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Abstract 

Strong anion-exchange materials carry a positive charge that allows them to trap and concentrate anions 

while releasing other anions. Here, we introduced an ion exchange group into mesoporous silica films 

coated on attenuated total reflection (ATR) crystals to enrich nitrate from aqueous phase in the volume 

probed by the evanescent field. The ion-exchange and enrichment capabilities of the films were 

characterized using standard FTIR spectroscopy. Thereby fast analyte enrichment and full sensor recovery 

were observed. In addition, high enrichment factors of up to 1600 were achieved. After characterization, 

these coated ATR crystals were used in a dedicated ATR-IR filtometer comprising a Fabry-Pérot filter 

detector unit and a miniaturized thermal emitter with a footprint of only 80 mm × 120 mm × 70 mm. The 

filter covered the spectral region between 1250 - 1800 cm-1 allowing for recording IR spectra of nitrate 

enriched into the mesoporous silica film. The sensor was calibrated using the Langmuir adsorption model 

as calibration function. From this, a limit of detection of 1.2 mg L-1 was derived for the ATR-IR filtometer. 

This emphasizes the high potential of functionalized mesoporous silica films combined with low-cost 

filtometers for portable water sensors.  
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1. Introduction 

Safe water supplies are essential for human health and environmental protection. In this context, nitrate 

is one of the major waterborne chemical hazards and even short term exposure leads to severe health 

effects.1 Nitrate concentrations in water supplies scale with human activity particularly due to their 

intensive use in agriculture and animal breeding.2 Due to their high water solubility, nitrate eventually find 

its way into ground water and hence into drinking water supplies.2,3 Therefore, pollution with nitrate is 

typically high in rural areas and regularly exceeds the world health organization guideline value of 

50 mg L-1. Up to date, nitrate is quantified either spectrophotometrically as nitrite after reduction 

catalyzed by Cd-salt or enzymes, via ion chromatography, or via ion-selective electrodes.4 In addition, 

broad-band ultraviolet/visible spectroscopy-based on-line probes for water monitoring have emerged.5 

These systems have been employed for complex water streams, e.g. with high turbidity, relying on 

sophisticated calibrations dedicated to each application.5–7 Apart from these established techniques, 

infrared (IR) spectroscopy provides quantitative chemical information that can be obtained in reagent free 

measurements in real time. Ions like nitrate show strong and specific bands in the mid-IR spectrum. The 

asymmetric NO3 stretching vibration is located at 1395 cm-1. However, quantification of this band in the 

IR spectrum is made difficult by the strong background absorption of water, which limits the optical path 

length and hence sensitivity. Attenuated total reflection (ATR) IR spectroscopy is commonly employed for 

spectroscopic studies of aqueous samples.8 It was demonstrated that the sensitivity of this technique can 

be vastly increased using selective enrichment layers coated on ATR crystals that cover the volume probed 

by the evanescent field.9–11 Until now, they have been primarily employed for enriching apolar substances 

into hydrophobic coatings. In this context, we have successfully shown that organically functionalized 

mesoporous silica films can also be employed.12 Besides the short response times found for mesoporous 

silica, their rich surface chemistry allows for tuning their functionality beyond hydrophobicity. The 

successful nitrate removal of functionalized silica materials with a trimethylammonium-moiety as ion 

exchange group has been shown for powder materials in batch experiments.13,14 However, the possibility 

to fully recover these materials and use them as sensor is still pending. In this work, this question is 

targeted and a trimethylammonium-moiety was covalently functionalized into a mesoporous silica films 

coated on ATR crystals. The sensing performance for nitrate in aqueous solutions was studied using a 

Fourier transform (FT) IR spectrometer.  

These spectrometers are still considered as gold-standard for IR spectroscopy. The broad spectral 

coverage and robustness of FTIR spectrometers enabled applications in a variety of analytical tasks 
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including quantitative analysis of liquids in off-line as well as in-line applications,15–20 studying reactions at 

surfaces,21–23 as well as clinical diagnositics.24 An emerging, cost-effective alternative to FTIR 

spectrometers are filtometers that, in comparison with benchtop spectrometers, allow on-site 

measurements due to their small size and low energy consumption. In contrast to Michelson 

interferometers, wavelength discrimination is achieved by the use of optical band pass filters.25 Based on 

this principle, Fabry-Pérot (FP) filter designs have emerged in the 1990s that discriminate the transmitted 

wavelength by the distance d between two coplanar reflective surfaces and the refractive index between 

these surfaces.26 By changing d, the filter can be spectrally tuned and the spectral resolution varies 

between 20 cm-1 up to 50 cm-1, depending on the wavelength range.27 A micro-electro-mechanical system 

(MEMS)-based mid IR filter using a FP air resonator combined with a pyroelectric detector was first 

reported in 2003 and is now commercially distributed in several MIR wavelength ranges.28,29 FP filter-

detectors have been successfully paired with miniaturized pulsed MIR emitters were employed for 

process gas monitoring in transmission gas cells,30–32 for liquid sensing,33 imaging systems34 as well as 

paired with a supercontinuum laser for standoff IR spectroscopy.32 These reports achieved adequate 

analytical performance without the high spectral resolution and the full spectral coverage provided by 

FTIR spectrometers while reducing the costs and size of the respective sensing system. 

 

Figure 1: Ge ATR crystal (dark grey) coated with mesoporous silica film functionalized with trimethylammonium 

moieties allowing for ion-exchange of Cl- to NO3
- ions. The coated ATR crystal is placed in a flow cell supplied with 

nitrate solutions via a peristaltic pump. IR absorbance takes place within the evanescent field (light red), which 

extends beyond the crystal into the film. 

The aim of this contribution is to demonstrate a small, cost-effective mid-IR sensor for nitrate in aqueous 

solutions based on a 3D-printed ATR-IR filtometer. Germanium ATR crystals coated with a 
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trimethylammonium-functionalized mesoporous silica films for nitrate sensing were developed (compare 

Figure 1) and their sensing performance were investigated using FTIR spectroscopy revealing short 

response times of less than 1 min and high enrichment factors of up to 1600. In a subsequent step the 

coated ATR crystals were transferred into a dedicated 3D-printed unit comprising light source, FP filter-

detector and printed circuit board with a footprint of only 80 mm × 120 mm × 70 mm (compare Figure 2). 

Although having a lower signal to noise ratio and smaller spectral coverage compared to a FTIR 

spectrometer, the high enrichment factors of the functionalized ATR crystals allowed for sensing NO3
- 

concentrations as low as 3.6 mg L-1. Given the high versatility of silica and low cost of the FP filters, these 

results demonstrates the high potential of functionalized mesoporous materials in combination with an 

ATR-IR-filtometer for water monitoring.  

2. Materials and Methods 

Tetraethoxysilane (TEOS, Sigma Aldrich 99.5%), abs. ethanol (Fisher, 99.6%), hydrochloric acid (VWR, 

37%), cetyltrimethylammonium bromide (CTAB, Sigma Aldrich, 99%), N-[3-(trimethoxysilyl) propyl]-

N,N,N-trimethylammonium chloride (TMAC, Sigma Aldrich, 50 % in methanol), were used as received. 

Aqueous NaNO3 solutions were prepared by weight. 

2.1. Synthesis of mesoporous films 

Mesoporous silica film synthesized using CTAB was prepared as previously reported with a final molar 

ratio of 1:13:5:5 × 10−3:0.12 for TEOS:EtOH:H2O:HCl:CTAB.12 The mixture was stirred for 3 h at 40°C. The 

film was spin coated with a spinner velocity of 2000 rpm and subsequently calcined at 400 °C for 4 h with 

a heating ramp of 1 K min-1. For surface functionalization, the coated ATR crystal was placed in a 3-neck 

flask and 15 mL methanol and 0.5 mL TMAC solution were added. The solution was heated to reflux 

temperature for 8 h. Subsequently, films were rinsed with acetone and heated to 60 °C in the oven over 

night.  

The characterization of the films using X-ray diffraction and profilometry was performed accordingly to 

our previous reports.12,21 

2.2. Optical Setup for FTIR Spectroscopy 

Mesoporous silica films were coated on Ge ATR crystals (20 × 10 × 0.5 mm3) cut from double side polished 

wafers and polished narrow facets with a defined angle of 45°. This ATR crystal configuration comprises 

20 active bounces and a depth of penetration (per bounce) of 420 nm at 1500 cm-1 (nGe=4.02, 
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nsample=1.33).8,35,36 The ATR crystals were inserted into a custom-made mount and fixed with a FKM O-ring 

and an aluminum liquid flow cell with a volume of ca. 20 µL.12 Two gold mirrors directed the IR beam onto 

the ATR facet and the detector. The optical setup was placed in the sample compartment of a Vertex 80v 

FTIR spectrometer (Bruker Optics, Germany) equipped with an N2-cooled MCT detector. Spectra were 

recorded with 4 cm-1 resolution and 32 scans were averaged per spectrum (double-sided, backward-

forward acquisition mode, 8 s per spectrum). Prior to spectrum acquisition, the spectrometer sample 

compartment was flushed with dry air. The noise floor of the system was obtained by means of 100 % 

lines, i.e. a scan of the N2 flushed flow cell with a background scan obtained under same conditions and 

yielded an RMS noise of 3 · 10-5 A.U. between 1800 cm-1- 1450 cm-1. Spectra were analyzed using the 

software package OPUS 7.5 (Bruker Optics, Germany). 

2.3. Liquid Handling 

Pure water, 0.1 M HCl and nitrate solutions with different concentrations were applied at a flow rate of 

1 mL min−1 using a peristaltic pump (Ismatec, Germany), and 1/16-in (see Figure 1 for setup). PTFE tubing 

with 0.5 mm inner diameter was connected to the aluminum flow cell and the peristaltic pump. 

2.4. 3D-printed ATR-IR Filtometer  

The ATR-IR filtometer was built using a pulsed light source EMIRS200 (Atricle No. 601.612, Reflector 3, 

CaF2 window, front-vented, Axetris, Switzerland) a MEMS-based mid-IR filter using a Fabry-Pérot air 

resonator combined with a pyroelectric dector (LFP-5580C-337, TO8 housing, InfraTec, Germany) covering 

a spectral range between 1900 cm-1-1250 cm-1 and corresponding preamplifier electronics from InfraTec. 

All parts were integrated in a 3D-printed ATR unit that housed the ATR crystal and defined the angle of 

incidence for ATR crystal to be 45° (see Figure 2). Ge ATR crystals were used to assure transparence for 

the mid-IR irradiation in the targeted spectral region between 1250 - 1500 cm-1. 
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Figure 2: Exploded view of the 3D-printed mini-spectrometer with a footprint of 80 x 120 x 70 mm. 

Following the blueprints of the ATR-IR filtometer cartridge developed in Inventor Professional 2017 

(Autodesk, USA) the components were sliced using Slic3er Prusa Edition v1.40.1 software (Prusa Re-

search, Czech Republic). A Prusa i3 MK3 3D printer (Prusa Re-search, Czech Republic) was used for additive 

manufacturing. The hotend of the extruder was equipped with a 0.4 mm brass nozzle. PLA with a diameter 

of 1.75 mm sourced from Prusa (Prusa Re-search, Czech Republic) was printed at 200 °C (First layer 220 

°C). The layer height was set to 0.15 mm (0.2 mm for the first layer). Lifting of the Z axis, when filament 

retraction is triggered was set to zero to avoid stringing, therefore post processing of the printed parts 

was not requiered. The infill was set to 20 % using a honeycomb pattern. No support structures were 

used. Further printing parameters were chosen as suggested by Slic3r for Prusa PLA.  

The pulsed light source was accommodated in a dedicated, 3D-printed cartridge, which was fixed with 

two M3 screws and triangular slots without the need of any further optical components. The distance 

between light source and the facet of the ATR crystal was designed to meet the focal point of the source 

of 25 mm. On the filter side, a 16 mm cage system (Thorlabs GmbH, Germany) was fixed to the ATR unit 

with a M2 countersunk screw and the cage system comprised a ZnSe lens (1/2’’, F = 12 mm) focusing the 

MIR beam to the FP filter that was placed in a x-y stage (SCP05, Thorlabs). Strong absorption of PLA of 

which the ATR unit consist off, was avoided by placing a small piece of glass between ATR crystal and ATR 

unit. The bottom plate was designed to hold the props of the ATR unit and to house the preamplifier 

board, which controled source and filter. The board was supplied with 5 V and connected to a PC via USB. 
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Four M6 nuts were sunk in slits enabling mounting of the liquid flow cell (see section 2.3 further details 

on the flow cell), which was attached to the peristaltic pump for sample application. 

2.4.1.  Noise-Characterization of the ATR-IR Filtometer 

For characterizing the setup, the light source was operated with different current and the FP filter 

software was set to different average (= avg) between 1 and 16 data points per wavelength. The noise 

was derived by means of 100 % lines for different settings and the corresponding spectra are given in 

Figure 3. The lowest root-mean-square (RMS) noise for the entire spectral region was found to be 

2.2·10-3 A.U for a current of 100 mA and maximum averaging of 16 data points per wavelength (avg=16). 

Therefore, all experiments were performed with these settings. As averaging scales inversely with 

scanning time, the time needed to record a spectrum with avg = 16 was ca. 2 min. 

The single channel spectrum obtained from 100 mA and avg = 16 for a coated Ge ATR crystal is also given 

in Figure 3 (right y-axis).  

 

Figure 3: Light source was operated with different current. The corresponding 100 % lines show lower noise levels 

for higher current. A single channel spectrum of a coated Ge ATR crystal for 100 mA, avg=16 is also given (dotted 

line, right y-axis) 

3. Results and Discussion 

3.1. Characterization of Functionalized Mesoporous Films using FTIR spectroscopy 

Mesoporous silica films with a pore size of 5 nm were prepared via the evaporation induced self-assembly 

process using CTAB as template as previously reported.12,21,37,38 The formation of silica, complete removal 

of the template and successful surface functionalization was confirmed by FTIR measurements.  
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Figure 4: ATR IR spectra of CTAB 3d hexagonal film before calcination, after functionalization with TMAC. Background 

spectrum was recorded for an uncoated Ge ATR crystal.  

The spectra obtained between each step of the synthesis are given in Figure 4. After film deposition and 

before calcination strong C-H stretching vibrations between 2800 cm-1 - 3000 cm-1, the -CH2 deformation 

band at 1470 cm-1 and the C-N vibration of the trimethylammonium group at 1480 cm-1 were visible and 

correspond to the CTAB template. After calcination, the bands associated with the template had 

completely vanished and a band at 3745 cm-1 corresponding to isolated Si-OH groups arose.39 In the 

subsequent step, these groups were saturated with TMAC. The band linked to the trimethylammonium 

group can be found at 1480 cm-1 after functionalization. The presence of this band and the absence of 

free silanol groups (no band at 3745 cm-1 is visible) confirmed the successful functionalization. 

3.1.1.  FTIR Spectra of Nitrate Enriched into Mesoporous Silica Films 

The trimethylammonium functionality is considered a strong anion exchange moiety, thus it demands for 

a regeneration step. Here, 0.1 M HCl was used as regeneration solvent to yield -N(CH3)3
+Cl. Spectra of 

water and 0.1 M HCl applied to the functionalized film were recorded and considerable spectral changes 

were observed for the O-H stretching and H-O-H bending vibrations at ~ 3400 cm-1 and 1640 cm-1, 

respectively (see Figure 5).40,41 A difference spectrum was derived using the spectrum obtained from pure 

water as background to highlight the differences which are mainly due to the H3O+ species present at this 

low pH. 
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Figure 5: ATR IR spectra recorded after flushing water and 0.1 M HCl for 5 min over a functionalized TMAC CTAB film. Background 

spectrum was taken for the dry film. The difference spectrum was calculated using the water spectrum as background spectrum. 

A shift in the IR spectrum of water arose again upon changing from the regeneration solution back to 

distilled water. IR spectra for nitrate quantification were calculated using a pure water spectrum as 

background. An exemplary difference spectrum obtained from the enrichment of a 29 mg L-1 NO3
- solution 

compared to a reference spectrum is shown in Figure 6. The spectrum is in accordance with the spectrum 

obtained on a commercial single bounce ATR unit from a 10 g L-1 NaNO3 solution. This demonstrates the 

capability of nitrate sensing using TMAC-functionalized mesoporous silica films. Note that measurements 

of a 29 mg L-1 NO3
- solution on blank Ge ATR crystals without functionalized mesoporous film did not show 

spectral features corresponding to NO3
- as the sensitivity was too low. 

 

Figure 6: ATR IR spectra of a nitrate enriched in the mesoporous silica film from a 29 mg L-1 NO3
- solution 

compared with a scaled spectrum of a 10 g L-1 NaNO3 solution recorded on a single-bounce ATR unit. 

Bands corresponding to the NO3
- stretching mode (1395 cm-1 and 1350 cm-1) and H-O-H bending vibration 

of water (1640 cm-1) are visible. 

3.1.2. Monitoring Anion-Exchange using FTIR Spectroscopy 

The response time of the TMAC-functionalized mesoporous silica film was determined by exchanging the 

regeneration solution by nitrate solutions of different concentrations while recording spectra every 4 s. 

All nitrate enrichment experiments were performed by flushing 5 mL of 0.1 M HCl for conditioning of the 
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film followed by 5 mL of the respective nitrate solution with 1 mL min-1 flow velocity using a peristaltic 

pump. The nitrate band was integrated between 1465 cm-1 and 1290 cm-1 and the band areas during 

application for different nitrate concentrations are given in Figure 7. These profiles show a fast enrichment 

that stabilizes within the first 100 s. Note that due to the pH dependent changes in the baseline when 

changing diluted HCl to nitrate solutions, the time profile do not return to 0 but stabilize within 30 s for 

all concentrations.  

 

Figure 7: Nitrate band area as function of time for different NO3
- concentrations. After 300 s of nitrate solution 

application, regeneration with HCl was performed. 

Apart from response times, the concentration of interacting trimethylammonium present in the film could 

be determined from these measurements: We have recently introduced a method to calculate the 

effective path length within the film de,film.12 Here, the effective path length typically used for ATR 

spectroscopy, is scaled by the finite fraction of the evanescent wave within the film.Based on these 

calculations, we derived de,film of the employed 400 nm thick film to be de,film = 5.71 µm (at 1480 cm-1, 

n1=4.02, n2=1.33).12,35,36 The absorption coefficient of C-N+ vibration of the TMAC moiety was retrieved 

from IR transmission measurements and equals to 𝜀(1480 𝑐𝑚−1) = 4792 L cm-2 mol-1 for the band area 

integrated between 1532 - 1432 cm-1. Inserting into Lambert-Beer’s law with 𝐴 =  𝜀 ∙ 𝑐 ∙ 𝑑𝑒,𝑓𝑖𝑙𝑚 yields a 

trimethylammonium concentration of 0.4 mol L-1
film, which is equivalent to 3.5 · 10-8 molNH3+ per film 

volume calculated as 20 mm x 10 mm x 400 nm. If assuming that every chloride ion from the regeneration 

step is replaced with a nitrate ion, this would correspond to a NO3
- concentration of 24.8 g L-1

film. The 

absorption coefficient of the nitrate band between 1250 cm-1 and 1500 cm-1 was derived from an IR 

transmission measurement of a 7.9 g L-1 NO3
-solution to be 𝜀 = 698 L g-1 cm-2. Based on the same 

principles, the nitrate concentration in the film obtained from the enrichment experiment of a 3.6 mg L-1 

NO3
- solution was calculated to be 1.91 g L-1. This corresponds to trimethylammonium moiety 

consumption of 8 % and an enrichment factor of 530.  
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Until now, standard solutions were obtained from NaNO3 dissolved in distilled water. Therefore, no 

potentially interfering counter ions were present. To account for them, standard solutions were prepared 

containing 20 mg L-1 NaNO3 and 20 mg L-1 Na2SO4. However, no nitrate enrichment could be achieved, as 

it seems that the affinity of the trimethylammonium groups was higher toward multiply charged anions 

such as sulfate. 

3.2. Nitrate Sensing using an ATR-IR Filtometer 

In contrast to the high-end FTIR spectrometer employed for the film characterization, the RMS noise of 

the presented ATR-IR filtometer was a factor 100 higher and it also offered a lower spectral resolution. 

However, due to the high enrichment factor facilitated by the TMAC-functionalized film and the broad 

absorption band of NO3
-, quantitative measurements of nitrate concentrations at drinking water levels 

could be achieved. In contrast to the measurements performed with the FTIR spectrometer, recording of 

one spectrum (averaging of 16 measurements for each data point, at 10 Hz) takes 2 min. Thus, no time 

profiles could be retrieved with this setup, but a spectrum after the application of 5 mL NO3
- solution with 

1 mL min-1 flow rate was recorded. Spectra obtained for different nitrate concentrations are given in 

Figure 8A and clearly show that a NO3
- concentration of 3.6 mg L-1 is still detectable. Note that due the 

instability of the film and leaching of the TMAC moieties out of the film the enrichment capacity of film 

decreased over time. Spectra given in Figure 8A were recorded directly after film synthesis while the same 

film was used two weeks later for measurements with the FTIR spectrometer showing already a decreased 

enrichment capacity. However, repeated measurements without significant decay in performance were 

feasible. This is reflected in the small error bars given in Figure 8B for three subsequent enrichment 

experiments.  
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Figure 8: (A) IR spectra obtained with the ATR-IR filtometer for different nitrate concentrations. The background 

spectrum was recorded with distilled water. (B) Nitrate band area as function of applied concentration. Data points 

were fitted with the Langmuir function (dashed line) and Freundlich function (solid line). 

The obtained band areas for three consecutive adsorption experiments per concentration after 5 min 

were plotted as function of applied nitrate concentration in Figure Figure 8B. The obtained isotherms 

were fitted with the Langmuir and the Freundlich functions: 

𝑞𝑒 =
𝑞𝑚𝐾L𝑐

1 + KL𝑐
 

(1) 

𝑞𝑒 = 𝐾F𝑐
1

𝑛𝐹  
(2) 

where qe (A.U. cm−1 for data obtained from IR absorption bands) is the amount of adsorbed analyte, qm 

(A.U. cm−1) is the maximum adsorption capacity, c is the concentration of applied nitrate solutions 

(mg L−1), KL (L g−1) is the Langmuir constant, KF (A.U. cm−1 [g L−1]−1/n) is the Freundlich affinity coefficient, 

and nF (unitless) is the Freundlich linearity index. In contrast to the adsorption isotherms obtained in our 

previous report for aliphatic and aromatic nitrile enrichment into hydrophobic mesoporous silica, here, 

the Langmuir function fits better if using 𝜒2 as measure for non-linear fits (lower 𝜒2 indicates a better fit, 

𝜒2 = 1.36 for the Langmuir fit, dashed line in Figure 8B, compared to 𝜒2 = 4.20 for the Freundlich fit, solid 

line in Figure 8B).42 As compared to the rather unspecific adsorption of hydrocarbons into hydrophobic 
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mesoporous silica films that allowed for multilayer adsorption (according to the Freundlich model), the 

trimethylammonium functionalized films offered just one binding site per nitrate ion. This is in accordance 

with the definition of Langmuir adsorption isotherms and previously reported batch experiments.13,43 The 

derived Langmuir function served as calibration function. This allowed for retrieving the limit of detection 

(LOD) defined as qe(LOD)= 3·σ, with σ being the standard deviation derived from 100 % lines obtained 

from consecutive blank water spectra. This yielded a LOD of 1.2 mg L-1 for the presented ATR-IR filtometer. 

According to quantitative considerations performed in section 3.1.2, the enriched amount of NO3
- per 

volume was also derived from these experiments. The band area obtained from a 7.3 mg L-1 NO3
- solution 

corresponds to a concentration of 11.7 g L-1
film, which is equivalent to a trimethylammonium moiety 

consumption of 14 % and an enrichment factor of 1600. The threefold enrichment factor compared to 

FTIR measurements is in accordance with the loss of the trimethylammonium moieties as determined 

from IR spectra of the as-synthesized film compared to the aged film. The maximum adsorption capacity 

obtained from the Langmuir fit qm was calculated to be 10.4 A.U.·cm-1 (equal to qm,mass = qm /( 𝜀 ∙ 𝑑𝑒,𝑓𝑖𝑙𝑚) 

=26.1 gNO3- L-1
film), which corresponds to trimethylammonium moiety consumption of 32 %. The anion 

exchange reactions can be described as an equilibrium between different monovalent anions present in 

solution. Therefore, the incomplete consumption of the trimethylammonium moiety can be attributed to 

the adjustment of equilibrium between NO3
- and OH-, as reported for other anion pairs on similar 

materials.44Nitrate enrichment experiments reported in literature have been performed using powdered 

mesoporous materials for enrichment from batch solutions. 13,43 In these reports the achieved enrichment 

is generally expressed as absorbed amount of analyte per employed amount of silica, mgAnalyte gSiO2
-1. In 

order to compare our results with these literature data, the retrieved concentrations in gNO3- L-1
film were 

expressed in these terms. The film density of 𝜌=1.32 g cm-3 was calculated as the weighted averaged 

density from the density of bulk silica with a film porosity of 50 %.45 With this, a maximum absorption 

capacity of 20 mgNO3- gSiO2
-1 (derived from qm,mass/ 𝜌) was obtained, which is in similar to ~30 mgNO3- gSiO2

-1 

obtained for batch experiments after 1 h of equilibration time for similar materials13,43 and in the range of 

commercially available anion exchange resins.46 

4. Conclusion and Outlook 

A multibounce ATR crystal was combined with a FP filter and a miniaturized mid-IR emitter in a 3D-printed 

ATR-IR filtometer. The ATR crystal was coated with mesoporous silica films functionalized with a 

trimethylammonium ion exchange moiety allowing for nitrate enrichment. The films were characterized 

using a FTIR spectrometer and showed response times of a few seconds and full recovery upon rinsing 
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with diluted HCl. Using the ATR-IR filtometer aqueous nitrate solutions with concentrations between 3.6 

mg L-1 to 70 mg L-1 were measured. The obtained data were fitted with the Langmuir equation that served 

as calibration function and allowed for retrieving a limit of detection of 1.2 mg L-1. The steep slope of the 

Langmuir function up to a concentration of 40 mg L-1 nitrate in water enabled sensitive measurements of 

nitrate concentrations at drinking water levels. Although only a third of the present trimethylammonium 

groups in the film interacted with nitrate ions, high enrichment factors of up to 1600 were determined. It 

was found that nitrate enrichment was not possible in the presence of multiply charged sulfate ions. To 

overcome this, established knowledge of silica surface tuning routinely used for chromatography columns 

materials could be transferred and utilized also for ATR spectroscopy-based sensing. For instance, the 

affinity of the ion exchange group towards multiply charged ions could be decreased by using an 

ammonium moiety with n-butyl groups instead of methyl groups.47–49 Due to the higher steric hindrance 

of the butyl groups the ammonium cation would be less accessible to larger ions. Furthermore, cations 

could be targeted by introducing a sulfonic acid moiety into the film. In summary, the rich surface 

chemistry of silica in combination with the presented pocket-sized, cost effective ATR-IR filtometer, which 

could be operated using a battery due to its low power consumption, resembles a promising candidate 

for portable drinking water sensors. 
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