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Abstract

This thesis analyzes the behavior of the hiring problem with the restriction to rank-based
strategies. Given a sequence of candidates arriving to an interview, we have to make an
immediate and irrevocable decision about hiring a candidate, when he is taking his interview.
This decision has to be made on the relative rank of this candidate amongst all already
interviewed candidates. For the decision on a hiring we define hiring strategies that may be
described as an algorithm applied to the sequence of candidates. The main focus lies within
the analysis of different strategies. Therefore we introduce hiring parameters that characterize
the behavior of the single strategies. Concretely, we distinguish between parameters that give
information on the hiring rate and parameters that analyze the quality of the hired stuff. We
also consider a relaxation of the hiring problem, the so-called hiring and firing, where hired
candidates can be replaced by other candidates during the hiring process.

When analyzing the strategies we are mainly interested in the probabilities and the expected
values of the hiring parameters, such as the size of the hiring set, the waiting time until a
certain number of candidates is recruited, the rank of the best discarded candidate or the
number of replacements for hiring and firing. Therefore we use a wide range of tools like
generating functions or complex analytic methods. We also determine the limit distributions
of the parameters when the length of the sequence of applicants grows to infinity.

The investigated strategies are hiring above the minimum, hiring above the maximum, hiring
above the m-th best, hiring above the median, as well as a probabilistic strategy. In all of
the strategies a candidate is hired if and only if his relative rank is better than the rank of a
certain threshold candidate. The threshold candidate may change during the hiring process
and the strategies mainly differ in how the current threshold candidate is chosen. We can
observe that each of the strategies has its own benefits, so it depends on the requirements
which strategy is the best to use. We especially like to emphasize on the probabilistic strategy,
which provides a connection between all the other strategies.



Zusammenfassung

Diese Arbeit behandelt das Rekrutierungsproblem mit der Einschränkung auf rangbasierte
Strategien. Wir betrachten eine Folge von Kandidaten, die zu einem Vorstellungsgespräch ein-
geladen sind. Bei diesem Vorstellungsgespräch müssen wir eine sofortige und unwiderrufliche
Entscheidung über die Einstellung des Kandidaten treffen. Dazu reihen wir die Kandidaten
nach deren Beurteilung und treffen die Entscheidung anhand des relativen Ranges des Kan-
didaten unter allen bisher interviewten Kandidaten. Für die Entscheidung verwenden wir
Strategien, die man als Algorithmen betrachten kann. Der größte Teil der Arbeit befasst sich
mit der Analyse von verschiedenen Strategien zur Entscheidungsfindung. Dazu definieren
wir Parameter, die das Verhalten der verschiedenen Strategien beschreiben. Diese Parameter
messen einerseits die Frequenz der Einstellungen und andererseits die Qualität der eingestell-
ten Kandidaten. Weiters betrachten wir eine Variante des Rekrutierungsproblems, bei welcher
bereits eingestellte Kandidaten später durch neue Kandidaten ersetzt werden können.

Der Großteil der Arbeit beschäftigt sich mit der Analyse der exakten Wahrscheinlichkeits-
verteilungen der einzelnen Parameter. Dazu benötigen wir viele Hilfsmittel aus verschiedenen
Bereichen der Mathematik, wie zum Beispiel erzeugende Funktionen oder komplexe Analysis.
Weiters sind wir aber auch an den Grenzverteilungen der Parameter interessiert, wenn die
Anzahl der Bewerber gegen unendlich wächst.

Die betrachteten Strategien sind Rekrutierung über dem Minimum, Rekrutierung über dem
Maximum, Rekrutierung über dem m-ten besten rekrutierten Kandidaten, Rekrutierung über
dem Median und eine probabilistische Strategie. Jede dieser Strategien arbeitet nach der
Regel, dass ein Kandidat nur dann eingestellt wird, wenn er besser als ein bestimmter Schwell-
wert, gegeben durch den Rang eines bereits rekrutierten Kandidaten, ist. Dieser Schwellwert,
bzw. der Kandidat, kann sich mit der Zeit verändern. Der Hauptunterschied zwischen den
einzelnen Strategien liegt in der Auswahl des Schwellwertes, bzw. dem zugehörigen Kandi-
daten. Es stellt sich heraus, dass jede der einzelnen untersuchten Strategien ihre eigenen Vor-
und Nachteile hat, daher ist es von den gestellten Anforderungen abhängig, welche Strate-
gie am geeignetsten ist. Besonders möchten wir auf die probabilistische Strategie hinweisen,
welche eine Verbindung zwischen all den anderen untersuchten Strategien herstellt.
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Preface

The hiring problem is a recent research problem that belongs to the category of on-line
selection under uncertainty. The process of the hiring problem is quite simple. We imagine
a company hiring new employees. Thus, we consider a linear sequence of candidates arriving
to an interview. The company has to make an immediate and irrevocable decision whether
to hire a candidate or not. This implies that this decision has to be made just on the quality
of the candidates seen so far without information about the future. For the decision of hiring
a candidate or not the company ranks the candidates from best to worst and the decision
has to be made on the relative rank of the currently interviewed candidate. This restriction
transforms the problem into a discrete problem which gives us the chance to analyze it with
combinatorial techniques.

There are several fascinating aspects about the hiring problem. First of all one may easily
construct several different ways to make a decision about a hiring. In my opinion the most
interesting aspect is the interaction between the different fields of mathematics when analyzing
the problem. As we restrict ourselves to the combinatorial version of the hiring problem we
may obviously apply combinatorial techniques. Other fascinating disciplines like complex
analysis or higher probabilistic theory appear very often in our considerations as well.

In Chapter 1 we give a precise definition of the hiring problem and construct a framework
for the analysis of hiring strategies. Furthermore we introduce hiring parameters, which
are random variables that give information about the hiring process depending on the used
strategy. The most fundamental parameter is the size of the hiring set, which indicates how
many candidates get hired by a specific strategy. Other parameters like the waiting time
or the distance between the last two hirings give information about how the hiring process
is expected to evolve when the number of candidates increases, while the score of the best
discarded candidate and the rank of the last hired candidate investigate the expected quality
of the recruited candidates. We also introduce a modification of the hiring problem, the
so-called hiring and firing, where we add a replacement mechanism. Thus, we relax the
restriction that the decision of a hiring is irrevocable. If a candidate gets discarded by the
strategy, although he is better than the least ranked already hired candidate, he replaces
this candidate. The number of replacements gives a good measurement of how selective the
hiring process is. We also state some important notations and theorems we will need from
the different fields of mathematics in this chapter.

Chapter 2 analyzes a first rather simple strategy, the so-called hiring above the minimum.
Here the first candidate gets hired and any further candidate gets hired if and only if he is
better than the worst already hired candidate. Thus, there is a strong dependency on the
quality of the first candidate. The hiring process is rather simple and can mostly be analyzed
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by using combinatorial considerations.

The main part of this work can be found in the Chapters 3 and 4 which form the category of
Lake Wobegon Strategies. This type of strategy is defined by the property that the quality
of the hiring set always increases when recruiting a new candidate. In Chapter 3 we consider
hiring above the maximum and hiring above the m-th best, which are two related strategies.
In these strategies we hire the first, respectively the first m candidates, and other candidates
get hired if they are better than the best, respectively the m-th best, already hired candidate.
The benefit of hiring above the m-th best is, that the parameter m can be chosen arbitrarily.
Thus, one can adjust the hiring process to his personal conditions.

Chapter 4 analyzes the strategy hiring above the median. Here the first candidate gets
hired and others get hired if their rank is better then the median score of all already hired
candidates. The process is a more complicated one as one does not know the median score
of all already hired candidates. However, by an approach using an automaton Helmi and
Panholzer were able to solve this problem.

Chapter 5 gives a probabilistic hiring process and arose from personal correspondence with
Dr. Alois Panholzer. In particular we hire the first candidate and others get hired if they
are better than a threshold candidate. This threshold is a candidate from the current hiring
set. When hiring a new candidate there is a chance of p ∈ [0, 1] that the threshold changes
to the very next better already hired candidate. Because of the probability p it is rather
difficult to investigate this strategy. However, we could determine the asymptotic behavior
of the hiring set. We especially investigated the connection of the probabilistic approach to
the other strategies.

Clemens Tomsic
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Chapter 1

Preliminaries

1.1 The hiring problem

The hiring problem is a recent research problem that was first introduced by Broder et al. in
2008 [3] and belongs to the category of on-line selection under uncertainty. It is closely related
to the secretary problem (see [10,11]) and the Chinese restaurant process (CRP) (see [13,26]).
Here we will formulate the hiring problem and set up a framework to consider several hiring
strategies. In our model we will consider rank-based strategies only. This is a different
approach than in [3] and allows us to consider the combinatorial aspects of the hiring problem.
The benefit of this alternative formulation is the application of a variety of combinatorial
methods like generating functions. In our notation we will mostly follow [1, 14, 15] who
introduced this combinatorial approach.

Let us consider an expanding company that is searching for new employees. The applicants
are invited to an interview and arrive one after another. After the interview the company
has to take an irrevocable and immediate decision whether to hire the candidate or not. This
implies that the company has no information about the future when interviewing a candidate
so this decision must be based on the interviews so far.

Formally we may consider a sequence X1, X2, . . . , Xn of unknown length n concerning can-
didates invited to the interview. When taking the interview the i-th candidate is assigned
a quality score Qi. The quality scores may be interpreted as independent and identically
distributed random variables. As we are mainly interested in combinatorial aspects we will
not care about the quality score of a candidate itself but about the relative rank the candidate
gets among all interviewed persons so far, i.e. the candidates are ranked from best to worst
without ties, the best candidate gets rank n and the worst gets rank 1 - the higher the score
of a candidate the higher the rank.

The central tool when ranking the candidates are permutations. In a first step when modeling
this ranking could be a mapping which assigns each candidate to a rank. As we are mostly
interested in the index of the candidate we may interpret this mapping as a permutation on
the set of indices. The following definition issues this situation formally.

1



1.1. The hiring problem 2

Definition 1.1.1. Let X1, X2, . . . , Xn denote the sequence of the candidates arriving to the
interview. Then the ranking of the applicants is denoted by

σ : {X1, . . . Xn} → {1, . . . , n}
Xi 7→ σ(Xi).

We call σ(Xi) the rank of candidate Xi. For convenience we will always denote the rank by
σ(i) as we are only interested in the index of the candidate, i.e. we consider σ as a permutation
on the set {1, . . . , n}, what we will denote by σ ∈ Sn. Furthermore, we will use sequential
notation σ = σ(1)σ(2) . . . σ(n) for permutations and we will write |σ| = n for the length of
the permutation.

�

For any candidate Xi the rank σ(i) denotes the absolute position of the candidate’s qual-
ity among all interviewed candidates. As we do not know the number of applicants when
interviewing - and possibly hiring - a candidate, we are not interested in the absolute but
the relative rank among the candidates X1, X2, . . . , Xi. Therefore it is useful to build up the
permutation σ from step to step when interviewing candidates. This leads to the following
definition which we get in a natural way.

Definition 1.1.2 (Permutation of the relative ranks). For a permutation σ on the
ranks {1, 2, . . . , n} we define the permutation of the relative ranks after i ≤ n interviewed
candidates ρi(σ) in the following inductive way

• i = 1: ρ1(σ) = 1

• i > 1: ρi(σ) = ρi−1(σ) ◦ j, where j = |{k ∈ {1, 2, . . . i} : σ(k) ≤ σ(i)}|, i.e. denotes the
relative rank of Xi amongst the first i candidates.

The operation ◦ is defined by

◦ : Si−1 × {1, 2, . . . , i} → Si

(τ ◦ j)(k) =

{
τ(k) + 11[τ(k)≥j], 1 ≤ k ≤ i − 1,

j, k = i.

Starting with a permutation τ ∈ Si−1 we obtain the permutation τ ◦ j by increasing τ(k) by
1 if and only if τ(k) ≥ j, 1 ≤ k ≤ i − 1. For k = i we have (τ ◦ j)(i) = j.

�

Note that the operation ◦ is well-defined as we get the relative ranks of the first i candidates
at each step and ρn(σ) = σ. We can easily observe this in the following example which we
will also consider for the hiring strategies later on.

Example 1.1.3. We want to reconstruct the permutation σ = 463921785 by considering
the relative ranks after each interview. This yields
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candidate absolute rank relative rank ρi(σ)

1 4 1 1

2 6 2 12

3 3 1 231

4 9 4 2314

5 2 1 34251

6 1 1 453621

7 7 6 4537216

8 8 7 45382167

9 5 5 463921785

In the last step we reconstructed the permutation σ. This is a very important property for
our purposes as we may compare the current candidate to all those who have already been
interviewed but there is no information about the further candidates.

�

Note that in fact we do not know the permutation σ in the beginning but by interviewing
candidates we know the relative rank at each step i and ρi(σ). This allows us to build up the
permutation step by step and in the end we receive σ. For convenience it is easier to consider
a given permutation and reconstruct it like done in the example before.

When interviewing a candidate we will write Xi = 0 and say candidate i is discarded or Xi = 1
and call candidate i hired. This allows us to interpret a candidate as a random variable Xi in
a natural way depending on whether the candidate gets hired or not. Given a permutation
σ we are now able to define hiring strategies. A hiring strategy may be described as an
algorithm that decides if we hire a candidate or not respecting the rules we have established
in our formulation of the hiring problem.

Definition 1.1.4 (Hiring set, hiring strategy). Let n ∈ N and σ ∈ Sn denote the
permutation of the ranks in a sequence of n candidates. We call the set of indices of hired
candidates the hiring set and denote it by H(σ) = {i : Xi = 1}. As the hiring set is generated
while interviewing candidates we write Hi(σ) for the current hiring set at step i. Obviously
we have Hn(σ) = H(σ). A hiring strategy builds up the hiring set respecting the following
rules.

i) H0(σ) = ∅ (1.1)

ii) Hi(σ) ⊆ {1, 2, . . . , i}, ∀ i ≤ n (1.2)

iii) Hi(σ) \ {i} = Hi−1(σ) (1.3)

iv) Hi(σ) = Hi(π), ∀ σ, π ∈ Sn : σ(j) = π(j) ∀ j ∈ {1, 2, . . . , i} (1.4)

These are exactly the rules we claimed when formulating the problem. The Constraints (1.1)
and (1.2) state that no future candidate can be hired at step i. Condition (1.3) ensures that
no previous candidate may get hired. All in all these three rules state that candidate i may
only get hired in step i. It depends on the strategy itself whether the candidate is added to
the hiring set (i.e. the candidate gets hired). Rule (1.4) simply guarantees that decisions are
made without information about the future because all permutations σ, π that have the same
relative ranks in at least the first i steps result in the same hiring sets at step i.

�
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For our purposes the absolute ranks are not really important. We rather like to consider the
relative ranks. This leads to the following tightening of (1.4).

Definition 1.1.5 (Rank-based strategy). In the setting of Definition 1.1.4 we call a
hiring strategy rank-based if and only if for all permutations σ ∈ Sn and all i, 1 ≤ i ≤ n, it
holds that

Hi(σ) = H(ρi(σ)).

Obviously (1.4) holds for rank based strategies. In particular consider σ, π ∈ Sn : σ(j) =
π(j) ∀j ∈ {1, 2, . . . , i}. This yields Hi(σ) = H(ρi(σ)) = H(ρi(π)) = Hi(π).

�

The definition above is not really a strict tightening but it gives us consistency with our
notation when building up a permutation and allows us to consider the relative ranks at each
step. Let us now consider a first very simple rank-based strategy.

Example 1.1.6 (Hiring by even index). Let n ∈ N and X1, X2, . . . , Xn denote a
sequence of candidates. Hiring by even index hires candidates applying the following rule:

Xi =

{
0, i ≡ 1(2)

1, i ≡ 0(2)

This means that each candidate having an even index gets hired which yields

Hi(σ) =

{
{2, 4, . . . i − 1}, i ≡ 1(2)

{2, 4, . . . i}, i ≡ 0(2)

Obviously the strategy fulfills all the conditions given in Definition 1.1.4 and is actually rank-
based as it is completely independent of the permutation σ.

�

The strategy given in the example above is actually not interesting at all and it is not sensible
to observe its behavior. It just shows that it is easy to find strategies that serve our definition of
a hiring strategy. The problem with ’hiring by even index’ is that it is completely independent
of the permutation at all, i.e. interviewing the candidates is absolutely senseless. This leads
us to the next definition.

Definition 1.1.7 (Pragmatic strategy). Consider a permutation σ ∈ Sn of the ranks
in a sequence of n candidates. Let R(σ) := |{j : 1 ≤ j ≤ n + 1 ∧ (n + 1) ∈ H(σ ◦ j)}|
denote the number of ranks so that candidate Xn+1 is hired right after σ, i.e. with respect to
σ. Furthermore, we denote the indicator variable for rank j getting hired right after σ by

Rj(σ) =

{
1, (n + 1) ∈ H(σ ◦ j),

0, else.

A hiring strategy is called pragmatic if and only if the following holds for all permutations σ

and all 1 ≤ j ≤ |σ| + 1:

i) Rj(σ) = 1 ⇒ Rk(σ) = 1 ∀ k ≥ j, (1.5)

ii) R(σ ◦ j) ≤ R(σ) + Rj(σ), (1.6)

iii) Rj(σ) = 0 ⇒ R(σ ◦ j) = R(σ). (1.7)
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Constraint (1.5) states whenever a strategy hires a candidate with score j it would hire a
candidate with a higher score as well, while (1.6) simply sets up a boundary for the possible
ranks to be hired, i.e. there must not be a big difference between the hiring criteria for
consecutive interviews. Last but not least (1.7) causes that a discarded candidate does not
affect the hiring criteria for the next candidate.

�

As one can easily see ’hiring by even index’ is no pragmatic strategy. For this we consider a
permutation σ satisfying |σ| ≡ 0(2). Then R(σ) = Rj(σ) = 0 holds for 1 ≤ j ≤ |σ| + 1 but
R(σ ◦ j) = |σ| + 2 which contradicts (1.6).

Remark 1.1.8. The quantities R(σ) and Rj(σ) respectively characterize the hiring criteria
of a hiring strategy. A strategy may be defined under specifications of R(σ) for each permu-
tation σ.

�

Using these variables we obtain the first information about the hiring set and ranks that are
hired for sure.

Theorem 1.1.9 (Archibald and Martínez [1], Theorem 2). For any pragmatic
strategy and a permutation σ ∈ Sn of the ranks it holds that

σ(i) ≥ n + 1 − R(σ) ⇒ i ∈ H(σ).

So the best R(σ) candidates are hired for sure.

Proof. The statement can be easily shown by induction on n:

• n = 0: As σ is the empty permutation the hiring set H(σ) contains the best R(σ)
candidates.

• n − 1 → n: We consider a permutation σ ∈ Sn that is built up by ρn−1(σ) ◦ j for some
j ∈ {1, 2, . . . , n},i.e. σ(n) = j. By inductive hypothesis H(ρn−1(σ)) contains the best
R(ρn−1(σ)) candidates. As we are considering pragmatic strategies only we have that

Xn =

{
1, j ≥ n + 1 − R(ρn−1(σ))

0, else.

Case 1: Xn = 1. In this case it is true that j ≥ n + 1 − R(ρn−1(σ)), so Xn belongs
to the best R(ρn−1(σ))+1 candidates of H(σ). By Definition 1.1.7 we have R(σ) ≤
R(ρn−1(σ)) + 1, which implies that H(σ) contains the best R(σ) candidates of σ.

Case 2: Xn = 0. It is true that j < n + 1 − R(σ) and as a consequence the relative
scores of the best R(ρn−1(σ)) increase by one. By inductive hypothesis it follows that
the best R(ρn−1(σ)) are hired and (1.7) yields R(σ) = R(ρn−1(σ)).

Thus, the hiring set contains of at least the best R(σ) candidates.
�

We will only consider strategies that hire a candidate if and only if his relative rank is better
than the relative rank of some tagged already hired candidate, called the threshold candidate.
Depending on the strategy the threshold candidate may change in some specific way when a
new candidate is hired. It is a routine task to prove this kind of strategies being pragmatic.



1.2. Hiring parameters 6

1.2 Hiring parameters

Before we start observing pragmatic hiring strategies and their properties we define hiring
parameters in this section. Hiring parameters are essential quantities that characterize the
behavior of a hiring strategy. On the one hand we are mainly interested in the exact distri-
butions and the expectation of the quantities for the given strategy and on the other hand we
will also investigate its asymptotic behavior. We will mainly consider the hiring parameters
defined in [14, 15] and use the same notation. Most of the parameters were already investi-
gated in [1, 3, 20] as well. Following [14] we may characterize three kinds of parameters. The
first ones study the behavior of a hiring strategy, while the second ones give information about
the quality measure of the hired candidates. The third category is actually concerned with
a modification of the hiring problem, the so-called hiring and firing. We will use the same
notation for the parameters for each hiring strategy and possibly add other indices to empha-
size specific dependencies for certain strategies. For example, we will add the parameter m

with hiring above the m-th best.

1.2.A Rate parameters

Our first and most important parameter is given by the size of the hiring set which is also called
the number of hired candidates. This quantity represents the main focus of our considerations
as it is not only our main interest but also important for all the other parameters. All the
strategies we will consider hire the first candidate anyway no matter which score. This yields
that there is always at least one hired candidate.

Definition 1.2.1 (Number of hired candidates). Consider a sequence X1, X2, . . . , Xn

of candidates. Then we denote the number of hired candidates (or size of the hiring set) by
hn.

�

Like in [1] it is useful to consider the following bivariate generating function to compute the
size of the hiring set hn in most cases.

H(z, u) =
∞∑

n=1

∑

σ∈Sn

zn

n!
uh(σ), (1.8)

where h(σ) := |H(σ)| denotes the number of hired candidates for the specific permutation
σ concerning the investigated strategy. We will deal with this function and with generating
functions in general in Section 1.4.

Another very interesting parameter closely related to hn is the hiring rate which is in fact
just the scaling of hn and is given by hn

n
∈ [0, 1]. As one may easily see this indicates how

many candidates we hire in relation to the number n of interviewed candidates.

At the beginning we considered a company looking for new personnel. Companies often search
for a certain number of new employees which leads us to the next parameter, the waiting time.
This quantity gives information about how many interviews we probably have to make until
a given number N of candidates get hired. Obviously this quantity is dependent on the hiring
rate for the considered strategy. A high hiring rate will lead to a low waiting time and vice
versa.
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Definition 1.2.2 (Waiting time). For a sequence of candidates X1, X2, . . . and the
permutation of their ranks σ we denote the waiting time until N candidates get hired by WN .
Formally WN can be described in the following way.

WN = n ⇔ hn(σ) = N ∧ Xn = 1

Here the first condition says that exactly N candidates are hired at step n and the second
one says that candidate Xn gets hired. This means that for all k < n there are less than N

candidates hired, i.e. hk < N . Obviously N ≥ n holds as no future candidates may get hired
at any step.

�

For growing number n of candidates we expect a good strategy not to hire too many candi-
dates. At the beginning we are not able to decide whether the candidate has a good absolute
score but in each step we gain more information. That is why candidates taking their inter-
view late will only get hired when having a good absolute rank. So the probability for a hiring
will decrease gradually. The next two parameters give information about that situation.

Definition 1.2.3 (Index of the last hired candidate). For a sequence X1, X2, . . . , Xn

of candidates and the permutation of their ranks σ we denote the index of the last hired
candidate by

Ln = max H(σ).
�

The index of the last candidate gives a measure for the quality of the recruited persons. A
low index Ln could mean that there are many good candidates hired at the beginning, so it is
hard for candidates arriving later to become hired. The last quantity describing the behavior
of the strategy is the distance of the last two hirings. Together with the index of the last
hired candidate we may deviate information about how the hiring rate changes in time.

Definition 1.2.4 (Distance between last two hirings). Consider a sequence of
candidates given by X1, X2, . . . , Xn, and let σ ∈ Sn denote the permutation of their ranks.
Then the distance between the last two hirings ∆n is given by

∆n =

{
0, hn ≤ 1

Ln − max(Hn(σ) \ {Ln}), else.

The distance is given by the number of candidates not hired between the two maximum
indices in the hiring set plus one and tells us how many interviews we probably have to make
until the next candidate will get hired.
Note: As there is no distance between two hirings for hn = 1 we define ∆n = 0 in that case.

�

1.2.B Quality parameters

Quality parameters do not give information about the hiring set itself but about the (relative)
ranks of the hired candidates. As the name says they form a good measure about the quality
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of the recruited staff. As we already debated before it will become more and more difficult to
get hired for candidates who arrive later. The rank of the last hired candidate gives a good
reflexion about this statement.

Definition 1.2.5 (Rank of the last hired candidate). Let Ln denote the index of the
last hired candidate in a sequence consisting of n candidates whose ranks are described by a
permutation σ ∈ Sn. Then the rank of the last hired candidate is given by

Rn = σ(Ln).
�

We will often be confronted with a situation where a candidate holding a good quality score
gets discarded although there exist candidates with a worse score that have already been
hired. This is a situation we consider more detailed in Section 1.2.C. Our next parameter
deals with the quality of discarded candidates or more precisely with their maximum score.
A strategy that leads to a high score of the best discarded candidate obviously recruits only
candidates having an excellent quality score. If the rank of the best discarded candidate is
low on the other hand the strategy hires too many candidates.

Definition 1.2.6 (Score of the best discarded candidate). Consider the set of
discarded candidates in a sequence of candidates X1, X2, . . . , Xn which is given by Dn(σ) :=
{1, 2, . . . , n} \ Hn(σ), whereat σ denotes the permutation of their ranks. Then we define the
score of the best discarded candidate by

Mn =

{
0, hn = n

max{σ(j) : j ∈ Dn(σ)}, else.

Note: As there are no discarded candidates for hn = n we define Mn = 0 in that case.
�

A very interesting quantity is given by the gap. This quantity was already studied in [1,3,14,15]
and gives a measure of the increase of the quality of the hiring set as it compares the difference
between the relative rank of the last hired candidate and the maximum possible rank.

Definition 1.2.7 (Gap of the last hired candidate). In a sequence of candidates
X1, X2, . . . , Xn the gap of the last hired candidate is given by

gn = 1 − Rn

n

which is the normalized difference between n and Rn.
�

Following [1] the expectation of the gap in a pragmatic hiring strategy can be generalized by
the next theorem.

Theorem 1.2.8 (Archibald and Martínez [1], Theorem 3). For any pragmatic hiring
strategy the following holds:

E(gn) =
1

2n
(E(Rn) − 1), (1.9)
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where E(Rn) = [zn]
∞∑

k=1

∑
σ∈Sk

R(σ)zk

k! .

Proof. Theorem 1.1.9 yields Rn ∈ {n + 1 − R(σ), n + 2 − R(σ), . . . , n}. For a random
permutation each of the R(σ) ranks are equally likely which yields

E(Rn) = E




n∑

k=n−R(σ)+1

k

R(σ)


 = E

(
1

R(σ)

(
n(n + 1)

2
− (n − R(σ))(n + 1 − R(σ))

2

))

= E

(
n +

1

2
− 1

2
R(σ)

)
= n +

1

2
− E(Rn)

2
.

By definition of gn we get E(gn) = 1 − E(Rn)
n

= E(Rn)−1
2n

.
�

1.2.C Hiring and firing

In our original formulation of the hiring problem an irrevocable decision has to be made
whether to hire a candidate right after the interview. As we will see it happens quite often
that a candidate is discarded even though a candidate holding a worse relative rank has
already got hired. Hiring and firing is a relaxation of the hiring problem caring about exactly
the mentioned situation. Therefore we add a replacement mechanism to all strategies. This
mechanism works in a very simple way. Given a sequence X1, X2, . . . Xn of candidates and
a permutation σ ∈ Sn of the relative ranks of the candidates, we denote the hiring variables

for hiring and firing with X
[f ]
i whilst Xi denotes the hiring variable for the corresponding

strategy without hiring and firing, i.e. X
[f ]
i = 1 if the i-th candidate gets hired with hiring

and firing, and X
[f ]
i = 0 otherwise.

Hiring and firing performs the hiring process for a candidate in two steps.

1. Hiring: There are two possibilities for the candidate to get hired with hiring and firing.

(a) Xi = 1, i.e. the candidate gets hired by the strategy anyway.

(b) Xi = 0 ∧ ∃ j < i : X
[f ]
j = 1 ∧ σ(j) < σ(i), i.e. the hiring strategy would not hire

candidate i but there exists an already hired candidate whose rank is worse than
the rank of the current candidate.

2. Firing: In contrast to the constraint for the normal hiring the decision for a hiring is
not irrevocable. If a new candidate gets hired although Xi = 0, the worst already hired
candidate gets fired. Note that the decision not to hire a candidate is irrevocable as
well as firing is.

We can see directly that when hiring a candidate by applying (1b), the worst already hired

candidate is replaced by the currently interviewed one. This yields hn = h
[f ]
n , so the num-

ber of hired candidates is not affected by the replacement mechanism. The huge benefit of
this mechanism lies within the quality of the hired candidates. No matter which pragmatic
strategy we use hiring and firing will always hire the best hn candidates. Obviously the most
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interesting quantity for hiring and firing is the number of candidates hired by applying (1b),
which we call the number of replacements.

Definition 1.2.9 (Number of replacements). Let X1, X2, . . . , Xn denote a sequence
of candidates for some hiring process. Then the number of replacements is given by fn :=

|{i : 1 ≤ i ≤ n ∧ Xi = 0 ∧ X
[f ]
i = 1}|. This is exactly the number of candidates hired by

applying our replacement algorithm.
�

The quantity fn gives an analytic relationship between the quantities defined in the Sections
1.2.A and 1.2.B. A good hiring strategy already hires only candidates having a good quality.
This means that the number of replacements ought to be low. On the other hand this could
also mean that the strategy hires too many candidates. We will notice this behavior for hiring
above the minimum which we consider in Chapter 2.

1.3 Notational conventions and asymptotics

In this section we will introduce some important notations we will need for our purposes and
state some useful asymptotic identities.

As we are often interested in what happens when the length n of our sequence tends to infinity
we first consider the asymptotic notation. We will mostly follow the notation and definitions
in [7, Chapter A.2].

Let S be a set and s0 ∈ S a particular element of S. We assume a notion of neighborhood to
exist on S. Let f, g denote two functions from S \ {s0} to R or C.

• O-notation:

f(s) =
s→s0

O(g(s))

if f(s)
g(s) stays bounded as s → s0 in S. In other words, there exists a neighborhood V of

s0 and a real constant C > 0, so that

|f(s)| ≤ C |g(s)|, s ∈ V \ {s0}

• ∼-notation:

f(s) ∼
s→s0

g(s)

if f(s)
g(s) tends to 1 as s → s0 in S.

• o-notation:

f(s) =
s→s0

o(g(s))

if f(s)
g(s) tends to 0 as s → s0 in S. In other words, for any arbitrary small ε > 0 there

exists a neighborhood Vε of s0, so that

|f(s)| ≤ ε |g(s)|, s ∈ Vε \ {s0}.
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For convenience we will often leave s → s0 if it is clear at which point s0 we consider the
asymptotics.

Definition 1.3.1 (Harmonic numbers). For n, k ∈ N the n-th harmonic number of
order k is defined by

H(k)
n :=

n∑

i=1

1

ik
.

For k = 1 we simply write Hn instead of H
(1)
n .

�

Lemma 1.3.2. Asymptotically, for n → ∞, the harmonic numbers have the following
expansion:

Hn = log n + γ + O
(

1

n

)
,

H(k)
n = O(1), k > 1,

whereat γ
.

= 0.5772 denotes the Euler-Mascheroni-constant.
�

Another important kind of numbers which will play an important role when considering hiring
above the m-th best, are the Stirling numbers of first kind.

Definition 1.3.3 (Stirling numbers). For n, k ∈ N the (unsigned) Stirling numbers of
first kind

[n
k

]
are implicitly given by

zn =
n∑

k=0

[
n

k

]
zk,

where zn = z(z + 1)(z + 2) · · · (z + n − 1) denotes the rising factorials.
�

As zn is a polynomial of degree n we may interpret the Stirling numbers of first kind as
the coefficients of zn relating to the canonical basis {1, z, . . . , zn} of the polynomial ring
R[z] :=

{∑n
i=0 aiz

i | n ∈ N ∧ ai ∈ R, 0 ≤ i ≤ n
}

.

Theorem 1.3.4 (Stirling’s formula). Consider a number n ∈ N. Then for the factorial
n! :=

∏n
i=1 i it holds that

n! =
√

2πn

(
n

e

)n (
1 + O

(
1

n

))
. (1.10)

�

Stirling’s formula gives us some useful asymptotics for the binomial coefficients that we state
below.
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Corollary 1.3.5. Consider two natural numbers n, k ∈ N. Then for 1 ≤ k ≤ n
1
2

+ε and
arbitrary 0 < ε < 1

6 it holds that

c(n, k) :=

(n−k
k

)
(n

k

) = e− k2

n

(
1 + O

(
k3

n2

))
.

Furthermore, the numbers c(n, k) are sub-exponentially small for k ≥ n
1
2

+ε.

Proof. We use the logarithmic version of Stirling’s formula, Theorem 1.3.4, which is given by

log(n!) =

(
n +

1

2

)
log(n) − n +

1

2
log(2π) + O

(
1

n

)
(1.11)

to show the claim. Applying (1.11) to

c(n, k) :=

(n−k
k

)
(n

k

) =
((n − k)!)2

n! (n − 2k)!

gives us

log(c(n, k)) = 2

((
n − k +

1

2

)
log(n − k)

)
−
(

n +
1

2

)
log(n)

−
(

n − 2k +
1

2

)
log(n − 2k) + O

(
1

n

)
.

Applying the decompositions

n − k = n

(
1 − k

n

)
and n − 2k = n

(
1 − 2k

n

)
,

together with the fact that log(1 + x) = x − x2

2 + O(x3) yield

log(c(n, k)) = 2

(
n − k +

1

2

)
log

(
1 − k

n

)
−
(

n − 2k +
1

2

)
log

(
1 − 2k

n

)
+ O

(
1

n

)

= −k2

n
+ O

(
k3

n2

)
+ O

(
1

n

)
,

which shows the claim. For k ≥ n
1
2

+ε this result implies that

c(n, k) = O
(
e−n2ε

)

which means that the numbers c(n, k) are sub-exponentially small in this case.
�

In the following we define two very famous functions that help us when investigating hiring
above the median (see Chapter 4). These are firstly the Riemann zeta function and secondly
the gamma function. Furthermore, we state their asymptotic expansions.

Definition 1.3.6 (Riemann zeta function). The Riemann zeta function is defined by

ζ : C>1 → C

s 7→
∞∑

n=1

n−s,
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where C>1 := {s ∈ C | R(s) > 1} denotes the set of all complex numbers s with real part
R(s) > 1.

�

The Riemann zeta function can be continued analytically to C \ {1}.

Definition 1.3.7 (Gamma function). Consider the set C>0 := {z ∈ C | R(z) > 0} of
all complex numbers z with positive real part. Then the complex-valued function

Γ : C>0 → C

z 7→
∫ ∞

0
tz−1e−tdt

is called the gamma function.
�

By using the identity Γ(s + 1) = s Γ(s), we can analytically continue the gamma function
to C \ {0, −1, −2, . . .}. Furthermore, this provides the useful identity n! = Γ(n + 1). For
detailed computations see Example 1.5.4. There is also an asymptotic expansion of the
gamma function that is a generalization of Stirling’s formula for the factorials.

Corollary 1.3.8 (Stirling’s formula for the gamma function). For R(z) → ∞, the
gamma function has the following asymptotic expansion:

Γ(z) =

√
2π

z

(
z

e

)z (
1 + O

(
1

z

))
. (1.12)

�

Another important identity for the gamma function is given by the following lemma.

Lemma 1.3.9 (Legendre’s duplication formula). For each z ∈ C \ {−n
2

∣∣ n ∈ N
}

it
holds that

Γ(z) · Γ

(
z +

1

2

)
=

√
π

22z−1
· Γ(2z).

�

1.4 Formal power series and generating functions

In this section we introduce generating functions, that play a fundamental role for most
combinatorial problems. We assume a basic knowledge of the field of analytic combinatorics
and most of the stated results can be found in [7, 12].

Let us start with the introduction of formal power series which are closely related to polyno-
mials that we already mentioned in Section 1.3.
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Definition 1.4.1 (Formal power series). Let R denote a ring with unity. Then we call
the sum

∞∑

n=0

anzn = a0 + a1z + a2z2 + . . .

a formal power series with coefficients in R. We denote the set of all formal power series by
R[[z]]. Furthermore, we define the sum of two formal power series

∑∞
n=0 anzn,

∑∞
n=0 bnzn by

∞∑

n=0

anzn +
∞∑

n=0

bnzn =
∞∑

n=0

(an + bn)zn,

and their product by

( ∞∑

n=0

anzn

)
·
( ∞∑

n=0

bnzn

)
=

∞∑

n=0

(
n∑

k=0

akbn−k

)
zn.

The set R[[z]] together with the two defined operations + and · forms a ring with unity again.
�

The main reason for considering a formal power series is that we want to gain information
about its coefficients. The following definition gives us a powerful tool to investigate the
coefficients.

Definition 1.4.2 (Coefficient extraction operator). Consider a ring with unity R and
a formal power series

∑∞
n=0 anzn with coefficients in R. Then we call the operator

[zn] : R[[z]] → R,
∞∑

n=0

anzn 7→ an,

the coefficient extraction operator.
�

Obviously the coefficient extraction operator is a linear operator. Furthermore, for a formal
power series A(z) ∈ R[[z]] it satisfies the following useful identity that holds for all n ∈ N and
1 ≤ k ≤ n:

[zn−k] A(z) = [zn] zkA(z).

Definition 1.4.3 (Derivative of a formal power series). Let R denote a ring with
unity and A(z) :=

∑∞
n=0 anzn ∈ R[[z]] be a formal power series. Then we call the function

A′(z) =
∞∑

n=1

nanzn−1

the formal derivative of A(z).
�
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The formal derivative is a useful tool to deal with coefficients an := nbn for an arbitrary
sequence of values bn ∈ R. We only state at this point that it is possible to introduce a
topology on formal power series, which is a complete topology. Thus, we may also consider
and can often identify formal power series with analytic functions. A detailed description of
this topology can be found in [7, 12].

Definition 1.4.4 (Generating function). For a given sequence an ∈ R in a ring R we
often call the corresponding formal power series A(z) =

∑∞
n=0 anzn the generating function

of the sequence an.
�

Very often the sequence an is given by a recursion. Generating functions are a useful tool
for solving these recursions and receiving an explicit form for an. Thus, by multiplying the
equation by zn and summing over n we can transport the recursion into a functional equation
or a (partial) differential equation for the corresponding generating function. When solving
this equation we can apply the coefficient extraction operator to determine an.

In many cases we do not simply have a sequence with only one index. For these sequences
we may generalize the notation of generating functions.

Definition 1.4.5 (Bivariate generating function (BGF)). Let an,k ∈ R denote a
double-indexed sequence. Then the function

A(z, u) =
∞∑

n=0

∞∑

k=0

an,kznuk

is called the bivariate generating function of the sequence an,k. We can easily adapt this
definition inductively if the sequence consists of more than two indices. The corresponding
functions are called multivariate generating functions (MGF).

�

For our purposes BGFs play an important role for investigating random variables. In par-
ticular consider a sequence of discrete random variables Xn with values in N0. We get a
sequence for the probabilities by pn,k = P(Xn = k) in a natural way. We can also invert this
construction. Starting from a sequence of non-negative values an,k we get a random variable
Xn by

P(Xn = k) = pn,k =
an,k

an
,

where we defined an =
∑∞

k=0 an,k. We can also define generating functions for random
variables.

Definition 1.4.6 (Probability generating function (PGF)). Let X denote a discrete
random variable with values in N0. Then we call the function

P (u) =
∞∑

k=0

P(X = k)uk

the probability generating function of X.
�
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The PGF of a random variable X can be used to gain more information about X. For
instance, we have this useful identity:

E(X) =
∞∑

k=0

k P(X = k) = P ′(u)
∣∣
u=1

.

The following theorem shows the connection between the PGF and the BGF of the sequence
pn,k of the probabilities.

Theorem 1.4.7 ([7] Proposition III.1). Let P (z, u) =
∑∞

n,k=0 P(Xn = k)znuk denote
the BGF of a sequence of discrete random variables Xn with values in N0. Then for all n ∈ N

the PGF of Xn is given by

Pn(u) =
∞∑

k=0

P(Xn = k)uk =
[zn]P (z, u)

[zn]P (z, 1)
.

�

The following very useful lemma delivers a representation for the factorial moments of a
sequence of random variables Xn.

Lemma 1.4.8. Consider a sequence of discrete random variables (Xn)n∈N with values in N0

and the corresponding BGF P (z, u) =
∑∞

n=0

∑∞
k=0 P(Xn = k)znuk. Then the integer factorial

moments E(X
r
n) are, for r ∈ N, given by

E(Xr
n) = r! [znur]P (z, u + 1).

Proof. By Newton’s binomial theorem it holds that

P (z, u + 1) =
∞∑

n=0

∞∑

k=0

k∑

ℓ=0

(
k

ℓ

)
P(Xn = k)znuℓ.

When applying the coefficient extraction operator we get

[znur]P (z, u + 1) = [ur]
∞∑

k=0

k∑

ℓ=0

P(Xn = k)uℓ =
∞∑

k=0

k(k − 1) · · · (k − r + 1)

r!
P(Xn = k),

and as a direct consequence we get that E(X
r
n) = r![znur]P (z, u + 1).

�

1.5 Complex analysis

In this section we will state some results from the field of complex analysis. We assume a
basic knowledge of complex function theory, however detailed information about this topic,
as well as the proofs of the stated theorems, can be found in [17, 27]. First of all we need
some definitions.
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Let D ⊆ C be open and f : D \ {w} → C holomorphic. Then f can be represented by the so
called Laurent series about w given by f(z) =

∑∞
n=−c an(z − w)n, with an arbitrary c ∈ N.

The coefficient a−1 =: Res(f, w) is called the residuum of f at w.

Consider a closed, continuous and piecewise continuous differentiable path γ : [a, b] → C.
Then the cycling number of γ about a point w ∈ C \ γ([a, b]) is given by

n(γ, w) :=
1

2πi

∫

γ

1

ζ − w
dζ.

With these definitions we are able to formulate the following theorem.

Theorem 1.5.1 (Residue theorem). Let D ⊆ C be open and w1, w2, . . . , wn ∈ D.
Furthermore, consider a holomorphic function f : D \ {w1, w2, . . . , wn} → C and closed, con-
tinuous and piecewise continuous differentiable paths γk : [ak, bk] → D\{w1, w2, . . . , wn}, k =
1, 2, . . . , m holding

∑m
k=1 n(γk, z) = 0 for all z ∈ C \ D. Then it holds that

m∑

k=1

1

2πi

∫

γk

f(ζ)dζ =
n∑

j=1

Res(f, wj) ·
m∑

k=1

n(γk, wj).

�

Another powerful tool for asymptotic analysis of complex functions is the Mellin transform.
We will introduce the Mellin transform and state some properties of this type of integral
transformation. Detailed explanations and proofs can be found in [6, 7].

Definition 1.5.2 (Mellin transform). For a function f : [0, ∞) → C we call the complex
function

f⋆ : C → C

s 7→
∫ ∞

0
f(x)xs−1dx

the Mellin transform of f .
�

The major use of the Mellin transform is for the asymptotic analysis of functions f(x) either
at x = 0 or for the limit x → ∞. The asymptotics then can be extracted from the singularities
of the Mellin transform. We also give some criteria for the existence of the Mellin transform
in the following lemma.

Lemma 1.5.3. Let f(x) be locally integrable and assume the following two conditions hold:

f(x) =
x→0+

O(xu),

f(x) =
x→∞

O(xv).

Then the Mellin transform f⋆(s) of f(x) exists in a strip −u < R(s) < −v.
�
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Like for most important integral transformations there exists an inversion of the Mellin trans-
form f⋆ of f(x) which is given by

f(x) =
1

2πi

∫ c+i∞

c−i∞
f⋆(s)x−sds,

if f is continuous in an interval containing x. The abscissa c should be chosen in the funda-
mental strip of f , i.e. any c satisfying −u < c < −v with u, v like in Lemma 1.5.3.

Example 1.5.4. Let us consider the continuous function f(x) = e−x. Then the Mellin
transform f⋆(s) is given by

f⋆(s) = Γ(s) =

∫ ∞

0
e−xxs−1dx,

as the resulting integral is exactly the definition of Γ(s). The integral converges for R(s) > 0,
but when applying integration by parts one can easily show the representation

Γ(s + 1) = s Γ(s),

or equivalently, Γ(s) = Γ(s+1)
s

. Hence, using this identity, we can continue the gamma function
analytically to C \ {0, −1, −2, . . .} with poles at all points z ∈ {0, −1, −2, . . .}. Considering
the fact that

Γ(1) =

∫ ∞

0
e−xdx = 1,

together with the functional equation for Γ(s) leads us to

Res(Γ(s), 0) = lim
s→0

s Γ(s) = Γ(1) = 1.

So we determined the residuum of Γ(s) at s = 0. The functional equation of Γ(s) gives a
recursion for the residues at all the other poles rn :=Res(Γ(s), −n):

rn =
rn−1

−n
, n ≥ 1.

One may easily solve this recursion with the starting value r0 = 1 by

Res(Γ(s), −n) = rn = r0 ·
n−1∏

i=0

(
− 1

i + 1

)
=

(−1)n

n!
,

which gives us a representation for all residues of the continued gamma function.

As the original definition of the gamma function converges for R(z) > 0, this is also the
fundamental strip for the existence of the inversion of the Mellin transform of f(x) = e−x

which is given by

e−x =

∫ c+i∞

c−i∞
Γ(s)x−sds.

�
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1.6 Probabilistic methods

We will state some important theorems from the field of probability theory that will help us
to determine the probabilities for the hiring parameters and their distributions as well. A
basic understanding of measure and probabilistic theory is assumed. We will not give proofs
for the statements but they can be found in the mentioned works. First of all we introduce
an important notation that we will often use when determining limit distributions. Detailed
explanations and properties can be found in [23,24].

Definition 1.6.1 (Convergence in distribution). Let (Xn)n∈N denote a sequence
of random variables with density functions fn(x). We say the sequence Xn is convergent in
distribution to a random variable X with density function fX(x) if and only if the following
condition holds:

lim
n→∞P(Xn ≤ x) =

∫ x

−∞
fX(x)dx,

or equivalently, if for each point x of continuity of fX it holds that

lim
n→∞ fn(x) = fX(x).

We will denote this convergence by

Xn
(d)−→ X.

�

The following theorem has many applications in analytic combinatorics and helps to determine
the limit distribution of a sequence on random variables. It is an application of the Central
Limit Theorem (CLT).

Theorem 1.6.2 (Quasi-powers Theorem, [7] Theorem IX.8). Let (Xn)n∈N be a
sequence of discrete random variables with values in N0 with probability generating functions
pn(u). Assume that, uniformly in a fixed complex neighborhood of u = 1, for sequences
βn, κn → +∞, it holds that

pn(u) = A(u) · B(u)βn

(
1 + O

(
1

κn

))
, (1.13)

where both A(u) and B(u) are analytic at u = 1 with A(1) = B(1) = 1. Assume finally that
B(u) satisfies the so-called variability condition,

B′′(1) + B′(1) − B′(1)2 6= 0.

Then the distribution of Xn is, after standardization, asymptotically Gaussian:

P

(
Xn − E(Xn)√

V(Xn)
≤ x

)
= Φ(x) + O

(
1

κn
+

1√
βn

)
(1.14)

where Φ(x) is the distribution function of a standard normal,

Φ(x) =
1√
2π

∫ x

−∞
e− w2

2 dw.

�
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Another useful theorem for determining limit distributions is given by Curtiss.

Theorem 1.6.3 (Curtiss, [4]). Let Fn(x) and Gn(x) be respectively the probability
density function and the moment generating function of a variate Xn. If Gn(α) exists for
|α| < α1 and for all n ≥ n0, and if there exists a finite-valued function G(α) defined for
|α| ≤ α2 < α1, α2 > 0, such that

lim
n→∞ Gn(α) = G(α), |α| ≤ α2,

then there exists a variate X with probability density function F (x) such that

lim
n→∞ Fn(x) = F (x)

at each continuity point and uniformly in each finite or infinite interval of continuity of F (x).
The moment generating function of X exists for |α| ≤ α2 and is equal to G(α) in that interval.

�

The following theorem is a statement about the existence of the limit distribution of a sequence
of random variables, when only the moments of the random variables in the sequence are
known. It is a generalization of the second limit theorem and can be found in [8, 24].

Theorem 1.6.4 (Fréchet and Shohat, [8]). Let (Xn)n∈N be a sequence of random
variables that satisfy the following conditions:

i) There is a number n0 ∈ N so that the moments E(Xr
n) exist for all r ∈ N0 and all n ≥ n0.

ii) For any r ∈ N0 the moments E(Xr
n) lie - if they exist - between two fixed boundaries

independent of n.

Then there exists a subsequence Yi = Xni
, i ∈ N with ni < ni+1 for all i, such that

a) lim
i→∞

E(Y r
i ) = mr exists for all r ∈ N0.

b) The subsequence (Yi)i∈N converges in distribution to one fixed random variable X, i.e.

Yi
(d)−→ X.

c) The moments of X exist and satisfy that

E(Xr) = mr.

�



Chapter 2

Hiring above the minimum

In this section we will discuss a first simple but not trivial strategy. This strategy is called
hiring above the minimum, where the first candidate gets hired and further applicants only
get recruited if their rank is better than the candidate with the worst rank that got hired.
Obviously this candidate is always the first candidate. This shows that hiring above the
minimum coincides with the strategy hiring above a fixed threshold where we choose the first
candidate as a threshold candidate and others only get hired if and only if they are better
than the threshold.

2.1 Hiring above the minimum

Based on an idea mentioned in [1] we first consider the simple strategy hiring above the
minimum which is also known as hiring above a fixed threshold. In this strategy we hire the
first candidate X1 who becomes the threshold candidate. Further candidates Xi get hired if
and only if their score is better than the threshold. This implies that the first candidate stays
the worst ranked among all hired candidates at each step, so a hiring happens if and only if
the current candidate’s rank is better than the minimum rank of all hired candidates so far.
Formally the strategy may be described in the following way:

Strategy 2.1.1 (Hiring above the minimum). Let σ ∈ Sn denote the permutation of
the ranks of the interviewed candidates after n interviews and H(σ) denote the set of hired
candidates. In hiring above the minimum H(σ) is constructed applying these rules:

• H1(σ) = {1}.

• Hi(σ) =

{
Hi−1(σ), σi(i) < σi(1),

Hi−1(σ) ∪ {i}, σi(i) > σi(1),
i ≥ 2.

The value σi(1) =: τi is called the threshold at step i. For convenience we will often leave the
index of the threshold value if it is clear which step we consider.

�

When considering a sequence of interviewed candidates the permutation gets built up like

21
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described in Section 1.1. Thus, the value of τ increases by one every time a candidate is
discarded as we can see in the next example.

Example 2.1.2. Let σ = 463921785 be the permutation of the ranks in a sequence of
interviews. We will now observe how the threshold changes when the permutation is built up
after each interview.

n rank σn hired threshold

1 1 1 X 1

2 2 12 X 1

3 1 231 2

4 4 2314 X 2

5 1 34251 3

6 1 453621 4

7 6 4537216 X 4

8 7 45382167 X 4

9 5 463921785 X 4

As we can see the value of the threshold changes each time a candidate is discarded. For the
hiring set of the permutation σ we get H(σ) = {1, 2, 4, 7, 8, 9}.

�

As one would expect there is a strong dependency on the value of τ . Since we always consider
random permutations of the candidates the first candidate could probably be the best one.
In that case all the other candidates are discarded. On the other hand a low rank for τ would
mean that almost each candidate gets hired. Like mentioned in [1] it is often useful to consider
τ in dependency of n when investigating asymptotic behavior as the threshold will increase
with growing n. Let us now investigate some quantities for hiring above the minimum.

Theorem 2.1.3. Consider the indicator variable Xn which evaluates to 1 if the n-th
candidate is hired and to 0 otherwise. Then the following equalities hold

P(Xn = 1 | τ = k) =
n − k

n − 1
, 1 ≤ k ≤ n ∧ n > 1, (2.1)

P(Xn = 1) =

{
1, n = 1,
1
2 , else.

(2.2)

Proof. Assuming τ := σ(1) = k we have n − k out of the remaining n − 1 ranks getting hired.
This leads to

P(Xn = 1 | τ = k) =
n − k

n − 1
.

For the second formula let T = {σ ∈ Sn | τ = k}. As each σ ∈ T has its first position fixed
and the other elements may get permuted randomly we get |T | = (n − 1)! out of |Sn| = n!

permutations. This shows P(τ = k) = (n−1)!
n! = 1

n
. By definition of our strategy we get
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P(X1 = 1) = 1 because the first candidate gets hired anyway. For n > 1 the law of complete
probability yields

P(Xn = 1) =
n∑

k=1

P(Xn = 1 | τ = k) P(τ = k) =
n∑

k=1

n − k

n − 1

1

n

=
1

n(n − 1)

(
n∑

k=1

n − k

)
=

1

n(n − 1)

(n − 1)n

2
=

1

2

�

Like mentioned before the restricted probability for hiring a candidate is strongly dependent
on the rank of the threshold candidate. For a good strategy we do not want to have such a
dependency. We could also observe that the probability for a hiring is 1

2 for each candidate,
i.e. independent of n. This result is very intentional because there are only two possibilities.
Either the candidate is better than the threshold or worse. As a consequence we get the
following theorem.

Theorem 2.1.4. The exact probability and the expectation for the size of the hiring set
hn and 1 ≤ i ≤ n are

P(hn = i) =
1

n
, (2.3)

E(hn) =
n + 1

2
. (2.4)

Proof. For n = 1 the only candidate gets hired for sure. This yields P(h1 = 1) = 1. As each
candidate gets hired if and only if he is better than the threshold, the size of the hiring set is
directly correlating to τ . Thus, P(hn = i) = P(τ = n − (i − 1)) = 1

n
.

For the expectation we get

E(hn) =
n∑

i=1

i
1

n
=

n + 1

2
.

�

As mentioned in the proof above we can recognize a strong dependency on the threshold τ

and the conditional probability for hn is Diracian. This yields E(hn | τ = k) = n + 1 − k for
the conditional expectation.

Remark 2.1.5. The asymptotic behavior of hn itself is not very difficult to observe.
For n → ∞, hn converges to a continuous uniform distribution. If we have a look at the
conditioned distribution we can observe a different behavior. Following [1] we consider the
asymptotic expansion of hn respecting the relation between n and the rank τ of the threshold
candidate. Concretely we observe the relation τ = αn + o(n) for some α holding 0 < α ≤ 1.

For the density E(hn)
n

of the derivation of hn this means

E(hn | τ = αn + o(n))

n
=

n + 1 − αn − o(n)

n
= 1 +

1

n
− α + o(1) = 1 − α + o(1).

�
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Next we want to consider the waiting time WN until N candidates get hired. The following
remark is useful for this parameter and each (pragmatic) strategy.

Remark 2.1.6. For the waiting time WN it holds that

P(WN = k) = P(hk−1 = N − 1) P(Xk = 1 | hk−1 = N − 1)

for each strategy.
�

Proof. The parameter of the waiting time tells us how long we have to wait until N candidates
get recruited. More precisely WN = k means that Xk is the N -th hired candidate, i.e. exactly
N −1 candidates get hired before candidate Xk. The probability that exactly N −1 candidates
have got already recruited when Xk is taking his interview is given by P(hk−1 = N − 1). In
that case the conditioned probability for a hiring of candidate Xk is P(Xk = 1 | hk−1 = N −1).

�

Using Remark 2.1.6 it is an easy task to compute the probability and expectation for the
waiting time with hiring above the minimum.

Theorem 2.1.7. The probability distribution and expectation for the waiting time WN are

P(WN = k) =





δk,1, N = 1,

0, k < N,
N−1

(k−1)2 , else,

E(WN ) =

{
1, N = 1,

∞, else.

Proof. At each step i the maximum number of hired candidates is i as no future candidates
may get hired. This yields P(WN = k) = 0 for k < N . For k ≥ N Remark 2.1.6 as well as
(2.1) and (2.3) yield

P(WN = k) = P(hk−1 = N − 1) P(Xk = 1 | hk−1 = N − 1)

= P(hk−1 = N − 1) P(Xk = 1 | τ = k − N + 1)

=
1

k − 1

N − 1

k − 1
.

For the expectation we get

E(W1) = P(W1 = 1) = 1

E(WN ) = P(WN = 1) +
∞∑

k=2

k
N − 1

(k − 1)2
, N > 1,

where P(WN = 1) = δN,1. For N = 1 this yields E(W1) = 1 and for N > 1 we get

E(WN ) =
∞∑

k=2

k
N − 1

(k − 1)2
≥

∞∑

k=2

k
N − 1

k(k − 1)
= (N − 1)

( ∞∑

k=2

1

(k − 1)

)
= ∞.
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The last equality holds as the sum is the divergent harmonic sum.
�

When we take the expectation of hn into account this result is not very surprising as the
probability for only one hiring is actually very high.

The rank of the last hired candidate is another good measurement for the quality of a hiring
strategy. However, for hiring above the minimum it is not such an important size as each hired
candidate gets hired independent of the value of his index. We will see that this property
does not hold for the other strategies.

Theorem 2.1.8. For the rank Rn of the last hired candidate in a sequence of length n it
holds that

P(Rn = i) =

{
1
n

(Hn−1 − Hn−i), i < n,
1
n

Hn−1 + 1
n

, i = n,

and

E(Rn) =
3n2 + 3n − 2

4n
.

Proof. Let us first observe the conditional probability for Rn = i under τ = k.

• Case 1: i < k. Here we get P(Rn = i | τ = k) = 0, because rank i does not get hired.

• Case 2: i = k. In this case the last hired candidate is the threshold, i.e. τ = n. This
yields P(rn = i | τ = k) = 1 for i = n and P(Rn = i | τ = k) = 0 otherwise.

• Case 3: i > k. The last hired candidate is not the threshold. Each of the other
n − k hired candidates could be hired as the last hired one, and each having the same
probability. Thus, it holds that P(Rn = i | τ = k) = 1

n−k
.

Applying the law of complete probability we get for i < n:

P(Rn = i) =
i−1∑

k=1

P(Rn = i | τ = k) P(τ = k) =
i−1∑

k=1

1

n − k

1

n
=

1

n
(Hn−1 − Hn−i)

In the case of i = n we need to add the summand from Case 2 multiplied by 1
n

.

For the expectation we get

E(Rn) =

(
n−1∑

i=1

i
1

n
(Hn−1 − Hn−i)

)
+ n

1

n
(Hn−1 + 1).
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Flipping the index i 7→ n − i then yields

E(Rn) =
1

n

(
n−1∑

i=1

(n − i)(Hn−1 − Hi)

)
+ Hn−1 + 1

=
1

n

(
n−1∑

i=1

n Hn−1

)
− 1

n

(
n−1∑

i=1

n Hi

)
− 1

n

(
n−1∑

i=1

i Hn−1

)
+

1

n

(
n−1∑

i=1

i Hi

)
+ Hn−1 + 1

= (n − 1) Hn−1 − (n Hn − n) − 1

n

(n − 1)n

2
Hn−1 +

1

n

(
n(n − 1)

2
Hn − n(n − 1)

4

)

+ Hn−1 + 1,

wherein we used identities for the harmonic numbers which can be found in [19, p.279] to
compute the second and fourth sum. Simple algebraic manipulations and the fact that
Hn−1 − Hn = − 1

n
then show that

E(Rn) =
n + 1

2
(Hn−1 − Hn) + n + 1 − n(n − 1)

4n
=

3n2 + 3n − 2

4n
.

�

The next theorem is a statement about the index Ln of the last hired candidate. If we compare
Ln to rn we are not interested in the rank but the position of the last hiring. Therefore we want
to remark the fact that a hiring of candidate i is independent of the candidates X1 . . . Xi−1

if we do not care whether they are hired or not (i.e. we only restrict ourselves to Xi = 1 but
X1, . . . Xi−1 could have any of the two options 0 or 1). The law of complete probability then
ensures P(Xi = 1) = 1

2 . As a consequence the claim that candidates j ∈ {i + 1, . . . , n} are
hired or discarded is independent of the candidates X1 . . . Xi−1 as well, which can easily be
shown by using the law of complete probability.

Theorem 2.1.9. For the exact probability of the index Ln of the last hired candidate it
holds that

P(Ln = i) =





1
n

, i = 1,
1

(n−i+1)(n−i+2) , 1 < i ≤ n.

The expectation of Ln is given by

E(Ln) = n + 1 − Hn.

Proof. For i = 1 the threshold candidate is the last hired candidate, i.e. P(Ln = 1) = 1
n

. In
the case of i > 1 Theorem 2.1.3 provides P(Xi = 1) = 1

2 . Furthermore, Ln is independent of
the candidates 1 . . . i − 1. Thus, without loss of generality we may just delete the candidates
2, . . . , i − 1 and consider i = 2 in a permutation of length n − i + 2. For that special case it
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is true that

P(Ln = i) = P(Ln−i+2 = 2)

= P(X2 = 1) ·
n−i∏

k=1

P(Xk+2 = 0 | X2 = 1, X3 = X4 = . . . = Xk+1 = 0)

=
1

2
·

n−i∏

k=1

k

k + 2
=

1

(n − i + 1)(n − i + 2)
.

For the expectation it holds that

E(Ln) =
n∑

i=1

i P(Ln = i) =
1

n
+

n∑

i=2

i

(n − i + 1)(n − i + 2)
︸ ︷︷ ︸

=:A

.

Partial fraction decomposition applied on all summands of A yields

A =
n∑

i=2

(
i

n − i + 1
− i

n − i + 2

)
= n + 1 −

(
Hn +

1

n

)

and for the expectation we get E(Ln) = n + 1 − Hn.
�

We can compute the distance between the last two hirings in a similar way. We only have to
adapt our considerations to two runs of discarded candidates. The first run is between the
second last hired candidate and the last hired one and the other run starts at the last hired
candidate and leads to the end of the sequence.

Theorem 2.1.10. Let ∆n denote the distance between the two last hirings (i.e. the number
of discarded candidates between the two last hirings plus one). Then the exact probability
for ∆n is given by

P(∆n = i) =





1
n

, i = 0,
1

i(i+1) , 1 ≤ i ≤ n − 1.

For the expectation we get

E(∆n) = Hn − 1.

Proof. By definition we get P(∆n = 0) = 1
n

as only the first candidate gets hired. For hn ≥ 2
we have to distinguish two cases.

• Case 1: hn = 2. Assuming ∆n = i the only two hired candidates are on position 1
(i.e. the threshold candidate) and on position i + 1. This yields

P(∆n = i | hn = 2) = 1

(
i∏

k=2

k − 1

k

)
1

i + 1




n∏

k=i+2

k − 2

k


 =

1

(n − 1)n
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• Case 2: hn > 2. With the same argument as in the proof of Theorem 2.1.9 the first
of the last two hired candidates may again be the second candidate in a corresponding
permutation of length n − ℓ for ℓ = 0, . . . , n − i − 2 referring to the possible positions
of the last hired candidate (i.e. the number of discarded candidates after the last hired
one). Thus

P(∆n = i | Ln−ℓ = i + 1) =
1

2

(
i+1∏

k=3

k − 2

k

)
2

i + 2




n−ℓ∏

k=i+3

k − 3

k




=
2

(n − ℓ)(n − ℓ − 1)(n − ℓ − 2)
.

For the exact probability of ∆n we get

P(∆n = i) =
1

(n − 1)n
+

n−i−2∑

ℓ=0

2

(n − ℓ)(n − ℓ − 1)(n − ℓ − 2)
︸ ︷︷ ︸

=:A

.

Again partial fraction decomposition applied on the summands of A yields

A =
n−i−2∑

ℓ=0

(
1

n − ℓ
− 2

n − ℓ − 1
+

1

n − ℓ − 2

)

= (Hn − Hi+1) − 2(Hn−1 − Hi) + (Hn−2 − Hi−1)

= − 1

(n − 1)n
+

1

i(i + 1)

and finally P(∆n = i) = 1
i(i+1) . For the expectation it holds that

E(∆n) =
n−1∑

i=0

i P(∆n = i) =
n−1∑

i=1

i
1

i (i + 1)
= Hn − 1.

�

To complete our considerations about hiring above the minimum we can easily see that the
rank of the best discarded candidate is always τ −1. Furthermore, it is not sensible to consider
hiring and firing for hiring above the minimum as exactly the best n − τ + 1 candidates are
hired. As we could see hiring above the minimum is no ideal hiring strategy due to the
strong dependency on the rank of the first candidate and the infinity of the expectation of
the waiting time WN . A variant for hiring above a minimum could be that the threshold is
not the first candidate but the median of all employees already working at the company.

Example 2.1.11 (Example 2.1.2, continued). Last but not least we compute all the
investigated quantities for the permutation σ = 463921785. As we already mentioned before
the hiring set is given by H(σ) = {1, 2, 4, 7, 8, 9}. We get the following results
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name variable value

Size of the hiring set h(σ) 6

Waiting time for N = 3 W3(σ) 4

Rank of the last hired candidate r(σ) 5

Index of the last hired candidate L(σ) 9

Distance between the last two hirings ∆(σ) 1

We also state the expected values for n = 9 to compare the general results to that specific
case when considering σ.

name variable expectation

Size of the hiring set h9 5

Waiting time for N = 3 W3 ∞
Rank of the last hired candidate r9 5.25

Index of the last hired candidate L9 7.17

Distance between the last two hirings ∆9 1.83

.
�



Chapter 3

Hiring for the elite

“Welcome to Lake Wobegon, where all the women are strong,
all the men are good-looking and all the children are above average.”

- Garrison Keillor

In this chapter we will consider two very selective strategies. Firstly hiring above the maxi-
mum which only hires candidates better than all already interviewed persons. This strategy
hires the elite only but there may be many excellent candidates that are discarded on the other
hand. Secondly we observe hiring above the m-th best. It is a generalization of hiring above
the maximum which we get for m = 1. Nevertheless it is sensible to consider hiring above
the maximum separately as it provides an interesting connection to records in permutations.

Together with hiring above the median, which we will consider in Chapter 4, we obtain a
certain kind of strategies, the so-called Lake Wobegon Strategies. These strategies were first
introduced in [3] who named them after the fictional town Lake Wobegon, appearing in the
works of Garrison Keillor. Lake Wobegon Strategies only hire applicants that are better than
the average of the already recruited staff. This implies that the quality of the hiring set
increases every time a new candidate gets hired. This is where the name ’Lake Wobegon
Strategies’ comes from.

Another example for a score-based Lake Wobegon Strategy is hiring above the mean (see [3]).
Following [25] this strategy is not only of theoretical interest as ’Google Search TM’ actually
works with hiring above the mean.

As mentioned before, we are considering three strategies of this kind. Firstly hiring above
the maximum which only hires candidates better than all already interviewed persons. This
strategy hires the elite only but there may be many excellent candidates who are discarded
on the other hand. Secondly we observe hiring above the m-th best. It is a generalization of
hiring above the maximum which we get for m = 1. Nevertheless it is sensible to consider
hiring above the maximum separately as it provides an interesting connection to records in
permutations. The last considered strategy of this type is hiring above the median. It hires
candidates that are better than the median of the already hired candidates only. According
to [3] it is notable that hiring above the median delivers considerably different results than
hiring above the mean does.

For all these strategies a new candidate gets recruited if and only if his relative rank is better

30
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than the rank of some other already hired threshold candidate similarly to hiring above the
minimum in Chapter 2. The difference to hiring above the minimum is that the threshold
is not the same candidate at each step. So the threshold candidate may change when a new
candidate is hired. Note that according to Definition 1.1.7 the threshold candidate must not
change if an applicant is rejected otherwise the strategy was not pragmatic.

3.1 Hiring above the maximum

The first Lake Wobegon Strategy we consider is hiring above the maximum. As the name
says, hiring above the maximum only recruits a candidate if and only if he is the very best
candidate seen so far, i.e. if a new applicant is better than the currently best candidate.
Technically spoken we would not need a threshold candidate concerning this strategy as a
hiring implies σi(i) = i but obviously the two formulations are equivalent. In contrast to
e.g. hiring above the minimum a benefit of this strategy is that the probability for a hiring
is independent of the past candidates and the permutation of their relative ranks because
obviously R(σ) = 1 holds for each permutation σ of arbitrary length |σ| ∈ N. As all our
results are only the special case m = 1 in hiring above the m-th best (see Section 3.2) we
will only consider hn,1 the number of hired candidates, WN,1 the waiting time as well as ∆n,1

the distance between the last two hirings. Due to consistency with Section 3.2 we denote the
parameters by adding a second index m which will always be 1 in this section.

Strategy 3.1.1 (Hiring above the maximum). Let σ denote the permutation of ranks
of the interviewed candidates after n interviews and H(σ) denote the set of hired candidates.
In hiring above the maximum H(σ) is constructed applying these rules:

• H1(σ) = {1}.

• Hi(σ) =

{
Hi−1(σ) ∪ {i}, σi(i) > σi(j) ∀ j < i,

Hi−1, else,
for i ≥ 2.

Note that instead of σi(i) > σi(j) ∀j < i we could also say σi(i) = i.
�

Before we start investigating the hiring parameters we first introduce the notation of records
which are characteristic for permutations. We will use them to determine the parameters.

Definition 3.1.2 (Record, left-to-right-maximum). Let σ ∈ Sn denote a permutation
of length n. An index i ≤ n is called record (or left-to-right-maximum) of σ if and only if

σ(i) > σ(j) ∀ j < i. (3.1)

This means that the value of σ(i) is the relative maximum of the first i indices. Note that
1 is always a record. So again the first candidate gets hired anyway and becomes the first
threshold.

�

Remark 3.1.3. As one can easily see (3.1) equals exactly the constraint for a hiring in
our strategy. This means each hired candidate corresponds to a record in the permutation of
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ranks and vice versa. As a direct consequence we get that the size of the hiring set after n

interviews hn,1 is given the number of records in the permutation of ranks.
�

Let pn,k denote the number of permutations σ ∈ Sn consisting of exactly k records. Obviously
it holds that P(hn = k) =

pn,k

n! . We will now follow [18] to determine the value of pn,k. A
recursion for pn,k is given by

pn,k = pn−1,k−1 + (n − 1) pn−1,k. (3.2)

This recursion follows by considering σ ◦j for a random permutation σ ∈ Sn−1 and 1 ≤ j ≤ n.
We get two cases for the value of j:

• Case 1: j = n. Adding n to the permutation leads to an additional record. This yields
the first summand.

• Case 2: j < n. In this case we get no additional record and only the length of the
permutation increases by 1. There are n − 1 possible values j in this case, which leads
to the second term.

For fixed n ∈ N it is true that pn,1 = (n − 1)! for the initial values as it σ(1) = n must hold
for each σ ∈ Sn consisting of exactly 1 record. Additionally we define pn,0 = δn,0 for technical
issues. Solving this recursion leads us to the next theorem.

Theorem 3.1.4. For the exact distribution of the number hn of hired candidates it holds
that

P(hn = k) =

[n
k

]

n!
. (3.3)

For the expectation we get that

E(hn) = Hn ∼ log n + γ + O
(

1

n

)
. (3.4)

Proof. Let Pn(z) :=
∑∞

k=0 pn,kzk denote the vertical generating function of pn,k. Multiplying
Equation (3.2) by zk and summing over all k ≥ 1 then yields

∞∑

k=1

pn,k zk = z
∞∑

k=0

pn−1,k zk + (n − 1)
∞∑

k=1

pn−1,k zk

Pn(z) = z Pn−1(z) + (n − 1) Pn−1(z) = (z + n − 1) Pn−1(z), n ≥ 1,

as we defined pn,0 = δn,0. It is a routine task to solve this homogenous functional equation
for Pn(z) which yields

Pn(z) =
n−1∏

j=1

(z + n − j) P1(z)︸ ︷︷ ︸
≡ z

= (z)n =
∞∑

k=0

[
n

k

]
zk.
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The last equation holds by Definition 1.3.3 and finally P(hn = k) =
pn,k

n! shows (3.3).

By construction

Hn(u) :=
Pn(u)

n!
=

u(u + 1)(u + 2) · · · (u + n − 1)

n!
=

(
u + n − 1

n

)
(3.5)

is the PGF for our parameter hn with fixed n ∈ N. We determine the expectation of the
derivation following [7]. Therefore it is useful to consider the logarithmic derivation of the
PGF.

log(Hn(u))′ =
Hn(u)′

Hn(u)
=

Pn(u)′

Pn(u)
(3.6)

Simple manipulations and plugging

log Hn(u) =
n−1∑

k=0

[log(u + k)] − log(n!)

⇒ log(Hn(u))′ =
n−1∑

k=0

[
1

u + k

]

into (3.6) then yields

Hn(u)′ = log(Hn(u))′ · Hn(u) =

(
u + n − 1

n

)
·
(

n−1∑

k=0

1

u + k

)
. (3.7)

Finally evaluation of (3.7) at u = 1 leads to

E(hn) = Hn(u)′∣∣
u=1

=

(
n

n

)
·
(

n−1∑

k=0

1

k + 1

)
= Hn. (3.8)

�

In the next step we determine the distribution of hn for n → ∞. Here it is useful to consider
the BGF H(z, u) of our parameter hn starting from the PGF for fixed n given by Hn(u). By
Equation (3.5) it holds that

H(z, u) =
∞∑

n=0

n∑

k=0

[n
k

]

n!
znuk =

∞∑

n=0

Hn(u)zn =
∞∑

n=0

(
u + n − 1

n

)
zn

Applying the well known identity (−1)n
(−u

n

)
=
(u+n−1

n

)
for any u ∈ C and using Newton’s

generalized binomial theorem then yields

H(z, u) =
∞∑

n=0

(
u + n − 1

n

)
zn =

∞∑

n=0

(−1)n

(
−u

n

)
zn = (1 − z)−u. (3.9)

Last but not least we compute the horizontal OGF H(k)(z) := [uk]H(z, u) for fixed k ∈ N.
According to [5] it is helpful to consider the extension

(1 − z)−u = e(−u) log(1−z) = e
u log( 1

1−z ).
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When applying the power series expansion of ez we get

e
u log( 1

1−z
) =

∞∑

k=0

uk log
(

1
1−z

)k

k!

and finally equating the coefficients yields

H(k)(z) = [uk]H(z, u) = [uk]eu log( 1
1−z

) =
log

(
1

1−z

)k

k!
. (3.10)

Theorem 3.1.5 (Goncharov’s Theorem). The distribution of hn is asymptotically
normal. In other words it holds that

lim
n→∞P(hn ≤ log n + γ + x

√
log n) =

1√
2π

∫ x

−∞
e

−w2

2 dw. (3.11)

Proof. By Formula (3.9) it holds that H(z, u) = (1 − z)−u for the BGF of the probabilities
P(hn = k). For fixed n ∈ N we get, for u in a small area around 1 (e.g. |u − 1| ≤ 1

2),

Hn(u) = [zn]H(z, u) =

(
n + u − 1

n

)
=

u(u + 1) · · · (u + n − 1)

n!
=

Γ(u + n)

Γ(u)Γ(n + 1)
.

The equality Hn(u) =
∑n

k=0 P(hn = k)uk implies that Hn(1) = 1 which means that Hn(u) is
the PGF of the random variable hn. Following [7], Stirling’s formula for the gamma function,
Theorem 1.3.8, then yields

Hn(u) =
Γ(u + n)

Γ(u)Γ(n)(n + 1)
=

√
2π(n + u)n+u− 1

2 e−(n+u)

Γ(u)
(√

2πnn− 1
2 e−n

)
(n + 1)

·
(

1 + O
(

1

n

))
.

Factoring out n in the numerator and the last factor of the denominator followed by pruning
out factors then yields

Hn(u) =
nn+u− 1

2
(
1 + u

n

)n+u− 1
2 e−u

Γ(u)
(
nn+ 1

2

) (
1 + 1

n

) ·
(

1 + O
(

1

n

))

=
nu−1e−ueu+O( 1

n )

Γ(u)
(
1 + 1

n

) ·
(

1 + O
(

1

n

))
=

nu−1

Γ(u)
·
(

1 + O
(

1

n

))
.

The claim follows by applying the Quasi-powers Theorem 1.6.2 having A(u) = 1
Γ(u) , B(u) =

eu−1, βn = log n and κn = n with analytic A(u), B(u) having A(1) = B(1) = 1. Furthermore,
the function B(u) satisfies the variability condition.

�

As mentioned before we will now investigate the waiting time WN,1 and the distance between
the last two hirings ∆n,1 not only because these two parameters give a deeper insight how
the strategy will perform for growing n but also as the results give a special case for m = 1.
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The next theorem shows that the expectation for the waiting time with hiring above the
maximum does not exist in contrast to m > 1 as we will see in Section 3.2.

Theorem 3.1.6. For the exact probabilities and the expectation of the waiting time WN,1

until N candidates get hired with hiring above the maximum it holds that

P(WN = k) =

[ k−1
N−1

]

k!

E(WN ) =

{
1, N = 1

∞ else.

Proof. In analogy to the proof of Theorem 2.1.7 it holds for the probability of WN,1 that

P(WN,1 = k) =
1

k
P(hk−1,1 = N − 1) =

1

k

[ k−1
N−1

]

(k − 1)!
=

[ k−1
N−1

]

k!
.

For the expectation it obviously holds that E(W1,1) = 1 as the first candidate always gets
recruited. In the case of N > 1 we consider the BGF H(z, u) of hn,1 given by Equation (3.9)
as we have

E(WN,1) =
∞∑

k=1

k P(WN,1 = k) =
∞∑

k=1

[ k−1
N−1

]

(k − 1)!
= [uN−1]H(z, u)|z=1,

where the summand for k = 1 is 0 as N > 1. The last equation results from the BGF

H(z, u) =
∞∑

i,j=1

[i
j]
i! ziuj . Furthermore, (3.10) yields

[uN−1] H(z, u) =
∞∑

i=1

[ i
N−1

]

i!
zi =

1

(N − 1)!
log

(
1

1 − z

)N−1

.

For z = 1 we have a pole of [uN−1] H(z, u), i.e. limz→1
1

(N−1)! log
(

1
1−z

)N−1
= ∞ which yields

E(WN,1) = ∞ for N > 1.
�

Secondly we consider the distance between the last two hirings that comes up with different
results than for m > 1.

Theorem 3.1.7 (Helmi, Martínez and Panholzer [14, Theorem 6 (ii)]). The exact
probability and expectation of the distance ∆n,1 between the last two hirings are

P(∆n,1 = d) =

{
1
n

, d = 0,
1
n

(Hn−1 − Hd−1), 1 ≤ d ≤ n − 1,

E(∆n,1) =
n2 + n − 2

4n
.

Note that we defined ∆n,1 = 0 for hn,1 = 1.
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Proof. For the case d = 0, which is exactly the case that only one candidate gets hired, we
get P(∆n,1 = 0) = P(hn,1 = 1) = 1

n
.

Let us now consider d ≥ 1. Similarly to the proof of Theorem 2.1.10 the probability P(∆n,1 =
d) is given by a hiring followed by (d − 1) discarded applicants, a hiring again and no further
hirings until the end. The position of the first hiring depends on the number of discarded
candidates at the end of the sequence. Obviously that number must not be larger than n−d−1
as there need to be d − 1 discarded candidates between the last two hirings. Thus, we have

P(∆n,1 = d) =
n∑

k=d+1

1

k − d




k−1∏

l=k−d

l − 1

l


 1

k




n∏

l=k+1

l − 1

l




=
n∑

k=d+1

1

k − 1

1

n
=

1

n
(Hn−1 − Hd−1).

The expectation is given by

E(∆n,1) =
∞∑

d=0

d P(∆n,1 = d) =
n−1∑

d=1

d
1

n
(Hn−1 − Hd−1).

Splitting the sum and simple algebraic manipulations then yield

E(∆n,1) =
1

n

(n − 1)n

2
Hn−1 − 1

n

n−1∑

d=1

(d − 1) Hd−1 − 1

n

n−1∑

d=1

Hd−1

=
n − 1

2
Hn−1 − (n − 1)(n − 2)

2n
Hn−1 +

(n − 1)(n − 2)

4
− n − 1

n
Hn−1 +

n − 1

n
.

The last equality follows by identities for harmonic summation which can be found in [19,
p.279]. Finally simplifying the terms leads to

E(∆n,1) =
n2 + n − 2

4n
.

�

Remark 3.1.8. As hiring above the m-th best always hires the first m candidates, the
synthetic case when merely one hiring happens only appears with hiring above the maximum,
i.e. m = 1. This implies that WN,m and ∆n,m have to be investigated separately for m = 1
and m > 1. Another consequence of that special case is that - similarly to hiring above the
minimum - E(WN,1) = ∞, for N > 1.

�

Example 3.1.9. Let us now investigate how the permutation σ = 463921785 that we also
investigated with hiring above the minimum performs with hiring above the maximum.
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n rank σn hired

1 1 1 X

2 2 12 X

3 1 231

4 4 2314 X

5 1 34251

6 1 453621

7 6 4537216

8 7 45382167

9 5 463921785

variable value

h9,1(σ) 3

W1,1(σ) 1

W2,1(σ) 2

W3,1(σ) 4

r9,1(σ) 9

L9,1(σ) 4

∆9,1(σ) 2

M9,1(σ) 8

f9,1(σ) 2

The left table shows that the number of hired candidates is far less than with hiring above
the minimum. The hiring set is given by H(σ) = {1, 2, 4}. This means that the second and
third best candidate are not hired, so this strategy is very selective. In the right table we see
hiring and firing replaces 2 out of 3 candidates and the waiting time increases vastly. This is
caused by the early position of the best candidate.

�

3.2 Hiring above the m-th best

Hiring above the m-th best is a generalization of hiring above the maximum which we consid-
ered in Section 3.1. The results of this section are mainly based on [1,14]. Similarly to hiring
above the maximum we hire the first m candidates and further candidates get recruited if and
only if their rank is better than the m-th best already hired candidate. One huge contrast to
hiring above the maximum is, that the case of only one hiring does not appear for m ≥ 2. As
a consequence we will achieve that for instance the expectation of the waiting time WN,m is
finite.

Strategy 3.2.1 (Hiring above the m-th best). Let σ be the permutation of the ranks
of the interviewed candidates after n interviews and H(σ) denote the set of hired candidates.
In hiring above the m-th best H(σ) is constructed applying these rules:

• Hi(σ) = {1, 2, . . . , i}, 1 ≤ i ≤ m.

• Hi(σ) =

{
Hi−1(σ) ∪ {i}, σi(i) ≥ i − (m − 1),

Hi−1, else,
for i > m.

This means that candidate Xi only gets hired if and only if less than m already hired candi-
dates hold a better rank than Xi, which is fulfilled trivially if i ≤ m.

�

The huge disadvantage when analyzing hiring above the m-th best is that we must not simply
consider records in permutations. Thus, we need a generalization of records. We consider two
main types of k-records in permutations. Most of the considerations can be found in [2].
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Definition 3.2.2 (k-record). We call an index 1 ≤ i ≤ n a Type1 k-record of a
permutation σ ∈ Sn if and only if σi(i) = i − (k − 1), hence σ(i) is the k-th largest element
beneath {σ(1), . . . , σ(i)}. An index 1 ≤ i ≤ n is a Type2 k-record if and only if there exists
j ≥ i satisfying σj(i) = j − (k − 1). Analogous this means that σ(i) is the k-th largest value
in {σ(1), . . . , σ(j)}. For a permutation of length n we denote the number of Type1 k-records

by R
[1]
n,k and the number of Type2 k-records by R

[2]
n,k.

�

Obviously it holds for the number of recruited candidates with hiring above the m-th best
that

hn,m = R[2]
n,m + m − 1. (3.12)

Theorem 3.2.3 (Helmi, Martínez and Panholzer, [14, Theorem 3]). For the exact
distribution of the number hn,m of hired candidates with hiring above the m-th best it holds
that

P(hn,m = k) =

{
δn,k, m > n,
m! mk−m

n!

[n−m+1
k−m+1

]
, m ≤ k ≤ n.

(3.13)

Proof. Obviously it holds for n < m that hn,m = n which yields P(hn,m = k) = δn,k in that
case. For 1 ≤ m ≤ n we will slightly adapt the combinatorial approach of [14, p.16f] to obtain

a generalization of Theorem 3.1.4 which handles the case of m = 1. Therefore let S [m]
n,k ⊆ Sn

denote the subset of permutations having length n that hire exactly k candidates with hiring

above the m-th best. Then it obviously holds that P(hn,m = k) =
|S[m]

n,k
|

n! . Moreover, Theorem

3.1.4 implies that |S [1]
n,k| =

[n
k

]
.

Consider a sequence X1, . . . , Xn−m+1 of candidates and a permutation σ ∈ Sn−m+1 of their

ranks. Furthermore, assume σ consists of exactly k−m+1 ≥ 1 records, i.e. σ ∈ S [1]
n−m+1,k−m+1.

By definition of ◦ we can write σ in a unique way by σ = s1 ◦s2 ◦ · · ·◦sn−m+1 where si = σi(i)
denotes the relative rank of candidate Xi in step i. Hiring above the maximum hires exactly
k − m + 1 out of these n − m + 1 candidates, namely exactly those having a relative rank
satisfying si = i. By definition of the strategy candidate X1 is always hired and the choice of
the permutation σ determines which further candidates get hired too.

Starting from σ we now construct a permutation σ′ that hires exactly the same candidates
with hiring above the m-th best plus some further m − 1 candidates whom we add in the
beginning of the sequence. Therefore consider new candidates Y1, Y2 . . . Ym−1 together with
candidate Ym := X1. Let τ ∈ Sm denote the permutation of the ranks of these candidates.
Again we may write the permutation τ = t1 ◦ t2 ◦ · · · ◦ tm as a composition of the relative
ranks, i.e. tj = τj(j) for 1 ≤ j ≤ m. Define σ′ ∈ Sn by

σ′ = t1 ◦ t2 ◦ · · · ◦ tm ◦ s′
2 ◦ s′

3 ◦ · · · ◦ s′
n−m+1,

where it holds that

s′
i =

{
ℓ, si = i,

si else,
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with an arbitrary ℓ ∈ {i, i + 1, . . . , i + m − 1}. As candidate Xi is the (i + m − 1)-th candidate
in the sequence Y1, Y2, . . . , Ym, X2, X3, . . . , Xn−m+1 the choice of s′

i ensures that additionally
to Y1, Y2 . . . , Ym the permutation σ′ hires exactly the same k − m (here X1 is not counted
as we hire him together with the candidates Yi) candidates with hiring above the m-th best
as σ did when using hiring above the maximum. For each hired candidate Xi we have m

options to choose the relative rank s′
i. Furthermore, the choice of τ does not affect the hiring

set as well as any possible choice for s′
i does not. This yields that we get m! · mk−m different

possibilities for σ′ in order to hire the same candidates as σ.

We can easily invert this construction. Starting from a permutation σ′ ∈ Sn given in the form
σ′ = t1 ◦ t2 ◦ · · · ◦ tm−1 ◦ s′

1 ◦ s′
2 ◦ · · · ◦ s′

n−m+1 we simply delete the first m − 1 candidates and
set

si =

{
i, s′

i ∈ {i, i + 1, . . . , i + m − 1},

s′
i, else.

The composition s1 ◦ · · · ◦ sm−n+1 finally represents σ again. As mentioned above we have[n−m+1
k−m+1

]
permutations σ of length n − m + 1 with exactly k − m + 1 hirings when using hiring

above the maximum which then shows that

|S [m]
n,k | = m! mk−m |S [1]

n−m+1,k−m+1| = m! mk−m

[
n − m + 1

k − m + 1

]

and finally implies that

P(hn,m = k) =
m! mk−m

[n−m+1
k−m+1

]

n!
.

�

In our next step we compute the expectation and variance for hn,m too which was first
published by Archibald and Martínez in [1]. We will give a different proof for these quantities
for which the following simple fact about the hiring probability is quite useful. Obviously in
a sequence of n candidates it holds that

P(Xk = 1) =

{
1, 1 ≤ k ≤ m,
m
k

, else.
(3.14)

Corollary 3.2.4 (Archibald and Martínez, [1]). For the expectation and the variance
of hn,m and n ≥ m it holds that

E(hn,m) = m(Hn − Hm + 1) = m(log n − log m + 1) + O(1)

V(hn,m) = m(Hn − Hm) − m2(H(2)
n − H(2)

m ) = m

(
log n − log m − 1 +

m

n

)
+ O(1).

Proof. We consider the fact that

hn,m = X1 + X2 + . . . + Xn.
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Hence, together with (3.14) the following holds:

E(hn,m) =
n∑

k=1

E(Xk) =
n∑

k=1

P(Xk = 1) =
m∑

k=1

1 +
n∑

k=m+1

k

n
= m(Hn − Hm + 1).

For the variance we again consider the decomposition of hn,m into the single candidates which
leads to

V(hn,m) = E(h2
n,m) − E(hn,m)2 =

n∑

i,j=1

P(XiXj = 1) − E(hn,m)2.

For the product of the indicator variables it holds that

P(X2
i = 1) =

{
1, i ≤ m,
m
i

, m < i ≤ n,

as well as for i 6= j

P(XiXj = 1) =





1, 1 ≤ i, j ≤ m,
m
i

, m < i ≤ n ∧ 1 ≤ j ≤ m,
m
j

, 1 ≤ i ≤ m ∧ m < j ≤ n,
m2

i j
, m < i, j ≤ n.

Thus, the squared random variable satisfies the following equation:

E(h2
n,m) =

n∑

i=1

P(X2
i = 1) + 2

∑

1≤i<j≤n

P(XiXj = 1)

=
m∑

i=1

1 +
n∑

i=m+1

m

i
+ 2




m−1∑

i=1

m∑

j=i+1

1 +
m∑

i=1

n∑

j=m+1

m

j
+

n−1∑

i=m+1

n∑

j=i+1

m2

i j




= m + m(Hn − Hm) + 2


(m − 1)m

2
+ m2(Hn − Hm) + m2

n−1∑

i=m+1

Hn − Hi

i




= m2 + (m + 2m2)(Hn − Hm) + 2m2Hn(Hn−1 − Hm) − 2m2
n−1∑

i=m+1

Hi

i
.

For the last sum we make use of the following identity which can be found in [5, p.280]:

n∑

i=1

Hi

i
=

1

2

(
H2

n + H(2)
n

)
(3.15)

Formula 3.15 together with E(hn,m)2 = m2(Hn − Hm)2 + 2m2(Hn − Hm) + m2 implies that

V(hn,m) = m2 + (m + 2m2)(Hn − Hm) + 2m2
(

H2
n−1 +

1

n
Hn−1 − HnHm

)
−

− m2
(
H2

n−1 + H
(2)
n−1 − H2

m − H(2)
m

)
− m2(Hn − Hm)2 − 2m2(Hn − Hm) − m2,
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which we can simplify to

V(hn,m) = m(Hn − Hm) + m2H2
n−1 +

2m2

n
Hn−1 − m2

(
H

(2)
n−1 − H(2)

m

)
− m2H2

n.

Finally the fact that m2H2
n = m2

(
H2

n−1 + 2
n

Hn−1 + 1
n2

)
leads us to

V(hn,m) = m(Hn − Hm) − m2
(
H(2)

n − H(2)
m

)
.

�

For determining the asymptotic distribution of the standardized random variable h⋆
n,m =

hn,m−E(hn,m)
V(hn,m) we first compute the PGF of hn,m which we do in a similar way as we did for

m = 1 in Section 3.1. Analogous to Formula (3.2) defining P(hn,m = k) = h
[m]
n,k and considering

(3.14) leads to the recursion

h
[m]
n,k =

m

n
h

[m]
n−1,k−1 +

n − m

n
h

[m]
n−1,k, n > m ∧ k ≤ n. (3.16)

When solving this recursion by following [14] we obtain

hn,m(u) =
∞∑

k=0

h
[m]
n,kuk = um

n∏

j=m+1

mu + (j − m)

j
= um (mu)n−m m!

n!
, (3.17)

with respect to h
[m]
n,k = δn,k for n ≤ m. This can easily be shown in an analogous way as we

did in the proof of Theorem 3.1.4. Also following [14] we can determine the BGF for h
[m]
n,k by

hm(z, u) =
∑∞

n=m

(n
m

)
hn,m(u)zn. Thus, we get the formula

hm(z, u) =
∞∑

n=m

(
n

m

)
um (mu)n−m m!

n!
zn =

∞∑

n=m

(zu)m (mu)n−m

(n − m)!
zn−m.

Shifting the index and applying Newton’s generalized binomial theorem finally yields the
explicit form given by

hm(z, u) = (uz)m
∞∑

n=0

(mu)n

(n)!
zn = (uz)m

∞∑

n=0

(
mu + n

n

)
zn =

(zu)m

(1 − z)mu+1
.

Although m is fixed for any hiring process we determine the asymptotic behavior of the
distribution depending on the relation between the parameter m which is called rigidity
in [14], whom we will mostly follow in our proof, and the number n of candidates. This gives
further insight about the characteristics of the hiring process when n might depend on m.

Corollary 3.2.5 (Helmi, Martínez and Panholzer, [14, Theorem 3]). Asymptot-
ically, for n → ∞, the limiting distribution of the number of hired candidates hn,m is, with
respect to the relation between n and m, given by the following three cases:
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(i) n − m ≫ √
n.

The standardized random variable h⋆
n,m converges in distribution to a standard normal

distribution, i.e.

lim
n→∞P


hn,m − m(log n − log m + 1)√

m
(
log n − log m − 1 + m

n

) ≤ x


 =

1√
2π

∫ x

−∞
e

−w2

2 dw.

Note: This is the most important case as it contains all fixed values for m. Furthermore,
it is a generalization of Theorem 3.1.5.

(ii) n − m ∼ α
√

n = O(
√

n), with α > 0.

n − hn,m is asymptotically Poisson distributed with parameter α2

2 , i.e.

n − hn,m
(d)−→ Poisson

(
α2

2

)
.

(iii) n − m = o(
√

n).

n − hn,m converges in distribution to 0, i.e. n − hn,m
(d)−→ 0.

Proof.

(i) n − m ≫ √
n.

For fixed m the result can be obtained in a similar way like we did for m = 1 in Theorem
3.1.5. Another aproach for m fixed can be found in [1]. For m → ∞ we follow [14] and
consider the standardized random variable

h⋆
n,m =

hn,m − m(log n − log m + 1)√
m
(
log n − log m − 1 + m

n

) .

The moment generating function is then given by

E

(
eh⋆

n,ms
)

= e− µ

σ
s · hn,m

(
e

s
σ

)
,

where µ := m(log n− log m+1) and σ2 := m(log n− log m−1+ m
n

). Applying Stirling’s
formula to the probability generating function, given in (3.17), yields

log(hn,m(u)) = m(u − 1)(log n − log m)

+ (n + m(u − 1)) log

(
1 +

m(u − 1)

n

)
+ O(1 − u) + O

(
1

m

)
.

When plugging the moment generating function in this asymptotic formula we get

log
(
E

(
eh⋆

n,ms
))

=
s2

2
+ O

(
m
(
1 − m

n

)2

σ3

)
+ O(σ−1) + O(m−1),

which implies that E(h⋆
n,m) −→ e

s2

2 , pointwise for each s ∈ R, provided that n − m ≫
√

n. Since e
s2

2 is the moment generating function of a standard normal distribution,
the stated central limit theorem follows with Curtiss’ theorem 1.6.3.
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(ii) n − m = O(
√

n).
We consider the random variable hn,m := n − hn,m, which represents the number of
discarded applicants. By Theorem 3.2.3 the explicit form of hn,m with m ≤ k ≤ n is
given by

P(hn,m = k) =
m!mk−m

n!

[
n − m + 1

k − m + 1

]
.

When defining ℓ = n − m and i = n − k we obtain

P(n − hn,m = n − k) = P

(
hn,m = i

)
=

(n − ℓ)!(n − ℓ)ℓ−i

n!

[
ℓ + 1

ℓ − i + 1

]
.

Applying the asymptotic identity

[
ℓ + 1

ℓ − i + 1

]
=

ℓ2i

i!2i

(
1 + O

(
1

n

))
,

which can be obtained by extracting coefficients from an asymptotic expansion of the
BGF of the Stirling numbers, together with

(n − ℓ)!(n − ℓ)ℓ−i

n!
∼ n−i e− ℓ2

2n ,

for fixed i, which can be shown in a similar way as Corollary 1.3.5, finally yields the
asymptotic expansion

P

(
hn,m = i

)
∼ 1

i!

(
ℓ2

2n

)i

e− ℓ2

2n

which holds for ℓ = O(
√

n). This is exactly the probability density function of a Poisson

distribution having λ = ℓ2

2n
= (n−m)2

2n
.

(iii) n − m = o(
√

n).
As m is very large in the case of n − m = o(

√
n) nearly every candidate gets hired.

Again we consider the number of discarded candidates given by hn,m := n − hn,m. One
may easily see that the moment generating function of hn,m, which is, for n → ∞,
asymptotically given by

E

(
e(n−hn,m)s

)
∼ (n − m)2

2n
(es − 1)

converges to 0. In other words we get P(hn,m = n) = 1 − o(1).

.
�

Let us now consider the waiting time which is an essential tool for the choice of m. Imagine
a company that wants to recruit a certain number of applicants. The waiting time tells them
how many applicants they have to interview until they reach their favored number. When
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adjusting the parameter m they can administer this number. This shows that the free choice
of the parameter m is one of the benefits of this strategy.

Theorem 3.2.6. For the exact probability of the waiting time WN,m until N candidates
are recruited when applying hiring above the m-th best it holds that

P(WN,m = k) =





δN,k, N ≤ m,
m! mN−m

k!

[ k−m
N−m

]
, m < N ≤ k,

0, else.

For m ≥ 2 the expectation of WN,m is given by

E(WN,m) =





N, N ≤ m,

m
(

m
m−1

)N−m
, else.

Note: We already discussed the expectation for m = 1 in Theorem 3.1.6.

Proof. We again follow [14] to show the statements. Obviously the case of N ≤ m holds
because the first m candidates get hired for sure and as the number of hired candidates
cannot outrun the number of interviewed applicants the case of N > k holds as well. For the
case of m < N ≤ k we use the fact stated in Remark 2.1.6 which shows that

P(WN,m = k) =
m

k
P(hk−1,m = N − 1) =

m

k

m! mN−1−m

k − 1!

[
k − m

N − m

]
.

For 2 ≤ m < N the expectation is then given by

E(WN,m) =
∞∑

k=N

k
m! mN−m

k!

[
k − m

N − m

]
= m! mN−m

∞∑

k=N

1

(k − 1)!

[
k − m

N − m

]
.

Shifting the index and applying the identity

∞∑

i=k

[ i
k

]

i!
(s+i

i

) =
1

sk

which can be found in [21] and does not converge for s = 0 and k > 0 finally leads to

E(WN,m) = m! mN−m
∞∑

k=N−m

1

(k + m − 1)!

[
k

N − m

]

= mN−m+1
∞∑

k=N−m

[ k
N−m

]

k!
(k+m−1

k

) = m

(
m

m − 1

)N−m

.

Obviously E(WN,m) = N holds for N ≤ m by definition of the strategy.
�

Remark 3.2.7. In contrast to hiring above the minimum and hiring above the maximum
the expectation for the waiting time exists when setting m ≥ 2. The reason for this fact is
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that the bad case where only one candidate gets hired does not appear for this setting. On
the opposite the probability for only recruiting one out of n candidates with hiring above the
minimum/maximum is given by 1

n
, which is very high.

This shows that it is more profitable to set m ≥ 2 for a not too selective but sensible hiring
process.

�

Remark 3.2.8. As the probabilities for WN,m are strongly dependent on the probabilities
of the number of recruited candidates hn,m we get similar results for the limiting distribution
as well.

�

Theorem 3.2.9. The exact probability of the index Ln,m of the last recruited candidate in
a sequence of n applicants with hiring above the m-th best is given by

P(Ln,m = i) =





δi,n, i < m,

( i−1
m−1)
(n

m)
, m ≤ i ≤ n.

For the expectation and variance of Ln,m we get

E(Ln,m) =

{
n, n < m,
m(n+1)

m+1 , else,

V(Ln,m) =





0, n < m,
mn2−(m2−m)n−m2

(m+2)(m+1)2 , else.

Proof. Obviously we get P(Ln,m = i) = δi,n for i < m as the first m candidates always get
hired. So the i-th candidate may only be the last hired candidate if and only if he is the
last applicant, i.e. i = n. Let us now consider the non-trivial case of m ≤ i ≤ n. To get
the probability P(Ln,m = i) we only need to consider the sequence where the i-th candidate
gets hired and all further candidates are discarded. The fact that P(Xj = 1) = m

j
and

P(Xj = 0) = 1 − m
j

for m ≤ j together with the independence of the random variables Xj

leads to

P(Ln,m = i) = P(Xi = 1)
n∏

j=i+1

P(Xj = 0) =
m

i

n∏

j=i+1

(
1 − m

j

)

=
m(i − 1)!(n − m)!

n!(i − m)!
=

m(i − 1)!(n − m)!

n!(i − m)!
· (m − 1)!

(m − 1)!
=

( i−1
m−1

)
(n

m

) .

For the expectation and the variance the probability P(Ln,m = i) = δi,n causes E(Ln,m) = n

and V(Ln,m) = 0 for n < m. When considering n ≥ m we get the following for the expectation:

E(Ln,m) =
n∑

i=m

i

( i−1
m−1

)
(n

m

) =
1(n
m

)
n∑

i=m

i!

(m − 1)!(i − m)!
=

m(n
m

)
n∑

i=m

(
i

m

)
.
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Using the well-known identity

n∑

i=0

(
i

m

)
=

(
n + 1

m + 1

)
(3.18)

which can also be found in [19, p.160] then leads to

E(Ln,m) =
m
(n+1

m+1

)
(n

m

) =
m(n + 1)

m + 1
.

For the variance it holds

V(Ln,m) = E(L2
n,m) − E(Ln,m)2 =

n∑

i=m

i2

( i−1
m−1

)
(n

m

) −
(

m(n + 1)

m + 1

)2

,

whereat we first need to compute E(L2
n,m) which is given by

n∑

i=m

i2

( i−1
m−1

)
(n

m

) =
1(n
m

)
n∑

i=m

i2 (i − 1)!

(m − 1)!(i − m)!
=

1(n
m

)
n∑

i=m

(
(i + 1)!

(m − 1)!(i − m)!
− i!

(m − 1)!(i − m)!

)

=
1(n
m

)
n∑

i=m

(
(i + 1)!

(m − 1)!(i − m)!

)
− m(n + 1)

m + 1
.

The last equation holds because the sum over the second term in brackets is exactly the same
we considered for the expectation of Ln,m. For the remaining sum expanding factors and
again using the identity (3.18) shows that

1(n
m

)
n∑

i=m

(i + 1)!

(m − 1)!(i − m)!
=

m(m + 1)(n
m

)
n∑

i=m

(
i + 1

m + 1

)
=

m(m + 1)
(n+2

m+2

)
(n

m

) =
m(n + 2)(n + 1)

m + 2
.

Putting all the parts together finally yields that

V(Ln,m) =
m(n + 2)(n + 1)

m + 2
− m(n + 1)

m + 1
− m2(n + 1)2

(m + 1)2
=

mn2 − (m2 − m)n − m2

(m + 2)(m + 1)2
.

�

In the following we will also determine the limiting distribution of Ln,m. According to [14],
whom we will again follow in our considerations, this can in contrast to the number of re-
cruited candidates hn,m easily be done by applying Stirling’s formula (1.10). Like we did
for hn,m we will again distinguish between different dependencies of m on the number of in-
terviewed persons n. Concretely we observe the following regions which seem to be suitable
dependencies. We will consider these regions for all further parameters in this section.

(i) m fixed.
This is the standard case. In a common hiring process m is fixed in the beginning.

(ii) m → ∞, m = o(n).
In this case we consider the main region, where m grows by time but it is rather small
compared to n.
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(iii) m ∼ αn, where it holds that 0 < α < 1.
Here we have an asymptotically fixed dependency of m when n grows to infinity.

(iv) n − m = o(n).
This is a rather trivial case as m grows very fast, which implies that nearly each applicant
is recruited in the hiring process. We do not await surprising results for this case.

When computing the limit distributions with respect to the relation between n and m we will,
for convenience, consider n−Ln,m instead of Ln,m in some cases, which does not make a huge
difference and gives us the distance of the last hired candidate to the end of the sequence.
Furthermore, we only consider the non-trivial cases.

Corollary 3.2.10. The limiting distribution of Ln,m for n → ∞ is depending on the relation
between m and n given by

(i) m fixed: Suitably normalized, Ln,m is asymptotically Beta distributed with parameters
m and 1, i.e.

Ln,m

n

(d)−→ Beta(m, 1).

(ii) m → ∞, m = o(n): Suitably normalized, n − Ln,m is asymptotically exponential
distributed with parameter 1, i.e.

m

n
(n − Ln,m)

(d)−→ Exp(1).

(iii) m ∼ αn, where it holds that 0 < α < 1: n − Ln,m is asymptotically geometrically
distributed with success probability α, i.e.

n − Ln,m
(d)−→ Geom(α).

(iv) n − m = o(n): n − Ln,m converges in distribution to 0, i.e.

n − Ln,m
(d)−→ 0.

Proof.

(i) m fixed. The fact that nm ∼ nm directly yields

P(Ln,m = i) =
m i!(n − m)!

i(i − m)! n!
=

m

i
· im

nm

∼ m

i
· im

nm
=

m

n
·
(

i

n

)m−1

.

This implies that
Ln,m

n

(d)−→ L, where L has the density function f(x) = m xm−1, having
0 < x < 1 as the range of i lies within 0 ≤ i ≤ n. This is exactly the density function
of a Beta distribution having parameters α = m and β = 1.
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(ii) m → ∞ but m = o(n). Let i = n − k, where k = o(n), then it holds that

P(Ln,m = n − k) = P(n − Ln,m = k) =
m

n
e− km

n

(
1 + O

(
k2m

n

)
+ O

(
km2

n

))
,

which can be shown similarly to Corollary 1.3.5. Thus, we get m
n

(n − Lm,n)
(d)−→ L,

where L has density function f(x) = e−x which is the density function of an exponential
distribution having λ = 1.

(iii) m ∼ αn with 0 < α < 1. Considering the fact that

n!

(n − k)!
= nk ·

(
1 + O

(
1

n

))
, (3.19)

for each k ∈ N fixed, leads to

P(Ln,m = n − k) =
m(n − m)!(n − k − 1)!

n!(n − k − m)!
=

m

n − k
·

(n − m)k ·
(
1 + O

(
1

n−m

))

nk ·
(
1 + O

(
1
n

)) .

(3.20)

The specification m ∼ αn of this case now shows, for each k ∈ N fixed, that

P(Ln,m = n − k) =
m

n
·
(

1 − m

n

)k

·
(

1 + O
(

1

n − m

))
= α (1 − α)k ·

(
1 + O

(
1

n

))
.

Hence, n − Ln,m is asymptotically a geometric distribution with success probability
p = α.

(iv) n − m = o(n). This case is rather trivial as the strategy hires almost all applicants.
Consider the probability that the n-th candidate gets hired shows that

P(Ln,m = n) =
m

n
=

n − o(n)

n
= 1 + o(1),

which directly yields n − Ln,m
(d)−→ 0.

.
�

The next parameter we consider is the distance between the last two hirings ∆n,m. We already
considered the special case of m = 1 which is the only one where the pathological case of
∆n,m = 0 appears.

Theorem 3.2.11. Consider the distance ∆n,m between the last two hirings with hiring
above the m-th best in a sequence of n candidates. Assuming m ≥ 2, for the probability of
∆n,m it holds that

P(∆n,m = d) =





δd,1, m > n,

1
m−1

(
m2

n
− 1

(n
m)

)
, m ≤ n and d = 1,

m

(n
m)

n∑
j=m+d

1
j−m

(j−d−1
m−1

)
, 2 ≤ d ≤ n − m.
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For the expectation we get

E(∆n,m) =
m(n + 1)

(m + 1)2
− 1

(m + 1)
(n

m

)
(

m2 + 2m + 1 − 2

m − 1

)
.

Proof. We here only consider m ≥ 2, for m = 1 see Theorem 3.1.7. Let us first investigate the
case d ≥ 2 where we need to consider the last two hirings and (d − 1) discarded candidates
between them. Denote j as the index of the last hired candidate. Then index i = j − d of
the second last candidate must satisfy i ≥ m as the first m candidates get hired and d ≥ 2.
Thus, we get the probability

P(∆n,m = d) =
n∑

j=m+d

P(Xj−d = 1) ·
j−1∏

ℓ=j−d

[P(Xℓ = 0)] · P(Xj = 1) ·
n∏

ℓ=j+1

[P(Xℓ = 0)]

=
n∑

j=m+d

m

j − d
·

j−1∏

ℓ=j−d

(
1 − m

ℓ

)
· m

j
·

j−1∏

ℓ=j−d

(
1 − m

ℓ

)
.

Pruning out factors finally shows the claim.

For d = 1 we additionally have to consider that the last two hirings could possibly be the
(m − 1)-th respectively the m-th candidate, which is exactly given by P(Ln,m = m). Hence,
the probability for ∆n,m = 1 is given by

P(∆n,m = 1) =
m(n
m

)
n∑

j=m+1

1

j − m

(
j − 2

m − 1

)
+ P(Ln,m = m)

=
m(n

m

)
(m − 1)

n∑

j=m+1

(
j − 2

m − 2

)
+

1(n
m

) .

Now using Formula (3.18) leads to

P(∆n,m = 1) =
m(n

m

)
(m − 1)

((
n − 1

m − 1

)
− 1

)
+

1(n
m

) =
1

m − 1

(
m2

n
− 1(n

m

)
)

.

In the case of n < m we trivially get ∆n,m = 1, as the last two candidates get hired.

The expectation can be computed straightforwardly and fortunately switching the order of
summation leads to a form that can be simplified:

E(∆n,m) =
1

m − 1

(
m2

n
− 1(n

m

)
)

+
m(n
m

) ·
n−m∑

d=2

d
n∑

j=m+d

1

j − m

(
j − d − 1

m − 1

)
(3.21)

=
1

m − 1

(
m2

n
− 1(n

m

)
)

+
m(n
m

) ·
n∑

j=m+2

1

j − m

j−m∑

d=2

d

(
j − d − 1

m − 1

)

︸ ︷︷ ︸
=:S

(3.22)

When considering S, one can easily see that for d > j − m all summands would evaluate to
zero. Thus, we can extend the sum which yields

S =
j∑

d=1

(
d

1

)(
j − d − 1

m − 1

)
−
(

j − 2

m − 1

)
=

(
j

m + 1

)
−
(

j − 2

m − 1

)
,
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whereat the last equation is an application of a variant of the Chu-Vandermonde identity,
which can be found in [19, p.169]. Plugging this result into the sum in (3.22) leads to

n∑

j=m+2

1

j − m

j−m∑

d=2

d

(
j − d − 1

m − 1

)
=

n∑

j=m+2

1

j − m

[(
j

m + 1

)
−
(

j − 2

m − 1

)]

=
n∑

j=m+2

[
1

m + 1

(
j

m

)
− 1

m − 1

(
j − 2

m − 2

)]

=
1

m + 1

[(
n + 1

m + 1

)
−
(

m

m

)
−
(

m + 1

m

)]
− 1

m − 1

(
n − 1

m − 1

)

=
1

m + 1

(
n + 1

m + 1

)
− m + 2

m + 1
− 1

m − 1

(
n − 1

m − 1

)
.

Finally, plugging this result into (3.22) shows that

E(∆n,m) =
1

m − 1

(
m2

n
− 1(n

m

)
)

+
m(n
m

)
(

1

m + 1

(
n + 1

m + 1

)
− m + 2

m + 1
− 1

m − 1

(
n − 1

m − 1

))

=
1

m − 1

(
m2

n
− 1(n

m

)
)

+
m(n + 1)

(m + 1)2
− m(m + 2)

(m + 1)
(n

m

) − m2

(m − 1)n
,

and some simple algebraic manipulations show the claim.
�

By using Stirling’s formula we can also determine the asymptotics for the distance between
the last two hirings where we again consider the four different relations between n and m,
like we did for Ln,m.

Corollary 3.2.12. For the limiting distribution of ∆n,m when n tends to infinity it holds
with respect to the relation between m and n that

(i) m fixed: Suitably normalized, ∆n,m converges in distribution to a continuous random

variable which is characterized by its density function, i.e. ∆n,m
(d)−→ Xm, where Xm has

the density function

fm(x) = m2

(
(−1)mxm−1 log x + (−1)m−1Hm−1xm−1 +

m−2∑

k=0

(−1)k

m − 1 − k

(
m − 1

k

)
xk

)
,

having 0 < x < 1.

(ii) m → ∞, m = o(n): Suitably normalized, ∆n,m is asymptotically exponential distributed
with parameter 1, i.e.

m

n
∆n,m

(d)−→ Exp(1).

(iii) m ∼ αn, where it holds that 0 < α < 1: ∆n,m − 1 is asymptotically geometrically
distributed with success probability α, i.e.

∆n,m − 1
(d)−→ Geom(α).
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(iv) n − m = o(n): ∆n,m − 1 converges in distribution to 0, i.e.

∆n,m − 1
(d)−→ 0.

Proof. The proof of the asymptotics for ∆n,m is more difficult than for the index of the last
hired candidate as we have no closed form for the probabilities. However, using Stirling’s
formula together with some adaptions to the sum shows the claims directly.

(i) m fixed. We start with the probabilities for ∆n,m. Applying (3.19) to the binomial
coefficients first shows directly

P(∆n,m = d) =
m(n
m

)
n∑

j=m+d

1

j − m

(
j − d − 1

m − 1

)

=
m m!

nm
(
1 + O

(
1
n

))
n∑

j=m+d

(j − d)m−1

(j − m) (m − 1)!

(
1 + O

(
1

j − d

))

∼ m2

n

∫ 1

d
n

1

t

(
t − d

n

)m−1

dt,

whereat the asymptotic formula yields from the substitution t = j
n

. Hence, ∆n,m
(d)−→

Xm, having the density function fm(x) = m2
∫ 1

x
1
t
(t−x)m−1dt. When applying Newton’s

binomial theorem we can get a more explicit form of the density function given by

fm(x) = m2
∫ 1

x

1

t

m−1∑

k=0

(
m − 1

k

)
(−1)kxktm−1−kdt

= m2




m−2∑

k=0

(
m − 1

k

)
(−1)kxk

m − 1 − k
(1 − xm−1−k)

︸ ︷︷ ︸
=:S

+(−1)mxm−1 log x




For S we get

S =
m−2∑

k=0

(
m − 1

k

)
(−1)kxk

m − 1 − k
+ xm−1

m−2∑

k=0

(
m − 1

k

)
(−1)k−1

m − 1 − k
︸ ︷︷ ︸

=:S2

,

whilst substituting i = m − 1 − k in S2 and using an identity for the resulting sum, that
can be found in [19, p.281], leads to

S2 = (−1)m−1
m−1∑

i=1

(
m − 1

i

)
(−1)i−1

i
=

(−1)m−1

(m − 1)!

[
m

2

]
= (−1)m−1Hm−1,

which shows the claim.
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(ii) m → ∞, m = o(n). Doing some simplifications to P(∆n,m) leads to

P(∆n,m = d) = m2
n−m∑

j=d

(n − j − 1)! (n − m)!

(n − m − j + d) (n − j − m)! n!

= m2
n−m∑

j=d

1

n − m − j + d

1

n
e

−jm

n

(
1 + O

(
j2m

n2

)
+ O

(
jm2

n2

))

∼ m

n

∫ ∞

dm
n

e−tdt =
m

n
e

−md
n .

where the main contribution for this local approximation is for d = O (
n
m

)
. Thus, the

random variable m
n

∆n,m
(d)−→ X, where X has the density function f(x) = e−x, x > 0

which is the density function of an exponential distribution having λ = 1.

(iii) m ∼ αn. Again using (3.18) shows that

P(∆n,m = d) = m2
n−m∑

j=d

(n − j − 1)! (n − m)!

(n − m − j + d) (n − j − m)! n!

= m2
∞∑

j=d

(n − m)j

(n − m)nj+1

(
1 + O

(
1

n − m

))

∼ m

n

(
1 − m

n

)d−1

= α(1 − α)d−1.

To conclude, ∆n,m − 1 has asymptotically a geometric distribution with success proba-
bility p = α.

(iv) n − m = o(n). As almost each candidate gets recruited ∆n,m takes small values in this
case. Concretely for d = 1 we have

P(∆n,m = 1) =
m2

(m − 1)n
+ O

(
1

n

)
=

(n − o(n))2

(n − o(n) − 1)n
+ O

(
1

n

)
= 1 + o(1).

which directly shows that ∆n,m
(d)−→ 1.

.
�

Let us now consider another measurement for the selectivity of the hiring process given by the
rank of the best discarded candidate Mn,m. We first only consider the non-trivial case of 1 ≤
m ≤ n. According to [14] it is useful to use a simple trick when computing the characteristics
of this parameter. Therefore we introduce the auxiliary variable an,m,j , 0 ≤ j ≤ n−m, which
denotes the probability that at least all of the m + j highest ranked candidates are hired. If
we know the values of an,m,k one may obviously get the probabilities for Mn,m directly by

P(Mn,m = b) = an,m,n−m−b − an,m,n+1−m−b. (3.23)

So our first task is to determine an,m,k. We can easily get a recurrence for an,m,k when
considering the probabilities for a hiring. One may achieve a sequence of length n where the
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best m + j candidates get hired either by hiring a candidate after a sequence of length n − 1
where the best m + j − 1 candidates are hired or discarding a candidate after a sequence of
length n−1 where the best m+j candidates have already been hired. However, in the second
case the discarded applicant must not belong to the best m + j candidates at step n. Thus,
we get the following recurrence for 1 ≤ j ≤ n − m:

an,m,j =
m

n
an−1,m,j−1 +

(
1 − j + m

n

)
an−1,m,j , (3.24)

where the starting values are given by an,m,0 = 1, since it holds that R(σ) = m for each
permutation of the ranks σ ∈ Sn when applying hiring above the m-th best.

Lemma 3.2.13. The solution of Recursion (3.24) for the variable an,m,j is given by

an,m,j =
m! mj

(m + j)!
.

Proof. When solving this recurrence it is applicable to modify it by introducing

bn,m,j =
n!

m!(n − m − j)!
an,m,j ,

which directly leads to the simpler recurrence

bn,m,j = mbn−1,m,j−1 + bn−1,m,j .

An approach with using generating functions then yields the PDE

(1 − z)B(z, u, v) = zuvBu(z, u, v) +
z2uv

(1 − z(1 + u))2
,

where

B(z, u, v) =
∞∑

n=1

n∑

m=1

n−m∑

j=1

bn,m,jznumvj

is the multivariate generating function of bn,m,j . They used a trick in [14] to get the coeffi-
cients bn,m,j without solving this PDE explicitly. Therefore consider the bivariate generating
function bm(z, v) = [um]B(z, u, v), which satisfies

(1 − z)bm(z, v) = mzvbm(z, v) + mv

(
z

1 − z

)m+1

,

whereat the inhomogeneity can be computed in the following way:

[um]
z2uv

(1 − z(1 + u))2
= z2v [um−1](1 − z(1 + u))−2 = z2v [um−1]

∞∑

k=0

(
−2

k

)
(−1)kzk(1 + u)k

= z2v
∞∑

k=0

(
k + 1

k

)
zk [um−1](1 + u)k = z2v

∞∑

k=0

(k + 1)zk

(
k

m − 1

)

= z2vm
∞∑

k=m−1

(
k + 1

m

)
zk = zm+1

∞∑

k=0

(
m + k

m

)
zm−1+k

= mv

(
z

1 − z

)m+1

.
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The last identity is an application of Newton’s generalized binomial theorem and can be found
in [19, p.335]. Some simple algebraic manipulations then lead to

bm(z, v) =
mvzm+1

(1 − z − mzv)(1 − z)m+1
.

Finally extracting the coefficients from the closed form of bm(z, v), by again applying the
generalized binomial theorem, yields

bn,m,j = [znvj ]bm(z, v) = [zn]m

(
z

1 − z

)m+1

[vj ]
v

1 − z − mzv

= [zn]

(
z

1 − z

)m+1 (mz)j

(1 − z)j−1
= mj [zn−m−j ]

1

(1 − z)m+j+1
= mj

(
n

m + j

)
,

and resubstituting finally gives us the claim for an,m,j :

an,m,j =
m!(n − m − j)!

n!
bn,m,j =

m!(n − m − j)!

n!
mj

(
n

m + j

)

=
m!mj

(m + j)!
, 0 ≤ j ≤ n − m.

�

With the exact values of the auxiliary variables an,m,j we are now able to analyze the behavior
of the random variable Mn,m that denotes the rank of the best discarded candidate.

Theorem 3.2.14. Consider the rank of the best discarded candidate in a sequence of n

applicants given by Mn,m. Then for the exact distribution of Mn,m it holds that

P(Mn,m = b) =





δb,0, n < m,
m!
n! mn−m, b = 0, 1 ≤ m ≤ n,

m!
(n−b+1)! (n − m − b + 1)mn−m−b, 1 ≤ b ≤ n − m, 1 ≤ m ≤ n.

The expectation of Mn,m is given by

E(Mn,m) =





0, n < m,

n − m + 1 −∑n−m
j=0

m!mj

(m+j)! = n − m + O(
√

m), else,

where the asymptotic expansion holds uniformly for 1 ≤ m ≤ n and n → ∞.

Note: We defined Mn,m = 0 if no candidate is discarded, i.e. hn,m = n.

Proof. The case of n < m is as usual a trivial one, as all applicants get recruited, so the rank
of the best discarded candidate is 0. For 1 ≤ m ≤ n the case of Mn,m = 0 is exactly the same
as hn,m = n which directly yields P(Mn,m = 0) = m!

n! mn−m. For the last case, (3.23) together
with Lemma 3.2.13 show that

P(Mn,m = b) = an,m,n−m−b − an,m,n+1−m−b =
m!mn−m−b

(n − b)!
− m!mn+1−m−b

(n + 1 − b)!

=
m!

(n + 1 − b)!
(n − m − b + 1)mn−m−b.
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For 1 ≤ m ≤ n, the expectation is given by

E(Mn,m) =
n−m∑

b=0

b(an,m,n−m−b − an,m,n+1−m−b) = (n − m)an,m,0 +
n−m−1∑

b=0

an,m,n−m−b

= n − m + 1 +
n−m∑

b=0

m! mj

(m + j)!
.

For the asymptotic expansion we use a result that can be found in [18], namely

∞∑

j=0

m! mj

(m + j)!
=

√
πm

2
+

1

3
+ O

(
1√
m

)
,

and as a consequence we get for n → ∞ that

E(Mn,m) = n − m + O(
√

m).

�

Corollary 3.2.15. The limit distribution of Mn,m is, for n → ∞ and respecting the relation
between n and m, given by the following cases:

i) m fixed: n − m − Mn,m converges in distribution to a discrete random variable, which

is characterized by its density function Mm, i.e. n − m − Mn,m
(d)−→ Mm, where Mm has

the density function

P(Mm = b) =
(b + 1)mbm!

(m + b + 1)!
, b ∈ N.

ii) m → ∞, but n − m ≫ √
m: Suitably normalized, n − m − Mn,m is asymptotically

Rayleigh distributed with parameter σ = 1, i.e.

n − m − Mn,m√
m

(d)−→ Rayleigh(1).

iii) n−m ∼ α
√

m , with α > 0: Suitably normalized, n−m−Mn,m converges in distribution
to the minimum of α and a Rayleigh distributed random variable with parameter σ = 1,
i.e.

n − m − Mn,m√
m

(d)−→ min(α, Rayleigh(1)).

iv) n − m = o(
√

n): Mn,m converges in distribution to 0, i.w. Mn,m
(d)−→ 0.

Proof.

i) m fixed. The claim is a direct consequence of the exact distribution of n − m − Mn,m for
n → ∞.
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ii) m → ∞, but n − m ≫ √
m. Applying Stirling’s formula leads to the local expansion

P(n − m − Mn,m = b) =
b

m
e− b2

2m ·
(

1 + O
(

b

m

)
+ O

(
b3

m2

))
,

and as a direct consequence we have
n−m−Mn,m√

m

(d)−→ R̂, where R̂ has the density function

f̂(x) = xe
−x2

2 , x > 0, which is exactly the density function of a Rayleigh distribution
with parameter σ = 1.

iii) n − m ∼ α
√

m, with α > 0. We consider the random variable M̂n,m := n − m − Mn,m

and compute its distribution function P

(
M̂n,m ≤ k

)
. For 0 ≤ k ≤ n − m − 1 we get

P

(
M̂n,m ≤ k

)
=

k∑

i=0

P

(
M̂n,m = i

)
=

k∑

i=0

(i + 1)m!mi

(m + i + 1)!

=
k∑

i=0

(
m!mi

(m + i)!
− m!mi+1

(m + j + 1)!

)
= 1 − m!mk+1

(m + k + 1)!
,

since the sum telescopes. Obviously it is true that P

(
M̂n,m ≤ n − m

)
= 1. Hence, the

distribution function of M̂n,m is given by

P

(
M̂n,m ≤ k

)




1 − m!mk+1

(m+k+1)! , 0 ≤ k ≤ n − m − 1,

1, k ≥ n − m.

For the region n − m ∼ α
√

m, α > 0, we get the asymptotic expansion

P

(
M̂n,m ≤ x

)
−→ 1 − e− x2

2 , 0 ≤ x < α,

which again is a consequence of Stirling’s formula and the substitution k = x
√

m. For

x ≥ α the distribution function of M̂n,m converges to 1, i.e. P

(
M̂n,m√

m
≤ x

)
−→ 1. Thus,

we have the asymptotic behavior

M̂n,m√
m

(d)−→ M̂α,

where M̂α has the distribution function

F̂α(x) =





1 − e− x2

2 , 0 ≤ x < α,

1, x ≥ α,

which is the composition of a Rayleigh distribution with parameter σ = 1 and a Diracian
distribution at x = α. Thus, F̂α(x) is the distribution function of min(Rayleigh(1), α).

iv) n − m = o(
√

n). In this case almost each candidate gets hired. Defining k = n − m and
applying Stirling’s formula shows that

P(Mn,m = 0) =
m!mn−m

n!
=

(n − k)!(n − k)k

n!
= e− k2

2n ·
(

1 + O
(

k

n

)
+ O

(
k3

n2

))
.
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Using the fact k = o(
√

n) finally gives us

P(Mn,m = 0) = eo(1) ·
(

1 + O
(

1√
n

))
= 1 + o(1).

Thus, Mn,m converges, for n → ∞, in distribution to 0.

.
�

At the end of our considerations about hiring above the m-th best we consider the adaption
hiring and firing of the hiring problem. Let us recap the hiring criteria with hiring and firing.
A candidate gets hired if and only if his rank is beneath the m best candidates seen so far
(normal hiring). Or he is better than the worst already hired candidate whom he replaces in
this case (firing of the worst so far hired candidate). As mentioned before the size of the hiring
set is not affected by this adaption. The parameter we investigate with hiring and firing is
the number fn,m of replacements. By following [14] we will give the expectation of fn,m but
also the probability for a replacement at step j ≤ n. Additionally we were able to establish
a recursion for fn,m which we unfortunately could not solve with standard techniques.

Let us first introduce the sequence of indicator variables Yj,m for a replacement which is given
by

Yj,m =

{
0, there is no replacement at step j,

1, else.

With the law of complete probability we may now easily determine the probability for a
replacement at step j which is given by P(Yj,m = 1).

Lemma 3.2.16. The probability for a replacement at the j-th candidate in a sequence of
length n when performing hiring and firing with hiring above the m-th best is given by

P(Yj,m = 1) =

{
0, j ≤ m,
m
j

(Hj−1 − Hm), else.
(3.25)

Proof. Obviously the number of replacements, as well as the probability for a replacement,
depends on the size of the hiring set. For the conditioned probability of Yn,m it holds that

P(Yj,m = 1 | h
[f ]
j−1,m = k) =

{
0, i ≤ m,
k−m

j
, j > m, m ≤ k ≤ j.

This equation follows in a natural way by definition of hiring and firing. Therefore let k

denote the size of the hiring set at step j − 1. Because of the replacement mechanism the
hiring set contains exactly the ranks j − k, j − (k − 1), . . . , j − 1. The possible ranks for a
replacement when hiring Xj are j − k, j − (k − 1), . . . , j − m − 1. For all higher ranks Xj

would get recruited without a replacement. Thus, the probability for a replacement is given
by

P(Yj,m = 1 | h
[f ]
j−1,m = k) =

(j − m − 1) − (j − k − 1)

j
=

k − m

j
.
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The law of complete probability together with Theorem 3.2.3 implies that

P(Yi,m = 1) =
j−1∑

k=m

P(Yj,m = 1 | hj−1,m = k)P(hj−1,m = k)

=
j−m∑

k=1

k − 1

j

m! mk−1

(j − 1)!

[
j − m

k

]
. (3.26)

Using the logarithmic deviation of the BGF of the Stirling numbers given by

∂

∂u

[
1

(1 − z)u

]
= log

(
1

1 − z

)
1

(1 − z)u
=

∞∑

n=0

n∑

k=0

k

[
n

k

]
zn

n!
uk−1,

and applying Newton’s generalized binomial theorem as well as the identity log(1 + x) =∑∞
i=1(−1)i+1 xi

i
shows the two identities

n∑

k=0

[
n

k

]
uk = n!

(
n + u − 1

n

)
,

n∑

k=0

k

[
n

k

]
uk−1 = n!

(
n + u − 1

n

)
n∑

j=1

1

j + u − 1
.

Applying these identities evaluated at u = m to (3.26) gives us

P(Yj,m = 1) =
j−m∑

k=1

k − 1

j

m! mk−1

(j − 1)!

[
j − m

k

]
=

m!

j!




j−m∑

k=0

k

[
j − m

k

]
mk−1 − 1

m

j−m∑

k=0

[
j − m

k

]
mk




=
m!

j!


(j − m)!

(
j − 1

j − m

)
·



j−m∑

k=1

1

k + m − 1


− (j − m)!

m

(
j − 1

j − m

)


=
m

j
(Hj−1 − Hm)

�

With the probabilities of the indicator variables it is an easy task to compute the expectation
of fn,m by exploitation of its linearity.

Theorem 3.2.17. For the expectation of the number fn,m of replacements when using the
replacement mechanism with hiring above the m-th best it holds that

E(fn,m) =
m

2

(
(Hn − Hm)2 − (H(2)

n − H(2)
m )

)
.

Proof. Formula (3.25) together with the linearity of the expectation shows that

E(fn,m) =
n∑

j=m+1

E(Yj,m) =
n∑

j=m+1

P(Yj,m = 1)

=
n∑

j=m+1

m

j
(Hj−1 − Hm) = m

n∑

j=m+1

Hj−1

j
− mHm(Hn − Hm). (3.27)
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For the last sum (3.15) implies that

n∑

j=m+1

Hj−1

j
=

n∑

j=m+1

Hj

j
−
(
H(2)

n − H(2)
m

)
=

1

2

(
H2

n − H(2)
n − H2

m + H(2)
m

)
. (3.28)

Finally plugging (3.28) into (3.27) yields in

E(fn,m) =
m

2

(
H2

n − H(2)
n − H2

m + H(2)
m − 2HnHm + 2H2

m

)

=
m

2

(
(Hn − Hm)2 −

(
H(2)

n − H(2)
m

))
.

�

When computing the exact probabilities for fn,m we came up against a recursion which we
could not solve with standard techniques. Although we have no solution for this recursion we
will remark our approach.

Remark 3.2.18. Let fn,m,k = P(fn,m = k) denote the probability for k replacements in a
sequence of length n. Then the following recursion holds:

fn,m,k =
m

n
(Hn−1 − Hm)fn−1,m,k−1 +

(
1 − m

n
(Hn−1 − Hm)

)
fn−1,m,k, n > m, 0 ≤ k ≤ n.

For the starting values we get

fm+1,m,k = δ0,k,

fn,m,0 =
n∏

i=m+1

(
1 − m

i
(Hi−1 − Hm)

)
.

The recursion can be derived from the two cases that appear at step n − 1. Either we have
had k − 1 replacements until step n − 1 and another one at step n or we have already had
k replacements until step n − 1 and no additional one. The probabilities for the cases are a
direct consequence of Lemma 3.2.16.

For the starting values we can make a similar consideration. For n = m + 1 there are no
replacements for sure, as the first m candidates get recruited by the strategy. So Xm+1 does
not get hired by the strategy if and only if his rank is 1. But in this case he has a lower rank
than all already hired candidates, so we have no replacement at step m + 1.

The second type of starting values follows from the probability that there is no replacement
until the n-th candidate.

�



Chapter 4

Hiring above the median

The last Lake Wobegon strategy we discuss is hiring above the median. Here the hiring
process recruits the first candidate for sure. Further candidates get recruited if and only if
their relative rank is higher than the median score of all already hired candidates. Concretely
this means that in a sequence of n candidates with the permutation of their ranks σ ∈ Sn

candidate Xi gets hired if and only if σi(i) > m({σi(j) : j ∈ Hi(σ)}). Therefore we define
the median for any set C := {c1, c2, . . . , ck} that holds c1 < c2 < . . . < ck by m(C) := c⌈ k

2 ⌉.

Like we did for all the other strategies we call the person who currently holds the median
rank of all previously hired candidates the threshold candidate. Obviously any applicant gets
hired if and only if his score is better than the score of the current threshold candidate. This
shows that hiring above the median is a pragmatic hiring strategy.

The handicap when analyzing the parameters is that we have to distinguish between two
cases when recruiting a new candidate: Either the median value of the hiring set changes
or not, which affects the threshold candidate for the next interview. We did not have to
deal with that problem when analyzing hiring above the minimum, where the threshold never
changes, or hiring above the m-th best, where the threshold changes each time we hire a
candidate. Last but not least we want to state that the hiring process always increases the
quality of the hiring set as we only hire candidates whose rank is better than the median rank
of the previously recruited candidates, which characterizes hiring above the median as a Lake
Wobegon strategy.

4.1 Hiring above the median

When analyzing this strategy we will mostly follow the considerations of [15] who solved the
problem we mentioned above very skillfully by considering an automaton. This automaton
then leads to a system of recurrences for the two different cases. First of all let us give a more
precise description of this strategy.

Strategy 4.1.1 (Hiring above the median). Consider a sequence of n candidates and
the permutation of their ranks σ ∈ Sn. Hiring above the median builds up the hiring set
H(σ) in the following way:

60
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• H1(σ) = {1}.

• Hi(σ) =

{
Hi−1(σ) ∪ {i}, σ(i) > m({σi(j) : j ∈ Hi−1(σ)}),

Hi−1, else,
2 ≤ i ≤ n.

Note that the threshold candidate changes after exactly every second hiring.
�

Let us first consider an example to get a better insight to our strategy and the behavior of
how the threshold changes from step to step.

Example 4.1.2. We consider the hiring process with hiring above the median on the
permutation σ = 463921785. The underlined numbers in the table mark the previously hired
candidates in each step.

candidate rel. rank σi thres. cand. thres. rank hired hiring set

X1 1 1 - - X {1}
X2 2 1 - 2 X1 1 X {1, 2}
X3 1 23 - 1 X1 2 {1, 2}
X4 4 231 - 4 X1 2 X {1, 2, 4}
X5 1 3425 - 1 X2 4 {1, 2, 4}
X6 1 45362 - 1 X2 5 {1, 2, 4}
X7 6 453721 - 6 X2 5 X {1, 2, 4, 7}
X8 7 4538216 - 7 X2 5 X {1, 2, 4, 7, 8}
X9 5 46392178 - 5 X7 7 {1, 2, 4, 7, 8}

For a possible next candidate X10 the threshold would not change as candidate X9 is discarded,
but even if X9 was hired the threshold candidate would still be X7 as the median only increases
with every second hiring.

�

Let us first consider the parameter hn which gives us the number of recruited candidates
after n interviews. In [15] they therefore introduced auxiliary variables to compute the exact
probabilities for hn. Their approach bases on the observation that in a set of k different
values (which in our case denote the ranks of the hired applicants) r1 < r2 < . . . < rk we
can describe the median value r⌈ k

2 ⌉ as the ℓ-th largest element of this set, i.e. rk+1−ℓ, with

ℓ =
⌈

k+1
2

⌉
. It is obvious that the size of the hiring set is closely related to the index ℓ of the

median in the increasing sequence of ranks of the hired candidates. Let us assume we hired k

candidates in our hiring process, i.e. h(σ) = k, where σ ∈ Sn denotes the permutation of the
ranks. Then it holds that

ℓ =

{
k+1

2 , k ≡ 1(2),
k
2 + 1, k ≡ 0(2),

and vice versa. So there is a direct connection between ℓ and the size of the hiring set hn = k.
This simple observation is the background of the approach in [15]. As we have to respect the
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parity of k, we introduce two auxiliary variables a
[1]
n,ℓ and a

[2]
n,ℓ that describe the probabilities

of the size of the hiring set.

P(hn = k) =





a
[1]

n, k+1
2

, k ≡ 1(2),

a
[2]

n, k
2

+1
, k ≡ 0(2).

(4.1)

Figure 4.1 shows the automaton that models the connection between the two auxiliary vari-
ables and gives the probabilities how the state may change when a new candidate is inter-
viewed. Furthermore, it shows how the parameters n and ℓ change. The two nodes give the

parity of k, i.e. if a
[1]
n,ℓ or a

[2]
n,ℓ is concerned. If the currently interviewed applicant is discarded,

the size of the hiring set k does not change and as a consequence its parity does not change
either. This case is modeled by the loops at each of the two nodes. On the other hand hiring
a candidate changes the parity of k and so we have to go to the other state in the automaton.

As we will see the numbers a
[1]
n,ℓ and a

[2]
n,ℓ play an important role for all of the investigated

quantities.

1 2

P(1 → 2) = ℓ
n+1

(n, ℓ) 7→ (n + 1, ℓ + 1)

P(2 → 1) = ℓ
n+1

(n, ℓ) 7→ (n + 1, ℓ)

P(1 → 1) = 1 − ℓ
n+1

(n, ℓ) 7→ (n + 1, ℓ)

P(2 → 2) = 1 − ℓ
n+1

(n, ℓ) 7→ (n + 1, ℓ)

Figure 4.1: The automaton describing the relation and transition between the two variables

a
[1]
n,ℓ and a

[2]
n,ℓ.

As we can see the threshold changes together with the transition from state 1 to state 2.
Starting from the automaton given in Figure 4.1 we receive a linked system of recursions for

a
[1]
n,ℓ and a

[2]
n,ℓ given by

a
[1]
n,ℓ =

ℓ

n
a

[2]
n−1,ℓ +

(
1 − ℓ

n

)
a

[1]
n−1,ℓ, (4.2)

a
[2]
n,ℓ =

ℓ − 1

n
a

[1]
n−1,ℓ−1 +

(
1 − ℓ

n

)
a

[2]
n−1,ℓ, (4.3)

for n ≥ 2 and 1 ≤ ℓ ≤ n with the starting values a
[1]
1,1 = 1 and a

[2]
1,1 = 0. Outside the range we

define a
[1]
n,ℓ = a

[2]
n,ℓ = 0.

Before we start solving this system of recursions we go back to Example 4.1.2 and reconstruct
the hiring process with focus on the automaton.

Example 4.1.3 (Example 4.1.2, continued). Again we consider the permutation
σ = 463921785 and observe the transitions in the automaton given in Figure 4.1 during the
hiring process.
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Xi σi(i) σi hired ℓ state

X1 1 1 X - 7→ 1 → 1

X2 2 1 - 2 X 1 7→ 2 1 → 2

X3 1 23 - 1 2 2

X4 4 231 - 4 X 2 2 → 1

X5 1 3425 - 1 2 1

X6 1 45362 - 1 2 1

X7 6 453721 - 6 X 2 7→ 3 1 → 2

X8 7 4538216 - 7 X 3 2 → 1

X9 5 46392178 - 5 3 1

As we can observe the value of ℓ changes exactly in the contrary hirings as the threshold
candidate does. The reason for this lies within the fact that when the threshold candidate
changes, he changes to the very next better ranked candidate. As we only hire applicants
better than the threshold we get one better candidate in this case but also change the threshold
to the next candidate. So the threshold still stays the ℓ-th best hired candidate. On the
other hand when the threshold does not change we have additionally one more better hired
candidate and ℓ increases by one.

�

Let us now try to find a solution to the system of recursions (4.2) and (4.3). Obviously when

we find a solution for a
[1]
n,ℓ we immediately get a solution for a

[2]
n,ℓ too and vice versa. We first

try to find a recurrence for a
[1]
n,ℓ that is independent of the values a

[2]
n,ℓ. By substituting (4.3)

into (4.2) inductively one finally obtains such an independent recursion given by

a
[1]
n,ℓ =

(
1 − ℓ

n

)
a

[1]
n−1,ℓ +

n−2∑

m=1

a
[1]
m,ℓ

ℓ − 1

m + 1

ℓ

n

n−2∏

j=m+1

(
1 − ℓ

j + 1

)
. (4.4)

We could also obtain this recursion by considering our automaton again. For resulting in
state 1 at step n we could have either been in state 1 at step n − 1 and have stayed there,
which is given by the first summand, or we have been in state 2 at step n − 1, which yields
the sum in the second term. Note that we initially start in state 1. So if we come back to
1 from state 2 we must have jumped to state two at some step m before, then stayed there
until step n − 1 and then got back to 1.

Following [15] it is useful to multiply (4.4) with (n − ℓ)
(n

ℓ

)
and introduce auxiliary variables

b
[1]
n,ℓ :=

(
n

ℓ

)
a

[1]
n,ℓ,

which then yields following recursion

(n − ℓ)b
[1]
n,ℓ = (n − ℓ)b

[1]
n−1,ℓ +

n−2∑

m=1

(ℓ − 1)b
[1]
m,ℓ−1. (4.5)

Applying the method of generating functions to this recursion by firstly multiplying it with
znuℓ leads to

(n − ℓ)b
[1]
n,ℓz

nuℓ = z(n − ℓ)b
[1]
n−1,ℓz

n−1uℓ +
n−2∑

m=1

zn−mu(ℓ − 1)b
[1]
m,ℓ−1zmuℓ−1.
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Secondly summing over ℓ ≥ 2 and applying some simple algebraic manipulations yield

nb[1]
n (u)zn − ub[1]′

n (u)zn = nb
[1]
n−1(u)zn − ub

[1]′
n−1(u)zn +

n−2∑

m=1

u2b[1]′
m (u)zn

where b
[1]
n (u) is the horizontal generating function of the bivariate generating function of the

sequence b
[1]
n,ℓ

B[1](z, u) :=
∞∑

n=1

n∑

ℓ=1

b
[1]
n,ℓ znuℓ.

Finally summing over n ≥ 1 leads to

zB[1]
z (z, u) − uB[1]

u (z, u) = zB[1](z, u) + z2B[1]
z (z, u) − zuB[1]

u (z, u) +
z2u2

1 − z
B[1]

u (z, u)

and some simple algebraic manipulations finally yield the linear partial differential equation
(PDF)

z(1 − z)B[1]
z (z, u) +

(
zu − u − z2u2

1 − z

)
B[1]

u (z, u) − zB[1](z, u) = 0. (4.6)

This linear PDE can be solved by applying the method of characteristics, which can be found
in [22]. This method introduces a function f that satisfies f(z, u, B[1]) = 0 and transforms
(4.6) into a system of ordinary differential equations given by

ż = z(1 − z),

u̇ = zu − u − u2z2

1 − z
,

Ḃ[1] = zB[1].

For solving this autonomic system of differential equations one may consider the derivatives

du

dz
=

zu − u − u2z2

1−z

z(1 − z)
= −u

z
− u2z

(1 − z)2
, (4.7)

dB[1]

dz
=

B[1]

1 − z
. (4.8)

The first ODE (4.7) is a Bernoulli differential equation, which can be solved by applying the
substitution x = u−1. This leads to the inhomogeneous ODE

x′ =
dx

dz
=

x

z
− z

1 − z
, (4.9)

which can be solved with standard techniques. For the homogeneous differential equation,
applying separation of the variables leads to the solution

x = C1 · z,
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with an arbitrary real constant C1. For the inhomogeneous equation, variation of the constant
shows that

x = C1(z) · z, (4.10)

x′ = C1(z) + C ′
1(z) · z. (4.11)

Plugging (4.10) and (4.11) into (4.9) then yields

C ′
1(z) =

1

(1 − z)2
,

and as a solution we get

C1(z) =
1

1 − z
.

Hence, the solution of (4.9) is given by

x =
z

1 − z
+ z · C1,

or equivalently,

C1 =
x

z
− 1

1 − z
=

1

uz
− 1

1 − z
=

1 − z − uz

uz(1 − z)
.

The solution of (4.8) is given by

B =
C2

1 − z
,

or equivalently,

C2 = B[1] · (1 − z),

and can be obtained by applying separation of the variables. Thus, we achieve the represen-
tation

f(z, u, B[1]) = 0 = G

(
(1 − z)B[1],

1 − z − zu

uz(1 − z)

)

with an arbitrary differentiable function G. Finally applying the fundamental theorem of
implicit functions, which can be found in [16], shows that

(1 − z)B[1] = F

(
1 − z − zu

uz(1 − z)

)
.

Hence, we have the general solution

B[1](z, u) =
1

1 − z
F

(
1 − z − zu

zu(1 − z)

)
, (4.12)

where F (x) is an arbitrary differentiable function which we have to determine by applying
the initial conditions. Following [15] it is quite useful to consider the modification

B̃(z, u) := B[1]
(

zu,
1

u

)
=

∞∑

n=1

n−1∑

ℓ=0

b
[1]
n,n−ℓz

nuℓ. (4.13)
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The results in (4.12) and (4.13) directly yield

B̃(z, u) =
1

1 − zu
F

(
1 − zu − z

z(1 − zu)

)
. (4.14)

Due to the fact that the median only increases after every second hiring together with the

parity of the hiring set one easily gets a
[1]
n,n = 0 for n ≥ 2. Moreover, the initial condition gives

us a
[1]
1,1 = 1. As an immediate consequence we have b

[1]
n,n = δn,1 for n ≥ 1. Hence, putting this

result into (4.13) gives us the initial condition B̃(z, 0) = z, which together with (4.14) shows
that

z = B̃(z, 0) = F

(
1 − z

z

)
. (4.15)

Subsituting x = 1−z
z

in (4.15) then fully determines the function F (x) by

F (x) =
1

1 + x
,

and as a consequence we finally get the generating function B[1](z, u) by the following formula:

B[1](z, u) =
1

1 − z
F

(
1 − z − zu

zu(1 − z)

)
=

1 − z − zu

(1 − z)
(
1 + 1−z−zu

zu(1−z)

) =
zu

1 − z − z2u
.

In a last step we have to extract the coefficients b
[1]
n,ℓ from the closed form of B[1](z, u) which

can easily be done by using Newton’s generalized binomial theorem. Thus, we get the solution

for b
[1]
n,ℓ by

b
[1]
n,ℓ = [znuℓ]B[1](z, u) = [znuℓ]

zu

1 − z − z2u
= [zn]

1

1 − z
[uℓ]

u

1 − z2

1−z
u

= [zn]
1

1 − z

(
z2

1 − z

)ℓ−1

= [zn]
z2ℓ−1

(1 − z)ℓ
= [zn−2ℓ+1](1 − z)−ℓ

=

(
−ℓ

n − 2ℓ + 1

)
(−1)ℓ =

(
n − ℓ

ℓ − 1

)
,

and as an immediate consequence this result yields

a
[1]
n,ℓ =

(n−ℓ
ℓ−1

)
(n

ℓ

) . (4.16)

For determining the values of a
[2]
n,ℓ plugging this result into (4.2) gives us

(n+1−ℓ
ℓ−1

)
(n+1

ℓ

) =
ℓ

n + 1
a

[2]
n,ℓ +

(
1 +

ℓ

n + 1

) (n−ℓ
ℓ−1

)
(n

ℓ

) ,

which after some simple algebraic manipulations yields in

a
[2]
n,ℓ =

n + 1

ℓ

((n+1−ℓ
ℓ−1

)
(n+1

ℓ

) − n + 1 − ℓ

n + 1

(n−ℓ
ℓ−1

)
(n

ℓ

)
)

=
(ℓ − 1)(n − ℓ + 1)

(n + 2 − 2ℓ) ℓ

(n−ℓ
ℓ−1

)
(n

ℓ

) =

(n−ℓ
ℓ−2

)
( n

ℓ−1

) . (4.17)
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Plugging all the results above together delivers the following theorem.

Theorem 4.1.4 (Helmi and Panholzer, [15, Theorem 1]). The exact distribution of
the number of hired candidates hn when applying hiring above the median for a sequence of
length n is given by

P(hn = k) =





(n−ℓ
ℓ−1)
(n

ℓ)
, k = 2ℓ − 1,

(n−ℓ
ℓ−2)

( n
ℓ−1)

, k = 2ℓ − 2.

Proof. The claim is a direct consequence of Formula (4.1) together with (4.16) and (4.17).
�

With these exact results for the probabilities of hn we can also determine its limiting distri-
bution which we state in the corollary below.

Corollary 4.1.5. The limiting distribution of the random variable hn for n → ∞ is, after
normalization, asymptotically Rayleigh distributed, with parameter σ =

√
2, i.e.

hn√
n

(d)−→ R̂,

where R̂ has the density function

f̂(x) =
x

2
e− x2

4 , x > 0.

Furthermore, the expectation of hn satisfies E(hn) =
√

πn + O(1).

Proof. Using the notation of Corollary 1.3.5 shows the identities

a
[1]
n,ℓ =

ℓ

n + 1 − 2ℓ
c(n, ℓ),

a
[2]
n,ℓ =

(ℓ − 1)(n − ℓ + 1)

(n + 1 − 2ℓ)(n + 2 − 2ℓ)
c(n, ℓ),

where the numbers c(n, ℓ) are defined by

c(n, ℓ) =

(n−ℓ
ℓ

)
(n

ℓ

) .

This yields in the asymptotic representations

a
[1]
n,ℓ =

ℓ

n
e− ℓ2

n ·
(

1 + O
(

ℓ

n

)
+ O

(
ℓ3

n2

))
, (4.18)

a
[2]
n,ℓ =

ℓ

n
e− ℓ2

n ·
(

1 + O
(

1

ℓ

)
+ O

(
ℓ

n

)
+ O

(
ℓ3

n2

))
, (4.19)
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which are an immediate consequence of Corollary 1.3.5 and hold for 1 ≤ ℓ ≤ n
1
2

+ε, where ε is
an arbitrary chosen constant in 0 < ε < 1

6 . For ℓ ≥ n
1
2

+ε these numbers are sub-exponentially
small. The considerations above together with Theorem 4.1.4 lead to the asymptotic expan-
sion for P(hn = k) given by

P(hn = k) ∼ k

2n
e− k2

4n ,

which holds for k ∈ [n
1
2

−ε, n
1
2

+ε] when n tends to infinity. Substituting k = x
√

n shows that
hn√

n
converges for n → ∞ in distribution to a random variable R̂ with density

f̂(x) =
x

2
e− x2

4 , x > 0,

which is the density function of a Rayleigh distribution with parameter σ =
√

2.

For the expectation we get

E(hn) =
n∑

k=1

k P(hn = k) =
n∑

ℓ=1

(
(2ℓ − 1)a

[1]
n,ℓ + (2ℓ − 2)a

[2]
n,ℓ

)
. (4.20)

The asymptotic expansions for a
[1]
n,ℓ and a

[2]
n,ℓ given in the Formulae (4.18)-(4.19) then imply

that

E(hn) =
n

1
2 +ε∑

ℓ=1

4ℓ2

n
e− ℓ2

n ·
(

1 + O
(

1

ℓ

)
+ O

(
ℓ

n

)
+ O

(
ℓ3

n2

))

= 4
√

n

∫ ∞

0
x2e−x2

dx ·
(

1 + O
(

1√
n

))
=

√
πn + O(1),

where we used the substitution x = ℓ√
n

. For computing the integral one may consider the

fact that
√

π

2
=

∫ ∞

0
e−x2

dx = xe−x2
∣∣∣∣
∞

x=0

−
∫ ∞

0
xe−x2

(−2x)dx = 2

∫ ∞

0
x2e−x2

dx,

which, for instance, can be found in [7, p.744].
�

When putting the exact results of our auxiliary variables into (4.20) one comes to the exact
representation

E(hn) =
n∑

ℓ=1

ℓ(2ℓ − 1)(n + 2 − 2ℓ) + 2(ℓ − 1)2(n + 1 − ℓ)

ℓ(n + 1 − ℓ)

(n−ℓ+1
ℓ−1

)
(n

ℓ

) .

As the first candidate gets hired for sure it hypothesizes that there is a strong dependency
of the number of hired candidates in a sequence of n applicants on the relative score of
candidate X1. A low score will lead to a high number of hirings and vice versa. Thus, we
consider the random variable hn,r := [hn | σn(1) = r] which denotes the number of hirings
after n interviews conditioned by the event that the relative score of the first candidate, given
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by σn(1), is r. Note that in contrast to hiring above the m-th best we have no additional
parameter m in order to tighten or relax the hiring criteria. Thus, the dependency on the
score of the first candidate is even more important.

Theorem 4.1.6. The exact distribution of the random variable hn,r defined above is, for
1 ≤ k, r ≤ n, given as follows:

P(hn,r = k) =





(ℓ − 1)
(n−r−ℓ

ℓ−2 )
(n−r

ℓ )
, k = 2ℓ − 1,

(ℓ−1)(ℓ−2)
ℓ

(n−r−ℓ+1
ℓ−2 )

(n−r
ℓ )

, k = 2ℓ − 2,

where the threshold candidate has the ℓ-th highest score. Asymptotically, for n → ∞ and
provided that n − r → ∞, hn,r converges in distribution to a continuous limiting distribution

S, i.e.
hn,r√
n−r

(d)−→ S, which is characterized by its density function

h(x) =
x3

8
e− x2

4 , x > 0.

Proof. The claim can be shown by introducing the sequence of auxiliary variables

an,k,r := P(hn = k ∧ σn(1) = r),

where σn ∈ Sn denotes the permutation of the relative ranks. For determining the values of
an,k,r we first show that all these values are fully determined by an,k,1. Thus, we consider
the set of all permutations σ ∈ Sn satisfying σ(1) = r and h(σ) = k. This set is given by
Sn,k,r := {σ ∈ Sn | σ(1) = r ∧ h(σ) = k}. If the rank of the first candidate equals r then
none of the candidates holding a lower rank than r get hired because the first candidate is the
first threshold and the rank of the threshold does not decrease during the hiring process. This
allows us to reduce the sequence by eliminating all of these r−1 candidates. When performing
the hiring process on this reduced sequence of candidates we will get the same number of hired
candidates as we did before by eliminating the low quality candidates. Formally this means
that we eliminate r−1 candidates from a permutation σ ∈ Sn,k,r and receive - after relabelling
r, r + 1, . . . n to 1, 2, . . . , n − r + 1 - a permutation σ̂ ∈ Sn−r+1,k,1. We can also reverse this
construction to get to the original permutation again. Therefore we have to insert the other
r − 1 candidates, which can be inserted at r − 1 out of n − 1 positions. Together with the
possible permutations of the r − 1 candidates we get the following recursion for Sn,k,r:

|Sn,k,r| = |Sn−r+1,k,1|
(

n − 1

r − 1

)
(r − 1)!

As a direct consequence we get a recursion for the numbers an,k,r given by

an,k,r =
|Sn,k,r|

n!
=

|Sn−r+1,k,1| (n−1
r−1

)
(r − 1)!

n!
=

n − r + 1

n
an−r+1,k,1. (4.21)

The only thing we still have to do is determining the starting values an,k,1. Therefore we use
the fact that P(hn = k) =

∑n
r=1 an,k,r, which, when plugging (4.21) into it leads to

P(hn = k) =
1

n

n∑

r=1

(n − r + 1)an−r+1,k,1 =
1

n

n∑

r=1

r ar,k,1,
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where the last equality results from flipping the index r 7→ n − r + 1. Multiplying by n and
building differences gives us the starting values

an,k,1 =
nP(hn = k) − (n − 1)P(hn−1 = k)

n
,

which then shows the general solution for an,k,r:

an,k,r =
(n − r + 1)P(hn−r+1 = k) − (n − r)P(hn−r = k)

n

The probabilities for the random variable hn,r is then given by

P(hn,r = k) =
an,k,r

P(σn(1) = r)
= n an,k,r = (n − r + 1)P(hn−r+1 = k) − (n − q)P(hn−r = k).

(4.22)

Plugging the results from Theorem 4.1.4 into (4.22) finally shows the claim.

The result for the limit distribution is a direct result of Corollary 1.3.5 applied to the explicit
result for the probabilities. Thus, it is true that

P(hn,r = k) ∼ k3

8(n − r)2
e

− k2

4(n−q) ,

uniformly for k = O
(
(n − r)

1
2

+ε
)

and 0 ≤ ε < 1
6 . Moreover, the probabilities are sub-

exponentially small for k larger.
�

In the next step we observe the probability for any candidate to get hired, i.e. P(Xn = 1).
In contrast to hiring above the m-th best this quantity is strongly dependent on the random
variables X1, . . . , Xn−1, as for the possible ranks for a hiring we have R(σ) = k, where
σ ∈ Sn−1 denotes the permutation of the ranks amongst the first n − 1 candidates and the
threshold holds rank n−k (i.e. the k-th highest rank among all already interviewed applicants).
On the other hand hiring above the m-th best satisfies R(σ) = m for all permutations σ.

Remark 4.1.7. According to Theorem 1.1.9 each pragmatic hiring strategy recruits the
R(σ) very best candidates until step |σ| = n − 1. Hence, assuming the threshold candidate
holds the ℓ-th highest relative rank among all hired candidates, it follows that he even holds the
ℓ-th highest relative rank among all applicants seen so far. Thus, the conditioned probability
for a hiring of candidate Xn is given by P(Xn = 1 | τ = n − ℓ) = ℓ

n
, where τ denotes the rank

of the threshold candidate.
�

Proposition 4.1.8. Consider the random variable Xn which indicates a hiring of the n-th
candidate. Then for the probability of recruiting the n-th candidate the following holds:

P(Xn = 1) =





1, n = 1,
n−1∑
ℓ=1

(2ℓ−1)n+(−3ℓ+2)ℓ
(n−ℓ)2

(n−ℓ
ℓ−1)
(n

ℓ)
, else.
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Furthermore, the asymptotic expansion, for n → ∞, is given by

P(Xn = 1) =
2
√

π√
n

+ O
(

1

n

)
.

Proof. The case for n = 1 follows trivially by the definition of our strategy. For n ≥ 2 the
law of complete probability shows that

P(Xn = 1) =
n∑

ℓ=1

P(Xn = 1 | τ = ℓ) P(τ = ℓ) =
n∑

ℓ=1

ℓ

n

(
a

[1]
n−1,ℓ + a

[2]
n−1,ℓ

)
,

where τ denotes the threshold candidate after n − 1 interviews. Applying (4.16) as well as
(4.17) to the formula above, together with some careful algebraic manipulations yield in

P(Xn = 1) =
n−1∑

ℓ=1

ℓ

n

((n−1−ℓ
ℓ−1

)
(n−1

ℓ

) +

(n−1−ℓ
ℓ−2

)
(n−1

ℓ−1

)
)

=
n−1∑

ℓ=1

(2ℓ − 1)n + (−3ℓ + 2)ℓ

(n − ℓ)2

(n−ℓ
ℓ−1

)
(n

ℓ

) .

When taking the asymptotic expansion of the numbers a
[1]
n,ℓ and a

[2]
n,ℓ into account we get,

similarly to the computations for the expectation of hn, the following formula:

P(Xn = 1) =
n

1
2∑

ℓ=1

2ℓ2

n2
e− ℓ2

n ·
(

1 + O
(

1

ℓ

)
+ O

(
ℓ

n

)
+ O

(
ℓ3

n2

))

=
2√
n

∫ ∞

0
x2e−x2

dx ·
(

1 + O
(

1√
n

))
=

2
√

π√
n

+ O
(

1

n

)
.

�

Unfortunately we were not able to find a closed form for the exact probabilities of Xn either,
which is surprising as the probabilities of hn have a very simple representation.

We have already computed the probabilities for the (unconditioned and conditioned) size of
the hiring set and the probability for hiring a single candidate until now. So the question after
the probability for hiring a candidate holding a specific score r comes up. Therefore we define

the numbers a
[i]
n,ℓ,r, i = 1, 2 which give the probabilities that in a sequence of n candidates

the threshold candidate has the ℓ-th highest rank, an odd or even number, respectively, has
been recruited and that the candidate with the (ℓ + r)-th largest relative rank amongst all
n candidates is getting hired. Note that all candidates with a score equal or better than
the threshold candidate get hired for sure. As an immediate consequence the probability for
hiring a candidate with relative rank r, which we denote by pn,r is given by the following
recurrence:

pn,r =
n−r∑

ℓ=1

(
a

[1]
n,ℓ,n−ℓ−r+1 + a

[2]
n,ℓ,n−ℓ−r+1

)
+

n∑

ℓ=n−r+1

(
a

[1]
n,ℓ + a

[2]
n,ℓ

)
. (4.23)

We only need to compute the values for a
[i]
n,ℓ,r, i = 1, 2 and as a consequence we have a

representation for pn,r. We will only sketch these considerations as the approach is very



4.1. Hiring above the median 72

similar to that one for computing the numbers a
[i]
n,ℓ, i = 1, 2 which we considered in the

beginning of this section. A more detailed computations can be found in [15, p.23ff]. First
of all it is suitable to modify the automaton given in Figure 4.1 which then leads to the
automaton

1 2

P(1 → 2) = ℓ
n+1

(n, ℓ, r) 7→ (n + 1, ℓ + 1, r)

P(2 → 1) = ℓ
n+1

(n, ℓ, r) 7→ (n + 1, ℓ, r + 1)

P(1 → 1) = 1 − ℓ+r
n+1

(n, ℓ, r) 7→ (n + 1, ℓ, r)

P(1 → 1) = r
n+1

(n, ℓ, r) 7→ (n + 1, ℓ, r + 1)

P(2 → 2) = 1 − ℓ+r
n+1

(n, ℓ, r) 7→ (n + 1, ℓ, r)

P(2 → 2) = r
n+1

(n, ℓ, r) 7→ (n + 1, ℓ, r + 1)

Figure 4.2: The modified automaton describing the relation and transition between the vari-

ables a
[1]
n,ℓ,r and a

[2]
n,ℓ,r.

Considering Figure 4.2 leads us to the system of recursions

a
[1]
n,ℓ,r =

ℓ

n
a

[2]
n−1,ℓ,r−1 +

r − 1

n
a

[1]
n−1,ℓ,r−1 +

(
1 − ℓ + r

n

)
a

[1]
n−1,ℓ,r,

a
[2]
n,ℓ,r =

ℓ − 1

n
a

[1]
n−1,ℓ−1,r +

r − 1

n
a

[2]
n−1,ℓ,r−1 +

(
1 − ℓ + r

n

)
a

[2]
n−1,ℓ,r,

with the initial conditions a
[i]
n,ℓ,0 = a

[i]
n,ℓ, i = 1, 2. Similar to the computation of a

[i]
n,ℓ the

normalization

b
[i]
n,ℓ,r =

n!

(ℓ − 1)! (r − 1)! (n − ℓ − r)!
a

[i]
n,ℓ,r, i = 1, 2,

and uncoupling the recursions leads to the PDE

v(1 − z − zv)B[1]
v (z, u, v) − z2u2v

1 − z − zv
B[1]

u (z, u, v) −
(

1 − z +
z2uv

1 − z − zv

)
B[1](z, u, v) = 0,

where B[1](z, u, v) =
∞∑

n=1

n∑
ℓ=1

n−ℓ∑
r=1

b
[1]
n,ℓ,rznuℓvr denotes the multivariate generating function of

the numbers b
[1]
n,ℓ,r. Introducing B̂(z, u, w) := B[1]

(
z, u,

(1−z)w
1+zw

)
and b̂ℓ(z, w) := [uℓ]B̂(z, u, w)

yields in the recursion

w
∂b̂ℓ

∂w
(z, w) − b̂ℓ(z, w) =

ℓz2w

1 − z
b̂ℓ−1(z, w).
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For solving this differential equation we introduce the numbers

bℓ(z, w) :=
b̂ℓ(z, w)

ℓ!
(

z2

1−z

)ℓ
,

and the corresponding generating function B(z, u, w) :=
∞∑

ℓ=1
bℓ(z, w)uℓ, which leads to the

differential equation

wBw(z, u, w) − (1 + uw)B(z, u, w) = 0.

The solution for this differential equation is given by

B(z, u, w) =

[ ∞∑

ℓ=2

(
1

(ℓ − 2)!
(1 − z)ℓ+1uℓ

∞∑

n=ℓ

(
n − ℓ + 1

ℓ

)
zn−2ℓ

)]
weuw.

Transforming this solution backwards gives us a representation for the numbers b
[1]
n,ℓ,r which

is given by

b
[1]
n,ℓ,r

ℓ!
= [znuℓvr]B

(
z,

uz2

1 − z
,

v

1 − z − zv

)
= [znuℓvr]

u2z3v

(1 − z)2(1 − z − zv)
e

uz2(1−v)
1−z−zv . (4.24)

The definition of the numbers b
[1]
n,ℓ,r together with extracting coefficients from (4.24) gives us

a
[1]
n,ℓ,r =

ℓ − 1

n
(n−1

ℓ

)(n−ℓ−1
r−1

)
ℓ−2∑

k=0

(
ℓ − 2

k

)(
r + k − 1

ℓ − 2

)(
n − ℓ + 1

r + k + 1

)
, (4.25)

a
[2]
n,ℓ,r =

ℓ − 1

n
(n−1

ℓ−1

)(n−ℓ
r

)
ℓ−2∑

k=0

(
ℓ − 2

k

)(
r + k − 1

ℓ − 3

)(
n − ℓ + 1

r + k + 1

)
. (4.26)

With this representation for the numbers a
[1]
n,ℓ,r and a

[2]
n,ℓ,r we get the following theorem.

Theorem 4.1.9. Let pn,r denote the probability that the candidate holding the relative
rank r in a sequence of n candidates is getting hired. Then for the exact values of pn,r, having
1 ≤ r ≤ n, it holds that

pn,r =
n−r∑

ℓ=1

[
ℓ − 1

n
(n−1

ℓ

)(n−ℓ−1
n−ℓ−r

)
ℓ−2∑

k=0

(
ℓ − 2

k

)(
n − ℓ − r + k

ℓ − 2

)(
n − ℓ + 1

n − ℓ − r + k + 2

)

+
ℓ − 1

n
(n−1

ℓ−1

)( n−ℓ
n−ℓ−r+1

)
ℓ−2∑

k=0

(
ℓ − 2

k

)(
n − ℓ − r + k

ℓ − 3

)(
n − ℓ + 1

n − ℓ − r + k + 2

)]

+
n∑

ℓ=n−r+1

[(n−ℓ
ℓ−1

)
(n

ℓ

) +

(n−ℓ
ℓ−2

)
( n

ℓ−1

)
]

.

Proof. The claim is a direct consequence of (4.23) together with (4.25), (4.26), (4.16) and
(4.17).

�
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As we already have some results about the behavior of the random variables Xn, and the
required quality an applicant needs for a hiring, we now observe the other hiring parameters
to get a deeper insight into this strategy. We start with the waiting time until N candidates
get recruited. As we do not have the parameter m, like we had with hiring above the m-th
best, we cannot use the results of the waiting time for this aim, but the results give a outline
about how many interviews probably have to be made.

Theorem 4.1.10 (Helmi and Panholzer, [15, Theorem 2]). For the exact probability
of the waiting time WN until N candidates get hired it holds that

P(WN = k) =





0, k < N,

δk,1, N = 1,

ℓ
N

(k−1−ℓ
ℓ−2 )

(k−1
ℓ−1)

, N = 2ℓ − 1 ≥ 3, k ≥ N,

ℓ
N

(k−1−ℓ
ℓ−1 )

(k−1
ℓ )

, N = 2ℓ ≥ 2, k ≥ N.

Asymptotically, for N → ∞, WN is distributed as follows: WN

N2

(d)−→ W , where W has the
density function

g(x) =
1

4x2
e− 1

4x , x > 0.

Proof. Again the cases of N = 1 as well as for k < N are obvious by definition of the strategy.
For the other cases let us consider Remark 2.1.6 together with Remark 4.1.7 which directly
leads to

P(WN = k) = P(hk−1 = N − 1) P(Xk = 1 | hk−1 = N − 1)

=





a
[2]
k−1,ℓ

ℓ
k
, N = 2ℓ − 1 ≥ 3,

a
[1]
k−1,ℓ

ℓ
k
, N = 2ℓ ≥ 2.

(4.27)

Plugging the exact results for a
[1]
n,ℓ and a

[2]
n,ℓ into (4.27) shows the claim. When considering

the asymptotic results for the two auxiliary variables given in (4.18) - (4.19) we obtain the
following result:

P(WN = k) =
N2

4k2
e− N2

4k ·
(

1 + O
(

1

N

)
+ O

(
N

k

)
+ O

(
N3

k2

))
,

when N → ∞ and k ≫ n
3
2 . Substituting k = xN2, x > 0 finally leads to

P(WN = k) =
1

N2

1

4x2
e− 1

4x ·
(

1 + O
(

1

N

))
,

which shows the claim.
�
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The next statements give information about how the hiring process will perform at the end
of the sequence and how the requested ranks for a hiring will behave in time.

Theorem 4.1.11 (Helmi and Panholzer, [15, Theorem 3]). Consider the index of the
last hired candidate Ln in a sequence of length n. Then the exact distribution of Ln when
applying hiring above the median is given as follows:

P(Ln = i) =





1
n

, i = 1,
i−1∑
ℓ=1

(i−1−ℓ
ℓ−2 )
(n

ℓ)
+

i∑
ℓ=1

ℓ−1
ℓ

(i−ℓ
ℓ−2)
(n

ℓ)
, 2 ≤ i ≤ n,

0, else.

Suitably normalized, Ln converges in distribution to a continuous random variable L, i.e.
n−Ln√

n

(d)−→ L, which is characterized by its density function f(x) given by

f(x) = 2

∫ ∞

0
t2e−t(x+t)dt, x > 0.

Proof. The case of Ln = 1 appears if and only if exactly 1 candidate is hired, i.e. the first
candidate has rank n. Thus, it is true that P(Ln = 1) = 1

n
. The case of Ln = i, where it

holds that i > n can not appear as we hire no future candidates, which shows the claim. The
non-trivial case of 2 ≤ i ≤ n simply states that Xi = 1 and Xj = 0 for all i < j ≤ n. As an
immediate consequence we have

P(Ln = i) = P(Xi = 1)
n∏

j=i+1

P(Xj = 0 | Xi = 1, Xi+1 = 0, Xi+2 = 0, . . . , Xj−1 = 0). (4.28)

For computing (4.28) we have to do a careful distinction whether we already recruited an
odd number of candidates before Xi or an even number. If we recruited an even number of
candidates then ℓ will increase with the hiring of Xi, which does not happen in the other
case. So we must not simply plug the result from Proposition 4.1.8 into (4.28) but we have
to do this separately for the even and the odd case. Thus, considering Remark 4.1.7 and the
fact mentioned above, we have

P(Ln = i) =

(
i−1∑

ℓ=1

(i−1−ℓ
ℓ−2

)
(i−1

ℓ−1

)
ℓ

i
+

i∑

ℓ=1

(i−ℓ
ℓ−2

)
(i−1

ℓ−1

)
ℓ − 1

i

)
·

n∏

j=i+1

(
1 − ℓ

i

)

=
i−1∑

ℓ=1

(i−1−ℓ
ℓ−2

)
(n

ℓ

) +
i∑

ℓ=1

ℓ − 1

ℓ

(i−ℓ
ℓ−2

)
(n

ℓ

) .

In the next step we determine the limit distribution of Ln. Therefore we use the asymptotic
expansion

(n−k−1−ℓ
ℓ−2

)
(n

ℓ

) =
ℓ2

n2
e− ℓ(k+ℓ)

n

(
O
(

1

ℓ

)
+ O

(
k + ℓ

n

)
+ O

(
(k + ℓ)3

n2

))
, (4.29)

which holds uniformly for k, ℓ = O(n
1
2

+ε) and can be shown similarly to Lemma 1.3.5. More-

over, this expression is sub-exponentially small for ℓ ≥ n
1
2

+ε and arbitrary k ∈ N. Setting
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i = n − k and plugging (4.29) into the exact values for P(Ln = i) yields the asymptotic result

for k = O(n
1
2

+ε) given by

P(Ln = n − k) = 2
∞∑

ℓ=1

ℓ2

n2
e− ℓ(k+ℓ)

n

(
O
(

1

ℓ

)
+ O

(
k + ℓ

n

)
+ O

(
(k + ℓ)3

n2

))
. (4.30)

The claim follows from interpreting the sum in (4.30) as a Riemann sum together with sub-
stituting k = x

√
n which results in the integral representation

P(Ln = n − k) ∼ 2√
n

∫ ∞

0
t2e−t(x+t)dt, (4.31)

having x > 0. Thus, it is true that n−Ln√
n

(d)−→ L, where L has the density function given in

(4.31).
�

We also state the expectation of Ln which is probably a better indicator about the last hiring.
Especially the asymptotic expansion shows that there will appear hirings throughout the end
of the sequence of candidates.

Corollary 4.1.12. The expectation of the index of the last hiring Ln is given by

E(Ln) =
n∑

ℓ=1

(2ℓ2 − 3ℓ + 1)n2 − (3ℓ3 − 11ℓ2 + 10ℓ − 3)n − 6ℓ3 + 12ℓ2 − 8ℓ + 2

ℓ2(n − ℓ + 1)

(n−ℓ+1
ℓ−1

)
(n

ℓ

) .

Asymptotically for n → ∞ we have the expansion

E(Ln) = n − √
πn + O(log n).

Proof. The explicit formula can be computed straightforwardly by

E(Ln) =
n∑

i=1

i P(Ln = i) =
1

n
+

n∑

i=2

i

(
i−1∑

ℓ=1

(i−1−ℓ
ℓ−2

)
(n

ℓ

) +
i∑

ℓ=1

ℓ − 1

ℓ

(i−ℓ
ℓ−2

)
(n

ℓ

)
)

=
n−1∑

ℓ=1

1(n
ℓ

)
n∑

i=ℓ+1

i

(
i − 1 − ℓ

ℓ − 2

)
+

n∑

ℓ=1

ℓ − 1

ℓ
(n

ℓ

)
n∑

i=ℓ

i

(
i − ℓ

ℓ − 2

)

=
n−1∑

ℓ=1

1(n
ℓ

)
n−ℓ−1∑

i=0

(i + ℓ + 1)

(
i

ℓ − 2

)

︸ ︷︷ ︸
=:A

+
n∑

ℓ=1

ℓ − 1

ℓ
(n

ℓ

)
n−ℓ∑

i=0

(i + ℓ)

(
i

ℓ − 2

)

︸ ︷︷ ︸
=:B

. (4.32)

Using some simple algebraic manipulations and using the fact that

n∑

i=0

(
i

ℓ

)
=

(
n + 1

ℓ + 1

)
,
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we can compute the inner sums by

A =
n−ℓ−1∑

i=0

(i + ℓ + 1)

(
i

ℓ − 2

)
= (ℓ − 1)

n−ℓ−1∑

i=0

(
i + 1

ℓ − 1

)
+ ℓ

n−ℓ−1∑

i=0

(
i

ℓ − 2

)

= (ℓ − 1)

[(
n − ℓ + 1

ℓ

)
−
(

0

ℓ − 1

)]
+ ℓ

(
n − ℓ

ℓ − 1

)
= (ℓ − 1)

(
n − ℓ + 1

ℓ

)
+ ℓ

(
n − ℓ

ℓ − 1

)
,

B = (ℓ − 1)

(
n − ℓ − 2

ℓ

)
+ (ℓ − 1)

(
n − ℓ + 1

ℓ − 1

)
,

where the representation for B can be received in an analog way as for A. Plugging the results
for A and B into (4.32) together with some careful algebraic manipulation finally yields

E(Ln) =
n∑

ℓ=1

(2ℓ2 − 3ℓ + 1)n2 − (3ℓ3 − 11ℓ2 + 10ℓ − 3)n − 6ℓ3 + 12ℓ2 − 8ℓ + 2

ℓ2(n − ℓ + 1)

(n−ℓ+1
ℓ−1

)
(n

ℓ

) .

(4.33)

Note that this representation results in 1 for the trivial case of n = 1.

In order to get the asymptotic expansion we apply some modifications to the sum occurring
in (4.33) and get

E(Ln) =
n∑

ℓ=1

(2ℓ2 − 3ℓ + 1)n2 − (3ℓ3 − 11ℓ2 + 10ℓ − 3)n − 6ℓ3 + 12ℓ2 − 8ℓ + 2

ℓ(n − 2ℓ + 2)(n − 2ℓ + 2)
c(n, ℓ),

where c(n, ℓ) :=
(n−ℓ

ℓ )
(n

ℓ)
is defined like in Corollary 1.3.5. Applying polynomial division to the

fraction occurring in the sum together with the asymptotic expansion for c(n, ℓ) stated in
1.3.5 then shows that

E(Ln) =
n∑

ℓ=1

e− ℓ2

n

(
2ℓ − 3 +

1

ℓ
+

5ℓ2

n
− 2ℓ4

n2

)
·
(

1 + O
(

1

ℓ2

)
+ O

(
ℓ6

n4

))
.

Applying Mellin transformation (see Section 1.5) leads us to the integral representation

∞∑

ℓ=1

ℓke− ℓ2

n =
∞∑

ℓ=1

(
ℓk

2πi

∫ c+i∞

c−i∞
Γ(s)

ns

ℓ2s
ds

)
=

∫ c+i∞

c−i∞
Γ(s)ns ·

( ∞∑

ℓ=1

ℓk−2s

)
ds

=

∫ c+i∞

c−i∞
Γ(s)nsζ(2s − k)ds,

for fixed k ≥ −1 and c > k+1
2 due to the fundamental strip of ζ(s). Note that we may change

the order of integration and summation as both, the integral and the sum, converge in the
fundamental strip. The statement follows from shifting the integral to the left and collecting
the residues of the integrand. The significant singularity lies at s = k+1

2 . This pole of the
zeta function generates a residuum for the whole integrand, where we have to compute this
separately for k = −1, which implies s = 0, as Γ(s) has a pole in this case as well.

• Case 1: k = −1 We estimate the sum directly in this case and get

∞∑

ℓ

1

ℓ
e1− ℓ2

n ∼
n

1
2 +ε∑

ℓ=1

1

ℓ
e− ℓ2

n ≤
n

1
2 +ε∑

ℓ=1

1

ℓ
= O(log n),

where the summands are sub-exponential small for ℓ ≥ n
1
2

+ε.
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• Case 2: k ≥ 0 For the residuum at s = k+1
2 we have

Res

(
Γ(s)nsζ(2s − k), s =

k + 1

2

)
= Res

(
Γ(s)nsζ

(
1 + 2

(
s − k + 1

2

))
, s =

k + 1

2

)

= Res


 Γ(s)ns

1 + 2
(
s − k+1

2

) , s =
k + 1

2




= Γ

(
k + 1

2

)
n

k+1
2

2
.

Thus, for the asymptotic expansion of the sum it holds that

∞∑

ℓ=1

ℓke− ℓ2

n = Γ

(
k + 1

2

)
n

k+1
2

2
+ O(1),

where the O-term results from the next singularity at s = 0. Detailed information about
this technique may be found in [6].

Merging all these results finally leads to

E(Ln) = n − √
n

(
3

2
Γ

(
1

2

)
− 5

2
Γ

(
3

2

)
+ Γ

(
5

2

))
+ O(log n) + O(1)

= n − √
πn + O(log n),

where the computation of the values of Γ(s) can be found in [7, p.744].
�

Theorem 4.1.13 (Helmi and Panholzer, [15, Theorem 6]). Consider the rank Rn

of the last recruited candidate in a sequence of n candidates when using the hiring above the
median strategy. Then the following holds for the exact distribution of Rn:

P(Rn = r) =
n−1∑

ℓ=n+1−r

(n−ℓ
ℓ

)
(n

ℓ

) 2n + 3ℓ + 1

(n − ℓ)(n − 2ℓ + 1)
.

Suitably normalized, Rn converges in distribution to a continuous random variable R, i.e.
n−Rn√

n

(d)−→ R, which is characterized by its density function g(x) given by

g(x) = 2

∫ ∞

0
e−(x+t)2

dt, x > 0.

Proof. For convenience we consider the random variable R̂n := n+1−Rn, i.e. R̂n = r denotes
the r-th largest rank of the last recruited candidate. When considering the automaton given
in Figure 4.1 and taking the index Ln = m of the last hiring into account gives us the following
formula

P(R̂n = r) =
n−1∑

m=1

m∑

ℓ=r


a

[1]
m,ℓ

1

m + 1

n−1∏

j=m+1

(
1 − ℓ + 1

j + 1

)
+ a

[2]
m,ℓ

1

m + 1

n−1∏

j=m+1

(
1 − ℓ

j + 1

)


+ a
[1]
1,1

n−1∏

j=1

(
1 − 1

j + 1

)
δr,1.



4.1. Hiring above the median 79

The formula can be explained easily. First we again have to distinguish between the even and
the odd case for hn. When considering the position m of the last hiring, the possible ranks
for the last hired candidate are all ranks higher than the rank ℓ of the threshold candidate at
step m. Additionally we have to consider the case consisting of only one hiring, which only
carries weight for r = 1. When plugging (4.16) and (4.17) into the formula above we get

P(R̂n = r) =
n−1∑

m=1

m∑

ℓ=r

[(m−ℓ
ℓ−1

)
(m

ℓ

) (n − 1 − ℓ)! m!

(m − ℓ)! n!
+

(m−ℓ
ℓ−2

)
( m

ℓ−1

) (n − ℓ)! m!

(m + 1 − ℓ)! n!

]
+

δr,1

n

=
n−1∑

m=1

m∑

ℓ=r

[(m−ℓ
ℓ−1

)
( n

ℓ+1

) 1

(ℓ + 1)!
+

(m−ℓ
ℓ−2

)
(n

ℓ

) 1

ℓ

]
+

δr,1

n

=
n−1∑

ℓ=r

[
1

(ℓ + 1)
( n

ℓ+1

)
n−1∑

m=ℓ

(
m − ℓ

ℓ − 1

)
+

1

ℓ
(n

ℓ

)
n−1∑

m=ℓ

(
m − ℓ

ℓ − 2

)]
+

δr,1

n

=
n−1∑

ℓ=r

[(n−ℓ
ℓ

)
( n

ℓ+1

) 1

ℓ + 1
+

(n−ℓ
ℓ−1

)− δℓ,1(n
ℓ

) 1

ℓ

]
+

δr,1

n
=

n−1∑

ℓ=r

(n−ℓ
ℓ

)
(n

ℓ

) 2n + 3ℓ + 1

(n − ℓ)(n − 2ℓ + 1)
,

which shows the claim.

The asymptotic behavior can be determined in a same manner as for Ln. Therefore we again
consider Corollary 1.3.5 and plug the expansion for the binomial coefficients into the exact
distribution yielding

P(R̂n = r) =
n

1
2 +ε∑

ℓ=r

2

n
e− ℓ2

n ·
(

1 + O
(

1

ℓ

)
+ O

(
ℓ

n

)
+ O

(
ℓ3

n2

))
.

Substituting r = x
√

n and t = ℓ√
n

as well as interpreting the sum as a Riemann sum finally

shows that n−Rn√
n

(d)−→ R, where R has the density function

g(x) = 2

∫ ∞

x
e−t2

dt = 2

∫ ∞

0
e−(x+t)2

dt, x > 0.

�

Corollary 4.1.14. The moments E(Rs) of the limit distribution R are for s > −1 given by

E(Rs) =
2

s + 1
Γ

(
s

2
+ 1

)
.

Proof.

E(Rs) =

∫ ∞

0
xsg(x)dx = 2

∫ ∞

0
xs

∫ ∞

0
e−t2

dtdx = 2

∫ ∞

0
e−t2

∫ t

0
xsdxdt

= 2

∫ ∞

0
e−t2 ts+1

s + 1
dt =

2

s + 1

∫ ∞

0
e−uu

s+1
2

du

2
√

u
=

2

s + 1
Γ

(
s

2
+ 1

)
,

where we substituted u = t2.
�
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For studying the parameter Mn which denotes the rank of the best discarded candidate in a
sequence with hiring above the median we make the same approach as we already did for this
quantity when analyzing hiring above the m-th best. The only difference is that now we have

to take the parity of hn into account again. Therefore we introduce auxiliary variables â
[1]
n,ℓ,q

and â
[2]
n,ℓ,q for 0 ≤ q ≤ n − ℓ that denote the probabilities that for n interviewed candidates

the threshold candidate holds the ℓ-th largest score and at least all of the ℓ + q best ranked
candidates are hired. Like for hiring above the m-th best we then get

P(Mn = r) =
n−r∑

ℓ=1

(
â

[1]
n,ℓ,n−ℓ−r − â

[1]
n,ℓ,n−ℓ−r+1

)
+

n−r∑

ℓ=1

(
â

[2]
n,ℓ,n−ℓ−r − â

[2]
n,ℓ,n−ℓ−r+1

)
. (4.34)

The automaton from Figure 4.1 helps us to find a recursion for the new auxiliary variables
but we have to be careful about the transition probabilities when discarding a candidate.
Therefore assume that at step n − 1 the best ℓ + q candidates are hired. If we want this
property to hold in step n too when discarding candidate Xn, he must not belong to the
best ℓ+ q candidates. Note that for solely discarding Xn (without respecting the investigated
property) he must not belong to the best ℓ candidates. Thus, the recursions are given by

â
[1]
n,ℓ,q =

ℓ

n
â

[2]
n−1,ℓ,q−1 +

(
1 − ℓ + q

n

)
â

[1]
n−1,ℓ,q,

â
[2]
n,ℓ,q =

ℓ − 1

n
â

[1]
n−1,ℓ−1,q +

(
1 − ℓ + q

n

)
â

[2]
n−1,ℓ,q.

For the starting values Remark 4.1.7 implies that â
[1]
n,ℓ,0 = a

[1]
n,ℓ and â

[2]
n,ℓ,0 = a

[2]
n,ℓ. Similarly to

the computations for hn introducing

b̂
[i]
n,ℓ,q :=

n!

ℓ! (n − q − ℓ)!
a

[i]
n,ℓ,q, i = 1, 2

together with a generating function approach and uncoupling the recursions lead to the PDE

B̂[1]
u (z, u, v) − (1 − z)2

z2u2v
B̂[1](z, u, v) +

z(1 − z)

(1 − z − z2u)2
= 0.

As we did for hiring above the m-th best in Lemma 3.2.13 extracting the coefficients from
this PDE leads to the recurrence

b
[1]
ℓ (z, v) =

z2v

(1 − z)2
(ℓ − 1)b

[1]
ℓ−1(z, v) +

z3v

(1 − z)3
(ℓ − 1)

(
z2

1 − z

)ℓ−2

,

where we defined b
[1]
ℓ (z, v) := [uℓ]B[1](z, u, v). Substituting

cℓ(z, v) :=
b

[1]
ℓ (z, v)(1 − z)2ℓ

(ℓ − 1)! z2ℓvℓ

and solving the resulting recursion leads to

cℓ(z, v) =
1

z

ℓ∑

j=2

1

(j − 2)!

(
1 − z

v

)j−1

, ℓ ≥ 0.
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Finally resubstituting and extracting the coefficients from the solution for b
[1]
ℓ (z, v) yields in

â
[1]
n,ℓ,q =

(ℓ−1
q

)(n−ℓ+q
ℓ+q−1

)
(n

q

)(n−q
ℓ

) , (4.35)

â
[2]
n,ℓ,q =

(ℓ−1
q+1

)(n−ℓ+q+1
ℓ+q−1

)
( n

q+1

)(n−q−1
ℓ−1

) , (4.36)

where the range of q is given by 0 ≤ q ≤ n−ℓ. A more detailed execution for computing â
[1]
n,ℓ,q

and â
[2]
n,ℓ,q can be found in [15, p.20ff]. With this result we are able to formulate the following

theorem.

Theorem 4.1.15 (Helmi and Panholzer, [15, Theorem 7]). For the exact probabilities
of the rank of the best discarded candidate Mn it holds that

P(Mn = r) =





1

( n
⌈ n

2 ⌉)
, r = 0,

n−r∑
ℓ=1

( ℓ−1
n−ℓ−r)(

2n−2ℓ−r
n−r−1 )

(n−r
ℓ )(n

r)

(
1 + (n−2ℓ−r+1)(2n−2ℓ−r+1)

r(n−r)

)

+
n−r∑
ℓ=1

( ℓ−1
n−ℓ−r+1)(

2n−2ℓ−r+1
n−r−1 )

(n−r
ℓ−1)(n

r)

(
1 + (n−2ℓ−r+2)(2n−2ℓ−r+2)

r(n−r)

)
, else.

The limiting distribution of Mn for n → ∞ is, after normalization, a Rayleigh distribution
with parameter σ = 1√

2
, i.e.

n−Mn√
n

(d)−→ R̃, where R̃ has the density function

f̃(x) = 2xe−x2
, x > 0.

Proof. By definition we have Mn = 0 if and only if no candidate is discarded. Thus, it holds
that P(Mn = 0) = P(hn = n) = 1

( n
⌈n⌉)

. The result for 1 ≤ r ≤ n is a direct consequence of

(4.34) together with (4.35) and (4.36).

For the asymptotic result we consider the random variable M̂n := n − Mn. Applying the
asymptotic expansion from Corollary 1.3.5 to the exact probabilities for M̂n leads to

P(M̂n = r) =
r

1
2 +ε∑

ℓ=0

4ℓ

n
e− ℓ2

r
− r2

n ·
(

1 + O
(

1

ℓ

)
+ O

(
ℓ

r

)
+ O

(
ℓr

n

)
+ O

(
r3

n2

))
.

Considering the sum as a Riemann sum and substituting r = x
√

n and ℓ = t
√

r yields

P(M̂n = x) ∼ 4

n
e− r2

n

r
1
2 +ε∑

ℓ=0

ℓe− ℓ2

r ∼ 4x√
n

e−x2
∫ ∞

0
te−t2

dt =
2xe−x2

√
n

, x > 0,

which shows the claim.
�
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The last parameter we observe for hiring above the median without the replacement mecha-
nism is the distance between the last two hirings ∆n, which we do not expect to grow in a
too fast way, due to the results for the index of the last hired candidate.

Theorem 4.1.16 (Helmi and Panholzer, [15, Theorem 4]). The exact probability of
the distance between the last two hirings in a sequence of n candidates ∆n when using hiring
above the median is given by

P(∆n = d) =





1
n

, d = 0,
n−d−1∑
m=1

m∑
ℓ=1

(m−ℓ
ℓ−1 )

( n
ℓ+1)

(
ℓ

m+d−ℓ
+ ℓ(ℓ−1)

(ℓ+1)(n−2ℓ+2)

)
+ 1

n(n−1) , 1 ≤ d ≤ n − 1.

Suitably normalized, ∆n converges in distribution to a continuous random variable ∆, i.e.
∆n√

n

(d)−→ ∆, which is characterized by its density function f(x) given by

f(x) = 2

∫ ∞

0
t2e−t(x+t)dt, x > 0.

Proof. By definition we have ∆n = 0 if and only if only one candidate gets recruited. Thus,
it follows directly P(∆n = 0) = 1

n
. For computing the exact probabilities when d ≥ 1 we

have to consider the positions of the last two hirings and d − 1 discarded candidates between
them. Like for Ln we have to respect the parity of the hiring set, i.e. a possible change of the
threshold candidate. Therefore let m denote the position of the second last hiring. Due to
the minimum number of d candidates after the second last hiring, we get 1 ≤ m ≤ n − d − 1
for the range of m. Thus, we have

P(∆n = d) =
n−d−1∑

m=1

m∑

ℓ=1

a
[1]
m,ℓ

ℓ

m + 1

m+d−1∏

j=m+1

(
1 − ℓ + 1

j + 1

)
ℓ + 1

m + d + 1

n−1∏

j=m+d+1

(
1 − ℓ + 1

j + 1

)

+
n−d−1∑

m=1

m∑

ℓ=1

a
[2]
m,ℓ

ℓ

m + 1

m+d−1∏

j=m+1

(
1 − ℓ

j + 1

)
ℓ

m + d + 1

n−1∏

j=m+d+1

(
1 − ℓ + 1

j + 1

)

+ a
[1]
1,1

d−1∏

j=1

(
1 − 1

j + 1

)
1

d + 1

n−1∏

j=d+1

(
1 − 2

j + 1

)
, (4.37)

where the last line represents the case that the second last hired candidate is the first candidate
X1. Plugging the results of (4.16) and (4.17) into (4.37) together with simplifying the products
yields

P(∆n = d) =
n−d−1∑

m=1

m∑

ℓ=1

(m−ℓ
ℓ−1

)
(m

ℓ

) m! (n − 1 − ℓ)! (ℓ + 1)ℓ

n! (m − ℓ)! (m + d − ℓ)

+
n−d−1∑

m=1

m∑

ℓ=1

(m−ℓ
ℓ−2

)
( m

ℓ−1

) m! (n − ℓ − 1)! ℓ2

n! (m + 1 − ℓ)!
+

1

n(n − 1)
.

Finally merging the sums and applying some algebraic manipulations show the claim for the
exact probabilities.
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When determining the asymptotic behavior of ∆n it is applicable to start with another rep-
resentation for the exact probabilities given by

P(∆n = d) =
n−d−1∑

ℓ=2

ℓ

ℓ + 1

(n−d−ℓ
ℓ−1

)
( n

ℓ+1

) +
n−d−2∑

ℓ=2

ℓ

ℓ − 1

(n−d−ℓ−1
ℓ−1

)
( n

ℓ+1

) + R(n, ℓ),

having

R(n, ℓ) =
2

n(n − 1)
(Hn−2 − Hd−1) +

1

n(n − 1)
−

n−d−1∑

m=3

m−1∑

ℓ=2

ℓd

(m + d − ℓ)(m − ℓ)

(m−ℓ
ℓ−1

)
( n

ℓ+1

) ,

which holds for 1 ≤ d ≤ n − 2 and n ≥ 3 and can be obtained by an easy but a bit
lengthy computation when changing the order of summation and applying some combinatorial
identities. Let us first consider an asymptotic expansion of R(n, ℓ). When decomposing
R(n, ℓ) into its summands it firstly holds that

2

n(n − 1)
(Hn−2 − Hd−1) = O

(
log n

n2

)
,

1

n(n − 1)
= O

(
1

n2

)
,

and secondly

n−d−1∑

m=3

m−1∑

ℓ=2

ℓd

(m + d − ℓ)(m − ℓ)

(m−ℓ
ℓ−1

)
( n

ℓ+1

) =
n−d−1∑

m=5

m−2∑

ℓ=3

ℓd

(m + d − ℓ)(m − ℓ)

(m−ℓ
ℓ−1

)
( n

ℓ+1

)
︸ ︷︷ ︸

=:S

+O
(

log n

n2

)
,

where for the sum it is true that

S ≤
n−d−1∑

m=5

m−2∑

ℓ=3

ℓd

(ℓ − 1)(ℓ − 2)

(m−ℓ−2
ℓ−3

)
( n

ℓ+1

) =
n−d−3∑

ℓ=3

ℓd

(ℓ − 1)(ℓ − 2)

(n−d−ℓ−2
ℓ−2

)
( n

ℓ+1

)

= O
(

n−d−3∑

ℓ=3

(n−d−ℓ−1
ℓ−1

)
( n

ℓ+1

) d

n

)
= O

(
d

n

∞∑

ℓ=3

ℓ2

n2
e− ℓ(d+ℓ)

n

)
= O

(
d

n
3
2

)
.

Thus, the term R(n, ℓ) is asymptotically negligible and the main contribution comes from
the other two sums. Using Corollary 1.3.5 and applying computations similar to the proof of
Theorem 4.1.11 yield the asymptotic expansion

P(∆n = d) ∼ 2√
n

∫ ∞

0
t2e−t(x+t)dt, d = x

√
n, x > 0.

Hence, for n → ∞ we get ∆n√
n

(d)−→ ∆, where ∆ has the density function stated in the claim.

�

Last but not least let us investigate the behavior of hiring above the median together with the
replacement mechanism. Therefore we make the same approach as we did for hiring above the
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m-th best. We introduce the indicator variables Yi that denotes the event of a replacement
in step i. The following lemma is a statement about the probability of a replacement at some
certain step i.

Lemma 4.1.17. When adding the replacement mechanism to the hiring above the median
strategy the exact probability that a replacement appears when interviewing candidate Xi

satisfies

P(Yi = 1) =
j−1∑

ℓ=1

(
ℓ − 1

i

(j−1−ℓ
ℓ−1

)
(j−1

ℓ

) +
ℓ − 2

i

(j−1−ℓ
ℓ−2

)
(j−1

ℓ−1

)
)

.

Proof. Let us first consider the conditioned probability of Yi under h
[f ]
n = k. One may easily

prove the fact that

P(Yi = 1 | τi = ℓ) =

{
ℓ−1

i
, k ≡ 1(2),

ℓ−2
i

, k ≡ 0(2),

where τi denotes the event that the threshold candidate at step i has the ℓ-th highest rank.
The stated probabilities are a direct consequence of the possible ranks for a replacement. The
law of complete probability implies that

P(Yi = 1) =
i−1∑

ℓ=1

P(Yi = 1 | τi = ℓ)P(τi = ℓ) =
i−1∑

ℓ=1

(
a

[1]
i−1,ℓ

ℓ − 1

i
+ a

[2]
j−1,ℓ

ℓ − 2

i

)
. (4.38)

Plugging (4.16) and (4.17) into (4.38) shows the claim.
�

Theorem 4.1.18. Consider the number of replacements fn that appear in a sequence of n

candidates when applying the replacement mechanism together with hiring above the median.
Then the expectation is asymptotically, for n → ∞ given by

E(fn) =
√

πn + O(log n).

Proof. The expectation of fn can be computed by using the linearity of the expectation and
considering the results from Lemma 4.1.17. Thus, we have

E(fn) =
n∑

i=1

P(Yi = 1) =
n∑

i=1

i−1∑

ℓ=1

(
ℓ − 1

i

(i−1−ℓ
ℓ−1

)
(i−1

ℓ

) +
ℓ − 2

i

(i−1−ℓ
ℓ−2

)
(i−1

ℓ−1

)
)

Considering the inner sum yields

i−1∑

ℓ=2

(
ℓ − 1

i

(i−1−ℓ
ℓ−1

)
(i−1

ℓ

) +
ℓ − 2

i

(i−1−ℓ
ℓ−2

)
(i−1

ℓ−1

)
)

=

√
π

2
√

i
+ O

(
1

i

)
,

where the result is a consequence of Corollary 1.3.5 together with interpreting the sum as a
Riemann sum and computing the resulting integral. The claim follows by summation over i.

�
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Other possible hiring strategies that are similar to hiring above the median can be obtained
when taking another position of the threshold candidate instead of the median.

Remark 4.1.19. According to [15, 20] using the lower median as threshold candidate
instead of the upper median. They called this strategy the 1

2 -percentile rule in [20]. This
strategiy leads to significantly different results as for hiring above the median. The results
for the lower median have even more complicated representations.

�

Remark 4.1.20. Another approach is hiring above the α-quantile, which was introduced
by [1]. Here the threshold candidate has the ⌈αk⌉-th highest rank of the hiring set, where k

denotes the number of recruited candidates. Hiring above the α-quantile is closely related to
the p-percentile rule introduced in [20]. Helmi and Panholzer [14] were first able to determine
the limit distribution for p = 1

2 . Later Gaither and Ward [9] were first to determine asymp-
totics of the expectation for p ∈ (0, 1).

�



Chapter 5

Probabilistic hiring

A very important characteristic of all so far investigated strategies was the score of a threshold
candidate whom we used for our decision about a hiring. In particular we observed how the
threshold changes during the hiring process. Whilst hiring above the minimum never changed
the threshold candidate, hiring above the maximum did this every time a hiring happened
and for hiring above the median the threshold candidate changed after every second hiring.

In this chapter we will consider probabilistic hiring strategies. Probabilistic, referring to the
change of the threshold candidate. Thus, we do not know for sure if the threshold candidate
changes after a hiring or not. For all the other strategies we have always known what would
happen after recruiting a candidate. Thus, we may centralize all the strategies we have
considered until yet as deterministic hiring strategies. In fact we could imagine changing the
threshold candidate as a function that acts in some way after a hiring (we could also interpret
it as a Turing machine, or like the automaton in Figure 4.1).

We can not do this for the probabilistic strategies as we have no fixed rule for changing the
threshold. One may say that we have a double uncertainty, namely if a hiring happens on the
one hand and on the other hand if the threshold candidate changes. In Section 5.2 we will
build up a connection between the deterministic strategies and the probabilistic approach.

5.1 Probabilistic change of the threshold

The strategy we will concretely observe acts like that, that the first candidate gets hired for
sure and becomes the first threshold candidate. Further candidates get hired if and only if
their score is better than the score of the candidate currently holding the threshold position.
If a new candidate is hired there may appear two cases. Firstly, the threshold candidate does
not change, or secondly the very next better ranked and already hired candidate becomes the
new threshold candidate, which happens with a fixed probability p ∈ [0, 1). We will consider
the case p = 1 in Section 5.2 as the following results do not hold in that case. As usual the
threshold candidate does not change if we discard a candidate in order to receive a pragmatic
strategy. Let us describe this formally like we did for all the other strategies.

Strategy 5.1.1 (Probabilistic change of the threshold). For a sequence X1, X2, . . . , Xn

of candidates and the permutation of their relative ranks σ ∈ Sn the probabilistic hiring

86
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strategy works in the following way:

• In our strategy the first candidate gets hired for sure and becomes the first threshold
candidate. Thus, we have

X1 = 1, τ = σ1(1).

• When interviewing candidate Xi, i ≥ 2, we consider the hiring set of step i−1, which is
given by Hi−1(σ) = {c1, c2, . . . , ck}. Furthermore, assume that the hired candidates are
ordered by their ranking, i.e. σi(c1) < σi(c2) < . . . < σi(ck) and let Ti := cℓ, 1 ≤ ℓ ≤ k,
denote the current threshold candidate. The hiring process acts in the following way,
where τi = σi(cℓ) denotes the threshold value:

Xi =

{
1, σi(i) > τi,

0, σi(i) < τi.

Moreover, the threshold changes applying the following (probabilistic) rule:

Ti+1 =





cℓ, Xi = 0,

cℓ, Xi = 1 ∧ T = 0,

c̃ℓ+1, Xi = 1 ∧ T = 1,

where T denotes the random variable that indicates a change of the threshold, i.e. P(T =
1) = p and P(T = 0) = 1−p. The candidate c̃ℓ+1 is, analogous to step i−1, the candidate
with the (ℓ + 1)-th smallest relative rank of all hired candidates after step i. Thus, it
holds that

c̃ℓ+1 =

{
i, σi(cℓ) < σi(i) < σi(cℓ+1),

cℓ+1, σi(i) > σi(cℓ+1).

Note that τ always denotes the relative rank of the threshold candidate in the current step.
If we refer to a specific step i we write τi. Obviously it holds that τi = τi−1 + 1 if a candidate
is discarded.

�

We can also define the strategy by building up the hiring set from step to step like we did for
the other strategies. This would result in the following rules, where we use the notation from
the definition of the strategy above.

• H1(σ) = {1}.

• Hi(σ) =

{
Hi−1, σi(i) < τi,

Hi−1 ∪ {i}, σi(i) > τi,
i ≥ 2.

When analyzing this strategy it turns out that the approach is, by reason of the parameter p

quite involved and we were not even able to determine the exact probabilities of the parameter
hn. However, we were able to determine its distribution by the integer moments.
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For our approach we introduce the auxiliary variables an,k,d that describe the probability that
after n interviewed candidates, the threshold candidate has the k-th highest relative rank and
the hiring has the size d, i.e. an,k,d := P(hn = d ∧ τn = k). Obviously it holds that k ≤ d as
the threshold candidate may only change after a hiring. Furthermore, it holds that a1,1,1 = 1.
We can easily gain a recursion for the numbers an,k,d given by

an,k,d =
n − k

n
an−1,k,d + p

k

n
an−1,k,d−1 + (1 − p)

k − 1

n
an−1,k−1,d−1, (5.1)

for n ≥ 2, 1 ≤ d ≤ n, as well as 1 ≤ k ≤ d. The recursion reflects the three cases we have
had in Strategy 5.1.1 for the change of the threshold. Either the candidate is discarded or
the candidate is recruited and the threshold changes or the candidate is recruited without a
change of the threshold. Note that k does not change if a candidate is recruited together with
an increase of the threshold.

For our purposes it is good to consider the sequence an,k(v) :=
n∑

d=1
an,k,dvd. With that

definition (5.1) translates to

an,k(v) =
n − k

n
an−1,k(v) + pv

k

n
an−1,k(v) + (1 − p)v

k − 1

n
an−1,k−1(v),

for n ≥ 2 and 1 ≤ k ≤ n. As a starting value for this functional recursion we have a1,1(v) = v.
Multiplying the recursion by n leads to

nan,k(v) = (n − k)an−1,k(v) + pvkan−1,k(v) + (1 − p)v(k − 1)an−1,k−1(v),

and introducing the multivariate generating function F (z, u, v) =
∞∑

n=1

n∑
k=1

an,k(v)znuk yields

the PDE

Fz(z, u, v) − vu = zFz(z, u, v) + F (z, u, v) − uFu(z, u, v) + pvuFu(z, u, v)

+ (1 − p)vu2Fu(z, u, v),

which we can write in the canonical form

(1 − z)Fz(z, u, v) + u(1 − v(p + (1 − p)u))Fu(z, u, v) − F (z, u, v) − vu = 0. (5.2)

For convenience we will omit the arguments in the following, e.g. F (z, u, v) ≡ F . The PDE
(5.2) can be solved using the method of characteristics. For a detailed description of this
method see [22]. The method of characteristics gives us the form f(z, u, F ) = 0 having

(1 − u)fz + u(1 − v(p + (1 − p)u))fu + (F + vu)fF = 0

Thus, we receive a system of ODE given by

ż = 1 − z,

u̇ = u(1 − v(p + (1 − p)u)),

Ḟ = F + vu.

Considering the derivation

dz

du
=

1 − u

u(1 − v(p + (1 − p)u))
,
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and separation of the variables followed by partial fraction decomposition yields in

dz

1 − z
=

(
1

(1 − vp)u
+

v(1 − p)

(1 − vp)(1 − v(p + (1 − p)u))

)
du.

Integrating the equation by using the substitution x = v(p + (1 − p)u) on the right hand side
results in

ln

(
1

1 − z

)
=

1

1 − vp
ln(u) − (1 − p)v

(1 − vp)(1 − p)v
ln(1 − v(p + (1 − p)u)) + C̃1

=
1

1 − vp
ln

(
u

1 − v(p + (1 − p)u)

)
+ C̃1

and some simple algebraic manipulations show that

C1 =

(
1−v(p+(1−p)u)

u

) 1
1−vp

1 − z
, (5.3)

where we define C1 := eC̃1 . For convenience it is useful to define

R(u, v) :=
u

1 − v(p + (1 − p)u
.

Secondly we consider

dF

du
=

F + vu

u(1 − v(p + (1 − p)u))
=

F

u(1 − v(p + (1 − p)u))
+

v

1 − v(p + (1 − p)u)
. (5.4)

Solving the homogenous differential equation

dF

du
=

F

u(1 + v(p + (1 − p)u))
,

by separation of the variables leads to

dF

F
=

du

u(1 − v(p + (1 − p)u))
=

(
1

(1 − vp)u
+

v(1 − p)

(1 − vp)(1 − v(p + (1 − p)u))

)
du

ln(F ) =
1

1 − vp
ln(R(u, v)) + C̃2

F = C2 · R(u, v)
1

1−vp ,

with C2 := eC̃2 . Applying variation of the constant leads to the following identities:

F = C(u) · R(u, v)
1

1−vp , (5.5)

dF

du
= C ′(u) · R(u, v)

1
1−vp +

C(u)R(u, v)
1

1−vp
−1

1 − vp
· 1 − v(p + (1 − p)u) + uv(1 − p)

(1 − v(p + (1 − p)u))2
, (5.6)

which when plugging (5.5) and (5.6) into (5.4) and applying some careful algebraic manipu-
lations yields

C ′(u) =
v

u
R(u, v)

− vp

1−vp .
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Hence, when using the fundamental theorem of calculus, which can be found in [16], we receive
the solution

C(u) =

∫
v

u
R(u, v)

− vp

1−vp du = v

∫ u

u0

1

t
R(t, v)

− vp

1−vp dt, (5.7)

with an arbitrary u0 ∈ (0, ∞). When adding (5.7) to the solution of the homogenous ODE
yields

F = R(u, v)
1

1−vp ·
∫ u

u0

1

t
R(t, v)

− vp

1−vp dt + C2 · R(u, v)
− vp

1−vp ,

or equivalently,

C2 = F · R(u, v)
vp

1−vp −
∫ u

u0

1

t
R(t, v)

− vp

1−vp dt. (5.8)

Thus, we may write f in the form f(z, u, F ) = G(C1, C2) with an arbitrary differentiable
function G. As by our approach it holds G(C1, C2) = 0 we may apply the fundamental
theorem of implicit functions, which can be found in [16], to achieve the representation C2 =
g(C1) with an arbitrary differentiable function g and plugging (5.3) and (5.8) into it yields

F · R(u, v)
vp

1−vp −
∫ u

u0

1

t
R(t, v)

− vp

1−vp dt = g


R(u, v)

− 1
1−vp

1 − z


 .

Choosing u0 = 1 finally leads to a representation for F by

F (z, u, v) = R(u, v)
1

1−vp ·


∫ u

1

1

t
R(t, v)

− vp

1−vp dt + g


R(u, v)

− 1
1−vp

1 − z




 .

To determine the function g we use the initial condition F (0, u, v) = 0 which follows trivially
from the combinatorial structure of the hiring problem. Thus, we get the representation

−v

∫ u

1

1

t
R(t, v)

− vp

1−vp dt = g
(
R(u, v)

− 1
1−vp

)
.

When applying the substitution x = R(u, v)
− 1

1−vp =
(

1−v(p(1−p)u)
u

) 1
1−vp together with some

careful algebraic manipulations we achieve the representation

g(x) = −v

1−vp

x1−vp+v(1−p)∫

1

1

t
R(t, v)

− vp

1−vp dt,
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which then, after substituting y = x
1−z

, implies that

F (z, u, v) = vR(u, v)
1

1−vp




u∫

1

1

t
R(t, v)

− vp

1−vp dt −

1−vp

y1−vp+v(1−p)∫

1

1

t
R(t, v)

− vp

1−vp dt




= vR(u, v)
1

1−vp

u∫

1−vp

y1−vp+v(1−p)

1

t
R(t, v)

− vp

1−vp dt

= vR(u, v)
1

1−vp

u∫

(1−vp)u(1−z)1−vp

1−v(p+(1−p)u)+(1−p)uv(1−z)1−vp

1

t
R(t, v)

− vp

1−vp dt

As we are mainly interested in the size of the hiring set independent of the score of the
threshold we consider the function

F (z, v) := F (z, 1, v) = vR(1, v)
− 1

1−vp

1∫

(1−vp)(1−z)1−vp

1−v+(1−p)v(1−z)1−pv

1

t
R(t, v)

− vp

1−vp dt

=
v

(1 − v)
1

1−vp

1∫

(1−vp)(1−z)1−vp

1−v+(1−p)v(1−z)1−pv

1

t
R(t, v)

− vp

1−vp dt.

Substituting s = 1
t

then leads to

F (z, v) =
v

(1 − v)
1

1−vp

1−v+(1−p)v(1−z)1−pv

(1−vp)(1−z)1−vp∫

1

1

s
((1 − vp)s − v(1 − p))

vp

1−vp ds

=
v

1 − v

1−v

(1−vp)(1−z)1−vp +
(1−p)v

1−vp∫

1

1

s

(
(1 − vp)s − (1 − p)v

1 − v

) vp

1−vp

ds,

and another substitution by r =
(

(1−vp)s−(1−p)v
1−v

) 1
1−vp yields in the representation

F (z, v) =
v

1 − v

1
1−z∫

1

(1 − vp)(1 − v)

(1 − v)r1−vp + (1 − p)v
dr

= v(1 − vp)

1
1−z∫

1

dr

(1 − v)r1−vp + (1 − p)v
. (5.9)

With this representation we are now able to determine the expectation and the moments of
the parameter hn.
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Theorem 5.1.2. For the expectation of the size of the hiring set hn when applying the
probabilistic hiring strategy it holds that

E(hn) = − p

1 − p
+

1

(1 − p)(2 − p)

(
n + 1 − p

n

)
=

n1−p

(1 − p) Γ(3 − p)
+ O(1),

where the asymptotic expansion holds uniformly for n → ∞.

Proof. Following Theorem 1.4.7, the PGF of hn is given by

P (v) =
[zn]F (z, v)

[zn]F (z, 1)
.

Considering (5.9) implies that

F (z, 1) = (1 − p)

∫ 1
1−z

1

dr

1 − p
=

z

1 − z
,

and as a direct consequence we have [zn]F (z, 1) = 1, for n ≥ 1. This result is consistent with
the definition of an,k,d, as for u = v = 1 we only sum up the probabilities for fixed n. Hence,
the PGF is given by

P (v) = [zn]v(1 − pv)

∫ 1
1−z

1

dr

(1 − v)r1−vp + (1 − p)v
,

which means for the expectation that

E(hn) = P ′(v)
∣∣
v=1

= [zn]
∂

∂v
F (z, v)

∣∣
v=1

(5.10)

For the derivative of F it is an easy task to prove that we may change the order of integration
and differentiation which immediately shows that

∂

∂v
F (z, v) = (1 − 2pv)

∫ 1
1−z

1

dr

(1 − v)r1−vp + (1 − p)v

− v(1 − vp)

∫ 1
1−z

1

−r1−vp + (1 − v)r1−vp(−p) ln(r) + (1 − p)

(1 − v)r1−vp + (1 − p)v)2
. (5.11)

When plugging (5.11) into (5.10) and evaluating at v = 1 it leads to

E(hn) = [zn]

(
(1 − 2p)

∫ 1
1−z

1

dr

1 − p
− (1 − p)

∫ 1
1−z

1

−r1−p + (1 − p)

(1 − p)2
dr

)

= [zn]

(
1 − 2p

1 − p

z

1 − z
+

1

(1 − p)(2 − p)

(
1

(1 − z)2−p
− 1

)
− z

1 − z

)

= − p

1 − p
+

1

(1 − p)(2 − p)

(
n + 1 − p

n

)
,

for n ≥ 1. Asymptotically, for n → ∞, applying the identity
(

n + 1 − p

n

)
=

Γ(n + 2 − p)

Γ(n + 1)Γ(2 − p)
,
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together with Stirling’s formula for the gamma function, Theorem 1.3.8 shows that

E(hn) =
1

(1 − p)(2 − p)

(
n + 1 − p

n

)
− p

1 − p

=
1

(1 − p)(2 − p)Γ(2 − p)

(n + 2 − p)n+2−p− 1
2 en+1

(n + 1)n+1− 1
2 en+2−p

·
(

1 + O
(

1

n

))
+ O(1)

=
n1−p

(1 − p)Γ(3 − p)
+ O(1).

�

We were also able to determine the other moments E(Xr), for arbitrary r > 0, of hn. As
the computations are a bit lengthy we will only sketch a proof. It is useful to consider the
function

F̂ (z, w) = F (z, w + 1) =

(
1 +

1 − 2p

1 − p
w − p

1 − p
w2
)

·
∫ 1

1−z

1

dx

1 − w
(

x1−p

1−p
e−pw ln(x) − 1

) .

When defining S(w, x) := x1−p

1−p
e−pw ln(x) − 1 and applying the identity

∑∞
k=0 yk = 1

1−y
to the

integrand shows that

[wr]F̂ (z, w) =
r∑

j=0

∫ 1
1−z

1
S(w, x)jdx +

1 − 2p

1 − p

r−1∑

j=0

[wr−1−j ]

∫ 1
1−u

1
S(w, x)jdx

− p

1 − p

r−2∑

j=0

[wr−2−j ]

∫ 1
1−z

1
S(w, x)jdx.

When changing the order of integration and the coefficient extraction operator and defining

T (w, x, j) :=
j∑

ℓ=0

(
j

ℓ

)
(−1)j−ℓ x(1−p)ℓe−ℓpw ln(x)

(1 − p)ℓ

then shows that

[wr]F̂ (z, w) =
r∑

j=0

∫ 1
1−z

1
T (w, x, j)dx +

1 − 2p

1 − p

r−1∑

j=0

∫ 1
1−z

1
T (w, x, j)dx

− p

1 − p

r−2∑

j=0

∫ 1
1−z

1
T (w, x, j)dx.

Hence, we get the asymptotic representation

[wr]F̂ (z, w) =

∫ 1
1−z

1

x(1−p)r

(1 − p)r
dx + O

(∫ 1
1−z

1
x(1−p)(r−1) ln(x)dx

)

=
1

(1 − p)r((1 − p)r + 1)(1 − z)(1−p)r+1
+ O

(
1

(1 − z)(1−p)(r−1)+1
ln

(
1

1 − z

))
.
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One may now easily prove that

[znwr]F̂ (z, w) =
n(1−p)r

(1 − p)rΓ((1 − p)r + 1)
·
(

1 + O
(

ln(n)

n1−p

))
.

Now we are able to determine all the moments E(hr
n), for r > 0.

Theorem 5.1.3. For a number r ∈ N, the r-th moment of the random variable hn,
that denotes the number of hired candidates when applying the probabilistic strategy, is
asymptotically, for n → ∞, given by

E(hr
n) =

r! n(1−p)r

(1 − p)rΓ((1 − p)r + 2)
·
(

1 + O
(

ln(n)

n1−p

))
.

Moreover, suitably normalized, hn converges, for n → ∞, in distribution to a random variable

H, i.e. hn

n1−p

(d)−→ H, where H is fully determined by its integer moments

E(Hr) =
r!

(1 − p)rΓ((1 − p)r + 2)
.

Proof. We first consider the r-th factorial moment of hn, which is, following Lemma 1.4.8,
given by

E(hr
n) = r! [znwr]F̂ (z, w) =

r!n(1−p)r

(1 − p)rΓ((1 − p)r + 2)
·
(

1 + O
(

ln(n)

n1−p

))
.

It is a simple task to prove that the same asymptotic expansion holds for the r-th moments
as well. Furthermore, it is easy to see that the moments of hn

n1−p satisfy the conditions of the
Fréchet-Shohat Theorem 1.6.4, hence, we directly get

hn

n1−p

(d)−→ H,

where H is fully determined by its integer moments.
�

5.2 Connection between the probabilistic and deterministic

strategies

In this section we will compare the probabilistic strategy from Section 5.1 to the other strate-
gies we considered in the Chapters 2, 3 and 4.

5.2.A Hiring above the maximum

First of all let us observe the not yet investigated case p = 1. Here the threshold candidate
obviously changes after each hiring. It is an easy task to prove that the threshold candidate is
the best already hired candidate at each step n. In particular we have the following induction:
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• n = 1: The strategy hires the first candidate. Thus, the first threshold candidate is the
best already hired candidate, since he is the only one.

• n > 1: By inductive hypothesis the threshold candidate after step n − 1 is the best
so far seen candidate. A new candidate gets hired if and only if he is better than the
threshold, i.e. if he is the best candidate. As the threshold changes after each hiring the
new candidate becomes the new threshold.

As a direct consequence we can see that for p = 1 we have hiring above the maximum. We
can also see this when plugging p = 1 into (5.1):

an,k,d =
n − k

n
an−1,k,d +

k

n
an−1,k,d−1, n ≥ 2.

The initial value is a1,1,1 = 1. As we can see the parameter k does not change in the recursion,
i.e. k = 1 for sure. This leads to the recursion

ân,d =
n − 1

n
ân−1,d +

1

n
ân−1,d−1, n ≥ 2, (5.12)

with the initial value â1,1 = 1 and ân,d = an,1,d. Obviously (5.12) is a recursion that describes
hiring above the maximum.

Remark 5.2.1. A generalization for this probabilistic strategy to hiring above the m-th
best seems rather difficult as we have to change the behavior of the threshold transition after
m candidates. However, asymptotically for n → ∞ and m fixed, p = 1 represents hiring
above the m-th best, too.

�

5.2.B Hiring above the minimum

Secondly we consider p = 0 which is the contrary case to p = 1 considered before. Again this
is a deterministic approach, as the threshold does not change. So the hiring process recruits
the first candidate who becomes the first threshold. Thus, any further candidate gets hired if
and only if he is better than the first candidate. Hence, we have hiring above the minimum
for p = 0. This is also confirmed by the results in Section 5.1:

E(hn) = − p

1 − p
+

1

(1 − p)(2 − p)

(
n + 1 − p

n

)
=

1

2

(
n + 1

n

)
=

n + 1

2
.

5.2.C Hiring above the median

Finally we compare the probabilistic strategy with p = 1
2 to hiring above the median. Let

us recap our considerations about hiring above the median. By using the automaton from
Figure 4.1 we could observe that the threshold candidate changes after every second hiring,
depending on the parity of the current hiring set. Thus, if we do not know the parity of the
hiring set, the probability for changing the threshold lies at p = 1

2 . On the other hand, hiring
above the median is a deterministic strategy. This shows that hiring above the median is
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an instance of the probabilistic strategy with p = 1
2 . Thus, one would expect that the two

strategies lead, asymptotically, to the same results, but with other constants. We can observe
this behavior for the expectation E(hn). For hiring above the median we saw that

E(hn) =
√

πn + O(1),

and when plugging p = 1
2 into the results for the probabilistic strategy we have

E(hn) =
8

3
√

π

√
n + O(1).

We were also able to determine the limit distribution of hn for n → ∞ when applying the
probabilistic strategy with parameter p = 1

2 .

Theorem 5.2.2. When applying the probabilistic strategy with parameter p = 1
2 , the

number of recruited candidates hn converges, asymptotically, for n → ∞, in distribution to a
limiting distribution H that is characterized by its density function, i.e.

hn√
n

(d)−→ H,

where H has the density function

h(x) =
x√
π

∫ ∞

x

e− t2

16

t2
dt, x > 0.

Proof. By Theorem 5.1.3 hn√
n

converges in distribution to a unique random variable H whose

moments are given by

E(Hr) =
22rΓ

(
r+1

2

)

√
π
(

r
2 + 1

) .

The stated density function h(x) satisfies

E(Xr
h) =

∫ ∞

0
xrh(x)dx =

1√
π

∫ ∞

0
xr+1

∫ ∞

x

e− t2

16

t2
dt dx =

1√
π

∫ ∞

0

e− t2

16

t2

∫ t

0
xr+1dx dt

=
1√

π(r + 2)

∫ ∞

0
e− t2

16 trdt,

where Xh denotes the corresponding random variable that belongs to h(x). Applying the

substitution t2

16 = u leads to

E(Xr
h) =

2 · 4r

√
π(r + 2)

∫ ∞

0
u

r−1
2 e−udu =

22rΓ
(

r+1
2

)

√
π
(

r
2 + 1

) .

By applying Legendre’s duplication formula, Lemma 1.3.9, one can easily show that the
random variables H and Xh have the same moments and as H is uniquely determined by its
moments we have H = Xh.

�
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