) ≈ φ0. This is only true, however, if
the trial wavefunction χ(t0) contains the vibrational ground state. To calculate higher
excited states, it is necessary to project lower lying states out after each time step.

II.1.4. Grid size, resolution and absorbing boundaries

To obtain correct results in a dynamics calculation, the spacial grid size L has to be
large enough to capture the entire wavepacket and the grid resolution ∆x has to be
dense enough to resolve the wavepacket spatially. At the same time, the grid size in k-
space, k ∈

[
− π

∆x ,
π

∆x
]
, has to be larger than the maximum momentum of the wavepacket

and the resolution in k-space, ∆k = 2π
L has to resolve the momentum during the en-

tire propagation. If either the spacial or the momentum grid are too small, and the
wavepacket reaches the edge of the grid, it will be wrapped around at the grid boundary
as shown in figure II.1.1 for a free wavepacket.

Figure II.1.1.: Wrapping at grid boundaries: red line: correct result, blue line: result
for a grid length as indicated by the gray square, green line: result for the same grid,
but using absorbing boundaries (note the decreasing norm of the wavefunction shown in
green).

Especially if dissociating wavepackets are propagated over a long time period, this causes
computational problems since the grid would have to be very large. A possible alternative
is to use absorbing boundaries. This can be achieved by applying a smooth mask function
to the wavefunction after every propagation step, or, equivalently, by introducing a
short ranged negative imaginary potential in the Hamiltonian at the boundaries [103].
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II.1. Solving the nuclear time-dependent Schrödinger equation

The mask function has to be smooth enough to avoid reflections and the creation of
strong spurious frequency components due to the sharp cutoff. Alternative and typically
superior methods are the use of complex potentials [104] or exterior complex scaling
[105]. For the simulations performed in the course of this work, mask functions were
used which decrease smoothly from one to zero at the boundaries. If mask functions are
applied, the norm of the wavefunction is no longer conserved.
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II.2. Classical trajectory Monte Carlo

In Classical trajectory Monte Carlo (CTMC) simulations, the evolution of a quantum
mechanical object is approximated semi-classically by propagating an ensemble of trajec-
tories. Each trajectory is assigned an initial phase-space coordinate, which is randomly
chosen from a distribution representing the quantum object. Then, each trajectory is
propagated classically in time according to Newton’s equations of motion.

p = m
∂x
∂t
, (II.2.1)

∂p
∂t

= F = −∇xV (II.2.2)

CTMC calculations allow analysing dynamics in a much larger dimensional space than
quantum simulations, since the computational effort only scales with the number of
trajectories propagated and not exponentially with the dimension of the configuration
space. A drawback is of course, that the semi-classical method cannot capture all quan-
tum effects inherent to the system.

II.2.1. The Runge-Kutta-Fehlberg method

To solve the classical equations of motion, Eqs. (II.2.1) and (II.2.2), the Runge-Kutta-
Fehlberg method was used. This iterative method for numerically solving ordinary dif-
ferential equations belongs to the class of Runge-Kutta algorithms and uses an adaptive
stepsize in the propagation [106, 107].

The Runge-Kutta-Fehlberg-4(5) method starts by applying the Runge-Kutta algorithm
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of fourth and fifth order with a stepsize h to the differential equation y′ = f(x, y):

y1 = y0 + h
4∑

κ=0
cκfκ +O(h5) (II.2.3)

ŷ1 = y0 + h
5∑

κ=0
ĉκfκ +O(h5), (II.2.4)

where

fκ = f(x0 + αkh,
κ−1∑
λ=0

βκλfλ) κ ≥ 1, (II.2.5)

and f0 is defined via the initial values (x0, y0) as f0 = f(x0, y0). For the parameters α,
β, c and ĉ different choices exist. One choice proposed in Ref. [106] is given by

ακ βκλ cκ ĉκ

0 25
216

16
135

1
4

1
4 0 0

3
8

3
32

9
32

1408
2565

6656
12825

12
13

1932
2197 −7200

2197
7296
2197

2197
4104

28561
56430

1 439
216 −8 3680

513 − 845
4104 −1

5 − 9
50

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40
2
55

If the error estimate, ε = |y1 − ŷ1|, is larger than the error tolerance εtol, the step is
rejected and the stepsize decreased. If ε < εtol the step is accepted and the stepsize, h
is adjusted for the next step [108]

hnew = 0.9h
(
εtol
ε

)0.2
. (II.2.6)

II.2.2. Gaussian distributed random numbers

In most programming languages, it is only possible to generate evenly spaced pseudo-
random numbers. To generate Gaussian distributed random numbers for the initial
values from evenly distributed random numbers, the Box-Muller transform can be used:
Consider two random numbers, u and v, drawn from a uniform distribution in the interval
]0, 1[. Then

x =
√
−2 ln(u) cos(2πv) (II.2.7)
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is normal distributed [109] and hence

y = xσ + µ (II.2.8)

is Gaussian distributed around µ with a standard-deviation of σ.
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Part III.

Strong-field ionization of H+
2 in

circularly polarized light

III.1. Introduction

Strong-field ionization can be described qualitatively within the tunnelling and multi-
photon picture. The full numerical description of the ionization process is only possible
for very small systems, such as H, He and H+

2 . For larger systems, electron-electron
correlation, multi-electron effects and the anisotropy of the Coulomb potential are usually
neglected in theoretical calculations and the strong-field approximation (SFA) is invoked,
in which the Coulomb potential is neglected in the continuum. These assumptions form,
for example, the basis of the molecular ionization-rate equation derived by Tong, Zhao
and Lin [26]. However, experimental and theoretical investigations have shown that both
these assumptions lead to severe shortcomings of the derived theories even in the atomic
case and even if recollision events are not of interest (see e.g. [110, 64, 63, 111, 65, 112,
113]). Recently, several experiments have been performed investigating the strong-field
ionization of molecules [114, 115, 116, 117, 118, 119, 120], including H+

2 in circularly
polarized fields. This smallest of molecules, H+

2 , can in principle be fully described by
quantum dynamics calculations. But even in this case, open questions remain.

Strong deviations are observed for example in the photoelectron momentum spectrum
(PES) of H+

2 in circularly polarized fields between the experimental results and SFA pre-
dictions. The origin of these discrepancies is still debated: is it the long-range Coulomb
potential causing the deviations from SFA or is it laser-driven electron dynamics prior
to ionization? Instead of trying to reproduce the results using a fully quantum descrip-
tion, as for example in Ref. [116], this work focusses on analysing the various factors
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of influence possibly contributing to the PES and at disentangling their respective con-
tributions. To this end, classical trajectory Monte Carlo (CTMC) simulations are per-
formed. Although it is not a priory clear to what extent semi-classical approximations
can capture the relevant processes, CTMC calculations have the advantage of allowing
an intuitive and straight-forward interpretation of the results. As will be shown, many
experimentally observed trends can be reproduced by the model.

III.2. The model

The ionization dynamics in H+
2 due to a strong, circularly polarized laser-field is modelled

using a two dimensional semi-classical model. The model is restricted to the x, y-plane,
corresponding to the polarization plane of the laser. The molecule is aligned along the
x axis, as shown in Fig. III.2.1.

Figure III.2.1.: Geometrical setup of the numerical calculations: Molecule aligned along
x, laser polarization plane: x− y plane, circularly polarized in clockwise direction.

An ensemble of classical trajectories, consisting typically of around 100 000 trajectories,
is propagated in the combined action of the Coulombic and the electric field according
Newton’s equation of motion

r̈(t) = −∇V (r(t))−E(t) (III.2.1)

using a Runge-Kutta-Fehlberg algorithm with adaptive stepsize (see Sec. II.2.1). The tra-
jectories are started at a time t0, which is considered as the moment of ionization. Each
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trajectory is assigned a time dependent weight-factor, w(t0), representing the tunnelling
probability at t0, an initial coordinate r0 in the continuum and an inital momentum
p0. The initial phase-space coordinates are sampled randomly from a time dependent
phase-space distribution ρ(r0,p0; t0), as described in the next section. For very large
field strengths, ionization can proceed classically over-the-barrier. To allow a smooth
transition from tunnelling to over-the-barrier ionization, tunnelling ionization and over-
the-barrier ionization are described on equal footing: In both cases, the trajectories are
released at a moment t0 with a probability w(t0) at a point r0(t0) into the continuum
with a smooth transition from the below-barrier to the over-the-barrier case.

In the present simulations, the starting times, t0, of the trajectories are restricted to the
central field cycle to prevent smearing of the results due to intensity averaging and the
central field cycle is evenly sampled.

The ionic potential of the molecule acting on the electron is represented by a soft-core
potential

V (x, y) = 1
R
− 1√(

x− R
2

)2
+ y2 + a2

− 1√(
x+ R

2

)2
+ y2 + a2

, (III.2.2)

where a = 0.5 au is the soft core parameter. The internuclear distance, R, is kept fixed
during the propagation of the trajectories. Although the molecule, once subjected to the
laser field, will move through a range of internuclear distances with varying ionization
probability [121], this approximation is reasonable: due to the large mass ratio between
electron and nuclei, the electron moves much faster than the nuclei, and in a circularly
polarized field, the probability of the electron returning to the ion is low. It is therefore
a reasonable assumption to keep the nuclei fixed during the propagation of the electron
after ionization.

Trajectories, which have a negative total energy after one half-cycle propagation in the
field are considered to be bound and are not taken into account in the evaluation.

The electric field, E(t) = 1
c
∂A(t)
∂t , shown in Fig. III.2.2, is defined via vector potential

A(t) = c

ω
E0f(t)

(
− sin(ωt)
− cos(ωt)

)
, (III.2.3)

where c is the speed of light and the rotational frequency ω = 0.057 au corresponding to
carrier wavelength of λ = 800nm. The envelope function f(t) is given by a sin2 pulse
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Figure III.2.2.: Electric field and vector potential.

with a full width at half maximum of 50 fs. Maximum intensities in the range from
6× 1013 W/cm2 to 6× 1014 W/cm2 are analysed.

III.2.1 Initial phase-space distribution and weight factors

Since tunnelling is an intrinsically quantum mechanical process, it is not a priory clear
how to choose the initial values w(t0), r(t0) and p(t0). The Delone-Krǎınov [59] expres-
sion, Eq. (I.2.5), provides a semi-classical phase-space distribution for the electrons after
tunnelling which is used in the present work.

Since the Delone-Krǎınov expression was derived for atoms, whenever necessary, H+
2

is treated as two individual atomic cores, distinguished by the subscripts l (left) and
r (right). Each core is assigned a weight-factors, wl/r(t0), defined via tunnelling rate
and the probability to find the electron on the left or right core, and an initial phase-
space distribution ρl/r(x0,p0; t0) according to the Delone-Krǎinov expression. It should
be noted parenthetically that the Keldysh parameter (Eq. (I.2.2)) is around one for
the laser parameters used. According to Keldysh [10] (see section I.2.2), the present
conditions thus do not correspond unambiguously to the tunnelling regime. Additionally,
the parameters are near or in the over-the-barrier regime.

Additionally to the Delone-Krǎinov expression, a modified ionization rate equation was
used: as mentioned in the introduction, field-driven electronic dynamics are debated to
have a strong influence on the ionization dynamics and the photoelectron spectrum. Two
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dimensional quantum dynamical calculations for H+
2 in a short, intense laser pulse indeed

show that the outward electron flux shows a complicated time behaviour with multiple
ionization events per laser cycle (see Fig. III.2.3). These are not reproduced by the
Delone-Krǎınov expression. In fact, they have been asssociated to the bound sub-cycle
electron dynamics [122]. In the present work, the influence of electronic dynamics was

Figure III.2.3.: Electron density in a 2D quantum model of H+
2 subjected to an intense

laser field. The arrows indicate the multiple ionization bursts per half cycle.

examined by altering the Delone-Krǎınov expression for the tunnelling rate to mimic the
complex temporal ionization dynamics and by adding an additional initial momentum
component.

The following paragraphs detail the choice and definition of the initial conditions and
weight factors.

The ionization potential

The ionization potential enters both, the weight factors, w(t0), and the initial phase-
space distribution, ρ(x0,p0; t0). However, since the laser field influences the electronic
states, the following three models were applied:

• In the field-free case, the ionization potential of the first two electronic states of
H+

2 , the gerade (g) and ungerade (u) state, is given by

Ifield free
P = 1

R
− Ui(R), (III.2.4)
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where i ∈ {g, u} and the potentials Ui, shown in Fig. III.2.4, are given by Ui(R) =
Eielec(R)+Vnn(R), where Eielec are the electronic eigenenergies of state i, as detailed
in chapter I.3.

Figure III.2.4.: Potentials for the greade (g) and ungerade (u) state.

• In a (quasi-)static field, the light induced potentials, which correspond to eigen-
states in the static field case, take the role of Ug/u. The light induced potentials
are given approximately by

T (t0)
(

Ug −µEx(t0)
−µEx(t0) Uu

)
T (t0)† =

(
ULI
low(t0) 0

0 ULI
up(t0)

)
, (III.2.5)

where T is a unitary matrix. In this approximation, higher excited states were
neglected due to their weak coupling to the gerade and ungerade state. For the
dipole moment, only the component parallel to the molecular axis, µ ≈ R

2 , was
taken into account, since it is much larger than the orthogonal component.

• Alternatively, the eigenergies UFl of semiclassical dressed states (Floquet states)
in a two level system were considered [123]. The UFl

i are given by
(
UFl
low(t0)

UFl
low(t0)

)
≈
(
−1
1

)
Uu − Ug

2ω J0(ζ(t0)) + 0.5 (Uu + Ug) , (III.2.6)

where J0(ζ) are Bessel functions and ζ = 2µ · f̃(t0)/ω, where f̃(t) denotes the
envelope function of the electric field. The above expression is expected to be a
good approximation if (Uu − Ug)/ω �

√
µE0
ω � 1 [123].
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The weight factor

The weight factor wl/r(t0) was chosen to be proportional to the ionization rate, Γl,r(t0),
times the probability σl/r, to find the electron on the left or right core

σl/r(t0) = 1
2
∣∣∣(〈g| ± 〈u|)φ(t0)〉

∣∣∣2 , (III.2.7)

where φ(t0) is the electronic eigenstate considered. For the field-free gerade and unger-
ade states (|g〉 and |u〉), this probability is always 0.5. For statically polarized states
corresponding to the light-induced potentials, σl/r(t0) can be calculated from

|φ(t0)〉 = T (t0)
(
c0
g

c0
u

)
·
(
|g〉
|u〉

)
, (III.2.8)

where the matrix T is defined via Eq. III.2.5, and the coefficients c0
i define the state the

system occupied before the laser pulse, i.e. (c0
g, c

0
u) = (1, 0) if the system is assumed to

have been in gerade state prior to the advent of the laser pulse. The semiclassical dressed
states corresponding to UFl, are given in Ref. [123]. Their overlap with

(
|g〉 ± |u〉

)
is

given by [124]

σl/r(t0) = 0.5± Uu − Ug
ω

∑
k

1
2k + 1J2k+1(ζ(t0)) cos (ωt0 (2k + 1)) , (III.2.9)

when starting from the gerade state.

The ionization rate

The ionization rate, Γl/r(t0), was chosen to be either described by the Delone-Krǎınov
expression (in the following referred to as ADK-like) or to mimic the multiple ionization
bursts described above. In the former case, the rate ΓADK is given by the p-independent
part of Eq. (I.2.5) where only the Ex component of the electric field entered the equation
to mimic the fact, that H+

2 will preferentially ionize along the molecular axis. To account
for the spatial extent of the molecule, with one core situated at R

2 and the other at −R
2 ,

the ionization potential was replaced by ĨP = IP ±Ex R2 for the field facing and averted
nucleus, respectively. (This shifted ionization potential ĨP only entered the Delone-
Krǎınov expression. The original definition of IP was kept when calculating the starting
point of the trajectory.)
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In Ref. [122], the multiple ionization bursts (MIBs) (Fig. III.2.3) have been related to the
electron localization dynamics of Floquet states. To mimic multiple ionization bursts in
the semiclassical calculations, the Delone-Krǎınov expression is altered according to

ΓMIB
l/r (t0) = ΓADK(t0)eα(σl/r(t0)−0.5), (III.2.10)

where α = 50 controls the modulation depth of the multiple ionizations with changing
localization σl/r of the electron. For consistency and as only the temporal behaviour
of the Floquet states will lead to multi-ionization bursts when applying the above ex-
pression, this ionization rate was only applied in connection with an ionization potential
and electronic density resulting from Floquet states. Changing from an ADK-like ion-
ization behaviour to ΓMIB, allows comparing the two different models and analysing the
influence of MIBs on the resulting photoelectron spectrum.

Starting point r0 of the trajectories

For each trajectory, the tunnel-exit r0 was defined as shown in Fig. III.2.5: For each

Figure III.2.5.: Definition of the start position (x0, y0) for the left (l) and right (r) core
in the below-barrier case.

nucleus, a parametric line λ(m), running in −E(t0)-direction and starting at the core was
defined. The tunnel exit r0 = (x0, y0), was then defined as the point where V (λ(m)) =
−Ip. In the over-the-barrier case, i.e. if V (λ(m)) < −Ip, the tunnel exit was set to the
coordinate along λ(m), where V (λ(m)) is extremal.
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Initial momentum distribution

The initial momenta, p‖0 and p⊥0 , parallel and orthogonal to the instantaneous elec-
tric field E(t0), were chosen from two Gaussian distributions as defined by the Delone-
Krǎınov expression, Eq. (I.2.5) using ĨP as ionization potential. This definition was
also kept in the above barrier case to allow a smooth transition from the below to the
over-the-barrier regime.

III.3. Numerical results and discussion

Figure III.3.1 shows results for the angle-resolved photoelectron spectrum (PES) ob-
tained with the above described method for an intensity of 1.5× 1014 W/cm2, an inter-
nuclear distance of R = 2Å and an ADK-type ionization rate. The ionization potential

Figure III.3.1.: Photoelectron momentum spectrum for an intensity of 1.5× 1014 W/cm2,
an internuclear distance of R = 2Å, an ADK-type ionization rate and IP defined via
light induced potentials. a.) with Coulomb field, b.) neglecting the Coulomb attraction
during the propagation in the continuum. The dashed circle indicates p = E/ω.

was assumed to be given via the energetically lower lying light-induced potential, V LI
low.

For these parameters, ionization is always below barrier. The dashed circle corresponds
to A0

c ≈
E0
ω .

A striking feature is that the calculated PES is not centred along the y-axis if the
Coulomb attraction is taken into account (Fig. III.3.1.a), but shows an angular shift
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in the rotation direction of the electric field. This shift is also observed in the ex-
periments [116, 119]. In contrast, neglecting the Coulomb force in the propagation of
the trajectories (see Fig. III.3.1.b), leads to a PES which is centred around the y-axis,
i.e. orthogonal to the molecular axis. This can be expected from the SFA: Accord-
ing to the SFA, a trajectory with zero initial momentum will have a final momentum
given by pSFA

f = −1
cA(t0). For H+

2 , the largest ionization probability is expected for
|Ex(t0)| = E0, i.e. when Ax(t0) = 0 and |Ay(t0)| = A0 and therefore pSFA

f = (0,±A0
c ).

Taking into account the initial velocity distribution, which is centred around zero and
the temporal distribution of the ionization probability, which is centred around the max-
ima of the electric field, the final momenta can thus be expected to be centred around
pSFA
f = ±A0ŷ.

When including the Coulomb potential a clockwise shift observed for clockwise circu-
larly polarized light. This can easily be understood when considering the course of the
classical trajectories and the action of the Coulomb force, as shown schematically in
Fig. III.3.2. For anticlockwise polarization, the situation is similar, but an electron re-
leased at E(t) = E0x̂ will drift in −ŷ direction and the Coulomb force will thus lead to
a shift in anticlockwise direction.

Figure III.3.2.: Schematic pathway of trajectories released at E(t) = E0x̂ including (solid
line) and neglecting (broken line) the Coulomb field in the propagation.

Overall, this situation is very similar to atoms in elliptically polarized or very short laser
pulses [65, 125, 126, 127, 128]. In the atomic case, the ellipticity of the field leads to a
maximum in the ionization rate in the direction of the semi-major axis of the field, in the
molecular case, we expect the ionization rate to be large parallel to the molecular axis.
In both cases, deviations from the SFA predictions are found. In the case of molecules,
the situation is more complicated though, since the molecular Coulomb potential is
not rotationally symmetric and the electronic dynamics prior to ionization may play a
relevant role.

To allow a quantitative analysis, we define the mean rotation angle α. The angle α is
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measured from the molecular axis (x-axis) in the rotational direction of the electric field,
i.e. clockwise in the present calculations. The angle α is the weighted mean of the angular
distribution obtained from the final photoelectron spectrum integrated over all radial
momenta. The average is thereby taken from one minimum in the distribution to the
next, such that α lies in the upper hemisphere. The mean rotation angle corresponding
to the PES shown in Fig. III.3.1.a, is given by α = 105◦. Neglecting the Coulomb force
in the propagation (Fig. III.3.1.b), α = 90◦. The Coulomb field thus leads to a 15◦ shift
in the PES.

For higher laser intensities, the observed shift remains and even increases as can be seen
in Fig. III.3.3, where the broken lines indicate the value of α.

Figure III.3.3.: Photoelectron momentum spectrum for different intensities: a.)
6.0× 1013 W/cm2, b.) 1.5× 1014 W/cm2, c.) 6.0× 1014 W/cm2. (Note the different
axis range.) All other parameters as in Fig. III.3.1.

Similarly, the rotation angle α increases for increasing internuclear distances as shown
in Fig. III.3.4. The discontinuity in the line for 6× 1014 W/cm2 at R = 2Å occurs,
where ionization starts to proceed over the barrier. Fig. III.3.4 also shows once more
the intensity dependence of the results: Over a large range of intensities, the angular
shifts depend only weakly on the intensity. Only at very high intensities, the rotation of
the PES increases. This observation agrees well with the experimental observations in
Ref. [119], but is — at a first glance — rather astonishing, since, at higher intensities,
one would expect the results to approach the SFA limit. Within the classical trajectory
picture, however, the intensity independence can easily be explained: The intensity does
not only influence the forces acting on the electron in the continuum, it also affects the
tunnel exit.

To allow a detailed analysis, Fig. III.3.5 shows the mean rotation angle obtained for a
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Figure III.3.4.: Mean angle α for different internuclear distances, R, and intensities, I.
The ionization potential, IP , is defined via the light-induced potential.

modified tunnelling exit

x0 = −r0 cosφ− R

2 cosφ (III.3.1)
y0 = −r0 sinφ (III.3.2)

at fixed distance r0 to the cores. The angle φ in the above expression corresponds to
the instantaneous polarization direction of E(t0) at the time of birth t0 of the trajectory.
The shift of R2 in the x-component accounts for the spacial extent of the molecule with
one nucleus lying at R

2 and the other at −R
2 .

Figure III.3.5.: Mean angle of the final photoelectron momentum for tunnel exits as
defined by Eqs. (III.3.1) and (III.3.2) for R = 3Å

As the distance, r0, of the tunnel exit from the ion increases, the rotation angle α
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approaches 90◦. Additionally, for a fixed tunnelling exit, increasing intensities lead to
results which are closer to the SFA predictions of α = 90◦. this is clearly in agreement
with the expectations form SFA: The further the tunnel exit from the molecule and the
larger the intensity, the smaller the relative infuence of the Coulomb field and hence the
smaller the deviation from the SFA predictions.

The fact that the rotation angle is independent of the field strength over a wide range of
intensities can thus be understood as the consequence of two rivalling processes: on the
one hand, the stronger field strength will reduce the relative effect of the Coulomb field
at a fixed distance; on the other hand, the trajectories will start closer to the nucleus,
in a region of strong Coulomb interaction.

A similar argument also explains the increasing rotation angle for increasing internuclear
distance as shown in Fig. III.3.4: The ionization potential IP decreases for increasing
internuclear distances. Therefore, the tunnel exit, r ≈ IP

E(t0) , moves closer to the nuclei
which results in a stronger Coulomb attraction and a stronger rotation of the PES. This
is also in accordance with experimental results.

So far, only radial momentum-integrated results have been presented. In Fig. III.3.6,
the angular distribution for three different integration ranges of the final momentum
pf are shown: (a) low final momenta with pf < 0.7 au, (b) medium final momenta
with 0.7 ≤ pf ≤ 1.2 au and (c) high momenta with pf > 1.2 au for a laser intensity of
1.5× 1014 W/cm2 and two different internuclear distances, R = 2Å and R = 4Å.

In both cases, the angular rotation increases with increasing final momentum. In the
case of R = 2Å, the mean angle increases from α = 100◦ over 105◦ to 117◦. For R = 4Å,
the rotation is generally more pronounced starting at α = 99◦ at low final momenta and
increases much more strongly, such that α reaches 109◦ at intermediate momenta and
145◦ for final momenta above 1.2 au.

The trend of increasing rotation angle α with increasing final momentum is also shown
in Fig. III.3.7, where additionally a comparison for two different intensities is shown
(I = 1.5× 1014 W/cm2 and I = 4.0× 1014 W/cm2). The increase of α with increasing
final momentum is apparent at both intensities. The phenomenon thus seems to be
stable with respect to the laser intensity.

Before analysing this effect in more detail, we will present a comparison with experi-
mental results by M. Spanner et al. [119]. Experimentally, the approximate internuclear
distance at which ionization occurred, can be extracted in a three-body coincidence
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Figure III.3.6.: Momentum and angle resolved photoelectron momentum spectra for two
different internuclear distances, R = 2Å (upper row) and R = 4Å (lower row) for small
momenta (left column, pf < 0.7 au), medium momenta (middle column, 0.7 < pf <
1.2 au) and large momenta (right column, pf > 1.2 au). All remaining parameters as in
Fig. III.3.1.

Figure III.3.7.: Comparison of the momentum resolved angular photoelectron momentum
distribution for a.) I = 1.5× 1014 W/cm2 and b.) I = 4.0× 1014 W/cm2. Note the
increasing rotation of the momentum distribution with increasing final momentum (blue:
low final momenta, red: high final momenta).
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measurement from the kinetic energy release (KER) of the two nuclei via KER ≈ c− 1
R

[129, 119], where c accounts for the initial energy of the molecule prior to dissociation.
Such three-body coincidence measurements thus allow the experimental investigation of
the momentum and angle resolved photoelectron spectrum for different internuclear dis-
tances and can be used for a comparison with the present theoretical results. Fig. III.3.8
shows a reproduction of the experimental results by M. Spanner et al. [119]. Although

Figure III.3.8.: Reproduction of the results for the momentum and angle resolved PES
taken from three body coincidence measurements performed by M. Spanner et al. [119].
(I = 3× 1014 W/cm2). Compare with Fig. III.3.6.

some details, such as the broadening of the momentum distribution with increasing in-
ternuclear distance, R, and some sidelobes observed in the experiment [119], cannot be
reproduced by the semiclassical model, several general features apparent in the experi-
ment are well reproduced within the simple model applied in this work. This includes
the increase of the rotation angle, α for increasing internuclear distance discussed earlier,
and the increase of α for increasing final momentum pf .

To analyse the dependence of α on pf in more detail, we take advantage of the possibility
to perform a one-to-one mapping of the final onto the initial phase-space coordinates of
each trajectory. This mapping is shown in Fig. III.3.9 for R = 2Å and 1.5× 1014 W/cm2.
Fig. III.3.9 clearly shows that trajectories with very low and very high final momenta
correspond to trajectories starting with extreme initial momentum values in both x and
y direction. This is also true for larger internuclear distances as shown exemplary in
Fig. III.3.10 for the px-distribution. While the initial momenta have extremal values for
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Figure III.3.9.: Mapping of final momenta (uppermost pannel) to starting time and initial
momenta, in x- (upper row) and and y-direction (lower row) for low (left column),
medium (middle column) and high (right column) final momenta of the trajectories.
(R = 2Å, I = 1.5× 1014 W/cm2)

Figure III.3.10.: As Fig. III.3.9 but for R = 4Å.
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fast and slow trajectories, the birth-time, t0, of slow, intermediate and fast trajectories
is centred around the maxima of Ex. It is thereby noted parenthetically that especially
for trajectories with low final momenta, a correlation between the initial momenta, p0

x

and p0
y, and the time of birth, t0, exists: for example, |p0

x| increases from early to late
ejection times, while p0

y decreases for trajectories with low final momenta.

The analysis of the initial momenta and the birth time allows gaining an intuitive un-
derstanding for the observed dependence of α on pf : Tracing trajectories with low final
momenta back in time to their time of birth (see III.3.9), shows that the x-component of
the initial momentum of these trajectories points in the direction of the negative electric
field, E(t0), i.e. in the direction away from the nucleus and the y-component points in
the direction of A(t0) and is thus anti-parallel to the final momentum pSFA

f = −1
cA(t0),

expected from SFA. Schematically, a trajectory as shown in blue in Fig. III.3.11 can thus
be expected for the slow trajectories.

Figure III.3.11.: Schematic representation of a trajectory ending with high final mo-
mentum (red) and with low final momentum (blue). Black arrows indicate the initial
momentum.

For the fast trajectories, the opposite is true: these trajectories preferentially start with
p0
x parallel to E(t0) and p0

y anti-parallel to A(t0) as shown in red in Fig. III.3.11.

In both cases, the initial momentum component in y-direction mainly has the role of
modulating the final momentum: While p0

y is parallel to the momentum gained in the
field for electrons with high pf , it is anti-parallel for electrons with low pf . The difference
in rotation angle α is due to the initial momentum in x direction: Trajectories with
low final momentum, having an initial momentum in x-direction pointing away from
the nuclei, rapidly leave the vicinity of the ion and hence only feel a week Coulomb
interaction, which explains the small deviation of α from 90◦ of the slow trajectories.
Trajectories with high final momentum, on the other hand, are ejected towards the
nuclei, where they are subject to strong Coulombic forces, which results in a strong shift
from the SFA predictions. Within the semi-classical model used in this work, the initial
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momentum in x-direction, p0
x thus plays an important role and the neglect of the latter

would lead to results which do not follow the experimentally observed trend.

The semiclassical simulations leave, however, a certain ambiguity to the interpretation
of the increasing rotation with increasing final momentum. The reason lies in the fact
that the analysis depends so strongly on the initial values. As explained above, the
initial value distribution used in the model does not necessarily correctly represent the
quantum system. A different model, for example, in which the initial momentum p0

x is
set to zero, and the tunnel exit is restricted to the molecular axis, would also reproduce
the experimentally observed trend. Using these restricted initial conditions, would lead
to trajectories with low final momentum being preferentially born before the maximum
of the field. Within the strong field approximation, trajectories born before the filed
maximum are rotated counterclockwise to angles lower than 90◦. Together with the
Coulomb attraction which leads to a clockwise shift, the birth of electrons with low final
momenta before the field maximum would lead to a weakly or counterclockwise rotated
PES , as observed in the experiment. This model is, however, less likely to capture the
correct physics of the ionization process, since alignment dependent ionization rates from
H+

2 show that ionization is preferred but not restricted to the molecular axis [130, 131].

Having discussed the influence of the initial values and the time of birth on the final mo-
mentum, we will now turn to analyzing the influence of the initial state description (field
dressed vs. Floquet states) and multiple ionization bursts, Eq. (III.2.10). In Fig. III.3.12,
a comparison of the angular distribution of the final PES for light induced versus Floquet
states with and without multiple ionization bursts is shown for I = 1.5× 1014 W/cm2

and R = 3Å. The strong changes in the PES from Fig. a.) to b.) are due to the change

Figure III.3.12.: Photoelectron momentum spectrum obtained at I = 1.5× 1014 W/cm2

and R = 3Å for IP defined via light induced potentials (a.), Floquet states(b. and c.);
in a.) and b.) the ionization rate is ADK-like, in c.) the ionization rate mimics multiple
ionization bursts, Eq. (III.2.10).
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in IP and the population σl/r of the left and right core. Furthermore, while for field
induced potentials ionization proceeds via tunnelling at I = 1.5× 1014 W/cm2, due to
the lower ionization potential of the Floquet states, in the latter case ionization proceeds
over the barrier. This leads to the additional features marked with x in Fig. III.3.12:
the corresponding final momenta are due to trajectories which, after being released into
the classically allowed corridor, head back to the residual ion, cycle around one of the
nuclei once and leave the molecule thereafter. Classically, this is easily possible in the
over-the-barrier case, since there is no potential barrier hindering electrons with an ini-
tial momentum pointing towards the ion to fall back into the core region. If an initial
momentum component pointing outwards from the ion is added to p0 or if p0 is randomly
picked only in the hemisphere pointing in negative E-direction, the components marked
with x vanish (see Fig. III.3.13).

Figure III.3.13.: As Fig. III.3.12.b but rejecting trajectories with initial momentum p0 ·
E(t0) > 0, i.e. rejecting electrons with initial momentum towards the ion. Note that the
features markes with “x” in Fig. III.3.12 vanish.

When multiple ionization bursts are included, a clear double structure appears, where
each peak in the PES corresponds to one ionization maximum. The angular distributions,
shown in Fig. III.3.14, clearly show a broadening of the distribution due to the multiple
ionization bursts. The mean angle, α, however, does not depend strongly on whether
multiple ionization bursts are considered or not. This can be understood, looking at
Fig. III.3.14.d, where the Coulomb field is neglected in the propagation. Since the
multiple ionization bursts obtained from Eq. (III.2.10) are symmetric around the field
maximum, the two lobes to the left and to the right of the right of 90◦ have the same
weight. The multiple ionization bursts thus do not lead to a rotation of the PES and α =
90◦ as expected in SFA. However, the change in ionization rate may well be responsible
for the broadening of the PES observed experimentally.

The last panel in Fig. III.3.14 corresponds to a case in which an initial momentum padd

added to p0. The kinetic energy due to the additional momentum was thereby set to
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Figure III.3.14.: Comparison of models: angular photoelectron spectra for a.) light
induced potentials + Delone-Krǎınov rate, b.) Floquet states + Delone-Krǎınov rate,
c.) Floquet states + multiple ionization bursts, d.) as c.) but neglecting the Coulomb
field in the propagation, e.) as c.) but with an additional initial momentum component
as described in the text.

the over-the-barrier energy, padd = −
√

2(−Ip − Vmax(t0))Ê(t0), where Vmax denotes the
maximum of the combined nuclear and field potential in the corridor and Ê denotes the
unit vector of the electric field at the time of birth. In this case, the mean rotation
angle (depicted by a line in the graphs) is clearly shifted counter-clockwise, resulting in
a rotation angle, α, relatively close to 90◦. In the experimental results by Spanner et
al. [119], which are reproduced in Fig. III.3.8, a strong double lobe structure is apparent
at high and intermediate momenta, with one lobe around α ≈ 90◦ and the second lobe
with a much larger rotation. The present results thus offer a possible explanation for
the second lobe as being due to an outward directed flux of the electron density in the
ionization process.

III.4. Summary and Conclusion

In summary, the present work shows to what extent classical trajectory Monte Carlo
calculations within the tunnelling picture can be used explain the experimental results
for molecular strong-field ionization of H+

2 in circularly polarized fields. By including or
neglecting the Coulomb forces in the propagation, the classical trajectory calculations
provide a simple approach to test the influence of the anisotropic Coulomb potential on
the final photoelectron momentum distribution. The model provides intuitive explana-
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tions for the effects observed at increasing intensities and varying internuclear distances:
the counterintuitive fact that the results do not tend towards the SFA-predictions for
increasing intensity is explained via the interplay of two rivalling effects, the tunnel exit
moving closer to the ion and the stronger electric field strength. The increasing rotation
with increasing internuclear distance is explained via the change in IP and hence the
change of the location of the tunnel exit. The model also illustrates the importance
of the initial momentum distribution of the classical trajectories in the analysis of the
momentum-resolved angular PES. The possible influence of electronic dynamics prior
to ionization is modelled via a modified ionization rate and modified initial momen-
tum values. While the modification of the ionization rate broadens the distribution, an
anisotropic initial momentum distribution rotates the PES.

In conclusion, many agreements between the semiclassical model and the experimental
results could be shown and analysed. The results hence encourage studying molecular
strong field ionization via classical trajectories. An extension to the present results
would be the investigation of wavelength dependent effects and the influence of elliptical
polarization. A classical description of over-the-barrier dynamics could possibly amend
some of the difficulties in choosing the initial values for the trajectories in the over-the-
barrier case.

67





Part IV.

Reaction control of C2H2+
2 via the

carrier-envelope phase
“Man resorts to magic only where chance and circumstances are

not fully controlled by knowledge.”

(Bronislaw Malinowski; Culture (1931), 636.)

IV.1. Introduction

Efficiently controlling and steering molecular reactions is a long standing goal in chem-
istry and physics [132]. External perturbations allow influencing the molecular dynamics
and thus gaining quantum control. Coherent control schemes, making use of weak, fem-
tosecond laser pulses with a duration between 10s and 100s of fs to induce interferences in
the molecular wavefunction, have been proposed since the late 1980s [133, 134, 135, 136]
for reaction control. Experimental realization followed shortly after [41, 42]. The du-
rations of these control pulses are on the same time-scale or longer than typical molec-
ular vibrations. Therefore, these control schemes access the dynamics on the intrinsic
timescales of the nuclear motion.

With the accessibility to few-cycle IR-pulses, with durations of less than 5 fs and a
controlled carrier-envelope phase (CEP), the dynamics can be acessed on much shorter
time scales. The control of the CE-phase, which directly determines the exact field shape
on a sub-fs time scale, has been shown to significantly influence dissociative ionization
of diatoms via the time dependence of the electronic dynamics, i.e. ionization and/or
recollision [35, 36, 37, 38, 40, 45].

In 2012, our experimental collaboration partners, Dr. Xinhua Xie and Dr. Markus Kitzler
from the Vienna University of Technology, applied CEP stabilized few-cycle IR pulses
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to control fragmentation reactions of larger, polyatomic molecules. Using three different
hydrocarbons as test systems, they demonstrated that changing the CE-phase can lead
to a significant modulation of the observed fragmentation yield.

The present chapter is structured as follows: After a brief overview over the experimental
results, the latter are analysed and interpreted theoretically. To this end, a short analysis
of the properties of acetylene, the smallest of the molecules considered experimentally,
provides the necessary primary knowledge to allow a theoretical investigation. Then,
different scenarios that may induce the CEP dependence are discussed. Finally it is
shown that the experiment can be explained via an energy threshold effect in recollisional
ionization. The results of the combined experimental and theoretical investigations have
been published in Physical Review Letters in 2012 and highlighted as Physics Viewpoint.

IV.2. Experimental results

In their experiment [46], Dr. Xinhua Xie and Dr. Markus Kitzler investigated and
proved the possiblity to control the fragmentation reactions of acetylene (C2H2), ethylene
(C2H4), and 1,3-butadiene (C4H6) by tuning the CEP of few-cycle laser pulses.

Details on the experimental setup can be found in the supplementary material to Ref. [46],
hence only a short description is given in the following: in an ultra-high vacuum cham-
ber, linearly-polarized, sub-5fs IR-pulses are focused on a supersonic gas jet of unaligned
molecules. The carrier-envelope phase of the pulses is measured on a shot-to-shot basis
using the stereo-detection of high-energetic photoelectrons [7]. With peak intensities
between 1.1× 1014 W/cm2 and 3.0× 1014 W/cm2, the laser pulses are sufficiently strong
to allow multiple ionization and subsequent fragmentation of the molecules. Fragments
from the dicationic species are measured in coincidence using cold target recoil ion mo-
mentum spectroscopy. Since neutral particles cannot be detected directly, only reaction
channels leading to two singly charged fragments are considered.

Figs. IV.2.1 to IV.2.3 show the measured channel resolved yields for acetylene, ethylene
and butadiene at low intensities: while the yields of the cation and the dication are not
or only weakly modulated by the CEP, the yields of the fragmentation channels exhibit
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a strong dependence on the CEP, with modulation depths of up to 7̃0%. Interestingly,
all fragmentation channels show the same dependence on the CEP.

Figure IV.2.1.: Channel resolved yield for C4H6 at 1.1× 1014 W/cm2 as a function of
CEP.

Figure IV.2.2.: Channel resolved yield for C2H4 at 1.5× 1014 W/cm2 as a function of
CEP.

When the intensity of the laser pulse is increased, the modulation depth decreases, as
shown for the C4H6 →CH+

3 +C3H+
3 channel in Fig. IV.2.4. In the case of acetylene, and

ethylene (not shown) no CEP dependence can be observed at I = 3.0× 1014 W/cm2.

These results clearly demonstrate that controlling the CEP of the ionizing pulse allows
predetermining the fragmentation and isomerization yield of small hydrocarbons. Frag-
mentation control is thus achievable on a sub-femtosecond time scale even for systems
significantly lager than the diatoms studied before. This observation roused the ques-
tion if the mechanism leading to this control is still the same as in the much smaller
systems investigated previously. To answer this question a detailed theoretical analysis
was necessary. For this analysis, acetylene was chosen as model system since it is the
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Figure IV.2.3.: Channel resolved yield for C2H2 at 1.5× 1014 W/cm2 as a function of
CEP.

Figure IV.2.4.: Yield of the C4H6 →CH+
3 +C3H+

3 channel as a function of CEP for
increasing intensity.
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smallest of the systems and can thus be treated more easily in theoretical calculations
than the even larger molecules, ethylene and butadien.

IV.3. Potential landscape of acetylene and
its cations

Due to the complexity of molecular systems, preliminary knowledge on the energy struc-
ture is necessary to reduce the possible reaction pathways considered. In the following,
the most important features of the potential landscape of acetylene are presented. The
neutral species, the cation, and, most importantly, the dication for which the fragmen-
tation reactions were studied, are considered.

IV.3.1. The neutral species

In its neutral ground state, acetylene has a linear equilibrium geometry. The experi-
mentally determined equilibrium bond lengths are C-C ≈ 1.20Å and C-H ≈ 1.06Å (see
Fig. IV.3.1) [137]. Using the symmetry labels of the D∞h point group, to which the

Figure IV.3.1.: Equilibrium geometry of neutral acetylene [137].

equilibrium geometry corresponds, the Hartree-Fock configuration for the 1Σ+
g ground

state of acetylene is given by 1σ2
g , 1σ2

u, 2σ2
g , 2σ2

u, 3σ2
g , 1π4

u. The highest occupied orbitals
are thus bonding πu-orbitals, i.e. the bonding linear combination of a 2p orbital lying
orthogonal to the molecular axis from each carbon atom. The next lower lying orbital is
a bonding σg orbital resulting from a linear combination of the hydrogen 1s orbitals and
the carbon 2s and 2pz orbitals. Most excited states of C2H2 are considerably stabilized
either by cis- or by trans-bending [138] leading to a preference of non-linear geometries.
The vertial excitation energy to the first excited state lies slightly above 4.5 eV [138].
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IV.3.2. The cation

The cationic 2Πu ground state has a linear equilibrium geometry. The equilibrium bond
lengths are similar to, but slightly longer than, those of the neutral (C-C ≈ 1.24Å and
C-H ≈ 1.08Å) [139]. The ionization energy is 11.4 eV [140]. An excellent overview
over the ionic ground and excited states and their potential curves, most of which are
stabilized either for trans- or cis- bending, is given in Refs. [141, 142].

IV.3.3. The dication

Since, in the experiment, fragmentation reactions of the dication were considered, the
dicationic electronic states will be the most important for the present analysis. The
vertical double ionization potentials for several dicationic singlet and triplet states are
reported in Ref. [143]. Thiessen et al. [144] provide schematic potential energy surfaces
for the lowest lying dicationic states along the C-C and the C-H stretching mode.

To allow a detailed analysis, SA-CAS and MRCI calculations were performed in the
course of this work. Table IV.3.1 gives an overview over the calculated vertical excitation
energies to the lowest lying dicationic states.

State SA-CAS calculations MRCI calculations comparison with Ref. [143]
∆E from. ∆E to 3Σ−g ∆E to 3Σ−g ∆E from ∆E to 3Σ−g

neutr. 1Σ+
g neutr. 1Σ+

g
3Σ−g 30.9 31.4
1∆g 31.8 0.9 1.0 32.5 1.1
1Σ+

g 32.3 1.6 1.7 33.2 1.9
3Πu 36.4 5.5 5.8 36.8 5.4
1Πu 37.2 6.3 6.7 37.6 6.3
3Πg 37.7 6.9 7.3 38.2 6.8

Table IV.3.1.: Vertical excitation energies from the neutral ground state to the lowest
lying dicationic states and vertical excitation energies relative to the dicationic ground-
state. SA-CAS: 2 frozen and 10 active orbitals, all valence electrons active, aug-cc-pVTZ
basis, no symmetry used; MRCI: SA-CAS(8,11)+MRCI(8,9), aug-cc-pVDZ basis, C2v
symmetry.

Figs. IV.3.3 and IV.3.4 show cuts through the potential landscape and the resulting
fragmentation products along the C-H and the C-C stretching modes. The calculations

74



IV. Reaction control of C2H2+
2 via the carrier-envelope phase

were performed in the C2v subgroup of D∞h (C-C stretching mode) and C∞v (C-H
stretching mode) and the state average was performed over all states of one symmetry
element of C2v. (The relation of symmetry elements of the different point groups is shown
in Fig. IV.3.2.) Due to the smaller CAS space used to calculate the potential curves
compared to the space used to calculate the vertical exitation energies in Tab. IV.3.1
, the vertical excitation energies are slightly shifted compared to the values given in
Tab. IV.3.1.

Figure IV.3.2.: Correspondence of symmetry elements in C2v and D∞h.

Figure IV.3.3.: The C-H stretching mode of acetylene calculated by SA-CAS(9,8) or
SA-CAS(10,8) for the dicationic states and CAS(8,8) else. Basis set: aug-cc-pVTZ.
C-C = 1.2Å, other C-H = 1.06Å. The nomenclature of states follows the nomenclature
in the linear, symmetric groundstate geometry. The symbols H+and H at the right
hand side of the panels denote dissociation into C2H++H+ and C2H2++H. The gray
bar indicates the Franck-Condon region and thus the vertical excitation energies.

Figs. IV.3.3 and IV.3.4 show that the dicationic goundstate and the first two singlet states
are metastable. Lifetimes up to more than 1 µs have been suggested in Ref. [144] for
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Figure IV.3.4.: As Fig. IV.3.3 for the C-C stretching mode (SA-CAS(8,8), C-H = 1.06Å).
Dotted lines denote states that were not followed throughout the entire region.

C2H2+
2 . Dynamics calculations in reduced dimensions, for the C-H stretching mode only,

performed on the 3Σ−g - and 1∆g-states, show that the vibrational frequency for the C-H
stretching mode is around 13 fs. Since the C-H stretching mode is the fastest vibrational
mode, this shows that vibrational dynamics in acetylene proceeds on timescales longer
than the 4.5 fs duration of the laser pulse used in the experiment.

The next higher states, the 3Πu and 1Πu states have vertical excitation energies relative
to the 3Σ−g state of 5.5 eV and 6.3 eV, respectively (see Tab. IV.3.1). These states are
strongly dissociative along the C-H stretching mode, as can be seen in Fig. IV.3.3. From a
Mulliken charge analysis, one can conclude that the Πu states dissociate into C2H++H+,
and not into the C2H2++H channel. (The latter channel corresponds to the dissociation
limit of several of the higher excited states.)

Along the C-C stretching mode (Fig. IV.3.4), the 3Πu and the 1Πu state both show a
potential barrier to dissociation. For a linear, symmetric geometry at C-H distances of
1.06Å, the barrier height is approximately 2.5 eV for the 3Πu state. For the singlet state,
the barrier is even higher. Due to the high barrier, one might expect the Πu states not
to dissociate along the C-C bond. A more detailed investigation, however, shows that
this is not true: For linear, symmetric geometries, the 3Πu state has a symmetry allowed
conical intersection (CI) with the 3Πg state. At asymmetric or non-linear geometries, the
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two states fall into the same symmetry group and the CI can open to an avoided crossing
as shown in Fig. IV.3.5. This effectively reduces the barrier height for non-symmetric,
or non-linear geometries.

Figure IV.3.5.: Level crossing of the 1st and 2nd excited triplet states (3Πu and 3Πg) of
C2H2+

2 .

To confirm this argument, reduced dimensional quantum dynamics calculations were
performed along the C-C stretching mode for linear, asymmetric geometries with C-
H distances of 1.15Å and 1.9Å. The smaller bond distance thereby approximately
corresponds to the equilibrium bond length of the dicationic groundstate [144]. The four
lowest potential surfaces corresponding to states with B1 and B2 symmetry in C2v (Πu

and Πg in D∞h) were calculated using the aug-cc-pVDZ basis, a CAS(8,8) with a state-
average over the three lowest lying B1 and B2 states and a subsequent MRCI(8,9) for
the four lowest B1 states. In the MRCI calculation, states of B1 and B2 symmetry were
allowed as reference to account for the fact that the B1 and B2 states are degenerate for
linear geometries. Additionally, the nonadiabtic couplings were calculated analytically
using the COLUMBUS software package [84]. The states were diabatized along the C-C
stretching coordinate, using the diabatization scheme described in Ref. [145].

Figure IV.3.6 shows the resulting adiabatic energies of the B1 states (lower panel) and
their non-adiabatic couplings (upper panel) along the C-C stretching mode. The avoided
crossing between the ground and first excited state is clearly visible and accompanied
by a large nonadiabtic coupling. Fig. IV.3.7 shows the diabatic states1. In the diabatic
picture, the groundstate (red line) crosses the excited states and is thus strongly bound.

To find out whether acetylene may dissociate along the C-C stretching mode in spite of
the rather high barrier at linear, symmetric geometries, a field-free dynamics calculation
was performed on the afore calculated diabatic potentials. Mimicking a Franck-Condon

1Unfortunately, it was not possible to calculate sufficiently many states to have only weak coupling to
the next higher states. A strict diabatization was thus not possible.
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excitation to the dicationic 3Πu state, a nuclear wavefunction corresponding approxi-
mately to the lowest vibrational state of the electronic ground-state of C2H2, was set
to the lowest of the states (3Πu) and propagated. Possible deviations from the Franck-
Condon principle due to an R-dependent ionization potential, as observed in Ref. [146]
for tunnel ionization from H2, were not taken into account: in the case of acetylene, the
potential surfaces of the neutral and the ion near the equilibrium geometry are similar
(see Fig. IV.3.4 and Fig. IV.3.3) and the second ionization step may proceed via recol-
lisional ionization. A Franck-Condon like ionization behaviour may thus be expected in
this case.

The result of the propagation is shown in Fig. IV.3.8, for the lowest diabatic state V1

(left) and the excited diabatic state V3 shown in blue in Fig. IV.3.7 (right): At the
beginning of the propagation, the nuclear wavefunction moves mainly on the ground
state. Around t = 10 fs the wavepacket reaches the classical turning point and a very
small portion (barely visible in the left panel of Fig. IV.3.8) of the wavefunction leaves
the potential barrier. Near the turning point (C-C ≈ 1.7Å), the groundstate crosses the
first excited state and population is transferred to the latter, unbound state, leading to a
significant amount of fragmentation. The subsequent dynamics become very complicated
due to the couplings to the other excited states. Overall, due to the significant amount
of density dissociating from the V3 potential after the nonadiabatic transition, the 3Πu

state can be expected to allow fragmentation into CH++CH+ as well as C2H++H+.
This fact will be used in the analysis of the experiment in the next section.

IV.4. Discussion of possible fragmentation
scenarios

Using the potential energy structure of acetylene presented in the last chapter, we can
now discuss possible scenarios and physical processes that may lead to the strong CEP
dependence of the yield of CH++CH+and C2H++H+ observed in the experiment.

As discussed in the last chapter, the dicationic 3Σ−g groundstate, the 1∆g and the 1Σ+
g

state are metastable. Dissociation thus most probably occurs on a higher excited po-
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Figure IV.3.6.: Lower panel: four lowest adiabatic states with B1 symmetry for linear
geometry and C-H distances of 1.15Å and 1.9Å; upper panel: non-adiabatic coupling
elements for neighbouring states.

Figure IV.3.7.: Diagonal elements of the diabatic potential matrix resulting from the
states and nonadibatic couplings shown in Fig. IV.3.6
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Figure IV.3.8.: Wavepacket dynamics: Left panel: density in the diabatic ground state
V1; right panel: density in the diabatic excited state V3 shown in dark blue in Fig. IV.3.7.

tential energy surface, such as the 3Πu state, that was shown in the last section to allow
fragmentation into both, the CH++CH+ and the C2H++H+ channel.

Figure IV.4.1 shows a sketch of the main interaction processes between the laser field
and the molecule: ionization may occur via a sequential or via a non-sequential pro-
cess. Excitation may be induced by the recollision of an electron, or by field excitation
processes, i.e. dipole coupling of the electronic states.

Figure IV.4.1.: Selected potential energy surfaces of C2H2, C2H+
2 and C2H2+

2 ; vertical
excitation energies; and relevant field driven processes.

In previous work on the CEP-control of dissociative ionization of D+
2 and H+

2 [35, 36, 48,
49], field driven population transfer via dipole coupling was shown to be a main process
leading to the CEP control over molecular dynamics. Field excitation processes to the
3Πu state will therefore be discussed in section IV.5.
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Another process that may be CEP dependent, is the (double) ionization probability.
According to the tunnelling picture (I.2.5), the ionization probability depends exponen-
tially on the field strength. Since the temporal evolution of the laser field depends on
the CEP, the probability for sequential ionization may be expected show a CEP de-
pendence. However, as argued in the following, sequential ionization can be expected
to play a minor role compared to recollision processes at the experimental parameters
considered.

According to Ref. [147], for 50 fs-pulses, non-sequential ionization becomes important for
laser intensities around and below 3× 1014 W/cm2. The experimentally relevant inten-
sities (I ≈ 1.5× 1014 W/cm2) are considerably smaller than this threshold. Addition-
ally, recollisional ionization should scale approximately linearly with the pulse duration,
whereas sequential double ionization should scale approximately with the pulse duration
squared. This is due to the fact that for sequential ionization, the probability to release
the first and the second electron both scale with the pulse length, whereas the recollision
probability is relatively independent on the pulse length since the highest energetic elec-
trons recollide after less than one laser cycle and later laser cycles are irrelevant. For the
low intensities and very short pulses at which the experiment was performed, recollision
induced, non-sequential ionization may thus be expected to be dominant. This is also
backed up by the experimentally measured mean momentum of the ions and fragments
in laser polarization direction shown in Fig. IV.4.2: the mean momentum as a function of
CEP for the C2H2+

2 ion, as well as the fragmentation channels show a strong oscillation,
which is out of phase with the much weaker oscillation for the C2H+

2 ion, suggesting a
different ionization mechanism for the dications compared to the cation.

Figure IV.4.2.: Mean ion momentum for C2H+
2 (black dots), C2H2+

2 (gray squares) and
the dicationic fragmentation channels (red dots and blue squares).
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IV.5. CEP dependence of field excitation
processes

Although field excitation processes via dipole coupling of electronic states have been
shown to be important for the CEP dependent charge localization in diatoms, several
reasons suggest that in the case of acetylene, field excitation is not relevant: at equilib-
rium geometry, the dissociative excited states are separated from the ground state by
several eV (see Figs. IV.3.4 and IV.3.3), significantly higher than the average photon
energy of 1.5 eV. Field excitation can thus be expected to be very week near the equi-
librium geometry and to become relevant only when the molecule has rearranged to a
geometry at which the level spacing is significantly reduced. Due to the difference in the
fragment’s reduced masses µ (µC-C

µC-H
≈ 6.8), the molecular dynamics of the C-C and the

C-H vibration take place on considerably different timescales. If field excitation plays
the dominant role, one would therefore expect the CEP dependence of the yield to differ
for the two fragmentation channels: Due to the faster vibration along the C-H stretching
mode, a strong CEP dependence would be expected for the C2H++H+ channel, whereas
a weak or no CEP dependence would be expected for the CH++CH+ channel. Experi-
mentally, however, a very similar behaviour if found for all fragmentation channels as a
function of CEP.

As a further check for the relevance of field excitation, reduced dimensional quantum
dynamics calculations were performed. Considering only the fastest modes (i.e. the two
C-H stretching modes) and the four strongest dipole coupled triplet states (3Σ−g , 3Πu,
3Πg and a 3Σu state), an initial wavepacket, corresponding to the nuclear wavepacket of
the neutral groundstate, thus mimicking a Franck-Condon transition, was set to the 3Σg

state and propagated in the field1. However, since the equilibrium C-H bond distance
of the dication and the neutral are similar, mainly low vibrational states are populated
and very little density reaches large internuclear distances where the energy spacing is
small. As a result, the probability for field excitation remains very low, independently

1More details on the dynamics calculation are given in Chapter V.5
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of the moment of ionization, the alignment and the carrier-envelope phase. The largest
field excitation induced fragmentation probability was found for parallel alignment and
a CEP of φCEP = 90degree (sine pulse) with slightly above 0.3%. Due to this very small
excitation probability, it seems unlikely that field excitation can compete with the direct
population of excited states via recollisional ionization.

IV.6. CEP dependence of recollisional
ionization

Depending on the energy of the recolliding electron, recollision may lead to impact exci-
tation or ionization of the remaining ion. According to the strong field approximation,
the maximum recollision energy in a continuous wave laser is given by Eq. (I.2.10):
εmax
rec. = 3.17UP . For a peak intensity of I = 1.5× 1014 W/cm2 and a wavelength of

800 nm, this corresponds to a recollision energy of ε = 28 eV, considerably above the
ionization potential from the ionic to the dicationic groundstate of about 20 eV (see
Fig. IV.4.1, [143]). Recolliding electrons can therefore directly ionize the molecule.

Additionally, double ionization could be obtained by recollision and subsequent field
ionization. Although the electron impact excitation cross-section at 30 eV is more
than a factor 5 larger than the cross-section for electron impact ionization (prec. exc =
5prec. ioniz) [148, 149], recollisional ionization can be expected to be more important for
fragmentation from the dication: the probability for a subsequent ionzation step after
an excitation would have to be larger than 1

5 in order to dominate over recollisional
ionization (prec. exc. · pfield ioniz. ≈ prec. ioniz) . It is thus likely, that recollisional excitation
with subsequent ionization cannot compete with recollisional ionization, as long as the
recollision energy is sufficient to overcome the ionization potential.

To directly allow the fragmentation of the molecule via recollisional ionization, however,
an excited state of the molecule has to be populated by the electron impact. With an
ionization potential, IP = E(3Σu)−E(2Πu) around 25 eV (compare table IV.3.1, taking
into account the ionization energy to the cation of 11.4 eV), the energy necessary to
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reach the first dissociative state (3Πu) is very close to the estimated maximum recollision
energy of ε = 28 eV.

In a short pulse, the exact value of the maximum recollision energy depends on the
carrier-envelope phase as shown in Fig. IV.6.1. Therefore, if the ionization potential of

Figure IV.6.1.: Recollision energy in SFA approximation. Left panel: recollision energy
as a function of release time t0 of the electron, the color intensity is scaled with the laser
field strength at t0; right panel: maximum recollision energy as a function of CEP. Laser
parameters: sin2 envelope, full-width at half-maximum 4.5 fs, intensity 1.5× 1014 W/cm2

a specific excited state is close to the threshold above which electron impact ionization
is energetically forbidden, the population of this state will crucially depend on the exact
recollision energy of the electron and hence on the carrier-envelope phase. To underpin
this argument, the recollision process was modelled within a quasi-1D semi-classical
approximation.

IV.6.1. Description of the model

The model is based on the three-step model [21] and involves (1) the ionization from the
neutral, (2) the classical propagation of the electron and (3) the probability to populate
a dissociative state. The focus lies on possible CEP dependencies. The model was
restricted to a single dimension parallel to the laser polarization direction.

The initial ionization step is described via the ADK-rate [56]

Γ(t) = f(n, l,m, IP )

2 (2IP )
3
2

|E(t)|

2n−|m|−1

e
− 2(2IP )

3
2

|E(t)| , (IV.6.1)
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where IP , the ionization potential from the neutral to the ion, is set to 11.4 eV and the
electric field E(t) = −1

c
∂A(t)
∂t is defined via

A(t) =

A0 · cos2( πT t) sin(ωt+ φCE) −T
2 < t < T

2

0 else,
(IV.6.2)

where T is the total pulse length. The variable n is given by n = 1√
2IP

and the angu-
lar momentum quantum numbers were set to l = m = 1, as suggested in Ref. [26] for
the ionization from π-bonds. The function f depends only on n, l, m, and IP and is
therefore constant for all CE phases and was neglected. The ADK-rate only provides
an approximation to the exact ionization rate, since it does not correctly account for
the molecular structure and the fact that ionization at the parameters under investiga-
tion lies in the classical over-the barrier regime (assuming a single center potential, the
classical over the barrier regime is reached for IP = 2

√
E ≈ 14 eV for an intensity of

1.5× 1014 W/cm2). Furthermore the Keldysh parameter γ ≈ 1. However, since we are
only interested in the relative changes of the ionization rate due to the change in CEP,
in a first approximation, this should not greatly influence the results.

At the moment t = t0 of ionization, a classical electron trajectory is started at a distance
of x0 = IP /E(t0) from the molecular center. This corresponds to the approximate tunnel
exit in a spherical potential. For the initial momentum, an average is taken over the
initial velocity distribution w(p‖) parallel to the electric field

w
(
p‖(t0)

)
= e
−
p2‖ω

2√2IP
3

3E(t0)3 , (IV.6.3)

as given in Eq. (I.2.5). The frequency ω = 0.057 au describes 800 nm radiation. It was
found, however, that neglecting the parallel velocity distribution does not change the
results considerably.

The momentum distribution orthogonal to the laser polarization axis, leading to an
effective wavepacket spread, was taken into account in the one-dimensional model by
scaling the recollision probability with the inverse area A covered by the wavefunction
at the time t of recollision. This area A(t, t0) was assumed to be given by

A(t, t0) = πσ2
p⊥ (t− t0)2 , (IV.6.4)

where t0 is the start time of the trajectory and σp⊥, the standard deviation of the
electron momentum in direction perpendicular to the laser polarization direction, is
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given in Eq. (I.2.5).

The electron is then propagated classically in the laser field and a soft core Coulomb
potential V (x) = 1√

1+x2 , by solving Newton’s equations of motion. The electron is
defined to recollide with the molecule at time trec, if it returns to its “birthplace” x0, i.e.
if x(trec) = x0. As the probability for later recollisions is strongly overestimated in 1D
models, only the first recollision event is taken into account.

Assuming that an electron trajectory starting at t = t0 recollides with the molecule
at t = trec, the next step is to describe the probability for recollisional ionization and
subsequent fragmentation. While experimental data for the electron impact ionization
cross-section of acetylene can be found in the literature (e.g. [150, 148, 149, 151]), no
state selective cross-sections are available and the energy resolution near the threshold
is low. Therefore, the energy dependent electron impact ionization cross-section σ was
described by the equation by Gryzinski [152, 153].

σ (Ee (trec)) ∝
I ion.P

Ee

(
Ee − I ionP
Ee + Idissoc.P

) 3
2
[
1 + 2

3

(
1− I ionP

2Ee

)
ln
(

2.7 +
√
Ee
I ionP
− 1

)
,

]
(IV.6.5)

where Ee is the electron impact energy given Ee = p‖(t0,trec)2

2 . The ionization potential
I ionP denotes the energy gap between the ionic state and the dicationic state populated
via recollisional ionization. Since we are interested in the fragmentation of the molecule,
I ionP was set to 25 eV, corresponding approximately to the ionization potential to the
3Πu state, which was identified as the lowest lying, strongly dissociative potential. If the
recollision energy Ee is smaller than I ionP , ionization is energetically forbidden, and the
cross-section σ is zero.

The probability Pdissoc. for dissociative ionization, i.e. to fragment, was then set to

Pdissoc. ∝ Γ(t0)σ (Ee (trec)) /A(trec, t0), (IV.6.6)

and a weighted average was taken for the initial momentum distribution parallel to the
field. Arbitrary scaling factors were neglected since only relative changes are of interest.

IV.6.2. Results and Discussion

Fig. IV.6.2 shows the resulting fragmentation probability as a function of laser intensity
and CEP for a sin2 pulse with a full-width at half maximum (of the intensity) of 4.5 fs
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(see Eq. IV.6.2). A modulation of the fragmentation probability with CEP is clearly

Figure IV.6.2.: Predicted fragmentation yield as a function of CEP and intensity for a
sin2 shaped laser pulse with a full-width at half maximum of 4.5 fs. Downward triangles:
location of minima; upward triangles: location of maxima.

visible especially for low intensities. To guide the eye, down and up triangles show the
position of the minima and maxima, which shift to smaller angles for increasing field
intensities.

The overall probability for dissociative ionization strongly increases with increasing laser
intensity. This is due to a.) the increasing probability for tunnel ionization, b.) the
increasing probability to have electrons recolliding with sufficient energy to ionize and
c.) the increasing electron impact ionization cross-section for energies up to 100 eV
[149]. For even lower intensities (not shown), fragmentation is forbidden independently
of CEP.

The ratio between the minima and the maxima is shown in Fig. IV.6.3 as a function of
intensity. While the modulation depth is nearly 100% up to I = 1.28× 1014 W/cm2, the
modulation depth quickly decreases with increasing intensity and reaches 7̃0% around
I ≈ 1.35× 1014 W/cm2. At I = 2.5× 1014 W/cm2, the modulation depth is only around
4%.

The predicted CEP dependence of the fragmentation yield is shown for I = 1.35× 1014 W/cm2

in Fig. IV.6.4 in comparison with the experimentally measured yield of C2H++H+ and
CH++CH+. Up to a shift of approximately 50◦ in CEP, the model predictions reproduce
the measured yields very well. The agreement is obtained directly from the model and
not via a fit to the experimental data. The only parameters that entered the model are
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Figure IV.6.3.: Predicted modulation depth as a function of laser intensity for a 4.5 fs
pulse.

the calculated ionization potentials, the field strength and pulse length. The slightly
lower intensity (1.35× 1014 W/cm2) used in the model compared to the experimentally
determined intensity (1.5× 1014 W/cm2) may be attributed to the difficulty to measure
exact laser intensities in the experiment.

Figure IV.6.4.: Model predictions for the dissociation yield at I = 1.35× 1014 W/cm2

and a full-width at half maximum of 4.5 fs. Green line: model prediction; blue and red
dots: experimental results for CH++CH+and C2H++H+.

The relative shift observed can be attributed to several issues: First, the location of the
minima and maxima depends strongly on the exact pulse length, although the locations
are relatively unaffected when changing the envelope of the vector potential A(t) in
Eq. IV.6.2 from “cos2” to “cos”, while keeping the full-with at half maximum constant.
Secondly, the position of the maxima depends sensitively on the interplay of the prob-
ability to ionize in the first step and the recollision energy for that starting time. It is,
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however known, that the ADK rate does not correctly reproduce the time dependent
ionization rate in molecules [122]. Therefore, the positions of the minima and maxima
may be affected. Another possible reason for the shift is that a very simplified poten-
tial was used in the propagation of the electron: In the present calculations, an atomic
1D, soft-core potential was used instead of the correct 3D, non-spherically symmetric,
multi-center potential of the molecule. The Coulomb field is, however, known to have
an influence on the relationship between the CEP and recollision energy [154]. The shift
may thus also be attributed to the simplified propagation of the electron. Finally, the
role of the Coulomb field also directly influences the calibration of the absolute phase in
the experiment. The phase shift may thus be due to both, a shift in the experimental
data, and a shift in the simulation.

For higher intensities, independently of the exact parameters (pulse length, pulse shape)
used in the model, the modulation strongly decreases. The residual modulation depth of
4% for high intensities and a full-width at half-maximum of 4.5 fs is in good agreement
with the experimentally observed vanishing modulation at 3× 1014 W/cm2.

At low intensities, for which recollisional ionization is forbidden, the present model sug-
gests zero fragmentation probability. This is of course not correct. At lower intensities,
recollisional excitation and recollisional excitation with subsequent ionization may be-
come important.

To cross-check the results, the same model is applied to predict the yield of the non-
dissociative C2H2+

2 channel. To this end, a smaller I ionP of approximately 20 eV is used,
corresponding to the vertical excitation energy from the ion to the metastable, dicationic
groundstate. Using the same pulse length and intensity as in Fig. IV.6.4 ( τ = 4.5 fs,
I = 1.35× 1014 W/cm2), this results in a modulation depth of 12% , mainly due to
a CEP dependence of the recollision step. This is clearly not fully in agreement with
the experimental results, in which the normalized yield of C2H2+

2 , with a modulation
depth of approximately 5%, exactly follows the yield of C2H+

2 (see Fig. IV.2.1), suggest-
ing that even this small residual modulation is not due to the recollision step. A possible
explanation for this discrepancy is that sequential ionization and not recollisional ion-
ization is dominant for the population of the dicationic groundstate. This is, however,
not likely due to the results shown in Fig.IV.4.2. Another possible explanation is the
following: while changing the envelope of the vector potential A(t) to “cos” instead of
“cos2” does not strongly influence the modulation depth calculated for the production of
C2H+

2 , shorter pulse lengths strongly increases the modulation depth and longer pulses
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decrease the modulation depth slightly1. Slightly longer pulse lengths would thus be in
better agreement with the experimental results.

IV.7. Conclusion

In conclusion, the most likely mechanism responsible for the experimentally found CEP
control of molecular fragmentation was identified by investigating the potential energy
structure of acetylene, performing quantum dynamics calculations and modelling the
recollision process: while field excitations via dipole transitions are found to be of minor
importance, an energy threshold effect allows reproducing the experiments qualitatively.
This effect is based on the fact that fragmentation may occur whenever an excited, disso-
ciative state is populated. The lowest excited state supporting fragmentation into both
C2H++H+ and CH++CH+ is the 3Πu state. This state can be populated by recollisional
ionization of electrons from inner-valence molecular orbitals. If the recollision energy is
tuned to the ionization potential of this transition, the dependence of the recollision en-
ergy on the CEP can be used as control tool to enhance or suppress fragmentation. This
dependence could be modelled qualitatively using a simple, 1D recollision model. Slight
discrepancies between the model and the experiment can be attributed to the simplified
potential used in the model and possibly differences in the exact pulse length.

The mechanism identified strongly differs from mechanisms identified so far in CEP
dependent processes [35, 37, 38, 40, 45] and can be expected to allow fragmentation con-
trol for a wide range of molecules, since the only prerequisite are energetically separated
bound and dissociative states.

1The comparison of the modulation depth for different pulse lengths was performed using different
intensities. The intensities were thereby chosen such that the modulation depth for the fragmentation
channel fits the experiment. This is motivated by the fact that the measurement of the exact intensity
is difficult in the experiment.
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Part V.

Reaction control of C2H2+
2 via

alignment

V.1. Introduction

The alignment dependence of strong field processes has been studied extensively in the
past. Examples are the alignment-sensitive yields of molecular strong-field ionization
(e.g. [155, 156, 157]) and the alignment dependence of the high-harmonic generation
(e.g. [28, 158, 159]), which has also been applied to the tomographic reconstruction of
molecular orbitals [32].

In a recent experiment, our collaboration partners Dr. Xinhua Xie and Dr. Markus
Kitzler from the Vienna University of Technology successfully exploited alignment de-
pendence to selectively control the yield of different fragmentation channels of C2H2+

2
[47]. This experiment was the first evidence that is is not only possible to control the
overall fragmentation yield of polyatomic molecules using ultrashort IR laser pulses, but
that is is also possible to tune the relative yields of different reaction channels.

After a brief overview over the experimental results, the focus of this chapter lies on the
theoretical description, interpretation and analysis of these recent results. To this end,
the alignment dependence of sequential and non-sequential double ionization and of field
excitation of C2H2 will be studied. This will allow making theoretical predictions that
can be compared against the experimental results and thus inferring which processes are
relevant. It will be shown that the experimental results can be interpreted as combined
effect of the alignment dependence of sequential and recollisional ionization.
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V.2. Experimental results

In a recent experiment, X. Xie and M. Kitzler investigated the possibility of exploiting
molecular alignment in order to control molecular reactions in ultrashort, strong fields.
In their experiment, they were able to show that the relative probability for dissociation
of C2H2+

2 and C2H+
2 into different fragmentation channels (C2H++H+, CH++CH+,

CH+
2 +C+, C2H++H) can be tuned efficiently using impulsive alignment as a control

tool.

Details on the experimental setup can be found in Ref. [47] and only a short description
will be given in the following. In an ultra-high vacuum chamber, C2H2 molecules are
impulsively aligned by a linearly polarized laser pulse with a time duration of approx-
imately 50 fs and an intensity of I ≈ 2× 1013 W/cm2. This alignment pulse creates
a rotational wavepacket of molecules. During the half-revival of this wavepacket, the
orientation of the molecular axis relative to the laser polarization axis changes from
preferentially parallel at delay-times of τ ≈ 6.8ps to preferentially orthogonal at 7.2 ps.
Scanning through this half-revival by changing the relative delay of the sub-5 fs probe
pulse to the alignment pulse in the range of 6–8 ps, the collinearly polarized probe pulse,
with intensities ranging from 2× 1014 W/cm2 to 7× 1014 W/cm2 is focused onto the
molecular beam. This probe pulse is sufficiently strong to multiply ionize C2H2 and ini-
tiate the molecular fragmentation. Detecting the resulting fragment ions in coincidence,
individual fragmentation pathways can be identified and analysed.

As a measure of the alignment quality achieved in the experiment, the experimentally
obtained values for the expectation value 〈cos2(θ)〉 around the half-revival are shown in
Fig. V.2.1. These values were derived from four-body coincidence measurements of the
ions created in the Coulomb explosion of C2H4+

2 . Random alignment would correspond
to 〈cos2(θ)〉 = 1

3 . The proton yield, also shown in Fig. V.2.1, can be used to trace
the rotational wavepacket through the quarter (τ ≈ 3.5ps), the half- and the three
quarter-revival to the full revival at τ ≈ 14ps.

The yields of different fragmentation and ionic channels are shown in Fig. V.2.2 as
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Figure V.2.1.: Measured expectation value of cos2(θ) (green dots) derived from the
Coulomb explosion data of C2H4+

2 and the proton yield (blue dots, arbitrary units) as a
function of delay time, τ . Red line: simulation of 〈cos2(θ)〉 for a rotational wavepacket.

a function of the delay time τ , i.e. the relative delay between the alignment and the
probe pulse, near the half revival. As mentioned above, at τ ≈ 6.8 ps the molecules are

Figure V.2.2.: Measured yield of C2H+
2 (a), C2H2+

2 (a), CH+
2 +C+(b), CH++CH+(c),

C2H++H+(d) as a function of delay time for a pulse duration of the probe pulse of
τ = 4.5 fs and an intensity of I = 4× 1014 W/cm2.

preferentially aligned parallel to the probe pulse (see Fig. V.2.1), whereas τ ≈ 7.2 ps cor-
responds to preferentially orthogonal alignment. The yield of most channels is strongly
modulated as a function of delay time τ , suggesting a strong alignment dependence of
the fragmentation yields. Moreover, the delay dependence differs for the individual frag-
mentation channels. The C-C bond breakage, for example, shows an enhanced yield at
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τ ≈ 7.2 ps, i.e. orthogonal alignment, and is suppressed at τ ≈ 6.8 ps. The isomerization
channel, CH+

2 +H+, on the other hand, features the opposite behaviour.

Only the C2H++H+ channel does not exhibit any apparent alignment dependence. How-
ever, as shown in Fig. V.2.3 the double peak structure of the kinetic energy release
(KER) of this channel, with maxima around KER ≈ 3.5 eV and 5 eV, suggests that two
or more reaction pathways contribute to this channel. Separating the events for low
KER (KER < 4 eV) and high KER (KER > 4.5 eV), an alignment dependence can be
reestablished (see Fig. V.2.3.b and c). The low and high KER contributions thereby
show an opposite alignment behaviour. The weak alignment dependency of the KER-
integrated C2H++H+ yield is thus a result of two or more rivalling reaction pathways
with inverse alignment sensitivity.

Figure V.2.3.: a.) Distribution of the kinetic energy release for the C2H++H+ channel
for linear polarization (dark green line), a pulse duration of τ = 4.5 fs and an intensity
of I = 4× 1014 W/cm2 as well as for circular polarization (orange line), τ = 4.5 fs and
I = 3× 1014 W/cm. The shaded regions mark the integration regimes used in panels
b and c: b.) Delay dependent yield of C2H++H+ with KER < 4 eV and c.) with
KER > 4.5 eV.

In circularly polarized light, the higher KER peak of the C2H++H+ channel can be
efficiently suppressed (see Fig. V.2.3.a) and an alignment dependence with a maximum
around τ ≈ 7.2 fs is observed even in the KER-integrated case (not shown).
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Overall, this experiment clearly shows that by controlling the molecular alignment via
the delay time τ , the relative yield of the individual channels can be controlled. This
proves that even for probe pulses on the few-femtosecond time scale, alignment can be
used as a control tool in molecular fragmentation reactions, which proceed on a multi-
femtosecond time scale.

V.3. Alignment dependence of sequential
ionization

To analyse the above described results, it is important to identify all processes that may
introduce an alignment dependence: strong-field ionization is known to be alignment
sensitive (e.g. [155, 156, 157]). Furthermore, non-sequential double ionization may also
be alignment dependent (e.g. [29, 160]) and finally, field excitation due to dipole tran-
sitions between different electronic states will be alignment sensitive due to the vector
character of the dipole transition moments coupling the Born-Oppenheimer states.

The focus of this section is the study of the alignment dependence of sequential field
ionization. At the intensities considered in the experiment described above, sequential
ionization can be expected to give the main contribution to the C2H2+

2 yield [147].
How and why the alignment dependence of sequential ionization may lead to a channel
selective alignment dependence of molecular fragmentation in C2H2 can be explained
as follows: qualitatively, a bonding π-type orbital can be expected to have a higher
ionization rate if the laser polarization is orthogonal to the molecular axis than when
it is aligned parallel. For σ-type orbitals, the opposite can be expected. Figure V.3.1
shows the seven lowest molecular orbitals of acetylene, calculated near the equilibrium
geometry of C2H2 using a CAS(8,8) calculation and the cc-pVTZ basis set. The seven
lowest natural orbitals of acetylene have near double occupancy. The two (degenerate)
energetically highest strongly occupied orbitals have πu symmetry. One may thus expect
acetylene to ionize preferentially when aligned orthogonally to the laser polarization
direction. However, it is known that lower lying orbitals may have a significant influence
on strong field ionization [161, 162, 163, 164]. In the case of acetylene, the next lower
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Figure V.3.1.: Molecular orbitals of C2H2 with near double occupancy, calculated by
CAS(8,8). (Isovalue 0.1)

lying orbital is the 3σg orbital, for which the angle resolved ionization rate can be
expected to be different from that of the πu orbitals. Ionization from different orbitals
will lead to the population of different final states. Since the potential energy surface of
different states can strongly differ, different states may predominantly support different
molecular reactions. Therefore a difference in the alignment dependent ionization rate
from π and σ orbitals may lead to alignment dependent fragmentation yields.

To provide a quantitative analysis, allowing a comparison with the experiment, two
different methods were applied to calculate the alignment dependent ionization rate of
acetylene: the first approach is based on time-dependent density functional theory (TD-
DFT) [165]; the second approach makes use of tunnelling theory and the concept of
Dyson orbitals.

The Dyson orbital approach establishes a direct connection to the electronic states pop-
ulated after ionization, which is important in the following analysis. However, it is
applied here within a tunnelling picture. Due to over-the-barrier effects, this limits the
analysis to the second ionization step or to field strengths considerably below the exper-
imentally relevant ones, where in turn the applicability of tunnelling theory for 800 nm
radiation becomes questionable. The TD-DFT approach, on the other hand, suffers from
the known limitations of TD-DFT, such as problems describing non-linear response, the
dependence on the exchange-correlation functional, space charge and self-interaction ef-
fects. Furthermore, the TD-DFT approach requires several assumptions, such as the
similarity of Kohn-Sham orbitals and molecular orbitals. However, as shown in the fol-
lowing chapters, both approaches lead to very similar results, proving the methods to
be comparatively robust against the approximations made.
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V.3.1. Time-dependent density functional theory approach
(TD-DFT)

The time-dependent density functional theory calculations were performed on a grid with
absorbing boundaries for both, the acetylene molecule, C2H2, and the singly charged ion,
C2H+

2 . The singly charged ion was thereby considered in two different initial states, one
corresponding to the ionic ground state and one corresponding to the first excited ionic
state, described by one electron missing from the 3σg orbital. The obtained energy
spacings between the neutral ground state and the ionic ground state and excited state
were found to be 11.3 eV and 17.0 eV in close agreement to values given in literature
(11.5 eV and 17.2 eV [166]). The Kohn-Sham orbitals resulting from the C2H2 calculation
are shown in Fig. V.3.2.

Figure V.3.2.: Kohn-Sham orbitals of C2H2 calculated by DFT. (Isovalue 0.1).

In the time-dependent calculations, a strong and short laser pulse (4.5 fs FWHM with a
sinusoidal envelope, I = 2.8× 1014 W/cm2), polarized at an angle θ relativ to the molec-
ular axis, was applied to the molecule1. The computational grid was chosen sufficiently
large to allow the classical tunnel exit to lie well within the grid. The box size used in
most of the calculations was 64 au×40 au×37 au, where the first dimension corresponds
to the direction of the laser polarization direction, and defines, together with the second
dimension the plane in which the molecular axis lies. Sin-shaped complex absorbing
boundaries with a width of 4 au and a height of −1.5 au were used. The resulting time
evolution of the electronic density projected onto the polarization direction of the laser
field is shown exemplary for C2H2 at an alignment angle of θ = 40◦ in figure V.3.3. Near
each field maximum, electronic density is drawn away from the vicinity of the molecule.
The charge lost during the calculation via the absorbing boundaries is interpreted as the
probability for single ionization. Fig. V.3.4 shows the time evolution of the charge ni(t)

1Due to the short duration of the laser pulse, it would be better to define the electric field via the
vector potential. However, the Octopus software package allows only sinusoidal envelopes and no
cos2 envelope. Since the former would lead to a sudden onset of the electric field, and since the final
momentum of the electrons is not of interest in the present calculations, the field was defined directly.
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Figure V.3.3.: Time evolution of the electronic density of C2H+
2 projected onto the laser

polarization direction for an alignment angle of θ = 40◦. Superimposed red line: electric
field.

contained in each Kohn-Sham orbital, where

ni(t) = No
i 〈φi(t, θ)|φi(t, θ)〉 (V.3.1)

with the initial occupation number No
i of the i-th orbital. The calculation of the overlap

〈φi(t, θ)|φi(t, θ)〉 is no standard feature of the Octopus code and was implemented as
part of this thesis.

Figure V.3.4.: Time evolution of ni(t) of the Kohn-Sham spin-orbitals of C2H+
2 for an

alignment angle of θ = 40◦.

To limit the amount of double ionization and to minimize the influence of space charge
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effects in the continuum, the strength of the pulse applied in the simulations was re-
stricted to values slightly lower than in the experiment with E = 0.09 au, corresponding
to I = 2.8× 1014 W/cm2. At this intensity, the total amount of charge lost is lower than
0.6 au for C2H2, 0.1 au for C2H+

2 in the ground state and 0.2 au in the excited state.

Double ionization is described as two subsequent processes: C2H2→C2H+
2 followed by

a second ionization step C2H+
2→C2H2+

2 or C2H+
2
∗ → C2H2+

2 , where the star denotes
the excited state. This is necessary due to the fact that single and double ionization
cannot be separated in TD-DFT calculations since they both only manifest themselves
in a decrease of the norm.

In Eq. (V.3.1), the charge ni(t) was defined per Kohn-Sham orbital. The concept of
Kohn-Sham orbitals will be necessary to allow an interpretation of the experimental
results. However, due to the presence of the field, different Kohn-Sham orbitals tend to
mix during the presence of the pulse as shown in Fig. V.3.5.

Figure V.3.5.: Time evolution of selected projections Pi,j = |〈φKS
i (t)|φKS

j (0)〉|2 for an
alignment angle of θ = 40◦. Note the different scale for the projection P2σu,3σg

For a general orientation of the molecular axis relative to the laser polarization, the
symmetry of the molecule–field system reduces to the Ci point group. The orbitals
having πu symmetry in theD∞h point group corresponding the the equilibrium geometry
of C2H2, have Au symmetry in Ci and may thus couple to the σg orbitals, having Ag

symmetry in Ci since the dipole operator has Au symmetry in Ci. The σg orbitals,
on their part, may couple to πu and σu (Au symmetry in Ci) orbitals. In the special
case of parallel alignment (θ = 0◦), only transitions from σg to σu are allowed, while
transitions to πu are symmetry forbidden. For orthogonal alignment (θ = 90◦), the
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former transitions are symmetry forbidden and the latter are allowed. In the present
calculation, the coupling between the 3σg and the 2σu orbital is observed to become very
large, with the two orbitals effectively switching at some moments during the propagation
(see Fig. V.3.5). Coupling with even lower lying σ states, on the other hand, is negligible
and the coupling between the πu and the σ states remains well below 1.5% even for
θ = 90◦, where the strongest coupling can be expected.

Due to the strong coupling of the 2σu and the 3σg orbital, norm lost from the orbital
corresponding at t = 0 fs to the 2σu contains — to a certain extent — norm lost from
an orbital having σg character. This prohibits distinguishing between these orbitals.
Ionization from σg and σu orbitals was thus treated as a sum over all σ orbitals. Due to
the weak coupling of the π states to the σ states, it is possible to separate the ionization
from σ-type orbitals and π-type orbitals. With this in mind, the following ionization
probabilities from σ and π orbitals were defined:

p0/+
σ (θ) =

∑
σ orb.

n
0/+
i (t = 0, θ)− n0/+

i (t = tf , θ), (V.3.2)

p0/+
π (θ) =

∑
π orb.

n
0/+
i (t = 0, θ)− n0/+

i (t = tf , θ), (V.3.3)

where θ denotes the angle between the laser polarization direction and the molecular axis.
The time tf is chosen long enough after the end of the pulse such that the electronic
density released during the pulse has left the grid. The superscripts “0” and “+” denote
ionization from C2H2 and C2H+

2 , respectively.

Double ionization yields were defined as

p2+
a,b =

∫
dt
(∑

a

n0
i (0)− n0

i (t)
)
·
(∑

b

n+
i (t)− n+

i (tf )
)
, (V.3.4)

with pπ,σ denoting the probability to ionize from a π-type orbital in the first step and
from a σ-type orbital in the second step, etc. If the first ionization step corresponds to
ionization from a σ-type orbital, then the n+

i should be taken from the calculations for
the excited ion.

The resulting single and double ionization yields as a function of the alignment angle θ
are shown in Figs. V.3.6 and V.3.7. Note that possible influences of the carrier-envelope
phase on the alignment dependent ionization yield [167] were not investigated since the
experiment was not performed using CEP stable pulses. Accordingly, the ionization
yield is assumed to conserve the molecule’s symmetry.
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Figure V.3.6.: Angular plots of the alignment dependent ionization probabilities from
specific orbitals. Black line: probability to ionize from a π orbital, blue line: probablity
to ionize from a σ orbital for a.) C2H2, b.) C2H+

2 , c.) C2H+
2
∗.

Figure V.3.7.: Angular plots of the alignment dependent probability for sequential ion-
ization. left: ionization from a π orbital in the first and second ionization step; middle:
ionization from a π orbital in the first and from a σ orbital in the second step; right:
ionization from a σ orbital followed by ionization from a π orbital. (See text for details.)
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As expected, the π orbitals ionize preferentially, when aligned orthogonally to the laser
polarization axis, while the σ orbitals have a strongly enhanced ionization probability
for parallel alignment. Ionization from π orbitals in C2H2 (Fig. V.3.6.a) depends only
rather weakly on the alignment. This may be explained by the fact that in the neu-
tral, ionization from the π orbital is in the classical over-barrier regime (in a spherical
potential at I = 4× 1014 W/cm2, the barrier maximum lies at −16 eV, while the ioniza-
tion potential from the π orbitals is Ip ≈ 11.6 eV [166] and therefore clearly above the
barrier). Overall, the alignment dependence is more pronounced for the σ-type orbitals
than for the π-type orbitals such that the combined probability for ionization from a
π-type orbital followed by a σ-type orbital and vice versa is dominated by the angle
dependence of the σ orbital, i.e. is preferred for small angles θ (see Fig. V.3.7 b. and c.).

Now that the alignment dependence of ionization from different orbitals has been estab-
lished, the next step is to relate these probabilities to the probability for the reaction
to end in a specific reaction channel. First, the removal of electrons from specific or-
bitals is related to the population of specific dicationic states. To this end, table V.3.1
shows the occupation of orbitals in configuration state functions (CSFs) contributing
with weights larger than 0.02 to the wavefunctions of the lowest lying electronic states
of C2H2+

2 . The groundstate configuration of C2H2 is dominated by the following determi-
nant: (1σ2

g , 1σ2
u, 2σ2

g , 2σ2
u, 3σ2

g , 1π2
u, 1π2

u). Obviously, the extraction of two electrons from
the π orbital system of C2H2 leads mainly to the population of the 3Σ−g groundstate,
the 1∆g or 1Σ+

g state of C2H2+
2 (see also Fig. V.3.8).

Figure V.3.8.: Schematic drawing of states populated after the extraction of two πu
electrons (left) and one σg and one πu electron. Dark gray region: neutral, light gray
region: cationic states, all other states: dicationic states.

If, on the other hand, one electron is removed from the 3σg orbital and one from a
π orbital, mainly the singlet and triplet Πu states will be populated. The molecular
orbitals of the CAS calculation are sufficiently similar to the Kohn-Sham orbitals to
allow relating the two sets of orbitals with each other (compare Figs. V.3.1 and V.3.2).
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state CSF weight
1σg 1σu 2σg 2σu 3σg 1πxu 1πyu 1πxg 1πyg 3σu

3Σ−g
�� �� �� �� �� � � 0.96

1∆g (state 1)
�� �� �� �� �� � � 0.85
�� �� �� �� �� �� 0.05
�� �� �� �� �� �� 0.05

1∆g (state 2)
�� �� �� �� �� �� 0.43
�� �� �� �� �� �� 0.43

1Σ+
g

�� �� �� �� �� �� 0.47
�� �� �� �� �� �� 0.47

3Πu (state 1)
�� �� �� �� � �� � 0.89
�� �� �� � �� �� � 0.03

3Πu (state 2)
�� �� �� �� � � �� 0.89
�� �� �� � �� �� � 0.03

1Πu (state 1)
�� �� �� �� � � �� 0.91
�� �� �� � �� � � � 0.02

1Πu (state 2)
�� �� �� �� � �� � 0.91

Table V.3.1.: Occupation of orbitals in configuration state functions (CSFs) contributing
with weights larger than 0.02 to the wavefunctions of the lowest lying electronic states
of C2H2+

2 .
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This correspondence is used to assign the alignment dependence of sequential ionization
from two π orbitals to the alignment dependent population of the 3Σ−g , 1∆g and 1Σ+

g

states as well as to relate the alignment dependence of the population of the Πu states
with the alignment dependence of ionization from a π orbital, followed by ionization
from a σ orbital or vice versa.

V.3.2. Comparison of TDDFT with a Dyson orbital approach

To validate the above approach and before proceeding with the interpretation of the
experimental results, the TDDFT based approach was compared with a second, concep-
tionally different approach to calculate the alignment dependence for the population of
specific dicationic states: In this second approximation, the population of a specific state
via ionization is treated as tunnelling process from an effective one particle wavefunction,
the Dyson wavefunction given by

φD(r) =
〈
ΨN−1(r1 . . . rN−1)|ΨN (r1 . . . rN−1, r)

〉
r1...rN−1

. (V.3.5)

This corresponds to the overlap of an N -electron wavefunction ΨN of a specific electronic
configuration of C2H+

2 with an (N − 1)-electron wavefunction describing an electronic
state of C2H2+

2 . In the present approach, these many-particle wavefunctions were taken
from CAS(8,8) calculations. Since the tunnelling theory requires a very good description
of the wavefunction tails, an adjusted aug-cc-pV5Z basis was used, as suggested in
Ref. [168]. To allow a decent description of the tails, two additional diffuse orbitals
for each angular momentum were added. On the other hand, the orbitals with angular
momentum quantum number l = 5 (h-orbitals) were removed from the basis to limit the
size of the basis set. The molecular geometry was kept at the ground state geometry
of the neutral, i.e. linear with a CC bond distance of 1.2Å and a CH bond distance
of 1.0Å, similarly to the TD-DFT calculations. This is justified by the fact that the
ionization process occurs on a fast time scale below the 5 fs duration of the laser pulse.
The nuclear configuration can thus not change significantly during this time. The overlap
integral was calculated using the integration schemes described in appendix B.1. Table
V.3.2 shows the resulting Dyson orbitals for transitions from the doubly degenerate 2Πu

groundstate of the cation to the 3Σ−g , 1∆g, 1Σ+
g , 3Πu and 1Πu states of the dication

together with their ionization potentials, IP .
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Nr final state Dyson orbital IP

1,2 3Σ−g 21.1 eV

3,4 1∆g (state 1) 33.6 eV

5,6 1∆g (state 2) 33.6 eV

7,8 1Σ+
g 34.3 eV

9,10 3Πu (state 1) 38.4 eV

11,12 3Πu (state 2) 38.4 eV

13,14 1Πu (state 1) 39.2 eV

15,16 1Πu (state 2) 39.2 eV

Table V.3.2.: Dyson orbitals calculated from the degenerate 2Πu state of C2H+
2 to dif-

ferent dicationic states. The left and right figures correspond to the Dyson orbital from
the first and second degenerate 2Πg state. Note that the orientation of the πx and πy
orbitals differs in the calculations for the cation and the dication.
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The tunnelling ionization rate Γ is calculated according to Ref. [168] as

Γ ∝
∫

dpx
∫

dpy
√

2Ip e
−2
∫ zex
z0

pz(z′)dz′ ∣∣∣φ̃D(px, py, z0)
∣∣∣2 e−p2

⊥

√
2Ip
E , (V.3.6)

where the z-axis corresponds to the laser polarization axis, φ̃D(px, py, z0) is the two-
dimensional Fourier transform of the Dyson orbital in the plane orthogonal to the laser
polarization ẑ: φ̃D(px, py, z0) = F {φD(x, y, z0)}x,y, and p⊥ =

√
p2
x + p2

y. The ionization
potential IP is calculated from the energy difference of the (N − 1)-particle state and
the N -particle state. Eq. V.3.6 follows from the semiclassical propagation of the wave-
function through the barrier using the WKB-method [169]. The two exponential factors
stem from the classical action

∆S = i

∫ ze

z0

√
pz(z)2 + p2

⊥dz ≈ i
∫ ze

z0
pz(z)dz + i

∫ ze

z0

1
2
p2
⊥

pz(z)
dz, (V.3.7)

assuming p⊥ to be small compared to pz and approximating pz by the SFA expression
pz =

√
2Ip − 2Fz in the term with p⊥. For e−

∫ zex
z0

pz(z′)dz′ , the eikonal approximation
with a first order correction for a single center potential was used [169]

e
−
∫ zex
z0

pz(z′)dz′ ≈
( 4IP
Ez0

) Q+1√
2Ip

e−
√

2Ip
3

3E +
√

2Ipz0 , (V.3.8)

whereQ is the charge of the molecule prior to ionization. The value of z0 should be chosen
to lie within the potential barrier, in which case the results should be approximately
independent of the exact value of z0 [168]. The exit of the barrier, zex, was calculated
assuming a single center potential. The further zex lies from the center of the molecule,
the better this approximation will be.

Note that other than in Ref. [168], no additional Taylor series for small ρ =
√
x2 + y2

was applied, when evaluating Eq. V.3.6. Instead, Eq. V.3.6 was solved numerically.

Since the first ionization step with an ionization threshold of approximately 11.5 eV clas-
sically proceeds over the barrier for field intensities above approximately 7× 1013 W/cm2,
i.e. at intensities far below the experimentally relevant regime, tunnelling theory is not
applicable to the first ionization step and only the second ionization step will be con-
sidered in the following analysis, assuming that the cationic groundstate was populated
in the first step. The lowest ionization potential calculated for the transition from the
cation to the dication was IP ≈ 21 eV. At an intensity of 4× 1014 W/cm2, as used
in the experiment, and a charge Q = 2 au even the second ionization step classically
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lies above the barrier. In the present investigation, the intensity was thus decreased to
I = 1.2× 1014 W/cm2 corresponding to an electric field strength of E = 0.58 au. At
this intensity, for a single-center potential with charge Q = 2 au, the entrance of the
potential barrier for this IP lies around z = 3 au and the barrier exit around z = 11 au.
This allows a safe choice of z0 within the barrier even considering the molecular extent
of approximately 3 au to either side of the molecular center. In the present study, z0 was
typically set to 6.5 au and values ranging from 6 au to 7 au were compared for consis-
tency. Larger values could not be considered due to the degrading quality of the Dyson
wavefunction, φD at large distances from the molecular center. Smaller values might
cause z0 to lie outside the barrier.

To allow a comparison with the TD-DFT results discussed in the last section, the ion-
ization rates for the πu-type Dyson orbitals 1 to 8 (see Tab. V.3.2) corresponding to
ionization rates to the 3Σ−g , 1∆g and 1Σ+

g states were added, as were the rates for σ-type
Dyson orbitals 9 to 14 for ionization to the 3Πu and 1Πu states. Fig. V.3.9 shows a
comparison of the alignment-dependent ionization probability computed via TD-DFT
with the ionization rate calculated using the Dyson-orbital approach. In spite of the

Figure V.3.9.: Comparison of the ionization probability from C2H+
2 to C2H2+

2 calculated
via TD-DFT (black line, black scale) and the ionization rate calculated via the Dyson
orbital approach (blue-line, blue scale). Left: for π-type orbitals, right: for σ-type
orbitals. Arbitrary units are used in all cases.

large difference in intensity used in the TD-DFT calculations compared to the Dyson
orbital approach, there is only a small difference in the resulting alignment dependence:
the alignment dependence is slightly more pronounced in the Dyson orbital approach
than in TD-DFT. It is likely that this is an effect of the higher intensity used in the
TD-DFT approach. However, within the accessible intensity range from 8.8× 1013–
1.5× 1014 W/cm2, in which the value of z0 can safely be chosen to lie within the barrier,
the alignment dependence does not change noticeably for the Dyson orbital approach
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(see Fig. V.3.10). Another difference between the TD-DFT results and the Dyson or-

Figure V.3.10.: Comparison of the alignment dependence from π-type orbitals (left panel)
and σ type orbitals (right panel) for different field intensities.

bital approach is the relative importance of the ionization from σ type orbitals, which is
considerably smaller in the Dyson orbital approach. However, increasing the intensity
in the Dyson orbital approach leads to a significant increase of the relative importance
for ionization from the σ orbitals suggesting that this difference is mainly due to the
different intensities used in the calculations (see Fig. V.3.10).

Overall, due to the small difference in the alignment dependence of the two approaches,
the present calculations can be seen as confirmation of the TD-DFT results.

V.3.3. Predicted yields assuming sequential ionization

In the previous sections, the alignment dependence of the population of two groups
of states was investigated: a.) 3Σ−g , 1∆g and 1Σ+

g and b.) 3Πu and 1Πu. Using the
results from the TD-DFT calculations for the alignment dependency, the population of
certain states will now be connected with the alignment dependent yields of the ionic
channels, C2H+

2 and C2H2+
2 and the fragmentation channels C2H++H+, CH+

2 +C+ and
CH++CH+.

As established in part IV.3, the dicationic groundstate, 3Σg, of C2H2+
2 is metastable.

The first excited singlet states, the 1∆g and the 1Σ+
g state, also show a barrier to

dissociation. A population of these states can thus be expected to lead to the detection
of C2H2+

2 . Therefore, the alignment dependent yield of C2H2+
2 should be determined by

the probability to remove two electrons from πu orbitals (see also Fig. V.3.8).
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To allow the comparison of this prediction with the experimental data, the alignment
dependent ionization yield is convolved with the time-dependent angle distribution f(θ, t)
of a molecular rotational wavepacket [170]. The dynamics of the rotational wavepacket
was thereby simulated assuming a polarizability orthogonal to the molecular axis of
2.7Å3, an anisotropy of 1.8Å3 [171] and a rotational constant of B = 1.18 cm−1 [172].
The initial rotational temperature was set to 100K, equal to the value estimated from
the experiment [47]. The intensity of the alignment pulse was set to 2.4× 1013 W/cm2

and the full-width at half maximum of the field to 50 fs similarly to the values from the
experiment. With these parameters, the results for 〈cos2 θ〉 are very similar to those
measured in the experiment (see Fig. V.2.1).

Using Eq.(V.3.4), the resulting normalized prediction Yπ,π(t)

Yπ,π(t) =
∫

dθ f(θ, t) p2+
π,π(θ)∫

dt
∫

dθ f(θ, t) p2+
π,π(θ)

(V.3.9)

for the delay-dependent yield of C2H2+
2 is shown in Fig. V.3.11 together with the experi-

mental results. As can be seen from Fig. V.3.11.a, very good qualitative and quantitative

Figure V.3.11.: Comparison of the theoretically predicted delay dependence of the yield
with experimental results. Left: For C2H2+

2 assuming sequential double ionization from
two π orbitals; right: for C2H+

2 assuming single ionization from one π orbital.

agreement between the model predictions and the experimental results for the delay de-
pendent yield of C2H2+

2 is found. Similarly good agreement is also found for the yield of
C2H+

2 (see Fig. V.3.11.b), when assuming that the cation is produced by single ioniza-
tion from a π orbital from acetylene. Note that no fitting parameters were used in this
procedure: the bold lines in Fig. V.3.11 are the direct result of the model presented.

The second group of states analysed in the last section, the 3Πu and 1Πu states, have
been shown in section IV.3 to be strongly dissociative along the CH stretching mode
(see also Fig. V.3.8). Population of the Πu states may thus be expected to lead to the
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detection of C2H++H+. Defining

Yπ,σ(t) =
∫

dθ f(θ, t) p2+
π,σ(θ)∫

dt
∫

dθ f(θ, t) p2+
π,σ(θ)

(V.3.10)

Yσ,π(t) =
∫

dθ f(θ, t) p2+
σ,π(θ)∫

dt
∫

d θf(θ, t) p2+
σ,π(θ)

(V.3.11)

with the pa,b given by Eq. (V.3.4), allows the comparison of the model predictions with
the experimentally measured fragmentation yields. However, as shown in Fig. V.3.12,
the yields Yπ,σ or Yσ,π do not correctly reproduce the experimental results for the KER
integrated yield of C2H++H+ and CH++CH+. On the other hand, the CH+

2 +C+ chan-

Figure V.3.12.: Comparison of the model results for sequential ionization from a π orbital
followed by ionization from a σ orbital (black line) and vice versa (gray line) with
experimental results of fragmentation yields.

nel shows good agreement with the model predictions. Considering the fact that the 3Πu

state is known to have a pathway to isomerization with energetically low lying transition
states [173], this agreement does not come unexpectedly.

The disagreement of the yield of C2H++H+ with the model is less astonishing taking
into account that the two distinct KER peaks observed for this channel (see Fig. V.2.3)
and the opposite alignment behaviour of fragments with high and low KER suggest that
at least two different reaction pathways participate in the reaction. In the following, only
the low KER components will be associated to sequential ionization. This is motivated
by the fact that the high KER components are strongly suppressed compared to the
low KER part in circularly polarized light (see Fig. V.2.3), suggesting the influence of
recollision to those events. Attributing only the low KER components of the C2H++H+

reaction to the population of the Πu states via sequential ionization, a qualitative agree-
ment between the experiment and the model is re-established. The overestimation of the
modulation depth (compare the black and gray lines representing the model prediction
with the green dots in Fig. V.3.12 for C2H++H+ with low KER) can be attributed to
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the contribution of the second, recollision induced reaction channel to fragmentation
products with low KER.

A similar interpretation can be invoked to account for the discrepancy observed between
the model predictions and the CH++CH+ yield (see right panel of Fig. V.3.12). Although
the Πu state can be expected to allow fragmentation into CH++CH+, the measured yield
is clearly higher for preferentially orthogonal alignment, while, according to the model,
sequential ionization to the Πu states is favoured for parallel alignment. However, when
using circularly polarized light, the experimentally measured delay dependent yield of
CH++CH+ is inverted, suggesting the influence of recollisional ionization in the case of
linearly polarized light. For circularly polarized light, the experimental observations are
correctly reproduced by the model as shown in the following.

To account for circularly polarized light, the present model is extended. The yield in
circularly polarized light Y circ. is calculated as

Y circ.
π,σ (t) =

〈
∫

dθ f(θ, t) p2+
π,σ(α(θ))〉∫

dt 〈
∫

dθ f(θ, t) p2+
π,σ(α(θ))〉

, (V.3.12)

where
cos(α(θ)) = cos(β) sin(γ) sin(θ) + sin(β) cos(θ). (V.3.13)

The average, denoted by the pointed brackets is taken over the angles β and γ. The
angle β thereby describes the instantaneous polarization of E(t) and γ is the azimuthal
angle of the molecular axis relative to the polarization plane of the laser.

Using this equation, the measured delay-dependent yield of both the C2H++H+ and the
CH++CH+ fragmentation channel in circularly polarized light are reproduced qualita-
tively and quantitatively (see Fig. V.3.13). This excellent agreement corroborates the
above interpretation. It can thus be concluded that a certain portion of the CH++CH+

as well as the C2H++H+ fragments with KER ≈ 3.5 eV correspond to fragmentation from
the 3Πu or 1Πu states after sequential ionization. This contradicts previous publications
on experimental studies of electron impact and single photon ionization of C2H2, where
C2H++H+ fragments with low KER of about 3.5 eV were attributed to dissociation from
the 3Σ−g state [144, 174].

Since for both, the CH++CH+ and the C2H++H+ fragmentation, recollisional ionization
seems to play a major role at the experimentally relevant laser intensities, the alignment
dependency of recollision induced fragmentation as well as the possible influence of field
excitation is discussed in the following sections.
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Figure V.3.13.: Comparison of the model results for sequential ionization from a π orbital
followed by ionization from a σ orbital (black line) and vice versa (gray line) in circularly
polarized light with experimental results of fragmentation yields.

V.4. Alignment dependence of recollision
events

The possibility that recollision induced molecular fragmentation may be alignment de-
pendent was first proposed in Ref. [175], when studying the ellipticity dependence of
non-sequential double ionization. The authors argued that the presence of a nodal plane
in the wavefunction suppresses the probability for electrons to leave the molecule with
zero transverse velocity. Within the strong-field approximation, only electrons with zero
transverse velocity can return to the parent ion. Thus, recollisional ionization and sub-
sequent fragmentation will be suppressed if the nodal plane lies in the laser polarization
direction. Later, publications studying the alignment dependency of recollision in gen-
eral, followed this line of argument, at the same time putting it onto more solid ground,
using theoretical predictions for the momentum distribution of the primary electron after
ionization based on tunnelling theory [29, 160, 176, 177].

Since the exact numerical treatment of recollisional ionization is highly challenging even
for two electron systems due to the electron-electron interaction and the extensive grid
sizes needed in the simulation, it is desirable to describe the process within simplified
models. Invoking the three-step model [21], the alignment dependence of recollisional
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ionization can be attributed to the alignment dependence of three processes: 1.) the
probability to release a primary electron, 2.) the probability for this electron to return
to the core and 3.) the probability for the recolliding electron to induce ionization upon
impact.

While most publications studying the alignment dependence of recollisional ionization
focus on the first and second step, the focus of this chapter lies on the third step, the
alignment dependence of the recollision-induced ionization. The goal is thereby not to
model the effect quantitatively; the intention of this analysis is rather to fathom whether
one may expect an alignment dependency to arise due to this last step.

While not strictly speaking equivalent, the last step in recollisional ionization is closely
related to electron impact ionization. At 4× 1014 W/cm2, within the strong-field ap-
proximation, the maximum recollision energy ε = 3.17UP for a classical electron (see
Eq. I.2.10) is approximately 2.8 au = 75 eV. In terms of typical impact energies used in
electron impact ionization experiments ((e,2e)-experiments), this is a very low energy.
Only few studies have investigated the alignment dependence of electron impact ioniza-
tion of molecules at low impact energies and most of the work done in this field has
focused on H2 [178, 179, 180, 181, 182, 183, 184, 185]. Most theoretical studies on the
electron impact ionization of larger molecules (e.g. N2, H2O, NH3, CH4, pyrimidine)
use orientation averaging when computing the cross-section, thereby reducing the nu-
merical effort (e.g. [186, 187, 188, 189]). Furthermore, these studies focus in general on
the triply-differential (i.e. momentum resolved) cross-section for arbitrary alignment and
not the alignment dependent cross-section integrated over all momenta of the outgoing
electrons relevant in the present case. In Ref. [180], the alignment dependence of the
triply differential impact ionization cross-section of H2 was studied, revealing a signifi-
cant alignment dependence. Therefore, it remains an interesting question to investigate
whether an alignment dependence is also present in the case of C2H2 and whether it is
present for electron impact ionization cross-sections integrated over all outgoing electron
momenta.

This question will be analysed in the following section albeit without a claim for quantita-
tive results. The aim is to assess whether this third step in recollisional ionization which
is usually neglected when studying the alignment dependence of recollisional ionization
can be rightly neglected or whether it may play a significant role.
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V.4.1. Alignment dependence of electron impact ionization

In order to assess whether electron impact ionization may be alignment dependent, to
understand what may cause the alignment dependency and to gauge on which parameters
it may be expected to depend, the simplest possible model will serve as first step:

In this model, it is assumed that the nuclear wavefunction is not affected during the
impact, i.e. that the nuclei do not move, i.e. no vibrations are excited in the recollision.
This can be expected to be a reasonable approximation since the ionization process
occurs on timescales significantly smaller than the timescale of molecular vibration.
Furthermore, the process is described as an effective two electron process, where the
active electrons are the incoming electron and an electron situated in a Dyson orbital

φD = 〈ψN−2|ψN−1〉, (V.4.1)

where ψN−1 is the (N − 1)-particle electronic wavefunction of the ion corresponding to
the molecular state prior to impact ionization and ψN−2 is the (N−2)-particle electronic
wavefunction of the dication after impact ionization.

The outgoing electrons are assumed not to interact. Although the interaction of the
two outgoing electrons in the continuum is known to be important for the correct de-
scription of the threefold differential cross-section [190], in the present application, the
simplification is assumed to be valid, since the exact position of the binary and recoil
peak are not important. The incident electron wave is represented as plane wave. Under
these assumptions and neglecting exchange, the transition matrix element T , defining
the triply-differential cross-section d3σ

dΩ1dΩ2dE1
∝ kske

ki
|Tif |2 δ(Ef − Ei), is given by

Tif = 〈ψ−ke(r1)ψ−ks(r2)|Vi(r1, r2)|φD(r1)eikir2〉, (V.4.2)

where the ψ− are scattering solutions with outgoing boundary condition for the effective
potential Vi

Vi(r1, r2) ≈ Vion(r2) + 1
|r1 − r2|

. (V.4.3)

The effective ion potential Vion is dropped from Vi in the expression of the transition
matrix element, since a single particle potential cannon induce a two particle transition.

Even with the above simplifications, the description of the ψ− remains a challenge:
While the incoming electron has an energy around 2.5 au, the outgoing electrons are
considerably slower due to the ionization potential around 1 au. Especially the slower
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of the two outgoing electrons can be expected to have a very low velocity, since the
transition matrix element is larger for low energy transfers [95]. The emitted electron
will hence not be well described within the first Born approximation. To allow a first
appraisal, the scattered wave, i.e. the faster electron, will be described by a plane wave,
while the emitted wave, i.e. the slower electron, will be described by a Coulomb scattering
wave function χ−C . Asymptotically, at large distances from the ion, the Coulomb potential
has the same form as Vion, but the simple approximation does not account for the
multi-center nature of the molecular potential and will overestimate the influence of
the potential near the center since the inner electrons shield the nuclear charges in the
molecule.

Since exchange plays a minor role for unequal energy sharing [95], it will be neglected
in the first step. Under these assumptions, the approximate triply differential scattering
cross-section is defined via the following transition matrix element Tif

Tif ∝
4π

|ki − ks|2
〈χ−C(ke, r1)|ei(ki−ks)r1 |φD(r1)〉, (V.4.4)

where ki, ks and ke are the momenta of the incoming, the scattered and the emitted
electron respectively. The wavefunction χ−C , the Coulomb scattering wave with outgoing
boundary conditions, is given by [95]

χ−C(ke, r) = 1
(2π)− 3

2
e−

1
2πηΓ(1− iη)eikr

1 F1 [iη, 1,−i(kr − kr)] , (V.4.5)

where Γ is the Gamma function for complex arguments, 1F1 [a, b, c] is the confluent
hypergeometric function and η = −Z/k. Since the molecule is doubly charged after the
recollisional ionization Z = 2.

The expression in Eq. (V.4.4) is equivalent to the Fourier transform of 〈φ−C(ke, r)|φD(r)〉
evaluated at the q-vector q = ki−ks and weighted by the inverse q-vector squared. The
only information on the molecular properties enters via the Dyson orbital φD. To analyse
how the properties of φD influence the resulting electron impact cross-section, Figs. V.4.1
and V.4.2 show the Fourier transform of the matrix element 〈φ−C(ke, r)|φD(r)〉 for two
Dyson orbitals with different symmetry: the πu-type Dyson orbital corresponding to
ionization to the dicationic 2Σ−g groundstate and the σg-type Dyson orbital corresponding
to ionization to the dissociative 3Πu state (see Tab. V.3.2). The energy of the outgoing
electron was set to Ee = 0.2 eV; the cases in panels a.) to c.) correspond to different
angles of the outgoing electron relative to the molecular axis. The orbital shape is clearly
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reflected in the Fourier transforms; the product with the outgoing wave manifests in the
shift in k-space and a distortion compared to the Fourier transform of the orbital itself
(compare panels a. to c. with panel e.).

Figure V.4.1.: Absolute square value of the Fourier transform of 〈φ−C(ke, r)|φD(r)〉 for
the πu-type Dyson orbital (shown in panel d.) for different angles of ke: a.) parallel
to the molecular axis, b.) 45◦, c.) orthogonal (Ee = 0.2 au), e.) Fourier transform of
the Dyson orbital itself. The molecular axis lies along the y-direction. Different points
on the plots correspond to different values of q = ki − ks. The absolute square of
F
(
〈φ−C(ke, r)|φD(r)〉

)
|ki−ks is proportional to the triply differential cross-section.

Figure V.4.2.: As Fig. V.4.1 for the σg-type Dyson orbital.

To study the resulting alignment dependence of the triply differential, alignment depen-
dent cross-section, let us assume that the momentum of the incident electron, impinging
on the πu-type orbital, is parallel to the momentum of both outgoing electrons, with
q = 1 au. For electron impact parallel to the molecular axis, the triply differential cross-
section is then proportional to the value at (0, 1) in Fig. V.4.1a), while the value at (1, 0)
in Fig. V.4.1c) corresponds to perpendicular alignment. These two values are clearly
different, reflecting the alignment sensitivity of the triply differential cross-section.

If only the alignment dependent ionization yield is of interest and not the direction
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of the outgoing electrons after impact ionization, an average has to be taken over the
momentum direction of both outgoing electrons (Ωs and Ωe) and over the energy sharing
of the two electrons. It is not a priori clear whether the alignment dependence of the
triply-differential cross-section will wash out due to averaging or not.

First, the averaging over Ωs and Ωe will be considered. To this end the energy of the
incoming electron is set to 2.5 au ≈ 65 eV, which is slightly lower than the maximum
recollision energy expected at an intensity of 4× 1014 W/cm2. The energy Ee of the
slower electron, i.e. the electron emitted from the ion if exchange is neglected, is set to
0.2 au ≈ 5.4 eV. Energy conservation is taken into account by setting Ei = Ee+Es+IP 1,
where Ei, Ee and Es are the energies of the incident, emitted and scattered electron
respectively and IP is the ionization potential. The resulting alignment dependence of
the singly-differential cross-section dσ

dEe
(θ) is shown in Fig. V.4.3 as a function of the

relative alignment angle θ between the molecular axis and the electron impact direction.
These graphs show a pronounced alignment dependence in the case of the σg orbital,
while the alignment dependence of the singly-differential cross-section for the πu orbital
is negligible.

Figure V.4.3.: Singly-differential cross-section dσ
dEe

(θ) [arb. u.] for electron impact ion-
ization from the πu Dyson orbital (red line) and the σg Dyson orbital (green line) as
function of the relative alignment angle θ between the direction of the incident electrons
and the molecular axis (0◦: parallel to the molecular axis, 90◦: perpendicular). In the
case of the πu orbital, the plane of incidence is equal to the orbital plane. (Ei = 2.5 au,
Ee = 0.2 au).

In the next step, the dependence on the energy sharing will be investigated. Fig. V.4.4
shows the singly-differential cross-section for the πu and σg Dyson orbitals for different

1In this expression, the momentum transfer to the nucleus, which is necessary due to momentum
conservation is neglected.
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values of Ee. As expected, the singly-differential cross-section is larger for small values of
Ee, but while the magnitude of the singly-differential cross-section is energy dependent,
the qualitative alignment dependence seems to be unaffected over a comparatively wide
range of different energy sharing. One of the reasons for this insensitivity to Ee = k2

e
2m

may be the comparative insensitivity of the Coulomb scattering wave on the asymptotic
momentum ke near the vicinity of the core. Overall, the stability of the alignment
dependence with Ee suggests that the the cross-section will show a significant alignment
dependence in the case of the σg-type Dyson orbital even if integrated over Ee.

Figure V.4.4.: Dependence of the singly-differential cross-section [arb. u.] for ionization
from the πu-type Dyson orbital (left panel) and the σg-typen Dyson orbital (right panel)
on the energy sharing. (Ei = 2.5 au)

So far, the molecular nature only entered the problem via the Dyson orbital; an influence
of the molecular structure on the scattering wave has been so far neglected. If the
molecular structure is taken into account, may this diminish the observed alignment
dependence — may it enhance it? To tackle this question, a simple model for a multi-
center scattering wave was devised. In this model, the outgoing wavefunction of the
emitted electron, which was so far described by a Coulomb wavefunction, is replaced by

χ−2C(k, r) = −eikr + eik∆χ−C,k(r−∆) + e−ik∆χ−C,k(r + ∆). (V.4.6)

This expression follows in first order from the Lippmann-Schwinger equation for a two
center potential V (r) = Vl(r) + Vr(r) = − 1

|r−∆| −
1

|r+∆| , where 2∆ is the distance
between the two cores. The derivation is given in Appendix C. However, since the
terms depending on both Vl and Vr are neglected in the derivation, Eq. V.4.6 does not
converge to the correct solution for ∆ → 0 and will only be a good approximation for
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large enough internuclear separations. In the following, 2∆ is set to 1.2Å, corresponding
approximately to the C-C distance in the neutral acetylene groundstate. Fig. V.4.5
shows the resulting singly-differential cross-section for the πu and the πg Dyson orbital
at Ee = 0.2 au. Especially in the case of the σg-type Dyson orbital, at Ee = 0.2 au,
the two-center wavefunction leads to a significant change of the alignment dependence
compared to the results for a single-center Coulomb wave (albeit with a considerable
dependence on Ee in the case of the σg-type orbital)

Figure V.4.5.: Dependence of the singly-differential cross-section [arb. u.] on the form
of the emitted electron wave for the πu-type Dyson orbital (left panel) and the σg-type
Dyson orbital (right panel). Green line: single center coulomb wave (cp); blue line:
multi-center wave for an internuclear distance of 2∆ = 1.2Å. The cross-sections are
independently scaled to their maximum. (Ei = 2.5 au, Ee = 0.2 au)

Although neither the single-center, nor the multi-center Coulomb wave correspond to
the exact scattering wave function, the results presented allow establishing three facts:
1.) the alignment dependence will depend on the initial and final state, i.e. on the Dyson
orbital, 2.) the ionization cross-section may well be alignment dependent, in spite of the
averaging over the direction of the outgoing electrons and the energy sharing and 3)
the alignment dependence depends sensitively on the correct description of the (slower)
outgoing wave.

Describing the faster outgoing wave and the incoming wave as plane waves, is numerically
advantageous, since it allows performing the integral in the transition matrix over the
coordinates of one of the electrons analytically. However, as established before, the
alignment dependence of the impact-cross section will depend strongly on the description
of the slower outgoing wave. In spite of the fact that the incident and scattered electron
will be faster than the emitted electron, the correct description of these two waves may
well be of importance. To asses the possible influence, two more models were applied:
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In the first model (denoted by cc in the following), the transition matrix element is
approximated as

Tif ∝ 〈χ−C(ke, r2)χ−C(ks, r1)|Vint|φD(r1)eikir2〉 (V.4.7)

This corresponds to assuming that both scattered waves can be represented approxi-
mately as single-center Coulomb waves. Although the fact that the multi-center nature
of the emitted wave has an influence on the cross-section was established before, the
present calculations aim solely at inferring whether the exact description of the faster
scattering wave also has an influence, the multi-center nature of the wave function is
therefore neglected for simplicity.

Eq. V.4.7 contains the integrals over the coordinates r1 and r2. Performing these inte-
grals on a grid would be numerically prohibitive. Therefore, an expansion in spherical
harmonics Yl,m was used. This leads to the following expression for the singly-differential
cross-section (for a derivation see Appendix D)

dσ
dEe

∝ 1
kikeks

∑
le,me,ls,ms

∣∣∣∣∣∣
∑
α,l,li

1
2l + 1 i

(li) Yli,−mi(k̂i)[
Gls,l,li−ms,m,miG

le,l,lα
−me,−m,mα

∫ ∫
rl+1
<

rl>
fα(r′)jli(kir)F ∗le(ηe, ker

′)F ∗ls(ηs, ksr) dr dr′

∓Gle,l,li−ms,m̃,miG
ls,l,lα
−me,−m̃,mα

∫ ∫
rl+1
<

rl>
fα(r′)jli(kir)F ∗ls(ηs, ksr

′)F ∗le(ηe, ker) dr dr′
]∣∣∣∣∣

2

,

(V.4.8)

where the plus sign corresponds to an anti-symmetric spin function, whereas the minus
sign should be chosen if the spin function is symmetric. Neglecting the second term
entirely, is equivalent to neglecting exchange. The variables mi, m and m̃ are given by
mi = (ms − me − mα), m = (mα − me) and m̃ = (mα − ms) and r</> denote the
smaller/larger of r and r′. The G denote Gaunt coefficients are given by

Gl1,l2,l3m1,m2,m3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
, (V.4.9)

where the expressions in brackets are the Wigner-3j symbols. The function fα(r) de-
scribes the radial part of the Dyson orbital and is defined via

fα(r) =
∫

dΩφ∗D(r)Ylα,mα(r̂) (V.4.10)
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The regular Coulomb functions Fl(η, ρ) are the radial functions of the Coulomb scattering
wave [191].

The second method, denoted by ccc in the following, results from the distorted Born
approximation, when assuming that Vion is given by −2

r . Under this approximation (for
a derivation see Appendix E), all outgoing and the incoming wave are represented as
Coulomb waves and the singly differential cross section is given by

dσ
dEe

∝ 1
kikeks

∑
le,me,ls,ms

∣∣∣∣∣∣
∑
α,l,li

1
2l + 1 i

(li) Yli,−mi(k̂i)
[
Gls,l,li−ms,m,miG

le,l,lα
−me,−m,mα ·

·
∫ ∫

rl+1
<

rl>
fα(r′)Fli(ηi, kir)

eiσl(ηi)
kir

F ∗le(ηe, ker
′)F ∗ls(ηs, ksr) dr dr′

]∣∣∣∣∣
2

, (V.4.11)

when exchange is neglected.

The resulting singly-differential cross-sections dσ
dEe (θ) are shown in Fig. V.4.6 for Ee =

0.2 au and Ei = 2.5 au in comparison with the previous results, describing the scattered
wave as plane wave (pc) for the πu-type Dyson orbital (left panel) and the σg-type Dyson
orbital (right panel).

Figure V.4.6.: Comparison of the singly-differential cross-section dσ
dEe (θ) using different

models (pc, cc and ccc — for details refer to the text) for the πu-type Dyson orbital (left
panel) and the σg-type Dyson orbital (right panel). The cross-sections are independently
scaled to their maximum. (Ei = 2.5 au, Ee = 0.2 au).

While, for the πu-type Dyson orbital, the cross-section shows only a weak alignment
dependence which does not depend strongly on the model, the alignment dependence
of the singly-differential cross-section for the σg Dyson orbital changes drastically with
the exact description of the wave. For both orbitals and the tree methods compared in
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Fig. V.4.6, the alignment dependence of the singly-differential cross-section dσ
dEe (θ) does

not change strongly with the energy sharing (not shown) and can thus serve as estimate
for the cross-section σ(θ) integrated over energy sharing.

The strong dependence of the results on the exact model used shows clearly that for typ-
ical impact energies present in recollisional ionization, a correct description, not only of
the slower, emitted wave would be needed, but also for faster, scattered wave. Moreover,
although the influence of exchange diminishes for smaller Ee, it influences the resulting
singly-differential cross-section strongly even at comparatively low energy transfers of
Ee = 0.2 au as shown in Fig. V.4.7.

Figure V.4.7.: Comparison of the singly-differential cross-section using the cc model
(for details refer to the text) when neglecting exchange (green line), when using an
antisymmetric spacial wavefunction (orange line) and when using a symmetric spacial
wave function (blue line) for the πu-type Dyson orbital (left panel) and the σg-type
Dyson orbital (right panel). (Ei = 2.5 au, Ee = 0.2 au).

V.4.2. Conclusion

In conclusion, it has been shown that electron impact ionization of acetylene may be
strongly alignment dependent. The Coulomb waves, used to represent the scattering
waves in the present model, are only an approximation to the true scattering waves, which
depend on a spherically non-symmetric, multi-center potential and the models used
cannot give an quantitatively accurate description of the rescattering process. Never the
less, the results do suggest that orbital symmetry induces an alignment sensitivity in the
recollision induced impact ionization cross-section σ(θ): while the alignment dependence
of the ionization cross-section from the πu type Dyson orbital seems to be small, the
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impact ionization cross-section from the σg-type Dyson orbital shows a strong alignment
dependence in spite of the averaging over the direction of the outgoing electron momenta
and the energy sharing.

In a complete description of the rescattering process, the alignment dependence of 1.) the
initial ionization, 2.) the probability for the primary electron to return to the core and 3.)
the probability for impact ionization should therefore be included. However, a correct
description of the cross-section will remain a challenge: on the one hand, this is due to
the fact that (e,2e) cross-sections are not totally equivalent to the recollision step since
in (e,2e) processes no field is present and the incoming electron wave is not shaped by
the previous ionization step and field-propagation. On the other hand, it could be shown
that the exact form of the outgoing and incoming scattering waves are very important
for a correct description of the alignment dependence. It is, however, so far numerically
prohibitive to calculate the exact scattering wave function in an arbitrary 3D potential.
The cross-section can thus not even be calculated exactly within a two-active-electron
approximation. It will remain a challenge to identify those approximations that reflect
the physical process best.

V.5. Field Excitation

So far, only cases were considered, where ionization directly determines the final elec-
tronic state populated in the dication. However, field excitations, i.e. dipole transitions
between different electronic states, may also have an influence on the process. Field ex-
citation may occur in the neutral before ionization, in the cation after the first ionization
step or in the dication. Due to the alignment dependence of the transition moments,
the population of excited states via field excitation can be expected to show a strong
alignment dependence.

The energy gap to the first excited dipole coupled state in the Franck-Condon region is
similar in the neutral, the cation and the dication. It is therefore likely that the average
probability for field excitation is similar in all three cases. In the following, an analysis
of the field excitation process in the dication is presented. To this end, the molecular
dynamics on the four strongest dipole coupled triplet states of the dication are considered
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in reduced dimensions. The states considered are the 3Σ−g groundstate (V1 in Fig. V.5.1),
the first and the second excited states, which are the 3Πu and 3Πg states (V2 and V3 in
Fig. V.5.1), and one higher excited state, the first 3Σ−u state (V4 in Fig. V.5.1). Since the
potential energy surfaces of the singlet states behave qualitatively similarly to the singlet
states, the calculations were not repeated for the singlet states. The nuclear degrees of
freedom used in the calculation are the two C-H stretching modes, which correspond to
the fastest vibrational modes of acetylene. The C-C stretching mode is not taken into
account due to the much slower molecular motion along this coordinate compared to the
C-H stretching mode.

The electronic states and the transition dipole moments shown in Fig. V.5.1 were calcu-
lated in the C2v point group using a state averaged CAS(8,8) and a subsequent MRCI
calculation. Only the strongest dipole couplings, shown in Fig. V.5.1, were taken into
account.

Figure V.5.1.: Cut through the potential surface and the dipole couplings considered in
the dynamics calculations along one of the C-H stretching modes (the other C-H distance
is kept fixed at 1Å).

Mimicking a Franck-Condon like ionization behaviour, the nuclear wavepacket of the
neutral groundstate is used as initial wavepacket on the dicationic groundstate. Since
the molecule has to be doubly ionized prior to the field excitation in the dication, the
propagation was started at different moments during the temporal extent of the laser
pulse and the lowest lying light induced potential was considered as groundstate. The
probe pulse was set to an intensity of I = 4× 1014 W/cm2 and a duration of 4.5 fs,
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similar to the values used in the experiment.

Figures V.5.2 to V.5.4 show the resulting fragmentation probability as a function of
the moment of ionization for different values of the carrier-envelope phase (CEP) and
different alignment angle θ of the molecule relative to the laser polarization axis.

Figure V.5.2.: Fragmentation probability as a function of the moment of double ioniza-
tion, with t = 0 fs corresponding to the center of the pulse for a pulse with CEP = 0◦.

Figure V.5.3.: As Fig. V.5.2 for CEP = 45◦.

Independently of the CEP, the fragmentation probability strongly depends on the molec-
ular alignment. The relative fragmentation probability thereby also depends on the
moment of ionization: considering Fig. V.5.2, field excitation induced fragmentation is
larger for parallel alignment than for perpendicular alignment, if ionization happens at
t ≈ 0.6 fs, corresponding to a zero electric field, where the probability for recollisional
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Figure V.5.4.: As Fig. V.5.2 for CEP = 90◦.

ionization is high. At the field maximum (t = 0 fs), when the probability for sequential
ionization is highest, the fragmentation probability is higher for perpendicular alignment.
However, as can be seen in Figs. V.5.2 to V.5.4, the overall probability for fragmentation
due to field excitation in the dication is below 0.3%. Yet, in the experiment the ratio of
the yield of the C2H++H+channel to the yield of C2H2+

2 is larger than 6%. The present
calculations for a field excitation process would therefore underestimate the actual frag-
mentation probability by a factor of more than 20. Since the energy gap to the lowest
dipole coupled states is similarly high in the neutral and the cation as in the case of the
dication discussed here, it can be expected that the probability for field excitation in the
neutral and the cation will be similarly low. This strongly suggests that field excitation
cannot be the dominant process leading to the alignment sensitivity of the fragmentation
process. It can therefore be concluded that, while the field excitation process is strongly
alignment dependent, the alignment dependence of the measured yields are dominated
by the alignment dependence of sequential and recollisional ionization.
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V.6. Conclusion

In this chapter, the mechanisms allowing to control the channel dependent yield of
fragmentation reactions of C2H2+

2 were studied. First, the alignment dependence of se-
quential ionization was studied using a TD-DFT and an effective single-active electron
tunnel-ionization model. The comparison of the two methods showed consistent results,
thereby backing up the TD-DFT results which were used to model the alignment de-
pendent yield of the different fragmentation channels. Within the model for sequential
ionization, the yield of the C2H+

2 , C2H2+
2 and the CH+

2 +C+channel could be reproduced
both, qualitatively and quantitatively. For the C2H++H+and the CH++CH+channel,
the influence of recollisional ionization to the total fragmentation yield is important and
the experimental observations could only be reproduced for circularly polarized light,
due to the fact that the alignment dependency of recollisional ionization can — so far
— not be modelled.

In the second part the problem of recollisional ionization was addressed. It was thereby
not the goal to investigate the process quantitatively, it was rather the goal to investigate
whether the impact ionization, which is generally neglected when studying the alignment
dependence of recollisioinal ionization, introduces an additional alignment dependence.
While the alignment dependence of the electron impact ionization cross-section in C2H+

2 ,
was found to be small in the case of ionization from a πu Dyson orbital, for σg type or-
bitals, the calculations suggest a significant alignment dependence. Thus, the alignment
dependence of electron-impact ionization should be taken into account when studying
recollisional ionization.

The third part addressed the alignment dependence of field driven dipole excitations.
While the field excitation shows a strong alignment dependence, its overall importance
is negligible due to the small field excitation probability.
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Part VI.

Summary and Conclusion

In this work, the complex molecular dynamics driven by strong, few-cycle infra-red laser
pulses with intensities around 1014 W/cm2 and pulse lengths below 5 fs have been anal-
ysed. With the help of theoretical investigations and numerical modelling insight could
be provided to the physical mechanisms governing the strong-field dynamics of electrons
and nuclei and the interplay between inter-particle and laser-particle interaction. The
complexity of the systems studied ranged from the simplest of molecules, H+

2 , up to
acetylene, C2H2, a small hydrocarbon.

In the first part of this work, the photoelectron spectrum of H+
2 subject to intense cir-

cularly polarized infra-red fields was investigated. Experimentally, it has been observed
in the group of P. Corkum [Spanner et al. J. Phys. B, 194011, (2012)] that the photo-
electron momentum distribution is rotated in circularly polarized fields relatively to the
expectations from the strong-field approximation. This rotation is comparatively stable
against an increase of the laser intensity — a counterintuitive fact, since one would ex-
pect the results from the strong-field approximation to be recovered for high intensities.
Although the numerical solution of the time-dependent Schrödinger equation may be
possible for H+

2 and simulations have been performed in reduced dimensions, quantum
mechanical models have so far not been able to provide a concluding explanation for
the angular shifts. To advance the debate whether it is rather the interaction of the
free electron with the Coulomb field or rather the non-ADK like ionization behaviour,
i.e. the electron dynamics prior to ionization in molecules that leads to the observed
shift, a semi-classical model has been applied in this work: the classical trajectory cal-
culations provide a simple approach to testing the influence of the anisotropic Coulomb
potential on the final momentum distribution of the photoelectrons, by including or
neglecting the Coulomb forces in the propagation. The possible influence of electronic
dynamics prior to ionization has been modelled via a modified ionization rate and mod-
ified initial momentum values. Within the model, the experimentally observed rotation
and its dependence on the final electron momentum and the internuclear distance could
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be reproduced qualitatively assuming an ADK-like ionization behaviour only, when in-
cluding the anisotropic Coulomb field of the ion. The counterintuitive stability of the
rotation with respect to increasing intensity could be explained as interplay of two ri-
valling effects: the classical tunnel exit moving closer to the ion, where the influence
of the Coulomb field is stronger, and the stronger electric field rivalling the increased
Coulomb field at the tunnel exit. Modifying the ADK-like ionization behaviour to mimic
the multiple ionization bursts per laser cycle observed in H+

2 leads to a broadening of
the momentum distribution, but not to a rotation. This suggests that it is rather the
Coulomb potential which leads to the observed shift. In further investigations, it would
be interesting to study the influence of different wavelengths and elliptical polarization.

The second and third part of the thesis dealt with larger molecules, in particular acety-
lene (C2H2) and the possibility to gain reaction control over the fragmentation dynamics
in polyatomic molecular systems. Together with our experimental collaboration part-
ners Dr. Markus Kitzler and Dr. Xinhua Xie from the Photonics Institute at the Vienna
University of Technology, it has been shown for the first time that reaction control
in polyatomic molecules can be gained using either the carrier-envelope phase (CEP) of
ultrashort laser pulses or the molecular alignment relative to the laser polarization direc-
tion as control tool. To analyse field-driven dynamics in such large systems, a multi-scale
approach was needed: various different methods such as quantum chemistry to molecu-
lar dynamics, semi-classical models and quantum collision theory were therefore applied
in the present work.

More specifically, the second part dealt with the fragmentation control of C2H2+
2 by

tuning the carrier-envelope phase: for infra-red laser pulses with an intensity around
1× 1014 W/cm2, a strong modulation of the fragmentation yield with the CEP has been
observed experimentally. The yield of the non-fragmented cation and dication, on the
other hand, exhibit no or only a very weak dependence on the CEP for the same laser
parameters. At higher laser intensities, the CEP dependence of the fragmentation yield
decreases and vanishes. In this work, it has been shown that the CEP control over the
fragmentation yield relies on the carrier-envelope phase dependent population of the
first excited dicationic state, which is dissociative. Several different scenarios for the
population of this state have been modelled and compared against each other, including
sequential ionization, field driven dipole excitation, recollisional excitation and non-
sequential ionization. An energy threshold effect in recollisional ionization was thereby
identified as the mechanism responsible for the CEP control: if the recollision energy
is tuned to the ionization potential of the transition to the first strongly dissociative
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VI. Summary and Conclusion

state by choosing an appropriate laser intensity, the dependence of the recollision energy
on the CEP can be used as control tool to enhance or suppress fragmentation. Within
a semi-classical, one-dimensional model, good agreement between the experiment and
the model could be obtained. A difference between experiment and model is a shift
in the CEP, which could be attributed to both, simplifications in the model and the
determination of the absolute value of CEP in the experiment. The experimentally
observed trend for higher intensities is correctly reproduced within the semi-classical
model.

The third part of this thesis dealt with the reaction control of acetylene via the relative
alignment of the molecular axis and the laser polarization direction. The corresponding
experiments were performed at a slightly higher laser intensity around 4× 1014 W/cm2.
At these laser parameters, controlling the molecular alignment allows tuning the rel-
ative probability for the fragmentation reaction to end in a specific channel (C2H2+

2 ,
C2H++H+, CH+

2 +C+, CH++CH+). The alignment control thus allows the channel se-
lective manipulation of the fragmentation reaction. From a theoretical point of view,
dealing with alignment-dependent effects is challenging. The alignment sensitivity may
arise from several different causes: ionization, excitation and recollision all depend on
the relative alignment of the molecular axis to the laser polarization direction. In the
present work, the alignment dependence of sequential ionization and subsequent frag-
mentation of acetylene has been studied using two different models: first, a TD-DFT
approach and secondly, a tunnelling approach based on a single particle picture using
the Dyson orbital. Although the two models rely on very different approximations, they
lead to consistent results and the alignment dependence of several fragmentation chan-
nels has been reproduced both qualitatively and quantitatively. For the C2H++H+ and
the CH++CH+ fragmentation channels, it could be shown that recollisional ionization
plays an important role. In this context, it has been shown that the impact ionization,
which is generally neglected when studying the alignment dependence of recollisional
ionization can be expected to show a considerable alignment dependence at recollisional
energies typical in strong-field experiments. This is especially true for ionization from
the lower lying σg orbital which leads to the population of excited states. The influence
of field excitation processes, on the other hand, has been studied but was found to be of
minor importance at the experimentally relevant intensities.

Overall, the present work has allowed the interpretation of several experimentally discov-
ered effects and has provided theoretical models for the complex strong-field electronic
and nuclear dynamics in molecules. The simplified models devised in this thesis have
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allowed identifying the underlying physical processes governing the dynamics and have
offered many intuitive explanations.

The interaction of strong laser fields with molecules is an exciting and challenging topic.
The size of the systems, the presence of the non-spherically symmetric Coulomb po-
tential, the wide range of timescales that have to be considered and many other effects
make theoretical research in this field highly demanding. A wide range of scientific con-
tributions has already greatly advanced our understanding of strong-field processes, but
to thoroughly understand and to be able to fully exploit the strong-field control over
molecular reactions will require further research on the theoretical as well as on the
experimental side.
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A. Atomic units [au]

Atomic units form a system of natural units derived from properties of the electron
in an hydrogen atom. They are therefore especially suited and often used in atomic
and molecular physics. Tables A.1 and A.2 give an overview over several often used
conversions and factors.

quantity physical property symbol au SI other units

charge electron charge e 1 1.602 × 10−19 C

mass electron mass me 1 9.109 × 10−31 kg 5.486 × 10−4

amu

length Bohr radius a0 = 4πε0~2

mee2 1 5.292 × 10−10 m 0.5292Å

red. Planck’s const. ~ 1 1.055 × 10−34 Js

vacuum permittivity 4πε0 1 1.113C2 J−1 m

energy Bohr energy (Hartree) 2E0 = ~2

mea
2
0

1 4.360 × 10−18 J 27.211 eV

velocity av. velocity of e in H v =
√

2E0
m

1 cα = c
137.036

= 2.187 × 106 m/s

time cycling time in H τ0
2π = ~

E0
1 2.419 s 24.189 as

E-field electric field strength E 1 5.142 × 1011 Vm−1

Bohr magnetron µB = e~
2me

0.5 9.274 × 10−24 J /T

Table A.1.: Numerical values for commonly used conversions (four significant digits).
(c . . .speed of light, α . . .fine structure constant)

quantity relation

wavelength ω/ [au] = 45.56
λ[nm]

intensity E [au] =
√

2.849 × 10−17I
[
W/cm2]

I
[
W/cm2] = 3.509 × 1016E [au]

Table A.2.: Other useful relations.
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B. Integration schemes

Numerically, integration can be implemented using Riemann sums. However, for precise
results, it is desirable to perform integrals analytically if possible or to use numerical
quadrature. The following sections summarize some of the integration schemes used in
the present work.

B.1 Overlap integrals of Gaussians type orbitals

Gaussian type orbitals are often used as basis functions in electronic structure calcula-
tions. A cartesian Gaussian centered at A can thereby be written as [74]

Gijk(r, a,A) = xiAy
j
Az

k
Ae
−a(x2

A+y2
A+z2

A) (B.1)
= Gi(x, a,Ax)Gj(y, a,Ay)Gz(z, a,Az) (B.2)

where xA is given by xA = x − Ax, the variable a is the exponential decay factor and
Gi(x, a,Ax) = xiAe

−ax2
A .

The overlap of two different Cartesian Gaussians is thus given by

〈Gikm(r, a,A)|Gjln(r, b,B)〉 =∫ ∞
−∞

Gi(x, a,Ax)Gj(x, b,Bx)dx︸ ︷︷ ︸
Sij

·
∫ ∞
−∞

Gi(y, a,Ay)Gj(y, b, By)dy

·
∫ ∞
−∞

Gi(z, a,Az)Gj(z, b, Bz)dz, (B.3)

where Sij denotes the overlap in Cartesian x direction. These overlaps can be calculated
via the Obara-Saika recurrence relations [74] from the analytically known result for the
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B. Integration schemes

overlap of two spherical Gaussians

S00 =
√
π

p
e−µX

2
AB , (B.4)

Si+1,j = XPASij + 1
2p (iSi−1,j + jSi,j−1) , (B.5)

Si,j+1 = XPBSij + 1
2p (iSi−1,j + jSi,j−1) , (B.6)

where P = aA+bB
p , µ = ab

a+b , p = a+ b and XAB = Ax −Bx. (The overlaps in the other
Cartesian coordinates follow equivalently by replacing x by y and z.)

Another variant of Gaussian type orbitals often used in electronic structure calculations
are spherical-harmonic Gaussian type orbitals, which are defined as [74]

Glm(r, a,A) = Slm(xA, yA, zA)e−a(x2
A+y2

A+z2
A), (B.7)

where Slm are real solid harmonics defined as(
Slm

Sl,−m

)
= 1√

2

(
(−1)m 1
−(−1)mi i

)√
4π

2l + 1r
l

(
Ylm(θ, φ)
Yl,−m(θ, φ)

)
, (B.8)

and Ylm are normalized spherical harmonics in the phase convention of Condon and
Shortly, i.e. Y00 = 1

2
√
π
, Y1,−1 = 1

2

√
3

2π sin(θ)e−iφ, Y1,1 = −1
2

√
3

2π sin(θ)eiφ,. . . .

The spherical-harmonic Gaussian type orbitals can be related to the Cartesian Gaussian
type orbitals [74], which leads to the following transformation matrices for the s to f
orbitals (l = 0 to l = 3)

G00 = G000 (B.9)G1−1
G1,0
G1,1

 =

0 1 0
0 0 1
1 0 0

G1,0,0
G0,1,0
G0,0,1

 (B.10)


G2,−2
G2,−1
G2,0
G2,1
G2,2

 =


0 0 0 0

√
3 0

0
√

3 0 0 0 0
1 0 − 1

2 0 0 − 1
1

0 0 0
√

3 0 0
0 0 −

√
3

2 0 0
√

3
2



G0,0,2
G0,1,1
G0,2,0
G1,0,1
G1,1,0
G2,0,0

 (B.11)
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G3,−3
G3,−2
G3,−1
G3,0
G3,1
G3,2
G3,3


=



0 3
2

√
5
2 0 − 1

2

√
5
2 0 0 0 0 0 0

0 0 0 0 0
√

15 0 0 0 0
0 − 1

2

√
3
2 0 − 1

2

√
3
2 0 0 0 0 2

√
3
2 0

0 0 0 0 − 3
2 0 − 3

2 0 0 1
− 1

2

√
3
2 0 − 1

2

√
3
2 0 0 0 0 2

√
3
2 0 0

0 0 0 0
√

15
2 0 −

√
15
2 0 0 0

1
2

√
5
2 0 − 3

2

√
5
2 0 0 0 0 0 0 0





G0,0,3
G0,1,2
G0,2,1
G0,3,0
G1,0,2
G1,1,1
G1,2,0
G2,0,1
G2,1,0
G3,0,0


(B.12)

B.2 Integrals of spherical harmonics

Spherical harmonics are used often as basis for an expansion in the azimuthal and po-
lar angles, θ and φ. Overlaps of two and three spherical harmonics can be calculated
analytically ∫ 2π

0

∫ π

0
sin θY ∗lm(θ, φ)Yl′m′(θ, φ)dθdφ = δl,l′δm,m′ , (B.13)

∫ 2π

0

∫ π

0
sin θYl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ)dθdφ =

√
l̂1 l̂2 l̂3
4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
,

(B.14)

where l̂ = 2l + 1 and
(
l1 l2 l3

m1 m2 m3

)
denotes the Wigner 3-j symbol.

B.3 Integration on the sphere

If integrals in θ and φ have to be performed numerically, a better option than gridding
θ and φ equidistantly and summing over the weighted function f(θi, φi) sin θi, is to use
the spherical Lebedev quadrature. Using a Lebedev grid of order L with n ∼ (L+ 1)2/3
points , it is possible to exactly perform the integral over any spherical harmonic Ylm
with l ≤ L ∫ 2π

0

∫ π

0
sin(θ)Ylm(θ, φ)dθdφ =

n∑
i=1

Ylm(θi, φi)wi, (B.15)

where (θi, φi) are the Lebedev points and wi the Lebedev weights. Fortran routines
generating the Lebedev points and weights for a certain quadrature order have been
written by J. Burkardt and can be found in Reference [192].
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C. Derivation of Eq. V.4.6

To derive Eq. V.4.6, we start from the Lippmann-Schwinger equation for a two center
potential V (r) = Vl(r) + Vr(r) = − 1

|r−∆| −
1

|r+∆| , where 2∆ is the distance between the
two cores.

χ−2C = u0 +
∞∑
n=1

(
G−V

)n
u0

= u0 +
∞∑
n=1

(
G−Vl

)n
u0 +

∞∑
n=1

(
G−Vr

)n
u0 +G−VlG

−Vru0 +G−VrG
−Vlu0 + . . .︸ ︷︷ ︸

mixed terms

where G− is the Green’s function for incoming wave boundary conditions G−(r, r′) =
1

4π
eik|r−r′|

|r−r′| . The unperturbed wavefunction u0 is given by

u0(r) = eikr. (C.1)

The short hand notation (G−V )u0 denotes the following integral expression

(G−V )u0 =
∫

dr′G−(r, r′)V (r′)u0(r′). (C.2)

In the following step, the mixed terms containing both, Vl and Vr are neglected. Hence,
while the interaction with one core only is kept to all orders, the interaction with both
cores is only kept to first order.

χ−2C = u0 +
∞∑
n=1

(
G−Vl

)n
u0 +

∞∑
n=1

(
G−Vr

)n
u0 +G−VlG

−Vru0 +G−VrG
−Vlu0 + . . .︸ ︷︷ ︸

mixed terms

≈ u0 +
∞∑
n=1

(
G−Vl

)n
u0 +

∞∑
n=1

(
G−Vr

)n
u0,
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C. Derivation of Eq. V.4.6

Since the single center Coulomb wave for a potential V0 = 1
r is given by

χ−C(k, r) = u0(r) +
∞∑
n=1

(
G−V0

)n
u0 = u0(r) + u1(r) + . . . ,

using the translation properties of the Green’s function, one finds that

(G−Vl)nu0(k, r) = eik∆un(k, r−∆)
(G−Vr)nu0(k, r) = e−ik∆un(k, r + ∆)

and hence

χ−2C(k, r) = u0(k, r) + eik∆
∞∑
n=1

un(k, r−∆) + e−ik∆
∞∑
n=1

un(k, r + ∆)

= u0(k, r) + eik∆
(
χ−C(k, r−∆)− u0(k, r−∆)

)
+ e−ik∆

(
χ−C(k, r + ∆)− u0(k, r + ∆)

)
= −u0(k, r) + eik∆χ−C(k, r−∆) + e−ik∆χ−C(k, r + ∆).
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D. Derivation of Eq. (V.4.8)

To derive Eq. (V.4.8), we start from Eq. (I.5.1). Integrating over dΩs and dΩe (where
the index s was used instead of index 1 in Eq. (I.5.1) and e instead of 2) leads to

dσ
dE1

∝ kske
ki

∫
dΩs

∫
dΩe |Tfi|2 δ(Ef − Ei). (D.1)

In the following derivation, the exchange term will be neglected for simplicity. Inserting
Eq. V.4.7 leads to

dσ
dEe

∝ kske
ki

∫
dΩ1

∫
dΩ2

∣∣∣∣∣
∫

dr r2
∫

dΩ
∫

dr′ r′2
∫

dΩ′

· 1
(2π)

3
2

∑
le,me

Yle,me

(
k̂e
)
Y ∗le,me

(
r̂′e
)

(−i)le eiσ
ke
le

1
ker′

F ∗le
(
ηe, ker

′) ·
· 1

(2π)
3
2

∑
ls,ms

Yls,ms

(
k̂s
)
Y ∗ls,ms (r̂e) (−i)ls eiσ

ks
ls

1
ksr

F ∗ls (ηs, ksr)

·
∑
l

4π
2l + 1

(
rl<
rl+1
>

)∑
m

Y ∗l,m
(
r̂′
)
Yl,m (r̂)

·
∑
α

fα(r′)Ylα,mα
(
r′
)

· 1
(2π)

3
2

∑
li

4πilijli (kir)
∑
mi

Y ∗li,mi

(
k̂i
)
Yli,mi (r̂i)

∣∣∣∣∣
2

,

where the expressions from Eq. (V.4.10) was used. The expansion of 1
|r−r′| in spherical

harmonics was used in the fourth line of the equation, where r< and r> denote the
smaller and larger value of r and r′ respectively.
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D. Derivation of Eq. (V.4.8)

Rearranging the sums, this leads to

dσ
dEe

∝ kske
ki

∫
dΩ1

∫
dΩ2

∣∣∣∣∣
∫

dr
∫

dr′ · (4π)3

(2π)
9
2

1
keks

·
∑
α

∑
l,m

∑
le,me

∑
ls,ms

∑
li,mi

fα(r′) 4π
2l + 1

(
rl<
rl+1
>

)
ili (−i)le+ls ei(σ

ke
le

+σks
ls

)

· Yle,me
(
k̂e
)
Yls,ms

(
k̂s
)
Y ∗li,mi

(
k̂i
)
F ∗le

(
ηe, ker

′)F ∗ls (ηs, ksr) jli (kir)

·
∫

dΩY ∗ls,ms (r̂e)Yl,m (r̂)Yli,mi (r̂i)︸ ︷︷ ︸
G
ls,l,li
−ms,m,mi

(−1)ms

∫
dΩ′ Y ∗le,me

(
r̂′e
)
Y ∗l,m

(
r̂′
)
Ylα,mα

(
r′
)

︸ ︷︷ ︸
Gle,l,lα−me,−m,mα (−1)me+m

∣∣∣∣∣
2

,

where the Gaunt coefficients, G are defined in Eq. (V.4.9) and the following relations
were used

Y ∗l,m(r̂) = (−1)mYl,−m ∗ (r̂)∫
dΩYl1,m1 (r̂e)Yl2,m2 (r̂)Yl3,m3 (r̂) = Gl1,l2,l3m1,m2,m3 .

The absolute value squared can be expanded as∣∣∣∣∣∣
∑
α,l,...

Aα,l,...Yle,meYls,ms

∣∣∣∣∣∣
2

=
∑
α,l,...

Aα,l,...Yle,meYls,ms ·
∑
α′,l′,...

A∗α′,l′,...Y
∗
l′e,m

′
e
Y ∗l′s,m′s

=
∑

k,l,...,k′,l′,...

Aα,l,...A
∗
α′,l′,...Yle,meY

∗
l′e,m

′
e
Yls,msY

∗
l′s,m

′
s
.

This allows performing the integrals over dΩs and dΩe analytically using∫
dΩYl,m

(
k̂s
)
Y ∗l′,m′

(
k̂s
)

= δl,l′δm,m′ ,

which, after collecting the remaining sums back to an absolute value squared, leads to

dσ
dEe

∝kske
ki

( 1
keks

)2 (4π)8

(2π)9
∑
le,me

∑
ls,ms

·
∣∣∣∣∣∑
α

∑
l,m

∑
li,mi

1
2l + 1(i)liY ∗li,mi

(
k̂i
)

(−1)m

·
∫

dr
∫

dr′ r
l
<

rl+1
>

fα(r′)jli(kir)F ∗le
(
ηe, ker

′)F ∗ls (ηs, ksr)Gls,l,li−ms,m,miG
le,l,lα
−me,−m,mα

∣∣∣∣∣
2
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Appendix

Taking into account that the Gl1,l2,l3m1,m2,m3 are zero, unless m1 + m2 + m3 = 0, this ex-
pression is equivalent to Eq. (V.4.8) without exchange. The derivation including the
symmetrization or antisymmetrization of the wavefunction proceeds analogously.
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E. Derivation of Eq. V.4.11

Assuming that the initial state wavefunction Ψi(r1, r2) ≡ φD(r1)eikir2 satisfies the fol-
lowing effective two particle Schrödinger equation(

E − T − Vion(r1)
)
φD(r1)eikir2 = 0,

where T denotes the kinetic energy operator and setting(
E − T − Vion(r1)− U(r2)

)
φD(r1)χ+(ki, r2) = 0,

allows writing

φD(r1)χ+(ki, r2) = φD(r1)eikir2 + 1
E − T − V (r1) + iε

U(r2)φD(r1)χ+(ki, r2). (E.1)

For the final channel, Ψ−(r1, r2), we write the following effective two particle equations(
E − T − Vion(r1)− Vion(r2)− 1

|r1 − r2|

)
Ψ−(r1, r2) = 0

and (
E − T − Vion(r1)

)
χ−(ke, r1)e−iksr2 = 0,

which leads to

Ψ−(r1, r2) = χ−(ke, r1)e−iksr2 + 1
E − T − Vion(r1)

(
Vion(r2) + 1

|r1 − r2|

)
Ψ−(r1, r2).

(E.2)
Inserting Eqs. (E.1) and (E.2) into the expression for the transition matrix element,
Eq. (I.5.2), leads to the following two potential expression

T = 〈Ψ−|Vion(r2)− U(r1) + 1
|r1 − r2|

|φDχ+〉.
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E. Derivation of Eq. V.4.11

Since the final channel wavefunction Ψ−(r1, r2) can be written as

Ψ−(r1, r2) = χ−(ke, r1)χ−(ks, r2) + 1
E − T − Vion(r1)− Vion(r2)− 1

|r1−r2| − iε(
Vion(r1)− U(r1) + Vion(r2)− U(r2) + 1

|r1 − r2|

)
χ−(ke, r1)χ−(ks, r2),

if U is a good approximation to V and the influence of 1
|r1−r2| is small, then the final

channel wavefunction can be approximated as Ψ−(r1, r2) ≈ χ−(ke, r1)χ−(ks, r2), which
leads to

T ≈ 〈χ−(ke)χ−(ks)|Vion(r2)− U(r2) + 1
|r1 − r2|

|φDχ+(ki)〉. (E.3)

Setting U = −2
r and assuming that Vion − U = 0 leads to

T ≈ 〈χ−C(ke)χ−C(ks)|
1

|r1 − r2|
|φDχ+

C(ki)〉, (E.4)

where the χ+/−
C are Coulomb scattering wave functions for incoming and outgoing bound-

ary conditions.

The following derivation of Eq. (V.4.11) from this expression proceeds analogously to
the derivation of Eq. (V.4.8) given in Appendix D.
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F. A note on special functions

In the course of this work, the use of special functions, such as associated Legendre
polynomials, spherical Bessel functions, etc. was necessary. Some of these functions are
difficult to implement accurately and in general, such calculations were based on or used
existing routines. The following table gives an overview over the routines used.

function author reference
Legendre functions J. Burkardt [193]
spherical Bessel function A. R. Barnett [194, 195]
Coulomb functions A. R. Barnett [195]
complex Gamma function T. Ooura [196]
Wigner 3-j function J. Burkardt [197]
Runge-Kutta-Fehlberg method J. Burkardt [108]
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