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Kurzfassung

Das Semi-Unifikationsproblem ist eine naheliegende Verallgemeinerung des wohlbekannten Unifi-
kationsproblems, und besitzt Anwendungen in verschiedenen Feldern der theoretischen Informatik
sowie der Logik. Aber trotz seiner engen Verwandtschaft zur Unifikation ist Semi-Unifikation ein
deutlich schwierigeres Problem, wie Kfoury, Tiuryn und Urzyczyn Anfang der neunziger Jahre
durch ihren Unentscheidbarkeitsbeweis für Semi-Unifikation zeigten. Ein wichtiges Werkzeug
in diesem Beweis sind so genannte Pfadgleichungen (path equations), welche eine algebraische
Darstellung von sowohl Turing Maschinen als auch Semi-Unifikationsproblemen erlauben.

Diese Arbeit präsentiert eine modifizierte Version des originalen Unentscheidbarkeitsbewei-
ses, welche die Rolle und Ausdrucksstärke von Pfadgleichungen ausführlicher beleuchtet als das
Original. Es wird gezeigt, dass nicht nur jedes Semi-Unifikationsproblem in ein System von Pfad-
gleichungen übersetzt werden kann, sondern umgekehrt auch jedes System von Pfadgleichungen
in ein äquivalentes Semi-Unifikationsproblem. Das beweist, dass obwohl Pfadgleichungen oft
eine bequemere Repräsentation sind, ihre Ausdrucksstärke jene von Semi-Unifikationsproblemen
nicht übersteigt. Des Weiteren wird gezeigt, dass Systeme von Pfadgleichungen, so wie Semi-
Unifikations- und Unifikationsprobleme auch, sofern sie überhaupt lösbar sind, immer eine
allgemeinste Lösung besitzen.

Abschließend werden Pfadgleichungen auf erweiterte Semi-Unifikationsprobleme angewandt, in
denen die lösenden Substitutionen auch Terme unendlicher Tiefe einführen dürfen (diese werden
dann unendliche Bäume genannt), und dadurch zwei bisher nicht publizierte Gegenbeispiele
konstruiert. Das erste ist eine Instanz des Semi-Unifikationsproblems dessen Lösungen zwingend
unendlich viele nicht-idente Subterme enthalten müssen (die Existenz solcher Instanzen war
bereits bekannt, aber kein konkretes Beispiel). Das andere ist eine Instanz welche zwar unendliche
Lösungen mit nur endlich vielen nicht-identen Subtermen besitzt, aber keine allgemeinste solche
Lösung. Damit ist gezeigt, dass Semi-Unifikationsprobleme auf diesem Lösungsraum nicht immer
allgemeinste Lösungen besitzen.
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Abstract

The semi-unification problem is a natural generalization of the well-known unification problem,
and has applications in multiple fields of theoretical computer science as well as logic. But despite
its close relationship to unification, semi-unification turned out to be a much harder problem than
unification, and the general case was shown to be undecidable in the early nineties by Kfoury,
Tiuryn and Urzyczyn. An important tool in that proof are systems of path equations, which can be
viewed as algebraic representations of both certain kinds of Turing machines and semi-unification
problems.

This thesis restates the original undecidability proof in a way that elucidates the role and
expressive power of path equations more fully than the original proof does. In particular, it
is shown that not only can every semi-unification problem be translated into a system of path
equations, but that every system of path equations can, in turn, be translated back into an
equivalent semi-unification problem. This shows that, while often being a more convenient
representation, systems of path equations are not any more expressive than semi-unification
already is. Systems of path equations are also shown to have the same principality property that
both unification and semi-unification have, i.e. that the existence of any solution mandates the
existence of a most general one.

Finally, path equations are applied to a generalized form of the semi-unification problems, in
which the solving substitutions are allowed to introduce terms of infinite depth, called infinite trees.
There, path equations are used to construct two novel counter-examples. One is an instance of
the semi-unification problem whose solutions must necessarily have infinitely many non-identical
subterms (the existence of such instances was previously established, but no particular example
was known). The other is an instance which does have infinite solutions containing only finitely
many non-identical subterms, but no principal such solution. This proves that the principality
property fails on this solution space.
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Chapter 1

Introduction

1.1 The History and Significance of Semi-Unification

Semi-unification is, at first sight, a simple generalization of the well-known unification algorithm.
Unification answers the question, given a list of term pairs, of whether a single substitution exists
which makes each “left” term equal to the corresponding “right” term. Semi-unification generalizes
this by instead looking for a single, global, substitution which only makes each “right” term a
substitution instance of the corresponding “left” term. Note that this introduces two kinds of
substitutions – one global substitution which is applied to every term in the list, and one local
substitution per term pair which is applied only to the “left” term. (See section 2.1 for a formal
definition)

The question of semi-unifiability arose independently in multiple different fields, at roughly
the same time. Baaz and Pudlák used it in [BP93] to prove a version of Kreisel’s conjecture for
a particular deduction system called L∃1, which states (in its general form) that whenever a
deduction system T proves A(Sn(0)) uniformly in k steps, then T proves ∀x A(x). Henglein showed
in [Hen88] that typability in the Milner-Mycroft calculus – which allows general mutually recursive
definitions of polymorphic functions – can be reduced to semi-unification. And semi-unification
also plays a role in other fields, for example computational linguistics, see [KTU93] for a more
complete list.

The informal definition above already shows that semi-unification is, as the name implies, closely
related to unification. This relationship goes beyond the two definitions just being superficially
similar. [Baa93] shows, for example, that just like unification problems, semi-unification problems
always have amost general solution if they have a solution at all – and Baaz proves this by exploiting
that semi-unification problems can be solved by repeated unification, where the variables occurring
on the left-hand side are renamed between the individual unification steps.

This close relationship initially lead to the belief that semi-unification, just like unification is
decidable, i.e. that there is some algorithm which, given a semi-unification problem, tells whether
that problem has a solution or not. Algorithms which claimed to decide semi-unification where
even published, e.g. [KTU88], but in each case turned out to either wrongly call some problems
unsolvable which do in fact have a solution, or to not always terminate. [KTU93] then showed that
these problems are not simply mistakes in the published algorithms, but that semi-unification is,
contrary to what intuition might say, actually undecidable.

Quite surprisingly, the proof of semi-unification’s undecidability does not exploit its connection
to typability problems. Instead, it reduces questions about the termination properties of certain
Turing machines, previously shown to be undecidable in [Hoo66], to semi-unification. The following
thesis is an attempt at making this rather long-winded proof more accessible, and to emphasize
the role that so-called path equations (see section 2.2) play in semi-unification’s undecidability.
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1. INTRODUCTION
1.1. The History and Significance of Semi-Unification

A natural generalization of semi-unification drops the requirement that solutions must only
produce finite terms, and instead allows arbitrary infinite trees to be introduced. [DR92] shows
that the resulting decision problem, i.e. whether a given semi-unification problem has such a
generalized solution, to be undecidable in general as well. This undecidability result holds both for
semi-unification over infinite trees with only finitely many non-identical subtrees, called rational
trees, as well as for the general case of arbitrary infinite trees.

2



1. INTRODUCTION
1.2. Overview of the Proof and Deviations from the published Proof

1.2 Overview of the Proof and Deviations from the pub-
lished Proof

The proof of the semi-unification problem’s (SUP) undecidability presented here is based on the
proof by Kfoury at al., found in [KTU93]. It follows largely the same path, but with a few smaller
and one relatively large deviation.

From Turing Machines to Semi-Unification
The crucial step in both proofs is a reduction of the boundedness1 problem for a certain class
of Turing machines called symmetric inter-cell2 Turing machines (SITMs) to a semi-unification
problem, such that the semi-unification problem has a solution if and only if the original machine
is bounded. The main tool for proving this equivalency are systems of path equations (cf. definition
2.2.6) with corresponding rules of inference, introduced by [KTU93] and used herein in a slightly
modified form.

In the original proof, SITMs are directly translated into semi-unification problems, and path
equations plus their inference rules are then used to show that boundedness of the former is
equivalent to solvability of the latter (cf. [KTU93] lemma 11). The proof presented here instead
places path equations at the center of things, and uses a modified set of inference rules. Whereas
in [KTU93] derivable path equations may “speak” about non-existing subterms, the deduction
system used here (cf. definition 2.3.1) contains an additional restriction which prevents this. That
allows a rather nice characterization of exactly the solvable systems of path equations via the
existence of bounds on the length of paths that appear in derivable path equations (cf. definition
2.3.3 and theorem 2.4.15).

While lemma 4 of [KTU93] is somewhat similar to this characterization, it also highlights
the main difference between the two approaches. Part 2 of that lemma establishes a connection
between the substitutions carried out by a semi-decision algorithm for semi-unification, and is
ultimately used to show that unbounded SITMs yield, after translation, unsolvable instances
of semi-unification. Theorem 2.4.15 in this thesis has a similar role, but doesn’t refer to any
semi-decision algorithm. Instead, it constructs solution of what are called bounded systems of
path equations in a more algebraic way, and applies to arbitrary sets of path equations instead of
only those which arise from semi-unification problems.

Following the idea of placing path equations at the center of things, this proof then first reduces
the question of boundedness of a SITM not to a semi-unification problem, but rather to the
solvability of some finite system of path equations (PEQs). For technical reasons, it does so in
two steps. First, an SITM is brought into a form called strict symmetric inter-cell Turing machine
(SSITM), which restricts the tape to contain a single (though arbitrarily long) non-blank region,
surrounded by only blank symbols (cf. definition 3.5.1 and theorem 3.5.2). For this class of machines,
the translation into a system of path equations is then almost trivial (cf. definition 4.1.1), and it is
shown that the resulting system of path equations is bounded (i.e. solvable) exactly if the SSITM
is bounded (cf. theorem 4.1.3).

Finally, to derive the final result about semi-unification, the solvability of finite sets of path
equations is reduced to the solvability of semi-unification problems. This step, unfortunately, is
about as onerous as the direct reduction from SITMs to instances of SUP in the original proof (cf.
page 98 of [KTU93] and cf. theorem 2.2.21 of this thesis). At least, in the presented approach, one
is rewarded for working through these irritations by a theorem that reduces arbitrary finite sets
of path equations to instances of SUP, whereas the very similar reduction in the original proof is
tailored only to the case of SITMs.

1 Boundedness means that there is a global bound on the number of configurations that are reachable from an arbitrary
initial configuration

2 These are machines where the head is positioned between two tape cells, and whose reachability relation is symmetric

3



1. INTRODUCTION
1.2. Overview of the Proof and Deviations from the published Proof

The following diagram shows the major steps of the part of the proof discussed so far – the
reduction of the boundedness problem for SITMs to the semi-unification problem (SUP) – and
show both the major theorems encountered along the way, as well as the theorems used in each of
the implications.

3.4.4
Boundedness
of SITMs is
undecidable

3.5.2===⇒

3.5.3
Boundedness
of SSITMs is
undecidable

4.1.3
2.4.15===⇒

4.1.4
Solvability
of PEQs is
undecidable

2.2.21===⇒

4.1.5
SUP
is

undecidable

From Mortality of TMs to Boundedness of SUP
The second part of both the proof presented here, and the one found in [KTU93], establishes the
undecidability of boundedness for symmetric inter-cell Turing machines (the part is actually – in
both works – found in the middle, but conceptually its still the second part that completes the
proof).

In this part, the difference between this text and [KTU93] lies mostly in the level of detail
that is presented. [KTU93] is concerned more with brevity whereas this text contains explicit
constructions of all the necessary reductions from one machine to another.

The proof starts from the undecidability ofmortality1 for deterministic Turing machines (dTMs),
a result originally shown in [Hoo66]. By showing that unbounded machines are immortal and that
mortality is decidable for bounded machines, it is then shown that boundedness of deterministic
Turing machines is undecidable as well.

Unfortunately, the boundedness problem of deterministic Turing machines cannot easily be
translated directly into semi-unification problems or systems of path equations – the most obvious
obstacle being that such a translation requires a machine with a symmetric reachability relation.
Constructing a more suitable class of machines – in a way that ensures that boundedness remains
undecidable – is the goal of sections 3.3 and 3.4.

The main technical problem in that construction is that regular Turing machines cannot easily
be “symmetricized” by simply replacing their successor relation ` with its symmetric closure – if
one does that, the resulting machine has little in common with the original one (cf. section 3.3
for a more detailed discussion). This proof uses the same, rather ingenious, “trick” as [KTU93]
to overcome this issue. Regular Turing machines are first transformed into inter-cell Turing
machines (ITMs)2. Since such machines can always read (and overwrite) whatever they wrote
in the previous step (provided they move in the opposite direction), such machines can easily
be “symmetricized”, and this yields the already mentioned class of symmetric inter-cell Turing
machines (SITMs). Interestingly, while every inter-cell Turing machine, deterministic or not, can
be “symmetricized”, only for deterministic machines is the resulting symmetric machine bounded
exactly iff the original machine was bounded. This is the reason why it is necessary to establish
the undecidability of boundedness specifically for deterministic machines, since only those can be
transformed into an equivalent SITM and then further into an equivalent system of path equations
or an equivalent instance of SUP.

The following diagram summarizes the main step in the argument that establishes the undecid-
ability of boundedness for SITMs.

[Hoo66]
Mortality
of dTMs is
undecidable

3.2.9
3.2.11===⇒

3.2.12
Boundedness
of dTMs is
undecidable

3.3.2===⇒

3.3.3
Boundedness
of dITMs is
undecidable

3.4.3===⇒

3.4.4
Boundedness
of SITMs is
undecidable

1 A mortal machine always terminates, regardless of the initial configuration, even if the tape initially contains infinitely
many non-blank cells

2 Machines, where the head is positioned between two tape cells, and has the ability to read (and overwrite) either of them
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Chapter 2

Semi-Unification and Path
Equations

2.1 Basic Definitions

In the following, V denotes an infinite set of variables, “ ·−→” some binary function symbol and E the
set of finite terms built from V and ·−→. The following definition gives a more explicit construction
of E which is necessary to formalize proofs about the elements of E .

Definition 2.1.1 (Finite terms).

(i) The set E of all finite terms over V and ·−→ is
E := ⋃

i∈N
Ei,

where
E0 :=V ,

Ei+1 := Ei ∪
{

(u ·−→ v)
∣∣ u,v ∈ Ei

}
.

(ii) The maximal number of nested applications of ·−→, or depth, of a certain term t ∈ E is
depth e :=min

{
i ∈N ∣∣ e ∈ Ei

}
Note that for every t ∈ E , either depth e = 0 or there are e l , er with e = (e l ·−→ er) and thus
depth e l < depth e, depth er < depth e.

The function symbol ·−→ is treated as right-associative, and extraneous brackets are skipped
accordingly when writing out elements of E . Thus, both “α ·−→β ·−→ γ” and “α ·−→ (β ·−→ γ)” denote the
same element of E .

In the following, the focus lies on properties of terms and relationships between terms which are
independent from any particular interpretation. A natural class of operators on the elements of E
in this settings are substitutions – functions on terms which replace all occurrences of a particular
variable α ∈V with some more specific term.

Definition 2.1.2 (Substitution). A function S : E → E is called a substitution on E if
S(e l ·−→ er)= S(e1) ·−→ S(e2) for all e l , er ∈ E

The application of a substitution S to a term t is sometimes denoted by tS instead of S(t). In the
case of multiple substitutions, tS1 . . .Sn stands for Sn(. . .S1(t) . . .). Note that the application order
is left to right here, contrary to how the function concatenation operator ◦ is usually defined! In
other words,

Sn(. . .S1(t) . . .)= tS1 . . .Sn
!6= t (S1 ◦ · · · ◦Sn)= S1(. . .Sn(t) . . .).

5



2. SEMI-UNIFICATION AND PATH EQUATIONS
2.1. Basic Definitions

To minimize the risk of confusion, the syntax t (S1 ◦S2) will not actually be used. The operator ◦
will only be used if the resulting substitution is not immediately applied to a term, as in S′ = S̃ ◦S,
and even that syntax will be used very sparingly.

Comparing the condition above to the construction of the set E shows that substitutions are
uniquely defined by their actions on the set of variables V .

Lemma 2.1.3. For every S̊ : V̊ → E with V̊ ⊂V there is a unique substitution S on E with S|V̊ = S̊
and S|V\V̊ = id. S is called the extension of S̊ to E .

Proof. Define a series of partial functions Si : Ei → E by setting S0 := S̊∪ idV\V̊ and

Si+1(e) := Si(e) if depth e = i
Si+1(e l ·−→ er) := (Si(e l) ·−→ Si(er)) if depth e l ·−→ er = i+1.

The definition
S(e) := Sdepth e(e)

then yields a total function E → E which is a substitution. Since for all ν ∈ V̊ one has S(ν)= S0(ν)=
S̊(ν) it follows that S|V = S̊. For ν ∈V \ V̊ , S0(ν)= ν by construction. ■

Functions S̊ : V̊ → E with V̊ ⊂V will often be called substitutions themselves, with the understand-
ing that S̊(t) for t ∈ E is to be read as S(t) where S is the extension of S̊ to E . In particular, if a
function that is defined only on a proper subset of V is called a substitution, it is assumed to map
all variables outside its defined range to themselves.

Take now a pair of terms t,u ∈ E , and observe that for some such pairs of terms there exists a
substitution which turns both into the same term, while for other pairs this is impossible. The
pair (α,β ·−→ γ) is an example of the first case, as the substitution S(α) = (β ·−→ γ) proves. An
example of the second case is the pair (α,β ·−→α) (note that depth S(α)< depth S(β ·−→α), and hence
S(α) 6= S(β ·−→α), holds for every substitution S on E). This motivates

Definition 2.1.4 (Term Equations). For two terms t,u ∈ E the expression
t .= u

is called a term equation or unification problem. A solution of such a term equation is a substitution
S on E with S(t)= S(u). If such a solution exists, it is also called a unifier of t and u.

A natural generalization is to consider not only single term equations, but finite sets of such
equations, and to look for substitutions which solve all equations in such a set simultaneously.
While sounding harder initially, it turns out that this generalized case can be reduced to the
original case of only one equation.

Theorem 2.1.5. Let E be a finite set of term equations
{

t1
.= u1, . . . , tn

.= un
}
. Then there exists a

substitution S with S(ti)= S(ui), 1≤ i ≤ n iff there exists a solution of the term equation
t1 ·−→ t2 ·−→ . . . ·−→ tn−1 ·−→ tn

.= u1 ·−→ u2 ·−→ . . . ·−→ un−1 ·−→ un

Proof.
S(t1 ·−→ . . . ·−→ tn) = S(u1 ·−→ . . . ·−→ un)

= S(t1) ·−→ . . . ·−→ S(tn) = S(u1) ·−→ . . . ·−→ S(un)
⇔ S(t1)= S(u1) . . . S(tn)= S(un)

This equivalences prove both directions ■

Again taking a pair of terms t,u ∈ E , one can also ask whether u is the result of applying some
substitution to t. This relation, contrary to the case of unifiability, is transitive in addition to
being reflexive and therefore imposes a pre-order on the set E .

Definition 2.1.6 (Instantiation Pre-Order). The pre-order defined by
t ≤ u ⇔There exists a substitution S with S(t)= u

is called the instantiation pre-order on E . If t ≤ u, u is called an instance of t.

6



2. SEMI-UNIFICATION AND PATH EQUATIONS
2.1. Basic Definitions

Having defined an order relation on the set E , term equations can be generalized to term inequali-
ties.

Definition 2.1.7 (Term Inequalities). For two terms t,u ∈ E the expression
t ≤̇ u

is called term inequality. A solution of such a term inequality is a substitution S on E with
S(t)≤ S(u). If such a solution exists, it is also called a semi-unifier of t and u.

Again, one can generalize that definition to the case of multiple inequalities. This, then, what is
commonly called the semi-unification problem.

Definition 2.1.8 (Semi-Unification Problem). For n term inequalities
S = {

ti ≤̇ ui
∣∣ 1≤ i ≤ n

}
the problem of whether a global substitution S exists such that S(ti) ≤ S(ui) for all 1 ≤ i ≤ n is
called semi-unification problem for S. If such a solution exists, it is called semi-unifier, and the
substitutions S1, . . . ,Sn for which Si(S(ti))= S(ui) are called the local substitutions corresponding
to S.

For term equalities, theorem 2.1.5 shows that there is no significant difference between the case of a
single term equation and the generalization to sets (systems) of such equations. That proof, however,
does not carry over to the case of term inequalities, since it depends on the fact that t1 = u1, t2 = u2
holds exactly if t1 ·−→ t2 = u1 ·−→ u2 does. In the case of term inequalities, however, t1 ·−→ t2 ≤ u1 ·−→ u2
is a stronger statement than t1 ≤ u1, t2 ≤ u2 since the former requires one substitution to make
both pairs of terms equal while the latter allows for two different substitutions. This will prove to
be not only a technical difficulty – it will be shown that the existence of a semi-unifier is undecidable
in the general case of multiple inequalities, but decidable in the case of only one inequality.

7



2. SEMI-UNIFICATION AND PATH EQUATIONS
2.2. Path Equations

2.2 Path Equations

In the following, it will be necessary to deal with partial functions defined on the set of terms E .
For this, it is convenient to extend E with a special undefined term, as carried out by

Definition 2.2.1 (Undefined Term).

(i) The symbol ⊥ denotes a special undefined term, with ⊥ 6= t for all t ∈ E , and
E⊥ := E ∪{⊥}

.

(ii) A function S : E⊥ → E⊥ is called a substitution if S|E is a substitution and S = S|E∪
{⊥→⊥}

.

Note that (ii) says that substitutions on E⊥ may neither map defined terms to undefined terms, nor
undefined terms to defined ones! If a function defined on some subset of V̊ is called a substitutions
on E⊥, it is not assumed to map variables outside of V̊ to ⊥, but rather to themselves!

Theorem 2.1.5 showed that a set of term equations can be reduced to a single equivalent term
equation. Now, in a way, the opposite is done. A given semi-unification problem is be transformed
into a set of simpler equations which are equivalent to the original problem, in the sense that a
substitution solves the resulting set of equations exactly if it solves the initial semi-unification
problem.

The is the reason for introducing the function L and R, which “extract” the left respectively
right subterm of a term.

Definition 2.2.2. The functions L,R : E⊥ → E⊥ are defined as

L : t →
{

tl if t = tl ·−→ tr

⊥ otherwise
R : t →

{
tr if t = tl ·−→ tr

⊥ otherwise

By building strings from L and R, and also Si, one can “speak” about the terms and their subterms
that arise from the application of a global substitution S and particular local substitutions Si.

Definition 2.2.3 (Path Expressions).

(i) The sets of strings P (whose elements are called paths) and R are
P := {

L, R
}∗, R := {

S1, S2, . . .
}∗

(ii) The set of path expressions W is
W := {

ΠµΣ
∣∣ µ ∈V , Π ∈P , Σ ∈R }

(iii) The interpretation of a path expression
ΠµΣ=πn . . .π1µSi1 . . .Sin ∈W

under substitutions S,S1,S2, . . . is the term

Π
(
(µS)Σ

)
:=πn

(
. . .π1

(
Sin

(
. . .Si1 (µ) . . .

))
. . .

)
∈ E⊥.

Note that there is a slight ambiguity in the meaning of ΠµΣ – such an expression could be
interpreted purely syntactically as a path expressions (i.e. an element of W) or, for particular
substitutions S1, . . ., as the term that results from applying Σ and then Π to the variable µ. This
ambiguity is avoided by never omitting the brackets if an application of particular substitutions
S1, . . . is meant, and never including brackets in elements of W .

This definition of path expressions does not allow expressions like LS1RS2µ where L,R and Si
application are interleaved. The following lemma shows that this does not restrict their generality,
because all L and R applications can always be moved leftwards. The expression LS1RS2µ, for
example, then becomes LRµS1S2, and says exactly the same thing.

Lemma 2.2.4. A function S : E → E is a substitution iff
S(Πt)=ΠS(t) 6= ⊥ for all t ∈ E and all Π ∈P with Πt 6= ⊥.
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Proof. Let t be an arbitrary compound term t = tl ·−→ tr. Then Lt = tl , Rt = tr and thus
S(tl ·−→ tr) = S(tl) ·−→ S(tr)

⇔ LS(t)= S(Lt) and RS(t)= S(Rt)
This proves the lemma for |Π| = 1. The general case follows by induction on the length of Π. ■

The following clarifies how the usual concepts of prefix pre-order and empty strings apply to the
sets P and R. Note that elements of P are read right-to-left, while elements of R are read left-to-
right, and the pre-orders are defined accordingly! This won’t be a source of confusion (rather the
opposite), because those strings usually appear in path expressions, where L and R are appended
to the left, and the Si are appended to the right.

Definition 2.2.5 (Prefix Order on P and R).

(i) The set P is partially ordered by
Π≤Π′ if Π̃Π=Π′ for some Π̃ ∈P ,

(ii) The set R is partially ordered by
Σ≤Σ′ if ΣΣ̃=Σ′ for some Σ̃ ∈R.

(iii) ε denotes the empty string and is an element of both P and R.

(iv) If p ≤ e for some strings in P or R, p is called a prefix of e, and e an extension of p. In
particular, ε is a prefix of every string, and every string extends ε.

Path expressions allow “speaking” about the the terms and their subterms that arise from the
application of a global substitution S and particular local substitutions Si. What will mainly be
“spoken about” in the following is which of these terms are equal.

Definition 2.2.6 (Path Equations).

(i) A path equation is an equation of the form
Π1µΣ1

.=Π2νΣ2

where Π1µΣ1, Π2νΣ2 ∈W are path expressions.

(ii) Substitutions S,S1,S2, . . . form a solution of a set of path equations Γ if the interpretations of
the path expressions on both sides of all the path equations agree, i.e. if

Π1
(
(µS)Σ1

)=Π2
(
(νS)Σ2

) 6= ⊥ for all Π1µΣ1
.=Π2νΣ2 ∈Γ.

Translating (Semi-)Unification Problems into Path Equations
For unification problems, path equations represent structural constraints on S(t) and S(u) which
must be satisfied by some solution S to make it a solution of the unification problem. Thus, the
variables occurring in these equations should be thought of as placeholders for the terms that
some S might map them to, instead of variables in a purely syntactic sense.

Definition 2.2.7 (Path Equations for Unification Problems). For an arbitrary unification problem
t .= u, the associated set of path equations is

Γt .=u := {
Πµ

.= ν ∣∣ There are paths Π,Π′ with Π′t =µ ∈V ,ΠΠ′u = ν ∈V }⋃ {
µ

.=Πν ∣∣ There are paths Π,Π′ with ΠΠ′t =µ ∈V ,Π′u = ν ∈V }
.

Similarly, for semi-unification problems, path equations represent constraints on S(ti),S(ui),
1≤ i ≤ n, which must be satisfied by S,S1, . . . ,Sn to make them a solution of the semi-unification
problem. Again, the variables are best thought of as placeholders for their images under S.

Definition 2.2.8 (Path Equations for Semi-Unification Problems). For an arbitrary semi-unifica-
tion problem S := {

ti ≤̇ ui
∣∣ 1≤ i ≤ n

}
, the associated set of path equations is

ΓS := {
ΠµSi

.= ν ∣∣ There are paths Π,Π′ with Π′ti =µ ∈V ,ΠΠ′ui = ν ∈V
}⋃ {

µSi
.=Πν ∣∣ There are paths Π,Π′ with ΠΠ′ti =µ ∈V ,Π′ui = ν ∈V

}
.
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The following example demonstrates the relationship between a semi-unification problem and its
associated set of path equations. Take the problem

(a ·−→ a ·−→ a) ·−→ d ≤̇ d ·−→ (b ·−→ c),
b ≤̇ d.

The resulting set of path equations is then
aS1

.= Ld, aS1
.= LRd, aS1

.= RRd,
LdS1

.= b, RdS1
.= c,

bS2
.= d.

It is obvious that the solution of a (semi-)unification problem also solves the associated set of
path equations. The converse also holds, i.e. one has

Theorem 2.2.9. If t .= u is a unification problem with corresponding set of path equations Γt .=u,
a substitution S solves t .= u iff it solves Γt .=u.

Theorem 2.2.10. If S = {
ti ≤̇ ui

∣∣ 1≤ i ≤ n
}
is a semi-unification problem with corresponding set

of path equations ΓS , substitutions S, S1, . . . ,Sn solve S iff they solve ΓS .
The proof, however, is not immediately obvious. One needs to show that the set of path equations
constrains a solution strongly enough to ensure that it also solves the original problem, which
amounts to showing that it constrains “enough” paths. The first step is to formalize some facts
about paths and their relationship to substitutions.

The first (rather trivial) such fact is that terms either have no subterm (if they are variables),
or a left and a right subterm (if they are composite terms).

Lemma 2.2.11. Let t be a term and Π be a path with Πt 6= ⊥. Then for every Π′ with Π′ <Π also
Π′t 6= ⊥, LΠ′t 6= ⊥ and RΠ′t 6= ⊥.
Proof. If Π′t was undefined, so would Πt be for every Π≥Π′. For the rest, observe that if Π′ <Π,
then either LΠ′ ≤Π or RΠ′ ≤Π, so at least one of them cannot be ⊥. But then neither can the
other be. ■

Consider now two terms t,u ∈ E . Obviously, if t = u then for every path Π one has Πt =Πu. The
case Π = ε shows that the converse is also obviously true. To prove 2.2.9 and 2.2.10, however,
one needs this to hold more generally, since the set of path equations doesn’t necessarily contain
constraints for the path ε. The question is thus, can one find a proper subset W of P , with ε ∉W,
such that Πt =Πu for all Π ∈W proves t = u? At first glance the case t =α, u =β for two distinct
variables α,β ∈V is discouraging, since for these two terms L(t)= L(u)= R(t)= R(u)=⊥, yet t 6= u.
This difficulty, however, can be overcome by taking the structure of t and u into account in the
construction of W , as the following lemma shows.

Lemma 2.2.12. Let t,u ∈ E be terms and W ⊂P a set of paths where

(i) for every Π ∈W at least either Πt 6= ⊥ or Πu 6= ⊥, and

(ii) for every Π′ ∈P there is a Π ∈W with either Π≤Π′ or Π′ ≤Π.
Then

t = u 6= ⊥ ⇔ Πt =Πu 6= ⊥ for all Π ∈W
and W is called a witness for t = u.
Proof. If t = u then obviously Πt =Πu for all Π ∈P .

For the converse, assume that t 6= u. Then either L(t)= R(t)= L(u)= R(u)=⊥, or L(t) 6= L(u) or
R(t) 6= R(u). Thus, by induction, one can find a path Π′ such that Π′t 6=Π′u, but Π̃t = Π̃u =⊥ for
all Π̃>Π′.

By (ii) there is a Π ∈ P with either Π≤Π′ or Π′ ≤Π. Since Πt =Πu implies Π′t =Π′u if Π≤Π′,
only the second case remains. Hence there is a Π ∈ P with Π′ ≤Π. But since Π′ was constructed
such that Π̃t = Π̃u =⊥ for all Π̃>Π′, it follows from (i) that Π′ =Π. Thus, there is a path Π ∈ P
with Πt 6=Πu. ■
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Note that only condition (i) of lemma 2.2.12 takes the structure of t and u into account, and it
really only requires t and u to be sufficiently “deep”. Since applying a substitution never reduces a
term’s depth, the following lemma is unsurprising.
Lemma 2.2.13. Let W be a witness for t = u for t,u ∈ E and let S, T be an arbitrary substitution.
Then W is also a witness for S(t)= T(u).
Proof. It suffices to show that condition (i) of lemma 2.2.12 still holds if t is replaced by S(t). That
in turn follows from the requirement that S−1(⊥) = {⊥ }

from the definition of substitutions on
E⊥. ■
Lemma 2.2.12 did not provide a simply way to construct a suitable witness. This is now made up
for by the following lemma, which shows that a suitable set is obtained by picking those paths
which lead to variables.
Lemma 2.2.14. Let t,u ∈ E be terms and let W ⊂P be the set of paths Π with

(i) Πt 6= ⊥ or Πu 6= ⊥, and

(ii) Πt,Πu ∈V ∪{⊥}
.

Then W is a witness for t = u.
Proof. It it sufficient to show that condition (ii) of lemma 2.2.12 holds for W. Pick thus a Π′ ∈P
which is not in W . Then, either Π′t =Π′u =⊥ or one of Π′t,Π′u is from E \V .

First case. There surely is a prefix Π<Π′ of Π′ where either Πt 6= ⊥ or Πu 6= ⊥. For the longest
such prefix Π, neither Πt nor Πu can be from E \V , since otherwise the prefix could be extended
by one. Thus, Π ∈W and by construction Π<Π′.

Second case. Pick the longest extension Π>Π′ of Π′ where either Πt 6= ⊥ or Πu 6= ⊥. Then again
neither Πt nor Πu can be in E \V , since otherwise the longest extension could be extended by one
while still maintaining Πt 6= ⊥ or Πu 6= ⊥. Thus, Π ∈W and by construction Π′ >Π. ■
The similarly of the paths appearing in lemma 2.2.14 to the definitions 2.2.7 and 2.2.8 of the set
of path equations corresponding to a (semi-)unification problem is of course no coincidence. It is
precisely this similarity with ensures that a solution of one is also a solution of the other. The
following proof exploits this.

Proof of theorem 2.2.10. For substitutions S and S1, . . . ,Sn, to solve ΓS means
Π1

(
(µS)Si

)=Π2
(
νS

) 6= ⊥ for all equations Π1µSi
.=Π2ν in ΓS .

which by definition 2.2.8 of ΓS is the same as
Π(Si(S(µ)))= S(ν) 6= ⊥ for all paths Π′ with Π′ti =µ, ΠΠ′ui = ν and

Si(S(µ))=ΠS(ν) 6= ⊥ for all paths Π′ with ΠΠ′ti =µ, Π′ui = ν,
and thus also as

Π(Si(S(Π′ti)))= S(ΠΠ′ui) 6= ⊥ for all paths Π,Π′ with Π′ti,ΠΠ′ui ∈V and
Si(S(ΠΠ′ti))=ΠS(Π′ui) 6= ⊥ for all paths Π,Π′ with ΠΠ′ti,Π′ui ∈V .

Since Π′ti and Π′ui then cannot be undefined, their application commutes with the application of
substitutions by lemma 2.2.4, and thus the previous holds if and only if

ΠΠ′(Si(S(ti)))=ΠΠ′S(ui) 6= ⊥ for all paths Π,Π′ with
Π′ti,ΠΠ′ui ∈V or ΠΠ′ti,Π′ui ∈V .

Setting Π̃=ΠΠ′ and realizing that Π′ti,ΠΠ′ui ∈V is equivalent to Π̃ui ∈V , Π̃ti ∈V ∪{⊥}
finally

proves the equivalence of
Π̃(Si(S(ti)))= Π̃S(ui) 6= ⊥ for all paths Π̃ with Π̃ti,Π̃ui ∈V ∪{⊥}

and either Π̃ti 6= ⊥ or Π̃ui 6= ⊥.
Since these paths Π̃ are exactly the paths in the witness W of lemma 2.2.14, the former holds if
and only if

Si(S(ti))= S(ui) for all 1≤ i ≤ n
This series of equivalent rewriting proves both directions. ■
Proof of theorem 2.2.9. The proof of 2.2.10 works once all occurrences of the Si are removed. ■
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Translating Path Equations back into Semi-Unification Problems
Definition 2.2.8 and theorem 2.2.10 from the previous section together show that arbitrary semi-
unification problems can be reduced to a solvability problem for some set of path equations. That
raises the question of whether solvability of arbitrary sets of path equations is a more general
(and more difficult) problem than semi-unification. For finite sets of path equations, it turns out
that is it not – arbitrary finite sets of path equations can be translated (effectively!) back into
some equivalent semi-unification problem.

Reducing arbitrary finite sets of path equations to semi-unification problems becomes technically
a bit simpler if semi-unification is first generalized to include not only term inequalities, but
also term equations. Additionally, instead of allowing different local substitutions to solve each
inequality individually, the inequalities are now tagged with an index which specifies which local
substitutions is supposed to solve it.

Definition 2.2.15 (Generalized Semi-Unification Problem). For finitely many equations and
tagged term inequalities

S = {
ti ≤̇l i ui

∣∣ 1≤ i < m
}∪{

ti
.= ui

∣∣ m ≤ i ≤ n
}

with tags l i ∈
{

1, . . . , k
}
, the problem of whether a global substitution (or semi-unifier) S exists

such that S(ti) = S(ui) for all m ≤ i ≤ n, and and local substitutions S1, . . . ,Sk exists such that
Sl i (S(ti))= S(ui) for all 1≤ i < m, is called the generalized semi-unification problem for S.

Such generalized semi-unification problems can always easily (and effectively) be translated back
into the form of definition 2.1.8, such that every solution of such a translation also solves the
original, generalized problem. Since such a translation must introduce a new variable for every
equations that appears in a generalized semi-unification problem, the reverse is, in general, not
true – a solution of a generalized semi-unification problem will usually not solve the translated
problem. Every solution of the generalized problem can, however, be easily transformed to include
the newly introduced variables, and the transformed solution then does solve both the original,
generalized problem as well as its translation to the form of definition 2.1.8.

Theorem 2.2.16. Every generalized semi-unification problem S can be effectively reduced to a
semi-unification problem S̃ as in definition 2.1.8 such that

(i) S̃ contains as many inequalities as S contains distinct tags (but at least one).

(ii) Every solution of S̃ is also a solution of S.

(iii) Every solution of S can be effectively transformed into a solution of S̃.

Proof. Let S be a generalized semi-unification problem

S = {
ti ≤̇l i ui

∣∣ 1≤ i < m
}∪{

ti
.= ui

∣∣ m ≤ i ≤ n
}
.

where l i ∈⊂
{

1, . . . , k
}
for 1≤ i < m. The equalities in S are transformed into the pair of terms t̂

and û by picking distinct variables αm, . . . ,αn that do not appear in S and setting
t̂ := (αm ·−→αm) ·−→ (αm+1 ·−→αm+1) ·−→ . . . ·−→ (αn ·−→αn),
û := (tm ·−→ um) ·−→ (tm+1 ·−→ um+1) ·−→ . . . ·−→ (tn ·−→ un).

Assume then (without loss of generality) that there are either no inequalities in S (in which case
k is zero), or that there is at least one inequality for every tag in

{
1, . . . , k

}
(that can always be

achieved by renaming the tags). All ti respectively ui whose inequalities carry the same tag are
then combined to form the terms t̃l respectively ũl for l ∈ {

1, . . . , k
}
, and to the terms for tag 1 the

term t̂ respectively û is appended. This yields
t̃1 := tI1

1
·−→ ·· · ·−→ tI1

N1
·−→ t̂, t̃l := tI l

1
·−→ ·· · ·−→ tI l

Nl
(for l > 1),

ũ1 := uI1
1

·−→ ·· · ·−→ uI1
N1

·−→ û, ũl := uI l
1
·−→ ·· · ·−→ uI l

Nl
(for l > 1),

where
{

I l
1, . . . , I l

N l

}
are the indices of those inequalities tagged with l. The terms t̃l and ũl are

then combined to form the semi-unification problem

S̃ := {
t̃l ≤ ũl

∣∣ 1≤ l ≤ k
}
.
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(ii). If S,S1, . . . ,Sk is a solution of S̃, Sl(S(t̃l))= S(ũl) for every l ∈ {
1, . . . , k

}
. By construction of

the terms t̃l and ũl , that requires that Sl(S(ti))= ui for all 1≤ i < m, and that S1(αi)= S(ti)= S(ui).
S,S1, . . . ,Sk is therefore then also a solution of S.

(iii). Let S,S1, . . . ,Sk be a solution of S. Since that implies that Sl i (S(ti)) = S(ui) for all in-
equalities ti ≤̇l i ui in S, by construction of the terms t̃l and ũl , such a solution then also satisfies
Sl(S(t̃l)) = S(ũl) for 2 ≤ l ≤ k. Furthermore, it must also satisfy S(ti) = S(ui) for m ≤ i ≤ n and
S1(S(ti))= S(ui) for i ∈ {

I1
1, . . . , I1

N1

}
. Now assume without loss of generality that the variables

αm, . . . ,αn do not appear in the image of any other variables under S (if they do, these occurrences of
αm, . . . ,αn can be replaced by other, fresh variables). Also assume that S does not replace αm, . . . ,αn
(since these variables do not appear in S, any such replacement done by S is unnecessary, and can
be dropped). Setting

S1(αi) := S(ti)
(
= S(ui)

)
for m ≤ i ≤ n

ensures that S1(S(t̃1))= S(ũ1), and hence that S,S1, . . . ,Sk is a solution of S̃. ■

To reduce an arbitrary finite set of path equations Γ to a generalized semi-unification problem
S, one needs to find terms which reflect the structure imposed by Γ on the terms S(µ), where µ
is a variable that appears in Γ and S the global substitution of a solution of Γ. If, for example,
Γ= {

La .= . . .
}
, then S(a) needs at least have a left subterm. That, of course, implies that S(a) also

needs to have a right subterm, even though the path expression Ra does not appear in Γ. One
therefore cannot expect to always find terms which only have (defined) subterms at the positions
indicated by the paths occurring in Γ. On the other hand, to be able to translate every solution of
Γ to a solution of S, S must not include unnecessarily large terms. The following definition of PµΣ

Γ
strikes the necessary balance. For every µΣ, it contains only paths Π for which Π(µSΣ) 6= ⊥ for
any solutions S,S1, . . . ,Sk of Γ, but enough paths to find terms for every µΣ which exactly match
the structure outlined by PµΣ

Γ .

PµΣ
Γ is also defined to be non-empty (i.e. to at least include the empty path ε) for every µΣ

which partially matches some path expression in Γ. This is necessary because Γ may contain path
expressions like aS1S2 = . . ., and since semi-unification problems cannot directly represent the
application of multiple local substitutions, an additional variable is required which represents
aS1.

Definition 2.2.17. The paths concerning µΣ within the path equations Γ are

PµΣ
Γ

:= {
LΠ, RΠ

∣∣ Π̃ΠµΣ .=Π′νΣ′ ∈Γ or Π′νΣ′ .= Π̃ΠµΣ ∈Γ for Π̃ 6= ε, Π′νΣ′ ∈W }
∪ {

ε
∣∣ Π̃µΣΣ̃ .=Π′νΣ′ ∈Γ or Π′νΣ′ .= Π̃µΣΣ̃ ∈Γ for Π′νΣ′ ∈W , Σ̃ ∈R, Π̃ ∈P }

As explained above, the important properties of the sets PµΣ
Γ are these.

Corollary 2.2.18. For a set of path equations Γ and the sets PµΣ
Γ ,

(i) For all paths Π ∈P , LΠ ∈PµΣ
Γ iff RΠ ∈PµΣ

Γ ,

(ii) if Π ∈PµΣ
Γ then Π

(
(µS)Σ

) 6= ⊥ for all solutions S,S1, . . . of Γ.

These sets PµΣ
Γ now serve as “blueprints” for the construction of a term for every path expression

in a set of path equations Γ.

Lemma 2.2.19. For a finite set of path equations Γ, there exists an embedding θΓ : W → E⊥ of the
path expressions over variables appearing in Γ into the set of (possibly undefined) terms E⊥, which
satisfies

(i) θΓ
(
ΠµΣ

) 6= ⊥ exactly if Π ∈PµΣ
Γ ,

(ii) θΓ
(
Πω

)=ΠθΓ(ω)
for all Π ∈P ,

(iii) θΓ
(
ω

)= θΓ(ω′) 6= ⊥ only if ω=ω′,

(iv) All the terms produced by θΓ contain only variables that do not appear in Γ.

(v) θΓ(ΠµΣ) can be determined effectively.
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Proof. Assume that V contains, for every variable µ that appears in Γ, the (countably many)
distinct variables µΣΠ where Π ∈ P and Σ ∈R (note that this implies that µεε and µ are distinct
variables!). Since Γ is finite, all the PµΣ

Γ are finite, and the following recursive definition thus
always hits a ground case in finitely many steps, making it well-defined and effective. It therefore
indeed produces elements of E⊥, and these terms can easily be seen to satisfy (i)-(iv). The structure
of PµΣ

Γ guarantees that the cases are indeed exhaustive.

θΓ
(
ΠµΣ

)
:=


µΣΠ if Π ∈PµΣ

Γ , Π̃Π ∉PµΣ
Γ for all Π̃ 6= ε

θΓ
(
LΠµΣ

) ·−→ θΓ
(
RΠµΣ

)
if

{
LΠ, RΠ

}⊂PµΣ
Γ ,

⊥ otherwise.
■

The terms θΓ(ΠµΣ) 6= ⊥ are then used in the translations of arbitrary sets of path equations to
semi-unification problems.

Theorem 2.2.20. Every finite set of path equations Γ can be effectively reduced to a generalized
semi-unification problem SΓ such that

(i) SΓ contains as many distinct tags as Γ mentions distinct Si,

(ii) every solution of SΓ is also a solution of Γ,

(iii) every solution of Γ can be effectively transformed into a solution of SΓ.

Proof. With θ as in lemma 2.2.19, the translation of a finite Γ into a generalized semi-unification
problem is carried out by

SΓ :=
{

θΓ
(
µΣ

) ≤̇i θΓ
(
µΣSi

) ∣∣∣PµΣSi
Γ 6= ;

}
1O⋃ {

µ
.= θΓ

(
µ
) ∣∣∣Pµ

Γ 6= ;
}

2O⋃ {
θΓ

(
ΠµΣ

) .= θΓ
(
Π′νΣ′) ∣∣∣ΠµΣ .=Π′νΣ′ ∈Γ

}
3O

which, since only finitely many PµΣ
Γ can be non-empty, is clearly an effective process. The role

of 1O is to enforce that the terms θΓ(µΣSi) are indeed the images of θΓ(µΣ) under Si. 2O merely
establishes a connection between the auxiliary variables occurring in the terms produced by θΓ,
and original variables from the set of path equations Γ. Last, but certainly not least, 3O includes
all the constraints of Γ into SΓ, but expressed in terms of the auxiliary variables introduced by θΓ.

(i). Satisfied because PµΣ§i
Γ 6= ; in particular requires that Si is mentioned in Γ, cf. definition

2.2.17.

(ii). Let S,S1, . . . ,Sk be a solution of SΓ, and assume that ΠµΣ .=Π′νΣ′ ∈Γ. Then

⊥ 2.2.19 (i)6= θΓ(Πµ

=Σ︷ ︸︸ ︷
Si1 . . .Sik )S

3O= θΓ(Π′ν
=Σ′︷ ︸︸ ︷

S j1 . . .S jk′ )S
2.2.19 (ii)= Π

(
θΓ(µSi1 . . .Sik )S

) = Π′(θΓ(νS j1 . . .S jk′ )S
)

1O= Π
(
θΓ(µSi1 . . .Sik−1 )SSik

) = Π′(θΓ(νS j1 . . .S jk′−1
)SSik′

)
...

...
1O= Π

(
θΓ(µ)SSi1 . . .Sik

) = Π′(θΓ(ν)SS j1 . . .S jk′
)

2O= Π
(
µSΣ

) = Π′(νSΣ′)
and S,S1, . . . ,Sk thus satisfies ΠµΣ .=Π′νΣ′. Since that is true for every ΠµΣ .=Π′νΣ′ ∈ Γ, S,S1,
. . . ,Sk solves Γ.

(iii). Let the variables in the terms produced by θΓ be named µΣΠ as in the proof of lemma 2.2.19,
and let S,S1, . . . ,Sk be a solution of Γ. By construction, none of the variables µΣΠ appear in Γ, but
they could be introduced by one or more of the substitutions S,S1, . . . ,Sk. If that is the case, all
occurrences of such variables in S,S1, . . . ,Sk are replaced by fresh variables from V that do not
clash with any of the variables in the terms θΓ. Note that S,S1, . . . ,Sk still form a solution of Γ
after such a replacement.
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Since S,S1, . . . ,Sk is a solution of Γ, by construction of the sets PµΣ, Π(µSΣ) 6= ⊥ for all Π ∈PµΣ.
These substitutions may thus be extended by setting (remember that µ and µΣΠ are distinct
variables!)

S
(
µΣΠ

)
:=Π(

µSΣ
)
.

for every µ that occurs in Γ. These extended substitutions then satisfy
S

(
θΓ(ΠµΣ)

)=Π(
µSΣ

) 6= ⊥
for every µ in Γ and every Π ∈PµΣ. It remains to be shown that this suffices to make them fulfill
the inequalities in SΓ stemming from 1O, and the equalities stemming from 2O and 3O.

1O. Applying the extended S to an inequality from 1O yields the inequality µΣ≤i µΣSi, which is
clearly satisfied by Si.

2O. Applying the extended S to an equality from 2O yields µS =µS which is obviously true.
3O. Applying the extended S to an equality from 3O yields Π(µSΣ) =Π′(νSΣ′), which must be

true since S,S1, . . . ,Sk solves Γ. ■

This answers the question posed above of whether solvability of arbitrary finite sets of path
equations is a more general problem than semi-unification.

Theorem 2.2.21. The semi-unification problem for k inequalities is effectively equivalent to the
solvability problem for finite sets of path equations mentioning k local substitutions.

Proof. According to definition 2.2.8 every semi-unification problem S containing k inequalities
can be transformed into a set of path equations ΓS mentioning k local substitutions, and per 2.2.10
both problems have the same set of solutions.

Conversely, every finite set of path equations Γ mentioning k distinct local substitutions can,
per theorem 2.2.20, be effectively reduced to a generalized semi-unification problem SΓ with k
distinct inequality tags. By theorem 2.2.16, that generalized semi-unification problem can then be
reduced further to a plain semi-unification problem S̃Γ containing k inequalities. These theorems
also show that every solution of S̃Γ is a solution of Γ, and that every solution of Γ can be effectively
translated into a solution of S̃Γ. ■
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2.3 Boundedness of Path Equations

The raison d’être of path equations is that they provide insight into the existence of a solution of
semi-unification problems. It does not suffice, however, to just look at the original path equations
Γ corresponding to some semi-unification problem. Instead, one must include all those path
equations Γ which are derivable from the original set. Since term equality is, like any sensible
concept of equality, symmetric and transitive, Γ will at least have to include the symmetric and
transitive closure of Γ. It will also have to be closed under applications of Si to both sides of a path
equation, i.e. for every path equation Π1µ1Σ1

.=Π2µ2Σ2 contain Π1µ1Σ1Si
.=Π2µ2Σ2Si because

substitutions (as well-defined maps on the set of terms E) map equal defined (i.e. 6= ⊥) terms to
equal defined terms.

But that alone doesn’t still doesn’t capture all the facts that can be inferred from Γ. Since equal
composite terms have equal subterms, the path equation ΠµΣ .=Π′νΣ′ also implies LΠµΣ .= LΠ′νΣ′
and RΠµΣ .= RΠ′νΣ′. Unless, that is, Π((S(µ))Σ) and Π′((S(ν))Σ′) turn out to be variables, not
composite terms. Thus, appending L or R to an existing path equation requires a proof that this
is not the case. This is the role of the additional premise in the π-Application rule of the following
definition of the deduction system for term equations.1

Definition 2.3.1. (Derivable Path Equations) For a set Γ of path equations, Γ is the closure of
Γ under the following deduction system, and is called the set of derivable path equations. (π
∈ {

L, R
}
, i ∈N)

Π1µ1Σ1
.=Π2µ2Σ2

Π2µ2Σ2
.=Π1µ1Σ1

(Symmetricity)

Π1µ1Σ1
.=ΠνΣ ΠνΣ

.=Π2µ2Σ2

Π1µ1Σ1
.=Π2µ2Σ2

(Transitivity)

Π1µ1Σ1
.= Π2µ2Σ2 Si

Π1µ1Σ1Si
.= Π2µ2Σ2Si

(Si-Application)

Π1µ1Σ1
.= Π2µ2Σ2

[
Π̃2πΠ2µ2Σ2

.=Π′µ′Σ′]
π

πΠ1µ1Σ1
.=πΠ2µ2Σ2

(π-Application)

In the following, multiple consecutive invocations of Si-Application respectively π-Application will
sometimes be contracted into one, and will be labelled Σ-Application respectively Π-Application for
Σ ∈R and Π ∈P . Similarly, a derivation of Π1µ1Σ1 =Πn+1µn+1Σn+1 from ΠiµiΣi =Πi+1µi+1Σi+1
for i ∈ {

1, . . . , n
}
by n−1 applications of Transitivity is sometimes denoted by a single deduction

with the n premises ΠiµiΣi =Πi+1µi+1Σi+1.

Lemma 2.3.2. For an arbitrary set of path equations Γ, substitutions S,S1, . . . solve Γ iff they
solve Γ.
Proof. Since Γ⊃Γ, it is clear that S,S1, . . . solve Γ if they solve Γ. For the converse, it suffices to
check that all of the deduction rules are correct.

Symmetricity,Transitivity. Their correctness follows from the transitivity and symmetricity of
term equality.

Si-Application. The correctness follows from the well-definedness of substitutions as maps from
E to E , and the requirement that substitutions map defined terms to defined terms.
π-Application. Assume the assertion holds for the premise, meaning

Π1(Σ1(S(µ1)))=Π2(Σ2(S(µ2))) 6= ⊥,
Π̃2πΠ2(Σ2(S(µ2)))=Π′(Σ′(S(µ))) 6= ⊥.

From the latter it follows that πΠ2(Σ2(S(µ2))) 6= ⊥ and therefore also that
πΠ1(Σ1(S(µ1)))=πΠ2(Σ2(S(µ2))) 6= ⊥.

For deductions containing more than one invocation of a rule, the result follows by induction. ■
1 The deduction system used in the original proof (cf. [KTU93], page 93) is identical except that its subterm rule does not

include such an additional premise.
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Consider now the following unsolvable semi-unification problem and its corresponding set of path
equations

S := {
α ·−→β ≤̇α}

, ΓS := {
αS1

.= Lα︸ ︷︷ ︸
=G0

, βS1
.= Rα

}
.

The following proof scheme shows that all path equations Gn, n ∈N, of the form LLnα
.= LnαS1

are derivable from the path equation G0, which is one of the two path equations corresponding to
the original semi-unification problem.

Gn
↓

LLnα
.=LnαS1

Gn
↓

LLnα
.=LnαS1 S1[

LLnαS1
.=LnαS1S1

]
L

LLn+1α
.=Ln+1αS1
↓

Gn+1

Due to lemma 2.3.2, any solution of the original semi-unification problem would have to satisfy
all these derived path equations, which in particular means the global substitution S of such a
solution would have to satisfy LnS(α) 6= ⊥ for every n ∈N. Since no finite term S(α) can accomplish
that, it follows that Γ has no solution. Note, however, that some solvable systems of path equations
also allow the derivation of path equations containing arbitrary long paths. For example, Γ ={

LαS1
.= α

}
allows the derivation of LnαSn

1
.= Ln−1αSn−1

1 for arbitrary n ∈N. The difference is
that the not all these paths apply to the same term

The following definition and lemma formalize this idea. Note that since Γ is closed under
Symmetricity, the fact that it refers only to the left-hand sides of path equations is immaterial.

Definition 2.3.3 (Boundedness). For a set of path equations Γ,

(i) The set ∆Γ containing all derivable path expressions is

∆Γ :=
{
ΠµΣ

∣∣∣ ΠµΣ .=Π′νΣ′ ∈Γ
}

(ii) Γ is called bounded if its set of derivable path expressions ∆Γ contains, for every µ ∈ V and
Σ ∈R, only finitely many path expressions of the form ΠµΣ, and unbounded otherwise.

(iii) If Γ is the set of path equations corresponding to a (semi-)unification problem, that problem
is called bounded (respectively unbounded) if Γ is bounded (respectively unbounded).

Lemma 2.3.4. If Γ is a set of path equations and S,S1, . . . one of its solutions,
ΠµΣ ∈∆Γ implies Π

(
(µS)Σ

) 6= ⊥
Proof. Follows from the fact that solutions of Γ are solutions of Γ (lemma 2.3.2) and the requirement
that solutions may not fulfill path equations by mapping both sides to ⊥ (definition 2.2.6). ■

From this, the one half of the indented equivalency of boundedness and solvability follows immedi-
ately

Theorem 2.3.5. If a set of path equations Γ is unbounded, it has no solution.

Proof. Let Γ be unbounded. Then there is a variable µ and a Σ such that ∆Γ contains a sequence
ΠnµΣ with |Πn| ≥ n. Thus, if S,S1, . . . were a solution of Γ, evaluating (µS)Σ would need to yield a
term with infinite depth due to lemma 2.3.4, since it would need to satisfy Πn(µSΣ) 6= ⊥ for all n.
But that is impossible, hence Γ has no solution. ■
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2.4 Solvability of Path Equations

The goal of this section is to explicitly construct a solution of a set of path equations, provided
that this set is bounded. The crucial step in such a construction is, of course, to construct the
terms that result from applying some substitution (either S, or one of the Si) to a variable. Each
derivable path expression (i.e., the elements of∆Γ) corresponds to such a term, or a subterm thereof.
However, not every derivable path expression corresponds to a distinct subterm – derivable path
equations, after all, say with subterms in a solution must necessarily be identical, so ifΠµΣ .=Π′νΣ′
is derivable, the terms associated with ΠµΣ and Π′νΣ′ must be identical. A natural choice of set
to construct the solution from is thus not ∆Γ, but rather ∆Γ modulo the path equations in Γ, i.e.
the derivable identities between path expressions. Unfortunately, however, that does not quite
work out, for two reasons.

First, while each element of ∆Γ does correspond to a term, or subterm, of the image of some
variable under S or Si, not every such subterm corresponds to an element of ∆Γ. The set of path
equations Γ = {

La .= Lb, Ra .= Rb
}
, for example, has the solution S(a) = S(b) = x ·−→ y. Yet no

element of ∆Γ =
{

La, Lb, Ra, Rb
}
corresponds to this term – the elements all correspond to one of

the subterms x and y. One could fix that by adding a new rule to the deduction system of path
equations which allows a .= b to be derived from La .= Lb,Ra .= Rb, but there is no real need for
that. It is sufficient to instead use the set of all possible path equations W , and partition that
set modulo the derivable path equations. That will still yield distinct equivalence classes for a
and b, but that doesn’t matter. The two terms corresponding to those equivalence classes will
automatically be identical, since Γ already constrains both their left and right subterms to be
identical – in other words, La,Lb respectively Ra,Rb will lie in the same equivalence class.

Second, not all necessary identities do directly correspond to derivable path equations. Take
for example the (very simple) system of path equations Γ= {

a .= b, La .= c
}
. Note that Γ does not

“speak” about Ra at all! But it does speak about La, meaning L(aS) must be defined for a solutions
S, and so any solution of Γ will still need to define R(aS) as well – subterms can only have no
subterm, or a left and a right subterm, after all. Such a solution is S(a)= S(b)= c ·−→ d. Note that
this solution does not only define R(aS), it also obeys R(aS) = R(bS), even though Ra .= Rb 6= Γ.
And in fact, every solution of Γ will have to obey R(aS)= R(bS), because otherwise a = b wouldn’t
hold. Note that this problem is related to the first problem described above, but the direction is
different – here, two “deeper” subterms need to be identical, but the path equations only constraint
the terms “closer to the root”, while above the subterms where provably identical and the identity
of the upper-level terms followed automatically. That difference in direction is relevant, because
terms are constructed recursively starting from their trivial subterms, which are variables. To
avoid having to “look ahead” in the construction, the following definition folds that “look-ahead
step” into the equivalence relation that is used to partition W .

Definition 2.4.1 (Equivalent Path Expressions). The equivalence relation ∼Γ induced on W by a
set of path equations Γ is

ΠµΣ∼Γ Π′νΣ′ ⇔
{
Π=Π′, µ= ν, Σ=Σ′ or
For some Π̃ ∈P , Π= Π̃Π̂, Π′ = Π̃Π̂′ and Π̂µΣ .= Π̂′νΣ′ ∈Γ

Proof that∼Γ is indeed an equivalence relation. The relation ∼Γ is reflexiv by definition, and sym-
metric because Γ is (again by definition) closed under Symmetricity. That leaves the transitivity of
∼Γ. Assume thus that Π1µ1Σ1 ∼Γ Π2µ2Σ2 and Π2µ2Σ2 ∼Γ Π3µ3Σ3. The situation is then as follows

Π̂1µ1Σ1
.= Π̂2µ2Σ2 ∈Γ, Π1 = Π̃Π̂1, Π2 = Π̃Π̂2 = Π̃′Π̌2,

Π̌2µ2Σ2
.= Π̌3µ3Σ3 ∈Γ, Π3 = Π̃′Π̌3.

It follows from Π̃Π̂2 = Π̃′Π̌2 that Π̂2 is either a prefix or an extension of Π̌2, and it can be assumed
without loss of generality that it’s the latter, i.e. that Π̂2 = Π̊Π̌2 for some Π̊. Substituting that
into Π̃Π̂2 = Π̃′Π̌2 yields Π̃Π̊Π̌2 = Π̃′Π̌2 and therefore Π̃Π̊= Π̃′. Thus, Π3 = Π̃′Π̌3 = Π̃Π̊Π̌3, and the
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derivation

Π̌3µ3Σ3
.=Π̌2µ2Σ2

[ Π̂2︷︸︸︷
Π̊Π̌2µ2Σ2

.=Π̂1µ1Σ1
]
Π̊

Π̊Π̌2µ2Σ2
.=Π̊Π̌3µ3Σ3

Π̂2︷︸︸︷
Π̊Π̌2µ2Σ2

.=Π̂1µ1Σ1

Π̊Π̌3µ3Σ3
.=Π̂1µ1Σ1

shows

Π3︷ ︸︸ ︷
Π̃Π̊Π̌3µ3Σ3 ∼Γ

Π1︷︸︸︷
Π̃Π̂1µ3Σ3. ■

Having defined an equivalence relation on W , the meaning of equivalence class (i.e. partition)
follows naturally. Since equivalence classes contain path expressions, it will be convenient to use
the same syntax path expressions use to append L,R to the left, and one of the Si to the right. As
always when one “pushes forward” a definition from a set to its set of cosets, one needs to check
whether the resulting operation is well-defined.

Definition 2.4.2 (Equivalence Classes). For a set of path equations Γ,

(i) The set WΓ :=W
/∼Γ denotes the set of equivalent path expressions modulo Γ,

(ii) The equivalence class
[
ΠµΣ

]
Γ of a path expression ΠµΣ ∈W is[
ΠµΣ

]
Γ

:= {
Π′νΣ′ ∣∣ Π′νΣ′ ∼Γ ΠµΣ

}
.

(iii) For an equivalence class
[
ΠµΣ

]
Γ ∈WΓ and arbitrary Π̃ ∈P ,Σ̃ ∈R,
Π̃

[
ΠµΣ

]
ΓΣ̃ := [

Π̃ΠµΣΣ̃
]
Γ

Proof that Π̃
[
ΠµΣ

]
ΓΣ̃ is well-defined by (iii). If ΠµΣ ∼Γ Π′νΣ′, then Π̂µΣ

.= Π̂′νΣ′ ∈ Γ such that
Π= Π̃Π̂ andΠ′ = Π̃Π̂′ for some Π̃ ∈P . Applying Si-Application to Π̂µΣ .= Π̂′νΣ′ proves thatΠµΣSi ∼Γ
Π′νΣ′Si. That LΠµΣ ∼Γ LΠ′νΣ′ respectively RΠµΣ ∼Γ RΠ′νΣ′ is an immediate consequence of
the definition of ∼Γ. The general case follows by induction on the lengths of Π̃ and Σ̃. ■

As has been already said, the role of WΓ will be to serve as a “template” along which the terms
that appear in a solution of Γ will be constructed. To be able to do that, however, it needs to be
established thatWΓ has a structure compatible with that of the set of terms E . A defining property
of terms is that they are non-circular – a terms can never be proper subterm of itself, or in the
language of paths, Πt = t only for Π= ε. The following lemma shows that the same holds for WΓ –
if Γ is bounded, that is. The failure of this lemma for some unbounded Γ (take e.g. Γ= {

a .= La
}
)

is, in fact, one of the reasons why unbounded sets of path equations (as was already shown) do not
have solutions.

Lemma 2.4.3. If a set of path equations Γ is bounded, Πω 6=ω for all ω ∈WΓ and all Π 6= ε,
Proof. If Πω=ω= [

Π̌µΣ
]
Γ ∈WΓ then ΠΠ̌µΣ∼Γ Π̌µΣ, i.e. there is a Π̂µΣ .= Π̂′µΣ ∈ Γ such that for

some Π̃ one has ΠΠ̌ = Π̃Π̂ and Π̌ = Π̃Π̂′. Since ΠΠ̌ > Π̌, it follows that Π̂ > Π̂′, or in other words
Π̂= Π̊Π̂′ for some Π̊ 6= ε. For n = 1, the premises of the derivation

Π̊n−1Π̂︷ ︸︸ ︷
Π̊nΠ̂′µΣ .=Π̊n−1Π̂′µΣ

[Π̊n−1Π̂︷ ︸︸ ︷
Π̊nΠ̂′µΣ .=Π̊n−1Π̂′µΣ

]
Π̊

Π̊n+1µΣ
.=Π̊nΠ̂′µΣ

are simply Π̂µ .= Π̂′µ and repeating it proves that Π̊nΠ̂′µΣ ∈∆Γ for arbitrary n. Since Π̊ 6= ε, that
contradicts Γ being bounded. ■

When using WΓ as a template, i.e. when constructing terms “along” the structure of WΓ, one
will need to know when to stop, i.e. when to insert a variable instead of a subterm. The example
Γ= {

La .= Ra, Lb .= Rb
}
from above shows that doing so once one finds an equivalence class that

does not contain any derivable path expression doesn’t quite work –
[
a
]
Γ =

{
a

}
in this example,

yet obviously a must be mapped to a composite term, not a variable. Yet this criterion is nearly
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correct – the only required tweak is to look at all the equivalence classes “below”, i.e. all those
that can be produced by appending some path, and see if any of those are “spoken about” by Γ.
Equivalence classes for which this isn’t the case are, per the following definition, terminal.

Definition 2.4.4. An equivalence class ω ∈WΓ is called terminal if
Π̃ω∩∆Γ =; for all Π̃ 6= ε,

and non-terminal otherwise. •WΓ ⊂WΓ is the set of terminal equivalence classes.

Terminality of an equivalence class ω is a property “inherited” by the images of ω under L and R.

Lemma 2.4.5.

(i) If ω ∈WΓ is terminal, Π̃ω is terminal for all Π̃ ∈P .

(ii) If Πω ∈WΓ is non-terminal, Π̃ω is non-terminal for all Π̃≤Π.
Proof. Follows immediately from definition 2.4.4. ■

The following lemma shows that images of terminal equivalence classes under L and R are
unaffected by Γ – once the contents of some terminal ω is known, Πω can be found without
consulting Γ at all.

Lemma 2.4.6. If ω ∈WΓ is terminal, Π̃ω= {
Π̃ΠµΣ

∣∣ ΠµΣ ∈ω }
for all Π̃ ∈P .

Proof.

Π̃ω⊃ {
Π̃ΠµΣ

∣∣ ΠµΣ ∈ω }
. Follows immediately from the definition 2.4.2 of Π̃ω.

Π̃ω⊂ {
Π̃ΠµΣ

∣∣ ΠµΣ ∈ω }
. Assume that Π′νΣ′ ∈ Π̃ω, or in other words that Π̃ΠµΣ∼Γ Π′νΣ′ for

some ΠµΣ ∈ω. It must be shown that Π′νΣ′ ∈ {
Π̃ΠµΣ

∣∣ ΠµΣ ∈ω }
, i.e. that ?O there is a Π′′ such

that Π′ = Π̃Π′′ and Π′′νΣ′ ∈ω.
Since Π̃ΠµΣ∼Γ Π′νΣ′, there is a Π̂µΣ .= Π̂′νΣ′ ∈Γ with Π̃Π= Π̊Π̂ and Π′ = Π̊Π̂′ for some Π̊. The

situation is thus that
Π̃Π︷︸︸︷
Π̊Π̂ µΣ∼Γ

Π′︷︸︸︷
Π̊Π̂′νΣ′ and Π̂µΣ

.= Π̂′νΣ′ ∈Γ.
Note that Π̃Π= Π̊Π̂ implies that either Π̂>Π or Π̂≤Π.

If Π̂ > Π, i.e. Π̂ = Π1Π for some Π1 6= ε, then Π̂µΣ = Π1ΠµΣ ∈ Π1ω. Since Π̂µΣ ∈ ∆Γ (due to
Π̂µΣ

.= Π̂′νΣ′ ∈Γ), that contradicts Π1ω∩∆Γ =;, i.e. that ω is terminal.

Therefore Π̂ ≤ Π, i.e. Π = Π1Π̂ for some Π1. Substituting into Π̃Π = Π̊Π̂ from above shows
Π̃Π1Π̂ = Π̊Π̂ and hence Π̃Π1 = Π̊. Applying that to Π′ = Π̊Π̂′ from above gives Π′ = Π̃Π1Π̂

′, and
setting Π′′ =Π1Π̂

′ yields the situation

Π̃

Π︷︸︸︷
Π1Π̂µΣ︸ ︷︷ ︸

∈ω
∼Γ

Π′︷ ︸︸ ︷
Π̃Π1Π̂

′︸ ︷︷ ︸
Π′′

νΣ′ and Π̂µΣ
.= Π̂′νΣ′ ∈Γ.

Note that in particular, Π′νΣ′ = Π̃Π′′νΣ′, thus fulfilling the first requirement put forth in ?O. From
ω 3ΠµΣ =Π1Π̂µΣ ∼Γ Π1Π̂

′νΣ′ =Π′′νΣ′ (use Π1 as the Π̃ in the definition of ∼Γ), it follows that
Π′′νΣ′ ∈ω, which fulfills the second condition from ?O and thus concludes the proof. ■

Having shown that terminal equivalence classes are “uninfluenced” by ω, now in a way the opposite
is shown for non-terminal equivalence classes. Note that the following lemma is not a trivial
consequence of the definition of terminality – the definition just requires a Π̃ 6= ε such that some
element of Π̃

[
ΠµΣ

]
Γ lies also in ∆Γ, whereas the following shows that, in fact, Π̃ΠµΣ itself lies in

∆Γ. This will make reasoning about non-terminal equivalence classes a quite a bit simpler.

Lemma 2.4.7. If
[
ΠµΣ

]
Γ is non-terminal, Π̃ΠµΣ ∈∆Γ for some Π̃ ∈P .
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Proof. If
[
ΠµΣ

]
Γ is non-terminal, there is a Π̃ 6= ε such that Π̃ΠµΣ∼Γ Π′νΣ′ ∈∆Γ. It follows that

there are Π̊,Π̂,Π̂′ ∈P which yield
Π̃Π︷︸︸︷
Π̊Π̂ µΣ∼Γ

Π′︷︸︸︷
Π̊Π̂′νΣ︸ ︷︷ ︸

∈∆Γ
and Π̂µΣ

.= Π̂′νΣ′ ∈Γ.

The derivation

Π̂µΣ
.=Π̂′νΣ′

Π̊Π̂′νΣ ∈∆Γ
↓[

Π̊Π̂′νΣ .= . . .
]
Π̊

Π̊Π̂︸︷︷︸
Π̃

µΣ
.=Π̊Π̂′νΣ′

shows that Π̃µΣ ∈∆Γ as required. ■

So far, the only statements pertaining the structure of WΓ were lemma 2.4.3 and 2.4.5 – the other
lemmata where concerned with the property of single equivalence classes and their relationship
with ∆Γ. But as was said already, to use WΓ as a template, its structure must be shown to be
sufficiently similar to that of E , which will now be tackled.

The first such structural lemma concerns the relationship of
[
Πµ

]
Γ and

[
ΠµSi

]
Γ (although it

is stated in its generalized form). It confirms that one may indeed let non-terminal equivalence
classes correspond to composite terms, because such equivalence classes yield other non-terminal
equivalence classes when additional Si are appended – just as substitutions map composite terms
to composite terms.

Lemma 2.4.8. If ω ∈WΓ is non-terminal, ωΣ̃ is non-terminal for arbitrary Σ̃ ∈R.

Proof. If ω= [
ΠµΣ

]
Γ ∈WΓ is non-terminal, then according to lemma 2.4.7 there is a Π̃ such that

Π̃ΠµΣ
.=Π′νΣ′ ∈Γ. Invoking Σ̃-Application on this path equation yields Π̃ΠµΣΣ̃ .=Π′νΣ′Σ̃ ∈Γ, thus

in particular that Π̃ΠµΣΣ̃ ∈∆Γ, and therefore that
[
ΠµΣΣ̃

]
Γ =ωΣ̃ is non-terminal. ■

It follows immediately from the definition of terminality that if
[
ΠµΣ

]
Γ is non-terminal, all the

equivalence classes “between”
[
µΣ

]
Γ and

[
ΠµΣ

]
Γ, i.e.

[
Π′µΣ

]
Γ with Π′ <Π are non-terminal. And

all these equivalence classes, as will be seen, actually correspond to some subterm that appears in
a solution of Γ. But there are, of course, very many terminal equivalence classes that do not play
any relevant role in the construction of a solution – for Γ= {

a .= a
}
, for example,

[
La

]
Γ is utterly

irrelevant. Some terminal equivalence classes are relevant, though – it was already mentioned
that exactly those equivalence classes will correspond to variables, and some of these variables
must, of course, appears in a solution if it is to consist of well-formed terms. Formalizing the
distinction between relevant and irrelevant equivalence classes is the gist of

Definition 2.4.9. A Πω ∈WΓ is said to be reachable from ω ∈WΓ if
Π̃ω is non-terminal for all Π̃<Π,

and unreachable from ω otherwise. Note that all non-terminal Πω are reachable from ω, and that
ω is always reachable from itself.

In the interpretation of terminal equivalence classes as “variables” and non-terminal ones as
“composite terms”, the following lemma simply asserts that the “composite terms” all have finite
depth (i.e. , are actually term as defined at the beginning).

Lemma 2.4.10. For a bounded set of path equations Γ, there is a bound Mω
Γ for every ω ∈WΓ such

that if |Π| > Mω
Γ then Πω is unreachable from ω.

Proof. (ii). Assume ω= [
Π̂µΣ

]
Γ and that (Πn)n∈N is a sequence of paths with |Πn| ≥ n and where

Πnω is reachable from ω for all n. Due to lemma 2.4.7, there would then exist a Π̃n for every Πn
such that Π̃nΠnΠ̂µΣ ∈∆Γ. Since

∣∣Π̃nΠnΠ̂
∣∣> |Πn| ≥ n that contradicts Γ being bounded. ■
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In the proofs to come, some convenient way to prove two terms equal will be required. The basis
for that was already introduced in lemma 2.4.11 with the concept of witnesses, and the following
merely provides an easy way of finding such witnesses for the paths constructed from WΓ.

Lemma 2.4.11. For a bounded set of path equations Γ and ω ∈WΓ,
Wω := {

Π̃ ∈P ∣∣ Π̃ω is terminal and reachable from ω
}

has the property (ii) of lemma 2.2.12, i.e. that
for every Π′ ∈P there is a Π ∈W with either Π≤Π′ or Π′ ≤Π.

Proof. Let Π′ ∈P be an arbitrary path.

If ωΠ′ is terminal, let Π̊π̃Π̃ :=Π′ where π̃ ∈ {
L, R

}
and Π̃ is the longest prefix of Π′ for which

Π′ω is non-terminal. Then π̃Π̃≤Π′, and π̃Π̃ω is terminal and reachable from ω, so π̃Πω ∈Wω.

If ωΠ′ is non-terminal, lemma 2.4.10 implies that there are extensions Π̊>Π′ such that Π̊ω is
unreachable from ω. Let π̃Π̃ := Π̊ be the shortest such extension Π̊, then Π̃ω is reachable from ω. If
Π̃ω were non-terminal, π̃Π̃ω would also be reachable from ω, so Π̃ω is terminal. Thus Π̃ω ∈Wω. ■

After having put the foundations in place by establishing enough of the structure of WΓ, it is
now straight-forward to find the terms corresponding to equivalence classes of path expressions.
Since such terms will introduce new variables, i.e. variables that do not occur in Γ, some way to
select those variables which ensures that they do not clash with any existing variables in required.
That is accomplished by the map ιΓ below. Instead of trying to prevent clashes by excluding the
variables which occur in Γ, however, ιΓ simply assigns distinct variables to all terminal equivalence
classes, and ΘΓ hence renames all the variables in Γ, thereby avoiding any possibility of conflicts.

Definition 2.4.12. For a bounded set of path equations Γ, let

(i) ιΓ :
•WΓ→V be an embedding of •W into V ,

(ii) ΘΓ : WΓ→ E be the recursively defined map from equivalence classes to term

ΘΓ(ω) :=
{
ιΓ(ω) if ω is terminal,
ΘΓ(Lω) ·−→ΘΓ(Rω) otherwise.

Proof that ΘΓ is well-defined. The bound Mω
Γ from lemma 2.4.10 ensures that the recursive ex-

pansion of ΘΓ(ω) reaches the first case, and thus stops expanding, no later than at the Mω
Γ -th level.

ΘΓ(ω) is thus a term in E and depthΘΓ(ω)≤ Mω
Γ . ■

The crucial property of the ΘΓ defined above is that the terms corresponding to path expressions
mimick the structure of W , i.e. that e.g. the term corresponding to Lω is indeed the left subterm
of the term corresponding to ω. This fact is formalized by

Lemma 2.4.13. For a bounded set of path equations Γ and ω ∈WΓ,
Π

(
ΘΓ(ω)

)=ΘΓ(Πω) 6= ⊥ if Πω is reachable from ω.

Proof. If ω is non-terminal, then by definition ΘΓ(ω) = ΘΓ(Lω) ·−→ ΘΓ(Rω), and it follows that
πΘΓ(ω)=ΘΓ(πω) for π ∈ {

L, R
}
. The general case follows by induction on the length of Π, and Πω

being reachable from ω guarantees that all induction steps encounter non-terminal equivalence
classes.

If ω is terminal, Πω is only reachable for Π= ε and the assertion is trivially true in this case. ■

It remains to explicitly define the substitutions S and S1,S2, . . . using the terms ΘΓ. S is particu-
larly simply – each variable is simply replaced by the term corresponding to its equivalence class.
Note that this includes all the variables that appear in Γ, even those which aren’t expanded into
composite terms, but rather just mapped to variables again. S thus always renames all variables.

One could, in principle, define Si similarly by stating that Si
(
ΘΓ(ω)

)=ΘΓ(ωSi). But that over-
defines Si, because it defines not only the images of variables under Si, but the images of arbitrary
terms. So if one chooses that route (which is certainly possible!) one would need to then prove that
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all these definitions are in fact compatible. So instead, the following defines only the images of
variables. But note that for those, the definition below is identical to the one that was just given!
Assume that ω is terminal, i.e. that σ=ΘΓ(ω)= ιΓ(ω) ∈V . Then Si : σ→ΘΓ

((
ι−1
Γ (σ)

)
Si

)
is just a

more explicit way of expressing Si
(
ΘΓ(ω)

)=ΘΓ(ωSi).

Theorem 2.4.14. For a bounded set of path equations Γ and ΘΓ as in 2.4.12, let

S : V → E : µ→ΘΓ

([
µ
]
Γ

)
,

Si : ιΓ
( •WΓ

)→ E : σ→ΘΓ

((
ι−1
Γ (σ)

)
Si

)
Then

(i) Si
(
ΘΓ(ω)

)=ΘΓ(ωSi) 6= ⊥

(ii) Π
((
ΘΓ(ω)

)
Σ

)
=ΘΓ

(
ΠωΣ

) 6= ⊥ if ΠωΣ is reachable from ωΣ,

(iii) S,S1, . . . form a solution of Γ.

Proof.

(i). (a). If ω is terminal, ΘΓ(ω)= ιΓ(ω)=σ ∈ ιΓ
( •WΓ

)⊂V , and

Si
(
ΘΓ(ω)

)= Si
(
ιΓ(ω)

)= Si
(
σ

)=ΘΓ((ι−1
Γ (σ)

)
Si

)
=ΘΓ(ωSi) 6= ⊥

follows from the definition of Si.

(b). Otherwise, ω is non-terminal. Let Wω be as in lemma 2.4.11 and π̃Π̃ ∈ Wω. π̃Π̃ω is then
terminal and case (a) thus applies to it, justifying aO. Since π̃Π̃ω is reachable from ω, Π̃ω on the
other hand is non-terminal, so is therefore Π̃ωSi due to lemma 2.4.8, and via lemma 2.4.13 this
proves 1O. 2O follows from lemma 2.2.4, and all this together shows that

π̃Π̃
(
ΘΓ

(
ωSi

)) 1O=ΘΓ
(
π̃

non-terminal︷ ︸︸ ︷
Π̃ωSi

) aO= Si

(
ΘΓ

(
π̃

non-terminal︷︸︸︷
Π̃ω︸ ︷︷ ︸

terminal

)) 1O= Si

(
π̃Π̃ΘΓ(ω)︸ ︷︷ ︸

∈V6=⊥

)
2O= π̃Π̃

(
Si

(
ΘΓ(ω)

))6= ⊥ for all π̃Π̃ ∈Wω.

By lemma 2.2.12 (note that 2.4.11 guarantees that Wω has the required properties) this is sufficient
to conclude (i).

(ii). Applying (i) repeatedly shows that
(
ΘΓ(ω)

)
Σ = ΘΓ(ωΣ) and the rest follows from lemma

2.4.13.

(iii). Let ΠµΣ .=Π′νΣ′ be an arbitrary path equations in Γ. The interpretation of that equation
under S,S1, . . . is

Π
(
(µS)Σ

)=Π′((νS)Σ′),
which after expanding the definition of S reads

Π
((
ΘΓ

[
µ
]
Γ

)
Σ

)
=Π′

((
ΘΓ

[
ν
]
Γ

)
Σ′

)
.

Now (ii) transforms to (note that since ΠµΣ, Π′νΣ′ ∈∆Γ, the equivalence class
[
ΠµΣ

]
Γ respectively[

Π′νΣ′]
Γ is reachable from

[
µΣ

]
Γ respectively

[
ν′Σ′]

Γ)
ΘΓ

[
ΠµΣ

]
Γ =ΘΓ

[
Π′νΣ′]

Γ 6= ⊥,
and that is trivially true, since ΠµΣ .= Π′νΣ′ ∈ Γ, hence ΠµΣ ∼Γ Π′νΣ′ and therefore

[
ΠµΣ

]
Γ =[

Π′νΣ′]
Γ. ■

This finally establishes the equivalency of boundedness and solvability of set of path equations –
the remaining half of the equivalency now follows trivially from the above.

Theorem 2.4.15. A set of path equations Γ has a solution iff it is bounded.

Proof. Follows immediately from theorem 2.3.5 and 2.4.14. ■
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Corollary 2.4.16. A (semi-)unification problem S has a solution iff it is bounded.

Proof. By definition, S is bounded iff the corresponding set of path equations ΓS is bounded. Since
ΓS has a solution iff it is bounded, the same holds (due to theorems 2.2.10 respectively 2.2.9) for
S. ■

An Example of How the Construction Proceeds
The following semi-unification problem

a ·−→ b ≤̇ c,
b ·−→ (a ·−→ a) ≤̇ b ·−→ b,

has the corresponding set of path equations Γ
aS1

.= Lc (E1), bS1
.= Rc (E2),

bS2
.= b (E3), aS2

.= Lb (E4), aS2
.= Rb (E5).

To find S as in theorem 2.4.14, one must find all the equivalence classes reachable from
[
a
]
Γ,[

b
]
Γ or

[
c
]
Γ. The deduction rules from 2.3.1 allow these derivations to be made (where applications

of Symmetricity are implicit).

E2
↓

Rc .=bS1

E4
↓

Lb .=aS2 S1[
LbS1

.=aS2S1
]

L
LRc .=LbS1

↓
E6

E2
↓

Rc .=bS1

E5
↓

Rb .=aS2 S1[
RbS1

.=aS2S1
]

R
RRc .=RbS1

↓
E7

E4
↓

Lb .=aS2

E5
↓

aS2
.=Rb

Lb .=Rb
↓

E8

E1
↓

bS2
.=b

E4
↓[

Lb .=aS2
]

L
LbS2

.=Lb
↓

E10

E6
↓

LRc .=LbS1

E8
↓

Lb .=Rb S1LbS1
.=RbS1

LRc .=RbS1

E7
↓

RbS1
.=RRc

LRc .=RRc
↓

E9

No further L-Application or R-Application rules can be applied that would yield anything new.
Applying further Si-Application rules would, but none of the equivalence classes found that way
would be reachable from

[
a
]
Γ,

[
b
]
Γ or

[
c
]
Γ. The relevant equivalence classes are thus[

a
]
Γ =

{
a

}
(terminal)[

b
]
Γ =

{
b, bS2

}
(non-terminal)[

Lb
]
Γ =

{
Lb, Rb, LbS2, aS2

}= [
Rb

]
Γ (terminal)[

c
]
Γ =

{
c
}

(non-terminal)[
Lc

]
Γ =

{
Lc, aS1

}
(terminal)[

Rc
]
Γ =

{
Rc, bS1

}
(non-terminal)[

LRc
]
Γ =

{
LRc, RRc, LbS1, RbS1, aS2S1

}= [
RRc

]
Γ (terminal)
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The following diagram shows the structure induced by L and R on these equivalence classes
and the (arbitrarily named) variables assigned to the terminal equivalence classes by ιΓ.[

a
]
Γ

a′

ιΓ

[
b
]
Γ

[
Lb

]
Γ

=[
Rb

]
Γ

b′
ιΓ

[
Lb

]
Γ

=[
Rb

]
Γ

b′
ιΓ

L R

[
c
]
Γ

[
Rc

]
Γ

[
LRc

]
Γ

=[
RRc

]
Γ

c′′
ιΓ

[
LRc

]
Γ

=[
RRc

]
Γ

c′′
ιΓ

L R

[
Lc

]
Γ

c′

ιΓ

L R

The terms assigned to
[
a
]
Γ,

[
b
]
Γ and

[
c
]
Γ under the ΘΓ from definition 2.4.12 follow immediately,

and since those are the images of a, b and c under S, one finds that
S(a)= a′, S(b)= b′ ·−→ b′, S(c)= c′ ·−→ (c′′ ·−→ c′′)

To find the images of a′, b′, c′ and c′′ under S1 and S2 as in theorem 2.4.14, one additionally
needs to find the terms ΘΓ

(
ι−1
Γ (σ)

)
for σ ∈ {

a′, b′, c′, c′′
}
. One can save a bit of work by observing

that c′ and c′′ only appear in S(c), and since c doesn’t appear on any left-hand side in the original
semi-unification problem, the images of c′ and c′′ under the Si aren’t really relevant. That leaves[

a
]
ΓS1 =

[
Lc

]
Γ[

Lb
]
ΓS1 =

[
LRc

]
Γ[

a
]
ΓS2 =

[
Lb

]
Γ[

Lb
]
ΓS2 =

[
Lb

]
Γ

and it follows that
S1(a′)= c′, S1(b′)= c′′, S2(a′)= b′, S2(b′)= b′.

Applying S to the original semi-unification problem yields
a′ ·−→ (b′ ·−→ b′) ≤̇ c′ ·−→ (c′′ ·−→ c′′),

(b′ ·−→ b′) ·−→ (a′ ·−→ a′) ≤̇ (b′ ·−→ b′) ·−→ (b′ ·−→ b′),
and applying S1 to the left-hand side of the first inequality and S2 to left-hand side of the second
one shows that S,S1,S2 is indeed a solution because

c′ ·−→ (c′′ ·−→ c′′)= c′ ·−→ (c′′ ·−→ c′′),
(b′ ·−→ b′) ·−→ (b′ ·−→ b′)= (b′ ·−→ b′) ·−→ (b′ ·−→ b′).
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2.5 Solvability of Path Equations over Infinite Trees

Perusing the construction of solutions in section 2.4, one can observe that it is only the requirement
of finiteness imposed on terms that prevents unbounded sets of path equations from having a
solution. This section studies the effects of dropping that requirement, i.e. of replacing the set
of terms E with the set of (possibly infinite) binary trees. If this is done without any other
modifications every set of path equations becomes solvable. In fact, there then even exists a single
substitution S which solves every system of path equations – this, for example, holds for the
substitution S which maps every variable to the infinite tree which contains no variables at all.

The existence of such a global unifier S for all terms makes the solvability of systems of path
equations over

∞
E a rather trivial matter. Once tree are allowed to contain constants as well as

variables, however, the problem becomes non-trivial again.
Thus, in the following, C will denote a infinite set of constants, which may appear in any place

that variables where so far allowed to appear, but on which substitutions must act as identities.
Since the recursive construction of E from definition 2.1.1 does not lend itself to an extension which
includes objects of infinite depth, the following uses the definition from [JK93] instead. It defines
(finite or infinite) binary trees as a sets of paths plus an assignment of variables or constants to
the maximal paths in this set, called the exterior (or leaves) of the tree.
Definition 2.5.1 (Trees). The (uncountable!) set of all trees is denoted

∞
E , and contains pairs

t = 〈
tP , t∗

〉
, where

(i) tP ⊂P is the non-empty set of defined paths of t and must satisfy
LΠ ∈ tP ⇔ RΠ ∈ tP for all Π ∈P ,
Π ∈ tP ⇒ Π′ ∈ tP for all Π,Π′ ∈P with Π′ ≤Π,

(ii) t∗ is the variable and constant assignment of t and is a function
t∗ : ext t →V ∪C, where ext t := {

Π ∈ tP
∣∣ Π̃Π ∉ tP for Π̃ 6= ε }

In the definition above, each path in tP “names” a node in the tree t. An equivalent, but sometimes
more convenient, definition of trees as special kinds of (possibly infinite) graphs allows for arbitrary
“names” of interior nodes, and represents the tree’s structure via functions tL, tR which map each
node to its left respectively right subtree. (In the language of graph theory, a tree is thus a directed
graph where each node has either zero or two outgoing edges)
Definition 2.5.2 (Graph Representation of Trees). A t ∈ ∞

E is represented by a quadruple
〈
tI , t>,

tL, tR
〉
consisting of a countable set tI of nodes which do not include ⊥ and are disjoint from V

and C, a root t> ∈ tI ∪V ∪C and functions
tL, tR : tI → tI ∪V ∪C.

For Π=πn . . .π1 ∈P , tΠ again means tπn . . . tπ1 .
To translate from the former definition to the latter, one simply sets

t> :=
{
ε if ε ∉ ext t,
t∗(ε) if ε ∈ ext t,

, tI :=tP ,

tL :Π 7→
{

LΠ if Π ∉ ext t,
t∗(Π) if Π ∈ ext t,

tR :Π 7→
{

RΠ if Π ∉ ext t,
t∗(Π) if Π ∈ ext t.

For the other direction, one similarly sets
tP :={

Π ∈P ∣∣ tΠ
(
t>

) 6= ⊥ }
, t∗ :Π→tΠ

(
t>

)
.

The complete tree τ is simplest infinite tree in
∞
E . It defines all possible paths, and hence contains

no variables. Just as for terms, the symbol ⊥ again denotes undefined trees.
Definition 2.5.3 (The Undefined and the Complete Infinite Trees).

(i) The complete tree τ ∈ ∞
E is the infinite tree with τP =P . Its exterior ext τ is the empty set, and

τ hence contains no variables.

(ii) The symbol ⊥ denotes the special undefined tree, and ⊥P =⊥I =;. As for terms, ⊥∉ ∞
E , and

∞
E⊥ := ∞

E ∪{⊥}
.

26



2. SEMI-UNIFICATION AND PATH EQUATIONS
2.5. Solvability of Path Equations over Infinite Trees

The tree τ highlights the main downside of definition 2.5.2 – the representation of trees as
quadruples

〈
tI , t>, tL, tR

〉
is not unique. For example, τ is represented by both

τ> = 1 τI = {
τ>

}
τL(t>)= τR(τ>)= t>

as well as
τ> = 1 τI = {

τ>, 2
}

τL(τ>)= τR(τ>)= 2, τL(2)= τR(2)= τ>.
Matters regarding tree equality thus always refer to the representation from definition 2.5.1.

The depth of a tree, just as the depth of a term, is the length of the longest path that leads to a
variable or constant.

Definition 2.5.4 (Depth of a Tree). The depth of a tree t ∈ ∞
E is

depth t := max
Π∈tP

|Π| .

In the interpretation of definition 2.5.2, the definitions of the functions1 L and R are quite trivial
– that interpretation already provides suitable functions tL and tR , so all that L and R do is to
redefine t> to refer to the new root. For clarity, the following definition also provides a definition
of these functions which operates on the interpretation of trees as pairs

〈
tP , t∗

〉
. Comparing these

two definitions to the translations between these interpretations outlined above shows that these
two version of the definition do indeed yield identical functions on

∞
E .

Definition 2.5.5. The definitions of the functions L,R on
∞
E are

(i) For the interpretation of trees t ∈ ∞
E as quadruples t = 〈

tI , t>, tL, tR
〉

L :
∞
E → ∞

E⊥ :
〈
tI , t>, tL, tR

〉 7→{〈
tI , tL(t>), tL, tR

〉
if t> ∈ tI ,

⊥ otherwise,

R :
∞
E → ∞

E⊥ :
〈
tI , t>, tL, tR

〉 7→{〈
tI , tR(t>), tL, tR

〉
if t> ∈ tI ,

⊥ otherwise,

(ii) For the interpretation of trees t ∈ ∞
E as pairs t = 〈

tP , t∗
〉

L :
∞
E → ∞

E⊥ :
〈
tP , t∗

〉 7→ 〈{
Π

∣∣ ΠL ∈ tP
}
, Π 7→ t∗(ΠL)

〉
,

R :
∞
E → ∞

E⊥ :
〈
tP , t∗

〉 7→ 〈{
Π

∣∣ ΠR ∈ tP
}
, Π 7→ t∗(ΠR)

〉
,

As for terms, if Π=πn . . .π1 ∈P then Πt means π1 . . .π1(t).

For finite trees, lemma 2.2.14 showed that the set of paths leading to a variable have the “witness
property”, i.e. that every other path in P is either an extension or a prefix of one of these paths. For
infinite trees, this is no longer true – in the complete tree τ, for example, no paths lead to variables
(since there are none). But τ is, in a way, the only tree with this property, as the following lemma
shows. Any path that is neither a prefix, nor an extension, of a path that leads to a variable must
necessarily point to a subtree equal to τ.

Lemma 2.5.6. For every tree t ∈ ∞
E and every path Π ∈P , exclusively either

(i) Π′t ∈V ∪C for some Π′ ≤Π, or
(ii) Π′t ∈V ∪C for some Π′ >Π, or
(iii) Πt = τ, where τ is the complete tree.

Proof. Let t be a tree and Π a path. Case (a). If Πt ∈ V ∪C, (i) applies. Case (b). If Πt =⊥, then
since t 6= ⊥ there are prefixes Π′ ≤Π with Π′t 6= ⊥, and for the longest such prefix Π′t ∈V∪C, hence
(i) applies again. Case (c). If Π′t =⊥ for some Π′ >Π, then according to (b) Π′′t ∈ V ∪C for some
Π′′ ≤Π′ ≥Π. But then necessarily Π′′ ≥Π, and (ii) applies. Case (d). If neither (i) nor (ii) apply,
then in particular Πt 6= ⊥, and Π̃Π 6= ⊥ for all Π̃ ∈P . But that implies Πt = τ and thus (iii). ■

1 Remember that these are closely related, but not identical, to the symbols L,R ∈P – the latter are purely syntactical
objects, while the former are actual functions
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Two terms are, unsurprisingly, equal exactly if they contain the same variables at the same
positions. The following lemma formalizes this, and will be used as a replacement for lemma
2.2.12, which as explained above fails for infinite trees.

Lemma 2.5.7. If t,u ∈ ∞
E and t 6= u, then Πt 6=Πu ∈V ∪C for some Π ∈P .

Proof. If t 6= u, then either tP 6= uP or t∗(Π) 6= u∗(Π) for some Π ∈ ext u. In the latter case,
Πu ∈V∪C and Πt 6=Πu follow immediately. Assume thus that tP 6= uP , in which case without loss
of generality one may assume that for some Π ∈P , Π ∈ tP but Π ∉ uP . But then for some prefix
Π′ <Π, Π′ ∈ uP and for the longest such prefix, Π′ ∈ ext u and thus Πu ∈V ∪C. Since Π′ <Π, and
since Π ∈ tP , Π′ ∉ ext t and thus Π′t =⊥ 6=Π′u ∈V ∪C as required. ■

The simplest class of trees in
∞
E are the finite trees, which contain only finitely many nodes and

correspond to terms in E except that they may include constants. A larger class is formed by
the rational trees1, which may have infinitely many nodes, but only finitely many non-identical
subtrees. Put differently, rational trees only contains infinitely many nodes if one insists (as
definition 2.5.1 does, but 2.5.2 doesn’t) that distinct paths leads to distinct nodes, even if those
nodes represent identical subterms. But if one allows nodes to be “reused”, then rational trees
can be represented using only a finite set of nodes.

Definition 2.5.8 (Classes of Trees). The set of trees
∞
E contains the subsets

(i) E , containing constant-free trees t with |tP | <∞, called terms2,

(ii) Ê , containing trees t with |tP | <∞, called finite trees or terms with constants,

(iii) E̊ , containing trees t with |tI | <∞, called rational trees3.

Substitutions on
∞
E are characterized by turning the property proven for substitutions on E in

lemma 2.2.4 – namely that substitutions are precisely those maps which commute with L and R –
into a definition. As the name constants implies, substitutions are of course also prevented from
replacing constant symbols.

Definition 2.5.9. A function S :
∞
E → ∞

E is called a substitution on
∞
E if

S(η)= η for all η ∈ C,
S(Πt)=ΠS(t) 6= ⊥ for all t ∈ ∞

E and all Π ∈P with Πt 6= ⊥.
A substitution is called finite respectively rational if S(µ) is finite respectively rational for all µ ∈V .
Again as for terms, there is a one-to-one correspondence between arbitrary function S̊ : V → ∞

E and
substitutions on

∞
E .

Lemma 2.5.10. For every S̊ : V̊ → ∞
E with V̊ ⊂ V there is a unique substitution S on

∞
E , called the

extension of S̊ to
∞
E , with S|V̊ = S̊ and S|V\V̊ = id. S. Conversely, for every substitution S on

∞
E , the

extension of S̊ = S|V to
∞
E is again S.

Path equations can be used to describe trees as well, but must then be allowed to contain constants
as well as variables.

Definition 2.5.11 (Path Expressions and Equations with Constants).

(i) The set of path expressions with constants W is
W := {

ΠµΣ
∣∣ µ ∈V ∪C, Π ∈P , Σ ∈R }

(ii) A path equation with constants is an equation of the form
Π1µΣ1

.=Π2νΣ2

where Π1µΣ1, Π2νΣ2 ∈W are path expressions with constants.

1 What this text calls rational tree is called regular term in [JK93]
2 This may be read as either a redefinition of E or as an embedding of the original set E into

∞
E

3 Since the representation of trees as graphs, i.e. as quadruples
〈
tI , t>, tL, tR

〉
, is non-unique, requiring that

∣∣tI ∣∣<∞ is
slightly ambiguous. What is meant is, of course, that some representation which satisfies this requirement must exist.
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Note that W denotes both the original set of path expressions from definition 2.2.3, and the
expanded version which may include constants.

With these definitions in place, the definitions of unification, semi-unification and generalized
semi-unification problems can very naturally be extended to allow solutions over

∞
E instead of over

E . The problems themselves, however, are still only permitted to contain only finite trees – but
these finite trees may now contain constants as well as variables. The translation into sets of path
equations works as before, but course will now yield equations containing constants.

Definition 2.5.12 (Unification and Semi-Unification with Constants).

(i) Unification (2.1.4), semi-unification (2.1.8) and generalized semi-unification (2.2.15) problems
with constants contain finite trees with constants instead of terms. The corresponding set of
path equations of such a problem will likewise contain path equations with constants.

(ii) Unifiers, semi-unifiers and local substitutions for such problems may be arbitrary substitu-
tions over

∞
E , i.e. may introduce infinite terms.

(iii) A solution is called finite respectively rational if all substitutions S,S1, . . . are finite respec-
tively rational.

As they do for problems without constants, the corresponding sets of path equations faithfully
represents (semi-)unification problems with constants. Since the trees contained in such a problem
are required to be finite, the proof from section 2.2 works unmodified (except that, again, constants
may appear everywhere that variables appeared in the original proof).

Theorem 2.5.13. Substitutions S,S1, . . . solve a unification or semi-unification problem with
constants iff they solve the corresponding set of path equations.

For sets of path equationswithout constants, boundednesswas shown to be necessary and sufficient
for a solution over the set of finite terms E to exist. Consistency plays the same role for sets of
path equations with constants, if one allows arbitrary (i.e. possibly irrational) solutions. Just
as boundedness represented the requirement that terms be finite, consistency represents the
requirement that solutions do not replace constants. And as for boundedness, the necessity of
consistency for the existence of a solution follows almost immediately for the definition, whereas
sufficiency is shown by the explicit construction of a solution.

Definition 2.5.14. A set of path equations Γ is said to be consistent if
ΠηΣ

.=Π′νΣ′ ∈Γ with η ∈ C implies Π= ε and either ν ∉ C or ν= η.
A semi-unification problem S is called consistent if ΓS is consistent.

Theorem 2.5.15. An inconsistent set of path equations Γ has no solution over
∞
E .

Proof. Since constants cannot contain subterms, and since every solution of a set of path equations
must yield defined terms for all the derivable path equations (see definition 2.2.6), a set of path
equations cannot have a solution if any path equation of the form ΠµΣ with Π 6= ε and µ ∈ C is
derivable from it. Similarly, two distinct constants cannot be made equal by any substitution, and
thus derivability of an equation of the form µΣ

.= νΣ′ with µ,ν ∈ C and µ 6= ν prevents a set of path
equations from having a solution as well. ■

Solution of sets of path equations over the set
∞
E of infinite trees are constructed just as solutions

over E were in section 2.4, by using the structure of WΓ as a “template” and constructing trees
alongside that structure. In the interpretation of trees as graphs from definition 2.5.2, the elements
of WΓ can even be directly used as the set of internal nodes, and the functions L,R on WΓ and
L,R on

∞
E are identical, except that whenever their result would be a terminal equivalence class, a

variable or constant is returned instead.

The only remaining question is thus which terminal equivalence classes should be mapped to
constants, and which to variables. Clearly, if some equivalence class contains a path expression η,
with η ∈ C, that class must be mapped to a constant. But those aren’t all – since the deduction
system from definition 2.3.1 wasn’t modified when constants were introduced, it does not “know”
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anything about constants, and treats them just as it treats variables. In particular, it does not
allow η= Siη to be derived for arbitrary constants η, even though this path equation must obviously
be satisfied by every substitution Si. This “blindness” of the deduction system is made up for
by mapping not only the equivalence classes

[
η
]
Γ for η ∈ C to constants, but also all equivalence

classes
[
ηΣ

]
Γ for arbitrary Σ ∈R.

Definition 2.5.16 (Generalization of 2.4.12). For a consistent set of path equations Γ, let

(i) ιΓ :
•WΓ→V be an embedding of •WΓ into V ,

(ii) ΘΓ : WΓ→
∞
E be the map from equivalence classes to trees defined by

ΘΓ(ω) : ω 7→ 〈
WΓ, ϑΓ(ω), ϑL, ϑR

〉
(in the interpretation of 2.5.2), where

ϑL : ω 7→ϑΓ(Lω),
ϑR : ω 7→ϑΓ(Rω), ϑΓ(ω) :=


η if ω= [

ηΣ
]
Γ for η ∈ C, Σ ∈R

ιΓ(ω) if ω is terminal and non-constant
ω otherwise.

Proof that ΘΓ is well-defined. The only questionable part is the case “ϑΓ(ω) = η if ω = [
ηΣ

]
Γ for

η ∈ C, Σ ∈R” in the definition of ϑΓ – η might not be determined uniquely there. But if that was
the case, i.e. if there were two constants η1 6= η2 with

[
η1Σ1

]
Γ =

[
η2Σ2

]
Γ for some Σ1,Σ2 ∈R, then

necessarily η1Σ1
.= η2Σ2 ∈Γ would need to hold, and Γ would hence be inconsistent. ■

The paths produced by ΘΓ again closely mimick the structure of WΓ, as they were designed to.
This now pertains not only their subterm structure (i.e. part (ii) of the lemma below), but also the
places at which the terms ΘΓ contain constants.

Lemma 2.5.17 (Generalization of 2.4.13). For a consistent set of path equations Γ,

(i) if η ∈ C then for arbitrary Σ ∈R,
[
ηΣ

]
Γ is terminal and ΘΓ

[
ηΣ

]
Γ = η.

(ii) Π
(
ΘΓ(ω)

)=ΘΓ(Πω) 6= ⊥ if Πω is reachable from ω ∈W ,

(iii) if Γ is bounded, ΘΓ(ω) ∈ Ê for all ω ∈WΓ.

(iv) if Γ is bounded and constant-free, ΘΓ(ω) ∈ E for all ω ∈WΓ

Proof.

(i). That ΘΓ
[
ηΣ

]
Γ = η follows immediately from the definition of ΘΓ. If

[
ηΣ

]
Γ were non-terminal,

there would be a Π 6= ε with ΠηΣ ∈∆Γ, which contradicts the consistency of Γ.

(ii). By induction on the length of Π. For Π = ε, the proposition is trivially true. If Πω is
reachable from ω, and Π= π̃Π′, with π̃ ∈ {

L, R
}
, then Π′ω is reachable from ω and by the induction

assumption, Π′(ΘΓ(ω)
)=ΘΓ(Π′ω

) 6= ⊥. Π′ω is then also necessarily non-terminal, otherwise Πω
would not be reachable from ω, and according to (i) Π′ω 6= [

ηΣ
]
Γ for all η ∈ C, Σ ∈R. It follows that

ϑΓ(ω)=ω, and therefore

π̃Π′(ΘΓ(ω)
)= π̃〈

WΓ, Π′ω, ϑL, ϑR
〉= 〈

WΓ, ϑΓ(π̃Π′ω), ϑL, ϑR
〉=ΘΓ(π̃Π′ω

) 6= ⊥.

(iii). Follows from lemma 2.4.10, see section 2.4 for details.

(iv). Follows from (iii) plus the fact that ϑΓ never introduces a constant that does not appear in
Γ. ■

The solutions S,S1, . . . which solve a consistent set of path equations Γ are now again constructed
from the terms produced by ΘΓ, in exactly the same way as they were for finite solutions in section
2.4.
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Theorem 2.5.18 (Generalization of 2.4.14). For a consistent set of path equations Γ and ΘΓ as in
2.5.16, let

S : V → ∞
E : µ→ΘΓ

([
µ
]
Γ

)
,

Si : ιΓ(
•WΓ)→ ∞

E : µ→ΘΓ

((
ι−1
Γ (µ)

)
Si

)
Then

(i) Si
(
ΘΓ(ω)

)=ΘΓ(ωSi) 6= ⊥,

(ii) Π
((
ΘΓ(ω)

)
Σ

)
=ΘΓ

(
ΠωΣ

) 6= ⊥ if ΠωΣ is reachable from ωΣ,

(iii) S,S1, . . . form a solution over
∞
E of Γ,

(iv) if Γ is bounded, S,S1, . . . form a solution over Ê of Γ.

(v) if Γ is bounded and constant-free, S,S1, . . . form a solution over E of Γ.
Proof.

(i). ΘΓ(ωSi) 6= ⊥ follows immediately from the definition of ΘΓ. Assume thus that Si
(
ΘΓ(ω)

) 6=
ΘΓ(ωSi) for some ω ∈WΓ. Then according to lemma 2.5.7 there is some pathΠwithΠ

(
Si

(
ΘΓ(ω)

)) 6=
Π

(
ΘΓ(ωSi)

) ∈V∪C. SinceΠ(
ΘΓ(ωSi)

) ∈V∪C,ΠωSi must be reachable from ωSi – otherwiseΠ′ωSi
would have to be terminal for some Π′ <Π, therefore Π′(ΘΓ(ωSi)

) ∈V ∪C, and Π
(
ΘΓ(ωSi)

)
would

thus be undefined. And ΠωSi must be terminal, again because Π
(
ΘΓ(ωSi)

) ∈ V ∪C, and due to
lemma 2.4.8 Πω is then terminal too. Picking the longest prefix Π′ ≤ Π of Π for which Π′ω is
reachable from ω, and Π̃ such that Π̃Π′ =Π, now leads to a contradiction, because

Π
(
ΘΓ

(
ωSi

)) 2.5.17= Π̃ΘΓ
(reachable from ωSi︷ ︸︸ ︷
Π′ωSi

) 1O= Π̃
(
Si

(
ΘΓ(

terminal,
reachable from ω︷︸︸︷

Π′ω)︸ ︷︷ ︸
∈V∪C

)) 2.5.17= Π̃
(
Si

(
Π′ΘΓ(ω)

))
=Π

(
Si

(
ΘΓ(ω)

))
.

(The identity 1O follows directly from the definition of Si if ΘΓ(Π′ω) ∈V . If ΘΓ(Π′ω)= η ∈ C, then by
the definition of ΘΓ, Π′ω= [

ηΣ
]
Γ for some Σ. But then also ΘΓ(Π′ωSi)=ΘΓ

[
ηΣSi

]
Γ = η, and since

Si(η)= η, it follows that Si
(
ΘΓ(Π′ω)

)= Si(η)= η=ΘΓ(Π′ωSi) as required.)
(ii). Applying (i) repeatedly shows that

(
ΘΓ(ω)

)
Σ = ΘΓ(ωΣ) and the rest follows from lemma

2.5.17.
(iii). Let ΠµΣ .=Π′νΣ′ be an arbitrary path equation in Γ. The interpretation of that equation

under S,S1, . . . is
Π

(
(µS)Σ

)=Π′((νS)Σ′),
which after expanding the definition of S reads (note that this works if µ (or ν) is a constant as
well, because then µ= S(µ)=ΘΓ

[
µ
]
Γ)

Π
((
ΘΓ

[
µ
]
Γ

)
Σ

)
=Π′

((
ΘΓ

[
ν
]
Γ

)
Σ′

)
.

Now (ii) transforms to (note that since ΠµΣ, Π′νΣ′ ∈∆Γ, the equivalence class
[
ΠµΣ

]
Γ respectively[

Π′νΣ′]
Γ is reachable from

[
µΣ

]
Γ respectively

[
ν′Σ′]

Γ)
ΘΓ

[
ΠµΣ

]
Γ =ΘΓ

[
Π′νΣ′]

Γ 6= ⊥,
and that is trivially true, since ΠµΣ .= Π′νΣ′ ∈ Γ, hence ΠµΣ ∼Γ Π′νΣ′ and therefore

[
ΠµΣ

]
Γ =[

Π′νΣ′]
Γ.

(iv), (v). Follows immediately from lemma 2.5.17 (iii) and (iv). ■

This proves the second half of the equivalency of consistency and solvability over
∞
E , for sets of path

equations with constants as well as (via theorem 2.5.13) semi-unification problems with constants.
Theorem 2.5.19. A set of path equations Γwith constants, respectively a semi-unification problem
S with constants, has a solution over

∞
E iff it is consistent. Γ has a solution over Ê iff it is bounded

as well as consistent, and a solution over E iff it is bounded, consistent and constant-free.
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2.6 Solvability of Path Equations over Rational Trees

The question of whether a set of path equations Γ, or a semi-unification problem S, have a solution
over

∞
E is answered by theorem 2.5.19 – as that theorem shows, the existence of a solution hinges

on the consistency of Γ respectively S. Whether such problems have a finite solution, i.e. a solution
over Ê , depends additionally on the boundedness of Γ respectively S.

That leaves the question of solvability over E̊ . Some semi-unification problems, like for example
S = {

α ·−→α ≤̇α}
, clearly have a solution over E̊ – for this problem, S(α) := τ,S1 = id (where τ again

denotes the complete tree) is a solution, and that is also the solution which is constructed by
theorem 2.5.19. But there are also cases where theorem 2.5.19 constructs an irrational solution,
yet a different solution which does only introduce terms in E̊ exists. Take for example the slightly
modified problem S ′ = {

α ·−→ β ≤̇ α
}
. The associated set of path equations of this problem is

ΓS ′ = {
αS1

.= Lα, βS1
.= Rα

}
, and playing with these path equations shows that the only really

“interesting” path equations that are derivable are αSn
1

.= Lnα for arbitrary n ∈N (There are of
course more derivable path equations, like LnαSm

1
.= Ln+mα, but these follow immediately from

αSn
1

.= Lnα). The solution produced by 2.5.19 is thus essentially
S(α) := tα :=

γ0

γ1

γ2

, S1(β) := γ0, S1(γi) := γi+1.

Since RLntα = γn for all n, and since all these are different variables, tα is clearly irrational.
But nothing in ΓS ′ necessitates the introduction of all these distinct variables. Their creation
is a byproduct of that fact that ΘΓ maps two equivalence classes to the distinct terms unless Γ
specifically proves them equal – but if Γ doesn’t prove them equal, that does not imply that they
necessarily need to be mapped to different terms to satisfy the equations in Γ. In fact, since S ′
does not contain constants, simply mapping all variables to τ again solves S ′, and that solution is
clearly rational, since τ ∈ E̊ .

Thus, so far, even though some of the solutions produced by theorem 2.5.19 were irrational, the
consistent semi-unification problems which were discussed turned out to all have a solution over
E̊ . This raises the question of whether this is universally true – whether every semi-unification
problem, or system of path equations, which has a solution over

∞
E (i.e. which is consistent) also

has a solution over E̊ . The answer is clearly “yes” for problems without constants – as has been
mentioned multiply times, the universal unifier S(µ) := τ for all µ ∈V solves all of these problems,
without even requiring any non-trivial local substitutions.

For problems with constants, however, the answer is “no”. This shown now by giving an example
of a semi-unification problem which has a solution over

∞
E , but which cannot have a solution over E̊

because any solution must, contrary to the case above, necessarily introduce terms with infinitely
many distinct subterms.1

Theorem 2.6.1. The existence of a solution over
∞
E of a system of path equations Γ is necessary, but

not sufficient, for the existence of a solution over E̊ . In particular, the semi-unification problem
S := {

(β ·−→ γ) ·−→β ≤̇1 β ·−→ (β2 ·−→β), (α1 ·−→ c) ·−→β ≤̇2 α ·−→α
}

(where α,α1,β,β2 ∈ V , c ∈ C), and hence also its associated system of path equations ΓS , have a
solution over

∞
E but not over E̊ .

Proof. It is clear that the existence of a solution over
∞
E is necessary for the existence of a solution

over E̊ . Reasoning about S and its solutions is easier if one works with a graphical representation
of trees instead. Stated graphically,

S := {
β γ

β

≤̇1

β

β2 β

,
β

α1 c

≤̇2

αα

}

1 [JK93] shows that such semi-unification problems must exist, but does so non-constructively. Finding an concrete
example is mentioned as an open problem, cf. [JK93], 5.2 “Regular Semi-Unification and the Redex Procedure”, page
37ff.
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and S has the associated set of path equations

ΓS := {
βS1

.= Lβ, γS1
.= Rβ, LβS1

.=β2, RβS1
.=β,

α1S2
.= Lα, cS2

.= Rα, βS2
.=α }

.

To show that ΓS cannot have a rational solution, the first step is to show that Rn+1Lnβ
.= Rβ ∈Γ

for all n ∈ N. From βS1
.= Lβ respectively RβS1

.= β, one can derive Lnβ
.= βSn

1 respectively
Rn+1βSn+1

1
.= RnβSm

1 , both for arbitrary n ∈ N, by repeatedly applying the following two proof
schemes.

Lnβ
.=βSn

1

Lβ .=βS1 Sn
1[

LβSn
1

.=βSn+1
1

]
L

Ln+1β
.=LβSn

1

Lβ .=βS1 Sn
1LβSn

1
.=βSn+1

1

Ln+1β
.=βSn+1

1

Rn+1βSn+1
1

.=RnβSn
1 S1

Rn+1βSn+2
1

.=RnβSn+1
1

[
Rn+1βSn+1

1
.=RnβSn

1
]

R
Rn+2βSn+2

1
.=Rn+1βSn+1

1

From these path equations, RnLnβ
.=β ∈Γ and finally Rn+1Lnβ

.= Rβ ∈Γ is then derived by

Lnβ
.=βSn

1
[
RβSn

1
.=Rn−1βSn−1

1
]

Rn

RnLnβ
.=RnβSn

1 RnβSn
1

.=Rn−1βSn−1
1 . . . RβS1

.=β

RnLnβ
.=β [

Rβ .=γS1
]

R
Rn+1Lnβ

.=Rβ

Finally, since α must be the image of β under S2, the same structure is imposed on α. And since
α’s right subterm must be the constant c (per the path equation Rα .= c), the structure of α is in
fact more rigid than that of β – while the requirements on β alone could, as usual for constant-free
problems, be satisfied by τ, those one α cannot. The following derivation shows that, in particular,
Rn+1LnS(α) must be the constant c, if S is to be a semi-unifier of S.

Rn+1Lnβ
.=Rβ

S2
Rn+1LnβS2

.=RβS2

βS2
.=α [

Rα .= cS2
]

R
RβS2

.=Rα Rα .= cS2

Rn+1LnβS2
.= cS2

α
.=βS2

Rn+1Lnβ
.=Rβ

S2[
Rn+1LnβS2

.=RβS2
]

Rn+1Ln
Rn+1Lnα

.=Rn+1LnβS2 Rn+1LnβS2
.= cS2

Rn+1Lnα
.= cS2

This, however, precludes S having a rational solution. Since any solution of S must satisfy
Rn+1Lnα= cS2 = c for arbitrary n ∈N, and since a single subterm t can only satisfy Rnt for one
particular n ∈N, all the subterms Lnα of α must exists and be different. Which, obviously, no
rational term S(α) can satisfy.

It remains to be shown that S does have a solution over
∞
E . The crucial step in the construction

of such a solution is to find a suitable term tβ which can serve as β’s image under the global
substitution S. It must, in particular, satisfy tβS1 = Ltβ, i.e. its left subterm must be its image
under S1, and RtβS1 = tβ, i.e. its right subterm’s image under S1 must be the whole term. The
following diagram presents a candidate for tβ – called tβ0 , and its (iterated) left subterms tβi which
have the required property that tβi can be transformed into tβi+1 by applying a suitable substitution.
The diagram also shows how tβ0 is transformed into tα0 , i.e. α’s image under S. Note that all nodes
within each column represent the same subterm, as indicated by the equal signs (=) between those
nodes.
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tα0 :=
ctα1 :=

tα2 :=
c

c 7→ξ←−−−−−−− tβ0 :=
ξtβ1 :=

tβ2 :=
ξ

ξ 7→tβ0−−−−−−−→ tβ1
tβ0
ξ

tβ2
tβ3

ξ

The diagram already shows all important replacements the substitutions S,S1,S2 must do if they
are to solve S. The full definition for these substitutions, including the images of the auxiliary
variables α1, β2 and γ, is

S(α) := tα0 , S1(ξ) := tβ0 , S2(ξ) := c,

S(β) := tβ0 , S1(γ) := ξ, S2(α1) := tα1 ,

S(β2) := tβ2 .

It remains to verify that S,S1,S2 do indeed solve S, which is again done graphically by comparing
images of the left-hand sides under S and S1 respectively S2 which those of the right-hand sides
under S.

β γ

β

S−−−−−→

tβ0 γ

tβ0

S1−−−−−−→

tβ1 ξ

tβ1

=
tβ0

tβ2 tβ0

S←−−−−−
β

β2 β

β

α1 c

S−−−−−→
tβ0

α1 c

S2−−−−−−→
tα0tα0

tα1 c

S←−−−−−
αα

S,S1,S2 thus form a solution of S over
∞
E , which concludes the proof. ■
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2.7 Principal Solutions

Solutions of systems of path equations – and thus of semi-unification problems – are in general
not unique. The simple, constant-free system S = {

α≤α ·−→β
}
for example, has the finite solution

S = id, S1(α) :=α ·−→β, but also the finite solution S′(β) :=α, S′
1(α) :=α ·−→α. The second solution,

however, introduces more equalities between subterms than S actually demands – from ΓS only
the path equations ΓS = {

LαS1
.=α, RαS1

.=β
}
are derivable, whereas the second solution also

fulfills RαS1
.= α. This introduces an asymmetry between the semi-unifiers S and S′ – while

S′ can be expressed as S′ = S̃ ◦S (since S = id, simply setting S̃ = S′ suffices), the reverse is not
possible, since no S̃ can “undo” the unification of the variables α and β done by S′. This motivates

Definition 2.7.1. Let E be one of E , Ê , E̊ or
∞
E , and let S,S1, . . . and S′,S′

1, . . . be two solutions over
E of some system of path equations Γ. S,S1, . . . is called more general than S′,S′

1, . . . iff there exist
a substitution S̃ over E with S′(µ)= S̃(S(µ)) for all variable µ ∈V that occur in Γ.

A solution over E ∈ {
E , Ê , E̊ ,

∞
E

}
that is more general than every other solution over E is called a

most general or principal solution over E of Γ.
As the above already hints at, solutions are non-principal if they satisfy more path equations than
strictly necessary. The following definition and lemma express this connection.

Definition 2.7.2. For a substitution S and a set of variables V ⊂ V , the set of path equations
concerning V satisfied by S is

ΓV
S := {

Πµ
.=Π′ν

∣∣ Π,Π′ ∈P , µ,ν ∈V , Π(S(µ))=Π′(S(ν)) 6= ⊥ }
.

Lemma 2.7.3. If S,S′ are substitutions over E ∈ {
Ê , E̊ ,

∞
E

}
and V ⊂ V a set of variables, then

ΓV
S ⊂ΓV

S′ iff there exists a substitution S̃ over E with S′(µ)= S̃(S(µ)) for all µ ∈V .
Proof.

Assume that S′(µ)= S̃(S(µ)) for some S̃. If Πµ .=Π′ν ∈ΓV
S then by definition Π(S(µ))=Π′(S(ν)) 6=

⊥. Applying S̃ to both sides and moving the applications of Π and Π′ outwards yields Π(S̃(S(µ)))=
Π′(S̃(S(ν)))=⊥ and hence Πµ .=Π′ν ∈ΓV

S′ .

Assume that ΓV
S ⊂ΓV

S′ . If ΠµS(µ) 6= ⊥ then Πµ .=Πµ ∈ΓV
S ⊂ΓV

S′ , and hence ΠµS′(µ) 6= ⊥. Also due
to ΓV

S ⊂ΓV
S′ , if ΠS(µ)=Π′S(ν) then ΠS′(µ)=Π′S′(ν) as well. These two results allow a substitution

S̃ to be defined unambiguously as
S̃(σ) := Π̃S′(µ) if Π̃S(µ)=σ for some µ ∈V .

and this substitution then satisfies S′(µ)= S̃(S(µ)) for all µ ∈V . ■

The solution constructed by 2.5.18 are minimal in the sense of satisfying only the path equations
that are absolutely necessary. The proof of the following theorem exploits that, plus the result
above, to show that these solution are always principal solutions.

Theorem 2.7.4. For every consistent system of path equations Γ, the solution constructed by
theorem 2.5.18 is principal over

∞
E .

Proof. In the light of lemma 2.7.3, it suffices to show that for ever solution S′ of Γ over
∞
E , ΓV

S′ ⊃ΓV
S ,

where S is the solution constructed by theorem 2.5.18, and V the variables occurring in Γ. Let
thus Πµ .=Π′ν be a path equation in ΓV

S , i.e. assume that Π(S(µ)) =Π′(S(ν)) 6= ⊥, and let Π̃ ∈ P
be a path with Π̃Π(S(µ)) = Π̃Π′(S(ν)) ∈ V ∪ C. The following case distinction shows that then
Π̃ΠS′(µ)= Π̃ΠS′(ν) holds whenever S′ is a solution of Γ, and together with lemma 2.5.7 this yields
Πµ

.=Π′ν ∈ΓV
S′ for every solution S′ of Γ.

(a) Π̃ΠS(µ)= Π̃Π′S(ν)= η ∈ C. According to the definition 2.5.16 of ΘΓ, this situation only occurs
if Π̃Πµ .= ηΣ1 and Π̃Π′ν .= ηΣ2 are derivable from Γ. But then Π̃ΠS′(µ) = Π̃ΠS′(ν) = η must also
hold, if S′ is to be a solution of Γ.

(b)Π=Π′ and µ= ν. The only property to show here is thatΠS′(µ) 6= ⊥ if S′ is to solve Γ. IfΠµ ∈Γ,
this is guaranteed by lemma 2.3.4. If Πµ ∉∆Γ, then

[
Πµ

]
Γ is terminal, so for ΠΘΓ(µ)=ΠS(µ) to

be 6= ⊥,
[
Πµ

]
Γ must be reachable from

[
µ
]
Γ, meaning

[
Π̊µ

]
Γ must be non-terminal for the longest
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true prefix Π̊ of Π (i.e. Π=πΠ̊ where π ∈ {
L, R

}
). Thus, Π̂Π̊µ ∈∆Γ for some Π̂ 6= ε, and thus if S′

is a solution of Γ, Π̂Π̊S′(µ) 6= ⊥. That in particular implies that Π̊S′(µ) must be a composite term
(not a variable or constant), and it follows that ΠS′(µ)=πΠ̊S′(µ) 6= ⊥.

(c) Π̃Π 6= Π̃Π′ or µ 6= ν. Since ιΓ assigns different variables to distinct equivalence classes (see
definition 2.5.16), for Π̃Π(S(µ))= Π̃Π′(S(ν)) to hold, it must be that

[
Π̃Πµ

]
Γ =

[
Π̃Π′ν

]
Γ. But then,

according definition 2.4.1 of ∼Γ, there is Π̂µ .= Π̌ν ∈Γ with Π̊Π̂= Π̃Πµ and Π̊Π̌= Π̃Π′. Any solution
S′ of Γ must thus satisfy Π̂S′(µ)= Π̌S′(ν). It follows from (b) that Π̃ΠS′(µ) 6= ⊥ for every solution
S′ of Γ, and since Π̂≤ Π̃Π, every solution S′ also obeys Π̃ΠS′(µ)= Π̃Π′S′(ν)=⊥ as required. ■

This provides a way of showing that whenever a semi-unification problem has any (finite) solution,
it has a principal (finite) solution.

Theorem 2.7.5. If a system or path equations respectively a semi-unification problem has a solu-
tion over E ∈ {

E , Ê ,
∞
E

}
, it has a principal solution over E.

Proof. If a system of path equations has a solution over E ∈ {
E , Ê ,

∞
E

}
, per theorem 2.5.19 it must

be consistent (if E = ∞
E), respectively consistent and bounded (if E = Ê) respectively consistent,

bounded and constant-free (if E = E). But then according to theorems 2.5.18 and 2.7.4 it has a
solution in E ⊂ ∞

E that is principal over
∞
E . Since a solution that is principal over

∞
E is also principal

over every subset of
∞
E , and thus in particular over E, the assertion follows. ■

This brings up the question of whether the same is true for solutions over E̊ , i.e. if whenever a
system of path equations has a solution over E̊ , it has a principal solution over E̊ . The following
theorem shows that the answer is, contrary to cases of E ,Ê and

∞
E , “no”1.

Theorem 2.7.6. The semi-unification problem S := {
α ·−→β ≤̇α}

, and thus ΓS , has a solution over
E̊ , but no principal solution over E̊ .

Proof. Since S is constant-free, S is trivially consistent, and theorem 2.5.18 thus constructs a
solution over

∞
E , which is

S(α) :=
γ0

γ1

, S1(β) := γ0 , S1(γi) := γi+1.

This solution, however, is clearly not rational, since the subtrees LnS(α)= Lntα for n ∈N are
all different. But by using only finitely many variables

{
γ0, . . . , γk−1

}
instead of infinitely many

variables
{
γ0,γ1, . . .

}
to build S(α), one can construct rational solutions of S. The following diagram

illustrates a family
(
Sk,Sk

1
)
of such solutions, which arise from S by mapping γi to γi mod k. It is

obvious from the picture that Sk
1
(
Sk(α ·−→β)

)= Sk(α), and that all the pairs
(
Sk,Sk

1
)
thus indeed

from solutions of S. (“=” again connects equal subterms)

Sk(α ·−→β)=
βtk

γ0
γ1

γk−1
γ0

Sk
1−−−−−−−−−−−−−−−−−−−→

β→ γ0
γi → γ(i+1) mod k

= tk =: Sk(α)
γ0Ltk

γ1Lk−1 tk

γk−1Lk tk

γ0
γ1

Observe now that for Sk(α), k is the smallest integer for which LkS(α)= S(α), or in other words
that

∣∣{ LnSk(α)
∣∣ n ∈N }∣∣= k. That, however, precludes S having a principal solution over E̊ ! If

such a principal solution S̊, S̊1 existed, it would need to satisfy
∣∣{ LnS̊(α)

∣∣ n ∈N }∣∣ = N <∞ for
some N (otherwise it would not be a rational substitution). But then, since substitutions map
equal subtrees to equal subtrees,

∣∣{ LnS̃S̊(α)
∣∣ n ∈N }∣∣≤ N <∞ for every substitution S̃, which

contradicts the existence of a S̃ with S̃S̊(α)= SN+1(α), and hence the principality of S̊, S̊1. ■

1 This is listed as an open problem in [JK93], cf. [JK93], 7.1 “Principality Property and the Solution Set”, page 48

36



Chapter 3

Boundedness of Turing Machines

3.1 Basic Definitions

The symbol M will denote a (in general non-deterministic) Turing machine with finite state set
QM, and finite alphabet AM which includes the blank symbol ä. M is assumed to have one tape,
infinite in both directions, and numbered tape cells. An instantaneous description, or ID, of M
describes a single possible configuration of the machine. It is represented by a triple

〈
q, m, f

〉
where q ∈QM is the current state, m ∈ Z the current head position and f : Z→AM specifies
the tape’s contents. During each step, M transitions from one ID to a successor by overwriting
the symbol at the head’s position, moving the head left or right one cell and switching to a new
state. The transition relation TM ⊆QM×AM×AM×QM×{ −1, 1

}
defines, for a combination of

current state and symbol, which new symbol to write, which direction to move in and which new
state to switch to.

Definition 3.1.1 (Successor Relation for Turing Machines). For a Turing machine M and two
IDs

C = 〈
q, m, f

〉
,

C′ = 〈
q′, m+∆, f ′

〉
of M,

(i) C′ is a successor of C, denoted by C `M C′, iff〈
q, f (m), f ′(m), q′, ∆

〉 ∈ TM,
f ′(i)= f (i) for all i 6= m.

(ii) C′ is a n-fold successor of C, written C `n
M C′, iff there are IDs C = C0 `M C1 `M · · · `M

Cn = C′.

(iii) C′ is reachable from C, written C `?M C′, iff C `n
M C′ for some n.

If the transition relation contains at most one quintuple for every combination of current state
and symbol, the TM M is called deterministic. In other words, a deterministic M’s transition
relation TM can be represented by a partial function FM : QM×AM →AM×QM× { −1, 1

}
where

〈
q, a, a′, q′,∆

〉 ∈ TM iff FM(q,a)= 〈
a′, q′,∆

〉
. On deterministic machines, every ID therefore

has at most one successor.

If no successor exists for an ID C = 〈
q, m, f

〉
, that is, if no quintuple

〈
q, f (m), a′, q′, ∆

〉
exists in

TM, C is called final. If M reaches such an ID, it halts.

A sequence C0 ` C1 ` ·· · of IDs is called a computation if the sequence is either infinite or ends
with a final ID Cn. In the former case, the length of the computation is n while in the latter
it is infinite. C0 is called the initial ID of the computation, and conversely the computation is
said to be initiated by C0 . For deterministic machines each ID initiates exactly one computation
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(having length 0 if the ID is final), while for non-deterministic machines multiple computations
may be initiated by the same ID. Computation fragments are sequences of IDs C0 ` C1 ` ·· · which
do not necessarily end with a final ID. An important property of computations and computation
fragments will be the maximal distance of the head from its initial position.

Definition 3.1.2 (Tape Span). For a computation (fragment) C0 `M C1 `M · · · ,
span

i
Ci :=max

i
|mi −m0| (assuming Ci =

〈
qi, mi, f i

〉
),

is called the computation (fragment)’s tape span.

Since the head moves by only one cell between an ID and one of its successors, the tape span
never exceeds the computation length. Only computation with infinite length can thus have an
infinite tape span.

Since the above describes the tape’s contents as an arbitrary function f : Z→A, it doesn’t
restrict the tape to contain only finitely many non-blank symbols. The following definitions allows
the distinction to be made if necessary.

Definition 3.1.3 (Finite ID). An ID
〈
q, m, f

〉
is called finite if f (n) 6= ä for only finitely many n.

In the following, “Turing machine” will always refer to the general non-deterministic case.
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3.2 Immortality and Boundedness

Consider a particular computation initiated by some ID C = 〈
q, m, f

〉
. That computation can then

exhibit three distinct kinds of behavior
(i) First, it might reach a final ID after a finite number of steps and thus halt.
(ii) Else, it might at some point reach an ID again which it already reached before, causing it to

enter an infinite loop.
(iii) And finally, the computation might run eternally without getting caught in a loop.
Note that in case (iii) the computation’s tape span is necessarily infinite. Otherwise, if the head
stays within a radius of n around m, the machine can reach only finitely many IDs since f ′(n)= f (n)
for |n−m| > R then holds for all reachable IDs

〈
q′, m′, f ′

〉
. But if it runs eternally through a finite

set of IDs, it must obviously reach an ID twice.
In the following, the attention will turn to the behavior of arbitrary computations independent

from their particular initial IDs. The property corresponding to (i) above is then

Definition 3.2.1 (Mortality). A Turing machine is mortal iff no computation with an infinite
length exists, immortal otherwise.

It must be stressed that mortality would be a much weaker concept if infinite IDs were dis-
regarded. Imagine for example a Turing machine that simply moves right unless the head is
positioned over a blank cell. Started from any finite ID, this machine will halt eventually. But
started from an (necessarily infinite) ID without a single blank on the tape, the machine will move
right forever, thus making it immortal.

The following theorem, due to Philip K. Hooper ([Hoo66]), is the basic undecidability result
which all others will be derived from.

Theorem 3.2.2. The mortality of deterministic Turing machines is undecidable.
Since deterministic Turing machines are a special case of non-deterministic machines, one

immediately gets

Corollary 3.2.3. The mortality of (deterministic) Turing machines is undecidable.
A related, though (as will be shown) weaker property rules out only case (iii) above.

Definition 3.2.4 (Boundedness). A Turing machine M is bounded iff a global bound LM on the
tape span of arbitrary computation fragments exist. In other words, iff for all IDs C = 〈

q, m, f
〉
,

C′ = 〈
q′, m′, f ′

〉
with C `? C′ one has

∣∣m′−m
∣∣≤ LM.

Boundedness can alternatively be defined by limiting the number of reachable IDs instead of the
maximal distance of the head from its initial position. These two definitions can, however, be used
interchangeably, due to

Lemma 3.2.5. A Turing machine M is bounded iff there is a L̃M such that for any ID C no more
than L̃M IDs are reachable from C.
Proof. Let C = 〈

q, m, f
〉
be an arbitrary ID of a bounded machine M. Then for all C′ = 〈

q′, m′, f ′
〉

with C `? C′ one has m′ ∈ I := [m−LM,m+LM]. Furthermore, f ′(n) 6= f (n) only for n ∈ I since
during every step, only the cell beneath the head can be overwritten. This limits the number of
different such C′ to at most L̃M := |Q| · |I| · |A||I|.

For the converse, let C = 〈
q, m, f

〉
be an arbitrary ID of a machine M where only L̃M IDs are

reachable from any single initial ID. For all these reachable IDs C′ = 〈
q′, m′, f ′

〉
one then has∣∣m′−m

∣∣< L̃M =: LM since the head only moves by one cell during every transition. ■

The rest of the section will establish that boundedness, like mortality, is undecidable. This will
be done by showing that once a Turing machine’s boundedness is settled, its mortality becomes
decidable. Many of the proofs on the way towards that goal depend on the similarity of certain IDs
in the sense that they allow, for a while, the same transitions to occur. This idea is captured by
the following definition and its corollary.
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Definition 3.2.6 (n-Equivalency). Two IDs C1 =
〈
q1, m1, f1

〉
, C2 =

〈
q2, m2, f2

〉
are n-equivalent,

written C1 ≡n C2, iff
q1 = q2

f1(m1 +∆)= f2(m2 +∆) for |∆| ≤ n.

Two n-equivalent IDs are thus indistinguishable for computations up to a tape span of n. This is
formalized by

Corollary 3.2.7. Let n ∈N be arbitrary.

(i) Let C1
0 = 〈

q0, m1, f 1
0
〉
, C2

0 = 〈
q0, m2, f 2

0
〉
be IDs with C1

0 ≡n C2
0. Assume that C1

0 initiates a
computation (fragment) C1

0 ` ·· · ` C1
l =

〈
ql, m1+∆l, f 1

l
〉
with span i C1

i =: k ≤ n. Then C2
0 also

initiates a computation (fragment) C2
0 ` ·· · ` C2

l = 〈
ql , m2 +∆l , f 2

l
〉
with span i C2

i = k and
f 1
l (m1

0 +δ)= f 2
l (m2

0 +δ) for |δ| ≤ n.

(ii) For any set of IDs C, regardless of its size, C/≡n is finite.

Proof.

(i). For 1≤ i ≤ k let C2
i := 〈

qi, m2 +∆i, f 2
i
〉
with

f 2
i (m2 +δ) :=

{
f 1

i (m1 +δ) for |δ| ≤ n,
f 2
0 (m2 +δ) otherwise.

Now span i C1
i ≤ n implies ∆i ≤ n and hence f 2

i (m2 +∆i) = f 1
i (m2 +∆i) for all 0 ≤ i ≤ l. Thus

C2
i ` C2

i+1 follows from C1
i ` C1

i+1. The other required properties of the C2
i are true by the definitions

of C2
i and f 2

i .

(ii). There are only |Q| · |A|2n+1 non-n-equivalent IDs for every n. ■

This lemma is put to its first use to show that, contrary to the case of mortality, boundedness is
not weakened by disregarding infinite IDs.

Lemma 3.2.8. A Turing machine M is bounded iff it is bounded for all finite initial IDs.

Proof. Let LM be a bound for the tape spans of computation fragments initiated by finite IDs, and
assume C = 〈

q, m, f
〉
, Cn = 〈

qn, mn, fn
〉
are infinite IDs with C `n Cn and ∆ := |mn −m| > LM.

By replacing the contents of all cells with a distance greater than ∆ from m with ä, one can
obtain a finite ID C′ = 〈

q′, m′, f ′
〉
with C′ ≡∆ C. Corollary 3.2.7 then mandates the existence of

another finite ID C′
n = 〈

q′
n, m′

n, f ′n
〉
for which C′ `n C′

n and
∣∣m′

n −m′∣∣=∆> LM. This contradicts
the bound LM on the lengths of computation fragments initiated by finite IDs. ■

With these tools at one’s disposal, one can show that mortality is decidable for bounded Turing
machines. At its core, the following proof decides the question of mortality by exhaustively
searching for looping computations within a finite subset of IDs known to adequately represent
every possible ID of the machine. This finite subset’s size and contents, however, depend on the
value of LM which is a slightly stronger prerequisite than such a bound’s mere existence. The
algorithm therefore contains a search for a suitable LM interwoven into the search for looping
computations, thus adding a modest amount of complexity to an otherwise trivial proof.

Lemma 3.2.9. The mortality of bounded Turing machines is decidable.

Proof. Let C be the set of all IDs of an arbitrary bounded Turing machine M. For an arbitrary n,
pick C1, . . . ,CN , one from every one of the N partitions of C modulo ≡n. Then compute the (finite!)
sets of computation fragments of length j initiated by C i,

C i
j := {

C i ` C1 . . .` C j
}
,

by first computing C1
1 , . . . ,CN

1 , then C1
2 , . . . ,CN

2 , and so on. Should one of the computations move the
machine’s head more than n cells away from its initial position then n < LM and the procedure
must be restarted with a larger n. Eventually though, n will exceed LM, and for such an n, after
a while j will exceed the bound L̃M on the number of IDs reachable from a single initial ID (see
3.2.5). Any non-empty C i

j must then contain a computation which reaches an ID twice, and which
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thus loops. Hence, while computing these sets for ever increasing j, ultimately either all the sets C i
j

will be empty, proving the machine to be mortal, or one of them will contain a looping computation,
proving the machine to be immortal. In both cases, the final value of n is a upper bound on the
maximal distance of the head from its initial position. The generalization of M’s behavior from
the particular initial IDs C1, . . . ,CN to an arbitrary initial ID is justified by 3.2.7. ■

Having dealt with the bounded case in 3.2.9, now the unbounded case needs to be tackled. For
a deterministic machine and a single ID, it is clear that the computation initiated by that ID is
bounded if it halts. But boundedness in general requires the bound on the distance the head moves
from its initial position to be independent from a particular initial ID, and for non-deterministic
machines also from the particular computation of the many that may originate from a single ID.
This makes it conceivable that unboundedness does not in general imply immortality, since one
could envision a sequence of computations, each halting eventually, but each taking the head
further away from its initial position than its predecessor before doing so. As it turns out, though,
from any such unbounded sequence of computations one can obtain an ID that initiates an infinite
computation. The following theorem shows exactly this, albeit for a special case of such a sequence
where each computation, in a way, extends its predecessor.

Lemma 3.2.10. Let
(
Ci

)
i∈N be a sequence of IDs with Ci ≡i Ci+1 where Ci initiates a computation

fragment with a tape span of at least i. Then there is an ID C with C ≡i Ci which initiates a
computation with infinite tape span.

Proof. First, note that if Ci is replaced by an i-equivalent ID with the head initially at cell zero, Ci
still initiates a computation fragment whose tape span is at least i (due to 3.2.7), and Ci ≡i Ci+1
still holds. Since Ci ≡i Ci+1 also requires all the ID’s to have the same initial state q, one can
assume without loss of generality that

Ci =
〈
q, 0, f i

〉
.

In the case of equal initial head positions, from Ci ≡i Ci+1 is follows that f i+1|[−i,i]. Hence, for

C := 〈
q, 0, f

〉
f (i) := f i(i),

one has f |[−i,i] = f i|[−i,i] and thus
C ≡i Ci.

Therefore, for every i, since Ci leads to a computation fragment with a tape span of at least i, by
3.2.7, C does too. Hence C initiates a computation with an infinite tape span. ■

The general case is handled by picking a suitable sub-sequence from an arbitrary unbounded
sequence such that the requirements of 3.2.10 are fulfilled. This then finally proves

Lemma 3.2.11. An unbounded Turing machine is necessarily immortal.

Proof. Since the machine is unbounded, there exists an infinite sequence of IDs
(
Ci

)
i∈N where Ci

initiates a computation with a tape span of at least i. Since Ci ≡i Ci+1 will in general not hold for
this sequence, one needs to pick a sub-sequence of

(
Ci

)
i∈N such that it does. For that, remember

that for every n, ≡n splits a set of IDs into finitely many partitions (3.2.7). Any such partitioning of
an infinite set will therefore contains at least one infinite partition. This guarantees the following
to yield an infinitely decreasing series of non-empty subsets of

{
Ci

∣∣ i ∈N }
.

C0 ∈
{

Ci
∣∣ i ∈N }

/≡0 with C0 infinite,
Ci+1 ∈

{
C j

∣∣ C j ∈ Ci, j > i
}
/≡i+1 with Ci+1 infinite.

Now, for any series
(
C̃i

)
i∈N with

C̃i ∈ Ci,
C̃i ≡i C̃i+1 and C̃i leads to a computation whose tape span is at least i, both by the construction of(
Ci

)
i∈N. Thus, by 3.2.10, an ID C exists which initiates a computation with infinite tape span and

hence also infinite length. ■
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Although looking innocent at first sight, 3.2.11 is interesting enough to dwell on it for a moment
before concluding this section with its main result.

3.2.11 can be restated, a bit provocatively, as “Any terminating algorithm has time and space
complexity O(1)”. Now that sounds rather contradictory – after all, most algorithms one deals
with have no fixed upper bound on their execution time, yet one usually believes them to terminate
regardless of their input. The question is, though, what kind of “input” one allows. 3.2.11 was
derived from a definition of mortality that included infinite IDs. “Terminating” in the provocative
restatement of that lemma thus means terminating even for all infinite inputs, while usually
one expects to feed only a finite amount of information to an algorithm. 3.2.11 shows that this
restriction is quite sensible, since most interesting algorithms (whose execution time depends on
their input) cannot terminate for all infinite inputs.

Using the previous results about the relationship between mortality and boundedness, the main
result of this section follows trivially

Theorem 3.2.12. The boundedness of (deterministic) Turing machines is undecidable.

Proof. Since mortality is decidable for bounded machines (3.2.9) and unbounded machines are
necessarily immortal (3.2.11), the decidability of boundedness implies that of mortality. The
theorem thus follows from the undecidability of mortality (3.2.3). ■
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3.3 Inter-Cell Turing Machines

The reachability relation `? of the Turing machines that were discussed so far is reflexive and
transitive (by construction), but in general not symmetric. This stands in the way of the eventual
goal of proving the boundedness problem of certain deduction system of term equalities to be un-
decidable by reducing the boundedness problem of Turning Machines to the former. To overcomes
this issue, it it necessary to find a class of Turing machines for which `? is symmetric, and for
which boundedness is still undecidable.

Unfortunately, for the Turing machines discussed so far, that approach doesn’t seem feasible.
One can transform a given Turing machineM into one with a symmetric transition relation easily
enough by simply replacing TM by its symmetric closure, but the resulting symmetric machine
has little in common with the original machine M. The main issue is that the machine cannot
always read the tape cell it wrote in the previous step, and so to allow it to undo the particular
step it just performed, we need to allow it to perform any step backwards that would have brought
it into the same state. This is remedied by first extending the results that were so far proven for
regular Turning Machines to a class called inter-cell Turing machines which will then be shown
to have a well-behaved subclass of symmetric machines.

An inter-cell Turing machine M, like a regular Turing machine, is described by its finite
alphabetAM, again including the blank symbolä, its finite state setQM and a transition relation
TM ⊆QM×AM×AM×QM× { −1, 1

}
. IDs are, again like those of regular Turing machines,

described by triples
〈
q, m, f

〉 ∈ QM ×Z× (Z→AM). But while for regular Turing machines
one pictures the head to be positioned above some cell m, an inter-cell Turing machine’s head
is assumed to be positioned between the (m−1)-th and the m-th cell. The following diagram
illustrates the situation

f (m−1) f (m) f (m+1) f (m−1) f (m)
↑
q

↑
q

Regular Machine Inter-Cell Machine

To proceed from one ID to a successor, an ITM can either move left, in which case it reads and
overwrites the symbol to the left of the head, or move right, reading and overwriting the symbol to
the right of the head. Just as for regular Turing machines, the pair of current state and symbol
read defines the possible combinations of new state and symbol written as well as the direction of
movement. The successor relation for ITMs is thus defined by

Definition 3.3.1 (Successor Relation for Inter-Cell Turing Machines). For an inter-cell Turing
machine M and two IDs

C = 〈
q, m, f

〉
,

C′ = 〈
q′, m+∆, f ′

〉
of M, C′ is a successor of C, denoted by C `M C′, iff〈

q, f (m̃), f ′(m̃), q′, ∆
〉 ∈ TM,

f ′(i)= f (i) for all i 6= m̃
with

m̃ =
{

m for ∆=+1
m−1 for ∆=−1

Some care has to be taken when defining deterministic ITMs. Assume for some state q and two
different symbols a1, a2 that TM contains quintuples

〈
q, a1, a1, q, −1

〉
and

〈
q, a2, a2, q, +1

〉
. For

a regular TM, such a TM still qualifies as deterministic, since every combination of state and
symbol uniquely determines a transition. For ITMs, however, which symbol (the left one or the
right one) is read depends on the direction of movement. Should an ITM, while in state q, happen
to find the symbol a1 to the left of its head and a2 to the right, TM would allow it to move both left
and right – surely something that is undesirable for a deterministic ITM. To truly make an ITM

43



3. BOUNDEDNESS OF TURING MACHINES
3.3. Inter-Cell Turing Machines

deterministic, an additional partial function F∆
M : Q→ { −1, +1

}
where

〈
q, a, a′, q′, ∆

〉 ∈ TM iff
F∆
M(q)=∆ must therefore exist, in addition to it being deterministic as a regular TM. In other

words, a deterministic ITM’s direction of movement must only depend on its internal state, not on
the tape’s contents.

Any regular Turing machine can be transformed into an inter-cell Turing machine, and even
into one whose alphabet contains only two symbols, as shown by

Lemma 3.3.2. Let M be a regular Turing machine. Then there is an effective construction of
an inter-cell Turing machine M̃ over the alphabet AM̃ := {ä = 0, 1

}
which is bounded (mortal,

deterministic) iff M is bounded (mortal, deterministic).

Proof. Let AM be the alphabet of M and QM its set of states. Since M̃ is supposed to have the
alphabet

{
0, 1

}
, the symbols from AM need to be encoded as words over

{
0, 1

}
. This is done by

assigning numbers to the individual elements of AM, starting with 0 for the blank symbol ä.
Mapping each symbol to its binary representation then gives the desired encoding. From now on,
thus assume

AM = {ä= a0, a1, . . . , a|AM|−1
}
, N ∈N such that |AM| ≤ 2N ,

and to ease notation also

v n] = v mod 2n (v shortened to n bits), v[n] =
⌊ v n]

2n−1

⌋
(the n-th bit).

A particular tape ofM shall then corresponds to a tape of M̃ with N cells for every single cell of
M’s tape, containing the the binary encoding of that cell’s content. M having its head positioned
over a certain cell shall corresponds to M̃’s head having the first bit of that cell’s encoding to its
right. Thus, an ID C = 〈

q, m, f
〉
of M corresponds to an ID C̃ = 〈

q̃, m̃, f̃
〉
of M̃ iff for all n ∈Z

f̃ (m̃+n)= v[n mod N] with av = f
(
m+

⌊ n
N

⌋)
.

Note that whether an ID C of M that corresponds to an ID C̃ of M̃ exists depends entirely on the
existence of a q̃ corresponding to q, and vice versa. Before delving into the precise definition of
QM̃ and its relation to QM, it seems beneficial to give a short overview of how M̃ simulates one
step of M.

Assume that M̃ starts from an ID that corresponds to some ID of M. M̃ must then first read
the N cells to the right of its head, since those represent the symbol under M’s head. Having
accumulated that symbol in its internal state, M̃ needs to consult M’s transition relation to let
its state reflect the new state M would be in, which symbol to write, and in which direction to
move. Finally, it needs to carry out those actions, overwriting the previously read N cells with the
new symbol and then moving by N cells to the left or right. M̃’s actions through one such cycle
are controlled by the command component CN of its internal state, which represents the current
phase (read, write or move) and how many of the N cells visited during each of these phases have
already been processed.

CN := {
R1, . . . , RN , WN , . . . , W1, M1, . . . , MN

}
.

During each transitions, the state’s command component is replaced by its successor, starting
anew with R1 after completing the simulation of one step of M by reaching MN . As expected, M̃
thus takes 3N steps to simulate one step of M.

Apart of that command component, M̃’s state must of course also reflect the state of M as well
as which symbol it just read or must write, and which direction to move in. The full state set of M̃
is thus

QM̃ :=QM×{
0 . . . |AM|−1

}×CN ×{ −1, 0, 1
}
.

A state of M corresponds to a state of M̃ where it is at the beginning of a simulation cycle.
Hence q corresponds to q̃ iff

q̃ = 〈
q, 0, R1, 0

〉
.
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The construction of M̃ from M is concluded by defining its transition relation, which can easily
be verified to implement the behavior outlined above.

TM̃ :=
{ 〈〈q, 0, R1, 0〉, v[1], 0, 〈q, v 1], R2, 0〉, +1

〉
,〈〈q, v n−1], Rn, 0〉, v[n], 0, 〈q, v n], Rn+1, 0〉, +1

〉
,〈〈q, v[N−1], RN , 0〉, v[N], 0, 〈q′, v′, WN , d′〉, +1

〉
, ?O〈〈q′, v′N], WN , d′〉, 0, v′[N], 〈q′, v′N−1], WN−1, d′〉, −1

〉
,〈〈q′, v′n], Wn, d′〉, 0, v′[n], 〈q′, v′n−1], Wn−1, d′〉, −1

〉
,〈〈q′, v′1], W1, d′〉, 0, v′[1], 〈q′, 0, M1, d′〉, −1

〉
,〈〈q′, 0, M1, d′〉, b, b, 〈q′, 0, M1, d′〉, d′〉,〈〈q′, 0, Mn, d′〉, b, b, 〈q′, 0, Mn+1, d′〉, d′〉,〈〈q′, 0, MN , d′〉, b, b, 〈q′, 0, R1, 0〉, d′〉∣∣∣ 〈

q, av, av′ , q′, d′〉 ∈ TM, b ∈ {
0, 1

}
, 1< n < N

}
.

Observe now that during an arbitrary computation, M̃ will assume a state 〈q,0,R1,0〉 (q ∈QM)
exactly every 3N steps. Since these are exactly the states of M̃ which correspond to states of M,
every 3N-th ID in a computation of M̃ corresponds to an ID of M. Furthermore, if M̃ reaches
ID C̃ and then 3N steps later reaches C̃′, C ` C′ holds for the corresponding IDs C, C′ of M.
Therefore, from every computation of M̃ with length n ≥ 3N one can obtain a computation of M
with length

⌊ n
3N

⌋−1. Conversely, a computation of M can be transformed to a computation of M̃
with 3N times as many steps as the original. Thus, M̃ is bounded iff M is bounded.

Also, careful checking of TM̃ shows that all IDs of M̃ except those with command state RN
(marked with ?O) have a uniquely defined successor. For those with command state RN , the
successor is uniquely defined iff M’s transition relation uniquely defines q′, av′ and d′ for q and a.
M̃ is therefore deterministic iff M is deterministic. ■

Now, combining 3.2.12 and 3.3.2 immediately proves

Theorem 3.3.3. The boundedness of (deterministic) inter-cell Turing machines over an alphabet
with two elements is undecidable.
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3.4 Symmetric Inter-Cell Turing Machines

As promised when inter-cell Turing machines where introduced, it is now shown that this class of
Turing machines has a well-behaved subclass of machines with a symmetric transition relation.

Definition 3.4.1 (Symmetric ITMs).

(i) An inter-cell Turing machine M is symmetric iff for every
〈
q, a, a′, q′, ∆

〉 ∈ TM also
〈
q′, a′,

a, q, −∆〉 ∈ TM.

(ii) The symmetric closure of an inter-cell Turing machine M is the symmetric inter-cell Turing
machine M which shares M’s alphabet and states but whose transition relation is extended
to

TM := { 〈
q, a, a′, q′, ∆

〉
,
〈
q′, a′, a, q, −∆〉 ∣∣ 〈

q, a, a′, q′, ∆
〉 ∈ TM }

The following corollary asserts that this definition indeed fulfills its purpose. Note that while this
definition of symmetricity applies to regular Turing machines also, this corollary does not!

Corollary 3.4.2. An inter-cell Turing machine M is symmetric iff `?M is a symmetric relation.

Proof. Since `?M is the reflexive and transitive closure of `M, it is sufficient to prove the corollary
for the latter. The following diagram shows a pair of IDs C ` C′ of an inter-cell Turing machine
M.

C C′

am−1 am am+1 `〈
q, am, a′

m, q′,+1
〉 am−1 a′

m am+1
↑
q

↑
q′

From the picture, it is clear that C′ ` C ⇔ C ` C′ iff
〈
q, a, a′, q′,∆

〉 ∈ TM ⇔ 〈
q′, a′, a, q,−∆〉 ∈ TM.

This suffices, since `? if symmetric iff ` is (`? is the reflexive and transitive closure of `). ■

Assume now M is an arbitrary inter-cell Turing machine. Which properties of M do then carry
over to its symmetric closure M and which don’t? Being deterministic clearly doesn’t, since any
computation fragment C1 `M C2 `M C3, C1 6= C3, of M mandates that on M both C2 `M C3 and
C2 `M C1 hold. M is also generally immortal, since for any two IDs C, C′ with C `M C′ one has
C `M C′ `M C ` ·· · on M. While not quite as obvious, M will also in general be unbounded, as
the following example shows.

Let M be an ITM over the one-element alphabet AM = {ä}
, with states QM = {

q2, q1, q0
}
and

with the transition relation
TM :=

{ 〈
q2, ä, ä, q0, +1

〉
,〈

q2, ä, ä, q1, +1
〉
,〈

q1, ä, ä, q0, +1
〉 }

.
M is obviously bounded, since no computation with a length of 3 or greater exists. But the
transition relation of M’s symmetric closure M,

TM =
{ 〈

q2, ä, ä, q0, +1
〉
,〈

q0, ä, ä, q2, −1
〉
,〈

q2, ä, ä, q1, +1
〉
,〈

q1, ä, ä, q2, −1
〉
,〈

q1, ä, ä, q0, +1
〉
,〈

q0, ä, ä, q1, −1
〉 }

.
allows the computation〈

q2, 0, f
〉`M

〈
q1, 1, f

〉`M
〈
q0, 2, f

〉`M
〈
q2, 1, f

〉`M · · ·
to occur, which has an infinite tape span.
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Taking a closer look at this computation ofMwith infinite tape span reveals that its construction
depends on M’s ability to move back to state q0 via a different path than it was originally reached
by. Otherwise, the head’s movements would cancel out, and the computation would have an infinite
length but a finite tape span. For originally deterministic M, the symmetric closure lacks this
ability, which is the essence of the proof of

Lemma 3.4.3. A deterministic inter-cell Turing machinesM is bounded iff its symmetric closure
M is bounded.

Proof. Since any computation fragment on M is also a valid computation fragment on M, M
is obviously unbounded if M is. For the converse, let assume that M is bounded by LM and
that

〈
q0, m0, f0

〉 = C0 `M · · · `M Cl =
〈
ql , ml , f l

〉
is a computation fragment with |ml −m0| >

2 ·LM of M. By the definition of M’s transition relation, for all i one either has Ci `M Ci+1 or
Ci aM Ci+1. Assume that there is an Ci such that Ci−1 aM Ci `M Ci+1. Then Ci−1 = Ci+1 since
M is deterministic, and hence that sub-sequence can be replaced by just Ci−1. Note that this
replacement changes neither the first nor the last ID of the computation fragment. Therefore,
by performing such replacements until no suitable Ci is left, one eventually obtains a shortened
computation fragment

C0 `M · · · `M Cr aM · · · a Cl .
Since 2 ·LM < |ml −m0| ≤ |ml −mr|+ |mr −m0|, one of the computation fragments

C0 `M · · · `M Cr or
Cl `M · · · `M Cr

has a tape span larger than LM. ■

From this together with the undecidability of boundedness for deterministic inter-cell Turing
machines (3.3.3) it immediately follows that

Theorem 3.4.4. The boundedness of symmetric inter-cell Turing machines over an alphabet with
two elements is undecidable.
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3.5 Strict Turing Machines and Strict IDs

The representation of a turing machine’s tape as a function from Z toA was convenient for proving
results about turing machines, but to reduce questions about turing machines to semi-unification
the tape’s contents must be interpreted as finite strings over some alphabet instead. Such an
interpretation requires the very least a restriction to only finite IDs, but since these IDs still allow
blank symbols to appear between non-blank ones, that class of IDs is still slightly too large. This
is the reason for the introduction of strict IDs and strict Turing machines.

Definition 3.5.1 (Strict Turing Machines and Strict IDs).

(i) A Turing machine is called strict if ä ∈AM, but the blank symbol ä does not occur in the
transition relation. For strict Turing machines M, ÅM denotes the non-blank symbols from
A, i.e. ÅM =AM \

{ä}
, and it is generally assumed that QM∩AM =;.

(ii) An ID
〈
q, m, f

〉
is called strict if there are I1, I2 ∈N such that

f (i) 6= ä iff I1 ≤ i < I2 and I1 ≤ m ≤ I2

(iii) For a strict Turing machine, only strict IDs are considered unless specifically stated other-
wise. In particular, boundedness of a strict machine refers to boundedness for strict IDs, a
computation fragment means a sequence of strict IDs, and so on.

Since ä does not occur in a strict machine’s transition relation, such a machine cannot overwrite
blank tape cells, nor replace non-blank cells with blank ones. As a consequence, a successor of a
strict ID on a strict machine is again strict, with the same bounds I1 and I2. Such a machine can
thus only reach finitely many IDs from each individual initial ID, which of course severely limits
the computational expressiveness. Since the number of reachable IDs depends on the distance
I2 − I1 between the bounds of an initial IDs, however, that does not imply that strict machines
are always bounded! In fact, the boundedness problem for strict machines is equivalent to the
boundedness problem for arbitrary machines, as the following theorem shows.

Theorem 3.5.2. Assume thatM is a ((symmetric) inter-cell) Turing machine. LetM′ be the strict
((symmetric) inter-cell) Turing machine which arises from M by first replacing the original blank
symbol ä by the new symbol ä̃ everywhere, and finally adding ä back to the alphabet. Then, M
is bounded iff M′ is bounded.

Proof. Let
〈
q0, m0, f0

〉 = C0 ` ·· · ` Cn be a computation fragment of M with span i Ci = N. By
setting f ′i (m0 +∆)= f i(m0 +∆) for |n| ≤ N and f ′i (m0 +∆)=ä otherwise, one obtains a sequence of
strict IDs C′

i =
〈
qi, mi, f ′i

〉
of M′ with C′

0 ` ·· · ` C′
n and span i C′

i = N. Thus M′ is bounded if M
is bounded.

Conversely, let
〈
q0, m0, f ′0

〉= C′
0 ` ·· · ` C′

n be a computation fragment ofM′ containing only strict
IDs with span i C′

i = N. Since M′ stops upon reaching a blank cell, all cells inspected during that
computation fragment must be non-blank. Thus, by setting f i(n) := f ′i (n) if f ′i (n) 6= ä and f i(n) := a
for some a ∈AM otherwise, one obtains a computation fragment

〈
q0, m0, f0

〉= C0 ` ·· · ` Cn on
M with the same tape span. M is hence bounded if M′ is bounded. ■

Thus, since boundedness is in general undecidable for ((symmetric) inter-cell) Turing machines,
the same follows for the boundedness problem of strict machines.

Theorem 3.5.3. The boundedness of strict ((symmetric) inter-cell) Turing machines over an al-
phabet containing two non-blank symbols is undecidable.

IDs of strict inter-cell Turing machines can readily be interpreted as finite strings consisting of
the tape contents to the left of the head, followed by the state, and followed by the tape contents to
the right of the head.
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Definition 3.5.4 (ID Expressions). For strict inter-cell Turning Machines M,

(i) An ID expression is an element of the set
IM := Å?

M×QM× Å?
M,

(ii) An ID expression ΛqΩ ∈ IM corresponds to an ID
〈
q, m, f

〉
of M, denoted ΛqΩ≡ 〈

q, m, f
〉
,

iff for Λ=λu . . .λ1, Ω=ω0 . . .ωv

f (m+∆)=


λ−∆ if −u ≤∆≤−1,
ω∆ if 0≤∆≤ v,
ä otherwise.

The following diagram illustrates this correspondence. Note that since it was assumed that AM
and QM are disjoint, an ID expression ΛqΩ always uniquely specifies a head position within the
tape contents ΛΩ. The absolute head position m of an ID

〈
q, m, f

〉
, on the other hand, is not

reflected by an ID expression.
Λ q Ω (ID Expression)︷ ︸︸ ︷ ︷ ︸︸ ︷

f (i) . . . ä λu . . . λ1 ω0 . . . ωv ä . . . (Tape)
i I1 m I2

↑
q (Head and State)

For strict symmetric inter-cell Turing machines (abbreviated SSITM from now on) M, the
transition relation TM can be interpreted as a set of identities between ID expressions of the form
λq and those of the form qω. Each identity between two such ID expressions defines a replacement
that can be applied to any matching ID expression ΛqΩ, which moves the head exactly one cell to
the left or to the right, and represents one computation step of the SSITM M.

Definition 3.5.5. For a strict symmetric inter-cell Turing machine (SSITM) M,

(i) The set of transition identities T
.=

M is

T
.=

M := {
qω .=λq′ ∣∣ 〈

q, ω, λ, q′, +1
〉 ∈ TM }

∪ {
λq′ .= qω

∣∣ 〈
q′, λ, ω, q, −1

〉 ∈ TM }
(ii) The successor relation `M on IM is

ΛqΩ`M Λ′q′Ω′ iff ΛqΩ= Λ̃τΩ̃, Λ′q′Ω′ = Λ̃τ′ Ω̃
for some τ .= τ′ ∈ T

.=
M and Λ̃,Ω̃ ∈ Å?

M.
and `?M its transitive closure.

(iii) A sequence of ID expressions Λ0q0Ω0 `M Λ1q1 `M · · · is called a computation fragment.

The following facts are immediate consequences of the definitions of T
.=

M and `M and the fact that
SSITMs cannot replace blank by non-blank symbols and vice versa.

Corollary 3.5.6. For a SSITM M,

(i) qω .=λq′ ∈ T .=
M iff λq′ .= qω ∈ T .=

M,

(ii) The relations `M and `?M on IM are symmetric,

(iii) If ΛqΩ`?M Λ′qΩ′ then |ΛΩ| = ∣∣Λ′Ω′∣∣.
Proof.

(i). By the definition of T
.=

M, qω .=λq′ ∈ T .=
M iff

〈
q,ω, λ, q′, +1

〉 ∈ TM. SinceM is symmetric, that
is the case exactly if

〈
q′, λ, ω, q, −1

〉 ∈ TM. But that holds, again by the definition of T
.=

M exactly if
λq′ .= qω ∈ T .=

M.

(ii). Follows from (i).

(iii). Holds for `M by definition (cf. 3.5.5 (ii)), and thus also for `?M. ■
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Calling a sequence Λ0q0Ω0 `M Λ1q1 `M · · · of ID expressions a computation fragment is war-
ranted by the following lemma. It shows that one can translate back and forth between “computa-
tion fragments” containing ID expressions, and computations containing IDs as per the original
definition of that word.

Lemma 3.5.7. Let M be an SSITM, then

(i) For every computation fragment consisting of ID expressions
Λ0q0Ω0 `M Λ1q1Ω1 `M · · ·

there exists a corresponding computation fragment〈
q0, |Λ0| , f0

〉`M
〈
q1, |Λ1| , f1

〉`M · · · with Λi qiΩi ≡
〈
qi, |Λi| , f i

〉
.

(ii) For every computation fragment〈
q0, m0, f0

〉`M
〈
q1, m1, f1

〉`M · · ·
there exists a corresponding computation fragment consisting of ID expressions

Λ0q0Ω0 `M Λ1q1Ω1 `M · · · with Λi qiΩi ≡
〈
qi, mi, f i

〉
where mi −|Λi| =: M is constant.

Proof.

(i). Pick arbitrary IDs
〈
qi, mi, f i

〉
with Λi qiΩi ≡

〈
qi, mi, f i

〉
, and observe that these IDs can

be shifted without interfering with the correspondence relation. Align the IDs such that their
non-blank regions occupy the same absolute indices, and such that their (shared!) I1 = 1 (where
I1 is as in definition 3.5.5). mi = |Λi| then follows from definition 3.5.4 (ii), and that the IDs are
successors from a comparison of definitions 3.3.1 and 3.5.5.

(ii). Since SSITMs cannot replace blank by non-blank, nor non-blank by blank symbols, the I1
and I2 (as in definition 3.5.5) of all the IDs must agree. Let M = m0 −|Λ0|, then |Λi| = mi −m0
for all i follows from definition 3.5.4. That the ID expressions are successors again follows from a
comparison of definitions 3.3.1 and 3.5.5. ■

The origin definition of the tape span of a computation fragment was stated in terms of absolute
head positions, and hence does not directly apply to ID expressions. But it follows from lemma 3.5.7
that the position relative to the first (or equivalently to the last) non-blank symbol is a suitable
replacement, which proves

Lemma 3.5.8. For a computation fragment C0 `M C1 `M · · · and the corresponding computation
fragment Λ0q0Ω0 `M Λ1q1Ω1 `M · · ·

span
i

Ci =max
i

∣∣∣ |Λi|− |Λ0|
∣∣∣=max

i

∣∣∣ |Ωi|− |Ω0|
∣∣∣.

It follows that boundedness can also equivalently be defined in terms of the relative head position,
and that it suffices to consider computation fragments where the head is positioned at the first
non-blank cell in the beginning, and ends at the last non-blank cell.

Theorem 3.5.9. For an SSITM M and some LM ∈N the following propositions are equivalent

(i)
〈
q, m, f

〉`?M〈
q′, m′, f ′

〉
implies

∣∣m′−m
∣∣≤ LM, i.e. M is bounded by bound LM,

(ii) ΛqΩ`?M Λ′q′Ω′ implies
∣∣∣∣∣Λ′∣∣− ∣∣Λ∣∣∣∣∣= ∣∣∣∣∣Ω′∣∣− ∣∣Ω∣∣∣∣∣≤ LM

(iii) qΩ`?M Λq′ implies |Λ| = |Ω| ≤ LM.

Proof.

(i) ⇔ (ii). This is an immediate consequence of lemma 3.5.8.

(ii) ⇒ (iii). Setting Λ=Ω′ = ε in (ii) yields (iv).

(iii) ⇒ (ii). Assume (ii) fails, i.e. there is a computation fragment
Λ0q0Ω0 `M Λ1q1Ω1 `M · · · `M ΛnqnΩn
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with
∣∣ |Λn| − |Λ0|

∣∣ > LM. Let a,b ∈ {
0, 1, . . . , n

}
such that |Λa| and |Ωb| are minimal. Then

|Λb|− |Λa| > LM, Λa must be a common prefix of all the Λi (since the head needs to move past a
symbol to modify it), and Ωb must be a common suffix of all the Ωi. Since ΛaqaΩa `?M Λb qbΩb,
the same holds if these common parts are removed, which yields

qaΩ`?M Λqb where ΛaΛ=Λb and ΩΩb =Ωa.

Since |Λ| = |Λb|− |Λa| > LM, (iii) fails too. ■
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Chapter 4

Decidability and Undecidability
Results

4.1 The Undecidability of Semi-Unification

The stated goal of chapter 3 was to construct a class of Turing machines whose boundedness
problem can be reduced to a boundedness problem for a certain system of path equations. The
strict symmetric inter-cell Turing machines from section 3.5 allow exactly that. An ID of such a
machine M can be represented by an expression of the form ΛqΩ, where Λ,Ω ∈ ÅM =A\

{ä }
are strings consisting of M’s non-blank tape symbols, and q ∈QM is the machine’s current state.
These expressions are suspiciously similar to the path expressions introduced in 2.2, which had
the form ΠµΣ where Π ∈P = {

L, R
}? was a path, Σ ∈R= {

S1, S2, . . .
}?, and µ ∈V a variable.

Thus, for a SSITMM whose tape alphabet contains only two non-blank symbols L,R and whose
states are variables from V , every ID expression of the form Λq is also a path expression, and
vice versa. This correspondence is easily extended to all ID expressions and all path expressions
by translating back and forth between Ω = ωi1 . . .ωin ∈ {

L, R
}∗ and Σ = Si1 . . .Sin ∈R? by e.g.

agreeing that L is represented by S1 and R by S2. This translation (in both directions) is the role
of the map · .

This translation now allows the transition identities of an SSITMMwith two non-blank symbols
to be interpreted as a set of path equations ΓM. Note that the assumption ÅM = {

L, R
}
and

QM ⊂V is no real restriction – if
∣∣ÅM

∣∣= 2, one can always satisfy these assumptions by renaming
the tape symbols and states.
Definition 4.1.1 (Path Equations for SSITMs). The set of path equations ΓM corresponding to a
SSITM M is

ΓM :=
{
λq .= q′ω

∣∣∣ λq .= q′ω ∈ T
.=

M

}
,

assuming that ÅM = {
L, R

}
, QM ⊂V and that · is an isomorphism between Å?

M and
{

S1, S2
}?.

(Note that · will be used to denote both the forward and the reverse translation).
The above took care of establishing a formal correspondence between the possible transitions of an
SSITM M and a set of path equations ΓM. It remains to establish a semantic correspondence, i.e.
a connection between the possible computation fragments on M and the path equations derivable
from ΓM.

Without the additional bracketed premise of the deduction rule π-Application, it would hold
that ΠµΣ .=Π′νΣ′ being derivable from ΓM is equivalent ΠµΣ being reachable from Π′νΣ′ and
vice versa. With that additional premise of π-Application, this is no longer true – and it is thus
necessary to find a property of computation fragments which reflects the additional restriction
that the bracketed premise of π-Application represents.
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That premise prevents one from “blindly” appending L or R to (the left of) a path expression,
since doing so may produce, upon evaluation, undefined terms. On an SSITM, appending L or R to
left of two mutually reachable ID expressions again yields two mutually reachable ID expressions
– but there are two possible cases. It could be that appending the symbols allows some previously
impossible computation fragment to occur, which takes actually takes the head to the very left of
the extended ID expression at some point. Or it could be that the newly added symbol is “dead
weight”, and isn’t actually used by any possible computation fragment. It turns out that the
restricted version of π-Application used in definition 2.3.1 is equivalent to a restriction to the first
case. Thus, derivable path equations correspond exactly to those mutually reachable IDs which
don’t carry any “dead weight” on their left hand side.

Theorem 4.1.2. For an SSITM M with corresponding set of path equations ΓM,
ΠµΣ

.=Π′νΣ′ ∈ΓM iff ΠµΣ`?M σΣ′′ `?M Π′νΣ′ for some σΣ′′ ∈ IM.

Proof of ⇒. By induction on the structure of the derivation of a ΠµΣ .=Π′νΣ′ ∈ΓM.
ΠµΣ

.= Π′νΣ′ ∈ ΓM. By the definition of ΓM, Σ = Π′ = ε, and Πµ .= νΣ′ ∈ T
.=

M. Thus, by the
definition of `M for ID expressions, Πµ`M νΣ′ and hence Πµ`?M νΣ′ `?M νΣ′.

ΠµΣ
.=Π′νΣ′

Π′νΣ′ .=ΠµΣ (Symmetricity). Per induction assumption, ΠµΣ `?M σΣ′′ `?M Π′νΣ′. Since `?M is
symmetric, it follows that Π′νΣ′ `?M σΣ′′ `?M ΠµΣ.

Π1µ1Σ1
.=Π2µ2Σ2 Π2µ2Σ2

.=Π3µ3Σ3
Π1µ1Σ1

.=Π3µ3Σ3
(Transitivity). Per induction assumption, Π1µ1Σ1 `?M σΣ `?M

Π2µ2Σ2 and Π2µ2Σ2 `?M σ′Σ′ `?M Π3µ3Σ3. The transitivity of `?M then guarantees, as required,
that Π1µ1Σ1 `?M σΣ`?M Π3µ3Σ3. (One could, of course, just as well use σ′Σ′ instead of σΣ)

ΠµΣ
.=Π′νΣ′

ΠµΣSi
.=Π′νΣ′Si

Si (Si-Application). Per induction assumption, ΠµΣ`?M σΣ′′ `?M Π′νΣ′. Since ä
does not appear in T

.=
M, the same holds if Si is appended everywhere, which yields, as required,

ΠµΣSi `?M σΣ′′ Si `?M Π′νΣ′ Si.
ΠµΣ

.=Π′νΣ′ [
Π̃πΠ′νΣ′ .=...

]
πΠµΣ

.=πΠ′νΣ′ π (π-Application). Per induction assumption,ΠµΣ`?MΠ′νΣ′ and Π̃πΠ′νΣ′

`?M σΣ′′. Since the head can only move over one symbols at a time, Π̃πΠ′νΣ′ `?M σΣ′′ implies the
existence of an ID expression σ′Σ′′′ with Π̃πΠ′νΣ′ `?M Π̃σ′Σ′′′. For the first such ID expression,
it must further hold that πΠ′νΣ′ `?M σ′Σ′′′, since none of the symbols in Π̃ can have influenced
the computation fragment up to σ′Σ′′′. The proof is completed by appending π to ΠµΣ`?M Π′νΣ′ –
that, just as for Si-Application produces ID expressions that are still mutually reachable – and
together with the above it yields πΠµΣ`?M σ′Σ′′′ `?M πΠ′νΣ′.
Proof of ⇐. It suffices to prove that if σΣ′ `?M ΠµΣ then σΣ′ .= ΠµΣ ∈ ΓM – the general case
then follows by suitable invocations of Symmetricity and Transitivity. The proof is carried out by
induction on the length of the computation fragment σΣ′ `?M ΠµΣ.

σSiΣ̃ `M πµΣ̃. By the definitions of `M and T
.=

M (and corollary 3.5.6), πµ .= σSi ∈ T
.=

M, and
hence πµ .=µSi ∈ΓM. Using Σ̃-Application and Symmetry, one can derive σSiΣ̃

.=πµΣ̃ as required.
σΣ′ `?M Π̃πνΣ̃`M Π̃µSiΣ̃. The following derivation says it all

(Induction Assumption)
σΣ′ .= Π̃πνΣ̃ ∈ΓM

↓
σΣ′ .=Π̃πνΣ̃

Π̃πνΣ̃`M Π̃µSiΣ̃

↓
µSi

.=πν
Σ̃

µSiΣ̃
.=πνΣ̃

(Induction Assumption)
σΣ′ .= Π̃πνΣ̃ ∈ΓM

↓[
Π̃πνΣ̃

.=σΣ′]
Π̃

Π̃πνΣ̃
.=Π̃µSiΣ̃

σΣ′ .=Π̃µSiΣ̃

■

With theorem 4.1.2, all the pieces for the promised reduction of the boundedness problem for
SSITMs (over three element alphabets which include ä) to the boundedness problem for finite
systems of path equations are in place.
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Theorem 4.1.3. An SSITM M is bounded (as a strict Turing machine) iff ΓM is bounded (as a
set of path equations).

Proof.

M is unbounded ⇒ ΓM is unbounded. If M is unbounded, per theorem 3.5.9 there exists a
sequence of mutually reachable IDs qnΩn `?M Λnq′

n with |Λn| ≥ n. According to theorem 4.1.2
that implies qnΩn

.=Λnq′
n ∈ΓM, and in particular Λnq′

n ∈∆ΓM , for all n ∈N. Since |Λ| ≥ n, ΓM is
thus unbounded.

ΓM is unbounded ⇒ M is unbounded. If ΓM is unbounded, there exists a sequence of path
expressions ΠnµΣ ∈ ∆Γ with |Πn| ≥ n. Thus, due to theorem 4.1.2, there are ID expressions
σnΣ

′
n such that ΠnµΣ`?M σnΣ

′
n. Since |Πn| ≥ n, that contradicts theorem 3.5.9 (ii), and M must

therefore be unbounded. ■

From the equivalency of the boundedness of an SSITM M and the corresponding set of path
equations ΓM, the undecidability of the latter follows immediately.

Theorem 4.1.4. The boundedness and solvability of finite sets of path equations mentioning two
local substitutions is, in general, undecidable.

Proof. The boundedness of SSITMs over three-element alphabets (including ä) is, according to
theorem 3.5.3, in general undecidable. Such a boundedness problem can, via definition 4.1.1 and
theorem 4.1.3, be effectively reduced to a boundedness problem for systems of path equations
containing two local substitutions. The boundedness of such sets of path equations is thus, in
general, undecidable as well. Since, according to 2.4.15, boundedness and solvability of a set of
path equations is equivalent, the same holds for solvability of such sets. ■

Finally, by appealing to the reduction of arbitrary finite sets of path equations to semi-unification
problems, the undecidability of semi-unification follows immediately.

Theorem 4.1.5. The semi-unification problem for two inequalities is, in general, undecidable

Proof. By theorem 2.2.21, the semi-unification problem for two inequalities is effectively equivalent
to the solvability of finite sets of path equations mentioning two local substitutions, and this
problem is in general undecidable per theorem 4.1.4. ■
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4.2 The Decidability of Uniform Semi-Unification

The previous section showed that semi-unification problems involving at least two inequalities,
or in other words more than two local substitutions, are in general undecidable. That leaves the
question of decidability of semi-unification problems consisting of only a single inequality, called
uniform semi-unification problems, open.

An analysis of the proof of theorem 4.1.5 quickly shows that at least that proof does not extend
to the uniform case. Remember that, per definition 4.1.1, the tape contents to the right of the head
are represented by S1 or S2, each representing one of the two non-blank tape symbols. Therefore,
if the path equations ΓM corresponding to a SSITM M are supposed to contain only a single local
substitution S1, the SSITM’s alphabet must be restricted to at most one non-blank symbol. The
question thus becomes whether theorem 3.5.3 about the undecidability of boundedness for SSITMs
with two non-blank symbols holds for SSITMs with a single non-blank symbol as well. This, in turn,
would require an extension of theorem 3.4.4 to the single-symbol case, i.e. that the boundedness of
(not necessarily strict) symmetric inter-cell Turing machines is already undecidable for single-
symbol alphabets. But that is clearly not the case – Turing machines over a single-symbol alphabet
are simply finite state machines, and their boundedness is easily decided by looking for circles in
their transition graph whose net head movement is non-zero.

Note, however, that this argument does not constitute a proof that uniform semi-unification
is actually decidable! The encoding of Turing machines as sets of path equations in definition
4.1.1 is not surjective – since Turing machines cannot insert or delete symbols, only overwrite
them, they only ever produce path equations ΠµΣ .=Π′νΣ′ with |Π| + |Σ| = ∣∣Π′∣∣+ ∣∣Σ′∣∣. One thus
cannot deduce much about arbitrary uniform semi-unification problems by studying the behavior
of single-element Turing machines.

Other methods are thus required to prove the decidability of uniform semi-unification. A very
concise proof can be found in [Pud88].

Theorem 4.2.1 ([Pud88], page 552). The uniform semi-unification problem, i.e. the semi-unifica-
tion problem for a single inequality, is decidable.

The proof of Pudlák builds on the repeated-unification algorithm for semi-unification by Baaz,
(cf. [Baa93]), and shows that for uniform semi-unification one always eventually either finds a
semi-unifier, or recognizes the problem as unsolvable. That additional abortion condition in
Pudlák’s algorithm, (cf. [Pud88], page 553, (c)), can be viewed an extension of what is usually
called the “occurs-check” in unification algorithms.

When a unification algorithm substitutes some term t for the variable α, the ”occurs-check”
tests whether t contains α. If that is the case, unification fails, since any such situation amounts
to an attempt at unifying α and f (. . . ,α, . . .), which is obviously impossible. Pudlák’s additional
termination condition serves the same purpose – to prevent an infinite loop if no solution exists
– with its slightly higher complexity coming from the need to distinguish α ≤̇α ·−→α, which does
have a solution (e.g. S = id, S1(α)=α ·−→α)), from α ·−→α ≤̇α, which does not.

In contrast, in the general case of more than one inequality, the undecidability result of the
previous section shows that no exhaustive such check can exist.
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