
Active Objects Revisited:
A Concurrency Library for Java Based on an

Object-Oriented Approach to Parallelism

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp Grandits
Matrikelnummer 0826361

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

Wien, 2.10.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Active Objects Revisited:
A Concurrency Library for Java Based on an

Object-Oriented Approach to Parallelism

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp Grandits
Registration Number 0826361

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

Vienna, 2.10.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Philipp Grandits
Schulgasse 24, 7411 Markt Allhau

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to express my appreciation to Professor Franz Puntigam for supervising my thesis
and giving me the opportunity to address this interesting research topic. He provided me with
valuable advice and ideas in the various phases of the project and helped me to view the subject
matter from different perspectives.

I also wish to thank the participants of the associated seminar for interesting discussions and
useful feedback about my work.

I would like to express my sincere gratitude to my family and friends for supporting me
throughout my studies and this research project. I want to especially thank my friend Karin for
her constant encouragement and understanding when it was most required. I would also like to
thank my parents for their moral and financial support throughout these years, which provided
the basis of this thesis.

ii

Abstract

In recent years, parallelism and concurrency have become significant topics because applica-
tions need adequate language constructs in order to completely exploit the performance offered
by multi-core processors and multi-processor systems. As a result, Erlang regained importance
due to its efficient implementation of the actor model. In this technique, components use an in-
dependent thread to handle incoming messages. A related approach is the active object pattern.
It expands on the idea of actors, but operates on method requests rather than messages. These
kinds of instances are automatically generated whenever one of the active object’s methods is
called by an external thread. This strategy decouples the invocation of an operation from its ex-
ecution. The incoming requests are scheduled one after the other to guarantee that only a single
method is performed at a time. The concept facilitates software development because synchro-
nisation concerns are alleviated. However, there does not currently exist a Java implementation
of active objects that integrates appropriately into the language.

Therefore, this thesis addresses the question which functions and features are reasonable for
such a realisation of the pattern, and how they can be incorporated into a library for Java through
reflective programming and bytecode instrumentation.

The first step to achieve this objective is to study associated literature from the initial surge
of research, as well as more modern work that revisited the methodology after the original in-
terest declined. Certain advanced features are selected from the gathered information. They are
then cast into a model together with the basic functionality. The design is realised by a proof
of concept implementation. The resulting tool can be used to develop classes of active objects.
Lastly, the suitability of the chosen constructs is evaluated. For this purpose, a concurrent sce-
nario is programmed both conventionally and with the aid of the library. These applications are
used for determining specific code and performance characteristics of the individual approaches.
Thereafter, the collected data are compared and analysed.

The evaluation shows that the presented mechanisms ease the development of parallel soft-
ware because the focus is moved from the synchronisation to the actual core functionality of the
components. This practice reduces the necessary implementation effort and helps to avoid faults
in the end product. However, in some categories the analysis reveals inferior efficiency of the
active object applications when matched against the traditional style. Although the difference
is not overwhelming, it may be a deciding factor in some cases. The technique can become
more appealing by closing the performance gap through further optimisations and extensions.
All things considered, the outcome indicates that a well-integrated active object feature is a
competitive approach if compared to standard Java concurrency.

iii

Kurzfassung

In jüngster Vergangenheit wurden Parallelisierung und Nebenläufigkeit zu einem vieldiskutier-
ten Forschungsgebiet, da für die Programmierung von Anwendungen geeignete Sprachkonstruk-
te benötigt werden, um die Leistung von Mehrkernprozessoren und Mehrprozessorsystemen
vollständig auszunutzen. Aus diesem Grund hat die Programmiersprache Erlang an Wichtig-
keit gewonnen, da sie eine effiziente Implementierung des Aktorenmodells bereitstellt. Dieses
stützt sich auf Aktoren, die einen eigenen Thread verwenden, um eintreffende Nachrichten zu
verarbeiten. Ein verwandter Ansatz, der dieses Konzept erweitert, ist das Active-Object-Pattern.
Anstatt von Nachrichten operiert das Modell auf sogenannten Method-Requests. Diese werden
automatisch generiert, wenn eine der Methoden des aktiven Objekts durch einen externen Thread
aufgerufen wird und dienen dazu, den Aufruf von der Ausführung zu entkoppeln. Die herein-
kommenden Method-Requests werden nacheinander abgearbeitet um sicherzustellen, dass zu
jedem Zeitpunkt höchstens eine einzige Methode ausgeführt wird. Dieses Konzept unterstützt
die Entwicklung, weil Synchronisierungsaufgaben erleichtert werden. Allerdings existiert der-
zeit keine Java-Implementierung, die dieses Verfahren angemessen in die Sprache integriert.

Deshalb behandelt diese Diplomarbeit die Frage, welche Funktionen und Features für eine
Realisierung des Active-Object-Patterns sinnvoll sind und wie diese durch reflektive Program-
mierung und Bytecode-Instrumentation in eine Bibliothek für Java eingebunden werden können.

Zur Erreichung dieses Ziels wird zuerst die zugehörige Literatur aus den Anfängen der For-
schung in diesem Gebiet genauer betrachtet. Außerdem werden auch aktuellere Arbeiten unter-
sucht, die diese Methodologie wieder aufgriffen, nachdem das anfängliche Interesse schwand.
Dabei werden bestimmte erweiterte Features aus der gesammelten Information ausgewählt, die
anschließend zusammen mit der Basisfunktionalität modelliert werden. Dieses Design wird
durch eine Proof-of-Concept-Implementierung realisiert, die verwendet werden kann, um Ap-
plikationen basierend auf aktiven Objekten zu entwickeln. Letztendlich wird die Eignung der
gewählten Konzepte evaluiert. Dazu wird ein nebenläufiges Szenario sowohl konventionell als
auch mit Hilfe der Funktionalität der Bibliothek programmiert, um spezifische Leistungs- und
Implementierungscharakteristika der verschiedenen Anwendungen zu bestimmen. Anschließend
werden die gesammelten Ergebnisse verglichen und analysiert.

Die Evaluierung zeigt, dass die Mechanismen der Bibliothek die Entwicklung eines paral-
lelen Programms erleichtern, weil diese den Fokus von der Synchronisation auf die eigentliche
Kernfunktionalität der Komponenten lenken. Dieser Umstand reduziert den notwendigen Ent-
wicklungsaufwand und hilft, Fehler im Softwareprodukt zu vermeiden. Allerdings zeigt die Ana-
lyse, dass der Ansatz in manchen Kategorien auch eine schlechtere Performanz mit sich bringt,
wenn man aktive Objekte dem herkömmlichen Stil gegenüberstellt. Auch wenn der Unterschied

iv

nicht überwältigend ist, kann dieser ein entscheidender Faktor in manchen Fällen sein. Durch das
Schließen des Leistungsunterschieds im Zuge weiterer Optimierungen und Erweiterungen wür-
de die Verwendung des vorgeschlagenen Programmiermodells reizvoller werden. Alles in allem
deutet das Ergebnis darauf hin, dass eine gut integrierte Implementierung von aktiven Objekten
im Vergleich zu normalen Java-Nebenläufigkeitskonstrukten ein konkurrenzfähiger Ansatz ist.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Master’s Thesis . 4

2 State of the Art 5
2.1 Actor Model . 5
2.2 Active Object Pattern . 7
2.3 Advanced Techniques Built Upon Active Objects 13
2.4 Relevance and Comparison to Related Work 20

3 Result Handling Strategies 22
3.1 Futures . 22
3.2 Synchronous Calls . 24
3.3 Purely Asynchronous Calls . 25
3.4 Callbacks . 27
3.5 Promises . 30

4 Modelling of Selected Functionality 33
4.1 Fundamental Ideas . 33
4.2 Core Components . 37
4.3 Deviations from the Active Object Pattern . 46

5 Implementation of the Model 47
5.1 Prerequisites . 47
5.2 Implemented Components . 48
5.3 Instrumentation Environment . 55
5.4 Instrumentation Approach . 58
5.5 Applied Transformations . 62

6 Evaluation Environment 71
6.1 Concurrent Scenario . 71

vi

6.2 Evaluation Criteria . 73
6.3 Principles of the Implementations . 76

7 Evaluation Results and Comparison 81
7.1 Code Characteristics . 81
7.2 Lines of Code . 89
7.3 Bytecode Size . 91
7.4 Customer Timing . 94
7.5 Customer Throughput . 95
7.6 Component Response Time . 96
7.7 Memory Consumption . 98
7.8 Final Thoughts . 99

8 Conclusion 102

A Concurrent Scenario 104
A.1 Part and Item . 104
A.2 PartDelivery and ItemDelivery . 105
A.3 Stockpile . 106
A.4 Supplier . 107
A.5 Factory . 107
A.6 Warehouse . 108
A.7 Shop . 109
A.8 ShopRegistry . 110
A.9 Customer . 110

Bibliography 112

vii

CHAPTER 1
Introduction

1.1 Motivation

In the last decade, multi-core processors and multi-processor systems have been on the advance
because physical constraints limit the performance enhancement of individual cores [16, 17]. In
order to further increase the computational power, hardware manufacturers began embedding a
number of cores on one chip and providing means for the installation of several CPUs inside a
single system.

This technological shift enforces new demands on development tools and practices. To
utilise the full potential of modern processors, software has to be written in a concurrent fashion.
For this reason, adequate language features are necessary, which enable an efficient translation
of functional requirements into maintainable applications with a high degree of parallelism [17].
However, most programming languages have not made significant progress in this regard as the
technology has advanced. Conventional models employ shared-state concurrency (cf. [7, 18]),
which means different threads jointly access the same state of variables and objects. To achieve
coordination of the activities, concepts like semaphores and monitors are used. These con-
structs allow the programmer to define the exact position in the code where synchronisation and
the creation of new threads take place, granting full control over the aspects of parallelism. The
downside of this approach is that the development of concurrent scenarios becomes complex and
error-prone [7,32,53]. With massive multi-core architectures, also known as many-core architec-
tures, on the horizon, there is little prospect of improvement in this respect [51]. These systems
accommodate tens to hundreds or even thousands of cores, thus supporting a vast amount of
simultaneous threads. An alternate programming model was utilised by the creators of Erlang
and has been regularly referred to in this context [33, 51]. They settled for independent actors
that do not share a common state and communicate among each other through the use of mes-
sages [6]. Every actor has its own private thread for handling messages consecutively. This
notion implies that only a single thread is accessing and manipulating the internal state at any
given time. Hence, exclusive control over the actor can be presumed while processing a message.
This restriction eases the development of individual components significantly. The model was

1

transferred to various other languages like Scala or Groovy, either directly on the language-level
or by means of libraries. Implementations for Java do also exist, but its object-oriented nature
does not seem to match the concept because actors use messages as the primary mechanism of
communication.

Another related approach alleviates this problem by passing method invocation requests in-
stead of messages. It is called the active object pattern [31]. Similar to an actor, an active object
possesses a single thread responsible for executing the method invocation requests inside the
instance’s boundaries. Because their use allows tighter integration into existing object-oriented
idioms, this practice appears to be better suited to Java.

1.2 Problem Statement

Although the underlying design pattern can be explicitly used, there is no native support for
active objects in Java as of yet. Furthermore, no framework is available that incorporates them
adequately into the language. Therefore, a library implementation is required to enable the utili-
sation of these constructs in multi-threaded applications. Reflective programming and bytecode
instrumentation are valuable techniques to achieve the tight language integration necessary to
facilitate the effective and efficient usage of the model.

Thus, the objective of this thesis is to answer the following questions:

• Which functions and features are useful and sensible in an active object implementation
to enable effective development of concurrent scenarios?

• How can the identified functions and features be realised in a library for Java by means of
reflection and bytecode instrumentation?

1.3 Aim of the Work

The goal is to provide mechanisms to be able to use active objects as elements in applications.
This thesis comprises the detailed description and realisation of selected functions and features.
The latter are identified by review of associated literature. The discovered techniques are anal-
ysed and compared in terms of their suitability for a Java library. To accomplish this functional-
ity, the corresponding capabilities and aspects are divided into a number of components.

The findings include the base model of the library as well as an example application demon-
strating the manner of utilisation. To that end, an extended producer-consumer situation is im-
plemented, a problem regularly used to illustrate concurrency. The core components and their
interactions are documented in the thesis and in the code via JavaDoc. Additionally, the function-
ality is validated through appropriate unit test cases. To give insight into the internal operating
principle of the library, various aspects of the implementation are covered explicitly. For this
purpose, code samples are presented and explained in detail.

2

1.4 Methodological Approach

The methodological approach is structured into the following steps:

1. Additional literature investigation. Further information is collected about existing tools
and languages that cover concurrency and asynchronous computations. The focus lies pri-
marily on the active object pattern, the actor model and related realisations. Nevertheless,
other concepts are also being explored to examine the current circumstances from varied
perspectives.

2. Analysis of collected information. The previously gathered data is set in context of an
implementation in a Java library. Since the syntactic and semantic checks of the com-
piler restrict the possible representation of a particular function, the viability of different
strategies needs to be compared. A potential problem is that certain aspects cannot be
implemented in a sensible and usable way. Technical limitations may be another reason
preventing a feature from being integrated.

3. Modelling of the components. The main objective of this step is to create a detailed
description of the way in which the desired features are accomplished. Therefore, the
functionality needs to be divided into individual components with definite responsibilities.
This separation enables designing the functionality and the relationships of the entities.
The internals specified in this phase include the behaviour of the (interface) methods and
important instance variables.

4. Implementation of the components. In this stage, the aforementioned elements are im-
plemented for Java 8 using a test-driven development procedure. It is based on unit tests
written in JUnit 4. The verification process is not in the scope of this thesis. At the same
time, the discrete components are gradually combined with each other. If possible, the
integration is validated by unit testing as well.

5. Implementation of an example application. A parallel producer-consumer scenario is
programmed in Java 8 to illustrate the library’s functionality and usage. Additionally, this
use case is realised by means of standard concurrency constructs to obtain a baseline for
the analysis. Unit testing of the example is not intended.

6. Definition of evaluation criteria. This part addresses the measurement categories used
for the comparison of the applications. These classes comprise general performance char-
acteristics, scenario-specific metrics and the inspection of source code. The settings of
any parameters are also fixed at this point.

7. Collection of results and analysis. Lastly, the written programs are assessed on the basis
of the previously determined criteria. Thereby, the analysis puts the gathered metrics
and characteristics of the active object approaches into perspective of the conventional
implementation. These findings are utilised to determine if the goals of the thesis have
been met and to identify potential future work.

3

1.5 Structure of the Master’s Thesis

This section outlines the layout of the main part of this thesis. Firstly, Chapter 1 introduces the
topic and addresses the thesis’s objectives as well as the manner in which they are achieved.
Chapter 2 continues by providing an overview of the associated literature and giving arguments
for the work’s relevance in the context of already existing research. Result handling strategies
are treated in Chapter 3, where they are also inspected in terms of their suitability for an inclu-
sion in the design. Chapter 4 explains the proposed model for the automated incorporation of
active objects in greater detail. Its proof of concept implementation is then subject of Chapter 5,
which describes the general bytecode instrumentation mechanisms and the structure of the li-
brary. Chapter 6 outlines the criteria and the concurrent scenario used for the evaluation. The
collected results are then presented and examined in Chapter 7. This part does also contain a
comparison of the different approaches and tries to deduct more general statements from the
findings. Finally, Chapter 8 summarises the main efforts and results, and gives an outlook of
future work with regard to the active object pattern. Furthermore, the individual entities of the
evaluation scenario are characterised in Appendix A.

4

CHAPTER 2
State of the Art

Over the course of several decades, the actor model and active objects have received several
important research articles. This chapter presents and examines related studies. It begins in
Section 2.1 by taking a glimpse at the actor model and its features. In Section 2.2, the active
object pattern is explained in detail and put in comparison to the actor model. Section 2.3 covers
more advanced topics regarding active objects, for instance coboxes. Lastly, Section 2.4 gives
insight into the relevance of this master’s thesis and contrasts it to the previously mentioned
studies.

2.1 Actor Model

At this point, we examine the origins of the active object pattern to gain a better understanding
of its fundamental idea and core concepts. The research on this matter dates back to actors. This
section describes the substantial mechanisms and advanced realisation properties of the model.

Fundamental Characteristics

Agha and Hewitt [5, 6] specify the basic constructs and describe an actor as a “computational
agent which carries out its actions in response to processing a communication”. The model
was proposed to deal with problems that arise when shared objects have a mutable state and is
intended to support two noteworthy aspects:

• Inherent Parallelism implies that there is no hidden parallelism, but instead, the structure
of the application’s code reveals the actual amount of concurrency.

• Dynamic reconfigurability means the programming model enables the developed systems
to easily accommodate new objects.

5

[msg_a]

[create]

Mailbox

Methods

Thread

Mailbox

Methods

Thread
Mailbox

Methods

Thread
State

State
State

Figure 2.1: An overview of the components of actors and the interactions between them. [27]

In addition to the usual program constructs, actors interact among themselves in several dif-
ferent ways. Most importantly, they communicate asynchronously via message-passing. There-
fore, every actor has its own mailbox which stores the incoming correspondence. The respective
address is sent to another actor within a message as any other object. Furthermore, an actor can
create additional actors, for example upon arrival of a particular notification. An interesting fea-
ture is the declaration of a so-called replacement actor. It functions as a substitute and handles
messages in place of the original actor. The propagation of the mailbox’s address of a newly
created actor and the specification of a replacement actor contribute to the reconfigurability of
the programming model.

Realisation Properties

Although actors are characterised to be inherently concurrent, the description in [6] does not
specify the way this capability is achieved. Implementations and other research papers con-
cerned with the topic show that a thread is responsible for processing the received messages [27].
At any given time, only one thread can be active inside an actor’s body so as to handle the com-
munication and manipulate the internal state. Figure 2.1 visualises the interactions between
actors and their components. Karmani et al. [27] list several important properties that should be
supported by an implementation of this concept.

Encapsulation. The internal state is protected from illegal tampering. This goal is achieved by
restricting the access to certain aspects of the actor. The model rests on two important qualities
in this context:

6

• State encapsulation specifies that one actor can only manipulate the state of another actor
by sending messages. Direct access is prohibited.

• Safe messaging further braces the decoupling by prescribing that the contents of messages
are passed by value (cf. call-by-value semantics). This restriction is intended to prevent
unwanted or unexpected state sharing.

Fair Scheduling. The underlying scheduling techniques treat actors equally. If this property
is not guaranteed, severe repercussions are possible. These problems include the starvation of
actors, a loss of performance or the hindrance to progress the application’s tasks (cf. live lock).
A distinction is made between two related ideas:

• Fair scheduling of actors implies an actor will eventually be allowed to receive and process
its incoming messages.

• Fair scheduling of messages means a sent message will ultimately be received and pro-
cessed by an actor.

Location Transparency. The naming of actors is independent of their address space. The
main objective is to improve the flexibility through the introduction of an additional layer be-
tween them and their clients. Thereby, the library is responsible for locating actors in the imple-
mented system on behalf of the developer. Finding distributed actors in the network is a possible
consequence of this mechanism. This property aids in preventing direct access of the internal
state.

Mobility. An actor can be migrated to another node in the network. This relocation could be
necessary to improve the performance of the application through load-balancing. As a result,
the system is required to move the actor and the concerned components to the target machine.
Another vital aspect is that the other actors need to be notified of this change. Thus, the model
must consider that invocations of local actors can result in remote calls in the future.

Examples of implementations in Java are Kilim and ActorFoundry. A comparison between
different libraries for the Java Virtual Machine is the subject of [27].

2.2 Active Object Pattern

This section is concerned with the pattern as originally proposed by Lavender and Schmidt
in [31] and the comparison to the previously introduced actors. Note though that the concept of
active objects has a long history which must not be forgotten. They were extensively explained
by Nierstrasz in [35] and the underlying type theory was discussed in [37, 38]. Futhermore,
Nierstrasz et al. designed and implemented Hybrid, a programming language based on active
objects [28, 34, 36]. Most of these works address the topic at the language-level. We have
therefore chosen the paper of Lavender and Schmidt as the starting point because it is better
suited for a library implementation. The base pattern is described as a way to “decouple method

7

Figure 2.2: The original booch class diagram that shows the key components of the active object
pattern. [31]

execution from method invocation in order to simplify synchronised access . . . ” [31]. We now
turn towards the active object’s components, the stages of an active call and the comparison to
the previously mentioned actor properties.

Core Components

Each active object is thought of as an autonomous actor. It consists of several internal compo-
nents with certain responsibilities. The basic structure of the model is depicted in Figure 2.2.
There are six essential entities in the original pattern.

Proxy. The proxy is the active object’s connection to the outside world. It provides a publicly
available interface to the clients. While conventional methods directly perform the realised
procedure, a proxy method has to transparently construct a method request and enqueue this
instance into the activation queue of the scheduler. Additionally, a future is returned to the caller
which grants access to the invocation result. The proxy method is executed by the client thread.

Scheduler. The main job of the scheduler is to execute the method requests created by the
proxy methods. For this purpose, it holds an activation queue which is used to facilitate the
management of pending requests. To achieve the required degree of decoupling, the scheduler
runs in a different thread than the clients. A concrete implementation can incorporate a variety
of factors in its scheduling decision, for example the temporal ordering of arrival.

Activation queue. The activation queue is the link between the proxy and the scheduler. This
collection holds the method requests created by the proxy. They are stored until the scheduler

8

Active Object

Proxy
Methods

Object 1. invoke

2. insert

Concrete
Methods

4. execute

5. access

Scheduler

3. retrieve

Activation
Queue

State
Client

Figure 2.3: The control flow of a method call inside an active object.

claims them. The order of retrieval depends on the implementation. To cover a variety of use
cases, the library may offer different alternatives, for example realisations based on a FIFO
(first-in, first-out) or a priority-driven strategy.

Method request. A method request contains the necessary details in order to invoke a servant
method. The stored information includes the concrete operation and the parameters of the call.
The interface in Figure 2.2 does also specify a guard function. It is used to check if the
predetermined execution conditions are met. Method requests are a key component in the active
object pattern. They are instantiated by the proxy methods and then appended to the activation
queue. There they remain until the scheduler fetches and performs the individual instances.
These events are illustrated in the steps two, three and four of Figure 2.3. The outlined approach
enables the separation of the invocation in the client thread from the actual execution in the
scheduler thread.

Servant. The servant of the active object implements the core features clients want to utilise.
Its methods are allowed to access and manipulate the state of the active object without any
restrictions. Whenever the scheduler conducts the execution of a method request, an operation

9

of the servant is implicitly invoked. Thus, the procedures of this entity run in the same thread as
the scheduler.

Future. Futures act as placeholders for the result of asynchronous computations [10]. These
kinds of objects are instantiated in the process of creating and queueing a method request. They
are returned by the proxy method to enable client-side access to the output of the decoupled
method invocation. Among others, a future usually provides functions for querying the execution
state and obtaining the result, either by polling or blocked waiting.

Active Invocation

The crucial characteristic of the pattern is that the proxy runs in the client’s thread, whereas
the scheduler and servant both share a thread that is separate from the caller. According to
the description in [31], an interaction between different active objects can be divided into three
phases. This partitioning is visualised in Figure 2.4. The sequence below outlines the procedure:

1. Method request construction. As soon as a proxy method is invoked, it creates a new
method request. This instance is then transmitted to the scheduler before returning the
associated future. The control is immediately handed back to the caller and the execution
continues after the statement that concerned the proxy method.

2. Scheduling and execution of the request. In the next step, the scheduler inserts the re-
ceived request into its activation queue. At some point the scheduling thread dequeues the
same instance. Before carrying out the request, its guard function is examined. If this
condition is fulfilled, the mechanism instructs the execution. This action starts the actual
servant method. Otherwise, the request is inserted back into the queue.

3. Completion of the invocation. Once the servant method terminates, the result is set inside
the future and the active invocation reaches its concluding stage. At this point, the client’s
thread may retrieve the final value from the future returned in the first phase.

Actor Properties

Since the active object pattern can be seen as an object-oriented alternative to the actor model,
they fulfil similar purposes. Therefore, the properties mentioned in Section 2.1 are relevant to
this concept. The following enumeration is devoted to the analysis of the individual characteris-
tics and their realisation in the context of the active object pattern:

Encapsulation. As previously explained, encapsulation is divided into two aspects:

• State encapsulation is achieved through the pattern itself. An implementation may allow
the definition of both active and passive methods in the same class. The latter type is
directly executed as any conventional method. The programmer is responsible for pro-
tecting the internal state from external access. This safeguard can be provided by defining

10

INVOKE

DEQUEUEv SUITABLE

v METHODv REQUEST

RETURNv RESULT

EXECUTE

Client

Proxy vActivation
Queue

M
E

T
H

O
D

vO
B

JE
C

T
M

E
T

H
O

D
vO

B
JE

C
T

C
O

N
ST

R
U

C
T

IO
N

C
O

N
ST

R
U

C
T

IO
N

SC
H

E
D

U
L

IN
G

SC
H

E
D

U
L

IN
G

FF
E

X
E

C
U

T
IO

N
E

X
E

C
U

T
IO

N
C

O
M

PL
E

T
IO

N
C

O
M

PL
E

T
IO

N

mw()

ServantServant

SchedulervScheduler

CREATEv METHODCREATEv METHOD
REQUESTREQUEST

reply_to_future()

future()RETURNv FUTURERETURNv FUTURE

INSERTv INTOINSERTv INTO
v ACTIVATIONv QUEUEv ACTIVATIONv QUEUE

enqueue(newvMw)

dequeue(Mw)

enqueue(Mw)

Mw

call()

dispatch(Mw)

mw()

guard()

Figure 2.4: Sequence diagram of the different phases of an active invocation. [31]

only active methods or by restricting the conventional type to operations which return
immutable1 objects (cf. getter method of a final instance variable in Java).

• Safe messaging requires parameters to be passed by value. Although Java relies on call-
by-value semantics for all types, in reality only primitives are deeply copied. In the case
of non-primitive types, the reference is simply duplicated and used as the parameter of the
call. This shortcoming may cause unexpected state sharing, for example if a mutable ob-
ject is sent to another active object. Because a language like Java is not restricted to certain
concurrency constructs, a library implementation of the pattern would have difficulties in
distinguishing intended from erroneous method calls. Therefore, the application’s devel-
oper has to guarantee safe messaging by manually copying objects if necessary.

Fair scheduling. Fair scheduling depends on the realisation as well as the language and oper-
ating system:

• Active object fairness is determined by the chosen threading model. For example, if an im-
plementation maps an active object to a JVM thread, the library is as fair as the underlying
JVM or operating system scheduler (cf. actor fairness [27]).

• Method request fairness depends solely on the order in which pending method requests are
selected for processing from the activation queue. However, up to this point no effort was
made to specify a suitable queueing strategy. In the original actor model, message fairness
is described as the concept that “a message is eventually delivered to its destination actor,
unless the destination actor is permanently disabled (in an infinite loop or trying to do

1Immutable objects do not change their state throughout their lifetime. Once such an instance is created, it
remains stable.

11

an illegal operation)” [31]. Under the assumption that no incoming method requests are
prioritised, the first-in first-out (FIFO) strategy fulfils this requirement.

Location transparency. Location transparency has to be supported by the library implemen-
tation. This feature prescribes that active objects have to be decoupled from references, pointers
and addresses which are internally used by the programming language. Furthermore, the model
enables a high degree of distribution. Active objects may be spread across the network to im-
prove performance. For this purpose, the library would have to provide some sort of lookup
mechanism. Instead of passing references to other classes, the active objects can be located
by this method. This technique is especially interesting when instances communicate over the
network. Hence, method invocations on an active object would have to be decoupled from its
physical location. This task can be fulfilled by checking the network location of the object be-
fore a call is made. Another possibility is to replace actual references with a smart pointer. It
comprises the whereabouts of the real active object and the logic for forwarding the call. If the
object is moved to a different node, the container is notified and automatically updated. Thereby,
multiple clients share the same immutable instance for a given active object in order to reduce
the overhead and the memory consumption.

Mobility. The mobility property facilitates the migration of an active object to other network
nodes. The system may perform this relocation automatically or provide language constructs
which enable developers to conduct a transfer themselves. A particular reason for an automatic
migration may be to reduce the duration of active calls because the corresponding active object
is primarily used by clients on another node. An implementation has to consider the current
state of an active object when a transfer is imminent. If the activation queue is empty and the
scheduler does not momentarily process any method requests, the system only has to transmit
the state of the object. The remaining components can be newly created on the target machine.
On the contrary, migration is more complex if the activation queue is filled and the scheduler is
currently processing method requests. In this case, the state of the active object and the complete
activation queue have to be copied to the new node. The system also needs to coordinate the
migration with the scheduler, so that no requests are executed at the time of relocation. This
precaution ensures the state of the object is stable when it is sent over the network.

In this thesis, we will only incorporate state encapsulation and both forms of fair scheduling into
the realisation. A satisfactory solution to safe messaging in Java is deemed a delicate matter
with many challenges. A secondary treatment would simply not do justice to the subject and the
encountered problems. Moreover, location transparency and mobility are left open as extensions
for future work.

The concept of active objects has several related research papers. [48] describes its use as
part of a speech recognition framework. Similarly, [47] utilises the pattern to enhance the con-
currency of object request broker middlewares. Furthermore, in [20] an autonomous agent ar-
chitecture is introduced, which may be constructed from active objects.

12

standard objects

transfer objects

immutable objects

active task
ready tasks

suspended tasks
local reference
far reference
task scheduling

Legend:
immutable shared state

CoBox CoBox

suspend set ready queuecreate

awake

suspend

active task

yield
activate

Figure 2.5: The various components of the JCobox model. [45]

2.3 Advanced Techniques Built Upon Active Objects

This section discusses related research work that expands on the idea of active objects.

The Cobox Programming Model

A cobox is a conceptual container holding multiple objects and queues of tasks. It resembles
an active object in the sense that both entities are concurrently running components and they
encapsulate the state of the embodied system part. This model was proposed by Schäfer and
Poetzsch-Heffter [44–46]. Its three main concepts are task states, object types and the distinc-
tion between different kinds of references. These ideas are also illustrated in Figure 2.5. The
library implementation named JCobox is an extension of Java. It uses the compiler frontend
Polyglot [4] to enhance the language with an operator for asynchronous calls and introduces an
additional kind of new expression. Furthermore, a set of annotations and methods are provided
for different purposes. The next paragraphs are devoted to individual concepts and the library
implementation.

Tasks and Task States

A task represents an obligation of a cobox to conduct a certain activity. They are similar to
method requests but expand on the mechanism in various ways. When an operation is addressed
from outside the cobox of the targeted object, the invocation is performed asynchronously and a
task is created implicitly. In contrast, a call within the corresponding cobox is directly executed.
A crucial characteristic of the model are the three states a task can be in:

• The ready state concerns tasks that are prepared to being run. They are collected in the
ready queue, which is based on the first-in first-out (FIFO) strategy. Newly created tasks

13

1 @CoBox class AServer implements Server {
2 List<Session> sessions = new ArrayList<Session>();
3 Session connect(Client c) { return new ASession(c); }
4 void broadcast(Msg m) { ... }
5 class ASession implements Session { ... }
6 }

Algorithm 2.1: The class definition of the cobox type AServer. [45]

also fall under this category. As soon as the active task releases control, the next task of
the ready queue is scheduled.

• At any given time, only one task can be in the running state. This is referred to as the
active task. It is executed inside the cobox and has exclusive access to the internal state.
The active task returns control to the system upon termination, suspension or by explicitly
yielding. The latter possibility is a special feature. It appends the active task to the ready
queue.

• The active task reaches the suspended state when waiting for the fulfilment of a condition.
For instance, this concerns awaiting the completion of a future. Such tasks are stored
inside the suspended set and are awakened once the respective condition is satisfied. This
revival is achieved by their removal from the suspended set and insertion into the ready
queue.

The programming model enables interleaved control flows through a set of predefined constructs
like the aforementioned await and yield. The idea of scheduling threads in a cooperative manner
is based on Creol [15, 25].

Reference Types

Since the objects of a cobox can be shared with other coboxes, a distinction is made between
different types of references:

• A local reference provides a connection to an object contained within the same cobox.
This kind of instance is also called a local object. Such references enable direct field ac-
cess. Furthermore, they can be used to immediately execute methods of the target object.

• A far reference points to an object outside of the current cobox. This sort of link does
not allow direct access to fields. Furthermore, method calls are only performed asyn-
chronously. Because they cannot deliver the actual result instantly, a future is returned.

Object Types

The model supports three concrete forms of objects. They are distinguished in the way they are
shared between coboxes. The individual types are explained below.

14

Firstly, standard objects are instances of either plain classes or cobox types. With respect to
JCobox, the latter are declared using the @CoBox annotation. Algorithm 2.1 shows an exem-
plary definition. On the other hand, a plain class does not exhibit a particular annotation. The
characteristics of these instances are summarised in the ensuing list.

• Both kinds of standard objects are passed by reference.

• If a cobox does not own a standard object, the far reference semantics apply.

• A cobox class can be instantiated by a conventional new expression. This construction
always leads to the creation of a new cobox, even if the instantiation is performed by a
task of another cobox.

• By default, an object of a non-cobox class is created inside the cobox of the producing
task.

• The extended new expression enables the declaration of a target cobox. The statement
in the example below creates a Session instance inside the cobox that holds the object
referenced by server2:
new Session([...]) in(server2)

Secondly, transfer objects are used to pass data to another cobox when dependency through
a far reference has to be avoided. JCobox provides the annotation @Transfer to denote these
kinds of classes. The points hereafter outline the properties of this type.

• Transfer objects employ the local reference behaviour.

• Whenever such an object is passed, a deep copy of it is provided to the destination cobox.
This instance is treated as a local object.

• Two coboxes cannot share the same transfer object reference.

• The following code sample illustrates the definition of a transfer class for messages:
@Transfer class Msg { String user; String content; }

Thirdly, immutable objects are an alternative to the possibly inefficient transfer objects. For
this purpose, the concerned classes are marked with the @Immutable annotation. Their prop-
erties are described below.

• Immutable objects are passed by reference.

• Although instances of this type do not belong to a specific cobox, they are treated as local
objects and have the semantics of local references.

• Because immutable objects do not change their state, they can be shared and accessed
safely by concurrently running threads.

15

• An immutable object can contain references to other immutable objects or to standard
objects. The former are treated as local references, while the latter utilise far reference
semantics. References to transfer objects cannot be used inside of immutable objects.

Call semantics

JCobox extends Java by two mechanisms for performing asynchronous calls on objects. They
differ merely in a single aspect. The ! operator preserves the partial order2 of invocations,
whereas the !! operator does not necessarily do so. The library only allows methods of standard
objects to be called asynchronously. In comparison, methods of immutable and transfer objects
always have to be invoked directly. The usage of the operators is outlined in the next segment:

Fut<Session> result = server ! connect(this);
result = server !! connect(this);

Cooperative scheduling

In JCobox, futures are represented by the generic interface Fut<V> with the type parameter V.
In this context, V relates to the return type of the associated method. Fut offers two functions for
retrieving the result value. They are different in terms of the cooperative usage of the underlying
thread:

• get() blocks the thread and does not allow any tasks to be run while waiting for the
result.

• Calling await() on an incomplete future adds the active task to the suspended set. Once
the future is completed, the task is awakened and appended to the ready queue.

As a result, the await() function enables other tasks to be processed in the meantime, while
get() does not. This cooperative approach can only be used if the corresponding task is able
to establish the invariants of the cobox before the invocation is performed. Invoking the static
method JCoBox.yield() is another way to return control to the system. This procedure
causes the active task to be appended to the ready queue. The variant JCoBox.yield(long
waitTime, TimeUnit unit) supports the specification of a time frame which needs to
elapse before the task is inserted back into the ready queue.

Application-Level Scheduling in Creol

The researchers of Creol have addressed the question how priorities can be specified at the
application-level for active objects [39]. Algorithm 2.2 defines three types. They are intended
to recreate a mutex. Lines 1 to 5 illustrate an interface named PrioritizedResource. It
declares two operations for managing the ownership of the underlying resource and a priority
range (line 2) for client-side calls. Every invocation of the associated methods can be comple-
mented with a priority in the following way:

2Under the assumption that a call x is performed prior to a call y and that x and y have the same source and
destination cobox, the partial order is preserved if x is always executed before y.

16

1 interface PrioritizedResource begin
2 priority range 0..9
3 op request()
4 op release()
5 end

6 interface Resource begin
7 op request()
8 op release()
9 end

10 class ExclusiveResource implements Resource begin
11 var taken := false;
12 priority range 0..2
13 op request() priority(2) ==
14 await ~taken priority(1);
15 taken := true;
16 op release() priority(0) ==
17 taken := false;
18 end

Algorithm 2.2: An example of application-level scheduling. [39]

resource ! request() priority(3);

If the statement omits the trailing priority expression, a default value is used. This direct
mode is only one possibility for controlling the precedence in an application. Lines 6 to 13
demonstrate the definition of an interface with the name Resource. Because it does not specify
a priority range, an implementation may do so in its body. Shown from line 10 to 18 is the
class ExclusiveResource, a concrete realisation of Resource. Imagine that invocations
of release experience starvation in the concerned program because request is constantly
called. In this case, we have to define a range in line 12 and assign priorities for both operations
in line 13 and 16. Since by default a lower number indicates higher precedence, release is
given preference over request.

Moreover, the declaration of priorities in Creol is not restricted to constants. A developer
can use expressions which resolve to discrete values at runtime. The only constraint is that the
evaluated result has to be inside the given boundaries.

Multi-Threaded Active Objects

In the works of Henrio et al. [21–23], effort is made to provide means by which several threads
can reside inside a single active object and process method requests in parallel. These so-called
multi-active objects are intended to improve the performance, reduce the response time of in-
vocations and prevent deadlocks. The concept is realised by declaring groups, categorising the
methods and defining compatibility constraints. The latter determine which groups of requests
can run simultaneously. A particular group can also be compatible with itself. The rest of this
subsection addresses the proposed features in greater detail and expresses criticism of the chosen
techniques.

17

1 @DefineGroups({
2 @Group(name=“join”, selfCompatible=false)
3 @Group(name=“routing”, selfCompatible=true,
4 parameter=“can.Key”, condition=“!equals”)
5 @Group(name=“monitoring”, selfCompatible=true)
6 })
7 @DefineRules({
8 @Compatible({“join”, “monitoring”})
9 @Compatible({“routing”, “monitoring”})

10 @Compatible(value={“routing”, “join”},
11 condition=“!this.isLocal”)
12 })
13 public class Peer {
14 private boolean isLocal(Key k) {
15 synchronized (lock) { return myZone.containsKey(k); }
16 }

17 @MemberOf(“join”)
18 public JoinResponse join(Peer other) { ... }

19 @MemberOf(“routing”)
20 public void add(Key k, Serializable value) { ... }

21 @MemberOf(“routing”)
22 public Serializable lookup(Key k) { ... }

23 @MemberOf(“monitoring”)
24 public void monitor() { ... }
25 }

Algorithm 2.3: Definition of groups and rules for a multi-threaded active object. [22]

Language Constructs

The primary configuration mechanism of the system are annotations. Algorithm 2.3 uses the
different constructs introduced in [22]. The utilised elements are explained below:

• The @DefineGroups and @Group annotations are used to establish groups (lines 1 to
6). Thereby, each group can designate a single group parameter. The routing group (lines
3 to 4) exhibits such a definition with the expression parameter=“can.Key”.

• Observe the statement @Group(name=“monitoring”,selfCompatible=true)
in line 5. The variable selfCompatible specifies that monitoring requests can be car-
ried out at the same time. Further compatibility rules are defined in lines 7 to 11 through
the joint usage of the @DefineRules and @Compatible annotations.

• The @MemberOf annotation assigns a method to the respective group (lines 16 to 23).
If a group parameter is present, the argument list of the assigned method has to contain
at least one variable of the given type. In case multiple candidates exist, the first one is
selected.

18

Rule Types

A central feature of the model is the flexible design of group compatibility. In this context, the
approach supports two kinds of rules:

• Static Rules directly specify full compatibility of two particular groups. An example of
this type is given in line 8 of the code. @Compatible(“join”,“monitoring”)
indicates that requests of join and monitoring can run concurrently.

• Dynamic Rules limit parallel processing of groups through the use of an evaluation func-
tion. This method is implicitly invoked at runtime when the decision about the compati-
bility of two particular requests is pending. The retrieved value indicates whether the joint
execution of the corresponding operations is possible.

To facilitate the decision about dynamic compatibility, the group parameter is handed over to the
evaluation function. Since the specification of this variable is optional, an evaluation function
has either zero, one or two parameters. The concrete amount depends on the involved groups.
Hence, if no parameters are received, the decision is based solely on the current state of the
active object.

The expression condition=“!equals” in lines 3 to 4 outlines a dynamic compatibility
check. Thus, several routing requests are allowed to run at the same time as long as their respec-
tive keys are not identical. This condition is implicitly verified by invoking !key1.equals(
key2). Another example is illustrated in line 10. The instance method isLocal(Key k)
is used by the statement condition=“!this.isLocal” to decide if multiple calls can
be performed simultaneously. The method receives merely one argument because only routing
defines a group parameter.

Criticism

This concept proposes powerful instruments to improve the performance of active objects. How-
ever, the chosen mechanisms do also have severe drawbacks. We focus our attention on the
following points:

• As can be seen in Algorithm 2.3, the compatibility definitions are quite verbose and con-
fusing. The annotations interfere with the expected layout of the class and significantly
lengthen the structure at the top level. This statement concerns the static and dynamic
type. In order to mitigate this problem, the group and rule portions could be moved into
other places. This modification entails that only the method assignments remain in the
class files. Furthermore, the extracted parts could enable global definitions which are
available to every active object.

• The names of group parameter types and evaluation functions are delivered as simple
strings. This approach prevents the compiler from verifying these elements. For exam-
ple, a name change of a method would cause runtime exceptions if it is not propagated

19

correctly. In order to guarantee the existence and suitability of the supplied values, a cus-
tom annotation processor is required. It validates the contents of the annotations prior to
compilation. This mechanism is supported by Java.

• The use of instance methods as evaluation functions is precarious. They run in parallel
to the scheduling thread and can access the components of the active object. Thus, erro-
neous implementations violate the constraint that only one thread is allowed to control the
internal state at any point in time.

• To avoid the previous issue, access to components needs to be synchronised. The imple-
mentation of isLocal in the lines 13 through 15 satisfies this requirement. However, the
envisaged technique imposes concurrency control on the entire active object. This style
obstructs fundamental benefits of the underlying concept.

Hence, dynamic rules are especially problematic. They effectively reintroduce the disadvantages
of shared-state concurrency into the pattern. As a result, the development becomes more error-
prone and complex. Therefore, this type of parallelisation should be avoided.

Active objects that support multi-threading are an interesting concept for enhancing perfor-
mance without completely reverting back to shared-state concurrency. If executed properly, the
model could be extended by a powerful and comprehensible mechanism to parallelise access to
the internal state. However, the constructs proposed in [21, 22] introduce new problems. There-
fore, further research in this direction will be required before the mechanism is mature enough
for widespread use in conjunction with active objects.

2.4 Relevance and Comparison to Related Work

To the best of the author’s knowledge, there does not currently exist a well-integrated imple-
mentation of active objects for the Java language which provides suitable functionality for their
use. The presented topics are interesting adaptations of the fundamental pattern. JCobox’s
component-based approach is able to simulate active objects. However, it is not designed for
combining them with conventional passive objects, and some of the main advantages of the pro-
gramming model are lost if used solely for this purpose. The concept does also not address
the topics and issues explained in Chapter 3. The same holds true for the realisation of multi-
threaded active objects.

Apart from the advanced techniques, there are two possibilities to attain comparable be-
haviour in Java. Firstly, a developer can implement all parts of an active object manually and
integrate them into the application to obtain the desired functionality. This alternative introduces
a lot of boilerplate code that is tedious to write and maintain [29]. Secondly, any of the existing
actor libraries can be utilised to achieve the desired results, for instance Kilim [49]. Such imple-
mentations are discussed in detail in [27]. The problem of this approach was already mentioned
in Section 1.1. Since message passing is a core principle of the actor model, the concurrent
components cannot communicate through method calls. Some other object-oriented languages
already have built-in support for active objects. An example is Groovy [9], a language that also
runs on the JVM. For the given reasons, a custom solution is required in order to make effective

20

use of the presented pattern in Java. The goal of this master’s thesis is to develop a suitable
design and provide the corresponding library implementation.

21

CHAPTER 3
Result Handling Strategies

This chapter is dedicated to the description of result handling strategies and synchronisation
functionality. The active objects explained in Section 2.2 support only one particular interaction
pattern. A client asynchronously invokes a proxy method and retrieves a future for accessing
the computed value. Although this mechanism marks a good starting point, further invocation
types are preferable. The following sections give an overview of various call modes. Different
kinds of implementation models are addressed, and the concepts are examined in terms of their
suitability for realisation. Additionally, each section outlines a potential use case and provides
arguments for and against the feature’s integration into the model. Section 3.1 deals with the
previously mentioned futures. In Section 3.2, the synchronous call mode is described. It forms
the basis of Java object-communication and is therefore considered in this chapter. Section 3.3
discusses completely asynchronous invocations. They are used for sending signals and do not
provide a mechanism to obtain the associated result. Section 3.4 explains implicit callbacks.
These programmable entities are performed in response to an active execution and have access
to the return value. Finally, Section 3.5 introduces a new placeholder type which combines the
functionality of futures and implicit callbacks.

3.1 Futures

This technique is fundamental to the pattern and was already explained previously. A method
is asynchronously invoked by sending a method request to the corresponding active object. The
caller receives a future for acquiring the result and examining the state of the execution. This
procedure is outlined in Figure 3.1.

Possible Implementations

The main idea is to associate each method request generated by the proxy with a future. This
placeholder is set to the correct value once the scheduler finishes the execution of the servant’s
operation. Hence, the request class implicitly constructs a future and provides a related getter

22

future:Future

:Source :Active Object

create

set(obj)

Object obj = generate()
get()

future

obj

method()

Figure 3.1: Sequence diagram of the asynchronous call mode using a future for result access.

method. The proxy method performs this operation on the newly created object, obtains the
future and returns it to the caller.

Considering the basic components, the JDK’s java.util.concurrent package al-
ready offers some interesting types which can be reused. The Future interface defines the
publicly available functionality of a future. The corresponding FutureTask implementation
can be utilised either directly or indirectly through inheritance. Another option is to realise an
entirely new class based on the interface to gain additional control over the code and diminish
the impact of potential change. In Java, futures can also be resolved transparently by using im-
plicit proxies [41]. However, this matter is not taken into consideration, because the developer
cannot easily query the execution state of these objects.

Use Case

The startup of an application includes activities that need to be decoupled from the GUI thread.
One of them establishes a connection to an update server. This task is easily achieved by using
an active object. It maintains the network connection and has an active method responsible for
searching for a new version. The thread simply invokes this operation, checks the status of the
received future in a regular interval and adapts the GUI as soon as the result is available.

Reasoning

There are several arguments in favour of this mode. The main point is that asynchronous interac-
tions between active objects are an integral part of most applications based on this programming
model. The arising future is thereby either temporarily stored or returned to the caller. Its value
is usually retrieved at a later date when the execution has already finished. More specifically,
this approach has the following merits:

• Futures enable flexible interactions because they avoid implicit synchronisation of the
invoked method and the caller. This independence helps to reduce temporal dependency

23

between distinct active objects, especially in situations where they realise long-running
functions.

• Since an active method’s invocation is decoupled from its execution, the caller does not
necessarily have to wait for the completion of the request. As a consequence, asyn-
chronous invocations lower the response time. They also increase the throughput of the
calling method if the result does not have to be resolved immediately.

For the given reasons, this feature forms the base of the library. Although the mechanism is
primarily important for the collaboration of active objects, it is still beneficial to programs which
utilise the pattern for independent service components.

3.2 Synchronous Calls

The most essential mode with respect to standard Java programming is the synchronous invoca-
tion style. When a method of an active object is called, the current thread blocks and waits for
the completion of the execution. If a value is returned, it may be assigned directly to a variable.
This modality is subject to the basic try-catch-finally semantics.

Possible Implementations

The underlying pattern foresees that the proxy methods return a future. Thus, synchronous calls
are realised by retrieving the deferred value in a blocking manner. This task can be completed
either directly in the proxy or through a library call. The former option is used to overwrite a
servant’s operation by a proxy method because the mechanism does not involve any modifica-
tions of the related method signature. Hence, this mode is valuable if the proxy is automatically
generated by extending the servant.

Use Case

The backend of a hotel’s booking application provides a method to make a reservation. An
exception is thrown in case the entered request cannot be fulfilled, for instance if the room is
already occupied for the given date. To support simultaneous access by multiple terminals, this
functionality is encapsulated within an active object. Whenever a client wants to book a room,
the servicing receptionist enters the necessary information and submits the reservation. In order
to immediately analyse the result and print a notification message, the system invokes the active
object’s operation in a synchronous fashion. In this example, the asynchronous approach is not
necessary, because the user is awaiting the task’s outcome.

Reasoning

In typical concurrent Java applications, a large amount of objects is created. Most of these in-
stances do not need any added synchronisation, for example because they are immutable, thread-
safe or held solely by one owner. Enforcing the pattern on all types results in an unnecessary

24

:Source :Active Object

method()

Object obj = generate()

Figure 3.2: Sequence diagram of the purely asynchronous call mode.

amount of threads and impairs the performance of the execution. Therefore, a requirement of
the library is the ability to freely combine active and passive classes, even if they are situated
in the same class hierarchy. This demand influences the rationale behind the inclusion of the
presented feature. In particular, the arguments supporting this mode are as follows:

• The synchronous style facilitates transparency because the default semantics of method
calls still hold true from the developer perspective. Furthermore, inheritance obscures the
actually used call mode since a normal class can be extended by an active class.

• Class hierarchies using both types become overly complex. If the asynchronous mode is
used by default, each method invocation would require a distinction between active and
passive objects in the code of the caller.

• Plain objects usually expect standard call semantics to be in effect. In particular, this ar-
gument applies to reused components that are not designed for the described mechanisms.

• In the original approach, altering the active property of a class entails a refactoring of all
invocations targeting the corresponding instances. If this characteristic propagates down-
wards in the class hierarchy, such adjustments do also affect any subclasses.

This enumeration is not complete, because it does not consider advanced techniques like class
reloading or hot swapping. For the reasons given above, this functionality is implemented at the
base level by implicitly resolving the future of a method call.

3.3 Purely Asynchronous Calls

Purely asynchronous method calls send a signal to an active object. Once the transmission has
completed, the thread immediately continues with the execution of the following statements.
This modality does not offer any way of retrieving the result. The described behaviour resem-
bles the message sending process of the actor model and is similar to the previous asynchronous
mode. However, in this case, the future does not need to be generated and handled. It is im-
portant to note that when this technique is applied, exceptions raised during the target method’s
execution cannot be caught by usual means.

25

Possible Implementations

There are two possibilities for realising this mode:

• Implementation of the proxy methods through the procedure discussed above. When a
purely asynchronous call occurs, the future is not returned even though it was already
constructed. This alternative is easier to implement because it reuses the existing ap-
proach.

• Introduction of a separate mechanism for placing a method request without constructing
the associated future. This style implies a lower overhead and does therefore enhance
the performance. However, it requires a supplementary method request type and specific
handling during the instrumentation phase.

Both options can be used to redefine the actual servant method since it is not necessary to alter
the original method signature. Thus, this mode is the second of the two techniques to accomplish
automated instrumentation of active objects.

Use Case

Let us remember the booking application mentioned before. It is equipped with a feature to
display all current reservations. Assume one active object manages the database connection and
provides a method to add a listener for newly created reservations. Using this function, the GUI
installs an object as the receiver of these notifications. Whenever new information arrives, the
reservation list is updated accordingly. Because this action requires a certain amount of time,
access to it has to be controlled. Otherwise, simultaneously processing several notifications can
lead to a display error. Therefore, the listener is realised by an active object. To increase the
performance of the database object, the listening method is invoked purely asynchronous. This
precaution ensures the notifier is not slowed down by a long-running subscriber. Also, there is
no interest in the outcome of the active invocation. The only important aspect is that the call is
executed eventually, a guarantee which has to be fulfilled by the library in any case.

Reasoning

The potential advantages are not only inherent to the matter but also closely linked to the imple-
mentation model. The different aspects are outlined below:

• This style is the sole asynchronous call mode that can be used to overwrite servant meth-
ods. It supports sending signals through direct invocations, which is a useful trait for the
library implementation. The other mechanisms either return a placeholder object or as-
sociate a callback to an invocation. These forms require a modification of the original
method signature and are therefore not suited to the task in Java.

• If no future is constructed, the performance and throughput of method calls improves. This
enhancement is restricted to situations where the caller is not interested in the outcome of
the invocation.

26

callback:Callback

:Source :Active Object

method(callback)

create

call(obj)

Object obj = generate()

call(obj)

Figure 3.3: Sequence diagram of the asynchronous call mode based on a callback for result
handling.

• This approach can be used in conjunction with explicit and implicit callbacks because they
do not necessarily require a placeholder object. These concepts are discussed later in this
section.

The projected performance increase that comes from omitting the future is slim. Further-
more, only applications with a high number of purely asynchronous invocations are benefited.
On the downside, this variant needs a detection mechanism and special treatment inside the
model’s internal components. Therefore, the implementation of this call mode does not receive
particular attention. Instead, it is based on the normal asynchronous procedure presented above,
whereby the constructed future is ignored.

3.4 Callbacks

An alternative to the placeholder mechanism is the use of callbacks. These objects are passed as
additional parameters to the asynchronous method and are invoked by the callee when the result
is available. Although this strategy achieves the desired effect, it requires custom handling of
the callbacks and introduces boilerplate code. Furthermore, the target method must directly
support this execution type. Otherwise, a separate thread has to be instantiated to accomplish
the same task. To solve these issues through a library feature, asynchronous calls have to be
linked directly to concrete callback objects. Instead of the manual procedure described above,
the system automatically executes the associated callbacks once the target operation returns the
result value. Figure 3.3 depicts the sequence of interactions of this approach.

27

Possible Implementations

This feature can be implemented in a variety of ways:

• Either the method request or the future class is equipped with an instance variable which
accumulates the associated callback objects. Once the actual operation terminates, the
request’s processing method checks this variable. If the collection contains any callbacks,
they are scheduled for execution.

• An active object has an additional thread that polls the method requests in regular intervals.
As soon as one of them completes, the thread looks up the added callbacks and arranges
the execution.

• Every active object receives an additional activation queue for storing the outstanding
callbacks together with the respective parameters. To process the incoming jobs, a lis-
tener is added to the queue. This entity extracts the callbacks and executes them with the
corresponding parameter.

From the above possibilities, the first one is the most sophisticated because it integrates well
into the request handling procedure of active objects. However, a correct and efficient realisa-
tion involves considerable effort. The other two techniques are easier to implement but entail
some overhead. The second approach requires an additional thread for each active object. This
circumstance limits the performance of all applications, even when they do not utilise this func-
tionality. The third option has a higher memory requirement since it stores already available
information. Furthermore, the listeners have to be treated accordingly. For these reasons, the
first suggestion is preferred in the context of the project.

Assignment of callbacks. In any case, the library needs to provide means for installing a
callback to an active invocation. These functions have to obtain the underlying method request
and perform the necessary tasks for the desired action. For consistency reasons, the assignable
callbacks share a common interface. It has a single method representing the reaction behaviour.
This operation is performed when the asynchronous execution finishes and receives the return
value as a parameter. The class of this argument is specified by the generic type parameter of the
interface. The deployment of separate error callback objects is also possible. They handle the
erroneous state by acting on exceptions which were thrown during the asynchronous execution.

State Encapsulation. In the context of active objects, the execution of callbacks requires spe-
cial attention. Imagine the implemented reaction behaviour directly manipulates a variable of
the object. Then the callback method cannot be carried out at the same time with other method
requests, because parallel execution violates the constraint that only one thread is allowed to
access the internal state at any given time. There are two methods for solving this problem:

• The execution of the callback is synchronised with the scheduler’s processing method in
order to prevent requests from running at the same time.

28

• The execution of the callback is conducted by the scheduler. In this variant, the task is
scheduled like any normal method request object.

The latter option seems cleaner and can be better integrated because it does not introduce addi-
tional concurrency constructs into the core classes. It also does not favour callbacks over typical
method requests or vice versa. Furthermore, the added synchronisation involves a performance
degradation of active objects. Hence, the library’s realisation of this feature is based on the
second alternative.

Use Case

Imagine a distributed database which needs to integrate a particular record at multiple nodes. If
one of them signals an error, the whole transaction has to be reverted on all concerned parties.
The system is overseen by a coordinator that manages the state of the transaction. The individual
nodes are implemented as active objects. To accomplish the aforementioned goal, the coordina-
tor starts a transaction on all nodes and sends the new dataset to them via an asynchronous call.
These invocations are linked to a callback and an error callback. The former counts the incoming
confirmations. If all nodes acknowledge the insertion, the callback invokes a commit method
on each one of them. However, if any of them fail to include the change, the error callback is
executed. Its task is to roll back the transaction on every node.

Reasoning

Although futures are adequate for a multitude of use cases, there are situations where these
objects are not appropriate. Particular circumstances can require a reaction to the completion of
an active method call. This behaviour can only be realised in two manners when utilising the
functionality of futures:

• Invoking a blocking method in order to wait until the result is set.

• Polling the execution state in regular intervals, and requesting the result once it becomes
available.

The second alternative suffices if the querying thread can be used in other ways, for example
to repeatedly refresh the GUI of an application. However, some active objects only consist of
quick methods to achieve fast response times and a high throughput of method requests. In these
cases, both of the above possibilities are suboptimal. On the one hand, the first option forces the
request processing to pause. This act seriously harms the object’s performance. On the other
hand, the second alternative requires the future to be stored temporarily. The response has to
then be accessed at another place. This approach complicates the structure of methods and is
not always feasible.

These issues are tackled by implicit callbacks. The following factors speak in favour of using
this type of mechanism in the library:

• An object is able to react to the completion of an active method call without polling or
blocking.

29

promise:Promise

:Source :Active Object

create

set(obj)

Object obj = generate()

promise

method()

callback:Callback

then(callback)

create

call(obj)

Figure 3.4: Sequence diagram of the asynchronous call mode based on a promise and a callback
for result access.

• Any active method can be associated with callbacks, even if it was not originally designed
to do so.

• The callback is invoked implicitly by the library, so in most circumstances there is no need
to incorporate explicit callbacks into an active object’s design.

Limitations. With all the advantages mentioned above, using this technique inside a method
has a significant drawback. The difficulty lies in the fact that, by default, the outside clients
cannot react to the completion of the callbacks. In order to do so, the argument list of the
operation has to include an explicit callback object. The latter features a response method that
is manually invoked when the execution of the original callback finishes. As a result, such a
parameter has to be integrated into the whole call hierarchy.

Imagine the coordinator of the previous use case is implemented by an active object and the
application offers functionality for inserting a new record into the database. In this case, the GUI
has to display an appropriate message in response to the completion of the procedure. Because
the coordinator uses callbacks for this purpose, it cannot be guaranteed that the new record
is committed when the insertion method returns. Therefore, the GUI cannot simply output a
notification when the operation terminates. To resolve this shortcoming, the coordinator has to
accept an explicit callback object which is executed after the transaction has been committed.

Because of this major problem, the call mode is not implemented directly but is incorporated
through a special form of future instead. This type is called promise. It is explained in detail in
the next section.

3.5 Promises

Promises [24,26] combine the functionality of futures with the ability to react to the completion
of the execution. Similarly, these advanced objects are placeholders for deferred values, and

30

offer methods for querying the execution’s state and result. However, the original concept is
extended through a variety of so-called callback assignment methods. They enable connecting
different types of callbacks to a promise. As a consequence, the provided callbacks are scheduled
automatically once the associated promise is completed. Figure 3.4 outlines the interactions of
this procedure.

Promise chaining. An important aspect that adds flexibility and transparency is promise chain-
ing. As previously discussed, some circumstances require reacting to the completion or the result
of a callback. Therefore, a new promise is returned whenever a callback assignment method is
called:

• This instance enables access to the state of the corresponding execution and provides
functions for requesting the result, if any is returned.

• The new instance also has exactly the same callback assignment methods. Calling one of
them generates another promise.

This mechanism supports chaining together multiple callbacks to realise a variety of situations.
For example, it can be used to process an asynchronous invocation step by step. Instead of de-
livering callbacks explicitly as a parameter, the developer may decide to pass back a promise. A
caller can then invoke one of the callback assignment methods and return the resulting promise.
The instance enables other components to await the result or install implicit callbacks. This
practice is transparent because the receiver is not aware of the promise’s predecessors or of the
length of the chain.

Possible Implementations

To realise the proposed concept inside an active object library, the internally used futures are
entirely replaced by promises. The new technique is an expansion of the original idea and, most
importantly, does not remove existing functionality. Hence, the substitution does not affect any
established applications. Apart from the implementation of the added classes, the core concepts
remain essentially unchanged. Only a few adaptations of the model are necessary.

A central aspect in this context is the appropriate result treatment. As soon as a promise is
completed, the system has to look up all of the associated callbacks and schedule their execution.
Because a simple Boolean expression is sufficient to check for the existence of children, little
overhead is involved when promise chaining is not used. Preferably, the descendants are handled
implicitly by the promise when its execution result is set. As mentioned above, a scheduler has
to be able to conduct the execution of the associated callbacks. This mechanism is necessary
when the internal components of an active object are directly accessed by the reaction behaviour.

Use Case

A transformer component is responsible for the retrieval and preparation of data records on
behalf of the representation layer. The database access is controlled by an active object, which
features a method for obtaining data sets through the execution of a query. The transformer

31

calls this function asynchronously with an appropriate query and retrieves a promise for the
result set. In the next step, a callback is set up. It performs the modifications and passes back
the manipulated objects. The transformation method then returns the promise obtained from
invoking the callback assignment method. The GUI receives the procedure’s result either via
blocked waiting or by reacting to the completion of the promise inside a callback. The latter task
can be achieved through an anonymous inner class that updates the GUI components directly.

Reasoning

Since promises are a mix of futures and callbacks, the approach inherits their combined advan-
tages. Furthermore, the concept adds the following benefits:

• Through promise chaining, complex tasks can be decomposed into several asynchronously
executed steps. This strategy is especially useful if the whole process is not implemented
by a single component.

• In contrast to the simple implicit callback approach, this mechanism creates a new promise
instance when a callback is installed. This object can be used to check the status of the
execution, retrieve the result and add further computation steps.

• As already mentioned, promise chaining is transparent. The predecessors of a particular
promise object are concealed in order to give simple and concatenated promises a uniform
appearance.

Aggregated promises. Although promise chaining is useful in a variety of situations, it does
not solve our problems entirely. Recall the program that uses a distributed database for storing
data. The various nodes are implemented by an active type. It provides a method for preparing
the integration of a new record into the database. An exception is thrown if the data set cannot
be incorporated. The coordinator is also represented by an active object. It has a method for
inserting a new record. This functionality is accomplished by asynchronously invoking the
insertion method of the individual nodes and relating callbacks to each promise. Because the
coordinator retrieves multiple promises, there is no single instance which can be returned to the
client. These kinds of situations require manual effort to create a custom object. It is updated
by the callbacks on success or failure. Alternatively, the library has to offer multiple generic
aggregation methods. These functions are not considered in this thesis.

Nested promise types. Another related problem are nested data structures. It applies to futures
as well as promises. As an example, observe the promise type that wraps a promise to an
integer (cf. the java type Promise<Promise<Integer>>). The issue occurs when an active
method which returns a promise is called asynchronously. As a consequence, a new promise
repacks the original one. This phenomenon can entail deeply nested data structures. They are
not only hard to handle, but do also complicate the maintenance of software components. A
library has to provide means to counteract this problem.

32

CHAPTER 4
Modelling of Selected Functionality

This chapter concerns the design of the core components outlined in Chapter 2 and presents the
realisation of the functionality described in Chapter 3. Section 4.1 explains the fundamental
implementation principles that constrain the model and gives reasoning about their relevance. In
Section 4.2, the components’ functional requirements, relationships and behaviour are covered.
The descriptions are augmented by diagrams to picture the relevant situations. Towards the
end of this part, the presented model is contrasted to the cited literature in Section 4.3. Any
deviations from the base pattern are highlighted and arguments for the decisions taken in the
design process are given. In general, the differences are necessary because the application is
transparently enriched through bytecode instrumentation during load-time. Hence, the written
code is subject to the rules imposed by the Java compiler.

4.1 Fundamental Ideas

Before demonstrating the created model, we address the basic ideas behind the library. They
restrict the layout and the relationships of the components. These principles serve to justify the
made decisions and are used during the discussion at the end of this chapter.

Automation and Maintainability

The most significant aspect of the resulting library is the accomplished level of automation. The
base pattern requires a large quantity of boilerplate code in the form of proxy classes and method
request subtypes. Each of the active methods in the servant class needs a corresponding proxy
operation that handles occurring invocations and dispenses new futures to its callers. Another
notable feature are passive methods. They directly invoke the appropriate servant method instead
of taking the detour through the scheduler. This mode is suitable for retrieving immutable,
final objects1 because direct access to them does not violate any synchronisation constraints.

1Immutable objects cannot change their state after creation. Since their associated reference is final, it may not
be adjusted after it is initially set.

33

Generally speaking, methods which do not enter a critical section can be kept passive. The
following segment illustrates the structure of a proxy class in the original pattern:

public class CounterProxy {
private Counter servant; //The object doing the actual work
private Scheduler scheduler; //The scheduler of

//the active object
{...}
//Demonstration of an active method inside a proxy:
public Promise<Integer> add(Integer increment) {

MethodRequest request = new AddMethodRequest(servant,
increment); //Create request for invocation

scheduler.insertRequest(request); //Insert request into
//activation queue of scheduler

return request.getPromise(); //Return associated promise
}
//Demonstration of a "passive" method inside a proxy:
public int hashCode { return servant.hashCode(); }

}

Some details were omitted in the given sample, but it visualises the central problems of the
chosen approach.

• Each proxy method is composed of a basic set of code fragments, as can be seen in the dis-
played add operation. These parts are only minimally adapted depending on the situation.
For example, the request subclass is typically exchanged.

• A large number of active methods makes the creation of an equal amount of method
request subtypes necessary. We will spare the concrete details of these classes. However,
they introduce additional boilerplate code, which is not to be underestimated.

• Passive methods must delegate calls to the associated servant instance because the proxy
does not inherit the servant’s operations. For example, observe the hashCode function
in the presented extract. This obligation limits the interchangeability of the approach.
Replacing a servant by its proxy or vice versa is a serious effort because the substitution
invalidates all existing references and method calls.

For the given reasons, the base pattern is not simply adopted. Instead, the proposed model
adjusts the structure of the components and the interactions in order to provide a solution better
suited to our purposes. In this context, two goals have to be highlighted.

Boilerplate code. A high priority is the reduction of boilerplate code [29, 30]. The optimal
solution entails the complete elimination of unnecessary code. This notion enables the pro-
grammer to focus his full attention on implementing the actual functionality. To this end, the
configuration of active objects is performed through the use of annotations and potentially empty
interfaces.

34

Interchangeability. Another vital characteristic is the aforementioned interchangeability. Ide-
ally, a worker class can become an active class without invalidating any existing code. On the
contrary, a developer should be able to turn active objects into passive instances without causing
great amounts of compilation errors.

Utilisation of Tools

Another limiting factor is the manner in which the desired results are achieved. There are several
possible tools to this end. Java offers an integrated approach to metaprogramming through the
Reflection API. Moreover, various third-party libraries exist. They can be used as precompilers
or offer the ability to perform bytecode manipulations. We now take a brief look at the benefits
and drawbacks of the available options, and give reasoning behind the made decisions.

Code Generation. The central task is the creation of proxy classes and other code sections
needed to attain active objects. Although the JDK facilitates the analysis of the underlying types,
the ability to produce or modify classes through the standard API is limited. For the purposes
of code generation, the use of precompilation, bytecode manipulation or a combination thereof
is advised. From a technical standpoint both approaches alone suffice to satisfy the needs of the
library. But it should be noted that there is a lack of sophisticated precompilitation instruments
in the Java world. During an investigation, only one framework was discovered which was
considered adequate to reach the objective. It is named Polyglot [4, 40] and it was also used
to implement JCobox [45]. However, in its current form, the tool does only support Java 5. In
contrast, a number of suitable bytecode instrumentation libraries exist. Popular examples are
ASM [8], BCEL [14] and Javassist [11, 12]. They are frequently upgraded and support more
recent Java versions and features. Therefore, bytecode manipulation is chosen as the method
of code generation. We have selected Javassist despite its limitations [50], because it offers a
high-level interface to perform transformations. Furthermore, the referred restrictions carry no
weight in our use case.

Introspection. As previously mentioned, the JDK provides its own share of metaprogramming
facilities. A disadvantage of reflective programming is the added performance overhead. On
the positive side, the JDK directly supports these mechanisms. Furthermore, they enable the
development of scenarios that cannot be achieved by other means. Since we want to make
use of annotations to tag active objects and active methods, the utilisation of the integrated
introspection features is a must. In several situations, one of the internal components needs
to analyse a particular property of another type. Simply put, there is no real alternative to the
reflective capabilities provided by Java. Thus, reflection plays an essential part in the functioning
principle of the library.

Ease of Use

Although usability is an important characteristic of programming libraries, research is difficult in
this area due to the user-centered subject. Clarke [13] discussed criteria and questions taken into

35

account in the development process of this project. Because the implemented API has specific
needs in this regard, we address the applied guidelines next.

Unintuitive design. A crucial point is that no facilities of the API offend the comprehension of
an experienced developer, especially because bytecode instrumentation makes unorthodox de-
signs feasible. Such implementations impede maintenance since they result in incomprehensible
and complex source code. The sample below illustrates a peculiar realisation:

public class ActiveCounter {
public Integer add(Integer increment) { ... }

}

ActiveCounter counter = ...;
Promise<Integer> promise = Active.callAsynchronously(counter.add(5));

This code assumes the ActiveCounter class has an active method named add. A pro-
grammer expects the statement counter.add(5) to be executed prior to the invocation of
callAsynchronously. This ordering makes the latter call ineffective. However, bytecode
manipulation can give this simple program extract an entirely different meaning. Imagine an
instrumenting component searches the bytecode for occurrences of the aforementioned static
method callAsynchronously. If the invocation is encountered while parsing this class, the
enclosed expression is replaced by an appropriate active call. In this case, the add method is
substituted by the corresponding proxy operation. This mechanism is not only confusing but
also raises serious doubt as to the library’s capabilities. Therefore, inconsistent designs have to
be avoided.

Straightforwardness. An additional factor related to usability is the simplicity of the API. If a
certain feature is complicated or inconvenient to use, a programmer will refrain from using it and
instead develop workarounds. Hence, the individual library components have to be meaningful
and relatively easy to use. Once again, the optimal fashion of creating an active object is with
the help of annotations and possibly empty interfaces. These techniques do not automatically
involve changes in existing code or cause further problems. Setting up active methods can also
be done through annotations. Functionality that is not solvable by other means is combined into
a handful of utility classes for easy access.

Documentation. An often overlooked but largely important facet of library usability is the
documentation of the components [42, 43]. For this purpose, the core classes are described with
the aid of the software documentation tool JavaDoc. It is directly integrated into the JDK and
can generate HTML files from source code comments. Cross references are used to clarify
the relations between various types. Another important part of the documentation are example
implementations. They illustrate the use of the API and outline the interactions of the different
classes. Chapter 6 provides such sample code and discusses the advantages and disadvantages
of the chosen approach.

36

Servant Proxy

SchedulerActivation
Queue

Execution Request

(1,1)

(1,1)

owns >

(1,1)(1,1)
< uses

(0,1)

(0,*)

executes >

(0,1)

(0,*)
stores >

Task Execution
Request Method RequestTask Executor

(1,1)

(0,*)

creates >

(0,1) (0,*)
executes >

Library Class

(1,1)
(0,*)

creates >

Figure 4.1: Class diagram depicting the relationships between the different core components.

4.2 Core Components

The component modelling is guided by the literature showcased in Chapter 2. Since the library
is intended to support promises, they entirely replace the previously noted futures. Figure 4.1
exhibits the individual elements and their connections. A large part of the properties stem from
the active object pattern, while some characteristics have been refined. The rest of this section
is dedicated to the explanation of the components and the reasoning of deviations from the basic
pattern. The JavaDoc of the respective class [2] gives more information about the operational
behaviour. It is noteworthy that the description in this section is not a thorough specification of
the components’ structure. In particular, the concrete implementation is not compulsory. The
developed code presented in Chapter 5 embodies a proof of concept realisation of the described
model.

Promise

As already explained in previous chapters, a promise is a container object for the result of a de-
ferred execution. The corresponding Promise interface extends the Future interface located
in the java.util.concurrent package. This relationship increases the compatibility with
the JDK and the basic active object pattern. Figure 4.2 outlines the declared methods of these
types and indicates the inherited operations.

37

<<Interface>>

V

java.util.Future

+ cancel(boolean
 mayInterruptIfRunning): boolean

+ get(): V
+ get(long timeout, TimeUnit unit): V
+ isCancelled(): boolean
+ isDone(): boolean

V

Promise

+ await(): void
+ cancel(): boolean
+ get(): V
+ get(long timeout, TimeUnit unit): V
+ getThrowable(): Throwable
+ getThrowable(long timeout, TimeUnit unit): Throwable
+ isCancelled(): boolean
+ isDone(): boolean
+ hasFailed(): boolean
+ disjoin(): Promise<V>
+ scheduleInside(Object activeObject): Promise<V>
+ then(Callback<V,T> cb): Promise<T>
+ then(Callback<V,T> cb, ErrorCallback<T> ecb): Promise<T>
+ otherwise(ErrorCallback<T> ecb): Promise<T>
+ always(AlwaysCallback<T> cb): Promise<T>
+ ensure(EnsureCallback cb): Promise<V>

Figure 4.2: Class diagram of the modelled promise interface.

Promises are primarily used to enable access to the outcome of active methods, callables and
callbacks. In this context, the former two elements represent the starting point of a computation,
whereas the different sorts of callbacks are registered by calling the appropriate methods of
an existing promise. The various kinds of features provided by this interface are stated in the
following subsections.

Completion

The library requires suitable functions in order to complete a promise. They are not present in
Figure 4.2 because they are mostly used internally. These operations comprise setting the result
of an execution and can also entail further instructions. Although this model does not dictate the
manifestations of these methods, it defines the effects of the completion of a promise. They are
listed next:

• The state of the promise is adjusted accordingly.

• Any thread performing a blocking method is unblocked and notified of the outcome of the
operation.

• Calls to result retrieval methods obtain the computed value immediately without blocking.

• All associated callbacks are scheduled automatically.

Thereby, an adequate treatment of the installed callbacks is necessary. If they directly access or
modify the state of an active object, their execution must be conducted by the associated sched-
uler to avoid race conditions. At the same time, every non-intrusive callback has to be invoked

38

by a separate thread to increase the throughput of the active objects. The responsibility for the
selection of the correct type is assigned to the developer through adequate library functions.

The following enumeration summarises the behaviour of the state retrieval methods upon
completion of the related promise:

• isDone() returns true.

• The value of hasFailed() depends on the manner in which the computation finished.
It evaluates to true if the invocation raised an exception or was cancelled. If it terminated
normally, false is passed back.

• isCancelled() yields false in case the promise was correctly completed and not
cancelled beforehand.

• Subsequent calls of the state retrieval methods of a finished promise always have to return
the same value.

Cancellation

The cancel operation is used to abort the task associated to the promise object. This feature
is adopted from the Future interface. The method receives a single Boolean parameter and
returns a Boolean. The call semantics are explained in the list below:

• cancel’s result signifies if the promise was successfully cancelled. This function is only
effective in the initial or running state. Then cancel returns true. Already completed
or cancelled tasks cannot be aborted. Hence, false is returned in such cases.

• The parameter mayInterruptIfRunning indicates if cancel interrupts a running
task. In case the parameter is set to true, an interrupt signal is sent to the thread that
processes the corresponding invocation. This intervention may be necessary when the
runner is expected to perform a blocking command. If false is passed to the method,
the executing thread is allowed to terminate normally without being disrupted by a signal.

• The method does not throw any unchecked or checked exceptions.

• The cancellation of a promise causes all of its child promises to be cancelled as well. The
reasoning behind this decision is that an abortion represents exceptional behaviour. In this
case, there is no value that may be passed unto the children. Even though the establishment
of a cancellation callback is a noteworthy option for corner cases, this mechanism is not
being considered in the model.

39

Result Retrieval

Naturally, a promise offers methods to access the computed result. These operations are de-
scribed below:

• get retrieves the return value, if present. A checked ExecutionException object
is raised if the associated execution failed due to an error. The real exception instance
is stored as the cause of the ExecutionException and may be retrieved by invok-
ing getCause(). In case the promise has been cancelled, the operation throws an
unchecked CancellationException. This behaviour is guided by the specification
of the Future interface.

• getThrowable can be used to request the exception that was raised during the execu-
tion. The function either yields the actual instance or, if none occurred, null. An object
of CancellationException is passed back for cancelled promises.

Both methods exist in a variant that halts indefinitely and a version enabling bounded block-
ing. The latter requires the specification of a timeout. When this period is exceeded, a checked
TimeoutException is thrown. The exception is utilised to distinguish successful from ex-
pired invocations.

Execution State

As already mentioned, the Promise interface contains methods for requesting the status of the
execution. These operations return a Boolean value which indicates the corresponding state.
They are now explained in greater detail.

• isCancelled queries the cancellation state. This method yields true if the execution
of the related task was successfully cancelled. Otherwise, false is returned.

• hasFailed gives information about the result of the execution. The function evaluates
to true when the associated job has failed. This outcome means the call was cancelled,
or it terminated due to an exception. hasFailed resolves to false if the execution
completed normally or has not finished yet.

• isDone signals the completion state of the promise. true is passed back if the under-
lying invocation has finished. This value does also concern failed or cancelled tasks. The
result is false in case the execution has not started yet or is still running.

Callback Assignments

A noteworthy enhancement compared to futures are the callback assignment methods. They can
be used to set up specific kinds of callbacks in order to react to the finalisation of a procedure.
Through the support of promise chaining, composed computations are within the realms of
possibility. This mechanism also provides access to the outcome of the callback’s execution.

40

• The variations of then and otherwise install several combinations of Callback and
ErrorCallback instances to a promise. The former react to successful completions,
while the latter handle failed terminations. The different operations make the specification
of both or only one of the types possible.

• An instance of AlwaysCallback is installed by calling always. This sort handles
normal and erroneous completions. Because the callback method has to address both
result and exception objects, it must accept a parameter of the plain Object type.

• The ensure operation accepts an instance of EnsureCallback. This form is invoked
regardless of the previous promise’s outcome. The corresponding callback method does
not receive any parameters and it does not return a result. Similarly to Java’s finally
construct, this mechanism can be used to close open files or network connections.

In the context of processing the next level of the promise chain, the model relies on two
important techniques:

• The final value of a promise is automatically assigned to descendants which do not possess
an appropriate callback. For example, this situation applies to a child that only has an error
callback, even though the previous task finished normally.

• The model respects the execution context of callbacks. As already noted, some of them
must be conducted by a specific scheduler. This approach is necessary to guarantee state
encapsulation in particular circumstances. On the contrary, other callbacks do not need
controlled treatment. Hence, they have to be processed by a unit of an independent thread
pool. As an example, this modality is appropriate for logging the termination of an invo-
cation.

ExecutionRequest

An instance of ExecutionRequest encapsulates the execution behaviour of a particular kind
of action. This interface is an intermediate layer between the different concrete request classes
and the schedulers. It consists of a single method named executewhich neither has parameters
nor a return type. The implementation requirements are outlined next.

• The execute operation does not throw any checked exceptions. It is also expected not to
raise unchecked exceptions upon activation. The handling of such errors in the invoking
thread is not intended and represents undefined behaviour.

• A realisation must intercept all possible exceptions and has to react to these unusual states
accordingly, without the knowledge of the scheduler. Thus, an implementing class does
not only contain the logic to carry out an action but also to treat undesirable scenarios.

• Successful and erroneous outcomes have to be handled automatically. This treatment in-
cludes the invocation of the callbacks associated to the underlying promise. Furthermore,
the result must be propagated to child promises which do not provide a suitable callback.

41

The central implementations of ExecutionRequest are MethodRequest and the var-
ious subtypes of TaskExecutionRequest. These variants are described in the following
paragraphs.

MethodRequest

A MethodRequest object instructs the execution of an active method. Such instances are im-
plicitly created by the corresponding proxy operation. The MethodRequest class is thereby
used universally to represent all sorts of active methods. As a result, the individual operations
do not have their own subtypes. The semantics of performing a method request are summarised
in the listing hereafter:

• Calling execute triggers the appropriate servant method. Thus, MethodRequest
must store the passed parameters and supply them to the invocation.

• Each method request uses an associated promise for storing the outcome of the servant
method execution.

• As noted in the last paragraph, any installed callbacks require appropriate handling.

TaskExecutionRequest

TaskExecutionRequest is another subtype of ExecutionRequest. This kind of object
orders the execution of Callable and Callback instances. Because these classes need dif-
ferent handling, they receive individual derived request types. TaskExecutionRequest is
kept as an abstract class and covers common features of the specialisations. The characteristics
of these components are mentioned next.

• A task execution request regarding a callable is created through library functions. These
jobs can be initiated immediately because they do not expect any parameters.

• A task execution request concerning a callback is constructed by the callback assignment
methods. These instructions can only be performed after the preceding promise has com-
pleted since they operate on its value.

• Both forms have a related promise for saving the execution outcome.

• Again, attention has to be paid to installed callbacks and the associated promise children.

ActivationQueue

The ActivationQueue type acts as a buffer for incoming execution requests. Its operations
and relationships are shown in Figure 4.3. Each queue is directly owned by a single scheduler.
The proposed model does not provide a mechanism to share an instance between various active
objects. The interface offers the following functionality:

• insertRequest adds the supplied execution request to the internal storage.

42

Scheduler

+ insertRequest(ExecutionRequest request): void

ActivationQueue

+ insertRequest(ExecutionRequest): void
+ fetchNextRequest(): ExecutionRequest
+ hasNextRequest(): boolean

java.lang.Runnable

+ run(): void

11

1

1
< owns

Figure 4.3: Class diagram of the scheduler and activation queue interfaces.

• fetchNextRequest retrieves the next request and removes it from the object store.

• hasNextRequest indicates if the queue holds any remaining instances. The method
returns true in case there is at least one request left, and false if the collection is
empty.

The model does not dictate an ordering of the contained elements. Hence, alternative im-
plementations can dequeue requests in an entirely different order, even if the objects have been
enqueued in the exact same sequence. For example, a class can pursue a FIFO (first-in, first-out)
or a priority-driven strategy. Depending on the particular realisation of Scheduler, classes
based on this interface may need to be thread-safe. See Chapter 5 or the provided JavaDoc [2]
about these details.

Scheduler

A Scheduler instance has to process the received execution requests in its own private thread.
To that end, the interface expands the JDK’s Runnable type. The methods and relationships of
this component are depicted in Figure 4.3. The list given below summarises the characteristics
that apply to the associated implementations.

• Each scheduler does exclusively own a single ActivationQueue object for tempo-
rary storage of the execution requests. This collection must not be shared and has to be
protected from direct external manipulation.

• The provided insertRequest operation enqueues the attached request into the activa-
tion queue. There is no support for the external retrieval of requests.

• The inherited run procedure is responsible for executing the incoming requests. There-
fore, it dequeues the individual objects from the held queue and invokes them.

43

In addition to these points, the JavaDoc of any concrete realisation of Scheduler has
to contain a statement about thread safety requirements of the utilised ActivationQueue
classes. This clarification is necessary because insertRequest and run access the internal
instance simultaneously.

Termination of the scheduler’s thread. A crucial aspect is the termination of the active ob-
jects. In Java, an application cannot shutdown normally while a thread is still active. Therefore,
the run method of every scheduler has to end eventually in order to enable a controlled com-
pletion. On the other side, each active object needs to be in permanent stand-by. In particular,
the insertion of a request must automatically spawn a new processing thread if necessary. As
an example, imagine a race condition which prevents a new thread from being started in certain
situations. If the active object receives a vital invocation regarding the release of a resource and
these specific circumstances are met, the entire application is halted due to a deadlock.

TaskExecutor

As mentioned previously, some instructions do not have to be conducted by a particular sched-
uler. A TaskExecutor is an entity for handling these kinds of tasks inside a separate thread.
This approach is appropriate for a multitude of circumstances, most notably logging of raised
exceptions or transforming the output on behalf of a client. Similar to the Scheduler type,
this component is based on the Runnable interface provided by the JDK. The implemented
run operation has to traverse every branch of the promise chain and analyse the discovered
elements one after the other. There are three possibilities to treat an encountered object:

• An executable task is immediately carried out. In this case, no further action is necessary
because the associated promise is implicitly set to the correct value.

• If the task cannot be performed for some reason, the corresponding promise is set to the
result of its predecessor (cf. propagation). As an example, this situation applies to jobs
which do not feature a suitable callback type.

• If the task has to be conducted by an active object, the executor sends an appropriate
execution request to the concerned scheduler. As a consequence, run does not pursue
this part of the chain and continues with another branch.

Proxy

This component decouples the invocation of an active method from the corresponding execution.
For this purpose, the proxy extends the actual servant class and overwrites the individual active
methods. The main reason for this approach is interchangeability, so instances of the proxy
class can be used in places that accept a servant object. This relationship minimises the number
of necessary changes and avoids compatibility issues. Otherwise, the bytecode instrumentation
would break the code and cause other unpredictable problems. Another benefit is that calls of
passive methods do not have to be forwarded to the original object. The ensuing enumeration
summarises the attributes of this entity.

44

Proxy

- scheduler: Scheduler
+ incrementCount(Integer inc): Integer
+ getCount(): Integer

Servant

- count: Integer
+ incrementCount(Integer inc)*: Integer
+ getCount()*: Integer
+ passiveMethod(): void * Active Method

Figure 4.4: An example of a concrete proxy.

• All proxy objects possess a Scheduler instance for processing the emerging execution
requests.

• To reach the optimal degree of automatism, the proxy type is generated on the fly and
every creation statement concerning the servant’s class is replaced with an instantiation
of the newly created proxy. Thus, the proxy must exhibit a matching constructor for each
one available in the servant.

• All of the proxy’s constructors are structured in a similar manner. First they invoke the
appropriate super constructor and then they initialise the internal components. The set-
up includes the generation of the Scheduler instance.

• Methods marked as active are overwritten by an analogous proxy method. It takes care of
the lookup of the associated servant method, creation of the method request and insertion
of the request into the scheduler’s activation queue.

The proxy’s layout for a counter class is exemplified in Figure 4.4. The servant contains two
active methods and one passive method. As a result, the proxy contains two operations. They
correspond to the active methods of the servant.

The chosen proxy realisation imposes two notable limitations on the developed classes:

Constructor safety. As previously mentioned, the proxy’s variables are initialised after the
servant’s constructor has completed. In this context, active methods can only be called once the
associated object is fully initialised. Therefore, the constructors must not perform a call that
triggers an invocation of any of the instance’s active methods. Otherwise, the execution of the
parent constructor causes runtime failures and unexpected behaviour.

Synchronous methods. Active methods with a return type are a challenging matter. Since
they need to be overwritten, the corresponding proxy operation has to wait for the result of the
invocation. Otherwise, the outcome is inaccessible. This task is fulfilled by extracting the related
promise and retrieving the return value through the blocking get operation. Hence, these over-
written methods can only be directly used for synchronous invocations. Asynchronous calls have
to be provided through library functions. For this reason, purely asynchronous implementations
are restricted to procedures with no return type (cf. void).

45

4.3 Deviations from the Active Object Pattern

We now take a closer look at the deviations from the literature presented in Chapter 2.

Proxy method signature. The first and most obvious adaptation concerns the signature of the
proxy methods. In the original pattern, they return futures. As a consequence, the presented
model has to use promises because it supports them at the base level. Sadly, this approach is
not possible. Recall that the proxy is derived from the servant. Therefore, every active method
needs to be overwritten by a proxy operation in order to prevent direct access to the servant’s
definition. In this case, changing the return type to the unrelated Promise interface violates the
substitution principle of subtype polymorphism. Sections 8.4.5 and 8.4.8.3 of the Java Language
Specification [19] explain the notion of return-type-substitutability in great detail. This difficulty
can only be avoided through a precompiler. However, the use of this technique introduces further
problems. They were already mentioned in Section 4.1 during the discussion of code generation.

Removal of guard. The second difference in comparison to the base pattern is the absence
of the guard method in the MethodRequest type. Originally, this function is used by the
scheduler to determine if certain constraints are satisfied before executing a request. For this
purpose, MethodRequest is extended for each active method requiring special handling. The
subtype simply redefines the guard to achieve the desired behaviour. However, in the devel-
oped design, MethodRequest universally represents all active method requests. A user of
the library cannot control the creation of these objects by simple means since the model does
not contain a mechanism for the use of custom MethodRequest classes. Because a guard
method cannot be overwritten, it is ineffective and has therefore been removed.

Introduction of ExecutionRequest. The use of the ExecutionRequest interface is
another distinctive feature. In the proposed model, the scheduler processes instances of this type.
On the other side, the original pattern directly uses and invokes method requests. This simpli-
fication is not possible in the design at hand because it supports callables and callbacks. Since
they may need to be executed within the bounds of an active object to guarantee state safety,
the scheduler has to deal with multiple kinds of requests. Hence, the ExecutionRequest
interface was established as an intermediate layer. It provides a unified entity that is processable
by Scheduler instances.

46

CHAPTER 5
Implementation of the Model

This chapter presents an active object library implementation for Java. The developed solution
is a proof of concept translation of the model proposed in Chapter 4. This realisation is not opti-
mised to exploit its full performance potential and does not meet any of the optional functional
requirements mentioned earlier. In Section 5.1, the library’s technological preconditions are
discussed. Section 5.2 describes the implementation of the components shown in Section 4.2.
Thereafter, the instrumentation process and the involved entities are treated in Section 5.3. Sec-
tion 5.4 is dedicated to the workflow executed by the classes undertaking the transformation.
Lastly, a selection of the conducted bytecode manipulations is detailed in Section 5.5.

5.1 Prerequisites

This section addresses the requirements and settings of the presented implementation. Although
compatibility with other versions is likely, the library has only been tried and tested using the
following tool set:

• Java Development Kit 1.8.0 Update 0

• Java Runtime Environment 1.8.0 Update 0

• JUnit 4.11

• Hamcrest Core 1.3

• Javassist 3.18.0 GA

• JUnitParams 1.0.2

In order to make use of the provided services in an application, it has to incorporate the
Java archives (JAR) of the library and of Javassist in the classpath on startup. Furthermore, the
library JAR has to be registered as a Java agent to be able to perform the instrumentation. This
configuration is illustrated in Section 5.3.

47

1 @ActiveObject
2 public class Container {
3 {...}

4 @ActiveMethod(Synchronicity.Message)
5 public void add(Object object) { ... } /* Adds object to container */

6 @ActiveMethod(Synchronicity.SynchronousCall)
7 public Object retrieve() { ... } /* Fetches next object from

container and removes it */

8 @ActiveMethod(Synchronicity.SynchronousCall)
9 public int size() { ... } /* Returns the number of objects currently

in the container */
10
11 }

Algorithm 5.1: Exemplary usage of annotations in an active container class.

5.2 Implemented Components

The next segment deals with the implementation of the core components described in Sec-
tion 4.2. Due to the library’s dimensions, we only focus on interesting pieces of the realisation
here. Code samples and extensive explanations are provided where considered appropriate. The
whole code base is available at the referenced repository location [3].

Annotations

A vital facet are the supported annotations. They represent a straightforward technique of denot-
ing classes and methods. During load-time, the agent searches for these markings to locate the
parts requiring transformation. The discovered elements are then processed accordingly. This
subsection discusses the various annotations in detail. Their usage is outlined in Algorithm 5.1.

ActiveObject

The ActiveObject annotation serves to designate active object types. It is one of the main
mechanisms to interact with the system. The notable aspects of this component are summarised
below:

• ActiveObject contains no member variable types and can be applied only to classes
and not to single constructor calls. The transformation of individual instances into active
objects is a reasonable enhancement regarding future developments.

• The annotation is retained even during runtime in order to enable the instrumentation of
newly loaded classes. Otherwise, the agent cannot always decide if they create active
objects.

• Usually, a type labelled with ActiveObject contains one or more methods annotated
by ActiveMethod. This circumstance is, however, not essential.

48

ActiveMethod

Unsurprisingly, the ActiveMethod annotation is used to denote active methods. Only active
classes (cf. ActiveObject) are examined for these kinds of operations. ActiveMethod
features an element of the Synchronicity enum to determine the behaviour of direct invo-
cations. This type defines two values:

• SynchronousCall indicates synchronous invocations. They block the corresponding
thread and wait for the completion of the active execution. This mode is used by default
when no value is specified.

• Message signifies purely asynchronous calls. They return immediately after inserting a
method request into the scheduler’s queue, and no promise is retrieved for result handling.
Exceptions cannot be propagated to the caller.

In the library, the Message mode is limited to operations without a result type (cf. void). As
already mentioned in Chapter 3, the promise is still being created internally, although it is not
passed back to the caller. Another interesting characteristic is the definition of passive methods.
Operations without the ActiveMethod annotation are executed directly even from the outside.
This technique allows a developer to integrate concurrent processing of certain procedures into
an active class.

Intra-object communication. In this context, a proper handling of object-internal active in-
vocations is necessary. They target an active method of the currently processing instance, and
are identified by checking if the executing thread matches the one of the destination scheduler.
Such calls have to be performed directly because their scheduled, synchronous execution leads
to a deadlock.

protected methods. As yet, ActiveMethod is only effective when used on operations
declared as public. protected active methods are an idea worth considering in the future
because they can be incorporated in recursive data types. For example, this mechanism is bene-
ficial to situations where multiple producers use another instance of their own class to generate
a portion of the end product. In the current state, the individual calls are performed simulta-
neously. Thus, if the base instance buffers the parts, a race condition that demands particular
attention is introduced.

FifoActivationQueue

FifoActivationQueue pursues the FIFO strategy to store execution requests. This class is
the only implementation of the ActivationQueue interface. Note that SimpleScheduler
requires a thread-safe activation queue. The associated code is not illustrated in this work be-
cause the concrete methods mainly delegate the emerging invocations to an instance of the JDK’s
ConcurrentLinkedQueue. This class is considered suited to our purposes. It offers thread-
safe, wait-free operations to collect the supplied objects.

49

1 public class SimpleScheduler implements Scheduler {
2 private final ActivationQueue queue = new FifoActivationQueue();
3 private Thread thread = null;
4 {...}
5 public void insertRequest(ExecutionRequest request) {
6 if(request == null) {
7 throw new IllegalArgumentException(“request must not be null”);
8 }

9 synchronized(this) {
10 queue.insertRequest(request);
11 if(thread == null || !thread.isAlive()) {
12 thread = new Thread(this);
13 thread.start();
14 } } } // End of insertRequest
15

16 public void run() {
17 boolean run = true;

18 while(run) {
19 while(queue.hasNextRequest()) {
20 ExecutionRequest request = queue.fetchNextRequest();
21 if(request != null) {
22 request.execute();
23 } }

24 synchronized(this) {
25 if(!queue.hasNextRequest()) {
26 thread = null;
27 return;
28 } } } } // End of run
29
30 }

Algorithm 5.2: An excerpt of the implementation of SimpleScheduler.

SimpleScheduler

SimpleScheduler is the standard implementation of the Scheduler interface. This com-
ponent is the central unit for receiving and processing the occurring execution requests. It is
also responsible for the allocation and termination of the active object’s thread. Algorithm 5.2
shows an extract taken from SimpleScheduler’s source code. The following list outlines
properties of the type:

• Each instance has fields for the internal activation queue (line 2) and the executing thread
(line 3). By default, FifoActivationQueue is used for storage of the requests. The
thread reference is initially set to null.

• The utilised queue must be able to cope with concurrent calls. This restriction is sup-
posed to increase the request completion throughput because an ActivationQueue
implementation can make use of an efficient algorithm to guarantee thread safety.

50

• insertRequest checks the incoming execution requests (lines 6 to 8) and adds them
to the scheduler’s queue (line 10). The operation then tests if a thread is currently handling
requests (line 11) and starts a new one when deemed necessary (lines 12 and 13).

• Requests are executed in the run method. Its inner while loop (lines 18 to 22) examines
whether the queue holds any remaining requests. If so, they are fetched and invoked one
at a time. This part of the method is not coordinated with the inclusion of new requests.

• To avoid potential race conditions, run contains a segment (lines 23 to 27) which is
synchronised with the request insertion (line 10). This block verifies that the processing
thread ends only if no request was added after the last superficial check was made (line
18).

In a nutshell, the chosen approach utilises a performant, thread-safe ActivationQueue re-
alisation in order to prevent slowing down the execution of consecutive requests. The final
synchronised inspection contributes to the correctness of active objects.

Possible improvements. The displayed code can be altered by allowing multiple clients to
add requests to the queue at the same time. In this case, access to the collection has to be
secured through a read-write lock. This change improves insertRequest’s response time
when an active object is heavily used by several threads. However, the adjustment was not
incorporated because the projected performance gain is slim. Additionally, this mechanism
further complicates the implementation and correctness verification.

Promises

The design described in Chapter 4 uses promises to represent deferred values. Figure 5.1 depicts
the whole class hierarchy stemming from this concept. The diagram emphasises overwritten
methods by including them in the subtype even though they are already featured in the base
type. In the rest of this subsection, each type is explained in greater detail.

Promise and SettablePromise

The Promise interface is the Java translation of the method declarations outlined in Section 4.2.
The SettablePromise interface expands this type by two new procedures. They allow the
completion of the instance.

• set(V result) specifies the delivered parameter as the return value of a successful
outcome.

• set(Throwable throwable) defines the given throwable as the cause of an erro-
neous completion.

• Invoking a set operation of an already resolved promise causes an unchecked exception
of the class InvocationException.

51

<<Interface>>

V

Promise

+ await(): void
+ cancel(): boolean
+ get(): V
+ get(long timeout, TimeUnit unit): V
+ getThrowable(): Throwable
+ getThrowable(long timeout, TimeUnit unit): Throwable
+ isCancelled(): boolean
+ isDone(): boolean
+ hasFailed(): boolean
+ disjoin(): Promise<V>
+ scheduleInside(Object activeObject): Promise<V>
+ then(Callback<V,T> cb): Promise<T>
+ then(Callback<V,T> cb, ErrorCallback<T> ecb):
 Promise<T>
+ otherwise(ErrorCallback<T> ecb): Promise<T>
+ always(AlwaysCallback<T> cb): Promise<T>
+ ensure(EnsureCallback cb): Promise<V>

<<Interface>>

V

SettablePromise

+ set(V result): void
+ set(Throwable throwable):
 void

V

PromiseTask

< implements

V

CallablePromiseTask

- callable: Callable<V>
+ call(): V

T,V

CallbackPromiseTask

- callback: Callback<T,V>
- errorCallback: ErrorCallback<V>
+ call(T param): V
+ call(Throwable t): V
+ hasCallback(): boolean
+ hasErrorCallback(): boolean

V

MethodRequestPromiseTask

- method: MethodHandle
- params: Object[]
+ call(): V

V.V

IdentityPromiseTask

+ call(V param): V
+ call(Throwable t): V
+ hasCallback(Throwable t): boolean
+ hasErrorCallback(): boolean

V,V

EnsurePromiseTask

- ensureCallback: EnsureCallback
+ call(V param): V
+ call(Throwable t): V
+ hasCallback(Throwable t): boolean
+ hasErrorCallback(): boolean

Object,V

AlwaysPromiseTask

- alwaysCallback: AlwaysCallback<V>
+ call(Throwable t): V
+ hasErrorCallback(): boolean

V

SettablePromiseTask

+ set(V result): void
+ set(Throwable throwable):
 void

Figure 5.1: The extensive hierarchy of PromiseTask implementations.

Settable promises increase the flexibility of the approach because they can be requested via
a library function. Typically, the retrieved instance is stored temporarily, returned to the caller
and completed at a later moment through one of the set operations. This procedure enables the
manual use of promises when a computation requires additional active invocations.

PromiseTask and SettablePromiseTask

PromiseTask is the base implementation of the SettablePromise interface. This class
combines executable tasks with their associated outcomes. It provides the fundamental opera-

52

1 public class PromiseTask<T> implements SettablePromise<T> {
2 protected final Sync sync;
3 {...}

4 public T get() throws InterruptedException, ExecutionException {
5 return this.sync.syncGet();
6 }

7 protected final class Sync extends AbstractQueuedSynchronizer {
8 {...}
9 public T syncGet() throws InterruptedException,

10 ExecutionException {
11 this.await();
12 return this.retrieveValue();
13 }

14 public void await() throws InterruptedException {
15 this.acquireSharedInterruptibly(0);
16 }
17 }
18 }

Algorithm 5.3: An excerpt of the implementation of PromiseTask.

tions used by the various specialised derivatives. The most interesting aspect in this regard is an
inner class named Sync. This type extends the JDK’s AbstractQueuedSynchronizer
and makes use of the inherited operations to coordinate simultaneously accessing threads. Be-
cause most of PromiseTask’s methods have a corresponding operation in Sync, they simply
delegate the incoming calls. This configuration is based on the FutureTask implementation
of OpenJDK [1]. PromiseTask’s code cannot be included entirely in this thesis due to the ex-
tent of the class. Instead, Algorithm 5.3 illustrates the structure using the example of the get()
function.

• Each task contains a unique Sync instance (line 2) in order to forward the basic call (line
5).

• syncGet awaits the completion of the promise (line 10) and then returns the final value.

• The call of acquireSharedInterruptibly blocks indefinitely until the result is
set.

Note that acquireSharedInterruptibly(int argument) is obtained by expanding
AbstractQueuedSynchronizer. This operation tries to acquire a shared lock and only
aborts if interrupted. Because of Sync’s design, shared locks are only available when the asso-
ciated promise was completed. The presented segment depends on code parts not covered in the
sample for reasons of clarity and comprehensibility. The JavaDocs of PromiseTask and the
respective JDK classes [2] offer more information on this matter.

Manual use of SettablePromise. The PromiseTask class is not appropriate for man-
ual use because the completion by a set operation does not automatically initiate processing of

53

the assigned callbacks. Internally, their execution is triggered by other components as soon as
the promise is fulfilled. The subtype SettablePromiseTask remedies the described short-
coming by overwriting both set methods. Their new definitions autonomously commence the
traversal of the promise chain after calling the original implementation. Hence, an instance of
SettablePromiseTask is returned by library functions that yield a settable promise desig-
nated for unrestricted use.

MethodRequestPromiseTask

This variant of PromiseTask is used for active invocations. Every method request holds a
MethodRequestPromiseTask object to outsource the execution details. Among the mem-
ber variables of this type are a method handle and an array of parameters. The included call
operation invokes the handle with the specified set of object parameters, stores the outcome of
the invocation and performs the necessary result and exception handling.

CallablePromiseTask

A CallablePromiseTask addresses the execution of a Callable instance. The latter
interface is provided by the JDK and has an operation named call. This method does not have
any arguments. The characteristics of this task type are as follows:

• The constructor of CallablePromiseTask receives a callable and assigns it to an
instance variable. This parameter is mandatory because it is required by the processing.

• The class offers a single method with the signature public V call(). The generic
type parameter V corresponds to the type parameter of the held Callable instance.

• call() triggers the execution of the callable’s call operation and handles the computed
result. If an exception is raised during the invocation, the error is propagated to the caller.

Asynchronous invocation service. The behaviour of CallablePromiseTask is dictated
by the underlying Callable object. This relationship allows a developer to wrap directly
executable code inside a promise task, even if the implemented mechanism is composed of
several separate instructions. In order to use this functionality, the Active class provides static
utility operations. They receive a callable, package it and return the corresponding promise. The
enclosing task is automatically performed either by an independent thread pool or the scheduler
of the delivered active object.

CallbackPromiseTask

The CallbackPromiseTask class concerns the execution of callbacks installed through
callback assignment methods. For this purpose, each instance contains fields for a value callback
and an error callback. These member variables can be null because they are not used by every
subclass. We do not go into great detail about the individual kinds of tasks, but rather explain
the common functionality and the general processing scheme. The set and call operations

54

are responsible for computing and storing the result. Both forms of call are newly introduced
by CallbackPromiseTask. The behaviour of the different methods is explained next.

• hasCallback() evaluates to true if the callback reference is not null. Other-
wise, false is returned.

• hasErrorCallback() yields true if errorCallback points to an actual error
callback and false if this is not the case.

• call(T param) reacts to a successful outcome by invoking callback with param.
The given object is intended to be the value computed by the previous promise. This
operation raises an unchecked exception if callback does not exist.

• call(Throwable t) acts on the throwable raised during the preceding execution by
performing the errorCallback with the delivered parameter. If errorCallback is
null, the method throws an unchecked exception.

• set(V result) and set(Throwable throwable) are inherited from the super-
class PromiseTask and remain unchanged. They are used instead of the call opera-
tions if the task does not have the necessary callback type to handle the previous result.

Promise chain processing scheme. The behaviour of a task is dictated by the predecessor’s
outcome. Assuming that the latter was completed successfully, hasCallback() must obvi-
ously be called to discover whether the task has a value callback. If so, call(T param) is
invoked. If, on the other hand, hasCallback() evaluates to false, set(T param) is
utilised. Because CallbackPromiseTask does not hold a reference to its predecessor, this
decision needs to be made within the associated execution request.

5.3 Instrumentation Environment

In this section, we explore the surroundings of the programming library and the manner in which
active objects are acquired from normal instances. As explained in Section 4.1, the classes
are transformed into their active representations through bytecode instrumentation. Figure 5.2
outlines the crucial components of the scheme and their relationships. The primary entity are the
class files. They are loaded by the classloading system and contain the necessary information
to recognise types of active objects. The Java agent modifies these files and creates new proxy
classes on the fly. To this end, it interacts with the Javassist library. The latter provides the
required functionality to perform a high-level bytecode instrumentation. The next subsections
give an explanation of the most important aspects.

Java Virtual Machine

The Java Virtual Machine (JVM) is an essential element of the Java Runtime Environment. This
component executes the bytecode and provides developers with a wide variety of services. Due
to the topic’s magnitude, we are not taking an in-depth look at the JVM in this thesis, instead

55

Agent JAR

Java Virtual Machine

Class Files

Proxies

Modified Classes

yields

Garbage
Collection

Classloading
System

Instrumentation
*

+

0110
0011
0111

Execution
Engine

Javassist Library

Agent Class

Figure 5.2: Overview of bytecode instrumentation through a Java Agent.

constraining the description to a subarea of the classloading system. As mentioned above, this
part loads classes for the runtime environment. Classloading is a complex process, but it is not
necessary to understand every detail to comprehend the conducted manipulations.

The ClassFileTransformer interface. The JDK’s java.lang.instrument pack-
age offers a range of services with the purpose of instrumenting a program executed by the JVM.
The included ClassFileTransformer interface is vital for the functional principle of the
presented library. This type features a single method with the following signature:

byte[] transform(ClassLoader loader, String className,
Class<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte[] classfileBuffer);

An instance of this interface can be registered as a transformer with the runtime system. Conse-
quently, the implemented transform procedure is called for each new class definition. This
mechanism is the starting point of the presented realisation. The project contains a custom im-
plementation of ClassFileTransformer, and all bytecode modifications are triggered by
such an invocation of transform.

56

Registration of the transformer. A transformer is enrolled through the addTransformer
operation of an Instrumentation object. This interface is included in the instrument
package as well. An essential requirement is that the registration occurs before any application
classes are loaded, as the instrumentation is otherwise inconsistent. The library must therefore
obtain an instance of said type during the startup of the program. This demand is satisfied by the
Java agent introduced next.

Java Agent

The Java agent JAR is the heart of the set-up. The whole library is wrapped into an archive
that comprises the instrumentation, the component and the utility classes. Thus, the only other
JAR required in the application’s classpath is Javassist. Java agents are passed to the runtime
environment by announcing the location of their JAR file to the java program through the
command-line parameter -javaagent. Multiple agents can be handed to the JVM by specify-
ing the expression several times, but the description in this section is restricted to one instance.

Java agents and their manifest. An often neglected file of JARs is the manifest. In our case, it
has supplementary meaning because its content defines certain characteristics of the agent. The
feature of interest is a set of static methods called by the JVM at specific points in an execution’s
lifecycle. The implementing type is declared in the manifest.

The Premain-Class property. We now focus our attention on the Premain-Class
property. Its value identifies a Java class included in the agent JAR which provides the following
operation:

public static void premain(String agentArgs, Instrumentation inst);

As the name suggests, premain is invoked prior to the application’s main method. Thus, by
implementing this procedure and setting the corresponding property in the manifest, the agent
gains access to an Instrumentation object before any application classes are loaded by
the classloader. This strategy enables the registration of a ClassFileTransformer in a
way that fulfils the precondition of effective bytecode instrumentation. The same mechanism
was also used by Villazòn et al. [52] for initialising HotWave, an aspect-oriented programming
framework with support for dynamic weaving.

Proxies and Modified Classes

The analysis and instrumentation can have various non-trivial effects on the involved types. In
this respect, the agent has two possibilities to handle a received class.

1. No changes are necessary, because the class neither is active nor uses an active object. As
a consequence, the library does not alter any aspect of the given type.

2. The examination encounters the use of an active object within the bytecode. This knowl-
edge involves the creation of a new proxy class if the referenced type has not been treated

57

yet. Moreover, the analysed class has to be manipulated accordingly, which entails adap-
tations of the concerned constructor calls.

Therefore, the instrumentation phase yields new or modified classes representing the adjusted
application. Certainly, the processed bytecode has to be loaded by the runtime system to have an
impact on the execution. The customised class files can also be written to the disk for repeated
use. However, any code modifications require a retransformation of the entire application.

Class reloading. The agent cannot apply the typical instrumentation pattern because it de-
pends on services offered by Javassist. Usually, transform either returns the manipulated
bytecode or null. The latter value indicates that no adaptation was performed by the method.
The classloader then continues the loading process with the appropriate class definition. On the
other hand, the programmed agent loads the modified and created types directly into the context
classloader. As a result of this measure, they cannot be retransformed. This limitation is induced
by Javassist’s functionality. The problem is solved through the use of a custom classloader which
supports class reloading. However, such an implementation is not part of the library.

5.4 Instrumentation Approach

A remarkable aspect is the pursued instrumentation strategy. This section addresses the chosen
technique and the associated components. An abstract view of the approach is given in Fig-
ure 5.3. The enumeration below explains the process in greater detail. The sequential order is
expanded by a number of branches and conditional jumps.

1. In the course of loading a class, its bytecode is parsed for occurrences of expressions
containing the new operator.

2. If an untreated new expression is found, continue with Step 3. Otherwise, the workflow
is completed in Step 8.

3. The target type of the detected creational statement is searched for the ActiveObject
annotation. If present, Step 4 is performed. Otherwise, the pending class is rescanned in
Step 1.

4. In case the proxy already exists for the annotated type, the discovered expression is ad-
justed in Step 7. Otherwise, the instrumentation is conducted beginning with Step 5.

5. The servant is adapted and loaded.

6. The proxy is generated and loaded.

7. The encountered servant object creation is substituted with a construction of the corre-
sponding proxy. Thereafter, go to Step 1.

8. The scanned class is loaded and the workflow ends for this particular type.

58

1. Scan for new
expressions

2. Expression
found

Start:
Class is being loaded Bytecode

End

[true]

3. Created class
is annotated

[false]

[true]4. Proxy
exists

7. Replace creational
statement with proxy

[false]8. Load class

[false]5. Adapt and load
servant

6. Create and load
proxy

[true]

Figure 5.3: A high-level view of the approach chosen for the instrumentation.

To summarise, the above sequence deals with an active object creation in two manners. If the
related type has not been handled yet, the agent has to instrument the servant and the proxy prior
to the conversion of the creational statement. In the other case, the transformation is limited to
the latter task. This procedure is carried out for all loaded application classes. It is also executed
for a servant of an active type to ensure full class coverage. This task is included in Process 4 in
Figure 5.3.

Proxy generation. As we have seen, the agent generates the proxy classes on demand when-
ever it encounters a creational statement concerning an active type. This approach is crucial
because the chronological order in which the classes are loaded cannot be influenced. In partic-
ular, a first-come, first-served (FCFS) based instrumentation is insufficient because proxies are
created only when the corresponding servant is supplied to transform. Imagine there is a
class which instantiates an active type and transform is called for the former class first. In
the case of FCFS, the agent is unaware of the active type and omits the adaptation of the object
creation. Since the library cannot reload individual classes, the outcome would be unreliable
and error-prone. In conclusion, the instrumentation has to be driven by creational expressions.

The following paragraphs describe the responsibilities and ties of the components that exe-
cute the workflow.

59

ProxyAgent

The entry point of the library is ProxyAgent, a custom ClassFileTransformer im-
plementation. This class is declared as the agent’s Premain-Class and features the static
premain method. ProxyAgent registers a new instance of itself in the demonstrated style:

public class ProxyAgent implements ClassFileTransformer {
{...}
public static void premain(String args, Instrumentation inst) {

ProxyAgent proxyAgent = new ProxyAgent(inst);
inst.addTransformer(proxyAgent);

}
}

By the definition of premain, the new transformer is added before the classloading system has
loaded any application parts. Therefore, ProxyAgent fulfils the requirement of an effective
instrumentation.

Filtration. As a safety precaution, the provided transform method filters the incoming
classes by name. This limitation prevents unexpected exceptions stemming from the analysis
of system classes. A full list of exclusions is given in the JavaDoc of ProxyAgent [2]. For
example, all types residing in the javax package are ruled out from inspection.

Placement in the workflow. The registered transformer starts the instrumentation by retriev-
ing a changeable meta class object of the received bytecode. The obtained reference is then
passed to an ObjectCreationEditor instance for further processing. As soon as the
editor has fulfilled its mission, the agent returns the bytecode of the class object concerned.
ProxyAgent is the depicted workflow’s starting point and initiates the scanning procedure
(cf. Process 1).

ObjectCreationEditor

ObjectCreationEditor examines classes for active object creations and incorporates the
generated proxies by adjusting these statements. For this reason, the component expands Javas-
sist’s ExprEditor. The latter type has built-in functionality for parsing class objects. The
editor’s behaviour is controlled by several predefined methods. They correlate to specific kinds
of expressions encountered during processing and can be overwritten in order to introduce the
desired changes.

Handling of new expressions. ObjectCreationEditor analyses and adapts creational
statements through the edit(NewExpr e) operation. The supplied NewExpr instance grants
access to information about the concerned expression. The edit method acts as follows:

1. The instantiated class is checked for an occurrence of the ActiveObject annotation.
The editor thereby keeps track of all such types and their associated proxies.

60

2. If the construction of an unaltered active class is detected, the responsibility of modifying
the servant and creating the proxy is delegated to ProxyGenerator.

3. Finally, the creation of an active object’s servant is always replaced by a constructor call
of the related proxy.

Placement in the workflow. The outlined sequence is performed for every object creation
present in the given class. When all NewExpr instances have been treated, the editor loads
the finalised class object and returns control to ProxyAgent. With regard to Figure 5.3,
ObjectCreationEditor conducts processes 1, 3 and 6 and orchestrates 4 and 5.

CodeGenerator

CodeGenerator consolidates static utility methods, which generate the code strings ap-
plied during the instrumentation phase. This class does not perform the modifications itself,
but instead provides functionality to other components like ObjectCreationEditor and
ProxyGenerator. They use the services to produce the needed code that is then injected into
a class by calling the appropriate compilation operation of one of Javassist’s meta objects.

Coupling and dependencies. As a consequence of the mentioned relationships, there is a
strong coupling between CodeGenerator and the instrumenting classes. Although this solu-
tion does not seem optimal, the know-how is outsourced to enable a high-level transformation in
the other types with clearly separated competences. At the same time, this procedure eliminates
any far-reaching dependencies among these classes.

Placement in the workflow. This thesis does not cover the different features of this type, but
the JavaDoc [2] sheds light into their usage. Through the produced code, CodeGenerator
pays a significant contribution to the adaptation of the servant (Process 4), the proxy construction
(Process 5) and the generation of the object creation expressions (Process 6).

ProxyGenerator

ProxyGenerator combines the specific transformation capabilities of the library with the
aim of modifying servants and creating new proxy classes. This entity offers a high-level in-
terface to conduct the adjustments and is used primarily by ObjectCreationEditor. Sec-
tion 5.5 illustrates a subset of the implemented manipulations.

Functional principle. The layout of the ProxyGenerator class entails two crucial charac-
teristics. They are outlined below:

• The supplied operations usually generate a code string by calling a static method of
CodeGenerator and incorporate the change using Javassist’s meta classes. The ef-
fect of ProxyGenerator’s operations therefore depends on the output delivered by
CodeGenerator.

61

• The order of operations is a critical factor for the success of the invocations. Since most
of the contained methods alter at least one parameter, calling them with already loaded
classes raises an exception. These sorts of defects cause an inconsistent and unreliable
instrumentation outcome.

Placement in the workflow. The individual realised functions are not subject of this descrip-
tion. However, the JavaDoc [2] specifies them extensively. ProxyGenerator implements
the transformation operations that are used to adjust the servant (Process 4), make the proxy
(Process 5) and replace the creational statements of the active object (Process 6).

5.5 Applied Transformations

This section is devoted to the instrumentation carried out by the agent’s internal components.
We concentrate our analysis on a subset of the performed transformations. The particular ma-
nipulations are visualised using code samples. These segments are simplified and show source
code instead of bytecode. They adapt some parts and names for an easier comprehension. For
example, the proxy name suffix is changed from ___ACTIVE_PROXY___ to Proxy. The
genuine modifications are displayed in CodeGenerator’s JavaDoc [2].

Predefinitions. Javassist offers various meta classes, such as CtClass, CtConstructor
and CtMethod. They feature a straightforward interface for changing different aspects of the
represented subject. Unless noted otherwise, the presented code excerpts comply with the con-
vention listed next:

• clazz is an object of CtClass and refers to the servant for which the proxy is set up.

• proxyClazz is a CtClass instance and indicates the proxy.

• method is an object of CtMethod.

Handling of Final Modifiers

As explained in Section 4.2, a proxy is created by extending the original class and overwriting the
active methods. In Java, applying the final modifier to these elements prevents the envisioned
approach. The bytecode instrumentation has two options to continue in such a situation:

1. The agent ignores the concerned item and does not conduct a manipulation. This option
introduces inconsistencies and causes unexpected behaviour if the developer is unaware of
the modifier’s presence or impact. Displaying a warning alleviates the problem only par-
tially because this kind of message is often overlooked, especially in verbose applications.
Additionally, the instrumentation fails altogether under certain circumstances.

2. The alternative is the removal of the modifier from the corresponding element. This pos-
sibility accomplishes a successful and consistent transformation of the affected classes.

62

@ActiveObject

public final class ActiveCounter {

 {...}

}

@ActiveObject

public class ActiveCounter {

 {...}

}

@ActiveObject

public class ActiveCounter {

 {...}

}

public class ActiveCounterProxy

 extends ActiveCounter {

 private static Map handles;

 private static Logger logger;

 private Scheduler scheduler;

 {...}

}

~

+

Figure 5.4: A number of code transformations necessary for the creation of the proxy class.

Furthermore, the effects of the modifier are retained at compile-time. However, this adap-
tation still has negative consequences for certain types of programs. As an example, a
running application can check the modifier’s existence by means of reflection. This exam-
ination yields a false result because final was cleared at load-time. The deletion also
allows third-parties to extend the adjusted classes during runtime.

For practical reasons, the second variant has been chosen for the library. The transformation’s
consistency and success are considered more important than the correctness of corner cases.
Moreover, a warning message is written to the console whenever a modifier is cleared. This text
refers to the affected class or method.

Realisation. The upper part of Figure 5.4 shows ActiveCounter before and after the mod-
ification. Remember that this action is carried out while loading the class, so the restrictions
of final are still imposed during compilation. For the purpose of undertaking this change,
CtClass and CtMethod offer the operations getModifiers and setModifiers. The
former method retrieves the modifiers, whereas the latter one sets them in the desired way. The
code sample given below removes the final modifier from clazz:

int modifiers = clazz.getModifiers();
if(Modifier.isFinal(modifiers)) {

if(clazz.isFrozen()) {
throw new IllegalArgumentException(...);

}

Modifier.clear(modifiers, Modifier.FINAL);
clazz.setModifiers(modifiers);

}

1. Since getModifiers() returns the modifiers encoded in an integer, a static operation
of the Modifier class named isFinal is used to verify the existence of final.

2. clear erases a modifier from the passed integer. The affected bit is specified by the
second parameter. In this case, final is removed from the signature of clazz.

63

3. The resulting value is then handed to setModifiers(int mod) in order to define
the new modifiers of the class.

Frozen classes. Classes already loaded by the classloading system require special care. This
state is indicated by the result of isFrozen(). Although a CtClass can be unfrozen, the
adoption of any modifications requires class reloading. As previously mentioned, the agent
does not implement this mechanism. Subsequent alterations are therefore not possible and an
exception is thrown when a frozen class is encountered by the code.

Set-up of the Proxy Type

As we have already seen, the transparent introduction of a proxy requires the dynamic creation
of a class. The new type extends the servant and holds the essential member variables needed
by the proxy methods. The lower right-hand side of Figure 5.4 outlines ActiveCounter’s
proxy class. The generation of the associated base type is easily accomplished by the following
segment using Javassist:

CtClass proxyClazz = pool.makeClass(clazz.getName()
+ ComponentName.PROXY_CLASS_SUFFIX);

proxyClazz.setSuperclass(clazz);

In this context, pool refers to a ClassPool instance, which can be obtained by calling the
static function ClassPool.getDefault(). The semantics of the listed code are sum-
marised below:

• The first statement creates an empty class labelled with the delivered string. The proxy’s
name is composed of the original class’s name and a suffix stored inside a constant of the
ComponentName type.

• The new proxyClazz is located in the same package as clazz because getName()
retrieves the fully qualified name in dot notation.

• As an example, Integer.class.getName() returns java.lang.Integer in-
side a string. The function integerClazz.getName() also evaluates to this value if
integerClazz is the CtClass correlating to Integer.class.

• The second command sets the original class as the super class of proxy, so that we have
created the needed type.

The proxy class is not loaded automatically by the classloader upon executing makeClass. In-
stead, this happens when one of the toClass methods is called on the new CtClass instance.
This is the final action in the generation of the proxy because each class can only be loaded once
and we do not implement a reloadable classloader.

64

Incorporation of fields. In the next step, the member variables are inserted. Each of them is
added by the extract presented below.

CtField field = CtField.make(CodeGenerator
.generateField(fieldType, name, modifier), proxyClazz);

proxyClazz.addField(field);

These instructions add a new field to the proxy class. While the functionality of addField is
straightforward, the usage of CtField.make(String src, CtClass declaring) is
more complex. The second argument states the class enclosing the field. The src parameter
expects a variable declaration or definition encoded in a source code text. For instance, the
proxy’s scheduler field is created by invoking:

CtField.make("private at.ajo.scheduler.Scheduler scheduler;",
proxyClazz);

To this end, the generateField function produces the appropriate declaration string. For
detailed information, see the related JavaDoc [2]. In short, the parameters of generateField
have the following meaning:

1. clazz specifies the field’s type.

2. name contains the variable’s name.

3. modifier defines the access modifiers.

In this manner, the proxy receives three fields:

• A scheduler for processing execution requests.

• A class-wide logger to document important events.

• A static collection of method references to the servant’s operations.

The last of these class variables is optional. It caches the active method handles in order to
improve performance. After the new type is created and equipped with the necessary member
variables, the first step of the proxy’s generation is completed. The instrumentation proceeds by
expanding the class with the essential constructors and proxy methods.

Addition of Constructors to Proxy

In the next phase, the new proxy class is complemented with an adequate set of constructors.
As mentioned previously, the instrumentation is driven by creational statements. In particular,
the agent has to transparently adapt every encountered allocation of an active object. The re-
placement expression must construct the underlying servant instance in the originally intended
manner. To simplify this procedure, the proxy class has to define every non-private con-
structor offered by the servant. The related members must exhibit the exact same parameters
and access modifier. Figure 5.5 illustrates this circumstance by means of ActiveCounter.
Because the servant has two public constructors, its proxy receives matching ones on the right
side.

65

@ActiveObject

public class ActiveCounter {

 private int counter;

 public ActiveCounter() {

 counter=0;

 }

 public ActiveCounter(int i) {

 counter=i;

 }

 {...}

}

public class ActiveCounterProxy ... {

 {...}

 public ActiveCounterProxy() {

 super();

 scheduler = new SimpleScheduler(

 new FifoActivationQueue());

 }

 public ActiveCounterProxy(int i) {

 super(i);

 scheduler = new SimpleScheduler(

 new FifoActivationQueue());

 }

 {...}

}

+

Figure 5.5: Generation of constructors for the proxy of ActiveCounter.

Constructors’ structure. The body of each introduced constructor has the same basic struc-
ture, as shown by the sample code on the right-hand side of Figure 5.5. The implementation
needs to complete two general tasks:

1. First super is invoked with the passed parameters. This command corresponds to the
appropriate servant constructor.

2. Then the internal components of the proxy instance are initialised. In this case, they
comprise merely a scheduler object.

Limitations. Java imposes the requirement that a super call must be the first instruction
inside a constructor’s body (cf. Section 8.8.7 of [19]). Therefore, the active object cannot process
any method requests before the proxy’s constructor has been completed. Since they need to be
enqueued into the scheduler instance, the proxy methods would access an uninitialised field.
This action raises a NullPointerException. Thus, the servant’s constructors must not
perform an operation which triggers one of the object’s active methods.

Handling of private constructors. The servant’s private constructors are a difficult
matter. They typically occur in the context of creational patterns. Since these kind of mem-
bers can be called only within the declaring class, the substituting subclass needs to provide
corresponding constructors which are also accessible in the supertype (cf. public or default
level). Otherwise, the occurrences in the servant cannot be replaced. However, these elements
are not covered by the instrumentation. The reasoning of this decision is given in the subsection
dealing with the modification of creational statements.

Class initialisation. The static initialiser block is another part of the proxy responsible for
setting up the active object. During the class loading process, this element is executed in order
to prepare the proxy for operation. The contained code conducts the initialisation of the class’s
static fields. The different tasks are noted below:

66

@ActiveMethod

public Integer increment(int i) { ... }

public Integer increment(int i) {

 {...}

 Promise<Integer> response = incrementProxyMethod(i);

 response.await();

 if(response.hasFailed()) {

 {...} //throw exception

 }

 else {

 return (Integer)response.get();

 }

}

public Promise<Integer> incrementProxyMethod(int i) {

 Object[] args = new Object[]{this, i};

 MethodRequest req = new MethodRequest(

 handles.get(increment(int.class)), args);

 scheduler.insertRequest(req);

 return req.getPromise();

}

In Proxy+

Figure 5.6: Generation of a proxy method from an annotated servant method.

• The aforementioned Logger instance is created.

• The block looks up the MethodHandle instances of the servant’s annotated operations.

• The discovered handles are stored in an easily accessible Map instance.

The proxy methods require these handles to create new method requests. This use is demon-
strated by incrementProxyMethod in Figure 5.6.

Effects. Once all non-private constructors have been integrated, every external constructor call
of the servant can be easily replaced with its proper counterpart of the proxy. In this context,
external refers to object creations not contained within the code of the servant class definition.
In the next phase, the proxy type is augmented by the necessary active method redefinitions.

Addition of Methods to the Proxy

The primary goal of the active object pattern is to separate the method invocation from the asso-
ciated execution. As yet, the proxy still delegates calls to the servant’s operations due to inher-
itance. This practice clearly violates the desired behaviour since the original method definition
is directly accessible. Thus, the proxy needs to incorporate a suitable technique by overwriting
the active methods.

67

Types of proxy methods. To achieve the necessary decoupling, the proposed implementation
adds two methods to the proxy for each supported active method. They have the following
characteristics:

1. The first method is newly introduced and represents the actual decoupling instrument.
This procedure creates a method request, inserts the new instance into the scheduler’s
activation queue and returns the promise correlating to the result. This method therefore
closely resembles the proxy operation of the conventional pattern because both procedures
yield a placeholder object.

2. The second method overwrites the servant’s operation in order to prevent direct access
to the original definition. For this purpose, the functionality of the above procedure is
utilised to detach the invocation. If the method is called synchronously by default (cf.
Synchronicity.SynchronousCall), it awaits the outcome of the retrieved prom-
ise and evaluates the result.

Although the former method is declared as public, it cannot be called statically because it is
not featured in the servant. Hence, asynchronous active invocations of blocking operations are
possible only through library functions.

Realisation. The structure of these elements is briefly explained using Figure 5.6. The listed
code illustrates their manifestations in the proxy of ActiveCounter. At first, we observe the
previously undefined incrementProxyMethod:

1. The active object and the delivered arguments are repackaged into an array.

2. The corresponding servant method handle is retrieved from the static handles map.

3. A MethodRequest object is created using the allocated array and the obtained handle.

4. The new request is transferred to the scheduler, and the promise is returned by invoking
getPromise().

The details of increment’s redefinition are summarised next:

1. The incrementProxy operation is used to enqueue a new method request.

2. The promise returned in the preceding step is assigned to a variable.

3. increment awaits the completion of the execution because the instrumented method
processes a value.

4. If the execution fails, increment propagates the occurred exception to the caller.

5. Finally, the result is unwrapped and returned to the client.

68

ActiveCounter counter;

counter = new ActiveCounter(3);

ActiveCounter counter;

counter = new ActiveCounterProxy(3);
~

Figure 5.7: Substitution of a constructor invocation to incorporate the proxy class.

Justification for the divided mechanisms. As previously mentioned, the return type of an
overwritten servant method cannot be modified in the desired manner because this change vio-
lates the substitution principle. Thus, the separation into two methods is required to be able to
retrieve the promise directly through library calls. Hence, in order to achieve the desired effect,
the proxy has to implement both kinds of operations for each active method.

Modification of Creational Statements

The previously shown bytecode transformations concentrate on the construction of the active
object’s internal components. Another crucial instrumentation aspect is the incorporation of the
active objects into the remaining application. Therefore, proxy objects have to be used instead
of servant instances.

Incorporation of proxy objects. The problem is resolved at the object creation level. As ex-
plained previously, the proxy provides a suitable implementation of every non-private construc-
tor featured by the servant. Recall that both constructors accept identical parameters. This trait
eases the given task significantly. Thus, every servant constructor call can simply be exchanged
with an invocation of the proxy’s counterpart. The replacement of an ActiveCounter cre-
ation is demonstrated in Figure 5.7.

Handling of creational patterns. The library cannot apply this transformation to servant con-
structor calls contained within the servant of the same active object. The reason is that the
addition of the proxy introduces a circular dependency. The solution of this problem implies
the use of a reloadable classloader. In particular, creational patterns like singletons and factory
methods are not possible with the current state of the implementation. Hence, the servant’s
private constructors are not considered by the transformation, since the related invocations
cannot be substituted. Aside from these restrictions, the library replaces all static constructor
calls in the underlying program.

Dynamic object generation. Reflective object creation poses a particular challenge because
the referenced constructor can typically not be decided through static analysis. Furthermore,
Javassist does not provide a mechanism for detecting such commands. This deficit is under-
standable because dynamic constructions are performed by calling specific methods of meta
objects. For example, the Constructor class located in the JDK’s reflection package
features the newInstance method. Hence, these forms of statements cannot be adapted di-
rectly since the represented constructor can change depending on the program state. In order to
handle them, the agent has to parse every block for calls to known creation methods. The en-
countered invocations have to be replaced by a custom processing method that checks the target

69

constructor’s class during runtime and creates an instance of the proper type. In case an active
object instantiation is recognised, the method chooses the constructors of the proxy over the
ones of the servant. This practice does not only complicate the realisation, but also slows down
application start-up and degrades execution performance. For these reasons, the agent ignores
reflective object creations altogether.

70

CHAPTER 6
Evaluation Environment

This chapter lays the foundation for the evaluation illustrated in Chapter 7. To that end, a multi-
threaded application is implemented by means of conventional Java concurrency and through
the use of the library proposed in Chapter 5. First of all, the main scenario is briefly introduced
in Section 6.1. Section 6.2 treats the comparison criteria applied to the individual realisations.
All dimensions include a detailed explanation as well as reasoning of their importance. The
principles of the analysed implementations are explained in Section 6.3. This segment also
covers the chosen parameter settings.

6.1 Concurrent Scenario

The benchmark used as the basis of the evaluation in Chapter 7 is an advanced producer-
consumer problem. Figure 6.1 depicts the participating entities and their relationships. The
class diagram includes various versions of the same method separated by two vertical bars, for
example the order procedure of Supplier. The concerned operations represent alternatives.
This unusual detail indicates that a realisation must cover exactly one of the methods in question
but not both.

Components

The following list gives an overview of the important components. They are presented more
thoroughly in Appendix A.

• Item and Part objects are the key elements of the system, and they are passed between
the interacting components. The scenario supports different item types (cf. ItemType),
all of which have a distinct composition of the existing part types (cf. PartType).

• The Shop class markets items to customers. Therefore, it features a function for querying
the offered types. Items cannot only be sold but also refunded. Shops request new items
from warehouses.

71

Customer

ShopRegistry

+ register(Shop shop): void
+ unregister(Shop shop): void
+ lookup(): Shop[]

Shop

- stockpile: Stockpile<Item>
+ getItemTypes(): ItemType[]
+ refund(Item item): void
+ sell(ItemType type): Item

(1,1)

(0,*)

queries

(0,*)

(1,*)

visits

Warehouse

- stockpile: Stockpile<Item>
+ order(ItemOrder order,

 ItemDelivery callback): void ||
 order(ItemOrder order): Promise<Item[]>
+ store(Item item): void

(0,*)

(1,*)

orders

Supplier

- stockpile: Stockpile<Part>
+ getPartType(): PartType
+ order(int amount,

 PartDelivery callback): void ||
 order(int amount): Part[]

Factory

- stockpile: Stockpile<Part>
+ getItemTypes(): ItemType[]
+ order(ItemOrder order,

 ItemDelivery callback): void ||
 order(ItemOrder order): Promise<Item[]>

(0,*)

(1,*)

orders

(1,*)

(0,*)

delivers

(1,1) (0,*)
stores

 (1,*)

(0,*)

delivers

(0,*) (1,*)
orders

 (1,*) (0,*)
delivers

Figure 6.1: The class diagram of the shop example.

• Instances of ShopRegistry serve as rendezvous points. They provide registration and
deregistration operations for shops and enable the discovery of active vendors.

• A Customer thread finds shops by accessing a registry and selects one of them to buy
an item. The latter is refunded to the original seller if certain conditions are met.

• A Supplier instance creates exactly one particular kind of part. This class exhibits
methods for querying the generated PartType and requesting a given amount of articles.

• A Factory object combines parts to items. It provides functions for inquiring the pro-
ducible types and ordering items. To obtain the required parts for manufacturing, a factory
directly communicates with suppliers.

72

• A Warehouse buffers all kinds of items. Retailers can acquire these articles and return
individual ones. This component replenishes its reserves through the existing factories.

Finite storage capacity. A crucial characteristic is that the resources of shops, warehouses,
factories and suppliers are limited. Hence, in order to refill their inventory, they need to interact
with other entities. In this respect, the Stockpile object is a critical element of the afore-
mentioned classes. It has two thresholds. The upper value defines the maximum amount the
stockpile can accommodate of each type. On the other hand, the lower value specifies when new
goods have to be fetched. More precisely, all administered types are reordered once one of them
falls below this limit.

Execution Parameters

The outlined system can be customised through a variety of settings. The most interesting ad-
justments are summarised below:

• The available kinds of parts (cf. PartType)

• The offered sorts of items (cf. ItemType) and their part compositions

• The production time of a single item or part

• The number of suppliers, factories, warehouses, shops and registries

• The dynamics of the components. For instance, they can come and go over time.

• The stockpiles’ upper and lower limits

• The customers’ refund rate regarding the purchased items

6.2 Evaluation Criteria

This section gives an overview of the employed evaluation criteria. They are solely used to
assess the applications but not the library classes. These metrics include general ones which
may be applied to a wide range of software solutions, as well as others specific to the scenario
presented in Section 6.1. In this regard, rating a given value is usually a difficult matter. This
task is eased by comparing multiple approaches. The next subsections explain the idea behind
the individual criteria and the reasons for their inclusion in the analysis.

Lines of Code

The lines of code (LOC) states the number of program lines a realisation utilises. The result
suggests the effort of implementing the approaches. Each line is counted once, even if it consists
of multiple instructions.

73

Source lines of code. The LOC metric comes in several variants. In this thesis, we only
consider lines containing program statements. Comments and blank lines are excluded from the
measurement. This restriction is often labelled source lines of code (SLOC). If not mentioned
explicitly, LOC means SLOC in the rest of this thesis.

Forms. The default metric covers the entire application or complete classes. However, the
different implementations of the scenario have a common code base to ensure a fair assessment.
Since the generated value is influenced greatly be these shared resources, its expressiveness is
limited. The evaluation therefore incorporates supplementary, extended criteria. They target
the synchronisation code because this area shows the highest number of differences. The next
chapter explains the applied specialisations in detail.

Bytecode Size

The bytecode size determines the amount of disk space the compiled class files occupy. The
metric can cover an arbitrary quantity of types. Modern systems usually possess large amounts
of hard drive space. Nevertheless, this characteristic has more impact than the pure storage
requirements and is therefore considered in this thesis.

Forms. Similar to the LOC, the measurement of an implementation’s base size provides only
part of the big picture. For this reason, additional key figures are computed. They address the
classes synchronising the core components. Another interesting aspect is the instrumented byte-
code. It illustrates the extent of the automatically added boilerplate code in relation to the actual
implementation. This information, together with the determined LOC figures, suggests the de-
velopment effort saved by the deployment of the library. The concrete metrics are described in
Chapter 6.

Code Characteristics

This category compares the implementations’ source code. Hence, it does not calculate a value
but instead discusses development aspects. The main focus is on the interactions between the dif-
ferent entities. The classes containing the fundamental functionality are not considered because
they are shared among all programs. The analysis also addresses the structure and synchroni-
sation of the components. The demonstrated code is examined in terms of its complexity and
potential faults. The identified characteristics are used for comparing the different approaches
and to derive more general arguments about the necessary programming effort.

Customer Timing

This metric registers the time span a particular application needs to serve a predetermined num-
ber of customers. The corresponding threads are started in succession, separated only by a fixed
delay. The measuring entity awaits the completion of all initiated clients before stopping the
timer. As a consequence, the result indicates the manner in which the realisation handles a burst
of requests. Lower values imply better performance.

74

Adaptations. The behaviour of the execution can be altered by adapting the delay between
starting threads. A wait time of zero achieves simultaneous processing of clients. Moreover,
the total number of customers is modifiable. The produced outcome can be used as the basis of
additional figures, such as the average completion time or the count of items sold per minute.

Customer Throughput

The throughput criterion evaluates the number of customers the application can successfully
process in a predetermined period. For this purpose, a constant pool of concurrently querying
threads is allocated. A new client is activated whenever a running one terminates within the
defined time window. Hence, the metric states the implementation’s capability of dealing with
a given number of consumers. A higher value indicates better performance for the selected
parameters.

Adaptations. This criterion covers multiple situations by changing the number of simultane-
ous threads. Additionally, expanding the prescribed time frame increases the calculated metric’s
meaningfulness. As with previous criteria, further metrics can be computed from the produced
value to gain a deeper understanding of the implementation’s efficiency and scalability.

Component Response Time

The response time reveals the speed at which an entity is able to answer incoming requests. The
recorded data helps identify bottlenecks and compare the quality of the different realisations.
Lower values represent a better score here.

Adaptations. The expressiveness of a total sum is inadequate because the number of calls
typically fluctuates. The result is therefore specified on a per method invocation basis. This
metric is calculated by dividing the added response times of all requests by the number of calls.
Consequently, a low value implies that a single invocation usually returns after a short duration.
A component’s result can thereby be determined per instance or class.

Memory Consumption

An important performance aspect is the amount of space an application consumes at runtime.
High memory requirements do not only impair efficiency but can also prevent normal termina-
tion of the execution. Thus, an implementation with reduced needs has an advantage.

Measuring method. In the case of Java, the JVM allocates a certain amount of main memory,
which is virtualised and managed (cf. garbage collection) on behalf of the processed application.
For this reason, the internally used memory cannot be inferred directly from the information
provided by the operating system. To remedy this shortcoming, the JDK offers utility classes for
the purpose of determining the real demand. They enable access to the latest statistics regarding
memory consumption, such as the current free space in the JVM.

75

Aggregation. A sole metering point does not provide many details about long-term needs. The
data must therefore to be collected throughout the program run to compute adequate aggregate
values. Among the interesting metrics are the mean real-space consumption and the maximum
memory usage. This practice accomplishes an accurate measure and enables a meaningful as-
sessment of the realisation’s behaviour. The gained information is consolidated and visualised
to extract additional attributes.

6.3 Principles of the Implementations

To obtain a consistent and comparable result, all approaches are tested under the same condi-
tions. Section 6.1 described a set of parameters to control the execution of the metered applica-
tion. The selected settings should support the deduction of suitable performance characteristics.
In this sense, complex and opaque decisions must be avoided because they are shared between all
implementations and distort the end result. An example of these undesired influences is a load-
balancing algorithm for order placement. The terms chosen for the evaluation are summarised
below. They are divided into configurations of articles, components and execution parameters.

Articles.

• Ten types of parts

• Three kinds of items

• Five part types are required by all forms of items.

• Each of the remaining part types is needed by one item type exclusively.

• The production time of one Item or Part object is zero.

Components.

• In total, the system has ten suppliers, exactly one for every PartType.

• One factory assembles products regarding all ItemType values.

• A sole warehouse functions as the central buffer.

• A single shop serves the incoming Customer threads.

• One unique shop registry connects customers to the shop.

• During the execution, all previously mentioned components stay active. In particular,
there is no coming and going of any entity.

• Each stockpile has a maximum capacity of ten and a minimum limit of three (cf. per type).

• Items are never returned by customers (cf. refund).

76

Program runs.

• Timing measurements are performed with 10,000 customers. The average of five execu-
tions is calculated and used as the basis of discussion.

• The throughput of the programs is metered with 1,000 simultaneous customers, with each
run taking one minute. The mean of five runs is condensed.

We now focus our attention on high-level implementation aspects. Initially, the different
manners of realising a single component are addressed. Thereafter, the concrete applications are
explained in greater detail.

Component Variants

This subsection outlines various ways of implementing the components. The following para-
graphs present three approaches:

1. Conventional threads and explicit callbacks

2. Active objects and explicit callbacks

3. Active objects and implicit callbacks

Distinction. A key differentiator is the ordering and delivery procedure. Classes of options 1
and 2 are exchangeable due to their identical interaction pattern. In contrast, Option 3 is not di-
rectly compatible with the other two mechanisms. Hence, collaboration among the mismatching
styles requires special treatment. This feature is not considered here.

Conventional Approach with Explicit Callbacks

The standard strategy is built on components with hand-crafted synchronisation and explicit
callback operations. This variant serves as the baseline for comparison. Figure 6.2 depicts the
situation by showing the interactions between a shop and a warehouse.

Realisation. The component class extends Runnable. As a result, each instance has its own
thread for placing orders. The structure of this process is noted below:

1. A client invokes a method that accesses the entity’s inventory.

2. Before the operation returns, it checks whether any product types are required. If so, it
awakes the instance’s thread.

3. The thread determines the missing quantities and issues an order with one or more ven-
dors.

4. The distributor invokes the callback function of the recipient once the whole delivery is
created. This operation inserts the supplied articles into the stock.

77

Customer

Shop

1. Buy Item

Thread

sell(ItemType type)

2. Activate
[If Items are required]

Warehousedeliver(Item[] items) 4. Deliver Items

3. Order Items

Figure 6.2: Outline of a conventional implementation of the Shop class.

Customer

Shop

sell(ItemType type)

Warehousedeliver(Item[] items) 3. Deliver Items

2. Order Items
[If Items are required]1. Buy Item

Figure 6.3: The active Shop class based on explicit callbacks.

Instead of using active objects, the critical sections are directly synchronised through built-in
concurrency constructs (cf. the synchronized keyword). This manual coordination is neces-
sary because the operations and the triggered thread try to access the inventory simultaneously.
In Figure 6.2, Transition 2 of the deliver method has been omitted for clarity.

Active Object Approach with Explicit Callbacks

The next approach uses features offered by the library. The components are implemented as
active objects and all critical sections are enclosed by active methods. The explicit callback
interaction remains the same. Figure 6.3 illustrates the collaboration by the example of shop.

Realisation. In this context, both sell and deliver are active methods. The steps of the
procedure are:

1. An operation using the private stockpile is executed. (cf. sell)

78

Customer

Shop

sell(ItemType type) Warehouse

deliver(Item[] items)

6. Set Result

2. Order Items
[If Items are required]

1. Buy Item

Promise:p

Callback:c

8. Invoke

5. Return 3. Return Promise p

4. Install Callback c

7. Invoke Callback c

Figure 6.4: The active Shop class based on promises.

2. Before the method terminates, it examines the supply and places an order with the sellers
if necessary. The latter task is performed asynchronously.

3. As soon as the demanded products are collected, the distributor calls the active object’s
deliver operation asynchronously.

Since only one active method runs at any given time, no synchronisation primitives are needed
and the internal inventory can be accessed freely. In this constellation, the asynchronous call
structure is vital because it prevents the occurrence of deadlocks. Again, Figure 6.3 does not
cover Action 2 of the deliver method to streamline the presented diagram.

Active Object Approach with Promise and Implicit Callbacks

The last variation mentioned here is also constructed from active objects. However, it relies on
promises and callback assignments instead of the explicit pattern used previously. Figure 6.4
depicts the corresponding Shop type.

Realisation. The individual phases of the approach are listed below:

1. The process starts with the invocation of a method that utilises the product storage.

2. Before the operation ends, it places an order if the amount of any article type has fallen
below the lower threshold.

3. Next, the promise associated with the request is retrieved.

4. The method proceeds by installing a callback for handling the expected delivery.

5. The operation terminates and returns control to the client.

6. Once the shipment is arranged, the vendor sets the result of the corresponding promise.

79

7. The callback assigned in Step 4 is automatically invoked upon completion of the promise.

8. Finally, the callback inserts the provided items into the inventory.

The above procedure is only possible if the distributor’s order method returns a promise or an
actual array reference.

Data hiding. In contrast to the previous approaches, the receiving method does not have to be
publicly accessible. Therefore, it cannot erroneously be directly invoked by other classes.

Applications

Several implementations were created from the above patterns in order to deduce statements
of the characteristics entailed by the library’s functionality. The variants differ in the way
the Shop, ShopRegistry, Warehouse, Factory and Supplier components are im-
plemented. The layout of the derived four applications is described next:

1. The conventional program applies the traditional technique with explicit callbacks to all
components. This version serves primarily as the reference for the other realisations.

2. The first application of active objects is based entirely on explicit interactions. It is mainly
used to assess the ease of use and overhead of the basic library services.

3. The second active object application handles results through promises. It demonstrates
the development of implicit callbacks and highlights the performance of their processing.

4. The last active object program pursues a hybrid strategy by using implicit callbacks only
for the Supplier component. The remaining entities expect to deliver the goods via a
callback object.

Reasons for the hybrid form. The hybrid approach strikes a balance between the two pre-
sented methodologies and is intended to show the negative effects of the implicit style. The
latter changes the programming of the concerned types, especially if they cannot respond to an
order immediately. In such a case, their methods have to return a promise because the actual re-
sult is not ready in due time. This behaviour needs additional management in the corresponding
classes. Furthermore, the use of these kinds of operations affects the performance because they
require extended treatment by the library.

Although possible, the cooperation of conventional and active object-based components is
not considered by an application. The next chapter presents the outcome of the evaluation.

80

CHAPTER 7
Evaluation Results and Comparison

This chapter assesses the characteristics of the implementation outlined in Chapter 5 using the
applications and criteria explained in Chapter 6. Although the result of each mentioned category
is discussed in an individual section, the descriptions aim to establish connections between the
diverse measurements. Additionally, the outcomes are justified where possible. Finally, the
findings and implications are summarised in Section 7.8.

7.1 Code Characteristics

This part examines the code from the developer’s view point. The next paragraphs present and
compare remarkable properties of all applications. The analysis focuses on the core components
and their interactions since the primary differences of the programs lie in these aspects.

Adjustments. The illustrated samples are adapted to obtain a clearer picture of the empha-
sised details. Therefore, dispensable segments are removed by consolidating and reducing the
underlying classes. These simplifications are necessary since the majority of the functionality is
shared among the approaches to avoid repetition and guarantee a fair evaluation.

Structure of Components

The most basic distinction between the concepts is the component layout. It comprises the class
declaration, method signatures and the used annotations. These features are now explored in
depth together with other fundamental properties.

Active Objects

First we take a look at the proposed concurrency scheme. The following excerpt gives an
overview of ActiveShop, the implementation of Shop based on explicit callbacks. The expla-

81

nation does also apply to the other active object realisations. They are not mentioned separately
since they have an almost identical structure.

@ActiveObject
public class ActiveShop implements ItemDelivery, ... {

{...}

public ItemType[] getItemTypes() { ... }

@ActiveMethod
public Item sell(ItemType type) throws ... { ... }

@ActiveMethod(Synchronicity.Message)
public void deliver(Item[] items) { ... }

}

Class definition. Other than being marked with ActiveObject, the type does not have to
meet any demands.

Reliability. Each method has to be self-contained because the communication is mostly un-
predictable. In particular, all interactions must be possible in any situation without causing an
unexpected or erroneous successor state.

Method settings. Every operation is either active (cf. ActiveMethod) or passive. As previ-
ously mentioned, the latter form does not feature any annotation and allows multiple calls to run
concurrently, not just among themselves but also alongside a single active invocation. Hence,
this variant must be employed cautiously. Another essential choice is the default call mode of
active methods (cf. Synchronicity).

Consequences. The above aspects require careful consideration during the design. If a class or
any of its operations is marked incorrectly, the fault can lead to unexpected behaviour. Moreover,
the configuration needs to be examined whenever a component is modified. On the positive side,
the central decisions are visible by looking at the fundamental class structure.

Conventional

In contrast, observe the architecture of StandardShop, the Shop realisation of the traditional
approach:

public class StandardShop implements Runnable, ItemDelivery, ... {
{...}
public ItemType[] getItemTypes() { ... }
public Item sell(ItemType type) throws ... { ... }
public void deliver(Item[] items) { ... }
public void run() { ... }

}

82

Class definition. The ordinary alternative does not exhibit any annotations by default. Instead,
the class implements Runnable because the instances use a thread for ordering items. This
behaviour could be extracted into an inner class or a FutureTask but was kept in this fashion
to highlight the point.

Methods. The individual methods do not necessarily have to be categorised in the design pro-
cess. However, if the original concept proves to be unfeasible, the core structure needs to be
adapted during the development. Furthermore, the impact of the chosen solution is not appar-
ent from the basic class layout. In this case, the code and documentation have to be studied
thoroughly.

Synchronisation of Critical Sections

A crucial facet of parallel programming are critical sections and their protection. These charac-
teristics are now considered in the context of the different methodologies.

Conventional

The traditional approach is synchronised explicitly, and an entity can only function properly
if all critical sections are enclosed by appropriate concurrency constructs. As a consequence,
insufficient coverage can cause a variety of flaws. Some of them are visualised by means of
StandardShop’s refund operation.

public void refund(Item item) {
synchronized(this.stockpile) {

if(!stockpile.containsType(item.getItemType()) ||
stockpile.isFull(item.getItemType())) {

this.centralWarehouse.store(item);
}
else {

this.stockpile.add(item.getItemType(), item);
}

}
}

Defects. In the above excerpt, the held stockpile is guarded by a synchronized block.
This endeavour is effective when all statements using the instance are controlled in the same
way. However, if one of them is secured incorrectly, race conditions can occur. The list below
mentions three problematic situations:

• Unrestricted usage. Shortly after isFull returned false, an unmonitored segment fills
up the supply of the corresponding ItemType entirely. Subsequently, add has to discard
the item. In stricter use cases, this call raises a runtime exception not caught by refund.

• Varying monitors. One part of the code accessing the stockpile is wrongly monitored by
a different object. Hence, the efforts are rendered completely ineffective, and they give

83

a false sense of security. This kind of oversight has similar effects as explained in the
previous paragraph.

• Monitor replacement. If the stockpile reference is exchanged during execution, any
simultaneously running refund call is endangered. Due to the assignment, the old value
still controls the synchronized statement, whereas the new one is used inside the
block.

The classical technique is considered error-prone for the above reasons. Although a type can
implement only fully synchronized methods to reduce the attack surface, this strategy is not
safe from mistakes regarding state sharing (cf. aliasing).

Active Objects

Consider the code of ActiveShop’s refund operation given below:

@ActiveMethod(Synchronicity.Message)
public void refund(Item item) {

if(!stockpile.containsType(item.getItemType())
|| stockpile.isFull(item.getItemType())) {

this.centralWarehouse.store(item);
}
else {

this.stockpile.add(item.getItemType(), item);
}

}

As illustrated by the example, critical sections do not need special treatment, because only one
active method is running at a time. Thus, the development phase concentrates on the trans-
lation of the design instead of the correct coordination. The programmer still must ensure a
single resource is not used by multiple objects. Nevertheless, this simplification is a significant
improvement over the traditional approach.

Defects. In contrast to the aforementioned bugs, problems regarding the suggested concept
originate from more fundamental sources and are therefore simpler to identify.

• Race conditions correlate to a missing annotation in the class definition or are caused by
unwanted state sharing (cf. a function returning an internal reference).

• Deadlocks occur when several active objects synchronously call methods of each other in
a circular pattern.

Typical for active object communication are deadlocks that happen deterministically. They
can be traced by observing the interactions between the involved components (cf. the chosen
Synchronicity settings). In the conventional methodology, this problem is caused by re-
source conflicts triggered by specific events. The latter may not be reproducible in a reliable
way without modifying the code. In this case, the debugging task is aggravated by the necessary
changes. As a result, active objects have an important advantage over traditional realisations
with respect to the development and error detection.

84

The Process of Ordering Articles

A major distinction between the implementations is the manner in which orders are placed. The
ordinary approach uses a separate thread for this purpose, whereas the active object variants rely
on asynchronous invocations. Although this call mode is also possible by using FutureTask,
this practice requires additional effort to program the thread conducting the operation.

Conventional

The source code stated hereafter outlines the situation of the StandardShop class. The struc-
ture of the other components is similar.

public class StandardShop implements Runnable, ... {
{...}
public Item sell(ItemType type) throws ... {

Item item = this.retrieveItem(type);
boolean hasNeededTypes = false;
synchronized(this.stockpile) {

hasNeededTypes = this.stockpile.hasNeededTypes();
}
if(hasNeededTypes) {

synchronized(this) {
this.notify();

}
}
{...}
return item;

}
public void run() {

while(this.run) {
ItemOrder order = null;
synchronized(this.stockpile) {

if(this.stockpile.hasNeededTypes()) {
order = this.createOrder();

}
}
if(order != null) {

this.placeOrder(order);
} else {

try {
synchronized(this)

this.wait();
}

} catch (InterruptedException e) { }
}

}
}

This excerpt is fairly extensive, so we focus on its meaning before discussing the involved issues.

85

Sales. StandardShop’s sell method handles a single purchase by carrying out the fol-
lowing actions:

1. An attempt is made to acquire the desired item type (cf. retrieveItem).

2. hasNeededTypes is called to test if any ItemType has fallen below the stockpile’s
lower limit.

3. If the previous step yields true, the internal thread is notified.

4. Finally, either the item or, if no instance could be obtained, null is returned.

The task of requesting the products is outsourced, so sell can complete as fast as possible. This
alternative supports a low response time since the termination occurs earlier and is not delayed
until the order is processed by the warehouse.

Thread. As a consequence of the above sequence, the thread is awakened when articles are
required. The corresponding run procedure performs the noted instructions as a reaction to this
demand.

1. The stockpile is checked again by invoking hasNeededTypes.

2. If the preceding query returns true, createOrder is used to generate an item order
(cf. ItemOrder). Otherwise, the thread goes to sleep and waits for the next notification.

3. The request is transferred to the warehouse through the placeOrder operation.

4. Once the invocation terminates, continue with Step 1.

The synchronized statement should not include the placeOrder call. If this aspect is
not taken into account, the performance is degraded because no other sale can be carried out
simultaneously.

Difficulties. The main challenge of the above code is its complexity. The points leading to this
impression are summarised below:

• Access to the stockpile has to be synchronised manually. Therefore, errors in the form of
race conditions or deadlocks are easily introduced.

• Close attention has to be paid to the synchronized blocks. Their positioning and scope
has to consider efficiency and correctness concerns.

• The code is rather obscure and confusing as it includes several peculiarities not recognised
at first glance.

• The non-linear execution path further complicates the comprehension of the situational
behaviour.

86

Active Objects

The following segment demonstrates the corresponding implementation of ActiveShop.

public class ActiveShop implements ... {
{...}
@ActiveMethod
public Item sell(ItemType type) throws ... {

Item item = this.retrieveItem(type);
if(this.stockpile.hasNeededTypes()) {

ItemOrder order = this.createOrder();
this.placeOrder(order);

}
{...}
return item;

}
}

Sales. ActiveShop’s sell operation has a similar but overall simpler layout when com-
pared to the conventional counterpart.

• No specific synchronisation is needed because at most only one active invocation is exe-
cuted at once.

• No separate thread is used. Instead, placeOrder submits the request asynchronously.
Hence, the procedures assume a linear style which is easier to understand.

• The time and effort necessary to develop the run method are saved by the underlying
threading model.

The Delivery of Articles

As explained in Section 6.3, the results are handled by callbacks. In this thesis, we only consider
the active object applications in greater detail. The traditional approach is similar to the explicit
concept but involves custom synchronisation. This circumstance was already discussed above
and is not of additional interest to this description.

Explicit Callbacks

First we address the invocation pattern relying on the callback interfaces PartDelivery and
ItemDelivery.

Delivery. The following sample depicts the implementation of ActiveFactory:

@ActiveObject public class ActiveFactory
implements PartDelivery, ... {

{...}
@ActiveMethod(Synchronicity.Message)
public void deliver(Part[] parts) {

87

this.processDelivery(parts);
}

}

The shipments are sent to the delivermethod. It is defined public by the PartDelivery
interface so as to be accessible to other classes. The transmitted parts are inserted into the stock
by invoking processDelivery, a base operation shared among all realisations.

Ordering. A request can be placed with the command supplier.order(partCount,
this). The meaning of the concerned variables is as follows:

• The employed supplier features the method:
void order(Integer amount, PartDelivery callback)

• partCount contains a positive integer.

• this passes the current object as the callback (cf. PartDelivery).

Implicit Callbacks

We now consider the use of the library’s promise capabilities.

Delivery. This kind of approach processes the delivery in a different manner. Observe the
segment:

@ActiveObject public class CallbackFactory ... {
{...}
private final Callback<Part[],Void> processCallback =

(Part[] parts) -> { processDelivery(parts); return null; };
}

Instead of defining a public method, a Callback instance variable is initialised through
a lambda expression. The latter includes the received parts into the inventory by forwarding
them to the base function (cf. processDelivery). Finally, null is returned because no
further handling is envisaged, and the JDK’s Void class is used as the result type to indicate
this circumstance. The depicted behaviour is identical to the delivermethod described above.
The processCallback field can also be set via an anonymous inner class.

Ordering. The factory requests a set of parts by calling:

Active.promise(this, () -> supplier.order(partCount))
.then(this.processCallback);

The semantics of this concatenated statement are noted below:

• Active is a library class providing utility functionality.

• Once again, partCount is a positive integer.

88

• The referenced supplier declares an active method with the signature:
Part[] order(Integer amount)

• The promise operation instructs the given active invocation (cf. order) and passes
back the associated promise.

• The previously created callback is installed by using the promise’s then method.

• Thus, processDelivery stores the produced parts.

Advantages over futures. This sample illustrates the benefits of promises. Since the invo-
cation of order is always one of the last statements, a future can only be resolved in two
suboptimal ways:

• Blocked waiting prevents other calls from being answered. Hence, the remaining items
cannot be distributed in the meantime.

• Delayed processing introduces further complexity and overhead through the necessary
code. Because the delivery can only be incorporated when a method is performed, the
downtime between various requests cannot be exploited.

As a consequence, promises have a significant advantage in this type of situation.

Comparison

Each of the two presented interaction patterns has its own merits.

• Explicit callbacks can be stored and invoked once the request is completed without com-
mitting to a specific moment. In particular, they can be executed even before the operation
finishes if lengthy postprocessing slows down the termination.

• The implicit style enables natural method definitions since a procedure can simply return a
result instead of sending a reply directly. Moreover, the handling operation can be declared
private to reduce the attack surface, whereas an explicit callback can be shared and
notified many times with malicious intent.

However, sometimes utilising the implicit technique is problematic. Section 3.5 already dis-
cussed aggregate values and nested data structures (cf. Promise<Promise<Integer>>).
For the second challenge, the library offers a solution. The promiseFlat operation auto-
matically unwraps the enclosed instance without blocking. This mechanism allows the caller to
directly reference the outcome of the actual promise.

7.2 Lines of Code

The LOC metric estimates the effort of developing a specific program. However, the basic
variant is of limited use in the context of this thesis. To collect additional information about the
concepts, further specialisations concerning the synchronisation characteristics are gathered.

89

Focus. The assessment concentrates on interesting differences between the conventional and
proposed approaches. The active object implementations are only briefly compared at the end
of this section. They deviate in finer aspects from each other.

Measurements. The results are compiled into Table 7.1. Its columns have the following mean-
ing:

• Implementation specifies the approach corresponding to the presented data.

• Total LOC covers the entire application. This number spans the basic features and also
synchronisation, runner and utility classes. The code measuring the performance is ex-
cluded from this metric.

• Synchronisation Class LOC relates to the types coordinating the primary functionality. For
this purpose, they were separated from the fundamental implementation of the system.

• Synchronisation Statement LOC counts the instructions controlling parallelism. This cal-
culation includes the ActiveObject and ActiveMethod annotations as well as the
built-in constructs. In the latter case, a fully synchronized method receives a value
of one. In contrast, both the beginning and ending of synchronized blocks are taken
into account because the closing bracket’s positioning is a crucial detail regarding race
conditions. Signalling invocations like wait and notify are factored in here as well.

• Synchronisation Code LOC describes the number of statements affected by concurrency
control. This calculation comprises the corresponding methods, synchronized blocks
and the code enclosed by these elements.

Implementation Total
LOC

Synchro.
Class LOC

Synchro.
Statement LOC

Synchro.
Code LOC

Conventional 2077 459 (22.10%) 126 (1.06%) 94 (4.53%)
Active Objects (Explicit) 1839 234 (12.72%) 20 (0.69%) 70 (3.81%)
Active Objects (Promise) 1909 207 (10.84%) 20 (0.57%) 67 (3.51%)
Active Objects (Hybrid) 1844 220 (11.93%) 20 (0.65%) 67 (3.63%)

Table 7.1: Various lines of code (LOC) metrics of the implemented classes.

Total LOC.

• The conventional implementation showed the highest sum with 2.077.

• The active object concepts represented a reduction of 8.09% to 11.45%.

Generally, active objects are slightly favoured in this regard due to their simpler configuration.
However, the gap is not always as large as indicated by this data. In our scenario, the ordinary
components are wrapped by an extra layer that does not exist in the active object approaches. It
stems from the detachment of the base functionality from the synchronisation code.

90

Synchronisation Class LOC.

• The traditional realisation showed a value of 459.

• The active object implementations required 49.02% to 54.91% less lines.

This variation is significant considering the former makes up 22.10% of the grand total compared
to the 10.84%, 11.93% and 12.72% of the active object approaches.

Synchronisation Statement LOC.

• The conventional technique used 126 of these code lines.

• The other concepts managed coordination with only 15.87% of the above value.

The large deviation of the classic application is caused by the micromanagement of the synchro-
nisation primitives.

Synchronisation Code LOC.

• The traditional program came last with 94 code lines.

• The other approaches utilised 25.53% to 28.72% less lines.

The substantially higher number of the ordinary variant is due to the manually implemented
thread and the corresponding activation mechanisms (cf. wait and notify).

Implications. Although the difference of the total amount is not decisive in itself, the infor-
mation gathered by the synchronisation metrics allows us to reinforce previous observations. As
seen in Section 7.1, the usage of the concurrency control constructs is error-prone, and their han-
dling is more complicated when compared to the library’s features. Furthermore, the thread’s
run method and the inter-process communication introduce additional difficulties. Therefore,
conventional components are more time-consuming to develop than active objects.

Active objects. The active object methodologies show roughly similar tendencies. Their re-
sults deviate marginally from each other because of the varying class layouts. As already men-
tioned, the explicit callbacks have an additional active method (cf. deliver) for receiving
articles. Hence, it is subject to transformation. The implicit types do not provide these proce-
dures and therefore came off marginally better in the LOC metrics.

7.3 Bytecode Size

The bytecode size determines the storage requirements of an application. Although the effects of
this dimension are negligible in most circumstances, an imbalance of several orders of magnitude
between the approaches cannot be tolerated.

91

Focus. The description concentrates on the instrumented classes. Their size illustrates the
scale of the conducted modifications when contrasted with the base value. The increase must be
considered if the adapted files are stored on disk for later use. The library provides an appropriate
feature for this task.

Measurements. The information is presented in Table 7.2. The meanings of the individual
columns are given below:

• Implementation states the approach relating to the figures.

• Total Size covers the fundamental components as well as the synchronisation, runner and
utility classes. The system parts collecting the performance data are not included in the
calculation.

• Synchronisation Class Size spans the types coordinating the core code. Therefore, the
fundamental functionality was separated from the concurrency control mechanisms.

• Total Instrumented Size comprises the entire transformed bytecode, including all added
and manipulated classes. For the latter, only the new value is used by the computation.
System elements measuring the performance are not targeted by this criterion.

• Instrumented Synchronisation Class Size consists of the converted files belonging to the
types that monitor the parallelism. They are the only ones treated by the agent. This
category covers modifications of the servants and the creation of proxies.

Implementation Total
Size (KB)

Synchro.
Class Size (KB)

Total Instr.
Size (KB)

Instr. Synchro.
Class Size (KB)

Conventional 124.35 23.46 (18.87%) 124.35 23.46 (18.87%)
Active Objects (Explicit) 112.72 12.33 (10.94%) 154.47 54.08 (35.01%)
Active Objects (Promise) 124.84 11.93 (9.56%) 165.63 52.73 (31.83%)
Active Objects (Hybrid) 116.90 11.74 (10.05%) 158.25 53.09 (33.55%)

Table 7.2: Comparison of the bytecode size of the different implementations in kilobytes.

Total Size.

• The explicit approach used the least storage with 112.72 kilobytes.

• The hybrid concept occupied 4.18 kilobytes (3.71%) more than the above.

• The conventional application needed further 11.63 kilobytes (10.32%).

• The promise implementation allocated additional 12.12 kilobytes (10.75%).

92

As mentioned in Section 7.1, the implicit callbacks are initialised through lambda expressions
and anonymous inner classes. For each assignment of this kind, the compiler generates auxiliary
files. This behaviour explains the ranking of the active object applications. The conventional
program’s higher requirements are due to its extra intermediate layer already mentioned in Sec-
tion 7.2. Nevertheless, the collected information suggests the developed variants do not differ
substantially in this matter.

Synchronisation Class Size.

• The active object applications used between 11.74 kilobytes to 12.33 kilobytes.

• The traditional program consumed 23.46 kilobytes.

Promise-based applications score slightly better in this category because the previously men-
tioned auxiliary files belong to the fundamental implementation. Therefore, this part of the
bytecode is not included in the value.

Total Instrumented Size.

• The classical style was unaffected by the transformation and remained at 124.35 kilobytes.

• The active object realisations rose by between 40.79 (+32.67%) kilobytes and 41.75 kilo-
bytes (+37.04%).

The size of the active objects grew quite noticeably. Hence, the traditional variant has a clear
advantage in this regard. The applications relying on explicit callbacks exhibited a negligibly
higher increase because of their additional active methods (cf. deliver).

Instrumented Synchronisation Class Size.

• Again, the conventional program stayed unaltered at 23.46 kilobytes.

• The active object applications were boosted by between 41.75 (+439%) and 41.35 kilo-
bytes (+452%).

This massive change demonstrates the downside of implementing the active object pattern man-
ually and brings the relief realised by the presented concepts to light.

Implications. The large extension of the file size shows the scale of the automated bytecode
generation. This practice supports a small base disk space requirement comparable to the con-
ventional approach. Even the total instrumented size is likely not an issue for the tasks to be
solved by this methodology. Hence, the storage needed by the bytecode does not pose a problem
when compared to the conventional style.

93

43.1

41.0

36.5

33.0

0 10 20 30 40 50

Active Object (promise)

Active Object (hybrid)

Active Object (explicit)

Conventional

Figure 7.1: Timed duration of the individual implementations for dealing with 10,000 Cus-
tomers. The number is given in seconds (lower is better).

7.4 Customer Timing

The ability to serve a sudden surge of requests is an interesting characteristic in the described
scenario. Figure 7.1 visualises the durations needed by the developed solutions to satisfy ten
thousand customers.

Result overview.

• The traditional approach was the fastest of all four taking 33 seconds.

• The explicit approach was 3.5 seconds (10.6%) slower.

• The hybrid approach was by 8 seconds (24.2%) behind.

• The implicit callback concept suffered a slowdown of 10.1 seconds (30.6%).

• If we only take the active object implementations into account, the slowest realisation took
6.6 seconds (18.2%) longer than the best one.

The two programs using the library’s promise functionality came last in this category. They
degraded the burst performance noticeably.

Implications. These values advocate using tailored interaction patterns in high-performance
applications so as to take advantage of the speed of direct calls. Regarding this style, the classic
realisation scores best. It employs built-in synchronisation constructs and avoids the slowdown
of active invocations experienced by the explicit approach. Promises are less efficient because

94

15,365

16,404

17,263

20,886

0 5,000 10,000 15,000 20,000 25,000

Active Object (promise)

Active Object (hybrid)

Active Object (explicit)

Conventional

Figure 7.2: Number of customers finished by the different realisations when serving 1,000
simultaneous customers (higher is better).

they introduce overhead whenever an assigned callback is invoked. Hence, the hybrid is faster
than the implicit concept since the former relies partially on direct communication. A sophis-
ticated implementation of active objects and promises integrated at the language-level could
eliminate these drawbacks.

7.5 Customer Throughput

This criterion assesses the capability of completing as many sales requests from a constant
stream as possible. The results of this property are illustrated in Figure 7.2.

Result overview.

• The traditional approach performed best, finishing 20.886 clients per minute.

• The explicit design satisfied 17.3% less orders in the same period.

• The hybrid approach suffered a loss of 21.6% purchases.

• The implicit concept processed 26.4% fewer customers.

The traditional approach was ahead of the proposed competitors by a remarkable margin. Be-
sides this facet, the active object applications only varied by 11%. This difference does not seem
very large given the benefits of implicit callbacks.

Implications. This outcome is strongly orientated towards the result of the timing measure-
ment. Hence, the statements made above do also apply to this category.

95

0.904

4.05

0.736

3.47

1.277

3.69

0.010

4.07

0 1 2 3 4 5

Registry

Shop

Conventional Active Object (explicit)
Active Object (hybrid) Active Object (promise)

Figure 7.3: Average response time of the applications in milliseconds during the timed run
(lower is better).

7.6 Component Response Time

A crucial characteristic of real-time applications is their responsiveness. It affects the way clients
interact with the services and influences the user experience decisively. This section analyses
the suitability of the active object concepts in this regard and compares them to the traditional
approach.

Focus. In the presented scenario, Customer instances communicate synchronously with the
ShopRegistry and Shop types. Thus, the evaluation concentrates on these components. The
response times of the timing and throughput runs are depicted in figures 7.3 and 7.4 respectively.

Joint use. Some active object programs utilise the same component implementation. In these
cases, fluctuations are caused by the interplay of the different implicit threads. The similarities
are summarised below.

• All three techniques have a common ShopRegistry class.

• The hybrid and explicit practices share one Shop class.

• The promise system features its own Shop class.

96

0.238

1.78

0.311

1.56

0.322

1.72

0.002

1.45

0 1 2

Registry

Shop

Conventional Active Object (explicit)
Active Object (hybrid) Active Object (promise)

Figure 7.4: Average response time of the programs in milliseconds while performing the
throughput test (lower is better).

Shop registry.

• Throughput. The standard methodology required a minuscule 0.002 milliseconds per re-
quest. The fastest active object approach was slower by a factor of 119.

• Timing. The ordinary application reacted after 0.010 milliseconds. The runner up needed
73.6 times this value.

Both results were overwhelmingly in favour of the traditional approach. The cause of this large
gap must be sought in the simple class structure. A registry delegates each invocation to a held
Collection instance. The overhead introduced by the active calls outweighs the runtime
required by the swiftly executed core code. As a consequence, the active object’s thread has to
be restarted frequently. The speed of the built-in concurrency constructs further broadens this
difference.

Shop.

• Throughput. The reaction time of the best active object approach was only 7.9% behind
the conventional style.

• Timing. The traditional methodology was even slightly inferior to the least efficient active
object approach, in concrete by 0.3%.

97

22.05

22.78

22.33

20.44

36.20

43.00

36.20

33.40

0 10 20 30 40 50

Active Object (promise)

Active Object (hybrid)

Active Object (explicit)

Conventional

Maximum Average

Figure 7.5: The average and maximum memory consumption of the approaches during the
throughput run given in megabytes (lower is better).

This result reinforces the above explanation. The Shop class is more elaborate and features
relatively expensive operations. Therefore, the cost of active invocations does not overshadow
the complexity of the real procedure.

Active objects. If we constrain the analysis to the proposed concepts, both measurements
draw a similar picture. The hybrid approach exhibited the best score, followed by the explicit
callbacks and then the promises. Recall that the former two variants share the same Shop and
ShopRegistry class. This circumstance explains their better response time. Hence, promises
must be employed selectively in performance critical applications.

Implications. This outcome suggests plain classes should be realised conventionally. Usually,
their implementation is rather simple even though the built-in concurrency constructs are used.
The ordinary ShopRegistry, for instance, declares only fully synchronized methods.
They delegate the call to the internal Collection object. On the contrary, sophisticated func-
tionality can be programmed in either fashion because the performance is comparable. In some
situations, the active object approach is actually faster responding than the traditional style (cf.
Shop component).

7.7 Memory Consumption

In this part of the evaluation, we address the memory consumption of the variants. Figure 7.5
contrasts the measurements of the throughput run.

98

Average.

• The ordinary approach used the least memory with 20.44 megabytes.

• The active object based realisations used 1.61 (7.9%) to 2.34 (11.4%) megabytes more.

In this category, the difference was minor considering the worst and the best candidate are sep-
arated by less than 2.5 megabytes.

Maximum.

• The conventional approach had the lowest requirements using 33.4 megabytes at most.

• The explicit and implicit callback concepts both lost by 2.8 megabytes (8.4%).

• The hybrid application had a 9.6 megabytes (28.7%) higher demand.

The latter gap is dictated by two values in the raw data. The individual measurements are 36,
36, 37, 52 and 54 megabytes. The outliers are probably caused by the JVM’s allocation strategy
to avoid memory shortages. The other three contestants showed a more stable performance.

Implications. The traditional implementation is the slight favourite in both criteria. Further-
more, the hybrid approach is subject to variations in the chosen set-up. However, the disparity
between the individual competitors is insignificant in most application areas, considering the
memory technologies in this day and age. Note though that a minor difference can turn out to
be crucial given a very high amount of concurrent components.

7.8 Final Thoughts

Throughout the evaluation, diverse arguments have been brought forward concerning the incor-
poration of active objects. The main benefits of using the library are listed next.

• The services facilitate the programming of concurrent scenarios.

• The necessary code is automatically generated.

• Annotations enable an easy configuration of the provided features.

In contrast, the most important drawbacks are summarised below.

• The performance is negatively affected.

• The memory requirements are increased.

• The instrumented class files consume more storage.

Hence, choosing between active objects and a custom solution depends on the particular use
case. The following paragraphs give advice regarding specific situations.

99

Simple classes. The approach should generally not be applied to straightforward classes (cf.
delegate pattern) because the introduced overhead outweighs the runtime of the operations by a
large factor. If the instance’s methods are rarely used or return very fast, a new thread needs to
be started on every active invocation. In this circumstance, the response times are considerably
lengthened and the performance is severely degraded.

Complex classes. The primary candidates for the proposed technique are classes wrapping
sophisticated behaviour. As shown during the analysis, the runtime impact of the instrumented
code is limited if applied to relatively long running methods. As an example, a few added
milliseconds are irrelevant when downloading a file from a network node within several seconds.

Performance requirements. A concurrent system consists of multiple interacting elements.
Typically, not all of them have to be highly-efficient in order to meet the specification. As
a result, the presented performance characteristics are not always the deciding aspects for a
project. For instance, envisage a background program that must process incoming orders and
integrate them within two minutes. Hence, utilising active objects is certainly not ruled out from
the start.

Bottlenecks. Extensive applications normally have a particular bottleneck with a critical im-
pact on their performance. Such hot spots can be caused by database access, exceptional algo-
rithms or network communication for example. In these cases, the small overhead introduced
by the proposed realisation is negligible. Moreover, an active object can be exchanged easily
if it becomes the limiting entity at some point. The new class can be tailored to special needs
exposed during operation.

Storage. The bytecode size of the base program is comparable to the conventional approach.
Furthermore, the size increase of the instrumented class files is only significant to the smallest
spectrum of computing (cf. chipcards). These devices are not intended field of the library,
because they do not have the resources to support adequate performance when used in highly-
concurrent scenarios. Hence, such computing systems require custom behaviour.

Memory. The memory consumption is probably the most decisive reason against the use of
the library’s capabilities. The marginally raised requirements limit the number of concurrently
active components. Imagine a web application instantiates a separate agent for each signed in
client. Given the same hardware, the increased memory usage would imply an overall lower
number of simultaneously logged in users. Depending on the project at hand, this drawback
may prove critical.

Consequences. The discovered disadvantages are not determining arguments against the pro-
posed solution in most use cases. A practical strategy is to develop the first version of the
program by means of the provided constructs. Some classes can later be replaced if deemed

100

necessary. Optimising the library’s core components and the generated code would further mit-
igate this problem. However, the speed of the built-in constructs is probably not attainable
without native implementations.

101

CHAPTER 8
Conclusion

To conclude, let us set the thesis’s problem statement indicated in Section 1.2 into the context
of the findings. To this end, this chapter summarises the evaluation results and emphasises their
implications. The last main segment describes possible future work.

Problem Statement. In the beginning, we posed two questions:

• Which functions and features are useful and sensible in an active object implementation
to enable effective development of concurrent scenarios?

• How can the identified functions and features be realised in a library for Java by means of
reflection and bytecode instrumentation?

The primary reasons for these points are the complexity and the potential defects caused by
Java’s built-in concurrency primitives. Solving rarely occurring deadlocks and race conditions
usually involves high effort and may not be feasible altogether.

Findings. A model was developed having the above issues in mind. It expands on the idea of
the basic active object pattern and incorporates advanced topics not considered by the related
research. The design was then realised as a proof of concept to study the pros and cons of the
approach by means of a concurrent scenario. The collected information showed that the active
object applications’ code was less cumbersome and involved a smaller number of potential syn-
chronisation bugs in comparison to the traditional program. On the other hand, the analysis also
revealed performance issues regarding the implementation. This circumstance was to be antic-
ipated since the library was not tailored to be highly efficient. While the conventional concept
certainly has a clear lead in some criteria, the difference is not as overwhelming as expected.
As a consequence, the translation of the active object pattern into the proposed model proved to
be adequate and sound. The automated instrumentation eases the application development and
reduces the amount of boilerplate code effectively. In contrast, the advanced features appeared

102

to be more situational. Passive components primarily communicate via synchronous invoca-
tions, whereas active objects usually handle results using callbacks and placeholders to prevent
temporal coupling. This practice avoids deadlocks and increases method request throughput. In
this respect, promises represented a clear improvement over futures in particular circumstances
while retaining exactly the same advantages. However, even this mechanism is unfit for some
scenarios. Thus, they still must rely on explicit callbacks.

Implications. To summarise, the outcome of the evaluation implies that the automated ac-
tive object approach is suitable for realising concurrent applications. Even though the advanced
techniques are not always beneficial, they are reasonable enhancements of the model and have
merits in a variety of situations. Optimisations and native implementations of the core compo-
nents would help to resolve the remaining doubts.

Performance. Future work should address the aspects limiting the performance of the pro-
posed model and the active object pattern as a whole. Mitigating these restrictions would ex-
pand the concept’s competitiveness. This argument is substantiated by the growing popularity
of Erlang’s efficient actor implementation. For this purpose, the underlying weaknesses have to
be examined thoroughly.

Extensions. Another interesting task is the study and realisation of additional extensions, and
their introduction into the proposed design. This subject includes the actor model’s location
transparency and mobility properties. They were not taken into account in this thesis due to
their scope. Multi-threading of active objects could also be incorporated. However, the chosen
mechanism would have to be more refined than the one demonstrated in [22] and consider the
criticism expressed in Chapter 2. Another notable topic with regard to the presented library
is the possibility to use custom component classes, for example in place of Scheduler and
ActivationQueue.

Interaction patterns. As seen during the code analysis, further research is necessary to com-
pletely replace explicit callbacks with an implicit technique. Promises already solve a part of
the problem through the callback assignment operations. They should be complemented by an
easily configurable feature that automatically correlates requests to delayed responses. There-
fore, it has to separate the method’s result from the actual return type and provide operations to
access and set the underlying promise.

Outlook. In view of the projected increase of CPU cores in the next decades and progressively
growing more complex applications, an adequate concurrent programming paradigm is needed
to handle the myriad of spawned threads. As this thesis showed, the active object pattern is a
suitable solution for such situations. Nevertheless, the concept requires more research to com-
pete successfully with Java’s standard concurrency constructs. This work contributed in part to
this, but additional effort is still necessary to achieve the goal.

103

APPENDIX A
Concurrent Scenario

This appendix addresses the individual entities mentioned in Section 6.1 more closely. Fig-
ure A.1 gives an overview of their functionality and connections. The following descriptions
also indicate parameters to control the execution.

A.1 Part and Item

Item instances represent the main products sought by customers and are manufactured by com-
bining specific Part objects. The latter are the scenario’s basic building blocks because their
creation does not require any materials.

Manifestations. The ItemType and PartType enums list the various kinds of items and
parts in the application. All ItemType constants have an associated construction plan stating
the number and types of parts needed for the assembly of one instance.

Ordering information. ItemOrder is a utility class for acquiring items. It wraps a mapping
of ItemType values to the desired quantities and provides methods to easily access these data.
Conversely, parts are simply requested by specifying the necessary amount because each supplier
only sells one part type.

Relationships. Multiple components reference and use the introduced entities, as is evident
from Figure A.1:

• Part is used by Supplier and Factory.

• Item appears in Factory, Warehouse, Shop and Customer.

• ItemOrder is handled by Factory, Warehouse and Shop.

104

Customer

ShopRegistry

+ register(Shop shop): void
+ unregister(Shop shop): void
+ lookup(): Shop[]

Shop

- stockpile: Stockpile<Item>
+ getItemTypes(): ItemType[]
+ refund(Item item): void
+ sell(ItemType type): Item

(1,1)

(0,*)

queries

(0,*)

(1,*)

visits

Warehouse

- stockpile: Stockpile<Item>
+ order(ItemOrder order,

 ItemDelivery callback): void ||
 order(ItemOrder order): Promise<Item[]>
+ store(Item item): void

(0,*)

(1,*)

orders

Supplier

- stockpile: Stockpile<Part>
+ getPartType(): PartType
+ order(int amount,

 PartDelivery callback): void ||
 order(int amount): Part[]

Factory

- stockpile: Stockpile<Part>
+ getItemTypes(): ItemType[]
+ order(ItemOrder order,

 ItemDelivery callback): void ||
 order(ItemOrder order): Promise<Item[]>

(0,*)

(1,*)

orders

(1,*)

(0,*)

delivers

(1,1) (0,*)
stores

 (1,*)

(0,*)

delivers

(0,*) (1,*)
orders

 (1,*) (0,*)
delivers

Figure A.1: The class diagram of the shop example.

Parameters. In the above context, the execution options relate to the number of PartType
and ItemType values as well as the parts each item type consists of.

A.2 PartDelivery and ItemDelivery

In the explicit callback pattern, the ItemDelivery and PartDelivery interfaces decouple
a distributor from the receiving object. The client has to implement one of them and pass itself as
a parameter of the invocation to obtain the shipment. The two interfaces have a similar structure:

public interface ItemDelivery {
public void deliver(Item[] items);

105

}
public interface PartDelivery {

public void deliver(Part[] items);
}

The response is sent by invoking the corresponding deliver method with the requested prod-
ucts. Thus, the realised operation must process the incoming wares.

Implicit delivery. A class does not have to conform to this mechanism if the called procedure
returns a promise or an array. An example of this situation is the use of the Promise<Item[]>
order(ItemOrder order) operation offered by a Factory realisation.

A.3 Stockpile

The Stockpile instance is a vital element of most components. It provides features for storing
articles and for querying information about the current inventory. However, the class itself is
not thread-safe. Any access to such an object must therefore be controlled by the associated
implementation.

Boundaries. A stockpile has two thresholds. Their meanings are described next:

• The upper limit states the maximum amount of products the stockpile can store per type.

• The lower limit specifies the minimum number of units that must be present of each kind.

The upper limit’s effects are straightforward. If it is reached for a given type, a related object is
simply discarded when transferred to the stockpile. The lower limit is a more interesting matter
because it defines when the administered articles need to be replenished. In this situation, the
stockpile’s hasNeededTypes() function evaluates to true. The next paragraphs explain
the impact of the boundary values in detail.

Reserve management. Every entity tries to maintain a basic set of articles to promptly deal
with requests. In the best case, the stockpile holds as many instances of all kinds as its upper
threshold supports. If the actual count of any type drops below the lower threshold, the inventory
is completely restocked. Hence, the deviation between the current and highest number of every
type is calculated and the difference is acquired. This task entails scheduling a new production
run or triggers the placement of orders with the associated distributors.

Relationships. The Stockpile class maintains objects on behalf of Factory, Supplier,
Shop and Warehouse.

Parameters. Both limits of a stockpile are independently customisable.

106

A.4 Supplier

A supplier contributes parts of one particular type to the manufacture of items. The generated
PartType is configured through the constructor. This component features the members ex-
plained below:

• A Stockpile instance buffers pre-produced parts.

• getPartType() retrieves the defined, immutable PartType.

• The order methods request parts of the predetermined type.

• order(int amount,PartDelivery callback) invokes callback with the
specified quantity.

• order(int amount) simply returns the stated number of parts.

Behaviour. A notable detail is that the order procedures always directly finish a received
job. If the stock is entirely depleted while working on an shipment, the remaining parts are
created immediately. If the stockpile’s lower bound is undershot after a delivery, the supplier
automatically starts a full production sequence.

Relationships. Supplier only communicates with Factory. However, the bond is decou-
pled by the functioning principle of order.

Parameters. This class features an interesting set of tuning options:

• The stockpile’s upper and lower thresholds are adjustable.

• The manufacturing time of individual parts is modifiable.

A.5 Factory

A factory can build a particular set of item types out of parts. This information is passed to the
constructor of the class. Factory implementations have the following elements:

• A Stockpile object stores the necessary parts to create the offered items.

• getItemTypes() obtains an array of the unchangeable types handled by an instance.

• The order operations are used by clients for acquiring items.

• order(ItemOrder order, ItemDelivery callback) performs callback
when the shipment is ready.

• order(ItemOrder order) yields a promise which resolves to the desired items.

107

Erroneous calls. If an ItemOrder object contains an incorrect ItemType (cf. not in-
dicated by getItemTypes), the order procedures throw an unchecked exception of the
IllegalArgumentException class and ignore the invocation. This abnormal program
behaviour must not occur during execution.

On-demand production. Items of a particular ItemType are only assembled when they are
requested through an ItemOrder. Since a factory cannot anticipate incoming orders, it has an
internal stockpile of parts to still be able to meet the needs in a short period.

Response. A factory may not hold all of the required parts when it receives an order. In
this case, a delivery has to be processed before the associated invocation can be answered.
For this reason, order(ItemOrder order) has to return a promise. The signature of
order(ItemOrder order,ItemDelivery callback) remains unchanged, because
callback can easily be invoked at any future moment.

Relationships. Factory utilises Supplier instances to obtain the necessary parts. At the
same time, its functionality is only used by Warehouse, but this bond is decoupled by the
employed reply mechanisms.

Parameters. The behaviour of the execution is determined through multiple settings:

• The stockpile’s upper and lower limits are changeable.

• The assembly time of a single item can be customised.

A.6 Warehouse

A warehouse is an intermediate area for items created by factories and sold by shops. Such an
instance is intended to carry every ItemType. The primary features of these entities are listed
below:

• A Stockpile object is responsible for the retention of items.

• The order methods request items from the warehouse.

• order(ItemOrder order,ItemDelivery callback) sends the articles to the
provided callback.

• order(ItemOrder order) returns a promise for accessing the inquired items.

• store(Item item) adds the supplied item to the internal stockpile if possible. The
object is discarded when the maximum capacity of the given item’s type is already present.
The operation still succeeds in this case.

108

Response. When an order method is performed, some of the related items may not be avail-
able. Hence, order(ItemOrder order) fetches a promise instead of the actual set of
items because a transmitted request cannot always be satisfied immediately. The signature of
order(ItemOrder order, ItemDelivery callback) stays in line with the rest of
the entities.

Relationships. This component maintains a direct connection to the Factory class to ac-
quire the needed items. Moreover, the services of Warehouse are used by Shop. As with
previous types, this relationship is decoupled.

Parameters. The only configuration options are the stockpile’s upper and lower limit.

A.7 Shop

A shop is an element from which customers buy items from a certain range of types. During
startup, every Shop instance announces itself to the main registry. Specific implementations
include the characteristics listed below:

• A directly owned Stockpile reference stores the items.

• getItemTypes() queries the unalterable types an instance markets.

• sell(ItemType type) asks for an item of the given ItemType. If available, the
procedure obtains an appropriate object. Otherwise, null is returned.

• If sell is called with an ItemType not carried by the shop, the invocation raises an
unchecked IllegalArgumentException.

• refund(Item item) returns a bought item to the shop. The latter tries to incorporate
the object into the stockpile. Although expected, the shop does not check whether it sold
the supplied product.

• If the reserve of a refunded item’s type is already full, the article is forwarded to a ware-
house (cf. the store operation).

Relationships. Shop has strong ties to Warehouse and ShopRegistry. The Customer
class is the sole client using the functionality of this component.

Parameters. The individual shops offer the possibility of adapting the limits of the held stock-
pile.

109

A.8 ShopRegistry

The ShopRegistry type gathers the active shops and provides this information to customers.
An implementation must have the following members to enable dynamic coming and going of
vendors:

• A Collection object contains the currently opened shops.

• register(Shop shop) enrols the given shop. A repeated addition is simply ignored.
In this case, no exception is thrown.

• unregister(Shop shop) removes the supplied shop from the pool. Inapplicable
deregistrations are ignored without raising an exception.

• lookup() yields an unsorted array enclosing the registry’s latest shop roster. The func-
tion must not introduce an alias of the internal collection, but instead create a deep copy.

Relationships. Unsurprisingly, ShopRegistry has ties to the Shop type. Furthermore, this
component is utilised by customers, but it does not hold any direct references to them.

Parameters. This type does not offer any customisations.

A.9 Customer

The Customer entities advance the application’s execution state by buying items. Unlike the
other classes, this one is shared between all approaches. A customer is represented by a standard
Java Thread and receives a ShopRegistry instance at construction time. The associated
run() method comprises one item sale and is structured as follows:

1. Choosing a shop. The customer invokes the provided registry’s lookup function and
retrieves the set of all active shops, one of which is chosen.

2. Selecting an item type. Next, the client queries the shop’s getItemTypes method and
picks one of the obtainable types.

3. Purchasing an item. The customer tries to buy an item of the determined ItemType by
using the shop’s sell operation.

4. Out of stock. If the previous invocation fails to acquire an object because the articles are
unavailable, the process continues with Step 2.

5. Refunding the item. Once the demand has been met, the client can elect to return the item
to the shop from which the article was bought.

As soon as the last step has finished, the run() procedure terminates and the customer is
considered complete.

110

Randomisation. The decisions made in the process are based on pseudorandomly generated
values. This practice aims to achieve a balanced distribution and introduces some unpredictable
variations into the execution.

Relationships. Customer heavily depends on the services featured by the ShopRegistry
and Shop classes.

Parameters. The percentage underlying the refund rate of items is globally adjustable.

111

Bibliography

[1] OpenJDK Repository: FutureTask. https://github.com/openjdk-mirror/
jdk7u-jdk/blob/master/src/share/classes/java/util/
concurrent/FutureTask.java (Archived by WebCite R© http://www.
webcitation.org/6SwwkZSZJ) [Online. Last accessed: 2014-09-29], 2011.

[2] Active Object Library JavaDoc. http://activeobj.bitbucket.org (PURL:
http://www.purl.org/ph1l/mastersthesis/javadoc) [Online. Last ac-
cessed: 2014-09-29], 2014.

[3] Active Object Library Repository. https://bitbucket.org/activeobj/ajo
(PURL: http://www.purl.org/ph1l/mastersthesis/repository) [On-
line. Last accessed: 2014-09-29], 2014.

[4] Polyglot - A Compiler Front End Framework for Building Java Language Exten-
sions. http://www.cs.cornell.edu/projects/polyglot/ (Archived by
WebCite R© http://www.webcitation.org/6Ntj0VkE5) [Online. Last accessed:
2014-09-29], 2014.

[5] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1985.

[6] Gul A. Agha and Carl Hewitt. Concurrent Programming Using Actors: Exploiting Large-
Scale Parallelism. In Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 206 of Lecture Notes in Computer Science, pages 19–41. Springer Berlin
Heidelberg, 1985.

[7] Micah J. Best, Shane Mottishaw, Craig Mustard, Mark Roth, Alexandra Fedorova, and An-
drew Brownsword. Synchronization via Scheduling: Techniques for Efficiently Managing
Shared State. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 640–652. ACM, 2011.

[8] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems, 2002.

[9] Joakim Carselind and Pascal Chatterjee. Concurrency on the JVM – An investigation of
strategies for handling concurrency in Java, Clojure, and Groovy, 2012.

112

https://github.com/openjdk-mirror/jdk7u-jdk/blob/master/src/share/classes/java/util/concurrent/FutureTask.java
https://github.com/openjdk-mirror/jdk7u-jdk/blob/master/src/share/classes/java/util/concurrent/FutureTask.java
https://github.com/openjdk-mirror/jdk7u-jdk/blob/master/src/share/classes/java/util/concurrent/FutureTask.java
http://www.webcitation.org/6SwwkZSZJ
http://www.webcitation.org/6SwwkZSZJ
http://activeobj.bitbucket.org
http://www.purl.org/ph1l/mastersthesis/javadoc
https://bitbucket.org/activeobj/ajo
http://www.purl.org/ph1l/mastersthesis/repository
http://www.cs.cornell.edu/projects/polyglot/
http://www.webcitation.org/6Ntj0VkE5

[10] Arunodaya Chatterjee. Futures: A Mechanism for Concurrency Among Objects. In Pro-
ceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing ’89,
pages 562–567. ACM, 1989.

[11] Shigeru Chiba. Load-time structural reflection in Java. ECOOP 2000—Object-Oriented
Programming, pages 313–336, 2000.

[12] Shigeru Chiba. Javassist. http://www.csg.ci.i.u-tokyo.ac.jp/%7Echiba/
javassist/ (Archived by WebCite R© http://www.webcitation.org/
6Sewv2m3x) [Online. Last accessed: 2014-09-29], 2014.

[13] Steven Clarke. Measuring API usability. Doctor Dobb’s Journal, 29:S6–S9, 2004.

[14] Markus Dahm. Byte Code Engineering. In JIT’99, Informatik aktuell, pages 267–277.
Springer Berlin Heidelberg, 1999.

[15] Frank S. de Boer, Dave Clarke, and Einar B. Johnsen. A Complete Guide to the Future.
In Programming Languages and Systems, volume 4421 of Lecture Notes in Computer Sci-
ence, pages 316–330. Springer Berlin Heidelberg, 2007.

[16] John Fruehe. Planning Considerations for Multicore Processor Technology. Dell Power
Solutions, pages 67–72. Dell, 2005.

[17] David Geer. Chip Makers Turn to Multicore Processors. Computer, 38(5):11–13. IEEE,
2005.

[18] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and Tim Peierls.
Java Concurrency in Practice. Addison-Wesley Longman, 2006.

[19] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification: Java SE 8 Edition. Technical report, 2014.

[20] Zahia Guessoum and Jean-Pierre Briot. From Active Objects to Autonomous Agents. IEEE
concurrency, 7(3):68–76. IEEE, 1999.

[21] Ludovic Henrio, Fabrice Huet, and Zsolt István. A Language for Multi-Threaded Active
Objects. Technical report, 2012.

[22] Ludovic Henrio, Fabrice Huet, and Zsolt István. Multi-Threaded Active Objects. In Co-
ordination Models and Languages, volume 7890 of Lecture Notes in Computer Science,
pages 90–104. Springer Berlin Heidelberg, 2013.

[23] Ludovic Henrio and Justine Rochas. Declarative Scheduling for Active Objects. In SAC
2014 - 29th Symposium On Applied Computing, SAC ’14, pages 1–6. ACM, 2014.

[24] Christian Johansen. Test-Driven JavaScript Development. Addison-Wesley Professional,
1st edition, 2010.

113

http://www.csg.ci.i.u-tokyo.ac.jp/%7Echiba/javassist/
http://www.csg.ci.i.u-tokyo.ac.jp/%7Echiba/javassist/
http://www.webcitation.org/6Sewv2m3x
http://www.webcitation.org/6Sewv2m3x

[25] Einar B. Johnsen, Olaf Owe, and Ingrid C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66. Else-
vier, 2006.

[26] Kennedy Kambona, Elisa G. Boix, and Wolfgang De Meuter. An Evaluation of Reactive
Programming and Promises for Structuring Collaborative Web Applications. In Proceed-
ings of the 7th Workshop on Dynamic Languages and Applications, DYLA ’13, pages
3:1–3:9. ACM, 2013.

[27] Rajesh K. Karmani, Amin Shali, and Gul A. Agha. Actor Frameworks for the JVM Plat-
form: A Comparative Analysis. In Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, PPPJ ’09, pages 11–20. ACM, 2009.

[28] Dimitri Konstantas, Oscar M. Nierstrasz, and Michael Papathomas. An Implementation
of Hybrid - A Concurrent, Object-Oriented Language. Active Object Environments, pages
61–105, 1988.

[29] Ralf Lämmel and Simon P. Jones. Scrap Your Boilerplate: A Practical Design Pattern for
Generic Programming. In Proceedings of the 1st ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation, TLDI ’03, pages 26–37. ACM, 2003.

[30] Ralf Lämmel and Simon P. Jones. Scrap More Boilerplate: Reflection, Zips, and Gen-
eralised Casts. In Proceedings of the Ninth ACM SIGPLAN International Conference on
Functional Programming, volume 255 of ICFP ’04, pages 244–255. ACM, 2004.

[31] R. Greg Lavender and Douglas C. Schmidt. Active Object: An Object Behavioral Pattern
for Concurrent Programming. In Pattern Languages of Program Design 2, pages 483–499.
Addison-Wesley Longman, 1996.

[32] Brad Long and Paul Strooper. A Classification of Concurrency Failures in Java Compo-
nents. In Proceedings of the 17th International Symposium on Parallel and Distributed
Processing, IPDPS ’03, pages 8–16. IEEE, 2003.

[33] Michael D. McCool. Scalable Programming Models for Massively Multicore Processors.
Proceedings of the IEEE, 96(5):816–831. IEEE, 2008.

[34] Oscar M. Nierstrasz. Active Objects in Hybrid. In Conference Proceedings on Object-
oriented Programming Systems, Languages and Applications, volume 22 of OOPSLA ’87,
pages 243–253. ACM, 1987.

[35] Oscar M. Nierstrasz. Triggering Active Objects. Objects and Things, pages 43–78, 1987.

[36] Oscar M. Nierstrasz. A Tour of Hybrid: A Language for Programming with Active Ob-
jects. In Advances in Object-Oriented Software Engineering, Prentice Hall, pages 167–
182. 1992.

114

[37] Oscar M. Nierstrasz. Regular Types for Active Objects. In Proceedings of the Eighth An-
nual Conference on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’93, pages 1–15. ACM, 1993.

[38] Oscar M. Nierstrasz and Michael Papathomas. Towards a Type Theory for Active Ob-
jects. In Proceedings of the Workshop on Object-based Concurrent Programming, OOP-
SLA/ECOOP ’90, pages 89–93. ACM, 1991.

[39] Behrooz Nobakht, Frank S. de Boer, Mohammad M. Jaghoori, and Rudolf Schlatte. Pro-
gramming and Deployment of Active Objects with Application-level Scheduling. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages
1883–1888. ACM, 2012.

[40] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An Extensible
Compiler Framework for Java. In Compiler Construction, volume 2622 of Lecture Notes
in Computer Science, pages 138–152. Springer Berlin Heidelberg, 2003.

[41] Polyvios Pratikakis, Jaime Spacco, and Michael Hicks. Transparent Proxies for Java Fu-
tures. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 206–223.
ACM, 2004.

[42] Martin P. Robillard. What Makes APIs Hard to Learn? Answers from Developers. Soft-
ware, 26(6):27–34. IEEE, 2009.

[43] Martin P. Robillard and Robert DeLine. A field study of API learning obstacles. Empirical
Software Engineering, 16(6):703–732. Springer US, 2011.

[44] Jan Schäfer and Arnd Poetzsch-Heffter. CoBoxes: Unifying Active Objects and Structured
Heaps. In Proceedings of the 10th IFIP WG 6.1 International Conference on Formal Meth-
ods for Open Object-Based Distributed Systems, FMOODS ’08, pages 201–219. Springer
Berlin Heidelberg, 2008.

[45] Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing Active Objects to Concur-
rent Components. In Proceedings of the 24th European Conference on Object-oriented
Programming, ECOOP’10, pages 275–299. Springer Berlin Heidelberg, 2010.

[46] Jan Schäfer and Arnd Poetzsch-Heffter. Writing Concurrent Desktop Applications in an
Actor-Based Programming Model. In Proceedings of the 3rd International Workshop on
Multicore Software Engineering, IWMSE ’10, pages 2–9. ACM, 2010.

[47] Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Extensible ORB
Middleware. Communications Magazine, 37(4):54–63. IEEE, 1999.

[48] Savitha Srinivasan. Design Patterns in Object-Oriented Frameworks. Computer, 32(2):24–
32. IEEE, 1999.

115

[49] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-Typed Actors for Java. In Proceed-
ings of the 22nd European Conference on Object-Oriented Programming, ECOOP ’08,
pages 104–128. Springer Berlin Heidelberg, 2008.

[50] Éric Tanter, Marc Ségura-Devillechaise, Jacques Noyé, and José Piquer. Altering Java
Semantics via Bytecode Manipulation. In Generative Programming and Component En-
gineering, volume 2487 of Lecture Notes in Computer Science, pages 283–298. Springer
Berlin Heidelberg, 2002.

[51] András Vajda. Programming Many-Core Chips. Springer US, 1st edition, 2011.

[52] Alex Villazón, Walter Binder, Danilo Ansaloni, and Philippe Moret. Advanced Runtime
Adaptation for Java. In Proceedings of the Eighth International Conference on Generative
Programming and Component Engineering, GPCE ’09, pages 85–94. ACM, 2009.

[53] Steve Vinoski. Concurrency with Erlang. Internet Computing, 11(5):90–93. IEEE, 2007.

116

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Master's Thesis

	State of the Art
	Actor Model
	Active Object Pattern
	Advanced Techniques Built Upon Active Objects
	Relevance and Comparison to Related Work

	Result Handling Strategies
	Futures
	Synchronous Calls
	Purely Asynchronous Calls
	Callbacks
	Promises

	Modelling of Selected Functionality
	Fundamental Ideas
	Core Components
	Deviations from the Active Object Pattern

	Implementation of the Model
	Prerequisites
	Implemented Components
	Instrumentation Environment
	Instrumentation Approach
	Applied Transformations

	Evaluation Environment
	Concurrent Scenario
	Evaluation Criteria
	Principles of the Implementations

	Evaluation Results and Comparison
	Code Characteristics
	Lines of Code
	Bytecode Size
	Customer Timing
	Customer Throughput
	Component Response Time
	Memory Consumption
	Final Thoughts

	Conclusion
	Concurrent Scenario
	Part and Item
	PartDelivery and ItemDelivery
	Stockpile
	Supplier
	Factory
	Warehouse
	Shop
	ShopRegistry
	Customer

	Bibliography

