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Preface

Abstract

Algorithmic trading has increased massively over the last decade. Today, most of
the traders are not sitting in trading pits, while buying or selling stocks by shouting
and hand signaling. Different from the past, the transactions are mainly executed
electronically by computer algorithms. Based on these procedures, using various
information like volatility or liquidity, trading signals are sent.
The purpose of this thesis is to figure out if it is possible to predict market move-
ments due to a stochastic model for the dynamics of an order book. However,
in hardly any paper dealing with this sort of models the assumptions and com-
puted results are accurately compared to those achieved from the order book data.
Therefore, in this thesis, a stochastic model is illustrated, investigated and imple-
mented by using parameters estimated by the data of 30 stocks of the Istanbul
Stock Exchange. Afterwards, based on this model, the probability of a mid-price
increase conditional on the current order book status is computed and compared
to the outcomes received from the stock data.
The obtained results reflect the dead-on prediction of the model. The probabilities
calculated based on the model are very similar to those achieved from the limit or-
der book. Regarding future analysis, it could be interesting to examine if a trading
strategy, considering the calculated probabilities of this thesis, is profitable.

Keywords

limit order book, transition probabilities, probability distributions, Laplace trans-
form, birth-and-death process, mid-price increase
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Vorwort

Kurzfassung

Während des letzten Jahrzehntes ist der algorithmische Handel stark angestiegen.
Heute gibt es kaum noch Händler, die sich auf dem Parkett treffen, um dort mit
Zurufen und Handzeichen die gewünschten Finanzinstrumente zu kaufen oder zu
verkaufen. Im Gegensatz zur Vergangenheit werden heutzutage die Transaktionen
hauptsächlich elektronisch mit Hilfe von Computeralgorithmen ausgeführt. Diese
Algorithmen werden mit verschiedensten Informationen wie Volatilität oder Liqui-
dität gespeist und basierend auf diesen statistischen Maßen wird ein Handelssignal
gesendet.
Das Ziel dieser Arbeit ist es, herauszufinden, ob es möglich ist, auf Basis eines
stochastischen Modells für die Dynamiken eines Orderbuches Marktbewegung vor-
herzusagen. Allerdings werden in den meisten wissenschaftlichen Arbeiten, welche
von dieser Art von Modellen handeln, weder die Voraussetzungen für die Mo-
dellanwendung geprüft noch die erhaltenen Resultate genau mit den Ergebnissen,
die die Daten des Limit-Orderbuches liefern, verglichen. Daher wird in dieser Ar-
beit ein stochastisches Modell erklärt, untersucht und mit den Parametern, die mit
Hilfe der Orderbuchdaten von 30 Aktien der Istanbuler Börse geschätzt werden,
implementiert. Danach wird basierend auf diesem Modell die Wahrscheinlichkeit
für einen Anstieg des mittleren Preises, bedingt auf den aktuellen Stand des Or-
derbuches, berechnet und mit den Resultaten, die man mit Hilfe der Daten des
Limit-Orderbuches erhält, verglichen.
Die erhaltenen Resultate zeigen, dass das Modell präzise Vorhersagen liefert. Die
Wahrscheinlichkeiten, die basierend auf dem Modell berechnet worden sind, sind
sehr ähnlich zu jenen, welche durch die Orderbuchdaten erhalten wurden. Betref-
fend zukünftiger Analysen wäre es interessant, zu überprüfen, ob eine Handelss-
trategie, welche die berechneten Wahrscheinlichkeiten dieser Arbeit heranzieht,
gewinnbringend ist.

Schlagwörter

Limit-Orderbuch, Übergangswahrscheinlichkeiten, Wahrscheinlichkeitsverteilungen,
Laplacetransformation, Geburts- und Todesprozess, Anstieg des mittleren Preises
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CHAPTER 1
Introduction

1.1 Algorithmic trading

Algorithmic trading is defined as bidding automatically, meaning that computer
platforms are used to submit and manage orders by applying algorithms. There are
various algorithms used by different types of market participants. Some hedge funds
and brokers/dealers supply the algorithm with liquidity or volatility information and
trade by automatically generated signals. Other algorithms derive signals from the
order book data if certain patterns are detected [HJM11].

1.1.1 High frequency trading

High frequency trading is one of the major recent innovations in financial markets.
It is a subgroup of algorithmic trading and is defined by having short holding
periods (meaning anything between a few seconds and a few hours) and trading
frequently. The speed of these trading processes is incredible, meaning that the
execution of the order occurs immediately after the arrival of information, faster
than humans can even register the initial information. High frequency traders
compete by having the most powerful computers, connections and programs and
pay premiums to the exchanges for the privilege of locating their computers as
close as possible to the trading venue [BW11].

In the first place, trading time measured in milliseconds is possible due to elec-
tronic trading systems instituted by important exchanges such as NYSE, NASDAQ,
London Stock Exchange etc.. These systems aggregate all outstanding limit orders
in the so called limit order book (LOB), which is visible for traders. Regarding the
availability of “Level II“ data, 1 dynamical models can be formulated, estimated and
tested. Recently, a continuous-time Markov model, in which all required param-

1“Level II“ market data show the orders which are currently pending for the market. They are
also known as the depth of the market, because they display the number of contracts which are
available at all prices - not limited to information about the bid and ask price.
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2

eters are estimated from “Level II“ order book data, has been proposed by [CST10].

The model in [CST10] treats the LOB as a queuing system, where the incoming
orders and cancellations arrive in unit size, modeled by using independent Poisson
processes. This queuing system can be described by a specified Markov process,
called birth-and-death Markov chain model, where the states are representing the
number of shares at a given price and the transition rates are represented by birth
(the entry of a new limit order) and death rates (removal of a limit order by
cancellation or matching with a new market order).
The technical problem of evaluating the Laplace transforms of the relevant first-
passage times, which are needed to calculate the probability of a mid-price up
movement, is overcome by a technique introduced in [HK12]. Hereby, the limit of
truncated state spaces is analyzed. The entire approach is closely related to the
methods proposed in [CST10, HK12].

1.2 Research question

This work’s purpose is to examine whether the full access to the order book,
meaning that the book is not limited to the best five or ten quotes, can be used
to be faster and trade more profitably than other market participants. Therefore,
this study tries to identify the kind of information which is necessary for predicting
market movements.

Motivated by [CST10], various measures for predicting market movements can
be computed. This thesis will concentrate on the probability of a mid-price increase
at its next move conditional on the current order book status. The model of
[CST10] will be explained, examined carefully and tested based on the data provided
by the Istanbul Stock Exchange (ISE). Thus, the model will be illustrated with
parameters estimated from the order book “Level II“ data of 30 stocks, which
determine the ISE-30 index.

1.3 Thesis outline

The structure of this thesis is organized as followed. In Chapter 2, the data and
trading structure in the market are described. An overview of all mathematical
basics needed for subsequent calculations is given. As a foretaste, the above
mentioned Markov chain model is reviewed and transition probabilities for a linear
birth-and-death process are calculated. In Chapter 3, the model parameters are
estimated, the accuracy of the estimation is presented and the computation of
the conditional probability of a mid-price increase is described. Chapter 4 outlines
the numerical calculation and the results. Finally, in Chapter 5, the conclusion is
presented.



CHAPTER 2
Material and Methods

This chapter contains a description of the order book data, the usage, some prepa-
rations [VZ13] and a section about mathematical foundations, which are used
throughout this thesis. The last part supplies the reader with the main concept of
the birth-and-death Markov chain model (birth-and-death process).

2.1 Data description and preparation

All data information is obtained by several papers of Marcela Valenzuela and
Ilknur Zer [FRVZ14, VZ13].
The used data set consists of order and trade books of 30 stocks over a period
of two months (06-01-2008 until 07-31-2008), which determine the ISE-30 index.
For this sample period, the index corresponds to almost 75% of all data available
in the order book.

The ISE is a fully computerized as well as a fully centralized stock exchange,
meaning that all trades of the ISE-listed stocks have to be executed in ISE via
electronic order submissions. Hence, the above described data fully captures the
order flow.
All brokers have full access to the order book. Prior to the submission of
an order, they can see the quantity available at different prices. Additional
information - like the price and the quantity which is received for each order - is
given. A trade occurs if the price of an order on the buy side fits one on the sell side.

One important fact is that, in 2008 ISE differed from other exchanges in some
points. Therefore, four main issues need to be pointed out. First, until 2011, ISE
was a non-anonymous open market, meaning that every trader was able to observe
all submitted and traded orders. Therefore, no hidden orders existed. Before
submitting an order, the market participants knew about the available quantity
of all quoted prices. Second, walking through the order book was not possible,
which means that the unexecuted proportion of the market order was converted to

3
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a limit order. Thirdly, each order was valid for a particular session (before midday
or afternoon) or for the whole day. Fourth and last point, order modifications were
allowed but the orders could not be canceled.

Table 2.1.1: Unprocessed order data. A detailed description of the column names is given in
Appendix A Table A.0.1.

Date OrderID Ticker OT Quant. Price TIF Time CT KTRa

01.07.08 107200800181191 AKBNK 1 3000 3.75 0 153023 1 1000
01.07.08 107200800181194 AKBNK 5 400 4.01 1 153035 2 0

aIf the order is a kill the rest (KTR) type, it is matched with the available volume and the
rest is canceled.

Table 2.1.2: Unprocessed trade data. A detailed description of the column names is given in
Appendix A Table A.0.1.

Date Ticker Time Quant. Price CT BuyerID SellerID
01.07.08 AKBNK 94031 11 5.40 0 107200800181191 107200800173428
01.07.08 AKBNK 94500 989 5.40 1 107200800180222 107200800181189

The reconstruction of the order book was done by [FRVZ14]. For one given
price, the volume is calculated as the cumulative volume of all orders at exactly
this price. The order book consists of the best 10 quotes of each side. This
was considered as appropriate because the first 10 levels contain about 90% of all
submitted orders.

Table 2.1.3: Reconstructed order book. A detailed description of the column names is given in
Appendix A Table A.0.1.

Bid Ask S VB1 VA1 AT B2∗ A2∗ VB2∗ VA2∗

3.88 4.06 0.18 34326 27850 5S 3.98 4.08 182252 78585
3.88 4.04 0.16 34326 24426 2S 3.96 4.06 257804 43398

∗This information is available for the best 10 quotes.

The files stock08061.mat, stock08062.mat, stock08063.mat, stock08071.mat,
stock08072.mat and stock08073.mat served as basis for most of the calculations
done in this thesis. Each of these files is a 1× 10 structure (10 stocks in each file,
two months) in MATLAB R©2011b [MAT11]. Again, each structure entry consists
of the stock number (for example AKBNK), a table including all submitted orders
and one containing all trades according to this stock number, and the tick size1.
The order table comprise almost the same information as given in Table 2.1.1 and
2.1.3 and the trade table is similar to Table 2.1.2.

1The tick size is the minimum price movement of a trading instrument. It is the minimum
increment in which prices can change [Inv].
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The files LOB0806min15.mat and LOB0807min15.mat were also prepared by
[FRVZ14]. Each of these files is a 21 × 30 structure, determined by containing
the LOB for each of the 30 stocks by the end of each interval τ = 1, 2, .., 21,
where the first snapshot (τ = 1) includes all waiting orders submitted until 10:00,
τ = 2 corresponds to the time interval [9:30,10:15] and the last column entry
of the structure includes all waiting orders, which are valid for both sessions and
submitted until 17:00 for all available trading days. Each structure entry contains
the ticker of the stock and the tick size too.
The LOB for its own consists of 23 columns and several rows. The number of
rows is variable depending on the flow of incoming orders. As shown in Table 2.1.4
and Table 2.1.5, in the LOB two different bid and ask values with their respective
volumes are given. The first two represent the bid and ask values after the order
arrived in the trading system (immediate updated values), whereas the second two
are the values observed when the trader submitted the order.

Table 2.1.4: LOB of AKBNK-10:00, which contains all waiting orders submitted until 10:00 -
first part, tick size= 0.05. A detailed description of the column names is given in Appendix A
Table A.0.1.

Date OT Quant. Price TIF Time CT KTR Bid Ask S
02.06.08 1 50000 5.25 0 34201 1 0 5.35 5.55 0.2
02.06.08 4 25000 5.45 1 34201 1 0 5.35 5.45 0.1
02.06.08 1 5000 5.35 1 34201 1 0 5.35 5.45 0.1
02.06.08 1 20000 5.20 0 34201 1 0 5.35 5.45 0.1

Table 2.1.5: LOB of AKBNK-10:00, which contains all waiting orders submitted until 10:00 -
second part, tick size = 0.05 . The given bid and ask prices are dissimilar to the ones in the first
part of the LOB (cf. Table 2.1.4). In this table they are representing the prices which traders
observe when they submit the order. Therefore, the order of the trader is not taken into account.
The same is essential for the volumes. A detailed description of the column names is given in
Appendix A Table A.0.1.

VB1 VA1 AT Trade Price BidT AskT S VB1T VA1T dist.bid/ask dist.trade

194989 97438 3 5.40 5.35 5.55 0.2 194989 97438 2 3
194989 25000 4 5.40 5.35 5.55 0.2 194989 97438 −2 1
199989 25000 9 5.40 5.35 5.45 0.1 194989 97438 0 1
199989 25000 3 5.40 5.35 5.45 0.1 199989 97438 3 4

The differences between the stock files and the files LOB0806min15.mat and
LOB0807min15.mat are the following.

• The stock files consist of all orders and trades in separate tables, whereas the
latter only contain the waiting orders, meaning that the order and trade table
were matched to construct the LOB. Thus, it is possible to obtain snapshots
of the LOB at any given time and enables to observe the same information
as a trader, for example the volume of orders waiting to be executed at a
certain price range.
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• The stock files only contain the bid and ask values noticed when the order
is submitted.

• The files LOB0806min15.mat and LOB0807min15.mat are subdivided into
smaller structures and contain information for every τ .

Therefore, the usage of the LOB files is appropriate for computing the
probability of a mid-price increase, whereas the stock files are used for describing
the incoming order flow.

2.1.1 Estimation of the limit order arrival rate

Regarding subsequent calculations, it is necessary to estimate the limit order arrival
rate. This is explained by the following steps [CST10, FRVZ14].

1. Usage of stock08061.mat, stock08062.mat, stock08063.mat,
stock08071.mat, stock08072.mat and stock08073.mat.

2. Removing market orders and rows with missing values.

3. Calculating the price distance of each limit order relative to the opposite best
quote. For every order i, the price distance δ is defined as

δbuy
i,t =

(pAt − p
buy
i,t )

tickt
, t ∈ T (2.1.1)

and

δselli,t =
(psell
i,t − pBt )

tickt
, t ∈ T, (2.1.2)

where pBt and pAt are representing the bid and ask price at time point t,
pbuy
i,t /p

sell
i,t is the price of the ith limit buy/sell order and T represents the

daily trading time.

4. Calculating the buy side arrival rate λ̂buy
t,θ,s(δ) which is the total number of

limit orders arrived at a given distance δ = 0, 1, 2, 3.., δc for every stock S
and trading day θ, where δc is the maximum distance which is taken into
account.

5. Next, for a given day θ and price distance δ the stock-averaged arrival rate,
meaning the arrival rate function averaged across 30 stocks is calculated as

λ̂buy
t,θ (δ) =

1

S

S∑
s=1

λ̂buy
t,θ,s(δ) , (2.1.3)

where S is the total number of stocks.
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6. In the next step, the limit order arrival rate function averaged across 450
trading minutes and 39 days is calculated as

λ̂buy
t (δ) =

1

D

D∑
θ=1

λ̂buy
t,θ (δ) , (2.1.4)

and finally

λ̂buy(δ) =
1

T

T∑
t=1

λ̂buy
t (δ) , (2.1.5)

where D represents the number of trading days and T stands for the daily
trading time given in minutes.

Steps 4 to 6 were also done for the sell side.

2.1.2 Estimation of the market order arrival rate

To estimate the arrival rate of market orders, the following steps are executed.

1. Usage of stock08061.mat, stock08062.mat, stock08063.mat,
stock08071.mat, stock08072.mat and stock08073.mat.

2. Separating limit and market orders after removing rows with missing values.

3. Calculating the total number of market orders arrived during the daily trading
time T .

4. Computing the stock-averaged arrival rate, meaning that for a given t ∈ T
and day θ the averaged arrival rate across 30 stocks is calculated as

µ̃t,θ =
1

S

S∑
s=1

µ̃t,θ,s , (2.1.6)

where S is the total number of stocks.

5. Next, the market order arrival rate averaged across 450 trading minutes and
39 days is calculated as follows

µ̃t =
1

D

D∑
θ=1

µ̃t,θ (2.1.7)

and finally

µ̃ =
1

T

T∑
t=1

µ̃t , (2.1.8)

where D represents the number of trading days and T stands for the daily
trading time in minutes.
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6. As in [CST10], the average size of a limit order Sl was chosen as unit size.
Thus, the final version of the market order arrival rate is given by

µ̂ = µ̃
Sm
Sl

, (2.1.9)

where Sm denotes the average size of a market order.

2.1.3 Calculation of the interarrival time distribution

The distribution of the duration between every two successive orders at the same
distance δ is calculated. This is done by applying the following steps.

1. Usage of stock08061.mat, stock08062.mat, stock08063.mat,
stock08071.mat, stock08072.mat and stock08073.mat.

2. Removing rows with missing values.

3. Differentiating between buy and sell orders.

4. Splitting the data based on different distances δ and days, and calculating
the duration s between every two successive orders.

5. Next, the data are assembled and the empirical probability, given by

log

(
number of durations > s

number of durations

)
, (2.1.10)

is calculated for s = 0, 1, 2, . . . , 500.

2.1.4 Realized frequencies of a mid-price increase

To enable a comparison between the model based calculation of the probability of
a mid-price increase and the outcome received from the LOB data, the following
steps of calculation are done to obtain the realized frequencies of a mid-price
increase.

1. Usage of LOB0806min15.mat and LOB0807min15.mat.

2. Removing rows with missing values.

3. Calculating the ratios of bid and ask shares, the spread pS , signifying the
distance between bid and ask price divided by the tick size, and the mean
of the bid and the ask price, which is represented by the mid-price pM . To
actualize the calculations, the bid and ask prices described in Table 2.1.5 are
used. The same procedure applies to their corresponding shares.
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4. For each of these ratios and a given spread, the probability of a mid-price
increase at its next move is computed as Cincrease

Cchange
, where Cincrease counts the

events pMold < pMnew if the mid-price changes for the first time and Cchange
totals the occurrences of pMold 6= pMnew after a mid-price change.

All calculations were done using MATLAB R©2011b.

2.2 Foundations

The aim of this section is to provide the reader with the mathematical foundations,
which are used at a later stage. First, a short introduction about the least squares
method, the Laplace transform, continued fractions and completely monotone
functions is given. Next, the trapezoidal rule, the Euler summation and the
Poisson summation formula are explained. Additional information regarding
convolutions is given, followed by a description of some important distributions
and processes. The last part supplies the reader with the main concept about
Markov processes.

2.2.1 Least squares method

The term least squares describes a frequently used approach for solving overde-
termined or inexactly specified systems of equations in an approximate sense, this
means instead of solving the equations exactly, the sum of the squares of the
residuals is minimized [Mata].

In this thesis, the MATLAB R©2011b function lsqcurvefit was used as least
squares method. This function solves non-linear curve-fitting (data-fitting) prob-
lems in least squares sense, which means that it finds coefficients x that solve the
problem

‖F (x, xdata)− ydata ‖22 = min
x

∑
i

(F (x, xdatai)− ydatai)2 (2.2.1)

given input data xdata and the observed output ydata, where xdata and ydata
are matrices or vectors. F (x, xdata) is a matrix-valued or vector-valued function
of the same size as ydata. For more information see [Matb].

2.2.2 Laplace transform

According to [Kal13], a general definition of the Laplace transform is given.

Definition 2.2.1 (Laplace transform). Let f : [0,∞) → C be measurable. If
t 7→ e−stf(t) /∈ L1[0,∞) for all real s ∈ R, then σ(f) := ∞. Otherwise, let
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σ(f) ∈ [−∞,∞) be the infimum of all s ∈ R such that t 7→ e−stf(t) ∈ L1[0,∞).
The Laplace transform of f is defined by

f̂ :

{
(σ(f),∞)→ C
s 7→

∫∞
0 f(t)e−stdt .

(2.2.2)

For subsequent analysis, the Laplace transform of probability density functions
is needed.

Definition 2.2.2. Given a probability density function f : [0,∞) → R of some
random variable X, its Laplace transform is defined by

f̂(s) =

∫ ∞
0

e−stf(t)dt . (2.2.3)

An important property in association with the Laplace transform is that if X
and Y are two independent random variables with densities fX , fY : [0,∞) → R
and their well-defined Laplace transforms f̂X , f̂Y then

f̂X+Y (s) = E[e−s(X+Y )] = E[e−sX ]E[e−sY ] = f̂X(s)f̂Y (s) . (2.2.4)

Moreover, for the Laplace transform of a distribution function F (t) the follow-
ing holds

F̂ (s) =

∫ ∞
0

e−stF (t)dt . (2.2.5)

For s 6= 0 partial integration yields

F̂ (s) = −e
−st

s
F (t)

∣∣∣∞
0

+

∫ ∞
0

e−st

s
f(t)dt . (2.2.6)

Finally, using Definition 2.2.2 gives

F̂ (s) =
1

s

∫ ∞
0

e−stf(t)dt =
1

s
f̂(s) . (2.2.7)

Next, it is necessary to introduce the inverse Laplace transform [ACW99,
Dav01, Dyk14].

Theorem 2.2.1 (Inverse Laplace transform). Let f̂ be the Laplace transform of
some f defined as in Definition 2.2.2. Then, the function value f(t) can be
recovered by

f(t) =
1

2πi

∫ a+i∞

a−i∞
estf̂(s)ds, t > 0 . (2.2.8)

Here a is real number and has to be chosen greater than the real parts of all
singularities of f̂ .
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If f is a bounded continuous probability density function, a = 0 in (2.2.8) is
sufficient [AW92].

According to [Kal13], some important properties of the Laplace transform are
introduced.

Proposition 2.2.1. For some functions f, g as in Definition 2.2.1 the following
holds.

• If f is real valued, then,

f̂(z) = f̂(z) . (2.2.9)

Thus, for the real part Re(f̂(z)) = Re(f̂(z)) and for the imaginary part
Im(f̂(z)) = − Im(f̂(z)). In particular, f̂ is real valued too.

• Moreover, f̂ ∗ g = f̂ ĝ .

2.2.3 Continued fractions and completely monotone functions

Next, it is useful to introduce so-called continued fractions. All achievements in
this section are based on [AW99].

Definition 2.2.3 (Continued fractions). The continued fraction {wn : n ≥ 1}
associated with a sequence {an : n ≥ 1} of partial numerators and a sequence
{bn : n ≥ 1} of partial denominators, where an and bn ∈ C for all n is given by

wn = t1 ◦ t2 ◦ · · · ◦ tn(0), n ≥ 1 . (2.2.10)

Here ◦ denotes the composition operator and

tk(u) =
ak

bk + u
, k ≥ 1 . (2.2.11)

Thus, wn is the n-fold composition of the mappings tk(u) in (2.2.11).

If limn→∞wn = w for some w ∈ C, then the continued fraction is said to be
convergent and the limit w is called the value of the continued fraction. In this
case, one writes

w ≡ Φ∞n=1

an
bn

or w =
a1

b1+

a2

b2+
· · · , (2.2.12)

where the last notation is a compact expression for

w =
a1

b1 + a2
b2+···

. (2.2.13)

One special continued fraction is called S fraction. Regarding this case, w can
be written as

w(s) =
1

1+

a2s

1+

a3s

1+
· · · , (2.2.14)
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where ak > 0 for all k.

According to [AW99], these special continued fractions have an important at-
tribute, which is needed for subsequent calculations.

Remark 2.2.1. Probability applications of continued fractions are tempting if there
is a completely monotone probability density function. In this case, the associated
Laplace transform can be represented by S fractions, which have desirable conver-
gence properties.

Definition 2.2.4 (Completely monotone functions). A function f on [0,∞) is
completely monotone if it is continuous on [0,∞), infinitely differentiable on (0,∞)
and has derivations of all orders that alternate in sign, meaning that

(−1)nf (n)(t) ≥ 0 for all t ≥ 0 and n ≥ 0 . (2.2.15)

2.2.4 The trapezoidal rule

According to [AP11], one important numerical method which approximates the
value of an integral φ :=

∫ b
a fdx with continuous integrand f : [a, b] → R is the

trapezoidal rule.

The interval [a, b] is divided into n ∈ N sub-intervals of equal length

h =
b− a
n

, (2.2.16)

where h is called the step size.
Next, define n+ 1 evaluation points

x0 = a, x1 = a+ h, x2 = a+ 2h, . . . , xn = a+ nh = b . (2.2.17)

Now, the values of f can be evaluated at these points

y0 = f(x0), y1 = f(x1), y2 = f(x2), . . . , yn = f(xn) . (2.2.18)

The integral is approximated by using n trapezoids formed by using straight line
segments between (xi−1, yi−1) and (xi, yi) for 1 ≤ i ≤ n. Figure 2.2.1 visualizes
this approximation method.
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Figure 2.2.1: Visualization of the trapezoidal rule with parameters a = 0, b = 4, h = 0.5 and
n = 8.

The area of the first trapezoid is obtained by adding the area of a rectangle to
a triangle. Thus, one gets

A = y0h+
1

2
(y1 − y0)h =

(y0 + y1)h

2
. (2.2.19)

The following approximation is obtained by adding the area of n trapezoids∫ b

a
f(x)dx ≈ (y0 + y1)h

2
+

(y1 + y2)h

2
+ . . .+

(yn−1 + yn)h

2
, (2.2.20)

which simplifies to∫ b

a
f(x)dx ≈ h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

= h

(
y0 + yn

2
+

n−1∑
k=1

yk

)
.

(2.2.21)

2.2.5 Poisson summation formula

According to [BZ97, Kal13], a short introduction on the Fourier transform and
the Poisson summation formula is given.

If f ∈ L1(R) and s ∈ R, then |f(t)e−2πist| = |f(t)| and thus, t 7→ f(t)e−2πist

belongs to L1(R).
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Definition 2.2.5 (Fourier transform). For f ∈ L1(R), the Fourier transform F :
R→ C is defined by

F (s) =

∫ ∞
−∞

f(t)e−2πistdt , s ∈ R . (2.2.22)

Definition 2.2.6 (Poisson summation formula). For some sufficiently well-behaved
functions f ∈ L1(R), the Poisson summation formula is given by∑

n∈Z
f(n) =

∑
k∈Z

F (k) , (2.2.23)

where F is the Fourier transform of f .

Next, some properties of the Fourier transform are introduced.

Proposition 2.2.2. For some f as in Definition 2.2.5 and r, z ∈ R, r 6= 0, the
following holds.

• By fz(t) = f(z + t), t ∈ R, follows fz ∈ L1(R) and Fz(s) = e2πiszF (s).

• By g(t) = |r|f(rt), t ∈ R, follows g ∈ L1(R) and G(s) = F
(

1
rs
)
.

The usage of Proposition 2.2.2 asserts the following version of the Poisson
summation formula.∑

n∈Z
f(t+ nP ) =

∑
k∈Z

1

P
F

(
k

P

)
ei 2πk

P
t , (2.2.24)

where P > 0 represents the period.

2.2.6 Euler summation

Following [AW92], Euler summation is used to accelerate the convergence of al-
ternating series. It is defined in terms of finite differences. In case of alternating
series, Euler summation is described as the average of the last m partial sums
weighted by a binomial probability with parameters m and p = 1

2 . The Euler sum
applied to m terms after initial n terms is interpreted as

E(t,m, n) =

m∑
k=0

(
m

k

)
2−msn+k(t) , (2.2.25)

where sn is the nth partial sum given by

sn(t) =
n∑
k=0

(−1)kak(t), (2.2.26)

where ak(t) is the kth summand of the approximated infinite series.
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2.2.7 Convolutions

The achievements in this section are based on [Kal13, Kus11].

Definition 2.2.7 (Convolution). The convolution of two functions f, g ∈ L1(Rd)
given by f ∗ g : Rd → C is defined by

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy, x ∈ Rd . (2.2.27)

One important fact regarding convolutions is the following.

Theorem 2.2.2. Let X1 and X2 be two independent random variables with con-
tinuous density functions fX1 and fX2 respectively. Then the sum Z = X1 +X2

is a random variable with density function fZ , where fZ is the convolution of fX1

and fX2 , meaning that

fZ(s) = fX1+X2(s) =

∫ ∞
−∞

fX1(s− x2)fX2(x2)dx2

=

∫ ∞
−∞

fX2(s− x1)fX1(x1)dx1 .

(2.2.28)

Proof. Let Z = X1 +X2. Then

P(X1 +X2 ≤ z) =

∫ ∫
x1+x2≤z

fX1(x1)fX2(x2)dx1dx2

=

∫ ∞
−∞

(∫ z−x2

−∞
fX1(x1)dx1

)
fX2(x2)dx2

=

∫ ∞
−∞

(∫ z

−∞
fX1(s− x2)ds

)
fX2(x2)dx2

Fubini
=

∫ z

−∞

(∫ ∞
−∞

fX1(s− x2)fX2(x2)dx2

)
︸ ︷︷ ︸

fZ(s)

ds .

(2.2.29)

�

2.2.8 Discrete and continuous probability distributions

This subsection is mainly based on [Gur11]. Two distributions, starting with the
discrete one, are introduced.

Definition 2.2.8 (Poisson distribution). A N-valued random variable X is said to
have a Poisson distribution with parameter λ > 0 if

P(X = x) =
λxe−λ

x!
for all x ∈ N . (2.2.30)
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One of the most important continuous distributions for continuous-time Markov
chains is the exponential distribution since it is commonly used to model waiting
times between occurrences.

Definition 2.2.9 (Exponential distribution). A continuous random variable X is
said to have an exponential distribution with parameter λ > 0 if the probability
density function is given by

fX(x) =

{
λe−λx for x ≥ 0

0 for x < 0 .
(2.2.31)

One relevant fact is that the minimum of independent exponentially distributed
random variables is again exponentially distributed.

Theorem 2.2.3. Let X1, X2, . . . , Xn be independent exponentially distributed
random variables with parameters λ1, λ2, . . . , λn. Then the minimum

min{X1, X2, . . . , Xn} (2.2.32)

is again exponentially distributed with parameter λ = λ1 + λ2 + . . .+ λn.

Proof. The random variable Xi has the distribution function FXi(x) = P(Xi ≤
x) = 1 − e−λix, for all i = 1, . . . , n. Let now Y = min{X1, X2, . . . , Xn}, then
the complementary distribution function is given by

P(Y > x) = P(X1 > x,X2 > x, . . . ,Xn > x)

Xi are ind.
= P(X1 > x)P(X2 > x) · · ·P(Xn > x)

= e−λ1xe−λ2x · · · e−λnx

= e−(λ1+λ2+...+λn)x

= e−λx ,

(2.2.33)

where λ = λ1 + λ2 + . . .+ λn.

�

2.2.9 Markov process

All achievements in this subsection are mainly based on the researches of [Con11,
Kle11, Rhe13, Ros83].

Definition 2.2.10 (Stochastic process). A family of random variables
(Xt)t∈T , Xt : Ω→ Rd, t ∈ T is called a Rd-valued stochastic process.

If T is countable, then (Xt)t∈T is called a discrete-time process. Whereas, if T is
a sub-interval of [0,∞), then the process is called time-continuous.
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Definition 2.2.11 (Markov chain). A stochastic process (Xn)n∈N is called a
discrete-time Markov chain if for all times n ∈ N and states (i0, i1, .., in) ∈ S

P(Xn = in|X0 = i0, .., Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1) (2.2.34)

holds, where S = Z is the set of values of X and called state space.

In other words the future depends only on the present state without consulting
past states.

The equation in Definition 2.2.11 is called Markov property and

P(Xn = j|Xn−1 = i), i, j ∈ S = Z (2.2.35)

is said to be the transition probability from state i to state j, denoted by
pi,j(n− 1, n).

A discrete-time Markov chain is called time-homogeneous if pi,j(n−1, n) does
not depend on n. In other words if

P(Xn = j|Xn−1 = i) = P(Xn+m = j|Xn+m−1 = i) (2.2.36)

for m ∈ N holds.

Counting process

A counting process {Nt| t ≥ 0} is a stochastic process such that Nt represents
the number of events occurred in the interval [0, t) with initial value N0 = 0.
Obviously, Nt is non-negative and integer-valued for all t ≥ 0.

Poisson process

The Poisson process is one of the most important models used in the queuing
theory. It is a specific counting process with Poisson distributed increments [Ros83].

Definition 2.2.12 (Poisson-Process). A stochastic process with càdlàg2 paths on
a probability space [Ω,A,P] is called (homogeneous) Poisson-Process Pλ,t with
intensity λ > 0 and t ∈ [0,∞) if the following holds:

• Pλ,0 = 0, P− a.s.

• Pλ,t − Pλ,s ∼ Pλ,t−s for all s < t, where Pλ,t−s stands for the Poisson
distribution with parameter λ · (t− s).

• If t1 < t2 < .. < tn, n ∈ N, then Pλ,ti −
Pλ,ti−1

is stochastically independent for every i, 2 ≤ i ≤ n .

2right-continuous and the left-hand limit exists
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Remark 2.2.2 (Properties of the Poisson process). A few properties of the Poisson
process are given

1. A homogeneous Poisson process is a Markov process.

2. The interarrival times, these are the times between any two increments, are
exponentially distributed with parameter λ.

3. If Pλ,t is a Poisson process, then P̂λ,t = Pλ,t+s − Pλ,s is a Poisson process
for all 0 < s < t, this means that the increments of a homogeneous Poisson
process are stationary.

4. For every λ and t, E(Pλ,t) = V(Pλ,t) = λ · t holds.

Continuous-time Markov chains and the Kolmogorov forward and backward
equations

A continuous-time Markov process with discrete state space is called continuous-
time Markov chain.

Definition 2.2.13. Let (Xt)t≥0 be a continuous-time Markov chain, then formula
(2.2.34) is given by

P(Xt = j|Xt1 = i1, Xt2 = i2, .., Xtn = in) = P(Xt = j|Xtn = in) , (2.2.37)

where n > 1, 0 < t1 < t2 < . . . < tn < t and (i1, i2, . . . , in, j) ∈ S.

Define

pi,j(s, t+ s) = P(Xt+s = j|Xs = i) and

pi,j(0, t) = P(Xt = j|X0 = i) = pi,j(t) .

(2.2.38)

The probability of moving from state i at time u to state j at t is given by

pi,j(u, t) =
∑
k

pi,k(u, s) · pk,j(s, t), u < s < t . (2.2.39)

Definition 2.2.14 (Landau symbol). The Landau symbol o(t) is a function such
that

lim
t↘0

o(t)

t
= 0 . (2.2.40)

Furthermore, the transition rates are defined as follows.

Definition 2.2.15.

qi,j(t) = lim
h↘0

pi,j(t, t+ h)

h
. (2.2.41)
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Both, 1−pi,i(t, t+dt) = qi(t)dt+ o(dt) and pi,j(t, t+dt) = qi,j(t)dt+ o(dt),
are used to get the Kolmogorov forward and backward equations3.

Kolmogorov forward equation with initial condition pi,j(u, u) = δi,j :

∂

∂t
pi,j(u, t) =

∑
g,g 6=j

pi,g(u, t)qg,j(t)− pi,j(u, t)qj(t), u < t . (2.2.42)

Kolmogorov backward equation with end condition pi,j(t, t) = δi,j :

∂

∂u
pi,j(u, t) = qi(u)pi,j(u, t)−

∑
g,g 6=i

qi,g(u)pg,j(u, t), u < t . (2.2.43)

2.3 Extension of the continuous-time Markov chain:
The birth-and-death process

This section provides the reader with an important example of a continuous-time
Markov chain. This process is called birth-and-death process. In the following, the
birth-and-death process is explained and afterwards transition probabilities regard-
ing this process are calculated.
Most of the achievements are based on the researches of [Con11, Cra12, Mit07,
Rhe13].

2.3.1 Introduction

The birth-and-death process is a stochastic process with the property that the net
change across an infinitesimal time interval dt is either −1 (death), 0 or 1 (birth)
and the state i signifies the current size of population. When a birth occurs, the
process goes from state i to i + 1 and in the case of a death from i to i − 1.
Besides, it is assumed that the birth and death events are independent of each
other.

Such a process can be explained as follows. After the process enters state
i, it holds there for some random length of time, exponentially distributed with
parameter (λi+µi). When leaving i, the process goes to state i+1 with probability

λi
λi + µi

(2.3.1)

or otherwise to state i− 1 with probability

µi
λi + µi

. (2.3.2)

3Instead of µi,j(t) as in [Rhe13], qi,j(t) is used.
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Assume that TB(i) and TD(i) are two exponentially distributed random vari-
ables with parameters λi and µi respectively describing the holding time in state
i. TB(i) can be seen as the time until a birth and TD(i) as the time until a death
occurs. A transition from state i to state i + 1 is made if TB(i) < TD(i) holds.
This event occurs with probability

P(TB(i) < TD(i)) = P(TB(i)− TD(i) < 0)

=

∫ ∞
0

∫ y

0
λie
−λixµie

−µiydxdy

=

∫ ∞
0

e−µiyµidy −
∫ ∞

0
e−(λi+µi)yµidy

= 1− µi
λi + µi

=
λi

λi + µi
.

(2.3.3)

Figure 2.3.1 illustrates the process described above.
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Figure 2.3.1: Counting process interpretations for a birth-and-death process, where the up move-
ments represent the births and the down movements signify the deaths. The holding times are
illustrated by the horizontal lines.

The time when the process first crosses the threshold i + 1 in case of a birth
or i− 1 in the event of a death is called first-passage time.

Definition 2.3.1 (First-passage time). Given a stochastic process (Xt)t≥0 with
state space Z+ = {0, 1, 2, . . .}. If Xs = i, the first-passage time to some point
j 6= i ∈ Z+ is specified with

τi,j = inf{t : Xt = j}, s < t . (2.3.4)
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2.3.2 Transition probabilities

Given a state i, the transition probabilities under the assumption µ0 = λ−1 = 0
are given by

pi,j(t, t+ dt) =


λi(t)dt+ o(dt) if j = i+ 1

µi(t)dt+ o(dt) if j = i− 1

1− (λi(t) + µi(t))dt+ o(dt) if j = i

o(dt) otherwise .

Therefore, the transition rates are defined by

qi,j(t) =


λi(t) if j = i+ 1

µi(t) if j = i− 1

1− (λi(t) + µi(t)) if j = i

0 otherwise .

Now, the above defined probabilities and the Kolmogorov forward equation
are used to derive the differential equation for the probability pi,j(s, t) with initial
condition pi,j(s, s) = 0 if i 6= j and pi,j(s, s) = 1 for i = j

∂pi,j(s, t)

∂t
= −pi,j(s, t)(λj(t) + µj(t)) + pi,j+1(s, t)µj+1(t)

+pi,j−1(s, t)λj−1(t) .
(2.3.5)

For visualization, Figure 2.3.2 illustrates a drawing of the Kolmogorov forward
equation.

j+1

j-1

j

t

j

t+ dt

λj−1(t)

µj+1(t)

1− (λj(t) + µj(t))

i
s

pi,j−1(s, t)

pi,j+1(s, t)

pi,j(s, t)

Figure 2.3.2: Kolmogorov forward equation for pi,j(s, t).

In a more general way, using the transition matrix Q,

Q =


−λ0 −λ0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 . . .
0 µ2 −(λ2 + µ2) λ2 . . .
...

...
...

...
. . .

 , (2.3.6)
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(2.3.5) can be written as ∂P (s,t)
∂t = QP (s, t) with initial condition P (s, s) = I. Q

is also called generator matrix.

2.3.3 A simple linear birth-and-death process

For a simple linear birth-and-death process (Xt)t≥0, meaning that λk = kλ and
µk = kµ, it is possible to solve the transition probabilities explicitly by finding
a probability generating function solution to the Kolmogorov forward equation
[Cra12].

According to [Bai64, Cra12, Mor79], the calculation of the solution is illus-
trated. Therefore, let

Ga(s, t) =

∞∑
k=0

skpa,k(t) , (2.3.7)

where Ga(s, t) denotes the probability generating function of (Xt)t≥0. Putting
i = a, j = k and pa,k(0, t) = pa,k(t), multiplying both sides with sk and summing
over k in (2.3.5) gives

∂Ga(s, t)

∂t
=
∞∑
k=0

sk
dpa,k(t)

dt

(2.3.5)
=

∞∑
k=0

sk(−(λk(t) + µk(t))pa,k(t)

+µk+1(t)pa,k+1(t) + λk−1(t)pa,k−1(t)

λk=λk,µk=µk
= −

∞∑
k=0

sk(λk + µk)pa,k(t) +
∞∑
k=0

skµ(k + 1)pa,k+1(t)

+
∞∑
k=1

skλ(k − 1)pa,k−1(t)

= −(λ+ µ)s

∞∑
k=0

ksk−1pa,k(t) + µ

∞∑
k=0

(k + 1)skpa,k+1(t)

+λs2
∞∑
k=1

(k − 1)sk−2pa,k−1(t)

= −(λ+ µ)s

∞∑
k=1

ksk−1pa,k(t) + µ

∞∑
k=1

ksk−1pa,k(t)

+λs2
∞∑
k=1

ksk−1pa,k(t) .

(2.3.8)

Note that

∂Ga(s, t)

∂s
=

∂

∂s

∞∑
k=0

pa,k(t)s
k =

∞∑
k=1

kpa,k(t)s
k−1 (2.3.9)
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and thus,

∂Ga(s, t)

∂t
= (λs− µ)(s− 1)

∂Ga(s, t)

∂s
(2.3.10)

with the initial condition4 Ga(s, 0) = sa.

Before continuing with the calculation of the transition probabilities, a short
excursion on Lagrange’s method for solving partial-differential equations is done
[Eng80].

Excursion on Lagrange’s equation

A linear partial-differential equation of first order, involving a dependent variable
z and two independent variables x and y, of the form

P (x, y, z)zx +Q(x, y, z)zy = R(x, y, z) , (2.3.11)

where P,Q and R are functions of x, y and z, is called Lagrange’s linear equation.
Using this, a solution can be found by the following steps:

1. Write the auxiliary equations dx
P = dy

Q = dz
R .

2. Find any two independent solutions of the auxiliary equations and let the
two solutions be u(x, y, z) = constant and v(x, y, z) = constant.

3. The general solution of Lagrange’s equation is u = φ(v) or φ(u, v) = 0,
where φ is a differentiable arbitrary function.

Rearranging formula (2.3.10) gives

∂Ga(s, t)

∂t
− (λs− µ)(s− 1)

∂Ga(s, t)

∂s
= 0 . (2.3.12)

Therefore, it can be solved by Lagrange’s method for partial-differential equations
and the following auxiliary equations can be obtained

dt

P
=
ds

Q
=
dGa
R
→ dt

1
= − ds

(λs− µ)(s− 1)
=
dGa

0
. (2.3.13)

For the first equation, separation of variables yields∫
− 1

(λs− µ)(s− 1)
ds =

∫
1 dt . (2.3.14)

Integration of both sides results in

log(λs− µ)− log(s− 1)

λ− µ
= t+ c , (2.3.15)

4This follows from pa,k(0) = 0, for all k 6= a.
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where finally mathematical conversion yields

log

(
λs− µ
s− 1

)
= t(λ− µ) + c . (2.3.16)

Thus, the first solution is given by

v(t, s,Ga) =
λs− µ
s− 1

e−t(λ−µ) . (2.3.17)

The second one results from ∫
0 dt =

∫
1 dGa (2.3.18)

and is constituted by

u(t, s,Ga) = Ga . (2.3.19)

Hence, the general solution of Lagrange’s equation is

Ga(s, t) = φ

(
λs− µ
s− 1

e−t(λ−µ)

)
. (2.3.20)

Putting t = 0 and assuming that a = 1 in (2.3.20) as well as in (2.3.7) delivers

G1(s, 0) = φ

(
λs− µ
s− 1

)
=
∞∑
k=1

p1,k(0)sk = s1 = s . (2.3.21)

Setting

x =
λs− µ
s− 1

, (2.3.22)

gives

s =
x− µ
x− λ

(2.3.23)

and thus,

φ(x) =
x− µ
x− λ

. (2.3.24)

Therefore,

G1(s, t) =
(λs− µ)e−t(λ−µ) − µ(s− 1)

(λs− µ)e−t(λ−µ) − λ(s− 1)
. (2.3.25)
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In general, by the initial condition Ga(s, 0) = sa one gets

Ga(s, t) =

(
(λs− µ)e−t(λ−µ) − µ(s− 1)

(λs− µ)e−t(λ−µ) − λ(s− 1)

)a
. (2.3.26)

According to [Git10], the transition probabilities pa,b(t) are received by finding the
bth coefficient of Ga(s, t), that is

pa,b(t) = [sb]Ga(s, t) . (2.3.27)

Therefore, (2.3.26) is first converted to obtain a fraction of the form(
As+B

Cs+D

)a
, (2.3.28)

where

A = (λe−t(λ−µ) − µ), B = (µ− µe−t(λ−µ)),

C = (λe−t(λ−µ) − λ) and D = (λ− µe−t(λ−µ)) .
(2.3.29)

Next, the binomial theorem yields(
As+B

Cs+D

)a
= (As+B)a(Cs+D)−a

=
∑
j≥0

∑
m≥0

(
a

j

)(
−a
m

)
sjAjsmCmBa−jD−a−m

l=m+j
=

∑
j≥0

∑
l≥j

(
a

j

)(
−a
l − j

)
sjsl−jAjC l−jBa−jD−a−l+j .

(2.3.30)

By deducing the bth coefficient, one obtains

[sb]Ga(s, t) = [sb]
∑
j≥0

∑
l≥j

(
a

j

)(
−a
l − j

)
slAjC l−jBa−jD−a−l+j

=
∑
j≥0

∑
j≤l

[sb]sl
(
a

j

)(
−a
l − j

)
AjC l−jBa−jD−a−l+j

0 for b6=l
=

∑
j≥0

∑
j≤l,l=b

[sb]sl
(
a

j

)(
−a
l − j

)
AjC l−jBa−jD−a−l+j ,

(2.3.31)

where [sb] is a linear and continuous operator relative to the formal topology
[Git10].
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For j > b the sum is empty and therefore, one gets

[sb]Ga(s, t) =
∑

0≤j≤b
[sb]sb

(
a

j

)(
−a
b− j

)
AjCb−jBa−jD−a−b+j

=
∑

0≤j≤b

(
a

j

)(
−a
b− j

)
AjCb−jBa−jD−a−b+j .

(2.3.32)

Since a ∈ N implies
(
a
j

)
= 0 for all j > a, the following is obtained

pa,b(t) = [sb]Ga(s, t) =

min{a,b}∑
j=0

(
a

j

)(
−a
b− j

)
AjCb−jBa−jD−a−b+j

=

min{a,b}∑
j=0

(
a

j

)(
−a
b− j

)
(λe−t(λ−µ) − µ)j

(λe−t(λ−µ) − λ)b−j(µ− µe−t(λ−µ))a−j(λ− µe−t(λ−µ))−a−b+j .

(2.3.33)

Finally, one uses the relations(
−a
b− j

)
= (−1)b−j

(
a+ b− j − 1

b− j

)
and

(
a+ b− j − 1

b− j

)
=

(
a+ b− j − 1

a− 1

) (2.3.34)

to see

pa,b(t) =

min{a,b}∑
j=0

(
a

j

)(
a+ b− j − 1

a− 1

)
(−1)b−j(λe−t(λ−µ) − µ)j

(λe−t(λ−µ) − λ)b−j(µ− µe−t(λ−µ))a−j(λ− µe−t(λ−µ))−a−b+j .

(2.3.35)

Usually, it is more difficult to solve general birth-and-death processes. A useful
method for finding the transition probabilities pa,b(t) is to apply the Laplace
transform to both sides of the forward equation (2.3.5). This has the effect of
turning the infinite system of differential equations into a recurrence relation
[Cra12].

Hereafter, this thesis will focus on a birth-and-death process introduced by
[CST10].



CHAPTER 3

The birth-and-death Markov chain model

This chapter contains achievements which are mainly based on the researches
of [AW92, AW95, CST10, FRVZ14, HK12]. First, the reader is provided with
a short description of the LOB and the corresponding dynamics. Next, some
preparation regarding the computation of the probability of a mid-price increase
such as parameter estimations and model implementations are done. Finally, the
probability of a mid-price increase at its next move is calculated, which in the end
is compared to the frequencies achieved from the ISE-30 data.

3.1 Limit order books

A limit order represents the maximum or minimum price at which an investor is
willing to buy or sell. It is posted to an electronic trading system. The quantity of
all outstanding limit orders can be summarized by counting the quantities at each
price level. The price which exceeds all other buy prices is called the bid price,
whereas the lowest price for which there is an outstanding limit sell order is called
the ask price. The unexecuted limit orders are waiting for execution in the LOB.

If a new order appears, two possible scenarios can occur: The order is matched
with the best available price in the LOB (market order) or adds to the book and
sits there until it is executed against a market order or it is canceled (cancellation
order)1. Whenever an order on the opposite side of the book hits the quote,
executions occur based on priority rules2. Therefore, the price dynamics are the
result of the interplay between the order book and the order flow [FRVZ14].

1Note that there were no cancellation orders at ISE until 2010 to ensure the liquidity in the
market. In ISE, the system cancels all waiting orders by the end of the day.

2Price priority means that the limit orders with better prices will be executed before the worse
ones and time priority implies a first-in-first-out principle.

27
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3.1.1 Model framework and notation

Before introducing the birth-and-death Markov chain model, some preparations
have to be done. This section is mainly based on [CST10, HK12].

Remark 3.1.1. Limit orders are placed on a finite price grid, Π = {1, 2, .., n},
representing prices measured in multiples of a tick, where n is chosen large enough
such that the probability of placing an order further away is highly unlikely.

Definition 3.1.1. The state of the LOB is described by two Z+ continuous-time
processes A and B with

(A(t))t≥0 = (A1(t), A2(t), ..., An(t))t≥0 (3.1.1)

representing the sell process and

(B(t))t≥0 = (B1(t), B2(t), ..., Bn(t))t≥0 (3.1.2)

representing the buy process, where Ap(t) is the number of outstanding limit sell
orders for a price p, p ∈ Π at time t ≥ 0, the same holds for Bp(t).

Remark 3.1.2. Note that Ap(t) ∧ Bp(t) = 0, for all p ∈ Π and t ≥ 0, meaning
that buy and sell orders at the same price are not possible, because otherwise a
trade would take place.

Definition 3.1.2 (Ask-, Bid-price). The ask price pA(t) at time t is defined by

pA(t) = inf{p ∈ Π|Ap(t) > 0} ∧ (n+ 1) . (3.1.3)

Similarly, for the bid price pB(t)

pB(t) = sup{p ∈ Π|Bp(t) > 0} ∨ 0 (3.1.4)

holds.

Remark 3.1.3. If at time t there is not any ask order in the book, pA(t) = n+ 1
and if no bid orders exist, pB(t) = 0. Additionally, pB(t) < pA(t) for all t holds.

Definition 3.1.3 (Mid-price). The mid-price pM (t) at time t is defined by

pM (t) =
pA(t) + pB(t)

2
. (3.1.5)

Definition 3.1.4 (Bid-ask spread). The bid-ask spread pS(t) at time t is defined
by

pS(t) = pA(t)− pB(t) . (3.1.6)

The number of outstanding orders at a certain distance from the bid/ask can
be defined as follows.
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Definition 3.1.5 (Outstanding volume). At time t ≥ 0, the number of outstanding
buy orders placed at a distance δ from the ask is defined by

QBδ (t) =

{
BpA(t)−δ(t) if 0 < δ < pA(t)

0 if pA(t) ≤ δ
(3.1.7)

and

QAδ (t) =

{
ApB(t)+δ(t) if 0 < δ ≤ n− pB(t)

0 if n− pB(t) < δ
(3.1.8)

represents the number of sell orders placed at a distance δ from the bid.

Remark 3.1.4. At time t ≥ 0, (A(t), B(t)) and (pA(t), pB(t), QA(t), QB(t))
contain the same information, however, the second representation highlights the
depth of the order book relative to the opposite best quotes.

3.1.2 Limit order book dynamics

An update of the LOB at some sell price p at time t is defined by

Ap+1(t) = A(t)± (0, . . . , 1, . . . , 0), A ∈ (Z+)n, t ≥ 0, p ∈ Π . (3.1.9)

Equally, for buy prices p an update is given by

Bp+1(t) = B(t)± (0, . . . , 1, . . . , 0), B ∈ (Z+)n, t ≥ 0, p ∈ Π , (3.1.10)

where the 1 in the vector is at the pth position. Hence, only orders of unit size3

are assumed [CST10].
Next, the following assumptions hold4:

• At time t, a limit sell order at price level p > pB(t) increases the quantity at
level p: A(t)→ Ap+1(t).

• At time t, a limit buy order at price level p < pA(t) increases the quantity
at level p: B(t)→ Bp+1(t).

• At time t, a market sell order decreases the quantity at the bid price:
B(t)→ BpB−1(t)

• At time t, a market buy order decreases the quantity at the ask price:
A(t)→ ApA−1(t).

Following [CST10], one assumes that these above mentioned events are mod-
eled using independent Poisson processes, meaning that the interarrival times are
exponentially distributed (cf. Definition 2.2.12, Remark 2.2.2).

3The average size of limit orders is taken as unit.
4Different from [CST10, HK12], there is no need to model dynamics for cancellation orders.
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More precisely, for δ ≥ 1

• Limit buy orders arrive at distance δ from the opposite best quote at inde-
pendent exponential times with rate λbuy(δ) and limit sell orders with rate
λsell(δ).

and for δ ≤ 0

• Market orders arrive at independent exponential times with rate µ.

Note that the described events are independent.

Given these assumptions, A and B are continuous-time Markov chains with
state space (Z+)n and the following transition rates at time t ≥ 0:

• A(t)→ Ap+1(t) with rate λsell(p− pB(t)) for p > pB(t).

• B(t)→ Bp+1(t) with rate λbuy(pA(t)− p) for p < pA(t).

• A(t)→ ApA−1(t) with rate µ.

• B(t)→ BpB−1(t) with rate µ.

Before assuming that the order arrivals are Poisson processes, it should be
checked if this assumption is adequate for the data used in this thesis. Therefore,
the interarrival times are tested for an exponential distribution (cf. Remark 2.2.2,
second item).

If a random variable X is exponentially distributed with parameter λ > 0,

P(X > s) = e−λs ⇔ log(P(X > s)) = −λs (3.1.11)

holds (cf. Definition 2.2.9). This directly implies that the logarithm of the
empirical probability is linear proportional to s.

For checking the assumption above, the calculation in Section 2.1.3 is used.
Figure 3.1.1 shows a good outcome since the logarithm of the empirical probability
has a linear tendency in respect to s. However, focusing on smaller s values and
checking the probability density function instead of the distribution function again
indicates acceptable results regarding the distribution assumptions (cf. Figure
3.1.2). These results are different from those observed in [ACD+09].
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Figure 3.1.1: Distribution of the interarrival times, s = 0, 1, . . . , 300, containing more than 80%
of the data. Thus, this limit was considered as appropriate.
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Figure 3.1.2: Probability density function of the interarrival times, s = 0, 1, . . . , 40, containing
more than 50% of the data.

Empirical estimates exhibit that the incoming order arrival rates depend on the
distance to the bid/ask price, meaning that the incoming orders arrive more fre-
quently the closer they are to the current bid/ask price [BMP02, CST10, FRVZ14].
This phenomenon will be analyzed in Section 3.2.
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According to [HK12], a κ-truncated model is defined instead of using an
infinite state space Z+ at each price level. This is because, in reality, the number
of shares in an order book are bounded by a finite number κ.

Remark 3.1.5. For the κ-truncated model, Zκ = {0, 1, . . . , κ} represents the
number of buy or sell orders at a given price. Therefore, the continuous-time
Markov chains, A(κ) and B(κ), are defined on the state space (Zκ)n with the
same transition rates, λbuy(δ), λsell(δ) and µ as A and B, except for the following:
If a transition would cause a transgression of κ, the state is reset to κ and the
rate of incoming limit orders λbuy(δ)/λsell(δ) at state κ is reset to zero.

3.2 Parameter estimation

In this model, orders of unit size are assumed (cf. Section 2.1.2, sixth step). The
parameters λbuy(δ), λsell(δ) and µ have to be estimated from the order book data.

For calibrating these parameters, the calculations of the limit and market order
arrival rates defined in Section 2.1.1 and Section 2.1.2 are used.

The arrival rate function of the limit buy orders can be estimated by

λ̂buy(δ) , (3.2.1)

where δ represents the distance between a limit buy order and the opposite best
quote. For the sell side, the arrival rate function is calculated in an analogous way
and is given by

λ̂sell(δ) . (3.2.2)

In [CST10], it is suggested that the order arrival rate of the buy side and the
sell side is found to be very well fitted by a power law function

λ̂buy/sell(δ) =
k

δα
, (3.2.3)

where δ denotes the distance from a given price p to the opposite best quote.

Figure 3.2.1 indicates that a power law fit would provide good results for the
ISE-30 data too, because the calculated values are similar to a power law function.
Thus, the least squares method was used to fit the arrival rate function of the buy
orders and the sell orders respectively (cf. Section 2.2.1):

min
α,k

30∑
δ=1

(λ̂buy/sell(δ)− k

δα
) . (3.2.4)
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In Figure 3.2.2 the fit of the arrival rate function of the buy orders is illustrated,
whereas Figure 3.2.3 shows the fit for the sell orders. In conclusion, the power law
function is a good fit for the buy and the sell side. Unfortunately, in both cases
this fit underestimates the tail.

It is often assumed that the tails and not the whole function, as in formula
(3.2.3), are given by a power law. This thesis will not concentrate on the tail.
Instead, focusing on small δ-values is appropriate, because much more arrivals
occur in this area. Thus, the arrival rate function should be fitted accurately for
small δ-values.
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Figure 3.2.1: Arrival rate function of the buy and the sell side with δc = 30.
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Figure 3.2.2: Arrival rate function of the buy side. The fit corresponds to a power law function
with parameters k = 0.785 and α = 1.656.
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Figure 3.2.3: Arrival rate function of the sell side. The fit corresponds to a power law function
with parameters k = 0.777 and α = 1.363.

In general, the estimated parameters, k and α, are quite similar for the buy
and the sell side, meaning that the arrival rate functions of both sides vary slightly.
Therefore, the arrival rates, λ̂buy(δ) and λ̂sell(δ), of the limit buy and sell orders
are not distinguished. Furthermore, λ̂(δ) will stand for both functions λ̂buy(δ)
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and λ̂sell(δ). This finding goes along with the output in [CST10]. Thus, for the
computation of the arrival rate of limit orders one does not distinguish between
buy and sell orders and in the end the arrival rate function is calculated for all
available orders.

Figure 3.2.4 illustrates the calculated arrival rate function for both sides,
making no distinction between buy and sell orders. Again the fit corresponds to a
power law function. Figure 3.2.5 reveals that the power law fit delivers accurate
results.

The outcomes are dissimilar to those obtained in [FRVZ14]. This is because in
[FRVZ14] the bid and ask prices described in Table 2.1.4 were used and the LOB
probability density function was obtained by computing the percentage of total
volume supplied/demanded at a given δ.
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Figure 3.2.4: Arrival rate function of both sides with δc = 30.
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Figure 3.2.5: Arrival rate function of both sides. The fit corresponds to a power law function
with parameters k = 0.781 and α = 1.493.

The estimated parameter values for ISE-30 are given in Table 3.2.1. For the
limit orders only the estimated arrival rates at distances 1 ≤ δ ≤ 10 from the
opposite best quotes are listed.

Table 3.2.1: Estimated parameters for the ISE-30 data. The row λ̂(δ) stands for the values of
the valuation points of the arrival rate function and µ̂ signifies the arrival rate of the market
orders. The parameters α and k are obtained from the power law fit.

δ 1 2 3 4 5 6 7 8 9 10

λ̂(δ) 0.780 0.269 0.169 0.115 0.089 0.051 0.036 0.027 0.022 0.018
µ̂ 1.507
α 1.493
k 0.781

3.3 First-passage times of a birth-and-death process

The aim of this section is to calculate the first-passage times of a birth-and-
death process and derive the probability of a mid-price up movement at its
next move afterwards. Almost all approaches in this section are taken from
[AW92, AW99, CST10, HK12].

Consider a general Z+-valued birth-and-death process (Xt)t≥0, where the
value at t is called the state at time t. As described in Section 3.1.2, the
birth-and-death process considered in this thesis has constant birth rates λ = λj
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and constant death rates µ = µj for all states j.

Let τb denote the random variable representing the first-passage time (cf. Defi-
nition 2.3.1) of X to zero, given that it started in state b. Recall that if the current
state is j ≥ 2, the process must reach j − 1 first in order to reach state j − 2.
The first-passage time τb can be written as the sum of independent random vari-
ables

τb = τb,b−1 + τb−1,b−2 + . . .+ τ1,0 , (3.3.1)

where τj,j−1 represents the first-passage time of the birth-and-death process from
state j to the neighboring state j − 1 for all j ∈ {1, . . . , b} [AW99, HK12].

Let νj = λ + µ = ν, then the density of the dwell time at state j is given by
νje
−νjt = νe−νt. Furthermore, λj

νj
= λ

ν represents the probability of a transition
to j + 1, whereas µj

νj
= µ

ν indicates the transition probability to j − 1 (cf. Section
2.3.1).

Moreover, if fj,j−1 denotes the probability density function of τj,j−1 one obtains
the recursive formula

fj,j−1(t) =
µ

ν
νe−νt +

λ

ν
νe−νt ∗ fj+1,j(t) ∗ fj,j−1(t), j ≥ 1 , (3.3.2)

where ∗ signifies convolution (cf. Definition 2.2.7). This formula is easy to under-
stand because getting from state j to j − 1 is possible either by death or by birth.
In the latter case, the process has to go to state j again to finally reach state j−1.

Let fb = fb,0 be the probability density function of τb and f̂b its Laplace
transform as given by Definition 2.2.2. If f̂j,j−1 denotes the Laplace transform of
fj,j−1 for j = 1, . . . , b, one gets

f̂b(s) =
b∏

j=1

f̂j,j−1(s) (3.3.3)

from formula (2.2.4).
Thus, in order to calculate the Laplace transform f̂b it is sufficient to compute the
Laplace transforms f̂j,j−1 for j = 1, . . . , i as first-passage times to neighboring
states are tractable because their probability density functions are always com-
pletely monotone (cf. Definition 2.2.4 and Remark 2.2.1) [AW92].

The idea is to derive the Laplace transforms of fj,j−1 for j = 1, . . . , b, mul-
tiplying these to get the Laplace transform of fb and finally numerically inverting
this resulting Laplace transform to derive the probability density function fb.
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The Laplace transform of the probability density function fj,j−1 is given by

f̂j,j−1(s) = E[e−sτj,j−1 ] =

∫ ∞
0

e−stfj,j−1(t)dt . (3.3.4)

The following calculations have to be done to obtain the probability density
function of τb.
Take the Laplace transform on both sides of (3.3.2), use∫ ∞

0
e−ste−νtdt =

1

ν + s
(3.3.5)

and the second property in Proposition 2.2.1 to get

f̂j,j−1(s) =
µ

ν + s
+

λ

ν + s
f̂j+1,j(s)f̂j,j−1(s) . (3.3.6)

Thus, rearranging and factoring out f̂j,j−1(s) yields

f̂j,j−1(s) =
µ

ν + s− λf̂j+1,j(s)
. (3.3.7)

Iterating on (3.3.7) produces a continued fraction as introduced in Definition 2.2.3

f̂j,j−1(s) = − 1

λ
Φ∞k=i

−λµ
ν + s

. (3.3.8)

Applying (3.3.3), one obtains

f̂b(s) =

(
− 1

λ

)b( b∏
i=1

Φ∞k=i

−λµ
ν + s

)
. (3.3.9)

The use of continued fractions is applied to compute Laplace transforms via
infinite-series representations. It is often possible to calculate probability density
functions and distribution functions efficiently by numerically inverting Laplace
transforms. Unfortunately, explicit expressions for these transforms are often
unavailable [AW99].

Laplace transforms of density functions of first-passage times to neighboring
states can be illustrated by special continued fractions, called S fractions, which
have desirable convergence properties [AW99]. Thus, at this point, it is important
to refer to [HK12]. Therefore, a truncated birth-and-death process X(κ) on Zκ
with birth rate λ of size 1 and death rate µ of size 1 , which has been introduced
previously, is considered.

The processes X and X(κ) are identical below state κ− 1, thus, interchange-
able if κ is chosen large enough. For the truncated process X(κ), τ (κ)

j,j−1 denotes

the first-passage time from state j to state j − 1 and τ (κ)
b the first-passage time
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from state b to zero respectively.

Let f̂ (κ)
j,j−1 be the Laplace transform of f (κ)

j,j−1. Since the first-passage time from
κ to κ− 1 is exponentially distributed with rate µ,

f̂
(κ)
κ,κ−1(s) =

µ

ν + s
(3.3.10)

and because of Remark 3.1.5 this results in

f̂
(κ)
κ,κ−1(s) =

µ

µ+ s
. (3.3.11)

For κ− 1 one obtains

f̂
(κ)
κ−1,κ−2(s) =

µ

ν + s− λf̂ (κ)
κ,κ−1(s)

. (3.3.12)

Therefore, the following recursive formula for f̂ (κ)
j,j−1(s) can be written as

f̂
(κ)
j,j−1(s) =

µ

ν + s− λf̂ (κ)
j+1,j(s)

(3.3.13)

with j = κ− 1, κ− 2, . . . , 1.

Next, following [HK12], it is proved that f̂ (κ)
j,j−1(s) converges as κ → ∞.

Therefore, let F (κ)
j,j−1 be the distribution function of τ (κ)

j,j−1.

Lemma 3.3.1. The following stochastic order relation as a function of κ holds

τ
(κ)
j,j−1 ≤ τ

(κ+1)
j,j−1 , for κ ≥ j , (3.3.14)

which is equivalent to

F
(κ)
j,j−1(t) ≥ F (κ+1)

j,j−1 (t), for all t ≥ 0 and κ ≥ j . (3.3.15)

Sketch of Proof.
Note that X(κ) and X(κ+1) have the same probability of an upward move on
{1, 2, . . . , κ − 1} and the same probability of a downward move on {1, 2, . . . , κ}.
Thus, the probability of both processes to exceed state κ − 1 for s < t is the
same. Conditional on exceeding state κ − 1 in s, the process X(κ) has a greater
probability to reach state j − 1 at time t, because X(κ+1) may first reach state
κ+ 1 before arriving at j − 1.

�

Hence, F (κ)
j,j−1(t) decreases to a limit F (∞)

j,j−1(t) as κ→∞, for t ≥ 0.
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Next,

F
(κ)
j,j−1(t) ≥ Fj,j−1(t) for all t ≥ 0 and κ ≥ j , (3.3.16)

where Fj,j−1 denotes the distribution function of τj,j−1, the first-passage time
from state j to j − 1 for the unbounded process X. Therefore, in the limit

F
(∞)
j,j−1(t) ≥ Fj,j−1(t) for all t ≥ 0 (3.3.17)

and thus, F (∞)
j,j−1(t) → 1 for all j ≥ 1 as t → ∞. Hence, it is the distribution

function of a random variable on [0,∞).

Since

f̂
(κ)
j,j−1(s) =

∫ ∞
0

e−stdF
(κ)
j,j−1(t) (3.3.18)

and putting

f̂j,j−1(s) =

∫ ∞
0

e−stdF
(∞)
j,j−1(t) , (3.3.19)

by Lemma 3.3.2, f̂ (κ)
j,j−1(s) converges to f̂j,j−1(s) at s ∈ C with positive real part

as κ→∞ .

Lemma 3.3.2. If probability distribution functions Fn(x) → F (x) as n → ∞
for all x ∈ R at which F is continuous, n ∈ N, then En[u] → E[u] for every
bounded piecewise continuous function u(x) : R → C, where En[u] and E[u] are
expectations with respect to Fn and F .

Proof. This is a consequence of the Portmanteau theorem, which gives a number
of equal descriptions of weak convergence [Kus11]5.

�

Hence, τj,j−1 = τ
(∞)
j,j−1 will signify the limit of the first-passage times τ (κ)

j,j−1

as κ → ∞ for all j ≥ 1. These times will be indistinguishable from those of the
original process X and thus, they will be approximated by recursion using a finite
but large κ. Therefore, hereafter, κ will be omitted.

3.4 Probability of a mid-price increase

There are two possible events which cause a mid-price up-or-down movement.
Either if the first move in the mid-price occurs at the first-passage time of the bid

5If R represents the metric space and Fn, F denote the distribution functions of the measures
Pn and P respectively, then the probability measures Pn converge weakly to P if and only if
limn→∞ Fn(x) = F (x) for all points x ∈ R at which F is continuous.
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or ask volume to zero or if the spread is greater than one and a limit order arrives
between the actual bid and ask [CST10].

For the computation of the probability that the mid-price increases at its next
move, the calculations of Section 3.3 and the estimated parameters in Section 3.2
(cf. Table 3.2.1) are used. Let T be the time of the first change in the mid-price,

T = inf{t ≥ 0, pM (t) 6= pM (0)} . (3.4.1)

Assume that at time t = 0 are a orders at the ask price pA(0) and b orders
at the bid price pB(0). Furthermore, the spread pS(0) is S ticks. Let τa be the
first-passage time at price pA(0) from state a to zero and τb the first time when
all b orders at price pB(0) disappear. Next, τ δS is the first time a limit sell order
arrives δ ticks away from the bid price and τ δB is the first time a limit buy order
arrives δ ticks away from the ask price. Both processes, A and B, described in
Section 3.1.2 are constructed as the process X defined in Section 3.3.

Given these assumptions, the probability that the next change in the mid-price
is an increase can be written as

P(pM (T ) > pM (0)|ApA(0) = a,BpB (0) = b, pS(0) = S) , (3.4.2)

where S > 0.

Furthermore, let

ΛS =
S−1∑
δ=1

λ(δ) , (3.4.3)

where λ(δ) is the limit order arrival rate at distance δ estimated in Section 3.2.

The Laplace transforms of fSa and fSb are given by f̂Sa and f̂Sb and can be
computed as described in (3.3.3) and (3.3.10)-(3.3.13).

Next,

τaB = τa ∧ τ1
B ∧ . . . ∧ τ

S−1
B (3.4.4)

and

τbA = τb ∧ τ1
A ∧ . . . ∧ τ

S−1
A (3.4.5)

and let fτaB and fτbA be their corresponding probability density functions. Then
τaB and τbA are independent since τa, τ

1
B, . . . , τ

S−1
B and τb, τ

1
A, . . . , τ

S−1
A are

mutually independent.

Before calculating the conditional probability given in (3.4.2), the following
Lemma is introduced.
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Lemma 3.4.1. Let Z be an exponentially distributed random variable with pa-
rameter Λ, σ a random variable with Laplace transform f̂σ. Moreover, Z and σ
are independent. Then, the Laplace transform of fσ∧Z is given by

f̂σ(Λ + s) +
Λ

Λ + s
(1− f̂σ(Λ + s)) . (3.4.6)

Proof. First, the density fσ∧Z of the random variable σ∧Z in terms of the density
fσ of the random variable σ is computed. Thus, one obtains for all t ≥ 0

Fσ∧Z(t) = P(σ ∧ Z ≤ t)
= 1− P(σ ∧ Z > t) = 1− P(σ > t)P(Z > t) .

(3.4.7)

Since Z is exponentially distributed with rate Λ, one gets

Fσ∧Z(t) = 1− (1− Fσ(t))e−Λt = 1− e−Λt + Fσ(t)e−Λt . (3.4.8)

The density fσ∧Z is obtained by differentiating both sides with respect to t

fσ∧Z(t) =
dFσ∧Z(t)

dt
= Λe−Λt + fσ(t)e−Λt − Λe−ΛtFσ(t)

= fσ(t)e−Λt + Λ(1− Fσ(t))e−Λt
(3.4.9)

for all t ≥ 0. Moreover, fσ∧Z is a probability density function and therefore, the
Laplace transform (cf. Definition 2.2.2) of fσ∧Z , which represents the probability
density function of σ ∧ Z, is given by

f̂σ∧Z(s) =

∫ ∞
0

e−stfσ∧Z(t)dt

=

∫ ∞
0

e−st(fσ(t)e−Λt + Λ(1− Fσ(t))e−Λt)dt

=

∫ ∞
0

e−(Λ+s)tfσ(t)dt+ Λ

∫ ∞
0

e−(Λ+s)tdt− Λ

∫ ∞
0

e−(Λ+s)tFσ(t)dt

= f̂σ(Λ + s)− e−(Λ+s)tΛ

Λ + s

∣∣∣∞
0

− Λ

(
−e
−(Λ+s)tFσ(t)

Λ + s

∣∣∣∞
0

+

∫ ∞
0

e−(Λ+s)t

Λ + s
fσ(t)dt

)

= f̂σ(Λ + s) +
Λ

Λ + s
− Λ

Λ + s
(f̂σ(Λ + s))

= f̂σ(Λ + s) +
Λ

Λ + s
(1− f̂σ(Λ + s)) .

(3.4.10)

�
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Theorem 3.4.1 (Probability of a mid-price increase). Let f̂Sk for k = {a, b} be
given by

f̂Sk (s)
(3.3.3)

=
k∏
j=1

f̂Sj,j−1(s)

(3.3.7)
=

k∏
j=1

µ

ν(S) + s− λ(S)f̂Sj+1,j(s)
.

(3.4.11)

Then, (3.4.2) is given by

P(τaB < τbA) =

∫ ∞
0

∫ 1

0
yfSτaB (sy)fSτbA(y)dsdy, (3.4.12)

where fSτaB (t) and fSτbA(t) are derived from the inverse Laplace transforms of

f̂SτaB (s) = f̂Sa (ΛS + s) +
ΛS

ΛS + s
(1− f̂Sa (ΛS + s)) (3.4.13)

and

f̂SτbA(s) = f̂Sb (ΛS + s) +
ΛS

ΛS + s
(1− f̂Sb (ΛS + s)) (3.4.14)

respectively.
When S = 1, (3.4.12) reduces to

P(τa < τb) =

∫ ∞
0

∫ 1

0
yf1

a (sy)f1
b (y)dsdy , (3.4.15)

where f1
a (t) and f1

b (t) are derived from the inverse Laplace transforms of f̂1
a (s)

and f̂1
b (s) respectively.

Proof. First, the case S = 1 is considered and afterwards the analysis is extended
to the case S > 1.
S = 1: The mid-price changes for the first time if one of the two processes, BpB
and ApA , reaches state 0 (cf. Definition 3.1.3). The mid-price increases if the
first-passage time τa, this is the first-passage time of the shares at the ask from
a to zero, is smaller than the first-passage time τb. That is because the bid price
represents the maximum of all bid prices, whereas the ask price is the minimum
of all sell prices. If the volume at the ask is zero, then the next best sell price,
meaning the new minimum of all available sell prices, for which pAold < pAnew and
therefore, pMold < pMnew holds, becomes the ask price. This process is valid in an
analogous way for the buy side (maximum instead of minimum). Therefore,

P(pM (T ) > pM (0)|ApA(0) = a,BpB (0) = b, pS(0) = S)
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is given by P(τa < τb) = P(τa − τb < 0), where τa and τb are independent first-
passage times.
Due to the fact that τa and τb are independent and non-negative, this probability
is given by

P(τa − τb < 0) =

∫ ∞
−∞

∫ y

−∞
1s≥01y≥0f

1
a (s)f1

b (y)dsdy . (3.4.16)

Changing the integral boundaries in respect to the indicator functions yields

P(τa − τb < 0) =

∫ ∞
0

∫ y

0
f1
a (s)f1

b (y)dsdy . (3.4.17)

Substituting sy for s gives

P(τa − τb < 0) =

∫ ∞
0

∫ 1

0
yf1

a (sy)f1
b (y)dsdy . (3.4.18)

S > 1: Now, the case S > 1 is considered. Let τ δA and τ δB for δ = 1, 2, . . . , S − 1
be defined as above. The time of the first change in mid-price is now given by

T = τa ∧ τb ∧min{τ1
A, τ

1
B, τ

2
A, τ

2
B, . . . , τ

S−1
A , τS−1

B } . (3.4.19)

Note that BpB and ApA are independent of the mutually independent arrival times
τ δA, τ

δ
B for δ = 1, 2, . . . , S − 1 and the arrival times are exponentially distributed

with corresponding rate λ(δ) for δ = 1, 2, . . . , S − 1.
The first change in the mid-price is an increase either if there is an arrival of a
limit buy order within the bid-ask spread or if ApA hits zero before either there is
an arrival of a limit ask order inside the spread or BpB hits zero. Therefore,

P(pM (T ) > pM (0)|ApA(0) = a,BpB (0) = b, pS(0) = S)

can be written as

P(τa ∧ τ1
B ∧ . . . ∧ τS−1

B < τb ∧ τ1
A ∧ . . . ∧ τS−1

A )

= P(τa ∧ τΣ
B < τb ∧ τΣ

A ),
(3.4.20)

where τΣ
B and τΣ

A are independent exponential random variables , both with rate
ΛS since the arrival times are independent (cf. Theorem 2.2.3).
To compute the probability of a mid-price increase, first, the Laplace transform of
the minimum τa∧τΣ

B and τb∧τΣ
A has to be calculated. Therefore, after substituting

τΣ
B for Z and τΣ

B respectively Lemma 3.4.1 is used.
As in the first case, due to independence and non-negativity of τaB and τbA, the
probability P(τa ∧ τΣ

B − τb ∧ τΣ
A < 0) = P(τaB < τbA) can be rewritten as

P(τaB < τbA) =

∫ ∞
−∞

∫ y

−∞
1s≥01y≥0f

S
τaB

(s)fSτbA(y)dsdy . (3.4.21)



CHAPTER 3. THE BIRTH-AND-DEATH MARKOV CHAIN MODEL 45

Changing the integral boundaries in respect to the indicator functions yields

P(τaB − τbA < 0) =

∫ ∞
0

∫ y

0
fSτaB (s)fSτbA(y)dsdy . (3.4.22)

Substituting sy for s gives

P(τaB − τbA < 0) =

∫ ∞
0

∫ 1

0
yfSτaB (sy)fSτbA(y)dsdy , (3.4.23)

which is the probability that the mid-price increases at its next move when there
are a orders at the ask, b orders at the bid and the spread equals S ticks.

�





CHAPTER 4
Numerical computation and results

This chapter contains a detailed description of numerically inverting Laplace trans-
forms and the computation procedure, followed by an illustrating report of the
achieved results concerning the probabilities calculated on the estimated model
parameters. Most of the realizations in this section are based on the researches of
[AW92, AW95, AW06].

4.1 Numerical inversion of Laplace transforms

Before the probability of a mid-price increase is computed, an algorithm for
numerically inverting Laplace transforms is given. In Theorem 3.4.1, the inverse
Laplace transforms of f̂SτaB , f̂

S
τbA

, f̂1
a and f̂1

b have to be calculated to get the
desired probability. For that reason, numerical inversion is necessary.
Throughout this section, f is always representing a probability density function,
therefore, it is real-valued. Moreover, f is assumed to be bounded and continuous.

Following [AW92], f can be computed by numerically inverting the Laplace
transform f̂ (cf. Theorem 2.2.1)

f(t) =
1

2πi

∫ a+i∞

a−i∞
etsf̂(s)ds

s=a+iu
=

1

2π

∫ ∞
−∞

e(a+iu)tf̂(a+ iu)du .

(4.1.1)

Since

e(a+iu)t = eat(cos(ut) + i sin(ut)) , (4.1.2)

one obtains

f(t) =
eat

2π

∫ ∞
−∞

(cos(ut) + i sin(ut))f̂(a+ iu)du . (4.1.3)

47
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Using the fact that

f̂(a+ iu) = Re(f̂(a+ iu)) + i Im(f̂(a+ iu)) , (4.1.4)

yields

f(t) =
eat

2π

(∫ ∞
−∞

Re(f̂(a+ iu)) cos(ut)− Im(f̂(a+ iu)) sin(ut)du

+ i

∫ ∞
−∞

Im(f̂(a+ iu)) cos(ut) + Re(f̂(a+ iu)) sin(ut)du
)
.

(4.1.5)

Nevertheless, f is real-valued and thus, the imaginary part of (4.1.5) is zero.
Therefore,

f(t) =
eat

2π

∫ ∞
−∞

Re(f̂(a+ iu)) cos(ut)

− Im(f̂(a+ iu)) sin(ut)du .

(4.1.6)

Since the integral in Theorem 2.2.1 is 0 for t < 0, one obtains

f(t) =
e−at

2π

(∫ ∞
−∞

Re(f̂(a+ iu)) cos(−ut)du

−
∫ ∞
−∞

Im(f̂(a+ iu)) sin(−ut)du
)

= 0 .

(4.1.7)

Moreover,

sin(ut) = − sin(−ut), cos(ut) = cos(−ut) (4.1.8)

yields ∫ ∞
−∞

Re(f̂(a+ iu)) cos(ut)du =

−
∫ ∞
−∞

Im(f̂(a+ iu)) sin(ut)du .

(4.1.9)

Thus, for t ≥ 0

f(t) =
eat

π

∫ ∞
−∞

Re(f̂(a+ iu)) cos(ut)du . (4.1.10)

And finally, since

Re(f̂(a+ iu)) = Re(f̂(a− iu)) (4.1.11)

(cf. Proposition 2.2.1) one gets

f(t) =
2eat

π

∫ ∞
0

Re(f̂(a+ iu)) cos(ut)du . (4.1.12)
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As described in [AW92], the trapezoidal rule given by the formula (2.2.21),
which tends to work well for periodic functions because of errors canceling, is
used to calculate the Laplace transform inversion formula (4.1.12) numerically.
According to [AW92], formula (2.2.21) also applies for a = −∞ or b = ∞ and
thus, one obtains

f(t) =
2eat

π

∫ ∞
0

Re(f̂(a+ iu)) cos(ut)du

≈ heat

π
Re(f̂(a)) +

2heat

π

∞∑
k=1

Re(f̂(a+ ikh)) cos(kht) .

(4.1.13)

Producing nearly an alternating series by putting h = π
2t and a = A

2t for t 6= 0,
delivers

f(t) ≈ e
A
2

2t
Re(f̂

(A
2t

)
) +

e
A
2

t

∞∑
k=1

cos

(
kπ

2

)
Re(f̂

(A+ kπi

2t

)
) . (4.1.14)

Using the fact that cos(kπ2 ) = 0 for all k ∈ 2N− 1, yields

f(t) ≈ e
A
2

2t
Re(f̂

(A
2t

)
) +

e
A
2

t

∞∑
k=1

(−1)k Re(f̂
(A+ 2kπi

2t

)
) . (4.1.15)

This numerical inversion is applied to fSτaB , f
S
τbA

, f1
a and f1

b respectively.

Proposition 4.1.1 (Discretization Error). According to [AW95], the discretization
error associated with (4.1.15) is given by

ed = ed(f, t, A) =
∞∑
k=1

e−kAf((2k + 1)t) . (4.1.16)

Furthermore, if |f(t)| ≤ C for C ∈ [0,∞) the discretization error is bounded by

|ed| ≤
Ce−A

1− e−A
≈︸︷︷︸

if e−A is small

Ce−A . (4.1.17)

Since f is a distribution function,

|ed| ≤
e−A

1− e−A
≈ e−A (4.1.18)

holds.

Proof. The calculation of the discretization error is based on the usage of the
Poisson summation formula defined in Section 2.2.5.
First, let g(t) = e−btf(t) for b > 0 be defined over the entire real line by setting



50

g(t) = 0 for t < 0. Now, the idea is to replace this function by the periodic
function

gp(t) =
∑
n∈Z

g(t+
2πn

h
) (4.1.19)

of period P = 2π
h . This can be done due to the bounding condition of f and the

dumping factor e−bt. Next, the Poisson summation formula with P = 2π
h is applied,

which requires that the periodic function gp ∈ L1(R) has to be a sufficiently well-
behaved function [BZ97].
Therefore, gp can be presented by

gp(t) =
∑
n∈Z

g(t+
2πn

h
)

(2.2.24)
=

h

2π

∑
k∈Z

G
(kh

2π

)
eikht , (4.1.20)

where G is the Fourier transform of g.
Using Definition 2.2.5 gives

gp(t) =
h

2π

∑
k∈Z

∫ ∞
−∞

g(s)e−iskhds eitkh . (4.1.21)

Next, g(t) = 0 for t < 0 leads to

gp(t) =
h

2π

∑
k∈Z

∫ ∞
0

g(s)e−iskhds eitkh . (4.1.22)

By the relation g(t) = e−btf(t), one gets

gp(t) =
h

2π

∑
k∈Z

∫ ∞
0

f(s)e−bse−iskhds eitkh

=
h

2π

∑
k∈Z

∫ ∞
0

f(s)e−s(b+ikh)ds eitkh .

(4.1.23)

Finally, using Definition 2.2.1 yields

gp(t) =
h

2π

∑
k∈Z

f̂(b+ ikh)eitkh (4.1.24)

Now, the periodic function gp has two different representations. Thus, one
obtains

gp(t) =
∑
k∈Z

g

(
t+

2πk

h

)
=
∑
k∈Z

f

(
t+

2πk

h

)
e−b(t+

2πk
h

)

=
h

2π

∑
k∈Z

f̂(b+ ikh)eikht .

(4.1.25)
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Focusing on the single term k = 0 yields

h

2π

∑
k∈Z

f̂(b+ ikh)eikht =
∑

k∈Z,k 6=0

f

(
t+

2πk

h

)
e−b(t+

2πk
h

)

+ e−btf(t) ,

(4.1.26)

which leads to

e−btf(t) =
h

2π

∑
k∈Z

f̂(b+ ikh)eikht

−
∑

k∈Z,k 6=0

f

(
t+

2πk

h

)
e−b(t+

2πk
h

) .

(4.1.27)

Multiplying both sides with ebt supplies

f(t) =
h

2π

∑
k∈Z

f̂(b+ ikh)e(b+ikh)t

−
∑

k∈Z,k 6=0

f

(
t+

2πk

h

)
e−

2πk
h
b .

(4.1.28)

Moreover, f is a density function of non-negative random variables and thus, for
h < 2π

t ∑
k∈Z,k 6=0

f

(
t+

2πk

h

)
e−

2πk
h
b (4.1.29)

can be written as
∞∑
k=1

f

(
t+

2πk

h

)
e−

2πk
h
b . (4.1.30)

Furthermore, one obtains

h

2π

∑
k∈Z

f̂(b+ ikh)e(b+ikh)t =
h

2π
ebt
∑
k∈Z

Re(f̂(b+ ikh)) cos(kht)

− Im(f̂(b+ ikh)) sin(kht) .

(4.1.31)

Setting h = π
t <

2π
t , b = A

2t and using the fact that sin(kπ) = 0 for all k ∈ Z
gives

f(t) =
e
A
2

2t

∑
k∈Z

cos(kπ) Re(f̂

(
A+ 2kπi

2t

)
)

−
∞∑
k=1

e−kAf((2k + 1)t) .

(4.1.32)
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Finally, cos(kπ) = cos(−kπ) = (−1)k and Re(f̂
(
A+2kπi

2t

)
) = Re(f̂

(
A−2kπi

2t

)
) for

k 6= 0 (cf. Proposition 2.2.1) yields

f(t) =
e
A
2

2t
Re(f̂

(
A

2t

)
) +

e
A
2

t

∞∑
k=1

(−1)k Re(f̂

(
A+ 2kπi

2t

)
)

−
∞∑
k=1

e−kAf((2k + 1)t) .

(4.1.33)

It is obvious that the first two terms of the right coincides with the trapezoidal-rule
approximation in (4.1.15). Thus, the third term on the right-hand side is the
discretization error associated with the trapezoidal rule [AW95].

The proof of the second statement follows by usage of the triangle inequality
and the bounding condition regarding f . First,

|ed| =
∣∣∣ ∞∑
k=1

e−kAf((2k + 1)t)
∣∣∣

≤
∞∑
k=1

|e−kA| |f((2k + 1)t)|︸ ︷︷ ︸
≤C

≤
∞∑
k=1

|e−kA|C .
(4.1.34)

For A > 0, one obtains 0 < e−A < 1 and hence,
∞∑
k=1

|e−kA|C ≤ C e−kA

1− e−kA
. (4.1.35)

Since f is a distribution function, implying that |f(t)| ≤ 1 for all t, the error is
bounded by e−A

1−e−A ≈ e
−A.

�

Considering (4.1.16) exhibits to choose A large enough to make the discretiza-
tion error small, nevertheless, a large A can make the computation of (4.1.15)
more difficult.

According to [AW95], Euler summation (cf. Section 2.2.6) is used to solve
the remaining problem, that is to numerically calculate (4.1.15). This mode
of calculation can be applied effectively since the infinite sum in (4.1.15) is an
alternating series.
Moreover, Euler summation to m terms after initial n terms is a standard method
to accelerate (4.1.15).

Let sn(t) be the approximation of fh(t) with the infinite series truncated to n
terms, that is

sn(t) =
e
A
2

2t
Re(f̂

(A
2t

)
) +

e
A
2

t

n∑
k=1

(−1)kak(t) , (4.1.36)
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where

ak(t) = Re(f̂
(A+ 2kπi

2t

)
) . (4.1.37)

Thus, the Euler sum is given by

E(m,n, t) =

m∑
k=0

(
m

k

)
2−msn+k(t) . (4.1.38)

This sum is the binomial average of the terms sn, sn+1, . . . , sn+m.
Next, for the estimation of the error associated with Euler summation the difference

E(m,n+ 1, t)− E(m,n, t) (4.1.39)

is used. Following [AW95], this is a good error estimate if f is sufficiently smooth.

This numerical approximation of the inverse Laplace transform is implemented
in MATLAB R©2011b and is based on [AW06]. The inversion routine called Euler
algorithm is used, which is an implementation of the Fourier-series method and
the Euler summation [AW92, AW06].
Thus, implementing f̂SτaB , f̂

S
τbA

, f̂1
a and f̂1

b and using the numerical approximation
of the inverse Laplace transform already implemented is necessary to obtain the
probability of a mid-price increase (cf. Theorem 3.4.1).

4.2 Numerical computation of the probability of a
mid-price increase

In this subsection, a short description regarding the implementation of (3.4.12)
and (3.4.15) is given. First, (3.4.13) and (3.4.14) are calculated with the use
of the estimated parameters λ̂(δ) and µ̂. Next, the numerical approximation of
inverse Laplace transforms already implemented in MATLAB R©2011b is used to
receive fSτaB , f

S
τbA
, f1
τa and f1

τb
. The function is called euler_inversion and

returns an approximation of the inverse Laplace transform of some function f
evaluated at certain values, which are again supplied by an implemented algorithm
called lgwt [Matc, Matd]. The latter computes the Legendre-Gauss weights
and nodes to solve definite integrals. Based on the evaluated points, the Gauss
quadrature is used to calculate the double integral in (3.4.12) and (3.4.15).
To facilitate this calculation of an infinite integral, the following transformation is
done to obtain finite integrals.

Recall the before received probabilities of an upward mid-price movement.
One obtains ∫ ∞

0

∫ 1

0
yfSτaB (sy)fSτbA(y)dsdy (4.2.1)
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for S > 1 and ∫ ∞
0

∫ 1

0
yf1

a (sy)f1
b (y)dsdy (4.2.2)

for S = 1 (cf. formula (3.4.12) and formula (3.4.15)).
The following calculations are only presented for the first case, for the second case
the steps are analog.
The arc tangent is used to receive a finite integral. Evaluating the arc tangent in
x = ∞ gives π

2 . Another essential evaluation point regarding the transformation
is x = 0, which is the sole root of the function. Therefore, the infinite integral can
be rewritten as

P(τaB < τbA) =

∫ π
2

0

∫ 1

0
(tan(y)2 + 1) tan(y)fSτaB (s tan(y))

· fSτbA(tan(y))dsdy

(4.2.3)

Using the Gauss quadrature, this double integral can be rewritten as∫ π
2

0

∫ 1

0
(tan(y)2 + 1) tan(y)fSτaB (s tan(y))fSτbA(tan(y))dsdy

=
n1∑
i=1

n2∑
j=1

w
[0,π

2
]

i w
[0,1]
j (1 + tan(m

[0,π
2

]

i )2) tan(m
[0,π

2
]

i )

· fSτaB (m
[0,1]
j tan(m

[0,π
2

]

i ))fSτbA(tan(m
[0,π

2
]

i )) ,

(4.2.4)

where n1 and n2 are the numbers of evaluation points, wi and wj are called the
weights and mi and mj represent their corresponding nods.
At this point, an implemented algorithm is used, which calculates the weights and
nods for a given number of evaluation points and interval boundaries. These nods
are the evaluation points used in the Euler algorithm. Finally, the obtained values
are substituted into formula (4.2.4) to achieve the desired probabilities.

4.3 Numerical results

In this section the conditional probabilities of various events calculated based on
the above introduced birth-and-death Markov chain model are compared to the
frequencies of these events computed based on the LOB data (cf. Table 2.1.4 and
Table 2.1.5).

Before these probabilities are matched, the results of the calculations regarding
the approximating process X(κ) if the truncation state κ ≥ j increases are given.
This is, to see how the process behaves if κ grows.
Following [HK12], first, the convergence of the Laplace transforms of the proba-
bility density functions of the first-passage times for j = 1, 5, 8, 9, 10, meaning the
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first-passage times from state 10 to 9, 9 to 8, 8 to 7, 5 to 4 and 1 to 0, evaluated
at t = 10 + 5i is illustrated. Table 4.3.1 indicates that the Laplace transform
of f (κ)

j,j−1 for the states j = 1, 5, 8, 9, 10 evaluated at t = 10 + 5i is identical for
every state j if κ ≥ 12. The obtained outcomes are dissimilar to those observed
in [HK12]. They showed that the Laplace transforms for j = 8, 9, 10 evaluated
at t = 10 + 5i tend to remain constant for κ ≥ 15. Therefore, to ensure that
the model used in this paper has been correctly calculated, formula (3.3.13) was
changed to the formula obtained in [HK12] using their estimated parameters.
Table 4.3.2 represents the outcomes using the formula of [HK12].

The reason for the differences regarding the convergence of the Laplace trans-
forms is that in this thesis there was no need for calculating cancellation rates.
Therefore, the death rate used in this model is given by the constant rate µ, whereas
in [HK12] the death rate at state j ≥ 1 is constituted by µj = µ+θ(i−1)j, where
θ(i − 1) illustrates the cancellation rate for the ith level quote. Since all calcula-
tions in [HK12] were done for S = 1, the death rate is given by µj = µ + θ(0)j.

Table 4.3.1: The Laplace transform of f (κ)
j,j−1 for j = 1, 5, 8, 9, 10 evaluated at t = 10 + 5i in

a truncated birth-and-death process X(κ) for κ = 10, 11, . . . , 20 with parameters λ̂(δ), µ̂ and
S = 1.

κ j = 1 j = 5 j = 8 j = 9 j = 10
10 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0436i 0.1102− 0.0479i
11 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0436i
12 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
13 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
14 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
15 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
16 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
17 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
18 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
19 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
20 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i 0.1055− 0.0435i
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Table 4.3.2: The Laplace transform of f (κ)
j,j−1 for j = 1, 5, 8, 9, 10 evaluated at t = 10 + 5i

in a truncated birth-and-death process X(κ) for κ = 10, 11, . . . , 20 with parameters λ(1) =
7.46, λ(2) = 0.80, µ = 3.16 and θ(0) = 0.71.

κ j = 1 j = 5 j = 8 j = 9 j = 10
10 0.1759− 0.0463i 0.2794− 0.0689i 0.3467− 0.0833i 0.3832− 0.0961i 0.4773− 0.1178i
11 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0812i 0.3670− 0.0865i 0.4029− 0.0986i
12 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3655− 0.0844i 0.3863− 0.0894i
13 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3847− 0.0872i
14 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0868i
15 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0867i
16 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0867i
17 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0867i
18 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0867i
19 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0867i
20 0.1759− 0.0463i 0.2794− 0.0689i 0.3454− 0.0808i 0.3654− 0.0840i 0.3846− 0.0867i

Next, the Laplace transform of the density function f (κ)
j,j−1 evaluated at t =

0.01, 0.02, . . . , 10 for j = 4 and κ = 4, 5, . . . , 15 is given. Table 4.3.3 represents
the calculated values and the Figures 4.3.1, 4.3.2 and 4.3.3 illustrate the Laplace
transform of f (κ)

j,j−1 for j = 4 and κ = 4, 10 and 15 respectively. The Laplace
transforms are almost even, especially for κ = 10 and κ = 15. Regarding the
model used in this paper, the Laplace transforms for other states j are the same
for equal κ distances, meaning that f (κ)

j,j−1 = f
(κ−j+i)
i,i−1 for all states j and i. This

is because formula (3.3.13) is independent of the state and therefore, the outcome
is the same for equal κ distances. This is not true for the model used in [HK12]
because the cancellation rate depends on the state.

Table 4.3.3: The Laplace transform of the probability density function f
(κ)
j,j−1 of the process

τj,j−1, meaning the first-passage time from j to j − 1, for j = 4 evaluated at t = 0.1, 1, 10 with
parameters λ̂(δ), µ̂ and S = 1.

κ f̂
(κ)
j,j−1(0.1) f̂

(κ)
j,j−1(1) f̂

(κ)
j,j−1(10)

4 0.938 0.601 0.131
5 0.910 0.535 0.124
6 0.899 0.525 0.124
7 0.894 0.524 0.124
8 0.892 0.524 0.124
9 0.891 0.524 0.124
10 0.891 0.524 0.124
11 0.891 0.524 0.124
12 0.891 0.524 0.124
13 0.891 0.524 0.124
14 0.891 0.524 0.124
15 0.891 0.524 0.124
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Figure 4.3.1: The Laplace transform of the probability density function f (κ)
j,j−1 of the process

τj,j−1, meaning the first-passage time from j to j−1, for j = 4 evaluated at t = 0.01, 0.02, . . . , 10
with parameters λ̂(δ), µ̂, S = 1 and κ = 4.
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Figure 4.3.2: The Laplace transform of the probability density function f (κ)
j,j−1 of the process

τj,j−1, meaning the first-passage time from j to j−1, for j = 4 evaluated at t = 0.01, 0.02, . . . , 10
with parameters λ̂(δ), µ̂, S = 1 and κ = 10.
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Figure 4.3.3: The Laplace transform of the probability density function f (κ)
j,j−1 of the process

τj,j−1, meaning the first-passage time from j to j−1, for j = 4 evaluated at t = 0.01, 0.02, . . . , 10
with parameters λ̂(δ), µ̂, S = 1 and κ = 15.

Following the described calculation process, next, in Table 4.3.4 the Laplace
transform of f (κ)

b evaluated at t = 0.1, 1, 10 for b = 4 and κ = 4, 5, . . . , 15 is
presented. The Figures 4.3.4, 4.3.5 and 4.3.6 show the Laplace transform f̂

(κ)
b

for state b = 4 with truncation states κ = 4, 10 and 15 respectively. Again, it is
obvious that the Laplace transforms are almost even, especially for κ = 10 and
κ = 15.

Table 4.3.4: The Laplace transform f̂
(κ)
b of the process τb, meaning the first-passage time from

b to zero, for b = 4 evaluated at t = 0.1, 1, 10 with parameters λ̂(δ), µ̂ and S = 1.

κ f̂
(κ)
b (0.1) f̂

(κ)
b (1) f̂

(κ)
b (10)

4 0.686 0.089 2.477 · 10−4

5 0.652 0.077 2.338 · 10−4

6 0.638 0.075 2.337 · 10−4

7 0.633 0.075 2.337 · 10−4

8 0.630 0.075 2.337 · 10−4

9 0.630 0.075 2.337 · 10−4

10 0.629 0.075 2.337 · 10−4

11 0.629 0.075 2.337 · 10−4

12 0.629 0.075 2.337 · 10−4

13 0.629 0.075 2.337 · 10−4

14 0.629 0.075 2.337 · 10−4

15 0.629 0.075 2.337 · 10−4



CHAPTER 4. NUMERICAL COMPUTATION AND RESULTS 59

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Laplace transform of the probability density function of the first−passage time from state 4 to 0

 

 
L(f)

Figure 4.3.4: The Laplace transform f̂
(κ)
b of the first-passage time τb from state 4 to zero with

parameters λ̂(δ), µ̂, S = 1 and κ = 4.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Laplace transform of the probability density function of the first−passage time from state 4 to 0

 

 
L(f)

Figure 4.3.5: The Laplace transform f̂
(κ)
b of the first-passage time τb from state 4 to zero with

parameters λ̂(δ), µ̂, S = 1 and κ = 10.
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Figure 4.3.6: The Laplace transform f̂
(κ)
b of the first-passage time τb from state 4 to zero with

parameters λ̂(δ), µ̂, S = 1 and κ = 15.

Table 4.3.5 represents the density function f (κ)
b of the first-passage time from

b to zero evaluated at t = 0.1, 1, 10. In Table 4.3.6 the distribution function F (κ)
b

of the first-passage time from b to zero evaluated at the same points as f (κ)
b is

shown. The values of the distribution function can be calculated as in formula
(2.2.7). From both, tables and figures, it is evident that κ = 10 is an appropriate
choice for further calculations because the obtained results tend to remain constant
for larger κ values.

Table 4.3.5: The density function f (κ)
b of the process τb, meaning the first-passage time from b

to zero, for b = 4 evaluated at t = 0.1, 1, 10 with parameters λ̂(δ), µ̂ and S = 1.

κ f
(κ)
b (0.1) f

(κ)
b (1) f

(κ)
b (10)

4 6.992 · 10−4 0.127 0.017
5 6.860 · 10−4 0.111 0.025
6 6.860 · 10−4 0.110 0.028
7 6.860 · 10−4 0.110 0.028
8 6.860 · 10−4 0.110 0.028
9 6.860 · 10−4 0.110 0.027
10 6.860 · 10−4 0.110 0.027
11 6.860 · 10−4 0.110 0.027
12 6.860 · 10−4 0.110 0.027
13 6.860 · 10−4 0.110 0.027
14 6.860 · 10−4 0.110 0.027
15 6.860 · 10−4 0.110 0.027
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Table 4.3.6: The distribution function F (κ)
b of the process τb, meaning the first-passage time

from b to zero, for b = 4 evaluated at t = 0.1, 1, 10 with parameters λ̂(δ), µ̂ and S = 1.

κ F
(κ)
b (0.1) F

(κ)
b (1) F

(κ)
b (10)

4 1.823 · 10−5 0.048 0.954
5 1.795 · 10−5 0.043 0.891
6 1.795 · 10−5 0.043 0.878
7 1.795 · 10−5 0.043 0.872
8 1.795 · 10−5 0.043 0.870
9 1.795 · 10−5 0.043 0.869
10 1.795 · 10−5 0.043 0.869
11 1.795 · 10−5 0.043 0.869
12 1.795 · 10−5 0.043 0.869
13 1.795 · 10−5 0.043 0.869
14 1.795 · 10−5 0.043 0.869
15 1.795 · 10−5 0.043 0.869

Figure 4.3.7 and Figure 4.3.8 display the graphs of f (κ)
b and F (κ)

b respectively
when b = 4 and the truncation state κ = 10. The graphs are similar to those
obtained in [HK12]. In contrast to [HK12], the calculations were done for the
state b = 4. This value was chosen to be appropriate because in the next step the
first-passage times from b ∈ {1, 2, 3, 4} to zero are computed.
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Figure 4.3.7: The density function f (κ)
b of the first-passage time τb from state 4 to zero with

parameters λ̂(δ), µ̂, S = 1 and κ = 10.
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Figure 4.3.8: The distribution function F (κ)
b of the first-passage time τb from state 4 to zero

with parameters λ̂(δ), µ̂, S = 1 and κ = 10.

In Table 4.3.7 the results based on the birth-and-death Markov chain model
for different shares a, b and S = 1 are given. The truncation bound was chosen
to be 10. This table is compared to Table 4.3.8, which contains the calculated
frequencies based on the LOB data.
The same calculations are done for S = 2. Therefore, Table 4.3.9 represents the
model based results, whereas Table 4.3.10 shows the results achieved from the
order book data.
Regarding the calculations based on the LOB data, it has to be mentioned that
cases as a = 1, b = 1 or a = 1, b = 2 are not likely to find in an order book.
Thus, it has been decided to calculate the ratios of a and b for a ∈ {1, 2, 3, 4},
b ∈ {1, 2, 3, 4} and to compare these to the ratios of the bid and ask volumes (cf.
Section 2.1.4).

A comparison of Table 4.3.7 and Table 4.3.8 and also of the Tables 4.3.9
and 4.3.10 indicates that the birth-and-death Markov chain model predicts the
outcomes achieved from the LOB data quite good. All tables show that the larger
the b values the higher is the probability of a mid-price increase, whereas the larger
the a values the lower is the probability of a mid-price increase. Similar results are
obtained in [CST10, HK12].
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Table 4.3.7: Probability that the mid-price increases at its next move with parameters λ̂(δ),
µ̂, κ = 10 and S = 1, where the column labels indicate the number of initial shares at the ask
and the row labels signify the number of initial shares at the bid.

1 2 3 4
1 0.500 0.279 0.170 0.111
2 0.721 0.500 0.348 0.246
3 0.829 0.651 0.500 0.380
4 0.886 0.751 0.617 0.497

Table 4.3.8: Probability that the mid-price increases at its next move calculated based on the
LOB data, where the column labels indicate the number of initial shares at the ask and the row
labels signify the number of initial shares at the bid with parameters S = 1 and κ = 10.

1 2 3 4
1 0.515 0.355 0.306 0.276
2 0.605 0.515 0.410 0.355
3 0.659 0.553 0.515 0.442
4 0.670 0.650 0.528 0.515

Table 4.3.9: Probability that the mid-price increases at its next move with parameters λ̂(δ),
µ̂, κ = 10 and S = 2, where the column labels indicate the number of initial shares at the ask
and the row labels signify the number of initial shares at the bid.

1 2 3 4
1 0.500 0.342 0.290 0.274
2 0.658 0.500 0.433 0.407
3 0.710 0.567 0.500 0.470
4 0.727 0.594 0.530 0.500

Table 4.3.10: Probability that the mid-price increases at its next move calculated based on the
LOB data, where the column labels indicate the number of initial shares at the ask and the row
labels signify the number of initial shares at the bid with parameters S = 2 and κ = 10.

1 2 3 4
1 0.532 0.485 0.465 0.519
2 0.554 0.532 0.493 0.485
3 0.599 0.560 0.532 0.504
4 0.675 0.554 0.548 0.532





CHAPTER 5
Conclusion

A stochastic model which describes the LOB dynamics was introduced. The order
arrivals were modeled using independent Poisson processes and the associated pa-
rameters were estimated from the order book. For the computation of a mid-price
increase at its next move conditional on the current order book status, Laplace
transform methods were used. Due to the fact that the probability density func-
tions of first-passage times to neighboring states are completely monotone, the
Laplace transforms of these times have desirable convergence properties. Thus,
the infinite state space was replaced by a truncated one and therefore, it was
possible to apply an approximation method of the Laplace transform of the first-
passage time’s density function to zero.
The results indicate that the model is working and predicts the outcome achieved
from the LOB data quite well. At some points, for example when focusing on the
outcomes of the Laplace transform, the results differ from those observed in similar
studies. This is reflected by the non-existent cancellation orders.
The model can be extended in various ways to make it more realistic. A different
approach could be to model the order arrivals by Brownian motions instead of gov-
erning the occurrences of market events, meaning limit and market orders, which
are assumed to arrive in unit size, by independent Poisson processes. This would
conserve the Markov property of the process and would achieve more flexibility
regarding order arrival sizes. An important fact is that since 2010 orders at the
ISE are allowed to be canceled. Therefore, this model is not actual and has to
be reviewed, meaning that the parameters based on recent ISE data have to be
re-estimated, to obtain a real-time model. Additionally, introducing a model which
allows dependent arrival rates as well as arrival times of limit and market orders
could be interesting.
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APPENDIX A
Data

Remark A.0.1 (Aggressiveness Type). According to [VZ13], orders are divided
into five categories based on the limit price position.

1. Category 1 (large market order buy): Qbuy ≥ Qask and Pbuy ≥ Pask

2. Category 2 (small market order buy): Qbuy < Qask and Pbuy ≥ Pask

3. Category 3 (buy limit order within the quote): Pask > Pbuy > Pbid

4. Category 4 (buy limit order at the quote order): Pask > Pbuy = Pbid

5. Category 5 (buy limit order away from the quotes): Pask > Pbid > Pbuy

The sell side is constructed analogously (Category 6 to 10).
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Table A.0.1: Description of the columns of the order book

OrderID Identity number of the submitted order.
Order Type (OT) Type of the order (if 1, 2, 3 then the order is a buy order, otherwise 4, 5, 6, 7, 8, 9 it is a sell order).

Ticker Stock number.
Quantity (Quant.) Number of shares to be bought or sold.

Price Price of the order.
Time in force (TIF) 0 if the order is valid/active for one session, 1 if it is valid for the whole day.

Time Time of the order submitted/traded.
Client Type (CT) Whether the order is submitted by an individual or institutional client (2 if institutional).

KTR Immediate or cancel orders (1000 if the order is of this type).
Bid Best buy price, i.e highest available buy price.
Ask Best sell price, i.e lowest available sell price.

Spread (S) Difference between bid and ask.
dist.bid/ask Price distance measured in ticks to the best available price (bid or ask)a.
dist.trade Price distance to the trade price.

Volume at bid (VB1) Numbers of shares at the bid.
Volume at ask (VA1) Numbers of shares at the ask.

Aggressiveness Type (AT) See remark A.0.1.
B2 Second best buy price.
A2 Second best sell price.
VB2 Number of shares at B2.
VA2 Number of shares at A2.

aDepending on whether the order is a buy or a sell order.
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