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A B S T R A C T

Heart diseases are amongst the most common causes of death in the

industrialized world. Since the cardiological system is very complex

and hard to capture in its entirety, researchers are looking for indi-

cators of its health. One of these is the heart rate variability (HRV),

i.e. the variation of the time interval between two heart beats. It re-

flects many physiological processes which influence the rhythm of

the heart. Since these influences of the generation of heart beats are

non-linear, researchers use a visualization tool, the Poincaré plot,

which has its origins in chaos theory, to analyze HRV. This method,

also called Lorenz plot, became popular in the last 20 years. It gives

a simple visualization of the heart’s beat-to-beat behavior and can

be used for various applications, e.g., to predict the mortality of pa-

tients with myocardial infarction. Numerous data models exist in or-

der to automatically quantify Poincaré plots.

The main objective of this master thesis is to implement 14 of the

most common models in MATLAB® and improve them where possi-

ble. Afterwards these models are tested with respect to their ability to

differentiate between pathological and non-pathological heart beat

recordings, compare them to statistical HRV-measures and examine

the models’ dependences on each other.

The data are filtered via clustering algorithms and used in four dif-

ferent test cases. The first case is to test for data length sensitivity.

Therefore, each model is applied to non-pathological and patholog-

ical data sets, with a stepwise reduction of their data length. The sec-

ond case is an application of the models on pathological and non-

pathological data sets, at a fixed data length, in order to do a deeper

examination of them and their ability to differentiate between these

data sets. For the third test, the models are used on data sets of sub-

jects before and after arrhythmia treatment. The final test case is a

comparison of younger and older healthy subjects via the data mod-

els.

Although not all implemented data models showed significant differ-

ences between the tested data sets, some passed all tests, including

one, which was improved for this thesis. With the calculated correla-

tions, the number of models which should be considered for further

research can also be reduced.

iii



K U R Z FA S S U N G

Herzerkrankungen sind eine der häufigsten Todesursachen in den

industrialisierten Ländern der Welt. Aufgrund der Komplexität des

Herzkreislaufsystems suchen Forscher∗innen nach Indikatoren für

den gesundheitlichen Zustand des Systems. Einer von diesen Indi-

katoren ist die Herzratenvariabilität (HRV), d.h. die Veränderung der

Zeitintervalle zwischen zwei Herzschlägen. Die HRV liefert Anhalts-

punkte über den Zustand verschiedenster physiologischer Prozesse,

die Einfluss auf den Herzrhythmus haben. Nachdem die Entstehung

von Herzschlägen ein nichtlinearer Prozess ist, wurde in den letz-

ten 20 Jahren vermehrt auf den Poincaré Plot zurückgegriffen, ei-

ne Visualisierungsmethode, die ihren Ursprung in der Chaostheorie

hat und auch als Lorenz Plot bekannt ist. Es ist eine einfache Darstel-

lungsweise der Änderung der Herzrate von einem Herzschlag zum

nächsten und findet zahlreiche Anwendungen in der Medizin, u.a.

zur Vorhersage des Mortalitätsrisikos bei Patient∗innen nach einem

Myokardinfarkt. Es existieren verschiedenste Datenmodelle zur au-

tomatischen Quantifizierung des Poincaré Plots.

Ziel dieser Diplomarbeit war es 14 der gebräuchlichsten Modelle in

MATLAB® zu implementieren und falls möglich zu verbessern, so-

wie die Untersuchung ihrer Fähigkeit, verschiedene Arten von pa-

thologischen und nicht pathologischen Herzraten zu unterscheiden,

der Vergleich zu statistischen HRV-Größen und die Betrachtung der

Abhängikeit der Datenmodelle zueinander.

Die Daten des Poincaré Plots werden mittels Clusteralgorithmen ge-

filtert und anschließend in vier Testfällen verwendet. Der erste Test

untersucht die Empfindlichkeit der Modelle auf die Datenlänge. Da-

zu wird die Unterscheidungsfähigkeit zwischen pathologischen und

nicht pathologischen Daten bei sich schrittweise verkürzenden Da-

tenlängen betrachtet. Im zweiten Testfall werden die Ergebnisse der

Modelle für pathologische und nicht pathologische Daten bei einer

fixen Datenlänge genauer untersucht. Für den dritten Test werden

Herzratendaten von Arrhythmiepatienten vor und nach einer An-

tiarrhythmikabehandlung verwendet und erneut die Fähigkeit der

Modelle zwischen den Datensätzen zu unterscheiden getestet. Im

letzten Test werden die Ergebnisse der Modelle zwischen älteren und

jüngeren gesunden Patient∗innen untersucht.
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Manche, jedoch nicht jedes der implementierten Datenmodelle zeig-

ten signifikant unterschiedliche Ergebnisse zwischen den betrachte-

ten Datensätzen. Darunter ist auch ein Modell, das im Zuge dieser

Diplomarbeit verbessert wurde. Anhand der berechneten Korrela-

tionen lässt sich die Anzahl an zu berücksichtigenden Modellen für

künftige Untersuchungen reduzieren.
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1
P R E A M B L E

According to a report by the The European Society of Cardiology,

heart failure is a leading cause of death in the EU and is on the rise

due to an increasing age of the population [37]. Since an early di-

agnosis of heart conditions leads to more successful treatments, re-

searchers look for markers of heart diseases [10].

More than 30 years ago heart rate variability (HRV) was introduced

as such a measure [1]. HRV is the variation of the time interval be-

tween consecutive heartbeats. It highly depends on the extrinsic reg-

ulation of the heart rate, i.e. the time interval between two beats and

reflects changes in the balance of the different regulatory systems,

including the autonomous nervous system [41].

Research on HRV has attracted considerable attention in the fields

of psychology and behavioral medicine. It has its origin in the search

for non-invasive correlates of injury severity which can be extracted

from available signals in order to discover new cardiac biomarkers

[5]. These signals are usually ones that are routinely measured and

include sources like a photoplethysmogram or the electrocardiogram

(ECG) [3]. Studies also show a connection between the balance of the

autonomic nervous system measured with HRV and cardiovascular

diseases [2].

In studies of HRV, both time- and frequency-domain measures are

typically used by practitioners and researchers [1, 2]. Since the influ-

ences of the beat generation are also non-linear [33], a visualization

tool originating in chaos theory, the Poincaré plot, became a popular

tool to analyze HRV in the last 20 years [46]. In order to automatically

capture and compare the characteristics of a Poincaré plot, numer-

ous data models or Poincaré plot indices have been proposed.

1.1 S C O P E O F W O R K

In most cases in the literature a Poincaré plot index is only compared

to a standard set of indices, if it is compared at all. Smith et al. gath-

ered in [43] many different indices and tested for correlations if ap-

plied on very short signals, but they did not compare their individ-

ual differentiation ability. The scope of this thesis is to implement
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the existing Poincaré plot quantification methods in MATLAB®, to

improve them (if possible) and to statistically compare their ability

to differentiate heart rate data based on their Poincaré plots and the

statistical connection of the indices with each other.

Therefore, test cases were chosen in order to answer the following

research questions:

– How sensitive are the Poincaré plot indices regarding the length

of the data?

– Are there Poincaré plot indices, which can differentiate between

non-pathological and not further specified pathological heart

rate data?

– Are there Poincaré plot indices, which can differentiate between

heart rate data with and without arrhythmia?

– Are there Poincaré plot indices, which show a difference be-

tween the heart rate of younger and older healthy subjects?

– Which Poincaré plot indices are dependent on each other?

1.2 M E T H O D I C A L A P P R O A C H

First, a literature research was carried out to get an overview of

the existing Poincaré plot indices and their results. Next, the found

generally applicable Poincaré plot indices were implemented using

MATLAB®. During this process their definitions were checked for er-

rors and certain plausible improvements were applied. For the next

step data were obtained from the PhysioNet database [16] to estab-

lish test cases for the research questions (see section 3.3) and the

implemented methods were applied on them. Thereafter, statistical

tests were applied to examine the calculated Poincaré plot indices

with respect to the research questions.

1.3 S T R U C T U R E O F T H E T H E S I S

Chapter 2 gives a short introduction into Poincaré plots, HRV and

the physiological and the technological background. In chapter 3,

the Poincaré plot and its variation are defined, as well as all imple-

mented Poincaré plot indices. Furthermore, this chapter contains a

description of the used data, of the applied data filtering and the
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constructed test cases. Chapter 4 contains a detailed description of

the test case results. These are discussed with respect to each other

and to the literature in chapter 5, which also contains remarks on the

limitations of the presented work. Chapter 6 contains summarized

answers to the research questions, suggestions for the application of

the results, as well as for further research in this area.
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2
I N T R O D U C T I O N A N D B A C KG R O U N D

Chaos is order in a mask [. . . ] dancing

in the heart of everything.

Terry Pratchett - Thief of Time

In 1887 Oscar II, King of Sweden and Norway, called out a prize for

the solution of the n-body problem, which is posed as follows: Given

n mass points, which attract each other according to Newton’s laws,

how can you calculate their positions over time. In the case no one

could solve it, they prize would go to the best contribution. At the

end Henri Poincaré, a french mathematician, was awarded for proof-

ing that the stated problem could not be solved, since a fluctuation

below measurement accuracy would lead to widely diverging end-

states. Karl Weierstrass, who was part of the jury, remarked: "This

work cannot indeed be considered as furnishing the complete solu-

tion of the question proposed, but that it is nevertheless of such im-

portance that its publication will inaugurate a new era in the history

of celestial mechanics" [22]. This prediction should only tell half the

truth, since Poincaré’s submission was the starting point of chaos

theory, which nowadays finds appliciations in almost all scientific

fields.

It is not clear if the Poincaré plot, a visualization method for chaotic

process, goes actually back to Henri Poincaré or if it got its name

to honor him. One of the first found occurrences is in [28], a pa-

per by Edward Lorenz about non-periodic flow published in 1963.

Edward Lorenz, who worked on weather prediction and coined the

term "butterfly-effect", made very important contributions to the

chaos theory, therefore the Poincaré plot is also sometimes called

Lorenz plot. In this work it will always be called Poincaré plot, which

is the more established name in medicine. The importance of the

Poincaré plot lays in its ability to extract patterns from many chaotic

processes with a very simple transformation [24].

In the 1980s, researchers found that the beat generation in human

hearts is a chaotic process [15, 33]. Therefore Woo et al. proposed in

[51] to use Poincaré plots for the analysis of HRV.
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The interest for HRV goes back more than thirty years, when a con-

nection between the autonomic nervous system and the cardiovas-

cular mortality was found [2]. Heart rate variability can be analyzed

via time-domain and frequency-domain measures [1, 2], but due to

the chaotic features of HRV, non-linear measures capture them in a

more effective way [1].

2.1 P H Y S I O L O G I C A L B A C K G R O U N D

The following section is based on [6], if not further specified.

In a healthy heart the electrical impulse for one beat originates

in one center in the right atrium, called the sinoatrial node. Without

any influences by regulatory systems, e.g. the nervous or hormonal

system, the cells in the node will discharge upwards of 60 times per

minute. It is strongly innervated by the parasympathetic nervous

system as well as the sympathetic nervous system fibers. This signal

moves via both atria to the atrioventricular node, exciting the atria

on its way. This node acts as a delay to separate the contraction

of the atria from ventricular contraction. After the atrioventricular

node the signal goes into the bundle of His, which splits up for the

right and the left ventricle. Thereafter, the signal is further split up

via the Purkinje fibers, which spread across both ventricles.

These steps can be indirectly observed in an electrocardiogram

(ECG). This method measures the polarization and depolarization

of the heart muscle via electrodes applied to the skin either at the

thorax or at the extremities. The spreading of the depolarization

and therefore the spreading of the electrical signal throughout the

atria is visible in the P-wave (see figure 1). The sharp QRS-complex

corresponds with the depolarization of the ventricles. The follow-

ing T-wave shows the repolarization of the ventricular muscle tissue.
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Figure 1: Schematic representation of an ECG-signal with labeled P- and

T-waves (blue and yellow) and QRS-complexes (magenta).

The time between two R-peaks, which correspond to two heart beats,

is used as the basis of heart rate variability and is called RR-interval

(see figure 1). The time between two heart beats can also be mea-

sured via the blood pressure, since blood flow is pulsatile, corre-

sponding to each contraction of the heart.

Since the sinoatrial node is not the only part of the heart, which is

able to generate excitation signals, beats with different origin can oc-

cur. Beats originating in the sinoatrial node are called sinus or sinu-

soidal beats, whereas beats generated from other sources are called

extrasystoles or ectopic beats. A small number of extrasystoles oc-

curs also in healthy hearts [36], e.g., in [8, 38] up to 10 extrasystoles

per hour are reported for healthy subjects.

But due to different reasons (e.g., an ectopic focus, i.e. a group of

heart muscle cells creating a non-sinusoidal signal), extrasystoles

can occur more frequently, which are than diagnosed as arrhyth-

mias. The different forms of extrasystoles are named based on the

origin of the electronic signal and its site of effect (e.g., ventricular

= signal originates in the ventricles and leads to their abnormal con-

traction; supraventricular = abnormal contraction of the ventricles

from a signal not originating within them) and their duration and

frequency (e.g., tachycardia = short sequence of ectopic peaks; fibril-

lation = long running sequence of ectopic peaks).

HRV reflects the different influences on the sinus beat frequency, be-

sides arrhythmias. Figure 2 (adapted from [50]) shows the main reg-

ulatory mechanisms and influences, e.g., the heart rate typically in-

creases during inhalation and decreases during exhalation [18].
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Figure 2: Simplified representation of the regulatory systems and influ-

ences of heart beat generation (adapted from [50]).

These various regulators lead to the variable length between two

heart beats, i.e. HRV. A failure of one or more regulatory systems, e.g.,

due to a pathology, thus leads to less variability. Therefore, the gen-

eral rule of thumb for HRV is: Healthy subjects have a higher HRV

compared to unhealthy ones [45].
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3
M E T H O D S

Every plot in this section, except for figure 10 and 11, was cre-

ated with the recording f2o10 of the Fantasia Database. For figure

10 the recording 881 of the MIT-BIH Supraventricular Arrhythmia

Database was used and figure 11 is based on the recording 116 of the

MIT-BIH Arrhythmia Database. For a detailed description of these

databases see section 3.3.

3.1 T H E P O I N C A R É P L O T

Given a data set of N RR-intervals {RR1, . . . ,RRN } a Poincaré

plot is obtained by plotting RR1 := {RR1, . . . ,RRN−1} against

RR2 := {RR2, . . . ,RRN }. A typical Poincaré plot of a non-pathological

2 hour long, unfiltered heart rate recordings is shown in figure 3.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

RR i[s ]

RR
i+

1[s
]

Figure 3: A typical unfiltered Poincaré plot of a non-pathological heart rate

data set.
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Poincaré plots of heart rate data from healthy patients are typically

shaped like a comet, as in figure 3, or like a torpedo or cigar [13].

Plots associated with pathologies do not have a shape as wide spread

due to a loss in irregularity or they are multi-centered because of

multiple rhythms [13, 46].

There exist some extensions of this definition of the plot, e.g., the

lagged Poincaré plot, which is a generalization of the original ver-

sion. A Poincaré plot with lag m is created by comparing one data

point to the m-th after it, i.e., by mapping RR1 := {RR1, . . . ,RRN−m}

against RRm+1 := {RRm+1, . . . ,RRN }. So the standard Poincaré plot

can be interpreted as a Poincaré plot with lag 1.

A further approach is the three dimensional Poincaré plot, where the

third axis comes from data points with an additional lag, as shown

in figure 4.
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Figure 4: An unfiltered 3D Poincaré plot of a non-pathological heart rate

data set with lag 1 and lag 2.

3.2 P O I N C A R É P L O T I N D I C E S

In the following section different methods to quantify Poincaré plots

are presented.
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3.2.1 Cluster indices

The search for similar objects and gathering them into groups is de-

fined as clustering. In the case of Poincaré plots, the aim is to group

the data points of different heart rhythms, which appear connected

to each other but separated from other data points in the plot. Af-

ter trying different algorithms (k-means, single linkage and mean-

shift), the DBSCAN-Algorithm was chosen, because it does not re-

quire an a-priori number of clusters and shows a high robustness

against noise.

DBSCAN stands for Density-Based Spatial Clustering of Applications

with Noise and was proposed by Ester et al. in [14]. The algorithm

needs the parameters ε and MinPts as inputs, where ε is a neighbor-

hood threshold and MinPts is the minimum number of points in one

cluster. DBSCAN distinguishes three types of data points:

– Core points: These have MinPts or more different points in

their ε-environment.

– Density reachable points: These have at least one other data

point in their ε-environment, but less than MinPts.

– Noise: These are neither core points nor density reachable

points.

The following pseudocode describes the algorithm:

function=DBSCAN(D, ε, MinPts)

for (all unvisited points P in dataset D)

mark P as visited

N=getNeighboringPoints(P, ε)

if(sizeof(N) < MinPts)

mark P as NOISE

else

C = next cluster

add P to cluster C

for (P’ in N)

if(P’ is not yet member of any cluster)

recursiveExpandCluster(P’, C, ε, MinPts)

end

end

end

end

end
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function=recursiveExpandCluster(P, C, ε, MinPts)

add P to cluster C

if(P is not visited)

mark P as visited

N = getNeighbors(P, ε)

if(sizeof(N) >= MinPts)

for{ P’ in N}

if{ P’ is not yet member of any cluster}

recursiveExpandCluster(P’, C, ε, MinPts)

end

end

end

end

end

One of the difficulties lies in the choice of ε. If it is too small, the al-

gorithm overclusters, i.e., it separates visibly connected clusters, or

it underclusters if ε is too large, i.e., it merges visibly unconnected

clusters.

Therefore, a refinement of DBSCAN, the Ensemble-DBSCAN (EDB-

SCAN) proposed by Xia et al. in [52] was applied.

This algorithm runs DBSCAN r -times iterating ε equidistantly from

εmin to εmax, where

εmin := Dmean
4 − Dmean

4 −Dmi n
4

8
, εmax := Dmean

4 + Dmax
4 −Dmean

4

8
.

The variable D4 stands for the set of distances between the data

points and their fourth nearest neighbor, Dmean
4 is its mean value

and Dmi n
4 and Dmax

4 are the minimal and maximal value of the set.

The result of each iteration is saved in the co-association matrix A,

by adding 1 to each entry Ai , j , if the i -th and the j -th data point

are in the same cluster and 0 otherwise. After all iterations the co-

association matrix is normalized via element-wise division by r .

The final clusters are then constructed by using a voting method, de-

scribed in the following pseudocode:

assign the first data point to the first cluster

for (all other points of D)

Amax = max
j=1,...,i−1

Ai , j

if(Amax < 0.5)

assign current point to a new cluster

else

assign current point to cluster of D(k),

14



where Ai ,k = Amax

end

end

Afterwards clusters with less data points than a given threshold are

considered as noise. The threshold for this categorization is set so

that clusters consisting of presumably non-pathological extrasys-

toles are ignored. Therefore a number of 10 extrasystoles per hour

is used as a threshold, based on the findings in [8, 38].

The number of clusters as well as the ratio between the second

largest and the largest cluster were used as indices NumOfClusters

and ClusterSizeRatio. If only one cluster was detected ClusterSizeRa-

tio was set to 0.

3.2.2 Asymmetry Indices

One of the fundamental laws governing all systems in the physical

world is the thrive towards the minimum energy state, i.e., towards

its equilibrium. Therefore, a biological system has to function far

away from the equilibrium in order to utilize energy for itself, with

a larger energy gain the further away they move from the equilib-

rium [11], usually corresponding to the complexity of the system.

This is also true for the heart beat generation [11]. This goes along

with a unidirectionality or time irreversibility. Failures of regulatory

systems, e.g., due to pathologies, therefore show themselves in a loss

of irreversible behavior [11]. The irreversibility is also visible as a

geometrical asymmetry in the Poincaré plots [24] with the line of

identity as the symmetry axis. There exist different approaches to

measure it. Each of the following asymmetry indices is a number be-

tween 0 and 100, with 50 denoting perfect symmetry.

Porta’s Index

In [40], Porta et al. counted the points above the line of identity

and compared them to the number of points below. Therefore,

Porta’s index, PI, is defined as follows. Let U be defined as U :={(
RRi ,RRi+1

)
: RRi < RRi+1

}
, i.e the points above the line of iden-

tity and L the set of points below it, i.e., L := {(
RRi ,RRi+1

)
: RRi >

RRi+1
}
, see figure 5. Then:

PI := #U

#U +#L
·100,

where #X is the cardinality of a set X .
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Figure 5: Visualization of the separation of a filtered Poincaré plot along the

line of identity to measure asymmetry, with the set U in red and

the set L in blue, as used for Porta’s and for Guzik’s index.

Guzik’s Index

Guzik et al. proposed in [19] to measure asymmetry by comparing

the distances to the line of identity for the points above and below it.

The distance to the line of identity is defined as:

d
(
RRi ,RRi+1

)
:= |RRi −RRi+1|p

2
.

Let U and L be defined as in Porta’s Index. Then Guzik’s Index, GI, is

defined as:

GI :=
∑

i∈U d
(
RRi ,RRi+1

)∑
i∈U∪L d

(
RRi ,RRi+1

) ·100.

Karmakar-Porta’s and Karmakar-Guzik’s Indices

Karmakar et al. redefined those two indices in [24] by not only look-

ing at two but at three consecutive points and separating them into

16



three groups, one for increasing points (I), one for decreasing points

(D) and one for constant points (C). They were defined as follows:

I := {(
RRi ,RRi+1

)
: RRi < RRi+1 < RRi+2 ∨

RRi ≥ RRi+1 < RRi+2 ∨
RRi > RRi+1 ≤ RRi+2

}
,

D := {(
RRi ,RRi+1

)
: RRi > RRi+1 > RRi+2 ∨

RRi ≤ RRi+1 > RRi+2 ∨
RRi < RRi+1 ≥ RRi+2

}
,

C := {(
RRi ,RRi+1

)
: RRi = RRi+1 = RRi+2

}
.

Based on this, Porta’s index was redefined to:

PIp := #I

#I+#D
·100.

Guzik’s index was redefined to:

GIp :=
∑

(RRi ,RRi+1)∈I d
(
RRi ,RRi+1

)∑
(RRi ,RRi+1)∈I∪D d

(
RRi ,RRi+1

) . (1)

Karmakar’s redefinitions can be interpreted as an asymmetry mea-

sure for 3D-Poincaré plots. Then, I , D and C can be interpreted

as three dimensional sets I3D , D3D and N3D with elements from{
RR1,RR2,RR3

}
. Therefore, an altered GIp , called GIp3D , was also ex-

amined, which is defined as in (1), but with the three dimensional

distance to the line of identity:

d3D
(
RRi ,RRi+1,RRi+2

)
:=

((
RRi −RRi+1

)2

3
+

(
RRi+1 −RRi+2

)2

3

+
(
RRi −RRi+2

)2

3

) 1
2

.

Then GIp3D is defined as:

G Ip3D :=
∑

(RRi ,RRi+1)∈I3D d3D
(
RRi ,RRi+1,RRi+2

)∑
(RRi ,RRi+1)∈I3D∪D3D d3D

(
RRi ,RRi+1,RRi+2

) .

3.2.3 3D Histogram Indices

Hnatkova et al. showed in [21] that the commonly used 2D Poin-

caré plot can hide some information, since only its shape is con-

sidered as the main quantified feature in many cases. This is the
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case if two plots can have the same shape with different beat distri-

butions inside the shape, e.g., one plot has one accumulating area,

while the other has two disconnected ones. They proposed in [21] to

add its density as an additional dimension, i.e., to count the pairs of

(RR1,RR2) with the same values and therefore appear as one point

in the 2D plot. This new kind of Poincaré plot can also be interpreted

as a 3D histogram of a Poincaré plot.

Density Index

In order to derive an index from this plot, Hnatkova et al. proposed

in [21] to approximate the density function of the plot. For this all

points inside a rectangular area around the highest peak of the plot,

i.e., the point of highest density, are counted, while iterating through

different sizes of the rectangular environment, as shown in figure 6.

Afterwards the area under this function is calculated and used as in-

dex area. According to [21] density functions of Poincaré plots with

a sharp peak have a smaller area than those of plots with the same

shape but more equally distributed data. To extract further informa-

tion about the density function, the ratio of the maximal slope of the

density function and its mean as was implemented as the additional

index slope.
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Figure 6: Approximated density function (top) with the corresponding 3D

histogram (bottom) of a filtered non-pathologic Poincaré plot.

Starting from the highest peak, the number of points in a certain

neighborhood is summed up. The diameter of the this neighbor-

hood is enlarged with each iteration, as shown color coded in the

histogram and the density function.

Peak Indices

In [32], Marciano et al. proposed besides the extension index also an

index for the 3D histogram of the Poincaré plot (see figure 6). But

instead of a density function as used for the density indices (see sec-

tion 3.2.3), they used the number of peaks above a certain threshold,

NP, as well as the sum of the distances of these peak points to the

line of identity in the 2D Poincaré plot, DP, as indices. Their choice

for the threshold was a peak height of 8.

3.2.4 Dispersion Index

Schechtman et al. quantified in [42] the shape of the Poincaré plot

by its longitudinal dispersion at two positions. In order to extract

a measurement, they rotated the plot by φ = −π
4 and measured its

width in vertical direction at the 10th and the 90th percentile of the

Poincaré plots horizontal length. Furthermore, they excluded 10% of
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the top and bottom points at this positions. The two widths, width10

and width90, shown in figure 7, as well as their difference, ∆width,

were calculated as indices. Similar to the extension index (see sec-

tion3.2.6), the same dispersion indices of the unrotated plot were

also calculated, i.e., its 80% width in direction of the y-axis at the

10th and the 90th percentile, rotwidth10 and rotwidth90, as well as

their difference, ∆rotwidth.
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Figure 7: A filtered non-pathological Poincaré plot with the ellipse fitting

indices SD1 and SD2 as the axis lengths, as well as SD2x from

HiSD and the dispersion indices width10 and width90.

3.2.5 Mechanical Indices

Inertia Index

Marciano et al. interpreted in [32] the Poincaré plot as a mass dis-

tribution and used the axis lengths of its ellipse of inertia as indices.
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More exactly they calculated the two axes lengths, A and B, using the

formulae:

A :=Var(RR1)+Var(RR2)

2

+
√

Var(RR1)−Var(RR2)

2
+Cov(RR1,RR2) ,

and

B :=Var(RR1)+Var(RR2)

2

−
√

Var(RR1)−Var(RR2)

2
+Cov(RR1,RR2) .

Multipole Index

Similar as for the inertia index in section 3.2.5, Lewkowicz et al.

looked in [27] at the Poincaré plot as a two dimensional body, where

each point has unit mass. Therefore, their distribution can be ex-

pressed by moments in a gravitational potential field. They used

the entries of the quadrupole and the octupole tensors as indices,

as well as the ratio of the kurtosis of the y and x-coordinates. The

quadrupoles and the octupoles can be calculated with:

Qxx =
N−1∑
i=1

(2RR2
i −RR2

i+1) , Txxx =
N−1∑
i=1

(6RR3
i −9RRi RR2

i+1) ,

Qy y =
N−1∑
i=1

(2RR2
i+1 −RR2

i ) , Ty y y =
N−1∑
i=1

(6RR3
i+1 −9RRi+1RR2

i ) ,

Qzz =−Qxx −Qy y , Txx y =
N−1∑
i=1

(36RR2
i RRi+1 −9RR3

i+1) ,

Tx y y =
N−1∑
i=1

(36RR2
i+1RRi −9RR3

i ) ,

Txzz =
N−1∑
i=1

(−9RR2
i+1RRi −9RR3

i ) ,

Ty zz =
N−1∑
i=1

(−9RR2
i RRi+1 −9RR3

i+1) .

3.2.6 Extension Index

Marciano et al. proposed an index which uses the Poincaré plot’s ex-

tension in the direction of the first and of the second axis. In [32] they
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measured the plot extension by projecting it onto the x-axis and cal-

culating the distance, dx , between the leftmost and the rightmost

value. Afterwards the x-position, x̃, where the plot has the maximal

extension in y-direction. Those two measures are shown in figure 8.

Their proposed index is defined as:

ext := x̃

dx
·100.

3.2.7 LT Indices

The LT Indices presented by Toichi et al. in [47] is similar to ext. They

rotated the Poincaré plot by φ=−π
4 and measured its elongation in

direction of the first (L) and the second axis (T), as shown in figure

8. The ratio of these two lengths, ratioLT, as well as the logarithm of

their product, LT, were used as indices in [47].
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Figure 8: The measurements for ext, x̃ and dx and of the LT indices L and T

of a filtered non-pathological Poincaré plot.

3.2.8 Ellipse Fitting Indices

One of the most common methods to quantify a Poincaré plot is to

fit an ellipse to it, by rotating its axes byφ= π
4 with respect to the axes
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of the plot. The center of the ellipse is the mean value of the plotted

data. The length of the major axis, SD2, and the length of the minor

axis of the ellipse, SD1, are the standard deviations in each direction

as shown in figure 7.

These two lengths are widely used indices to quantify a Poincaré plot.

According to Tulppo et al. [48] SD1 is related to short-term and SD2

to long-term heart rate variability. Brennan et al. showed in [9] that

these values can be derived from time domain measures and there-

fore, they do not make any use of the plot’s non-linear features. The

length of the the main ellipse axis SD2 and the length of the mi-

nor axis SD1 can be calculated in the following way, according to

[9], with SDNN as the the standard deviation of all RR-intervals and

SDSD as the standard deviation of (RRi −RRi+1):

SD1 = SDSDp
2

and SD2 =
√

2 ·SDN N 2 − 1

2
SDSD2. (2)

Tulppo et al. showed in [48], that SD1 and SD2 are strongly correlated

with frequency and time domain measures, which isn’t the case for

the ratio SD1/SD2. Therefore this ratio was also considered as an ad-

ditional index in the following tests.

According to Lerma et al. equation (2) holds only true for stationary

processes, which is not the case for HRV [26]. Therefore TSD1, TSD2

and ratioTSD were also implemented for this thesis according to the

original definition of SD1 and SD2.

Hirose et al. [20] proposed an index, which is very similar to ratioSD

and ratioTSD. Their proposed index can be written as:

Hi SD := SD2x

SD1
, (3)

where SD2x is the standard deviation along the x-axis as shown in

figure 7.

3.2.9 Range Index

Moraes et al. described in [35] an alternative Poincaré plot. Instead

of comparing RRn to RRn+1 they used RRn vs. RRn+1 − RRn . Sim-

ilar to the density index they also counted the number of overlap-

ping points and showed these counts in z-direction. From this plot

they constructed an index by multiplying the longest elongation in

x-direction (P2) with the longest elongation in y-direction (P3) and

the mean slope at the point of highest density (P1), as shown in fig-

ure 9. In [35], the mean slope was calculated as the slope between
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10 and 90% of the maximum density in the intersecting plane which

contains the maximum density point and is orthogonal to the x-axis.

This was implemented by calculating the slope between the peak

and the first point with a density of 2 points or lower to the left and

to the right of it, in the same plane as in the original definition. After-

wards the mean of the absolute value of these two slopes is used as

the mean slope. Their final formula for the range index is:

r ang e := (100−2P1) ·P2 ·P3.
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Figure 9: The alternative Poincaré plot according to Moraes et al., with

marked mean slope (P1), maximal elongation in x-direction (P2)

and in y-direction (P3). The histogram in front of the plane with

the highest density point is depleted for visualization reasons.

3.2.10 Complex Correlation Measure

In order to take the temporal beat-to-beat behavior into deeper con-

sideration Karmakar et al. proposed the Complex Correlation Mea-

sure (CCM) in [25]. To include this behavior, they used a moving

window with a length of three points. Let (xi , yi ), (xi+1, yi+1) and

(xi+2, yi+2) be the three points of a Poincaré plot in the i -th window.

The area Ai of the triangle formed by these three points, is calculated

by:

Ai = 1

2

∣∣∣∣∣∣∣∣
xi yi 1

xi+1 yi+1 1

xi+2 yi+2 1

∣∣∣∣∣∣∣∣ . (4)
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If all three points are on one line, it follows from formula (4) that

Ai = 0. If they are arranged counter clock-wise Ai > 0, and Ai < 0, if

they are orientated clock-wise. Then, the CC M is defined as:

CC M := 1

π ·SD1 ·SD2

N−2∑
i=1

Ai .

The normalization π ·SD1 ·SD2 is the area of the enveloping ellipse.

3.2.11 Contour Index

None of the indices found in literature tries to capture the exact pro-

file of the Poincaré plot. Therefore a novel index was additionally im-

plemented. To get information about the plot’s shape, the distances

between the mean value of (RRi ,RRi+1) and the points farthest away

in every direction is calculated. This is implemented by catching all

points, where the connecting line to the mean value has the same

slope. Afterwards, the distances between all points on this line and

the mean value are calculated. The area under this maximal distance

function is used as the contour index. The correspondence with the

area of the Poincaré plot is shown in figure 5.9.
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Figure 10: The distance function (top) and the corresponding Poincaré plot

(bottom). The plot is scanned counter-clockwise and the mean

value is marked with a black cross. The colors show the parts of

the Poincaré plot with their equivalent area under the curve.

3.2.12 Statistical Indices

In order to compare the Poincaré indices to time domain indices, the

following commonly used statistical measures were used as defined

in [9] and [47]:

– pNN50: The percentage of sinusoidal RR-Intervals longer than

50ms.

– SDSD: The standard deviation of the successive differences,

i.e., the standard deviation of RRi −RRi+1.

– SDNN : The standard deviation of sinusoidal RR-Intervals.

– CV : The coefficient of variation, which is defined as the stan-

dard deviation of the data divided by the data’s mean value.
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3.3 D ATA

All data used to test the indices were taken from Physionet.org

[16], a free-access, on-line archive of physiological signals. They are

described in detail in this section.

To create a control group, databases specified as non-pathological

were combined into one database.

3.3.1 Non-Pathological Data

– This database includes the Fantasia Database consisting of

120 minute long recordings of twenty young (10 men and 10

women; 21 - 34 years old) and twenty elderly (10 men and 10

women; 68 - 85 years old) healthy subjects with ECG digitized

at 250 Hz [23].

– The Normal Sinus Rhythm RR Interval Database, which con-

sists of 54 ECG recordings, each one approximaly 24 hours

long, is also part of this database. It contains heart rate data of

subjects with normal sinus rhythm (30 men, aged 28.5 to 76,

and 24 women, aged 58 to 73) digitized at a sample frequency

of 128 Hz [16].

– Furthermore, it includes the Massachusetts Institute of Tech-

nology (MIT) - Boston’s Beth Israel Hospital (BIH) Normal

Sinus Rhythm Database, which consists of 18 long-term

recordings (5 men, aged 26 to 45, and 13 women, aged 20 to

50) sampled at 128 Hz [16].

This resulted in a total database size of 112 recordings.

3.3.2 Pathological Data

To test if pathological heart rate data has an effect on Poincaré plot

indices, the following databases were combined to one.

– The Congestive Heart Failure RR Interval Database, consisting

of 29 ECG recordings, each approximately 24 hours long and
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with a sampling frequency of 128 Hz, of subjects aged 34 to

79 (8 men and 2 women; gender unknown for the remaining

subjects) with congestive heart failure (NYHA classes I, II, and

III) [4].

– Furthermore it consists of the MIT-BIH Arrhythmia Database,

which contains 48 half-hour recordings, sampled with a fre-

quency of 360 Hz, from 47 subjects (25 men aged 32 to 89 years

and 22 women aged 23 to 89 years) [34]. It contains a set of ran-

domly chosen recordings and 25 recordings especially chosen

to include examples of uncommon but clinically important ar-

rhythmias recorded at the BIH Arrhythmia Laboratory [34].

– Finally the MIT-BIH Supraventricular Arrhythmia Database

was also included. It consists of 78 not further specified half-

hour ECG recordings of patients with supraventricular ar-

rhythmia, digitized at a 128 Hz [17].

In total 151 recordings of pathological heart rates were used.

3.3.3 CRIS-Data

Additionally to the pathological and the non-pathological databases,

the indices were tested with data obtained from the CAST RR In-

terval Sub-Study Database [44]. This database was created for the

Cardiac Arrhythmia Suppression Trial (CAST), which was originally

started to analyze the effect of suppressing ventricular arrhythmias

by antiarrhythmic drugs after myocardial infarction on the survival

rate [12].

This database consists of 1543 24-hour RR-interval recordings from

809 subjects. For almost all subjects, heart rate data before and dur-

ing the antiarrhythmia treatment is available. In total, 1462 records

for 731 subjects (599 male and 132 female, 20-79 years old) have

been used. To avoid daytime-dependent variations, all the data sam-

ples were taken from a time window starting at 6 p.m. 75 sub-

jects have been excluded because they had just baseline or just on-

therapy data available, three subject were excluded additionally, be-

cause there were no recordings for the chosen time window.
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3.4 S I G N A L F I LT E R I N G

Abnormal data points (e.g., movement artifacts or ectopics beats)

are excluded in order to only measure sympathovagal activity. In al-

most all cases in literature (e.g. [19–21, 24, 25, 29, 32, 35, 40, 42, 47,

48]) data is filtered before usage, to apply the methods only on the

sinus beat cluster, if it is distinguishable. This filtering was usually

done by hand.

For the following tests, the data was filtered automatically via cluster-

ing. All beats longer than 2.5 seconds and their corresponding coun-

terparts were removed, before applying the EDBSCAN-Algorithm

(see 3.2.1) to detect the clusters, since they can reasonably be inter-

preted as artifacts.

The sinusoidal beat cluster was then chosen as the one closest to

the mean value of (RRi ,RRi+1). To reduce assignment errors a cor-

rection by adding 0.01s to both coordinates of the mean was imple-

mented. This can be justified by two reasons. First, most of the er-

rors occur because of arrhythmias with a shorter RR-interval length,

therefore these beats move the mean closer to zero, away from the

actual sinus beats. Second, no case was observed were the mean

value was above the sinusoidal cluster, which would be the case for

very atypical heart rate of a high amount of single slow beats in con-

nection with a very fast sinus beat.

Figure 11 shows the result of the clustering for a sample data set with

arrhythmia.
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Figure 11: Clustered Poincaré plot of a subject with arrhythmia. The filter

algorithm selected the cluster in red as the sinus beat cluster

with the mean value marked as the gray cross. The other clusters

and the noise (black crosses) are not considered for the calcula-

tion of the Poincaré plot indices, except for NumberOfClusters

and ClusterSizeRatio.

Since Poincaré plots represent the relation between two consecutive

beats, the filtering can not be done by deleting one beat interval in

RR1 and the same in RR2, but the preceding one in RR1 and the fol-

lowing one in RR2 has to be deleted as well, as shown in figure 12

[39].

If a 3D Poincaré plot is used, as it is for GIp3D (see description in sec-

tion 3.2.2)), for one erroneous RR-interval the preceding two have to

be deleted in RR1, the one preceding and the one following in RR2

and the two subsequent intervals in RR3, as shown in figure 12 as

well.
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Figure 12: Deletion of the incorrect RR-interval "d" (Deletion I) and the cor-

responding counterparts "c" in RR1 and "e" in RR1 (Deletion II)

for a 2D Poincaré plot. In the case of a 3D Poincaré plot for an er-

roneous interval "d", the preceding interrvals "b" and "c" have

to be deleted in RR1, "c" and "e" in RR2 and "e" and "f" RR3.

3.5 S TAT I S T I C A L T E S T S

The following procedure was used to test for a difference between

indices in the tests according to [49].

Because most of the results for indices were not normally distributed

a Wilcoxon rank sum test was applied to calculate the p-value.

Since the pre- and post-treatment recordings of one subject in the

CRIS-Database are dependent and most of their calculated indices

did not have a normal distribution the Wilcoxon signed rank sum

test was used to examine the differences between the data sets.

A test outcome was declared significant for p < 0.05 and very signifi-

cant for p < 0.01.

To test the correlation between the individual indices Spearman’s

correlation coefficient r was used, since almost all of the indices

were not normally distributed. A correlation was declared strong, if

|r | > 0.85. At the same time the significance of the correlation was

calculated.

All tests were done with built-in functions in MATLAB.
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3.6 T E S T S C A S E S

The following tests were done to answer the research questions in

section 1:

Test Case I: Data Length Sensitivity

In order to see how Poincaré indices behave with respect to the data

length, recordings of the pathological and the non-pathological

database are compared with different lengths. Starting from 1100

filtered data points, the data sets were reduced by steps of 50

data points and the Poincaré indices of the remaining points are

calculated and statistically tested for differences.

Both cluster indices were excluded from this test, because the signal

was shortened after filtering and therefore no new clusters can be

found most of the time. If they are, this is due to overclustering.

The starting data length of 1100 data points was chosen because it

is the upper length limit for short-term recordings [7] and does not

exclude too many recordings, since the shortest unfiltered signal

consists of 1431 data points.

Test Case II: Non-Pathological vs. Pathological Heart Beats

For the second test 1429 data points are taken from the middle of

each recording of the pathological database. These are filtered and

the Poincaré plot indices for the first 1000 points are calculated.

This length was chosen for the same reasons as in test case I. The

same was done for the recordings in the non-pathological database.

Afterwards statistical tests were applied, as described in section 3.5,

in order to find indices which can differentiate between the two

databases. Finally, the correlation of these indices was calculated as

well.

Test Case III: Pre- vs. Post-Antiarrhythmic Treatment

To examine if the indices can differentiate between data before

and after arrhythmia suppressing medication, 2000 data points

recorded around 6 p.m. from the CRIS-Database were filtered. More

data points were included in this step than in the first two test cases,

because due to the arrhythmias more points were expected to be

filtered away. Afterwards the first 1000 data points of each recording

were taken to calculate the Poincaré plot indices. The indices of the

recordings before and after treatment for each subject were tested

for significant differences and correlations.
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Test Case IV: Younger vs. Older Non-Pathological Subjects

To test if Poincaré indices are age-dependent, the non-pathological

database was split into people of age 63 and less, and people older

than this. The threshold of 63 years was chosen, since it is the mean

age of the subjects in the non-pathological database. Afterwards the

same filtering and statistical tests were applied as in test case II.
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4
R E S U LT S

4.1 T E S T C A S E I : D ATA L E N G T H

Figures 13-16 show the results of the test for the sensitivity of the

indices with respect to the data length.

It should be noted that for this case the p-values are comparable,

since only the Wilcoxon rank sum test was used for all indices, as

not all tested data sets were distributed normally.

As shown in figure 13-A, Guzik’s Index GI shows significant differ-

ences for signals with more than 1000 data points and gets worse

the shorter the signal is. For signals shorter than 300 points the dif-

ferences gain significance without ever surpassing the significance

threshold of p < 0.05. Karmakar-Porta’s Index PIp differentiates sig-

nificantly for data lengths of 950 until 300 points. The slope index

shows only significant differences for signals with 250 data points.

The contour index has more significant differences the shorter the

signal is and surpassing the significance threshold for signal lengths

shorter than 400 data points.

The index width10 shows no clear trend with respect to the data

length, but differentiates significantly for lengths of 100 and 150

points.

Figure 13-B also shows no clear trend for the behavior of the disper-

sion indices rotwidth10 and rotwidth90 with changing data lengths,

as both pass the significance threshold only once at 550 and at

400 data points, respectively. The same holds true for width90 and

∆width, but with lower variability and they have significant differ-

ences between non-pathological and pathological data sets for most

of the signal lengths, which is completely lost by ∆width for data

shorter than 200 points.

The two inertia indices A and B show no variation over the data

length, but can not be computed for signals shorter than 250.
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Figure 13: Indices with at least one but not all p-values below the signifi-

cance threshold of 0.05 (dashed line).

In figure 14-A the octupoles Ty y y and Txx y show no trend and are

above the significance threshold for most of the signal lengths, while

the differences of Ty zz are almost always highly significant. This

characteristic is lost abruptly for signals of length 500 and 450.

The peak index NP shows more significant differences for shorter

signals and surpasses the significance threshold at 500 data points.

The same holds true for the other peak index DP as shown in figure

14-B. The differences for the range index are not significant most of

the time, but tend to be more significant for shorter signals, passing

the significance threshold for 100 data points and less.

The ellipse fitting index SD1 is always differentiating significantly, ex-

cept for very long and very short signals.

The statistical index SDNN shows significant behavior only for sig-
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nal lengths of 1050 or longer, which gets worse with shorter data.

SDSD has almost always significant differences between patholog-

ical and non-pathological databases, except for signals of length

1100.
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Figure 14: Additional indices with at least one, but not all p-values below

the significance threshold of 0.05 (dashed line).

Figure 15 shows that PI has a very significant differentiation behav-

ior (p < 0.01) for almost all signal lengths shorter than 1000 data

points except for signals of length 100. G Ip3D on the other hand loses

its very significant differences rather fast for signals with less than

200 data points.

The differences of the index T have a trend of getting more signifi-

cant for shorter signals.

The ellipse fitting index TSD2 has very significant differences for sig-

nals of less than 1100 data points.
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Figure 15: Indices with significant, i.e., p < 0.05 (dashed line), and for some

data lengths, very significant differences, i.e., p < 0.01 (dotted

line), between pathological and non-pathological data sets.

In figure 16, one can see that the differentiation behavior of all in-

dices, which differentiate very significantly, hardly change with re-

spect to length of the signal. The only exceptions are minor fluctua-

tions of SD2, which still is very significant throughout all lengths.
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Figure 16: Indices with very significant differences, i.e., p < 0.01 (dotted

line), between pathological and non-pathological heart rate data

for all data lengths.

Figure 17 shows the reaction of different indices to varying signal

lengths, without ever reaching significant differences between non-

pathological and pathological data.
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The index LT tends to differentiate more significant for shorter sig-

nals.

The indices CCM and kurtosis show a sudden increase in differences

for signals shorter than 200 points.

The opposite is true for area, which has an abrupt loss of significance

for signals shorter than 150 points.

The index ratioAB loses significance in differences for data lengths

between 1100 and 800 data points, which is slowly gained back for

the following data lengths. Note that it has no values for data lengths

below 250 points, because A and B could not be calculated at this

length.

The statistical index CV shows less significant differences with some

variations throughout the whole test.

The differences of the dispersion index∆rotwidth varies without any

visible trend for all data lengths.

The index TSD1 is stable with respect to the data length, with a small

loss of significance for signals with less than 300 points.
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Figure 17: Indices, which have no p-value below the significance threshold

of 0.05 (dashed line) for any data length.

4.2 O V E R V I E W O F T E S T C A S E S I I - I V

Tabe 1 shows the p-values for the other three test cases.

39



Table 1: Results of tests cases II-IV with results of p < 0.05 emphasized and

marked with ∗ and ∗∗ for p < 0.01.

Test Case II: Test Case III: Test Case IV:

Non-Path/Path. Pre./Post. Young/Old

Indexgroup/Index p-Value p-Value p-Value

Cluster Indices

NumOfClusters < 0.01∗∗ < 0.01∗∗ 0.143

ClusterSizeRatio < 0.01∗∗ < 0.01∗∗ 0.247

Asymmetry Indices

PI < 0.01∗∗ < 0.01∗∗ 0.045∗

GI < 0.01∗∗ 0.193 0.995

PIp 0.014∗ 0.177 < 0.01∗∗

GIp < 0.01∗∗ 0.111 < 0.01∗∗

GIp3D < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

3D Histogram Indices

area 0.391 < 0.01∗∗ 0.919

slope 0.777 < 0.01∗∗ 0.329

NP 0.996 < 0.01∗∗ 0.204

DP 0.770 < 0.01∗∗ 0.053

Dispersion Indices

width10 0.946 < 0.01∗∗ 0.175

width90 0.019∗ < 0.01∗∗ 0.492

∆width < 0.01∗∗ < 0.01∗∗ 0.061

rotwidth10 0.885 < 0.01∗∗ 0.575

rotwidth90 0.198 < 0.01∗∗ 0.500

∆rotwidth 0.220 0.587 0.324

Mechanical Indices

A < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

B < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

ratioAB 0.238 < 0.01∗∗ < 0.01∗∗

Qxx < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Qy y < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Qzz < 0.01∗∗ < 0.01∗∗ < 0.01∗∗
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Txxx < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Ty y y 0.804 < 0.01∗∗ 0.746

Txx y 0.998 < 0.01∗∗ 0.636

Tx y y < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Txzz < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Ty zz < 0.01∗∗ 0.529 0.191

kurtosis 0.7498 0.021∗ 0.076

LT Indices

L 0.075 < 0.01∗∗ 0.663

T 0.038∗ < 0.01∗∗ 0.864

LT 0.655 < 0.01∗∗ 0.965

ratioLT < 0.01∗∗ < 0.01∗∗ 0.815

Ellipse Fitting Indices

SD1 0.042∗ < 0.01∗∗ 0.914

SD2 < 0.01∗∗ < 0.01∗∗ 0.666

ratioSD < 0.01∗∗ 0.037∗ 0.152

TSD1 0.264 < 0.01∗∗ 0.981

TSD2 < 0.01∗∗ < 0.01∗∗ 0.679

ratioTSD < 0.01∗∗ < 0.01∗∗ 0.099

HiSD < 0.01∗∗ 0.358 0.149

Statistical Indices

SDNN 0.395 < 0.01∗∗ 0.425

pNN50 < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

SDSD 0.028∗ < 0.01∗∗ 0.900

CV 0.798 < 0.01∗∗ 0.081

Ungrouped Indices

CCM 0.577 0.413 0.610

range 0.433 < 0.01∗∗ 0.829

contour 0.309 < 0.01∗∗ 1.000

ext < 0.01∗∗ < 0.01∗∗ 0.747

4.3 PA R A M E T E R S O F D I S T R I B U T I O N S

Table 2 shows parameters of distribution of each index for the sec-

ond test case. Each numerical column contains the median and the
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95% central range, i.e., the 97.5th and the 2.5th percentile, of the non-

normally distributed indices and the mean value and standard devi-

ation for normally distributed indices for one of the two data bases.

Table 2: Parameters of distribution for the indices in test case II.

median or mean, (95% central range or SD)

Index of Non-Pathological Data of Pathological Data

Cluster Indices

NumOfClusters 1, (1, 6) 3, (1, 10)

ClusterSizeRatio 0, (0, 0.04) 0.0084, (0, 0.40)

Asymmetry Indices

PI 50.7, (44.9, 59.5) 51.5, (47.4, 61.6)

GI 49.2, (37.3, 61.3) 50.6, (21.6, 67.7)

PIp 50.73, (46.37, 57.43) 50.85, (47.77, 59.69)

GIp 51.5, (30.0, 67.7) 45.9, (24.2, 60.7)

GIp3D 50.4, (26.8, 55.8) 47.8, (19.6, 68.3)

3D Histogram Indices

NP 20.5, (0, 55.5) 19, (0, 57)

DP 0.13, (0, 0.51) 0.15, (0, 0.67)

area 18.0, (6.8, 48.7) 19.6, (4.0, 117.7)

slope 7.5875, (2.2482, 27.6666) 7.5853, (1.4086, 34.5761)

Dispersion Indices

width10 0.046, (0.018, 0.180) 0.050, (0.016, 0.420)

width90 0.063, (0.023, 0.211) 0.055, (0.015, 0.336)

∆width 0.008, (-0.088, 0.085) 0.000, (-0.250, 0.165)

rotwidth10 0.0442, (0, 0.2076) 0.0442, (0,0.3345)

rotwidth90 0.055, (0.017, 0.284) 0.047, (0.006, 0.351)

∆rotwidth 0.008, (-0.146, 0.139) 0.002, (-0.209, 0.194)

Mechanical Indices

A 0.70, (SD 0.14) 0.61, (SD 0.13)

B 0.704, (SD 0.136) 0.605, (SD 0.127)

ratioAB 1.0036, (1.0012, 1.0103) 1.0041, (1.0012, 1.0168)

Qxx 3493, (SD 1343) 2588, (SD 104)
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Qy y -1744, (SD 670) -1286, (SD 554)

Qzz -1748, (SD 673) -1301, (SD 549)

Txxx 12943, (3678, 38270) 7761, (2175, 26533)

Ty y y 0.12, (-2.20, 4.58) 0.05, (-1.76, 35.42)

Txx y -0.44, (-16.63, 8.82) -0.17, (-78.55, 7.40)

Tx y y -19399, (-56793, -5515) -11513, (-39773, -3201)

Txzz -19432, (-58018, -5520) -11687, (-39826, -3326)

Ty zz -0.002, (-2.747, 2.381) -0.216, (-27.165, 2.452)

kurtosis 1.44, (0.49, 5.88) 1.36, (0.54, 13.24)

LT Indices

L 0.43, (0.16, 0.98) 0.38, (0.08, 1.04)

T 0.21, (0.07, 0.66) 0.25, (0.05, 1.08)

LT -2.473, (SD 1.016) -2.414, (SD 1.431)

ratioLT 1.95, (1.23, 4.86) 1.28, (0.66, 3.40)

Ellipse Fitting Indices

SD1 0.02, (0.008, 0.091) 0.022, (0.006, 0.196)

SD2 0.076, (0.024, 0.174) 0.056, (0.012, 0.190)

ratioSD 0.247, (0.118, 0.65) 0.454, (0.105, 2.206)

TSD1 0.075, (0.024, 0.173) 0.058, (0.013, 0.194)

TSD2 0.020, (0.008, 0.095) 0.022, (0.005, 0.195)

ratioTSD 3.7, (1.5, 8.5) 2.3, (0.6, 9.7)

HiSD 3.0, (SD 1.2) 2.2, (SD 1.6)

Statistical Indices

SDNN 0.0551, (0.0196, 0.1540) 0.0513, (0.0124, 0.2091)

pNN50 100, (87.7482, 100) 100, (34.7, 100)

SDSD 0.0282, (0.011, 0.1451) 0.0356, (0.0090, 0.2864)

CV 0.0612, (0.020, 0.151) 0.057, (0.017, 0.258)

Ungrouped Indices

CCM -0.0231, (-0.0808, -0.0069) -0.0238, (-0.0983, -0.0072)

contour 8.0, (3.0, 27.2) 6.7, (0.9, 32.6)

ext 53.6, (SD 15.3) 46.4, (SD 19.2)

range 3.89, (0.86, 27.04) 3.47, (0.20, 26.34)
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Table 3 shows the parameters of distributions of each index for the

third test case.

Table 3: Parameters of distributions for the indices in test case III.

median or mean, (95% central range or SD)

Index Pre-Treatment Post-Treatment

Cluster Indices

NumOfClusters 1, (1, 10) 1, (1, 7)

ClusterSizeRatio 0, (0, 0.1118) 0, (0, 0.0363)

Asymmetry Indices

PI 50.4235, (46.1501, 59.7371) 50.246, (45.9656, 55.8282)

GI 50.1231, (11.9063, 63.1727) 50.2637, (37.4709, 57.7654)

PIp 50.0688, (47.2444, 55.3693) 50.1941, (47.3538, 54.4184)

GIp 50.5346, (28.5170, 64.0732) 50.3131, (37.4521, 62.9297)

GIp3D 50.0264, (23.3527, 75.1189) 50.7674, (41.4261, 84.3454)

3D Histogram Indices

NP 42, (2, 60) 43, (1, 60)

DP 0.2762, (0.0110, 0.7043) 0.2907, (0.0166, 0.7237)

area 10.8708, (2.8443, 32.2084) 9.6067, (2.6841, 25.3397)

slope 4.5852, (1.545, 12.7831) 4.0997, (1.2675, 10.6949)

Dispersion Indices

width10 0.0390, (0.0150, 0.1535) 0.0390, (0.0150, 0.1140)

width90 0.0390, (0.0155, 0.1520) 0.0390, (0.0150, 0.133)

∆width 0.00100, (-0.0665, 0.0855) 0, (-0.0390, 0.0705)

rotwidth10 0.0276, (0.0057, 0.1407) 0.0276, (0.0049, 0.0919)

rotwidth90 0.0325, (0.0049, 0.1658) 0.0283, (0.0057, 0.1103)

∆rotwidth 0.00070, (-0.0774, 0.1025) 0.00420, (-0.0499, 0.0718)

Mechanical Indices

A 0.5805, (0.4097, 0.8601) 0.5957, (0.4327, 0.8749)

B 0.5782, (0.4087, 0.8573) 0.5934, (0.4306, 0.8713)

ratioAB 1.0034, (1.0012, 1.0098) 1.0029, (1.0011, 1.0075)

Qxx 2276, (1134, 5008) 2401, (1266, 5157)

Qy y -1138, (-2503, -566) -1200, (-2575, -633)
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Qzz -1139, (-2504, -570) -1200, (-2582, -633)

Txxx 7337, (2565, 23937) 7945, (3037, 25099)

Ty y y 0.0424, (-2.0338, 2.6925) -0.0337, (-1.9415, 1.9971)

Txx y -0.1546, (-10.0115, 8.0948) 0.1402, (-7.4504, 7.3475)

Tx y y -10999, (-35534, -3839) -11899, (-37564, -4554)

Txzz -11023, (-35921, -3880) -11932, (-37734.3803, -4557)

Ty zz -0.00120, (-3.2065, 1.8528) -0.0366, (-1.7859, 2.0494)

kurtosis 1.3705, (0.5036, 8.3646) 1.3118, (0.5495, 5.2591)

LT Indices

L 0.2927, (0.0877, 0.7071) 0.2546, (0.0721, 0.6466)

T 0.1439, (0.0445, 0.5989) 0.1209, (0.0445, 0.4087)

LT -3.1443, (SD 1.1257) -3.4888, (SD 1.0306)

ratioLT 1.9151, (0.7184, 3.8939) 2.0795, (0.8148, 3.9300)

Ellipse Fitting Indices

SD1 0.0142, (0.00610, 0.0733) 0.0123, (0.0060, 0.0516)

SD2 0.0490, (0.0120, 0.1489) 0.0454, (0.0116, 0.1422)

ratioSD 0.2936, (0.1071, 1.6703) 0.2814, (0.1057, 1.2158)

TSD1 0.0494, (0.0124, 0.1489) 0.0454, (0.0117, 0.1422)

TSD2 0.0140, (0.00610, 0.0717) 0.0123, (0.0060, 0.0478)

ratioTSD 3.4478, (0.7208, 8.7498) 3.5467, (0.8377, 8.9738)

HiSD 2.53, (0.8706, 6.6328) 2.6224, (0.9243, 6.7508)

Statistical Indices

SDNN 0.0443, (0.0123, 0.1251) 0.0396, (0.0127, 0.1100)

pNN50 100, (87.6, 100) 100, (98.2, 100)

SDSD 0.0215, (0.0091, 0.124) 0.0181, (0.0086, 0.0782)

CV 0.0495, (0.0179, 0.142) 0.0439, (0.0154, 0.1147)

Ungrouped Indices

CCM -0.0156, (-0.0561, -0.0070) -0.0153, (-0.0428, -0.0073)

contour 5.479, (1.0835, 17.9417) 4.8982, (0.9865, 15.8618)

ext 48.1733, (SD 16.6949) 50.9067, (SD 16.4308)

range 2.1672, (0.2585, 15.1382) 1.8052, (0.2583, 9.8763)

Table 4 shows parameters of distributions of each index in the forth

test case.
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Table 4: Parameters of distributions for the indices in test case IV.

median or mean, (95% central range or SD)

Index of Younger Subjects of Older Subjects

Cluster Indices

NumOfClusters 1, (1, 6.525) 1, (1, 6)

ClusterSizeRatio 0, (0, 0.0727) 0, (0, 0.043)

Asymmetry Indices

PI 50.2167, (SD 2.983) 51.6714, (SD 3.6113)

GI 49.0513, (SD 5.424) 48.1692, (SD 7.1248)

PIp 50.2168, (SD 2.2393) 51.2244, (SD 2.992)

GIp 53.1708, (SD 9.9182) 48.8854, (SD 7.6011)

GIp3D 51.073, (SD 3.371) 47.905, (SD 7.0538)

3D Histogram Indices

NP 11, (0, 51.225) 27, (0, 58.125)

DP 0.0849, (0, 0.4667) 0.2154, (0, 0.5085)

area 20.8545, (SD 9.3208) 22.2697, (SD 15.1141)

slope 7.0639, (2.2052, 28.0896) 7.6765, (2.3213, 28.1152)

Dispersion Indices

width10 0.0469, (0.0156, 0.1449) 0.052, (0.0232, 0.2789)

width90 0.068, (0.0159, 0.2175) 0.0625, (0.0279, 0.2126)

∆width 0.0156, (-0.0756, 0.1182) 0.0040, (-0.1131, 0.0872)

rotwidth10 0.0442, (0.0043, 0.1714) 0.0442, (0, 0.2786)

rotwidth90 0.0566, (0, 0.234) 0.0537, (0.017, 0.3008)

∆rotwidth 0.0113, (-0.145, 0.1813) 0.0055, (-0.15, 0.1481)

Mechanical Indices

A 0.6602, (SD 0.1407) 0.7462, (SD 0.1190)

B 0.6571, (SD 0.1410) 0.7435, (SD 0.1188)

ratioAB 1.005, (SD 0.0026) 1.0036, (SD 0.0018)

Qxx 3072, (SD 1311) 3855, (SD 1272)

Qy y -1535, (SD 655) -1925, (SD 632)

Qzz -1405, (-2947, -539) -1785, (-3522, -1028)

Txxx 10023, (2392, 30621) 14388, (6350, 39806)
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Ty y y 0.1215, (-1.6362, 5.3352) 0.1099, (-2.6208, 5.535)

Txx y -0.4852, (-18.6555, 6.5145) -0.4315, (-14.9609, 10.4873)

Tx y y -15032, (-45914, -3587) -21570, (-59487, -9490)

Txzz -15038, (-45949, -3589) -21595, (-59931, -9560)

Ty zz 0.0785, (SD 1.0553) -1.0003, (SD 6.1645)

kurtosis 1.5065, (0.6845, 6.5337) 1.2146, (0.4708, 5.5053)

LT Indices

L 0.446, (SD 0.1775) 0.4634, (SD 0.2324)

T 0.2065, (0.0693, 0.5448) 0.2099, (0.0661, 0.8565)

LT -2.4678, (SD 0.88) -2.4765, (SD 1.1278)

ratioLT 1.9452, (1.3985, 3.9515) 1.9592, (1.1497, 5.4893)

Ellipse Fitting Indices

SD1 0.020, (0.0073, 0.0802) 0.0182, (0.0080, 0.1167)

SD2 0.0794, (0.0357, 0.1834) 0.0754, (0.0231, 0.1789)

ratioSD 0.2292, (0.1135, 0.5815) 0.2733, (0.1388, 0.7711)

TSD1 0.0789, (0.0357, 0.1833) 0.0753, (0.023, 0.1777)

TSD2 0.0218, (0.0073, 0.0806) 0.0187, (0.0080, 0.1152)

ratioTSD 4.1441, (SD 1.7347) 3.6246, (SD 1.5415)

HiSD 3.21, (SD 1.2955) 2.876, (SD 1.1171)

Statistical Indices

SDNN 0.0554, (0.0268, 0.1504) 0.0535, (0.0193, 0.2057)

pNN50 100, (75.9, 100) 100, (100, 100)

SDSD 0.0303, (0.0102, 0.1201) 0.0270, (0.0112, 0.1575)

CV 0.0649, (0.0272, 0.1615) 0.0547, (0.0186, 0.1512)

Ungrouped Indices

CCM -0.0229, (-0.0737, -0.0074) -0.0243, (-0.0861, -0.0066)

contour 8.2086, (3.1832, 21.8194) 7.9485, (2.8658, 31.5036)

ext 53.11, (SD 16.0164) 54.0562, (SD 14.7121)

range 3.903, (0.9877, 18.4658) 3.8706, (0.8443, 42.0517)

47



4.4 T E S T C A S E I I : N O N - PAT H O L O G I C A L V S . PAT H O L O G I C A L

D ATA

The first column of p-values in table 1 shows that the difference

for both cluster indices between pathological and non-pathological

heart rate data is very significant.

The same is true for all asymmetry indices, except for the PIp , which

is still significant but not as strongly as the other ones.

The dispersion index width90 is also significantly different, while

∆width is even very significant.

So are the mechanical indices A, B, Qxx , Qy y , Qzz , Txxx , Tx y y , Txzz

and Ty zz .

In the case of the ellipse fitting indices, only TSD2 does not have sig-

nificant differences between the two databases. SD1 has significant

differences and the other ones show even a very significant behavior.

Of the statistical indices, only pNN50 is very significant and SDSD

shows a smaller, but still significant difference.

Table 2 shows the distribution parameters of all indices for this test

case.

Figure 18 shows two representative box plots of the two indices GIp

and CCM. Karmakar-Guzik’s index GIp visibly differs between non-

pathological and pathological heart beat data, which is not the case

for the index CCM.
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Figure 18: Boxplots for Karmakar-Guzik asymmetry index G Ip and for the

peak index NP.

4.5 T E S T C A S E I I I : P R E - V S . P O S T- A N T I A R R H Y T H M I C T R E AT-

M E N T D ATA

For the third test case, many indices show a very significant differ-

ence for data recorded before and after an arrhythmia suppression

therapy. The indices kurtosis and ratioSD show significant differ-

ences, while the asymmetry indices GI, PIp and GIp , as well as the

indices CCM, ∆ rotwidth, HiSD and Ty zz show no significance. The

distribution parameters of all indices for this test case are shown in

table 3.

4.6 T E S T C A S E I V : N O N - PAT H O L O G I C A L D ATA F R O M

Y O U N G E R V S . O L D E R S U B J E C T S

Table 1 shows the results for the test concerning the differences in

the Poincaré plot indices due to the age of the subjects. None of the

cluster indices shows significant differences in this case. While GI

does not differentiate significantly, all the other asymmetry indices

do, in the case of Pi, GIp and GIp even very significantly. None of
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the 3D histogram, of the dispersion and of LT-indices, as well as no

ellipse fitting index, show any significant differentiation in this test.

Most of the mechanical indices have very significant differences be-

tween heart rate data of younger and older subjects, except for kur-

tosis, Ty y y , Txx y and Ty zz . The only statistical index with a p-value

below the significance threshold is pNN50. Table 4 shows the distri-

bution parameters of all indices for this test case.

4.7 C O R R E L AT I O N

Figures 19-22 show the results for the test of correlations. Only

the correlations between those indices, which had significant dif-

ferences in either test case II or III were calculated. All the strong

correlations, i.e.„ |r | > 0.85, had a p-value below 0.01. For the exact

r-values see the appendix (section 7.1).
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In figure 19, one can see the correlations in the case of the patholog-

ical data set. Almost all mechanical indices (A, B Qxx , Qy y , Qzz , Txzz ,

Tx y y , Txxx) are strongly correlated with each other, but not with any

other index. The index T is correlated with SDSD, and SD1, the later

ones are also strongly correlated with each other. SD2 is only corre-

lated with TSD2. Both ratios of the ellipse fitting indices are corre-

lated with each other, as well as with HiSD. Both cluster indices are

correlated with each other, as it is the case between PI and PIp .
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Figure 19: Strong correlations, i.e.„ |r | > 0.85, between Poincaré plot in-

dices of the pathological data set, which showed significant re-

sults in test case II. Yellow lines mark positive, magenta lines neg-

ative correlation.
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Figure 20 shows that the correlations of the indices for non-

pathological data are very similar. The only difference is that PI and

PIp are not strongly correlated anymore.
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Figure 20: Strong correlations, i.e., |r | > 0.85, between Poincaré plot indices

of the non-pathological data set, which showed significant re-

sults in test case II. Yellow lines mark positive, magenta lines neg-

ative correlation.
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In figure 21, one can see the same correlations occurring as in figure

19. Additional correlations are found between the contour and the

range, TSD2, L and LT, as well as between CV and ratioAB, TSD1 and

SD2. Additionally, the index range correlates strongly with LT, T and

area. The later three are also strongly correlated with each other. The

ellipse fitting index SD2 is also correlated with T, and TSD2. TSD2 is

as well correlated with CV, L and SDNN. The index TSD1 is correlated

with contour, SDSD and SD1.

NumOfClusters
ClusterSizeRatioPI

GI p3D
areaslo
peNPDPw

id
th

10

w
id

th
90

rotw
idth

10

rotw
idth

90A
B

ratioABQ
xxQ

yyQ
zz

T
xxx

T
xyy

Txzz

Tyyy

T xxy

kurtosis

ext

range

co
nto

ur
L T

LT

ra
tio

LT

SD1
SD2

ratioSD
TSD1

TSD2

CV

SDNN

pNN50

SDSD

Figure 21: Strong correlations, i.e., |r | > 0.85, between Poincaré plot indices

of the pre-arrhythmia-treatment data set, which showed signifi-

cant results in test case III. Yellow lines mark positive, magenta

lines negative correlation.
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Figure 22 shows that the indices for the post-arrhythmic treatment

database has similar correlations as the pre-treatment indices. The

differences are that width90 is in this case correlated with TSD1, the

indices SD2, TSD2, contour and area are also correlated with each

other, whereas the index T is no longer correlated with SDSD.
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lines negative correlation.
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5
D I S C U S S I O N

5.1 C L U S T E R I N D I C E S

Both cluster indices show similar behavior in the last three test cases

(see table 1) and are also strongly correlated with each other in all

cases (see figure 19-22). One possible explanation for their interde-

pendence is that additional clusters consist of points which other-

wise are more often part of the sinus beat cluster and not of clusters

of other extrasystoles. This is because the sinus beat cluster is usu-

ally the biggest one and therefore the ratio between the number of

points in the second cluster and in the first one gets larger with more

clusters.

Both indices had, compared to all other indices, the most significant

differences for test case III. This can be explained by the fact that for

this test data from patients before and after arrhythmia suppression

therapy was used and arrhythmia often appears as a multiclustered

Poincaré plot (see figure 11).

Both show no difference between younger and older healthy sub-

jects, because most of the data in the non-pathological database

only has one cluster, as should be expected from noise filtered Poin-

caré plots of healthy subjects [13].

5.2 A S Y M M E T R Y I N D I C E S

As shown in table 2 and 18, all asymmetry indices show a stronger

asymmetry for pathological heart rate data, i.e., the indices devi-

ate more from the value 50, which represents a symmetrical Poin-

caré plot. Only PI and GIp3D have significant differences for pre-

and post-arrhythmia-treatment subjects, but table 3 shows that only

GIp3D indicates a larger asymmetry pre-treatment and it is the oppo-

site for PI.

Although most of them also differ significantly in the fourth test case,

all of them, except for GIp3D , showed a higher asymmetry for older

subjects. According to [11] time irreversibility and therefore the Poin-

caré plot’s asymmetry degrades with aging. It is unclear why this is
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not the case for the other asymmetry indices.

All of them show better results for longer data lengths (see figure 13

and 15), except for GIp which does not seem to be strongly influ-

enced by data length (see figure 16). This could be the case, because

the asymmetry only manifests itself after a certain amount of time,

but no research in this direction could be found.

The strong positive correlation between PI and PIp in the case of

pathological data and almost strong positive correlation for non-

pathological data (see table 6) is probably due to the reason that

both count the number of points on each side of the line of iden-

tity and most of the points counted in PIp are a subset of the points

counted in PI.

5.3 3 D H I S T O G R A M I N D I C E S

Both index groups based on the 3D Histogram of a Poincaré plot, the

peak and the density indices, only show significant differences for ar-

rhythmia patients before and after treatment. Hnatkova et al. found

similar results for heart rate data of arrhythmia in [21].

The differences between the peak indices NP and DP for pathologi-

cal and non-pathological data get more significant with shorter data

lengths. One explanation for this could be that with a fixed threshold

for considered peak heights and a decreasing number of points there

is less chance of these points overlapping and only peaks, which are

very high at the beginning, are still considered. Therefore the com-

pactness of the Poincaré plot becomes more evident, which corre-

sponds with a decreased HRV [31]. In fact, if one looks at the actual

values of NP for shorter data lengths it is generally higher for non-

pathological than for pathological data.

Marciano et al. found in [32] significant differences of NP and DP be-

tween healthy subjects and subjects with advanced heart failure. A

possible reason why this is not reproduced in our test cases is, that

they used unfiltered Poincaré plots of 24h recordings, consisting of

90,000 points in general - a data length much longer than the one

used in our tests.

The area under the approximated density function seems to have

a higher amount of information than its slope, but both density in-

dices, area and slope, only show significant differences, if arrhythmia

patients before and after treatment are compared. In the length test

just slope shows a sensitivity, with a slow trend towards significance
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for shorter signals. The differences of the length sensitivity of NP and

DP possibly arise due to the fact that area and slope are defined with-

out any fixed restrictions on the peak heights.

The strong correlation of area to L and range is probably due to the

fact that a longer Poincaré plot leads to less overlapping points and

therefore to a larger area under density function.

5.4 D I S P E R S I O N I N D I C E S

Interestingly the rotated version of the dispersion indices are worse

at differentiating in the first test case, compared to the unrotated

ones, but are even more significant in the second test case. The most

promising is width90, which is significant in test case II and III, with

no clear trend with respect to its data length. The indices ∆width,

rotwidth10 and rotwidth90 are very sensitive to the number of points

in the Poincaré plot.

Considering the statistical position and spread parameters in table

2, all six indices seem to indicate that a comet-shaped Poincaré plot,

i.e.,width90 and rotwidth90,respectively, is larger than width10 and

rotwidth10, respectively, is more common in the non-pathological

data set. This corresponds with the traditional interpretation of Poin-

caré plots [13]. For test case III, they indicate larger shape before

arrhythmia suppression, probably because of arrhythmia clusters,

which merged with the sinus cluster and therefore widened it in gen-

eral. Considering table 4, the results of the dispersion indices could

denote a greater proportion of cigar-shaped Poincaré plots for older

subjects compared to younger ones.

If one looks at the visual definitions of width90 and TSD1 in figure

7, their strong correlation for pre-treatment data can be explained

by the fact that depending on the shape of the Poincaré plot, both

measures can coincide. Smith et al. found in [43] no correlation of

width90 and width10 with any other Poincaré plot index, but they

used very short heart rate signals of patients during anesthesia.

5.5 M E C H A N I C A L I N D I C E S

The radii of inertia showed similarly good results by showing very

significant differences in the last three test cases, without strong sen-

sitivity to the data length, but they are not computable for too short

signals. Their ratio showed no significant differences for pathologi-
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cal and non-pathological data, as well as for heart rates of younger

and older subjects. All of them did not react strongly with respect to

data length, except for signals shorter than 100 points. Marciano et

al. reported in [32] that only A has significant differences between

long signals of pathological and non-pathological data. They also

found a strong correlation between A and ext, which could not be

reproduced. In our test the radii correlated strongly only with each

other and the quadro- and octupoles. The strong correlations of A

to SDNN and between B and RMSSD reported by Smith et al. in [43],

could not be reproduced, probably due to the very short signals used

by Smith et al.

All of the quadrupoles and some of the octupoles showed very signif-

icant differences for all test cases. Lewkowicz et al. reported in [27],

that Qy y , Txxx and the kurtosis showed the most promising results.

In the case of kurtosis this could only be reproduced for the pre- vs.

post-treatment test, presumably this is the case, because of shorter

signals for the other test cases, compared to the 24h recordings used

by Lewkowicz.

Both other quadrupoles Qxx and Qzz showed equally good results

compared to Qy y . There are also some octupoles, Tx y y and Txzz ,

which are strongly correlated to Txxx . All of these quadrupoles and

octupoles do not show any sensitivity towards the data length in test

case I. In the same test case, Ty zz shows a sudden loss of significance

for a data length of 500 and 550 points. In contrast, Ty y y and Txx y

show suddenly more significant results for these lengths (see figure

14). Even after closer inspection of the data no reason for this behav-

ior can be found.

The strong correlation between Qzz , Qxx and Qy y is not surprising

since one is calculated as a linear combination of the other two. The

same explanation holds true for all observed strong correlations be-

tween octupoles and between octupoles and quadrupoles.

5.6 LT- I N D I C E S

The index ratioLT showed best results of all LT-indices over all tests,

as was reported by Toichi et al. in [47]. It was very significant for test

case II and III and did not show any sensitivity with respect to data

length in test case I. It only did not show significant differences be-

tween the heart rate of older and younger subjects, as did none of

the other LT-indices. It is not strongly correlated to any other index.
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Toichi et al. reported that besides ratioLT the index LT showed also

good results for the assessment of the sympathetic and parasympa-

thetic activities. Although it has a trend towards higher significance

for shorter data lengths, this index never surpasses the significance

threshold in test case I and in test case II. It had very significant dif-

ferences between pre- and post-treatment heart rate data of subjects

with arrhythmia.

The index L also showed just for test case III a very significant dif-

ferentiation ability and seems to have a weak trend towards signifi-

cance for longer signals in test case I. The index T on the other hand

has significant differences between pathological and non-pathologi-

cal heart rate data of all lengths, which get more significant for

shorter signals. This sensitivity to the data length could be explained

by the differences in shape stability of Poincaré plots from patholog-

ical and non-pathological data with respect to their signal length, as

mentioned in 5.9.

Both, L and T, seem to have no capability to capture the non-linear

features of a Poincaré plot since they are strongly correlated to linear,

statistical measures.

5.7 E L L I P S E F I T T I N G I N D I C E S

None of the ellipse fitting indices showed significant differences due

to the subject’s age. The best results had SD2 with very significant

differences for most of the test cases and showing no sensitivity with

respect to the data length. The index ratioSD has very significant dif-

ferences for all lengths of pathological and non-pathological data

without any visible trend for changing signal lengths. Index SD1 has

more significant differences for the third test case, compared to ra-

tioSD, while on the the opposite is true for the second test case, al-

though in both cases both indices show significant differences. Sim-

ilarly Karmakar et al. also reported in [25] that SD2 shows a more

significant difference between patients with cognitive heart failure

and with normal sinus rhythm compared to SD1.

The other triplet of ellipse fitting indices TSD1, TSD2 and ratioTSD,

TSD2 shows similar results, but with a higher sensitivity to the data

length.

It is not surprising that HiSD is correlated with ratioTSD and ratioSD,

since it can be calculated as a combination of both of them.

The strong correlation between SD1 and TSD1 and between SD2 and
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TSD2 supports the theory by Brennan et al. [9] that the very com-

monly used indices SD1 and SD2 can be derived from statistical ones

and therefore do not measure the non-linear characteristics of the

Poincaré plot.

5.8 S TAT I S T I C A L I N D I C E S

The very simple statistical index pNN50 shows very good results in

all four test cases and is not correlated to any other index. The index

SDSD only shows no significant differences for age-dependent non-

pathological data. This age independence was also found by Malpas

et al. in [30] for subjects with diabetes.

The index SDNN only differentiates significantly for the third test

case. Since SD1 is only a scaled version of SDNN, their strong corre-

lation is not suprising, but the correlation with TSD1, again under-

lines the findings by Brennan et al. in [9].

The index CV has significant differences only for data from arrhyth-

mia patients before and after treatment and shows some sensitivity

to the length of the data. Similar results were found by Toichi et al.,

who reported in [47] that CV also did not differentiate significantly

in all of their test cases.

5.9 U N G R O U P E D I N D I C E S

The index CCM does not show significant differences between two

data sets in any test case, contrary to the findings by Karmakar et

al. in [25], although they used subsets of the databases used in test

case I and II. A reason for this could be different data lengths and

unfiltered data in their tests, but since they do not specify them, this

can not be verified. It could also be the case that the additional data

sets in the combined database dampen the differentiation ability by

CCM.

The index contour, which was introduced in this thesis, only shows

significant differences between non-pathological and pathological

indices for data lengths below 400 points and for the pre- and post-

treatment datasets. After visual examination of the Poincaré plots

for the first test case, a possible reason for the higher significance for

shorter signals, can be that the shape of non-pathological Poincaré

plots tends to not change substantially with less data points, which

is not the case for many pathological ones. The strong correlation
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to area, range and LT is not surprising, considering that all of them

approximate the area of the Poincaré plots. The fact that these other

indices do not show better results for shorter data lengths is proba-

bly due to their rougher approximations.

The index ext differentiates very significantly between data from be-

fore and after arrhythmia-treatment, as well as between pathologi-

cal and non pathological data. In the later case, the index is sensitive

to the data length, if it is below 400 points. This is also reported in

Marciona et al., who found in [32] significant differences in ext for

very long signals of healthy subjects and subjects with severe heart

failure.

The index range tends to have more significant differences for

shorter signals in test case I, but reaches significance only for a sig-

nal length of 100 and below. It has very significant differences for

pre- and post-arrhythmia-treatment data, which is not the case for

the age separated non-pathological data in test case IV. This is not

the case in the the findings by Moraes et al. in [35]. There are many

possible reasons that the results could not be reproduced. They used

for example data from special disorders of the autonomous nervous

system (e.g., drug induced blockade of the sympathetic nervous sys-

tem). They also applied the index on data sets from 24h recordings

in contrast to the 15min long recordings in this work.

5.10 L I M I TAT I O N S

The findings in this thesis are bound by several limitations. First, the

merging of data from subjects with different pathologies, including

subjects with and without arrhythmias, in the data set for the first

and second test case, could have created a too large variety of

Poincaré plots and therefore damped the differentiation ability of

some Poincaré indices.

Furthermore, the data length used in literature is often almost

90 times larger than the one used in our case. Therefore, some

parameters were possibly not chosen optimally, since the same as

in the original papers were used.

The fact that an automatic filtering via clustering was used could

further distort the results, since the cluster algorithm can not always

find all clusters correctly in every case.
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6
C O N C L U S I O N

In section 1 the research questions for this master thesis were de-

clared. The tests showed the following:

– Some indices showed a high sensitivity to the data length,

while others, e.g., both ratios of the ellipse fitting indices,

showed little to none.

– Many methods have significant differences between non-

pathological and pathological data, e.g., the radii of inertia, A

and B.

– Almost all Poincaré plot indices are able to differentiate be-

tween data before and after antiarrhythmia therapy. Indices,

without significant differences between the data sets include

all asymmetry indices except for PI and GIp3D .

– Only a few of the indices had significant differences between

older and younger healthy subjects. This was the case for al-

most all mechanical indices.

– There exist some strong correlation between indices inside an

index group, e.g., almost all mechanical indices are strongly

correlated with each other, but also between different index

groups, e.g., SD1 and T.

All in all only the quadrupoles Qxx , Qy y , Qzz and the octupoles Txxx ,

Tx y y , Txzz showed excellent results for all tests cases.

The radii of inertia A and B, as well as the redefined asymmetry index

GIp3D came very close, but had difficulties with shorter data lengths.

Since all of the above multipoles and the radii of inertia are strongly

correlated, not all of them have to be considered. But this is not the

case for GIp3D , therefore it seems to capture different features of the

Poincaré plot and should be considered for further research as well.

Further tests should be conducted with Poincaré plots of different

pathologies, e.g. diabetes, to see if the indices can capture these as

well.

Since NP showed very good results for short signals, it should be
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tested, if a higher threshold could lead to a similar result also for

longer signals.

Although the newly defined index contour had not always significant

differences for the test cases, it should be developed further, since

in the current version only all its information is cumulated via its

area. Therefore, it could for example not differentiate between vary-

ing shapes with the same area, although it is capable of finding those

in principle.

To conclude, I recommend to use one of the quadrupoles or Txxx ,

Tx y y , Txzz , and additionally GIp3D for future research.
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7
A P P E N D I X

7.1 C O R R E L AT I O N

Tables 19-20 show the correlation matrices of the indices which were

significant in test case II. Tables 21-22 contain the correlation matri-

ces of the indices which were significant in test case III.

Correlation was declared strong for |r | > 0.85.
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