
Multi-Aspect Test Case
Specification and Automation

based on Cause-Effect Analysis
a Case Study in Industrial Environments

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Serafima Sherstneva, BSc.
Matrikelnummer 01328109

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler
Mitwirkung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Wien, 3. Oktober 2022
Serafima Sherstneva Dietmar Winkler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Multi-Aspect Test Case
Specification and Automation

based on Cause-Effect Analysis
a Case Study in Industrial Environments

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Business Informatics

by

Serafima Sherstneva, BSc.
Registration Number 01328109

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler
Assistance: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Vienna, 3rd October, 2022
Serafima Sherstneva Dietmar Winkler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Serafima Sherstneva, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Oktober 2022
Serafima Sherstneva

v





Acknowledgements

The financial support by the Christian Doppler Research Association, the Austrian
Federal Ministry for Digital Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

vii





Kurzfassung

Kontext und Motivation. In “Multi-disciplinary Engineering” (MDE) Umgebungen,
ist das Wissen über unterschiedliche Aspekte eines System, wie “Product, Process and
Resources” (PPR) Spezifikationen, als auch Umweltfaktoren und deren Einflüsse auf
das Produkt und den Prozess häufig auf Experten unterschiedlicher Disziplinen verteilt,
die divergierende Blickwinkel auf das System haben. Dadurch fällt es oft schwer, dieses
Wissen an einem Ort zu konzentrieren. Testen ist eine Methode, um beabsichtigte Effekte
zu erforschen, wie zum Beispiel ob das Produkt die erwarteten Anforderungen erfüllt, ob
der Produktionsprozess die notwendige Durchsatzleistung erbringt, oder Risiken, die zu
unerwünschten Effekten führen, zu überprüfen. Traditionelle Testmethoden betrachten
of nur Effekte, die einer bestimmten Disziplin zuzuordnen sind. In MDE’s, etwa bei
“Cyber-physical Production Systems” (CPPS) ist die Formulierung und Validierung von
Ursachen-Wirkung-Hypothesen eine komplexe Aufgabe. Dadurch bleiben Risiken, auch
bei der Verwendung von systematischen Testmethoden, oft unentdeckt.

Ziele. Das primäre Ziel dieser Studie ist der Entwurf eines Ansatzes, der die systematische
Testplanung, Messung und Analyse in MDE Umgebungen, auf Basis der Ursachen-
Wirkung-Analyse, ermöglicht.

Methoden. Basierend auf dem Ziel wurden die folgenden Forschungsfragen formuliert:
(1) Welche Risikotreiber motivieren Multi-Aspekt Risikobasiertes Testen von Ursachen-
Wirkung-Hypothesen zwischen Eigenschaften des Produktionsprozesses und Parame-
tern/Einflüsse der Produktionsressourcen? Das Subset der Risikotreiber wurde durch
den Forschungsüberblick und Workshop-Veranstaltungen mit Fachexperten abgeleitet.
(2) Welches Wissensmodell kann Multi-Aspekt Ursachen-Wirkung-Hypothesen zwischen
Eigenschaften des Produktionsprozesses und Parametern/Einflüsse der Produktionsres-
sourcen repräsentieren? Aufbauend auf der “Failure Modes and Effects Analysis” (FMEA)
zur Unterstützung von systematischem und effizientem Risikomanagement, “PPR As-
set Network” (PAN) Metamodell zur Beschreibung einer CPPS Struktur und “CPPS
Risk Assessment (CPPS-RA) Metamodell und Methode die FMEA, PAN und Ursachen-
Wirkung-Analyse Aspekte verbindet, erweitert um testrelevante Aspekte, wurde das
“Multi-aspect Test Case Specification” (MATCS) Metamodell erstellt und fachspezifi-
sche Wissensmodelle abgeleitet. (3) Welche Prozessschritte sind zur Unterstützung von
Multi-Aspekt-Testung in “CPPS” und Softwaretechnik erforderlich? Basierend auf dem
“Test Driven Development” (TDD) Ansatz zur Unterstützung von Software Design, der

ix



“Equivalence Class Partitioning” (ECP) Technik zur Aufteilung des Testraumes in Da-
tenklassen und Gherkin Notation zur einfachen repräsentation von automatisieren Tests,
wurde MATCS konzipiert. Die Risikoteiber, das MATCS Metamodell und die MATCS
Methode repräsentieren in Kombination den MATCS Ansatz. Um die Forschungsfragen
zu beantworten, wurde der “Design Science Research” Ansatz angewandt.

Ergebnisse. MATCS führt das Subset an fachspezifischen Risikotreibern, das MATCS
Metamodel und Methoden ein. Die Evaluierung des Ansatzes zeigt aussichtsreiche Resul-
tate im Kontext von zwei Fallstudien in den Bereichen von CPPS und Softwaretechnik.
Der Ansatz unterstützt die Fachexperten bei der Spezifikation von effizienten Testfällen
für die Validierung der Ursachen-Wirkung-Hypothesen, der Definition des Umfangs und
Limitationen der Testautomatisierung und macht das Experimentieren für Systemver-
besserungen systematischer im Vergleich zu traditionellen Ansätzen. Ein PAN ist die
Voraussetzung für eine effiziente Anwendung des Ansatzes.

Fazit. MATCS hilft dabei, das implizite Wissen der multi-disziplinären Fachexperten
explizit zu machen und schlägt weitere Schritte für die Qualitätsexperten vor, um Multi-
Aspekt Testfälle zu spezifizieren und sowohl Umfang als auch Limitierungen für die
Testautomatisierung zu definieren. Die initiale PAN Definition erfordert zwar Mehrauf-
wand, macht sich aber in zukünftigen Iterationen im Kontext einer kontinuierlichen
Verbesserungsstrategie bezahlt.



Abstract

Context and Motivation. In Multi-disciplinary Engineering (MDE) environments,
knowledge on different aspects of the system, such as product, process and resources
(PPR) specifications, as well as environmental factors, and their influence on the product
and process quality is often distributed among experts coming from multiple disciplines
and having different views on the system, and has been found hard to concentrate in one
place. Testing is a method to explore intended effects, such as whether a product matches
expected requirements, a production process meets performance goals, as well as to check
for risks, which could cause undesired effects. Traditional testing methods often consider
causes responsible for the effects coming from one discipline. However, in MDEs, such as
Cyber-physical Production Systems (CPPS) engineering, due to their multi-disciplinary
nature, systematic formulation and validation of cause-effect hypotheses is a complex
task, therefore risks often remain undiscovered by systematic testing methods.

Objectives. The primary objective of this study was to design an approach to enable
systematic test planning, measurement and analysis in MDE environments based on
cause-effect analysis.

Methods. Based on the goal, the following research questions were formulated: (1)
Which risk drivers motivate multi-aspect risk-based testing of cause-effect hypotheses
between production process characteristics and production resource parameters/influ-
ences? The sub-set of risk drivers was derived from the literature review and workshops
with domain experts. (2) What knowledge model can represent multi-aspect cause-effect
hypotheses between production process characteristics and production resource parame-
ters/influences? Built on the Failure Modes and Effects Analysis (FMEA) to support
systematic and efficient risk management, PPR Asset Network (PAN) meta-model to
describe a CPPS structure, and CPPS Risk Assessment (CPPS-RA) meta-model and
method which connects FMEA, PAN and cause-effect analysis aspects, extended with
test related aspects, Multi-aspect Test Case Specification (MATCS) meta-model was
designed and domain specific knowledge models were derived. (3) What are the process
steps to support multi-aspect testing in CPPS and software engineering? Based on the
Test Driven Development (TDD) approach to support system design, Equivalence Class
Partitioning (ECP) technique to divide the test space into classes of data, and Gherkin
notation to allow easy representation of automated tests, MATCS was designed. Risk
drivers, MATCS meta-model and MATCS method combined represent the MATCS ap-

xi



proach. In order to answer the research questions, the Design Science Research approach,
supported by a literature review was followed. MATCS was evaluated in CPPS and
software engineering industrial case studies, which included workshops and experiments.

Results. MATCS introduced the sub-sets of domain specific risk drivers, MATCS meta-
model and method. The evaluation of the approach has shown promising results in context
of two case studies, in CPPS and software engineering domains. The approach supports
the domain experts in efficient test case specification for cause-effect hypotheses validation,
definition of scope and limitations for test automation and makes experimentation for
system improvements more systematic in comparison to the traditional approach. High
quality PAN is the prerequisite for efficient application of the approach.

Conclusion. MATCS helps to make the implicit multi-disciplinary expert knowledge
explicit and suggests steps to the quality experts allowing them to specify multi-aspect
test cases and define the scope and limitations for test automation. The initial PAN
definition requires considerable effort, however, it is expected to pay off in future iterations
in context of continuous integration strategy.



Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9
2.1 Multi-disciplinary Engineering . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Software Systems Testing . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Research Issues and Approach 31
3.1 Research Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Research Methodology and Approach . . . . . . . . . . . . . . . . . . . 34

4 Multi-Aspect Test Case Specification (MATCS) Method 43
4.1 Requirements Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 MATCS Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Step 1. Build Product-Process-Resource (PPR) Asset Network . . . . 48
4.4 Step 2. Conduct Multi-View Risk Assessment . . . . . . . . . . . . . . 49
4.5 Step 3. Multi-Aspect Test Case Specification . . . . . . . . . . . . . . 53
4.6 MATCS Method Application . . . . . . . . . . . . . . . . . . . . . . . 60

5 Software Engineering Use Case: Algorithm Performance 67
5.1 Algorithm Performance – Use Case Analysis . . . . . . . . . . . . . . . 67
5.2 Algorithm Performance – PPR Asset Network Definition . . . . . . . . 70
5.3 Algorithm Performance – Software Multi-View Risk Assessment. . . . . 71
5.4 Algorithm Performance – MATCS Application . . . . . . . . . . . . . 74
5.5 Algorithm Performance – Evaluation . . . . . . . . . . . . . . . . . . . . 81

xiii



6 CPPS Engineering Use Case: Aluminium Surface Cleaning Process 85
6.1 Aluminium Surface Cleaning Process – Use Case Analysis . . . . . . . 86
6.2 Aluminium Surface Cleaning Process – PPR Asset Network Definition . 91
6.3 Aluminium Surface Cleaning Process – CPPS Multi-View Risk Assessment 92
6.4 Aluminium Surface Cleaning Process – MATCS Application . . . . . . 94
6.5 Aluminium Surface Cleaning Process – Evaluation . . . . . . . . . . . 100

7 Discussion and Limitations 105
7.1 Comparative Analysis of Case Study Results . . . . . . . . . . . . . . 105
7.2 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusion and Future Work 111
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

List of Figures 115

List of Tables 119

Company A - Software domain knowledge model code 121

Company B - CPPS domain knowledge model code 127

Acronyms 133

Bibliography 135



CHAPTER 1
Introduction

Due to the constantly growing complexity of software-intensive production systems [Biffl
et al., 2017b], experts in individual disciplines are no longer able to adequately assure the
quality of production processes without taking into consideration aspects from multiple
disciplines, which could contribute to incorrect or unexpected results. Such aspects are
multi-domain specific product, process, and resource (PPR) specifications, as well as
environmental influences.

Testing is a method to explore intended effects, such as whether a product or a process
matches expected requirements, a production process meets performance goals, as well as
to check for risks, which could cause undesired effects. The testing process can start at the
requirements definition phase and continue throughout the engineering and production
processes. Knowledge on different aspects of the system and their influence on the
product quality is often distributed among experts coming from different disciplines and
has been found hard to concentrate in one place [Meier et al., 2020, Biffl et al., 2021].
This fact adds even more complexity to the standard test case specification challenges
that test engineers meet at their daily work, such as sufficient business and code coverage,
as well as resource availability and time limitations [Felderer and Ramler, 2014, Meixner
et al., 2020].

In order to reduce testing time and costs, some of the tests can be automated. Test
automation plays a crucial role in complex software-intensive production systems due
to the large testing scope and limited time frame. Automation of test cases having
multi-aspect nature is often limited due to heterogeneous tools, artifacts, and systems.
Moreover, software test automation experts need to be involved in the process of test
automation as well as experts with domain knowledge [Winkler et al., 2018, Meixner
et al., 2020].

Therefore, the process of test case design and automation in multi-aspect engineering
environments remains challenging.

1



1. Introduction

This thesis focuses on testing system behavior controlled by software that depends on
assumptions, requirements, and designs coming from related "other" systems, engineering
disciplines and providers.

1.1 Problem Statement
This section aims to present the challenges derived from the two minimal illustrative
use cases which coming from the industry partners. Both of the use cases are typical
for the organizations. The use cases are typical withing the organizations and represent
real scenarios. Based on the identified challenges, research questions are derived. The
answers to the research questions aim to support the domain experts in overcoming their
challenges.

1.1.1 Minimal illustrative use cases
Two typical domain specific minimal use cases are presented to support understanding of
the research problematic.

Minimal illustrative use case Algorithm performance at Company A. A typical
example of a multi-aspect environment is a large-scale Company A with over 20 million
registered online customers. One of the products of the company is a Web service
delivering data to the front-end application for the end users.

Figure 1.1: Minimal illustrative use case Algorithm performance at Company A.

The testing task is to assure that the software algorithm responsible for the data delivery
works as expected and the Web service delivers the data within an expected time window.
If the data is not delivered by the service within an expected time window, visible delays
could appear on the front-end of the application. The testing task is necessary since
the response time is the critical measurement for customer satisfaction. In order to save
testers’ time and effort, a test automation project displayed in Figure 1.1 is in place.

2



1.1. Problem Statement

The test case results coming from the automated test execution, therefore, are not only
dependent on the performance of the software algorithm, the performance of underlying
Web service infrastructure, e.g., a virtual machine where the service is deployed, but also
on the performance of the underlying automating system, e.g., a virtual machine where
the test case is executed.

Figure 1.1 displays the traditional test automation process with focus on the algorithm
(the cause marked as C0), while in this work causes in the underlying automating system
and the environment, causes, such as CPU or memory load, which are likely to have an
impact on the software algorithm performance (Figure 1.1: the causes on the clouds) are
considered as well.

Illustrative use case 4-color printing with Industry 4.0 components.

Figure 1.2: Use case 4-color printer with Industry 4.0 components. Based on [Biffl et al.,
2020a].

The use case is identified from the relevant literature and an initial set of requirements
was established based on the use case. Figure 1.2 displays the elements of the use case:
an industrial four-color printing solution which is achieved by overlaying of four basic
colours [Biffl et al., 2020a]. The printing process includes usage of paper and colors,
and sequential printing and drying of the layers. In order to build such a printer, 8 to
10 engineering views could be involved. The example illustrates the difficulty to test

3



1. Introduction

hypotheses on multi-aspect relationships between the effect, such as insufficient color
clarity, and possible causes which could trigger the effect.

The causes coming from the underlying systems may go back to natural laws relevant to
production systems. These causes are typically not explicitly represented, but implicit
parts of assumptions, requirements, and test cases. Due to their implicit nature these
causes are not part of systematic planning, measurement, and analysis. Therefore, test
case design may be incomplete and based on wrong assumptions and may not measure
relevant data to explain why a test case failed as foundation for analyzing the system
parts that require improvement.

Shortcomings. Figure 1.3 represents main shortcomings of the test case specification and
automation process in a multi-disciplinary environment, such as no efficient representation
of implicit domain knowledge, stakeholder dependencies, as well a test case coverage, and
automation.

The aim of the process is to ensure that different aspects of the production system
contribute to the final product the way they should by providing sufficient test coverage
and test automation. The process includes the following steps: identification of possible
risk elements of the production system, test case design and data source definition, as
well as definition of scope and limitations for automation for the selected test cases.

Figure 1.3: Major challenges in test case specification and automation in a multi-
disciplinary engineering environment.

There are four main stakeholders, represented as actors in Figure 1.3: the quality
manager (in red color), the domain expert (orange), the test engineer (green), and the
test automation engineer (blue). The four stakeholders work in a close cooperation and a
person may take on more than one role.

The Quality Manager is responsible for test planning, resource allocation, and decision

4



1.1. Problem Statement

making based on test reports [Winkler et al., 2018]. In order for the quality manager to
assure the quality of the System under Test (SuT), he needs to make sure that everything
that should go right will go right. The correct outputs are desired effects. On the other
hand, the quality manager also needs to assure that everything that could go wrong
with the product will not go wrong. Anything which could go wrong is considered an
undesired effect. In multi-disciplinary environments, just like in pure software engineering
environments, there is a large number of variables that may cause different outcomes and
their effects need to be understood [Wohlin et al., 2014]. A cause can be an attribute of
the domain, of a resource, of the environment, or even a human factor (human factors
are out of scope in this work). Furthermore, multiple disciplines are often involved, for
example, software engineering, electrical engineering, and mechanical engineering.

Domain experts from multiple disciplines are typically aware of the technical requirements
of the system and have knowledge on the effects, implicit and explicit causes, and their
relationships. Therefore, the knowledge of domain experts is required for test case design.
The assumption that the effect is related to a particular cause or a combination of causes
is called hypothesis [Wohlin et al., 2014].

Test engineers validate the domain experts’ hypotheses by designing test cases that lead
to desired effects and cover risks that may lead to undesired effects.

Test automation engineers prepare and maintain the test automation framework, support
domain experts and test engineers by implementing code as the basis for the test cases,
and make decisions on what can and should be automated in cooperation with domain
experts and test engineers.

1.1.2 Challenges
From the minimal illustrative use cases major challenges in multi-aspect test case specifi-
cation and automation are derived:

Challenge Ch1. Insufficient representation of multi-aspect cause-effect hy-
potheses. There is currently no efficient way of the multi-aspect cause-effect relation-
ships knowledge representation for selected hypotheses leading to insufficient overview.
Test engineers focus on design and execution of multi-aspect test cases in cooperation
with domain experts, in order to validate the hypotheses. In addition to Ch1, further
challenge for test engineers and this work is derived.

Challenge Ch2. Inefficient coverage of multi-aspect test cases. Specified test
cases often do not cover all critical parts of the system and its characteristics or the
opposite, many test cases validate similar assumptions. The goal of the test automation
engineer is to deliver a robust and stable solution for automation of the multi-aspect
test cases with automated data collection from different sources. In multi-engineering
environments, test automation engineers meet the following challenge.

Challenge Ch3. Multi-aspect test cases are hard to automate. Due to the
multiple aspects involved in the test automation process, different tools are required to

5



1. Introduction

test different artifacts and parts of the system. Moreover, test automation engineers
have to address the following decisions: (a) what test cases are possible to automate; (b)
what test cases make sense to automate from a cost-benefit perspective; and (c) how to
automate possible test cases that make sense to automate.

1.1.3 Research questions

The following research questions have been addressed in the context of multi-aspect
testing in software and CPPS engineering by conducting a case study in a company with
distributed software system setup and a case study in a CPPS company partner:

• RQ1: Which risk drivers motivate multi-aspect risk-based testing of cause-effect
hypotheses between production process characteristics and production resource pa-
rameters/influences?

This research question is stated in order to identify sets of risk drivers which moti-
vate multi-aspect testing of system requirements for subsets of software-intensive
(production) systems. In order to answer this question, a literature review has
been conducted in the first place. Based on the output from the literature review,
multiple workshops took place where various domain experts have reviewed and
discussed the identified risk drivers and selected the ones which are most relevant
for their use cases.

• RQ2: What knowledge model can represent multi-aspect cause-effect hypotheses
between production process characteristics and production resource parameters/in-
fluences?

Domain experts require a model which supports them in representation of their
heterogeneous multi-disciplinary knowledge and building of hypotheses on cause-
effect relationships. This research question focuses on a meta-model design which
allows to instantiate such domain specific knowledge models. The requirements
for the meta-model and the model are established based on the previous work and
workshops and discussions with the domain experts. Both, meta-model and its
instances are evaluated in the case studies with the company partners.

• RQ3: What are the process steps to support multi-aspect testing in CPPS and
software engineering?

The aim of this research question is to design a method which allows test engineers
to define a systematic test suite to define a minimal set of tests that collect data
on cause-effect relationships to validate the hypotheses. Additionally, the method
must include steps which support the domain experts in definitions of the scope
and limitation for test automation. The method is evaluated by its application for
selected use cases in case studies in cooperation with domain experts.

6



1.2. Aim of the Work

1.2 Aim of the Work
From the problem definition and the use cases Algorithm performance at Company A,
the following requirements for the contributions of this thesis, research questions, and use
cases for evaluation are derived. In this work Design Science research [Engström et al.,
2020, Wieringa, 2014] is employed in order to investigate how to improve shortcomings
in the context of production processes automated by (software-intensive) production
resources/systems.

This thesis aims at making the causes for selected effects explicit to enable
efficient systematic test planning, measurement and analysis. In figure 1.4, the
three corresponding contributions to the previously introduced challenges are presented.
This figure is structured the same way as the previously introduced figure 1.4.

Figure 1.4: Key contributions of this thesis.

Key contributions: The main contributions of this master thesis are derived based on
the challenges stated in Section 1.1.2:

• Co1: Multi-aspect meta-model and domain specific knowledge models: software
engineering knowledge model and CPPS engineering knowledge model. The models
support: quality managers, who have to identify multi-aspect factors that are likely
to lead to specific quality risks, as a foundation for mitigating these risks; domain
experts, who require an efficient method for representing domain knowledge on
multi-disciplinary dependencies; quality engineers, who have to plan and execute
testing activities in order to validate multi-aspect cause-effect hypotheses; test
automation engineers, who have to support test engineers in automating test cases
with multi-disciplinary dependencies. The model can be queried and is iteratively
expandable.

7



1. Introduction

• Co2: Multi-aspect test case specification method which allows the quality experts to
specify the minimum amount of test cases saving testing resources without lowering
the quality of the results in multi-disciplinary engineering environments.

• Co3: Multi-aspect test case automation method which supports test automation
engineers in definition of test case automation scope and limitations in multi-
disciplinary environments.

• Use cases, groups of different data and requirements that highlight characteristics
of multi-aspect knowledge in engineering processes.

• Test-driven systems engineering that explains which stakeholders are capable and
responsible for system behavior design and could provide important models and
data for testing.

These contributions are relevant for software-intensive systems roles and scientific com-
munities, such as for instance participants of IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA)1. The method and its conceptual evalu-
ation has been published in the 27th peer-reviewed in conference (IEEE International
Conference on ETFA [Winkler et al., 2022].

1.3 Structure of the Work
Chapter 1 introduces the motivation, problem statement with illustrative use cases and
aim of the work. Chapter 2 is introduced in order to present the related work. Following,
Chapter 3 presents the Research Issues and the appropriate approach to address the
issues. In Chapter 4 the main contribution of this work is described: the multi-aspect
test case specification method. Chapter 5 is designed to describe the software engineering
use case "Algorithm performance" and presents the case study and the results. Chapter
6 follows the same structure Chapter 5 with the focus on the CPPS aluminium surface
cleaning process. The comparative analysis of the case study results is depicted, each
individual research issue is discussed and possible limitations that the research faces are
presented in Chapter 7. Chapter 8 concludes the thesis and presents possible future work.

1ETFA: https://ieeexplore.ieee.org/xpl/conhome/1000260/all-proceedings

8

https://ieeexplore.ieee.org/xpl/conhome/1000260/all-proceedings


CHAPTER 2
Related Work

Chapter 1 introduced the context of the research and key challenges which the stake-
holders in Multi-disciplinary Engineering (MDE) environments, such as Cyber-Physical
Production Systems (CPPS) Engineering and software engineering meet.

The Related Work chapter provides information on the recent research state about the
most important topics of this thesis: MDE, Risk Assessment (RA) and software system
testing, for various software-intensive engineering contexts. Section 2.1 summarizes
related work on MDE, and specifically the associated with software-intensive (production)
systems challenges, and gives an overview about terminology. Following section 2.2
presents the concept of RA for software-driven systems such as CPPS and software
systems. Finally, section 2.3 explores software system testing strategies and techniques,
as well as the possibilities of test automation in MDE environments.

2.1 Multi-disciplinary Engineering
"Software-intensive systems are systems in which software development and/or integration
are dominant considerations" [ISO, 2011]. Examples of software-intensive systems are
large-scale heterogeneous production systems or business Web service based applications,
as well as applications in space and military areas [Biffl et al., 2019]. The increasing
complexity of modern software-intensive systems makes it hard for individual developers
to cope with every detail of their structure and functionality. Therefore, for systematic
knowledge representation, Meier et al. [2019] introduced a unifying terminology and
developed criteria for classifying approaches that allow to construct Single Underlying
Models which have the capability to combine different views on a system, such as
requirements, modeling and programming languages. However, this approach does not
take into consideration different engineering disciplines which contribute to development
of software-intensive systems.

9



2. Related Work

Multi-disciplinary engineering can be defined as a combination of different disciplines such
as for example mechanical, electrical or software engineering involved in an engineering
process [Biffl et al., 2017a]. Single disciplines often themselves consist of other disciplines.
Software engineering discipline for example depends on three main parts: network,
software and hardware engineering [Schneidewind, 2012] and different disciplines, such as
electrical (elements of hardware) and software (code). Each discipline requires domain
specific experts which further use various tools, methods and data models to achieve
specific goals of the respective engineering phases.

Knowledge representation is one of the major challenges in MDE environments. In order
to build a final artefact, intermediate results created in one discipline are handed over
to another discipline as long as the final result isn’t achieved. This approach creates a
technical dependency between disciplines [Jäger et al., 2011]. Furthermore, not all of the
necessary information on the actual engineering objects is recorded or documented. The
information which is documented is often very high-level and the documentation is not
easily understandable for domain expert from different disciplines. Moreover, the same
terms might have different meanings in different engineering disciplines. To overcome
some of the in [Jäger et al., 2011] mentioned issues, the authors propose an approach
that deviates from the engineering documents for the involved stakeholders with their
engineering processes and tasks and finally leads to a cause and effect diagram.

Due to the lack of adequate knowledge representation, testing of system requirements
in MDE remains a big challenge. Any system related MDE has to fulfill requirements
regarding system functionality, final product quality, functional safety, and information
security. After failure or attack systems can be disastrous due to interaction and
propagation of failures to the multiple system units. Accidents and failures often happen
due to insufficient understanding of failure mechanisms and lack of effective testing and
validation [Li and Kang, 2015, Bertolino, 2007].

Systems and software Quality Requirements and Evaluation (SQuaRE) is a series of
International Standards (25000-25099) edited by the ISO/IEC organisation and related
to Systems and Software Quality. SQuaRE provides, among the others, the framework
for quality requirements for systems, software products and data [ISO25030, 2019]
and evaluation of software product quality [ISO25040, 2011]. Software product quality
requirements are needed for specification, planning, development and evaluation of the
system. ISO25030 [2019] provides the list of requirements (Table 2.1) which should be
met to assure quality of a system/product.

The framework is developed for various stakeholders, including testers, to verify and
validate that the system products meets the expected quality, and project managers, to
plan, monitor and control the achievement of the expected quality.

2.1.1 Cyber-physical Production System Engineering
This section explains basic CPPS Engineering and PPR concepts. Section concerning
CPPS includes the information necessary for understanding the concept of CPPS in

10



2.1. Multi-disciplinary Engineering

System Requirements Detailed Characteristics

Functional Suitability
Functional Completeness
Functional Correctness
Functional Appropriateness

Performance Efficiency
Time-behaviour
Resources Utilisation
Capacity

Compatibility Co-existence
Interoperability

Usability

Appropriateness
Recognisability
Learnability
Operability
User Error Protection
User Interface Aesthetics
Accessibility

Reliability

Maturity
Availability
Fault Tolerance
Recoverability

Security

Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability

Modulatiry
Reusability
Analysability
Modifiability
Testability

Portability
Adaptibility
Installability
Replaceability

Table 2.1: ISO/IEC SQuaRE - system requirements. Based on [ISO25030, 2019].

Industry 4.0, as well as in IIoT. Following it depicts the challenges and requirements for
such systems and solution attempts to cover them. Section 2.1.1 includes the description
of the product process-resources-concepts, the dependencies and relationships among
them, as well, as examples of domains where the approach can be applied.

11



2. Related Work

CPPS concepts

The demand for flexible industrial production (Industry 4.0) requires CPPS. Such systems
should be able adapt to shifts in production volume and product variants [Kagermann
et al., 2013]. In CPPS the operations of various physical entities are usually controlled
by computing cores. Therefore the design of these systems involves several engineering
disciplines, such as mechanical, electrical, and software engineering, where experts from
different disciplines and multi-disciplinary teams need to be involved. The experts design
and use heterogeneous models and tools in order to achieve their objectives. This fact
leads to difficulties in knowledge sharing and representation for all stakeholders. One of
the main challenges is to make the variety of experts coordinate towards the satisfaction
of these requirements, in spite of the fact that they are accustomed to focusing on their
domain-specific issues, with their specialized tools. Therefore CPPS Engineering requires
integrating models across engineering disciplines [Chabot et al., 2016, Biffl et al., 2021].

Antão et al. [2018] propose Industrial Internet of Things (IIoT) architecture, supported
by implementation of the CPPS, which is displayed in Figure 2.1. The architecture
consist of five layers. The lowest, perception layer, consists of physical objects, sensors
and actuators, having the purpose of sensor data collection and command actuation. The
data collected from sensors are further transmitted to the next, middleware layer, using
network layer. In the middleware layer information can be stored and analyzed. The
processed information is presented to an end user using in the application layer. System
administrators can manage and control the overall functionality of the platform in the
business layer.

Defining CPPS requirements is a challenging task due to the existing strong dependencies
between cyber and physical parts of the system [Zheng and Julien, 2015]. Antão et al.
[2018] propose a list of system requirements for validating and testing CPPS in IIoT
implementations, as well as identify the main problems regarding test execution. Figure
2.2 represents the defined system requirements. In order to verify CPPS requirements,
Chabot et al. [2016] suggests a Requirement Driven Testing Method for Multi-disciplinary
System Design, a generic model for test infrastructures and a method to derive specific
infrastructures. The authors designed a unified testing framework that allows simulation
to play all the test scenarios for a given product. The solution proposes a common
system test interface, to be used by experts from every discipline. The starting point
of the method is the requirements context. The method suggests two categories of
interconnection points with the system, such as the ones which correspond to the normal
functional interface of the system and the ones that are needed to run the tests but do
not appear in the final product. The method consists of several steps. Firstly, for generic
test infrastructure, a requirements engineer inspects specific requirements and creates
corresponding instances of this generic infrastructure. The specific test frameworks are
system independent and produced only once for all testing activities and product ranges.
Following, system designers design models for their specific disciplines from the uniform
system interface. From the abstract models, the system architect, together with the
system designers, derive an executable/simulatable model. In order to see whether the

12



2.1. Multi-disciplinary Engineering

Figure 2.1: Five layer IoT architecture. Based on [Antão et al., 2018].

specific test case passes or fails, the specified behaviour of the testers is translated into an
executable scenario automatically. At the final step a validation engineer integrates the
new model in the test infrastructure and runs simulation. If the product quality does not
meet the requirements, an iterative process is possible. The method focuses on purely
multi-physics sub-systems (including components with mechanical, electrical, thermal,
electromagnetic physical features, but does not consider hardware/software controlling
elements [Chabot et al., 2016].

Li and Kang [2015] propose a strategy for reliability testing and evaluation of cyber
physical systems. The strategy includes the testing and evaluation of hardware, software,
and architecture reliability, as well as the performance reliability including service
reliability, cyber security reliability, resilience and elasticity reliability and vulnerability
reliability. The objective of the technology framework are internal factors such as hardware
components, software components and architecture. The conditions of the framework
are external factors, i.e. environmental conditions, operating and external attacks. The
testing and evaluation consist of three parts: systematic analysis, reliability testing and
evaluation. In the first part external and internals factors which can influence reliability of
the system need to be analyzed. In the second part component reliability and performance
reliability are tested. This includes reliability testing of hardware/software components
and the network architecture. The performance indices of cyber physical systems are
represented by the service, cyber security, resilience and elasticity, and vulnerability. In
the presented framework, the four indices are synthesized and the performance reliability

13



2. Related Work

Figure 2.2: CPPS testing requirements. Based on [Antão et al., 2018].

14



2.1. Multi-disciplinary Engineering

is proposed as the index. This strategy provides support for testing and evaluation of
CPS, however, is designed for reliability testing only and does not consider different
engineering disciplines such as, for example, mechanical and electrical.

Product-Process-Resource (CPPS) Concept

The main reason of existing of most of the companies is their products, which means
that during the value adding process products are created in order to sell them and
make profit [Stark, 2015]. Products can be tangible and robust, like, for example a
car or intangible like car repair services. CPPSs support production of products by
combining suitable production factors. Examples of production factors are raw materials,
work-in-progress pieces and complete production resources. A work-in-progress piece
can be, for example, a handlebar which has to be transported to another processing
station, in order to be finalized. Production resources are all involved in a production
process machines, such as welding robots, conveyor belts for transport processes, as well
as cameras and physical measurement devices for quality control [Elmaraghy, 2009].

Sauer et al. [2015] introduced Product-Process-Resource (PPR) concept for the depen-
dencies of products produced on production systems based on the production processes.
Each product has product characterizing parameters, product components (Bill of Mate-
rial) and production processes (Bill of Operation) related to it. Production resources
execute production processes with their own production characterizing parameters. Each
product has all relevant processes required for its manufacturing in its Bill of Operation.
Capabilities of the involved production resources defined production process. A set of
products is processed by production resources. In order to produce a product, processes
are used, that are, in their turn, executed on a resource. This forms dependencies as
displayed in Figure 2.3. A graph represents PPR concepts in the following way: the
nodes of the graph represent products, processes and resources, while the edges describe
dependencies and relationships between them [Sauer et al., 2015].

The PPR concept helps product engineers to describe the manufacturing of products
with an executable process [Hundt and Lüder, 2012]. However, it could be used in other
domains as well. In agent-based systems, PPR is of special interest [Zavisa et al., 2018],
as well as in complexity management, where the complexity of product variants is a topic
for investigation [Pfrommer et al., 2015].

PPR Asset Networks (PAN) Concept

This section is based on [Winkler et al., 2021]. In industry, product, process, and resources
are often considered individually without expressing their dependencies explicitly. Single
assets can contribute to efficient collaboration within CPPS engineering projects in
a negative way, that, in case of overseen dependencies, can lead to additional risks.
Therefore the authors propose improving of CPPS Engineering knowledge representation
by introducing Product-Process-Resource Asset Networks. PANs are capable of providing
views on assets from different viewpoints and enable the possibility of efficient added

15



2. Related Work

Figure 2.3: PPR concept model. Based on [Sauer et al., 2015].

value application of risks, requirements, and configuration management. Figure 2.4
displays the PAN meta-model, which includes four building blocks: (1) PPR I4.0 Assets;
(2) related Asset Properties; (3) PPR Network Nodes; and (4) PPR Network Links. PPR
assets can be a part of another assets and have asset properties, which could contain
other properties. PPR assets are PPR network nodes which can be linked with other
nodes by PPR network links. Network links can be of an incoming or outgoing type,
while the nodes are either sources or targets for the links.

Figure 2.4: PAN concept meta-model. Based on [Winkler et al., 2021].

Figure 2.5 provides visualisation of a derived from the meta-model PAN for Industry 4.0
Testbed located at CTU in Prague 1. The use case concerns the production line which
consists of a set of basic production operations: pick a component from a predefined place
by robot; place a component to a predefined place by robot; move a semi-product on a

1Industry 4.0 Testbed: ciirc.cvut.cz/teams-labs/testbed/

16

ciirc.cvut.cz/teams-labs/testbed/


2.1. Multi-disciplinary Engineering

shuttle. Operations pick and place are merged into Pick&Place due to the time efficiency.
In order to implement a PAN, stakeholders first provide knowledge of individual aspects
of engineering assets from different points of view. This step includes identification of
assets and links between them, network construction, verification and validation, and
feedback and improvements. Once the mentioned above knowledge has been collected,
the PAN is built. On top of the PAN selected added value components are added, such as
risk assessment and mitigation during Engineering and operation, requirements tracing
and CPPS configuration. In this thesis the domain knowledge models are represented
using PAN.

Figure 2.5: PAN of selected assets: robots connected by a transport shuttle. Based
on [Winkler et al., 2021].

2.1.2 Software System Engineering Concepts
The goal of this sections is to define and describe the basic concepts related to software
system engineering, as well as to identify the system requirement and the challenges that

17



2. Related Work

are present in the process of software testing.

Humphrey [1988] suggests the following definitions for software, software engineering,
software quality and software process:

• Software is a program and all of the associated information and materials needed
to support its installation, operation, repair and enhancement.

• Software engineering is the disciplined application of engineering, scientific, and
mathematical principles and methods to the economical production of quality
software.

• Software quality is the degree to which a product meets its users’ needs, This may
refer to functional content, error rates, performance, extendibility, usability, or any
other product characteristics which are important to the users.

• Software engineering process is is the total set of software engineering activities
needed to transform a user’s requirements into software. This process may in-
clude requirements specification, design, implementation, verification, installation,
operational support, and documentation. It also may include either temporary
or long term repair and/or enhancement to meet continuing needs. The process
may require that the professionals learn the users’ needs, translate them into a
requirements definition, and modify this definition while gaining more knowledge
during design and implementation.

In addition to the quality metrics mentioned in the above stated definitions, Felderer and
Schieferdecker [2014] define and explain software system requirement depicted in Table
2.2. Verification of the system requirements require different testing test methods, i.e.,
functional testing, security testing, and performance testing. The system requirements,
so-called, risk drivers determine which testing method is appropriate and should be
chosen.

System Requirements Description
Reliability The system is able to deliver services as specified
Availability The system is able to deliver services when requested
Safety The system is able to operate without harmful states
Security The system is able to remain protected against attacks
Resiliency The system is able to recover timely from unexpected events

Table 2.2: Software system requirements. Based on [Felderer and Schieferdecker, 2014].

2.1.3 Summary
Knowledge sharing and testing are both challenging in MDE. While in software engineering
the main challenges are efficiency, test coverage and human factors, in CPPS it is, in

18



2.2. Risk Management

addition to the challenges mentioned above, executability, system recovery and fragility
issues. The challenges in CPPS add additional risks not only to the system itself, but
also to the quality assurance process. Such risks need to be identified as well. Risk
assessment is one of the techniques which allows experts to identify risks Biffl et al. [2021].
According to Felderer and Schieferdecker [2014], system requirements are risk drivers
which require different testing approaches, such as, for example, functional testing and
performance testing. Such testing techniques allow not only risks mitigation, but also
risk avoidance and system improvements.

2.2 Risk Management
"If you always do what you always did, you will always get what you always got" [Stamatis,
2019]. In other words, in order to get a different result, a change in the process or actions
is needed. Changes always include potential risks, which should be identified, assessed and
prioritized accordingly. This section summarizes related work on risk management and
risk assessment in CPPS engineering. Risk management is essential in every engineering
process [Hopkin, 2018]. Identifying and mitigating project related risks are necessary
steps for managing projects successfully [Carbone and Tippett, 2015]. Risk assessment
determines the significance of the risks and builds the basis for the risks mitigation to
prevent defects and avoid the recurrence of defects [Felderer and Ramler, 2014, Hopkin,
2018].

2.2.1 FMEA - Failure Mode and Effects Analysis
This subsection aims to discuss failure mode and effects analysis (FMEA) and is mostly
based on [Stamatis, 2019]. FMEA is an engineering risk management method which
helps the stakeholders to define, identify, prioritize and eliminate possible system, design
or process failures before they reach the end customer. The goal of the method is
elimination of failure modes or reducing the risk of their occurrence. FMEA as well
provides a framework for critique of a system design or a process. By following the
method, the experts can prevent problems, rather than react to them.

FMEA is a beneficial method for various engineering industries and, if properly conducted,
it can add the following value to the risk management process:

• confidence that all reasonable risks have been identified early in the process and
the appropriate counterarguments have been taken or defined;

• priorities for a product or process improvements have been set;

• rework, scrap and manufacturing costs are reduced;

• knowledge of the product and the processes is stored;

• productions failures and warranty costs are reduced;

19



2. Related Work

• risk and actions are properly documented for future re-use.

In order to conduct FMEA effectively, the eight-step method presented in Figure ’2.6
has to be followed.

Figure 2.6: The 8-steps FMEA process. Based on [Stamatis, 2019].

• Step 1. Establish a team which includes appropriate team members and do brain-
storm. The team must be cross-functional and multi-disciplined. The participants
must be willing to participate. The brainstorming part includes the definition of
areas for improvements, such as system, design, process, product or service, and the
opportunities for improvements. The brainstorm should be properly documented
using affinity diagram, storybook method and cause-effect diagrams.

• Step 2. Create a functional block diagram for FMEA of a system or design or a
process, or a service flowchart for FMEA of a process. This helps to make sure that
all the participants of the FMEA understand the objectives of the unit the FMEA
is conducted for, and relevant problems.

• Step 3. Prioritize the important parts and define the starting point of the FMEA.

• Step 4. Begin data collection of the failures and categorize them. Identified failures
are failure modes of FMEA.

• Step 5. Analyze the data by retrieving information from it, applying the expert
knowledge and making decisions.

• Step 6. Record results in order to determine the severity, occurrence, detection
and risk priority number.

• Step 7. Confirm/evaluate/measure the success or failure by answering the following
question: how has the situation changed: improved, got worse or has not changed?
Based on the answers on the above stated question, recommendations for future
actions are done.

• Step 8. Repeat the steps again, since FMEA is a continuous process.

20



2.2. Risk Management

2.2.2 Multi-view Risk Assessment in CPPS Engineering

This section is about risk assessment in CPPS engineering mainly based on [Biffl et al.,
2021]. "Risk assessment in CPPS engineering focuses on identifying and analyzing product,
process, and resource risks that might lead to defective products caused by inaccurate or
defective processes or resources, omitting intentional wrongdoing" [Biffl et al., 2021]. In
order for stakeholders to conduct risk assessment, Biffl et al. [2021] propose a CPPS Risk
Assessment Meta-Model depicted on Figure 2.7 and a CPPS Risk Assessment method
(CPPS-RA) display in Figure 2.8.

Figure 2.7: CPPS-RA core concepts meta-model [Biffl et al., 2021].

The multi-view RA model combines three groups of concepts represented in separate views:
Failure Modes and Effects Analysis (FMEA) concepts (in violet), CPPS Engineering
Network (CEN) concepts (in green) and Cause-Effect Hypothesis concepts (in light blue)
(Figure 2.7). The multi-view model allows to build multi-view cause-effect diagrams
which can further be used for risk assessment. In the standard FMEA process, in order
to to assess risks in the System under Inspection (SuI), a multi-disciplinary team of
experts conducts the process by applying a set of guidelines and templates [Carbone and
Tippett, 2015]. The main steps include: 1) identification of assets, possible issues, and
failure modes; 2) elicitation of effects and causes; and the risk assessment. While the
FMEA approach is well established single engineering disciplines, for multiple disciplines
it requires support of multi-view CPPS Engineering Networks (CEN). CEN is based on
PPR concepts explained in 2.1.1. The engineering domain experts identify assets and

21



2. Related Work

Figure 2.8: CPPS-RA method overview (in IDEF0 notation [Presley and Liles, 1995]) [Biffl
et al., 2020b].

link them appropriately [Biffl et al., 2021].

CPPS-RA method contains three main steps and uses the concepts displayed in Table
2.3. The steps are: 1) FMEA: Identify risk and informal cause candidates. The inputs
for this step are CPPS-RA goal and scope, as well as CPPS engineering knowledge.
Expected outputs are cause candidates and hypothesis candidates; 2) CPPS-RA with
CEN exploration. With regards to the output from the previous step, additional inputs
for step two are needed, such as informal cause candidates, informal hypothesis candidates
and a particular effect. After the step has been conducted, causes linked assets in CEN
and hypotheses linked to CEN are identified; 3) collect and analyze data based on CPPS-
RA results. Based on the hypotheses linked to CEN, data is collected and analyzed.
CEN exploration step further consists of three steps: 1) explore CEN. Selected effect and
informal caused candidates are taken into consideration and causes linked to assets are
established; 2) analyze cause candidates and cause-effect pathways. Based on the causes
linked to assets, cause candidates and pathways are analyzed and causes linked to CEN
and to the effect are identified; 3) build hypothesis linked to the CEN. In the last step,
hypothesis linked to CEN are built based on the cause candidates from the step two.
The steps are displayed in Figure 4.5. [Biffl et al., 2021].

22



2.2. Risk Management

Concept Concept description
SuI System under Inspection, an Asset
FMx Failure Mode x of the SuI
Exx Effect xx

A;AF , AP , AP0 , AR
Asset; a Function (F), Product or Material (P),
Process (P’), Resource (R) Asset in a CEN

Lt(Ax, Ay) A Link of type t between two Assets, Ax and Ay

Cx(Ay) Cause Cx associated to asset Ay,
e.g.,a wrong parameter value leading to a FM.

Hx(Exx, Cx)
Hypothesis, linking effect Exx to a set
of causes C1, ..., Cn via a pathway of
assets and links in the CEN

Table 2.3: Key concepts for Risk Assessment with FMEA in a CEN. Based on [Biffl
et al., 2021].

Figure 2.9: CPPS-RA CEN Exploration (in IDEF0 notation [Presley and Liles,
1995]) [Biffl et al., 2021].

23



2. Related Work

2.2.3 Summary
This work aims at improving testing related knowledge representation of the system in
multi-disciplinary engineering environments by extending the CPPS-RA core concepts
meta-model [Biffl et al., 2021] deriving a multi-aspect cause-effect model from it. This
model allows support for the domain experts in concentrating their implicit domain
knowledge at one place, considering multiple aspects. Following, risk assessment is
conducted with regards to the CPPS-RA method. The output of the risk assessment
phase serves as the input for the test case derivation phase.

2.3 Software Systems Testing
Software testing is a method to explore intended effects, such as whether a product matches
expected requirements, a production process meets performance goals, as well as to check
for risks, which could cause undesired effects. Test process can start at the requirements
definition phase and continue throughout the whole Software Development Life Cycle
(SDLC) [Tuteja et al., 2012]. This chapter introduces software testing approaches and
techniques which are applicable in order to solve challenges mentioned in Chapter 2.1,
covering test automation concepts. Following, research gaps are identified and discussed.
Bertolino [2007] suggests a road map of the software testing research that includes most
relevant software testing achievements, challenges and dreams. The ultimate software
testing dreams, according to the author, are universal test theory, test-based modeling,
100% automatic testing and efficacy-maximized test engineering. However, dreams stay
dreams due to the unresolved challenges on the way to achieving them.

• Universal test theory. The first dream would be to have a test machinery which
ties a statement of the goal for testing with the most effective techniques, to adopt,
along with the required underlying assumptions. This dream meets the following
challenges: explicit test hypotheses, test effectiveness, compositional testing and
empirical body of evidence. The concept of a test hypothesis is required for selection
of finite test sets, by which single samples are taken as the representative of several
possible executions. Test hypotheses are often implicit, while it would be extremely
important to make them explicit. Test effectiveness is effectiveness of existing
and new test criteria. To understand the classes of faults for which the criteria
are useful, analytical, statistical, or empirical evidence of the effectiveness of the
test-selection criteria in revealing faults should be provided. Compositional testing
means understanding of how the test results observed in the separate testing of the
individual piece can be reused. Empirical body of evidence is a challenge which
includes the following needs: controlled experiments to demonstrate techniques,
collecting and making publicly available sets of experimental subjects, as well as
industrial experimentation.

• Test-based modeling. The second dream refers to developers being fully aware
of testing challenges. In this case they would provide models with built-in testing

24



2.3. Software Systems Testing

knowledge. This dream meets the following challenges: model-based testing, anti-
model-based testing and test oracles. Even though model-based testing has been
researched since more than half of of the century, it is not widely used in the
industry. Similar to model-based testing, anti-model-based testing, which refers to
developing models after the testing phase, is in on the lower side of usage by the
industry. Test oracles are the methods that provide the expected outputs for each
given test case. Determining such methods is a great challenge.

• 100% automatic testing. The dream would be a powerful integrated test en-
vironment which by itself, as a piece of software is completed and deployed, can
automatically take care of possibly instrumenting it and generating or recovering
the needed scaffolding code (drivers, stubs, simulators), generating the most suitable
test cases, executing them and finally issuing a test report. This dream meets the
following challenges: test input generation, domain-specific test approaches and
on-line testing. Test input generation is a critical challenge since it is not always
easy to determine what data can be generated automatically, what data should
be random vs fixed, and how the data should be generated. Domain-specific test
approaches challenge refers to the kind of application being observed. On-line
testing concerns mainly the WHERE and WHEN to observe the test executions.

• Efficacy-maximized test engineering. All theoretical, technical and organiza-
tion issues surveyed so far should be reconciled into a viable test process yielding
the maximum efficiency and effectiveness (the two words together make it efficacy).
This dream meets the following challenges: controlling evolution, leveraging user
population and resources, testing patterns, understanding the costs of testing
and education of software testers. Controlling evolution challenge is about what,
where and when to replay executions following software evolution. Leveraging user
population and resources challenges means understanding of how users challenge
the time and places of software runs. Testing patterns challenge concerns how to
test and how much to test. Education of software testers challenge is about the
coverage of all characterizing aspects of testing, which is often not the case.

2.3.1 Test-driven development
Test-driven development (TDD), also called test-driven design discussed in [Beck, 2002]
is a software development approach relying on software requirements being represented
as test cases prior code implementation, and tracking software development process by
testing the software under development against the specified test cases. In the usual
software development approach software developed first and test cases are specified
later. [Beck, 2002] proposes the sequence of steps for a TDD cycle depicted in Figure
2.10.

While TDD approach is well established in software engineering domain, it is not well
known by CPPS engineers. Gherkin notation can be used as early as in the requirements
specification phase [Winkler et al., 2018] and allows domain experts to specify test cases

25



2. Related Work

Figure 2.10: Test-driven development cycle. Based on [Beck, 2002]

using Gherkin2 discussed in [Micallef and Colombo, 2015] in close to human language
syntax. Therefore Gherkin test scenarios can be used for TDD [Meixner et al., 2020].

2.3.2 Risk-based testing
Testing of software-intensive systems faces multiple decision problems [Felderer and
Ramler, 2014]. First of them is selecting the sets of tests that assure the specified
properties of the system and have the ability to identify the defects that harm the critical
parts of the system. In addition, due to limited resources and time constraints, testing is
often done under high pressure regarding time and effort. Solutions for both of the stated
decision problems can be supported by risk-based testing approaches where the identified
risky elements of the system from the risk assessment part are the entry point for the
Risk-based Test (RBT) strategy [Felderer and Schieferdecker, 2014, Grossmann et al.,
2020]. The taxonomy of the RBT is proposed by [Felderer and Schieferdecker, 2014] and
displayed in Figure 2.11. The first branch represents system requirements: functionality,
safety and security. They are the main drivers of system risks. In order to identify and
analyze risks related to the risk drivers, risk assessment method is needed. The methods
includes identification of risk item types, such as functional, architectural, development,
runtime, test or generic risk artifacts. Following risk factors are identified and analyzed,
such as risk exposure, risk likelihood and impact rating. The risks are then estimated
and the degree of automation is identified. The lower branch represents risk-based testing
process which includes standard test process steps based on the identified risks: test
planning, test design, test implementation, test execution and test evaluation.

2.3.3 Software testing techniques
For any system which behavior is controlled by software it is impossible to test all
combinations of possible parameters and their impacts. Therefore test case design is an
effort-consuming and error-prone process. Based on the cause candidates set from the
risk assessment phase, test cases can be derived using the test case design techniques such
as equivalence class partitioning, boundary value testing and decision making testing
which ensure efficient coverage of risks [Spillner et al., 2014]. However, the designed

2Gherkin: https://cucumber.io/docs/gherkin/

26

https://cucumber.io/docs/gherkin/


2.3. Software Systems Testing

Figure 2.11: Overview of risk-based testing taxonomy. Based on [Felderer and Schiefer-
decker, 2014]

tests set could be not the most efficient in terms of testing costs and effort. In order for a
test engineer to derive the minimum set of test cases to achieve the maximum coverage,
the following should be considered: a) not every cause contributes to every effect and
most effects are caused by interactions between relatively few causes [Kuhn et al., 2010];
b) the test cases have different impact and some of the test cases may not detect any
fault [Ahmed, 2016]. Therefore, the initial test case set should undergo the process of test
set size minimization, optimization and prioritization in order to reduce testing effort and
costs [Kuhn et al., 2010, Ahmed, 2016, Note Narciso et al., 2014]. This section presents
related work in area of Software system testing, which includes testing challenges, goals
and metrics, as well as testing strategies and approaches.

Equivalence class partitioning

This section is based on [Burnstein, 2003, Myers, 1979]. Equivalence Class Partitioning
(ECP) discussed in [Burnstein, 2003]. is an approach to selecting test inputs for test

27



2. Related Work

case design in order to verify software-under-test. Only one representative member of
the finite number of equivalence classes, also partitions, is needed to verify the system
behaviour for the whole partition. According to the author, equivalence class partitioning
technique is beneficial for testers because it eliminates the need for exhaustive testing,
allows them to select a subset of test inputs with a high probability of detecting a problem
and reducing the test data space. In order to select the right equivalence classes, the
following must be considered:

• Both valid and invalid equivalence classes must be considered. Invalid equivalence
classes can represent unexpected inputs or error states.

• It might be wise to consider equivalence classes for output conditions.

• The derivation of equivalence classes is a heuristic process, which improves with
the growing experience of the tester.

• In some cases, derivation of the equivalence classes might be very hard or impossible
for a tester alone. In such cases, help of analysts or other stakeholders is required.

Myers suggests a set of conditions as guidelines for testers in order to select an appropriate
set of input equivalence classes [Myers, 1979]:

• "If an input condition for the software-under-test is specified as a range of values,
select one valid equivalence class that covers the allowed range and two invalid
equivalence classes, one outside each end of the range."

• "If an input condition for the software-under-test is specified as a number of values,
then select one valid equivalence class that includes the allowed number of values
and two invalid equivalence classes that are outside each end of the allowed number."

• "If an input condition for the software-under-test is specified as a set of valid input
values, then select one valid equivalence class that contains all the members of the
set and one invalid equivalence class for any value outside the set."

• "If an input condition for the software-under-test is specified as a “must be” condi-
tion, select one valid equivalence class to represent the “must be” condition and one
invalid class that does not include the “must be” condition."

• "If the input specification or any other information leads to the belief that an element
in an equivalence class is not handled in an identical way by the software-under-test,
then the class should be further partitioned into smaller equivalence classes."

28



2.3. Software Systems Testing

Experimentation in Software Engineering

"Experiment (or controlled experiment) in software engineering is an empirical enquiry
that manipulates one factor or variable of the studied setting [Wohlin et al., 2014]". This
section is based on [Wohlin et al., 2014]. Validity of experiments design and their outputs
is achieved by appropriate definition of data, objects and subjects, setup and constraints.
Humans apply different treatments to objects in human-oriented experiments, while in
technology-oriented experiments, different technical treatments are applied to different
objects. Unlike case studies, experiments require high levels of control over the setup.
The objective of this method is to change treatments of one variable (cause) at once, while
the other variable remain fixed, and observe the correlation to the dependent variable
(effect). An Experiment usually consists of the following steps: 1) Scoping; 2) Planning:
selections of the context, formulation of hypotheses, selection of variables and subjects,
experiment design, instrumentation, validity evaluation, description of validity threats
and their priorities; 3) Operation: preparation, execution and data validation; 4) Analysis
and Interpretation; 5) Presentation and Package.

Thanks to the high level of control of the experimental setup, precise data analysis and a
high level of reproducibility can be achieved. However, with the level of control costs of
the research methods might raise.

2.3.4 Test automation

When designing a software automation method, the following should be considered:
decision making process on what can be automated and what makes sense to automate,
selection of appropriate tools and notations which support the system under test require-
ments and tests representation needs, continuous integration tools selection, evaluation
methods, as well as result data representations [Winkler et al., 2018]. An efficient test
case generation approach based on product and process properties and preconditions
was discussed in [Meixner et al., 2020]. Once the test cases have been generated, based
on the multiple conditions, such as whether it is possible and makes sense to automate
them, the sub-set of the test cases can be automated. One of the possible representation
of test cases to automate, Gherkin notation discussed in [Micallef and Colombo, 2015].
Gherkin allows experts with and without coding skills derive parameterized test cases
which can be automated by experts with coding skills. In order to implement Gherkin
test cases, the domain experts agree on a vocabulary and use only this vocabulary to
ensure the common understanding of the test cases and efficient test case automation.
Another suitable, keyword-driven [Rwemalika et al., 2019] approach requires better
technical understanding from the experts implementing the test cases. In this approach
every method or function is represented by a keyword. This allows to achieve very high
granularity and reusability of the keywords and yet a human-readable code [Hametner
et al., 2012]. Robot framework is a commonly used tool for test automation and robotic
process automation which supports the keyword-driven approach [Bisht, 2013] and allows
introduction of Gherkin layer on top of the keywords. Implemented test cases can undergo

29



2. Related Work

parameterized execution based on a defined schedule in scope of continuous integration
with support of software tools, such as for instance Jenkins3 tool [Duvall et al., 2007].

2.3.5 Summary
In order to derive the minimum amount of test cases to fulfill the domain related testing
needs, in this research, based on the identified risks, equivalence class partitioning
technique in combination with test selection strategies is used. In order to be able to set
reference test values for a step of the multi-aspect test case specification and automation
based on cause-effect analysis method, an experimentation approach is needed. In this
thesis experiments are integrated into the case studies in order to allow domain experts
to define reference values which are missing in system specifications. Knowledge of the
reference property values of the system support defect detection and system optimization
activities. Following, a sub-set of the derived test cases could be automated using
established notations and tools. This research aims to application of the well established
software engineering approaches, methods and tools in CPPS engineering context.

3Jenkins: https://www.jenkins.io/

30

https://www.jenkins.io/


CHAPTER 3
Research Issues and Approach

Chapter 1 introduced the testing challenges in software-intensive domain as motivation
for this thesis. Multi-aspect cause-effect relationships were explained in context of the
domain. Chapter 2 provided background information and recent research regarding the
investigated topics in various engineering environments. In order to overcome the earlier
identified testing challenges, the domain specific differences have to be analysed and
specified, in order to apply feasible solution approaches from these fields. In addition,
analysis of contexts similarities is necessary in order to create an artifact which is generic
enough to cover the challenges across different contexts.

Section 3.1 presents the main Research Issues (RI) related to Multi-Aspect Risk Drivers
and Multi-Aspect Test Case Specification, and research questions. Further, Section 3.2
discusses the research methodology applied in this thesis, specifically the design science
cycle, literature review, and qualitative case study research. Finally, Section 3.2.4 describes
in details the specific research approach taken in this thesis and expected outcomes for
the research questions.

3.1 Research Issues

This section introduces the main research issues and concerns risk drivers in context of
software-intensive systems, multi-aspect cause-effect relationships representation, test
case specification and data collection for validation of cause-effect hypotheses, as well as
scope and limitations for test case automation. Based on the RIs, Research Questions
(RQ) are formulated.

31



3. Research Issues and Approach

3.1.1 RI1: Risk drivers for multi-aspect testing of system
requirements.

According to Systems and software Quality Requirements and Evaluation (SQuaRE)1,
standard [ISO25030, 2019], common software quality requirements include functional
suitability, performance efficiency, compatibility, usability, reliability, security, maintain-
ability and portability. However, not all of the above mentioned risk drivers motivate
multi-aspect risk-based testing. Furthermore, in context of the thesis, different types of
systems such as software engineering and cyber-physical production systems are investi-
gated. Therefore it is important to identify sets of risk drivers for each of the contexts.
The context motivates the first research question:

RQ1: Which risk drivers motivate multi-aspect risk-based testing of cause-effect hypothe-
ses between production process characteristics and production resource parameters/influ-
ences?

The outcome of this research question are sets of multi-aspect risk drivers representing
quality requirements for subsets of software-intensive (production) systems. Quality
managers benefit from this outcome, as there is a way to categorize risks and encapsulate
the categorization into the risk-based testing process. Domain experts and quality
engineers benefit from the outcome as well due to the fact that they could use the
categories of risks in order to enable better communication and involve the domain
experts with the appropriate knowledge. Furthermore, according to the risk driver,
different testing activities can be executed separately.

Findings of the risk drivers definition are presented in workshops to stakeholders of the
domain experts to discuss them in regards to real challenges and experiences from daily
business. Expected feedback is incorporated and a set of main risk drivers concluded.
Based on the identified risk drivers, use cases for evaluation are elicited.

3.1.2 RI2: Representation of multi-aspect cause-effect hypotheses.
In order for a domain expert to build cause-effect hypotheses and share knowledge to
support validation of the hypotheses, the following requirements have been derived from
the literature [Biffl et al., 2017a, Meixner et al., 2020] and discussions with the industry
company partners, based on the described in Section 1.1.2 challenges: Requirement 1.1:
Representation of domain specific and testing concepts. Requirement 1.2: Capability
to store test related information for each asset property. Requirement 1.3: Capability
to query the model in order to extend the knowledge base or retrieve the information.
The context motivates the second research question:

RQ2: What knowledge model can represent multi-aspect cause-effect hypotheses between
production process characteristics and production resource parameters/influences?

Domain experts require a model to build hypotheses on cause-effect relationships. To
address RQ2, a multi-aspect cause-effect model from the extended CPPS-RA core concepts

1SQuaRE: https://iso25000.com/index.php/en/

32

https://iso25000.com/index.php/en/


3.1. Research Issues

meta-model [Biffl et al., 2021] is derived. The model should allow storing of cause-effect
related characteristics on each of the cause assets. This work aims to design the meta-
model and the domain knowledge models derived from the meta-model. Both should be
evaluated in the context of selected use cases and hypotheses in cooperation with domain
experts.

3.1.3 RI3: Multi-aspect test case specification and automation to
validate cause-effect relationships.

Quality engineers require a method to define the minimum set of test cases to validate the
multi-aspect cause-effect hypotheses. In order for a test engineer to derive multi-aspect
test cases to validate the cause-effect hypotheses, the test case specification method
requires: Requirement 2.1: An easy understandable representation of the key concepts
of the test case specification approach. Requirement 2.2: The test case specification
receives the cause-effect hypotheses from the risk assessment step. The risk assessment
method needs to allow to provide the test case specification method with prioritized risk
and the related cause-effect hypotheses.

RQ3: What are the process steps to support multi-aspect testing in CPPS and Software
engineering?

A method which covers the above stated requirements should be designed. The goal
of the method is to allow quality experts to define an efficient test set. In order add
more details to RQ3, detailed RQ3a and RQ3b have been designed: RQ3a: What is the
minimum set of test cases and test data a test engineer requires to validate a hypothesis
based on cause-effect relationships?

To address RQ3a, a method with a sequence of steps should be designed to define the
test planning and execution activities for cause-effect hypotheses validation. The method
should cover the following requirements: Requirement 2.3: Quality experts should be
able to minimize the amount of derived test cases. Requirement 2.4: Capability to
collect and evaluate reference data and data which lead to the effect from the multi-aspect
cause-effect model. Capability to decide whether or not to reject the hypothesis. The
goal is to allow test engineers to define a systematic test suite to define a minimal set
of tests that collect data on cause-effect relationships to validate the hypotheses. The
method for deriving test cases for selected use cases and hypotheses should be evaluated
in cooperation with domain experts.

Test automation engineers require a method to define the scope of test case aspects to
automate, and limitations. In order for a test automation engineer to automate the
multi-aspect test cases, the multi-aspect test case automation method should include:
Requirement 2.5: Exploration of the scope of test case aspects to automate, and
limitations. Selection of test case aspects to automate. Selection of test case representa-
tion, design of test cases for automation. The context motivates an additional research
question:

33



3. Research Issues and Approach

RQ3b: What are the test scope and limitations for multi-aspect test automation?

To address RQ3b, the multi-aspect test case specification method should be extended
with description of steps for test automation scope and limitations. The method should
be evaluated by its application for selected use cases in cooperation with domain experts.

3.2 Research Methodology and Approach
The goal of the thesis is to design and evaluate a novel method for multi-aspect testing
by adapting established models, methods, and mechanisms from informatics discipline by
following the design science approach represented in a Visual Abstract [Engström et al.,
2020], including series of case studies and experiments. This section aims to summarize
existing research methods which were employed in this master thesis in order to achieve
specified goals.

3.2.1 Design Science Research
Design Science Research (DSR) is a methodological framework proposed for design and
investigation of artifacts in context, in order to improve the current status of or solve
identified challenges. The goal of design science research is to develop knowledge about
unresolved problems, in order for professionals to apply the knowledge and solve the
problems. Multi-aspect test case specification and automation based on cause-effect
analysis has not been researched yet. The research questions of the thesis focus on finding
answers to new unresolved questions, such as multi-aspect risk drivers, multi-aspect
knowledge representation and test case derivation and automation. Therefore, DSR is an
appropriate research framework for this thesis. DSR aims to support researchers to solve
technical research problems stated according to the template:

How to <(re)design an artifact>
that satisfies <requirements>
so that <stakeholder goals can be achieved>
in <problem context>? [Wieringa, 2014]

A major advantage of DSR is its flexibility. The methodology allows encapsulating other
research methods within its cycle. However, flexibility is also a disadvantage due to
the possibility of different interpretations of the guidelines. Therefore, DSR is often
mistakenly considered to be a standalone research method.

This thesis is structured and conducted according to the guidelines of [Engström et al.,
2020] (see Figure 3.1). The visual abstract template provided by Storey et al. has
three major components: "A) the theory proposed or refined in terms of a technological
rule; B) the empirical contribution of the study in terms of one or more instances of a
problem-solution pair and the corresponding design and evaluation cycles; and C) the

34



3.2. Research Methodology and Approach

assessment of the value of the produced knowledge in terms of relevance, rigor, and
novelty" [Engström et al., 2020].

Figure 3.1: Visual abstract identifying the main elements of the proposed research. Based
on [Engström et al., 2020].

Technological rule. To improve understanding of multi-aspect cause-effect hypotheses
between process characteristics and resource parameters/influences in the context of
production/transformation processes that depend regarding their feasibility, performance,
and risk on production/transformation resources, design and evaluate a method for de-
signing and automating multi-aspect test cases that facilitate reproducible data collection
as foundation for validating the cause-effect hypotheses.

Problem instance. It is difficult to derive and automate multi-aspect test cases in
order to validate the cause-effect hypotheses. See the challenges in Section 1.1.

Problem solution. The new method for design and automation of multi-aspect test
cases which aim to validate the cause-effect hypotheses.

Problem understanding. The problem related to the multi-disciplinary knowledge
implicity [Meier et al., 2020, Biffl et al., 2021], testing challenges [Felderer and Ramler,
2014, Meixner et al., 2020] and test case automation [Winkler et al., 2018, Meixner et al.,
2020] related to this matter is well known and reported in several studies.

Solution design approach. Close study of use cases, relevant literature and preliminary
workshops with the domain experts who later participated in the evaluation case studies.

Validation approach. Multi-aspect testing experiments with application of the novel
approach were conducted in context of Test-driven System Engineering TDSE as case

35



3. Research Issues and Approach

studies with workshops and discussions at:

• Company A: use case Algorithm performance: use case on performance effects and
dependencies that require software-based risk mitigation.

• Company B: use case Aluminium surface cleaning process: use case on process pa-
rameter value improvements that depend on mechanical and chemical dependencies
of production resources.

Relevance. The technological rule is relevant for software-intensive systems roles.
Quality managers, who have to effectively and efficiently identify multi-domain factors
that are likely to lead to specific quality risks, as a foundation for mitigating these risks.
Domain experts, who require an efficient method for representing domain knowledge on
multi-domain dependencies. Quality engineers, who have to plan and execute testing
activities in order to validate multi-domain cause-effect hypotheses. Test automation
engineers, who have to support test engineers in automating test cases with multi-domain
dependencies.

Rigor. Case studies with domain experts and use cases coming from different software-
intensive production system contexts. Study if applying the method actually helps to
improve the process of design and automation of multi-aspect test cases for validating
the cause-effect hypotheses.

Novelty. In general, single-discipline testing does not consider conditions/dependencies
coming from other engineering disciplines or environments. The designed approach goes
beyond the state-of-the art [Chabot et al., 2016, Meier et al., 2019, Li and Kang, 2015]
by providing a more systematic method for multi-aspect test case specification and
automation.

3.2.2 Literature Review
This section concerns The term Systematic (Literature) Review (SLR) and is based
on [Kitchenham and Charters, 2007, Biolchini et al., 2005]. SLR refers to a specific
methodology of research, developed in order to interpret and evaluate existing literature
related to the stated research questions. The goal of SLR is identification of any gaps
in current research in order to suggest areas for further investigation. Among the
advantages of SLR are higher probability that the results of the literature study are
unbiased; evidence on the phenomenon in many contexts, settings and empirical methods;
reproducibility. The major disadvantage of the research method is the amount of required
effort. Unlike unsystematic reviews, systematic literature reviews follow a well defined
and strict sequence of methodological steps defined in the beforehand prepared protocol.
However, single steps could be used for every other survey of the related work.

The process of SLR includes three major phases: planning, conducting the review and
reporting. The planning phase consists of two key elements: research question formulation

36



3.2. Research Methodology and Approach

and plot establishment. The main phase of the process, conducting the review, is built
from the following elements of the SLR: Selection of appropriate search keywords, Search
and study collection, Selection of relevant studies, Analysis of primary studies.

Report on the results usually includes abstract and background information, research
questions, description of the method, results, discussion and conclusions.

In this thesis only some of the steps of the SLR process are used in order to make the
survey more structured and reproducible:

• The preparation phase: a) definition of the research questions; b) initial definition
of keywords, c) identification of candidate sources.

• Search and Initial Analysis. This phase included the initial search and basic analysis
of the findings. Due to multiple modifications of research questions and extensions
of the keywords, this step is an iterative step. Results include the final research
questions and a finalized search and analysis process.

• Data Extraction. The results are analyzed according to the research questions. The
relevant sources are discussed within the scope of the Chapter 2.

3.2.3 Case Study
Case study (CS) is an empirical research method in social science which provides tools for
researchers to study phenomena in their context and collect and generate new knowledge
about individual members, groups and entire organisations. CS research method, however,
is also a powerful tool for researchers from software engineering and system engineering
disciplines. Improvements of software engineering or system engineering processes are
complex human-based activities and often differ from organisation to organisation. Success
of an engineering project does not only depend on the technical requirements, but also on
the psychological aspects. Case study research focuses on answering questions that ask
"how" or "why", and where the researcher has little control of present events [Runeson
and Höst, 2009, Baxter and Jack, 2010]. Therefore, case studies, which aim to study
processes and behaviour of stakeholders in real world settings, are an appropriate research
method to study phenomena in system and software engineering contexts. Structure of
a CS must include the five main steps [Runeson and Höst, 2009]: Case study design,
Planning of data collection, Collecting data, Analysis of collected data, Reporting.

There are different types of case studies: explanatory, exploratory, descriptive, multi-case
studies, intrinsic, instrumental, as well as collective CSs. CSs can be designed differently
according to their scope. There are three types of CS designs: single study, multi-case
study and single case with embedded units study.

Among the major advantages of case study research are: a) the ability to turn researcher’s
observations into usable data; b) the possibility to use other research methodologies; c)
costs and accessibility to users. The major disadvantages include the data analysis effort
and inefficiency of the process.

37



3. Research Issues and Approach

Following text aims to address application of CS research method in this thesis. In order
to evaluate the novel testing method, two CSs were conducted using the five steps of the
CS research depicted in Figure 3.2.

Figure 3.2: Case study design approach for Company A and Company B.

• Steps 1 and 2: Case study design and Planning of data collection. The
objective of the studies is to evaluate whether the multi-aspect meta-model, the
multi-aspect domain-specific knowledge models and the method for multi-aspect test
case specification and automation based on cause-effect analysis meet the elicited
from the literature review and experience of the domain experts requirements. The
studies are considered as two holistic case studies with two units of analysis from
two different multi-disciplinary engineering (MDE) domains (company partners):
software engineering, Cyber-Physical Production Systems Engineering (CPPS).
The hypothesis was formulated: in large-size software-intensive engineering multi-
disciplinary organizations it is not easy to test system behavior controlled by
software that depends on assumptions, requirements, and designs coming from
related "other" systems, engineering disciplines and providers. Therefore, two
large-size companies with multi-disciplinary software-intensive system engineering

38



3.2. Research Methodology and Approach

nature were selected in order to evaluate the method in heterogeneous contexts.
The participants of the studies are:
Company A (software engineering domain) is the subject of the first case
study. Company A is a large-scale company in-house software development. The
company employs more than 20.000 employees in 20 countries worldwide and
delivers its services to over 20 million registered online customers.
Company B (CPPS domain) a global expert in aluminium manufacturing. The
company employs more than 2500 employees in 8 countries worldwide and delivers
aluminium products to customers from mobility, construction industry, packaging,
electrical and mechanical engineering, medical technology, as well as consumer
goods sectors.
For each use case, a case study in cooperation with domain experts in order to
evaluate the proposed concepts is conducted. Each case study includes the following
phases:

– Introduction phase. During this step the risk drivers table, the knowledge
meta-model and model are presented to the domain experts. The domain
experts get to know the person who conducts the case study and each other;

– Use case analysis phase. The problem which has to be solved by the designed
artefact is discussed and analyzed in details. The analysis includes: contexts
of the studies and the problem analysis, involved stakeholders, the traditional
approach description;

– PAN building phase. During this phase the domain experts build the PAN
network of their system. They depict products, processes, resources and links
between them in a knowledge model;

– Derivation of cause-effect hypotheses phase. The domain experts conduct
the risk assessment following the risk assessment steps from the test case
specification method description and derive the cause-effect hypotheses;

– Derivation of test cases phase. The domain experts derive multi-aspect test case
in order to investigate selected effects and associated cause-effect hypotheses;

– Hypotheses validation phase. The domain experts execute the specified test
cases and validate or reject the stated in "Derivation of cause-effect hypotheses
phase" hypotheses;

– Knowledge extension phase. The results of the tests runs or the assumptions
regarding the test cases are stored back to the knowledge graph;

– Automation of selected test cases phase. The domain experts define the
scope and limitations of the test case automation based on the method steps.
Wherever possible, the domain experts automate the test cases;

– Evaluation phase. The evaluation workshops with stakeholders are designed
in order to confirm the rigor of the designed artefacts and collect the opinions
of the domain experts regarding its relevance and novelty.

39



3. Research Issues and Approach

• Step 3: Data collection. Based on the requirements collected during the
literature review and at the Company A and the Company B during the preliminary
workshops, the testing method is designed. The method is evaluated at Company
A and the CPPS company partner using workshop approach to find out whether
the method improves the process of validating the cause-effect hypotheses. Data
is collected during multiple rounds of workshops with multiple domain experts
detailing the multi-aspect test case design. Two types of data are collected in order
to evaluate the applicability and advantages of the novel method: historical archival
and data from the time of the experiment.

• Step 4: Data analysis. The data from the conducted workshops is documented
textually, allowing further archival analysis of meeting minutes and technical reports.
Textual descriptions, business process models and findings discussed with domain
experts, who were involved in the data collection and workshop activities, are
analyzed. The data collected during the experimental phase is documented and
presented in the appendix of this thesis.

• Step 5: Reporting. The conceptual evaluation of the method has been published
in the 27th peer-reviewed in conference (IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA) [Winkler et al., 2022]. The results
of the case studies are reported in this thesis (Chapter 5 and Chapter 6).

• Step 6: Comparing. The comparative analysis of the evaluation results is
presented in Section 7.1.

3.2.4 Research Approach and Results
This section aims to present the research approach used in this thesis to design and
evaluate the novel multi-aspect test case specification method. The thesis is motivated
by the difficulties in validation of cause-effect hypotheses in software-intensive multi-
disciplinary engineering environments. The summary of the research approach is depicted
in Figure 3.3. To approach this problem, answers to the three stated research questions
have been given. In order to answer RQ1, the literature review to collect the software
and CPPS system requirements has been conducted and the relevant sources have been
collected. Following, a comparison table has been designed and evaluated in cooperation
with multiple domain experts during planned preliminary workshops. In order to answer
RQ2, the best practices from the relevant literature have been selected, applied and
extended based on the formulated requirements. In order to address RQ2, a meta-model
and domain specific models have been designed and evaluated in workshops with domain
experts. Then, in order to answer RQ3, RQ3a, RQ3b, the novel method including the
usage of artefacts from RQ1 and RQ2 has been designed. The method has been evaluated
in two independent case studies in contexts of two different use cases.

Results overview. This part briefly discusses the main results of the thesis in detail.
The results are represented by the blue bubbles in Figure 3.3.

40



3.2. Research Methodology and Approach

Figure 3.3: Research approach of multi-aspect test case specification method design.

Risk drivers. Based on the literature review a set of system requirements which
represent risk drivers has been identified (Section 4.2). The identified set of risk drivers
has been discussed with the domain experts in workshops. Based on the selected risk
drivers use cases have been elicited.

Use case descriptions. Use cases together with experts from different engineering
domains such as software engineering and cyber-physical production system engineering

41



3. Research Issues and Approach

were elicited in order to evaluate the designed artefact (Chapter 5 and Chapter 6).

Detailed requirements definition. Further in this thesis, detailed requirements based
on the set of selected use cases and literature review are defined (Section 4.1). The initial
set of requirements is presented in Section 3.1.

Identified research gaps. Workshops with domain experts in context of the use cases,
requirements and literature survey (Chapter 2) helped in research gaps identification
which are presented as challenges in Chapter 1.

Multi-aspect meta-model. The multi-aspect meta model includes view on multiple
disciplines and combines different aspects to allow multi-disciplinary cause-effect analysis.

Domain knowledge representation models. One of the outputs of this thesis are a
domain knowledge representation models which allow domain experts represent cause-
effect relationships (Chapter 5 and Chapter 6). The models are derived from the MATCS
meta-model (Figure 4.6).

Test case specification and automation method. The output of this thesis is design
of a method that allows addressing test case specification and automation in a range of
use cases from different engineering domains (Chapter 4).

Case study reports. To evaluate the feasibility of the proposed method, hypotheses
identification, test case derivation, data collection and hypotheses validation, case studies
were conducted in cooperation with domain experts. As the output of this activity
a case study report for each of the use cases is provided (Chapter 5 and Chapter 6).
Furthermore, discussions with the domain experts were held whether the novel method
could support TDD in CPPS engineering - Test-driven System Engineering (TDSE)
approach, as well as the engineering first approach.

42



CHAPTER 4
Multi-Aspect Test Case

Specification (MATCS) Method

Risk assessment techniques, such as Failure Mode and Effects Analysis (FMEA), con-
tribute very well to the continuous system improvement process. System quality improve-
ments can be considered during various phases of the system engineering life cycle, such
as for example design and implementation phases [Juran and Riley, 1999]. Traditional
testing methods are not based on risk assessment with FMEA and FMEA does not
consider the concept of classes of equivalence. The main objective of this thesis is design
of a testing method suitable for multi-disciplinary engineering environments. The method
is based on the multi-view risk assessment concept [Biffl et al., 2021] with FMEA where
testing drives the risk assessment. Test-driven Development (TDD) is a well known
approach in software engineering domain which proposes test case specification or/and
implementation prior feature development. By application of TDD in CPPS engineering
environments, the domain experts need to specify test cases before the system improve-
ments implementation to support positive risks or to mitigate or avoid negative risks. By
application of the Equivalence Class Partitioning (ECP) testing technique, the quality
experts reduce the test data space.

The introduction to the thesis has been given in Chapter 1. Chapter 2 presented the
related to the problematic work, which revealed research gaps and allowed to elicit the
requirements for the designed artefact. Then Chapter 3 described the research approach
which allows to design, implement and evaluate the solution which helps the stakeholders
to reach their goals. This chapter aims to answer stated in Section 3.1 research questions
by introducing Multi-Aspect Test Case Specification (MATCS) method. The method
is designed in order for quality experts to focus on most relevant tests for cause-effect
hypotheses validation to conduct with limited resources, considering the software part of
the software intensive systems which are developed/used in multi-disciplinary engineering
environments.

43



4. Multi-Aspect Test Case Specification (MATCS) Method

Section 4.1 aims to describe detailed requirements which have been initially elicited
based on the literature review [Biffl et al., 2017a, Meixner et al., 2020]. However,
early workshops with the stakeholders involved in the case studies where the initial set
of requirements had been presented, revealed additional requirements for the domain
specific applications. The requirements in Section 4.1 have been then extended with
the requirements from the domain experts. Based on the detailed requirements, the
MATCS method has been designed. Section 4.2 gives an overview of the MATCS
method steps, including inputs and outputs for each of the three steps: 1) PPR asset
networks; 2) Extended multi-view risk assessment; 3) Multi-aspect test case specification.
Section 4.3 introduces the first step of the method process - building of PPR asset
networks, mostly based on Winkler et al. [2021]. Second step of the method process,
multi-view risk assessment, is described in section 4.4. This step is an extended version
of Biffl et al. [2021]. Risk drivers identification sub-step, based on ISO25030 [2019],
Antão et al. [2018] and Felderer and Schieferdecker [2014], gives an answer to the first
research question: RQ1) which risk drivers motivate multi-aspect risk-based testing
of cause-effect hypotheses between production process characteristics and production
resource parameters/influences? Following, risk regions identification step, identified as
mandatory by the domain experts, has been added as an extension to the 4.4. Section 4.5
multi-aspect test case specification is designed to build yet another layer of abstraction
next to the PAN method and multi-view risk assessment with the help of multiple testing
techniques and methods. This part answers the remaining research questions: RQ2) what
knowledge model can represent multi-aspect cause-effect hypotheses between production
process characteristics and production resource parameters/influences? RQ3) what are
the process steps to support multi-aspect testing in CPPS and Software engineering?
RQ3a) what is the minimum set of test cases and test data a test engineer requires to
validate a hypothesis based on cause-effect relationships? RQ3b) what are the test scope
and limitations for multi-aspect test automation? Section 4.6 is designed to present an
application of the MATCS method in a generic example.

4.1 Requirements Elicitation
This section is designed in order to elicit the detailed requirements. The design science
cycle aims at answering the following question:

How to <(re)design an artifact>
that satisfies <requirements>
so that <stakeholder goals can be achieved>
in <problem context>? [Wieringa, 2014]

In other words: if the designed solution satisfies the proposed requirements, the solution
would contribute to the achievement of the stakeholder’s goals described in Section 1.1.
In context of this thesis, the question is following:

How to design and evaluate a method that facilitates reproducible data collection as
foundation for validating the cause-effect hypotheses between process characteristics

44



4.1. Requirements Elicitation

and resource parameters/influences so that quality assurance specialists from different
engineering disciplines can derive and automate multi-aspect test cases in the context of
production/transformation processes that depend regarding their feasibility, performance,
and risk on production/transformation resources?

In order to answer the above stated question, the following requirements have been
defined by the domain experts during preliminary workshops. Some of them were later
involved in the two case studies for two use cases that represent the usual process of test
case derivation in software and CPPS engineering domains. While the case studies were
ongoing, several workshops and discussions held place to match the requirements and
present the results. Based on the initial set of requirements presented in Section 3.1, the
following detailed requirements have been derived.

4.1.1 Multi-aspect test case specification meta-model and model
requirements

This subsection presents the MATCS meta-model and model requirements.

R1.1 Representation of cause-effect relationships and testing specific visual
elements and links between them. For representing the assets which are relevant
for a use case, such as products, processes and resources, PPR knowledge representation
is needed. Furthermore, FMEA elements related to the PPR assets need to be depicted.
Following, cause-effect path has to be visible and easy to follow. The last component are
testing specific knowledge elements. All the aspects need to be logically interconnected.
This requirement assures easily understandable representation of multi-view knowledge,
which allows identification of elements by experts and non-experts in a unified model.

R1.2 Representation of testing knowledge. The stakeholders which possess knowl-
edge needed for the test case specification should be able to store their assumptions on
FMEA and PPR assets, related to the test parameters, such us: information regarding
the equivalence classes for different effects, levels of measurement, control and execution.

R1.3 Knowledge querying and iterative knowledge extension. The domain
experts should be able to query existing knowledge models, in order to retrieve already
existing knowledge. Furthermore, it should be possible to extend or refine knowledge
in iterations. This means that there should be a possibility to extend the initial basic
model with further elements representing system assets . This should allow experts and
non-experts to achieve the right level of details in their knowledge representation.

4.1.2 Multi-aspect test case specification method requirements

This subsection concerns MATCS method requirements.

R2.1 Key concepts. The method key concepts should be represented in an easily
readable structured generic way, so experts and non-experts can follow and apply them.

45



4. Multi-Aspect Test Case Specification (MATCS) Method

R2.2 Risk assessment and prioritization. Different system requirements present
different test challenges. In order to solve such challenges, various approaches are available.
This requirement is designed in order to help domain experts to map the investigated
risks to system requirements. In other words, it should allow the domain experts to
identify the requirements which drive the risks. Following, the experts should be able to
define the test strategy and identify appropriate PPR assets and their properties, which
could be responsible for the risks. It is very important to identify for which parts of
the system, the input data and the input states, it is risky not to define the expected
behavior. The designed artefacts which support these requirements should guide the
experts towards the most important multi-aspect test cases for the use case related to
their multi-disciplinary domain.

R2.3 Support of the equivalence classes partitioning concept. It is important
to provide the experts and non-experts with an easily understandable concept for the test
data definition and minimization of the test suite. Equivalence classes partitioning [Burn-
stein, 2003] is a well established technique in software engineering. It is also a suitable
tool for production system engineering due to similarity of testing related challenges and
its ability to support the domain experts with definition of ranges of data which lead to
the same test case result.

R2.4 Test case specification. The goal of the method is test case derivation for
cause-effect validation and scope definition for the test case automation. In order for
stakeholders to understand and apply the method, well known testing techniques and
approaches should be integrated into it. One method should define the data values, which
should be used for the test cases. This can be achieved with support of the equivalence
classes concept (R2.3). Another method concerns test automation - domain experts from
different disciplines should be able to understand the method without problems. The
method must have graphically represented logical steps and must be easily understandable
by experts and non-experts.

R2.5 Test automation support. Very often not all manual test cases can be automated
in general. It is especially hard to decide which of the test cases can be automated in
multi-disciplinary engineering environments, due to the heterogeneity of implicit expert
knowledge and automation tools. In order to support the experts in definition test
automation scope and limitations, with regards to multi-aspect testing, an artefact should
be defined.

4.2 MATCS Method Overview
Figure 4.1 represents an overview of the novel multi-aspect test case specification method.
The goal of the method is to allow multiple engineering stakeholders to specify the
efficient set of test cases in multi-disciplinary environments based on various aspects, such
as PAN, extended CPPS-RA, risk drivers, in order to validate cause effect-hypotheses,
and make their implicit domain knowledge explicit by representing the knowledge in an
sufficient way.

46



4.2. MATCS Method Overview

Figure 4.1: Multi-aspect test case specification method overview (in IDEF0 notation
[Presley and Liles, 1995]).

In the Figure 4.1, green boxes represent previous work, such as the PAN meta-model
and PAN method design, was done by Winkler et al. [2021]. Blue boxes display the main
contributions of the thesis and extensions/improvements in the scope of this thesis. The
method includes three main steps:

1. Based on various engineering models representing discipline specific views, domain
experts build a PAN (Section 4.3). Besides the engineering models, this step
requires implicit knowledge from the involved domain experts, as well as PAN
meta-model (Figure 2.4) and PAN method (Section 2.1.1).

2. In step two, based on the engineering PAN built in step one, the stakeholders
conduct multi-view risk assessment (Section 4.4). This step requires additional
knowledge from the experts: informal cause and effect candidates, selected effect to
verify, as well as scope and the goal of the risk assessment. The step is supported by
the MATCS meta-model (Figure 4.6) and the extended multi-view risk assessment
method (Section 4.4). Multi-view risk assessment (also CPPS-RA) method contains
two novel sub-steps: 1) identification of risk drivers (Section 4.4, Step 2.1). This
sub-step is designed in order to support the decision of the domain experts regarding

47



4. Multi-Aspect Test Case Specification (MATCS) Method

the types of hypotheses validation/testing; 2) risk regions identification (Section
4.4, Step 2.2). The sub-step is designed in order to limit the amount of specified
test cases. The output of this step are hypotheses about the cause and effect
relationships which need validation.

3. The outputs of step two, together with the output of step one are the inputs for
MATCS method (Section 4.5). The method is the main contribution of this master
thesis. It consists of five sub-steps. The method allows quality engineers to focus on
design and automation of multi-aspect test cases in cooperation with other domain
experts, in order to validate the cause-effect hypotheses built in the Step two. The
method defines test case data collection and analysis in order to finish the process
of hypotheses validation. Specified test cases can be used for test-driven system
engineering purposes. Each of the method steps is further described in details in
the following sections.

4.3 Step 1. Build Product-Process-Resource (PPR) Asset
Network

This section is mostly based on Winkler et al. [2021] and describes the degree this step
contributes to MATCS approach. The first step towards the main contribution of this
work, e.g. test case derivation for hypotheses testing is, creation of an engineering network
(EN), also PAN. An EN is a network which connects engineering assets, such as products,
process and resources, within the same and different disciplines using links.

Based on the PAN meta-model displayed in 2.4, domain specific EN is built, as described
in Section 2.1.1 of the related work chapter. Figure 4.2 displays the main steps described
in Section 2.1.1. The initial work of Winkler et al. [2021] focuses on CPPS Engineering
and suggests a diagram with multiple experts with knowledge of different engineering
disciplines, such as software, mechanical and electrical engineering. However, in order to
achieve a higher level of abstraction and do not limit EN only to CPPS Engineering per
se, the domain experts are represented by the single actor in 4.2.

For the first step, e.g. asset identification, multiple domain experts from different
engineering disciplines, collect various engineering plans and identify assets related to the
future network based on the plans and implicit domain knowledge. The output of the first
step is a set of assets to be involved for the EN. During the second step, dependencies
identification, the domain experts identify relationships between the assets from the first
step. The output of this step is a set of links which represents dependencies between the
assets. Next step, PAN creation, allows the domain experts to build the desired PAN,
based on the assets and links from the previous steps. The output of step three is an EN
which needs to undergo the process of validation and verification in the next step. In
the last step, validation and verification, quality experts validate and verify the PAN
based on the selected QA techniques and experience, and give a feedback to the domain

48



4.4. Step 2. Conduct Multi-View Risk Assessment

Figure 4.2: PPR asset, dependency elicitation and PAN definition process (in IDEF0
notation [Presley and Liles, 1995]). Based on Winkler et al. [2021].

experts. If, based on the feedback, improvements are required, the whole process or parts
of it should be repeated.

4.4 Step 2. Conduct Multi-View Risk Assessment
Once all engineering plans have been consolidated and the EN has been validated and
verified, the Multi-View Risk Assessment is about to start.

This method is designed to support domain experts with FMEA based on EN and is an
extended version of CPPS-RA from Biffl et al. [2021]. The prerequisite for the method is
a domain specific PAN described in Section 4.3 from Step 1. Multi-view risk assessment
process is designed to be conducted in four main steps with multiple sub steps with
regards to the multi-view risk assessment method described in Section 2.2. The four
main steps are displayed in Figure 4.3. Step 2.3 is displayed in a gray rectangle because
guidance for this step outside of the scope of this thesis.

Step 2.1. Identify risk drivers This subsection demonstrates the outcome of the
analysis of system requirements which require testing, e.g risk drivers, based on ISO25030
[2019], Antão et al. [2018] and Felderer and Schieferdecker [2014].

Quality managers benefit from this outcome, as there is a way to categorize risks and

49



4. Multi-Aspect Test Case Specification (MATCS) Method

Figure 4.3: MATCS approach overview (in IDEF0 notation [Presley and Liles, 1995]).
Based on [Biffl et al., 2020b] and extended.

Figure 4.4: ISO/IEC SQuaRE, CPPS, software systems risk drivers analysis.

50



4.4. Step 2. Conduct Multi-View Risk Assessment

encapsulate the categorization into the multi-aspect testing process. Domain experts and
quality engineers benefit from the outcome as well due to the fact that they could use
the categories of risks in order to enable better communication and involve the domain
experts with the appropriate knowledge. Furthermore, according to the risk drivers,
different testing activities can be executed separately. Table 4.4 contains the outcome
of the analysis of risk drivers proposed by different standards and authors for multiple
types of systems, e.g. CPPS and pure software systems. The analysis has been conducted
during workshops with domain experts. The goal of the workshops was to define most
critical risk drivers relevant for their domain based on the on ISO25030 [2019] standard
and two literature sources: Antão et al. [2018], Felderer and Schieferdecker [2014]. The
table is presented in workshops to the domain experts in order to discuss them in regards
to real challenges and experiences from daily business. The feedback is incorporated
and a set of main risk drivers is concluded in the last column of Table 4.4. The domain
experts with CPPS and software engineering background came to a common ground
regarding the critical risk drivers. A product or a system is not mature enough to be
used if the required functionality is not implemented, therefore functionality is the first
common risk driver. Performance of every system is a critical requirement when it comes
to the resource utilization, timing. Performance risk driver was described by the domain
experts as timing/determinism and scalability. The system and its components need to
be compatible with the other systems or components in order to be able to co-exist with
each other. Every product or system must be usable by the relevant user. The user of the
system and the customers for the end product must trust the system and the quality of
the output, therefore every system must be reliable. Proper security is required to protect
the assets, services and data from being disrupted or stolen. Not only the development
and utilization of a system is important, but also its maintainability, since no system
could run forever without changes. In order to transfer a product from one place to
another or a module from one system or platform to another, portability is required. In
ISO25030 [2019] safety is considered as a non-functional human factor requirement and
not mentioned in the list of system requirement which could affect the quality of the
product. However, the other two sources mention safety as a system requirement. The
domain expert decided to keep safety in the list of system requirements.

Step 2.2. Define risk regions. It is important to know the purpose of the planned risk
assessment. The risk assessment approach can be used for prevention of possible undesired
risks, avoidance of mitigation of existing risks, assessing and prioritizing possible desired
risks which lead to improvements. In order to detect defects or identify possible system
improvements, four risk regions and recommendations on how to deal with the values
from such regions, have been defined: critical regions to avoid, risky regions to address,
regions with a potential for improvements to confirm and regions with a potential for
significant improvements to achieve (Table 4.1). Risk drivers definition step provides the
first restrictions to the amount of derived test cases.

Step 2.3. FMEA: Identify risk and informal cause candidates.

In the third step, domain experts follow the FMEA process with the goal and scope

51



4. Multi-Aspect Test Case Specification (MATCS) Method

Risk regions Recommendations
Critical regions to avoid Introduce FMEA countermeasures to avoid/ detec-

t/deal with the regions
Risky regions to address Test and introduce FMEA countermeasures to detect/

deal with the regions
Regions with a potential for im-
provements to achieve

Test to detect and confirm the regions

Regions with a potential for
significant improvements to
achieve

Build FMEA hypotheses to partition/detect and test-
ing/optimization to confirm/explore the regions

Table 4.1: Risk regions and recommendations.

specified in order to define the system under inspection (SuI). The task of this step is to
identify and prioritize candidate failure modes, effects, and risks. For a selected effect
E, the domain experts build on the domain specific knowledge to elicit a list of possible
cause and hypothesis candidates. The stakeholders use notation such as "Effect E11 could
potentially be caused by Causes C1, C... , Cn or their combinations". This step is visually
displayed in Figure 2.8, Step 2.1.

Step 2.4. Software engineering risk assessment with domain specific engi-
neering network

Step 2.4 includes three important sub-steps: 2.4.1) explore EN; 2.4.2) analyze cause
candidates and cause-effect pathways; 2.4.3) build hypothesis linked to the EN. This step
is visually displayed in Figure 4.5 Step 2.4, and described in related work Section 2.2.2.

Step 2.4.1. Explore Engineering Network.

In this step, the domain experts identify assets that are relevant to represent informal
cause candidates. The domain experts start in the EN from the asset that represents the
SuI and explore EN assets in an iterative way. The exploration should be conducted by
following selected links between assets, which could be related to the selected effect. The
expected outcome of this step is a set of links between causes and assets. This step is
visually displayed in Figure 4.5, Step 2.4.1 and described in related work Section 2.2.2.

Step 2.4.2. Analyze cause candidates and cause-effect pathways.

The domain experts identify cause candidates linked to the EN elements selected in the
risk assessment Step 2.4.1. A cause-effect diagram links the SuI to technically connected
assets as foundation for defining a root cause and a pathway that connects the root cause
to the SuI and the risky effect. This step is visually displayed in Figure 4.5, Step 2.4.2
and described in related work Section 2.2.2.

Step 2.4.3. Build hypothesis linked to the EN.

The domain experts use a simple restricted language to express their hypotheses based
on cause candidates linked to EN elements, e.g., H(E11; C1orC...orCn) (the notation is

52



4.5. Step 3. Multi-Aspect Test Case Specification

Figure 4.5: Multi-view risk assessment. EN exploration (in IDEF0 notation [Presley and
Liles, 1995]). Based on [Biffl et al., 2021].

defined in the Table 4.2). The step is visually displayed in Figure 4.5 Step 2.4.3, and
described in related work Section 2.2.2.

The goal of the next section is introduction of a method which would allow the domain
experts to derive test cases based on the EN (Section 4.3), the hypotheses, the risk
drivers, as well as the risk regions (Section 4.4) identified after conducting the process of
multi-view risk assessment.

4.5 Step 3. Multi-Aspect Test Case Specification
This section presents the main contribution of the master thesis - the multi-aspect test
case specification method. Figure 4.6 represents the meta-model which is an extension of
the CPPS-RA meta-model Biffl et al. [2021]. The meta-model from Biffl et al. [2021]
focuses on the connection of core concepts for FMEA, EN, and hypotheses that link
effects to causes in the EN. The extended MATCS meta-model depicted in Figure 4.6
contains the test case concept on top of the previous levels, such as FMEA (in violet),
EN (in green), and hypotheses that link effects to causes in the EN (in light-blue) and

53



4. Multi-Aspect Test Case Specification (MATCS) Method

test cases (in yellow). The test case concept consists of the following: test case which
validates hypotheses, steps which have levels and results which are in fact the effects.

The multi-aspect test case specification method depicted in Figure 4.7 contains five
steps: 1) Scoping, 2) Test Case derivation, 3) Test Control and Measurement, 4) Test
Automation and 5) Test Data Collection and Analysis. The key concepts of the method
are displayed in Table 4.2. The table includes the key concepts for CPPS-RA from
Biffl et al. [2021] (lines 1-8) and the concepts related to the new method (lines 9-15).
The method uses terminology from [Wohlin et al., 2014] and is designed very similar to
Wohlin’s Experimentation in Software Engineering. Based on Experimenting in Software
Engineering from Wohlin, the following terms for the method are introduced: causes are
so-called independent variables, effects are also dependent variables. The cause under
investigation is a factor and particular values of factors are treatments. The concepts
will be further explained. The following text aims at describing the testing method based
on the MATCS testing meta-model in details.

Figure 4.6: Multi-aspect testing meta-model. Based on [Biffl et al., 2021] and ex-
tended [Winkler et al., 2022]

54



4.5. Step 3. Multi-Aspect Test Case Specification

Figure 4.7: Multi-aspect testing MATCS method steps (in IDEF0 notation [Presley and
Liles, 1995]).

4.5.1 Step 3.1: Scoping
The first step of the multi-aspect testing method is scoping, which is displayed in Figure
4.7, Step 3.1. The goal of this step is partitioning of the risk regions, building of the Null
and at least one None-Null Hypotheses, as well as identification of the number of test
cases to be designed.

Building Hypotheses

Null Hypothesis: H0(E11; NOR(C1, C..., Cn)). This means that none of the following
cause candidates is the root cause for the effect.

None-Null Hypothesis: H1(E11; OR(C1, C..., Cn)), where H1(E11; Cn! = Cm) for at least
one pair of n and m. This means that at least one of the cause candidates is the root
cause of the undesired effect.

The input parameters for this step are: the cause-effect graph from the multi-aspect
risk assessment part (Section 4.4) with identified possible causes for specified effects,
hypotheses built based on the cause-effect relationships and multi-aspect environment

55



4. Multi-Aspect Test Case Specification (MATCS) Method

Concept Concept description
SuI System under Inspection, an Asset
FMx Failure Mode x of the SuI
Exx Effect xx

A;AF , AP , AP 0, AR
Asset; a Function (F), Product or Material (P),
Process (P’), Resource (R) Asset in a EN

Lt(Ax, Ay) A Link of type t between two Assets, Ax and Ay

Cx(Ay) Cause Cx associated to asset Ay,
e.g.,a wrong parameter value leading to a FM.

Hx(Exx, Cx), x!=0
Non Null-Hypothesis, linking effect Exx to a set
of causes C1, ..., Cn via a pathway of
assets and links in the EN

Hx(Exx, Cx), x=0
Null-Hypothesis, linking effect Exx to a set
of causes C1, ..., Cn via a pathway of
assets and links in the EN

ECx(Vx)
Equivalence Class
with a set of single values V1,..., Vn

or values V1,..., Vn corresponding to intervals

Can measure (Ax) Measurable value of Ax,
possible values: yes, no

Can control (Ax) Controllable value of Ax,
possible values: yes, no

Levels of control (Ax) Stakeholders who have control over the asset;
example values: tester, developer

Levels of execution (Ax) Env where the test can be executed;
example values: test, prod, simulation

Exp. result Expected output of the test run
example values: OK, NOK

Act. result Actual output of the test run
example values: OK, NOK

Table 4.2: Key concepts for multi-aspect test case specification method.

experience of the domain experts. During this phase, the domain experts create a
document where they describe the desired and undesired effects, the assets linked to the
defects, and the possible causes contributing to the effect. Questions to be answered at
the Scoping step:

• Which of the expected effects are desired effects? Which of the causes, with the
expected values set, contribute to the effect?

• Which of the expected effects are undesired effects? Which of the causes could lead
to the effect?

56



4.5. Step 3. Multi-Aspect Test Case Specification

• What are the domain specific requirements for the multi-aspect test cases?

The expected outputs of this step are documented: test case specification requirements
based on the domain knowledge required contributions/factors from the EN graph and
root cause combinations from the EN graph. Following the domain experts iterate
through the cause candidate assets from the hypotheses and prepare a draft Table 4.3
for the cause definitions. Cn represents the number of the cause candidate from the
knowledge graph, ECn represents the number of equivalence classes. Each of the asset
levels has N equivalence classes. According to the number of causes and equivalence
classes, domain experts prepare a table for test cases, Table 4.4.

Critical Risky Impr. Impr++ Measurement Control Levels of control Levels of exec
C1
C...

Cn

Table 4.3: Template Table for Cause Candidate definitions

TC N C1 C... Cn Exp. result Act. result Hn Can control Can automate
TC 1 H0
TC ... H1
TC n H1

Table 4.4: Template Table for Test Cases

4.5.2 Step 3.2: Test Case Derivation
The second step of the method is test case derivation. The input parameters for this step
are the results of the scoping step as well as the cause-effect graph, expected results, and
equivalence classes (Section 2.3.3) provided by the domain experts. Following, the test
engineer, together with the domain experts defines the test data sources. Questions to
be answered at the this step:

• What are the equivalence classes for each of the causes and risk regions, and which
values are representative for each of them?

• What combinations of values are meaningful for the current scenario?

Once the set of test cases has been derived, the test engineer extends the cause-effect graph
with the tests related knowledge such as reference test data and links from the causes to
the effects using an iterative approach (Table 4.5, Table 4.6). Since it is often unclear
to which equivalence classes which values or ranges of values (equivalence sub-classes)
contribute, the process of identification of such regions is often iterative and involves
the experimentation method from Wohlin et al. [2014]. The use of the equivalence class

57



4. Multi-Aspect Test Case Specification (MATCS) Method

partitioning technique, along with the risk regions identification, provides the second
round of restrictions to the amount of derived test cases, which makes the final test set
efficient.

Critical Risky Impr. Impr++ Measurement Control Levels of control Levels of exec
C1 V1 V... Vn

C... V1 V... Vn

Cn V1 V... Vn

Table 4.5: Table for Cause Candidate definitions with Level Values

TC N C1 C... Cn Exp. result Act. result Hn Can control Can automate
TC 1 V1 V... Vn OK H0
TC ... V1 V... Vn NOK H1
TC n V1 V... Vn NOK H1

Table 4.6: Table for Test Cases with Equivalence Classes values

4.5.3 Step 3.3: Test Control and Measurement
The next step of the Method is Test Control and Measurement. At this step, test
engineers in cooperation with the domain experts iterates through the set of test cases
and adds the info related to the degree of measurement and control to each of the causes.
This information is very important since based on it the decision whether it is possible
to automate a test case will be made. If all assets can be controlled automatically and
execution of such test cases cannot damage the system or the product, the test case
can potentially be automated. In case when some of the assets cannot be controlled
automatically but can be measured automatically or can only be controlled manually
but measured automatically, the test case cannot be automated, however systematic
monitoring and data analysis is possible. Questions to be answered at the Test Control
and Measurement step:

• Values of properties of which assets can be measured? Who of the stakeholders can
measure the values?

• Values of properties of which assets can be controlled? Who of the stakeholders
can control the values?

• Where can the test case be executed?

Once the questions have been answered, the tables can be extended: Table 4.7, Table 4.8.
In case if an asset value can be controlled on a meaningful level, the action can also be
automated.

58



4.5. Step 3. Multi-Aspect Test Case Specification

Critical Risky Impr. Impr++ Measurement Control Levels of control Levels of exec
C1 V1 V... Vn yes yes test engineer Sim
C... V1 V... Vn yes no test engineer Prod
Cn V1 V... Vn no no external provider -

Table 4.7: Table for Cause Candidate definitions with Levels of Measurement and Control

TC N C1 C... Cn Exp. result Act. result Hn Can control Can automate
TC 1 V1 V... Vn OK H0 yes yes
TC ... V1 V... Vn NOK H1 no yes
TC n V1 V... Vn NOK H1 no no

Table 4.8: Table for Test Cases with Levels of Control and Automation

4.5.4 Step 3.4: Test Automation

Based on the levels of control of each individual asset, the test engineer makes the decision
which of the tests worth automating and whether there is an option for semi-automated
test cases in this scenario. At the Test Automation step, the test automation engineer
plans test automation activities taking into consideration the levels of control over the
causes. The test cases, where each cause can be automatically controlled, could be
fully automated. The test cases, where only some of the causes can be automatically
controlled, could be semi-automated. Selection of the tools is based on the preferences of
individual stakeholders or companies. It is recommended to use Gherkin syntax1 or a
keyword-driven approach [Rwemalika et al., 2019] to describe the tests in a readable for
experts and non-experts way and automate them using the preferred automation tool.

4.5.5 Step 3.5: Test Data Collection and Analysis

During the last step, quality expert creates a plan on how to generate test reports.
Selection of the tools is based on the preferences of individual stakeholders or companies.

Once the tests output is received, responsible stakeholders can complete the testing
table and either reject or fail to reject the stated hypotheses based on the correlation
between the expected and actual results. Table 4.9 displays the following example: the
experts failed to reject H0 and H1, and could not execute one of the test cases due to the
unappropriated levels of control. This means that the experts were right about the cause
candidates which lead to the effect and no further investigation is needed. If the experts
rejected all hypotheses except of H0, it would mean that the cause candidates were
selected incorrectly and another iteration through the whole process would be needed.
The test cases which cannot be executed, but their value can be automatically measured,
can be included in the future development plans and support the Test-driven system
engineering approach.

1Gherkin syntax: https://cucumber.io/docs/gherkin/

59

https://cucumber.io/docs/gherkin/


4. Multi-Aspect Test Case Specification (MATCS) Method

TC N C1 C... Cn Exp. result Act. result Hn Can control Can automate
TC 1 V1 V... Vn OK OK H0 yes yes
TC ... V1 V... Vn NOK NOK H1 no yes
TC n V1 V... Vn NOK H1 no no

Table 4.9: Table with expected and actual test results.

4.6 MATCS Method Application
This section displays a generic example where the MATCS method has been applied.
The example and its conceptual has been published in the 27th (IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA) [Winkler et al.,
2022].

4.6.1 Build PAN.
Figure 4.8 displays a generic example of an EN. After the four steps process described
above has been conducted, the EN contains: (1) PPR assets represented by PPR asset
network nodes; (2) related asset properties represented by PAN links. On the Figure 4.8,
processes, e.g. Process 1 and Process 2 are represented by rectangles and are connected
with each other and with other assets, such as products (the circle) and resources (ovals),
via Product-Process (full one direction arrows) and Process-Resource (dashed arrows)
links. Resources are connected with other resources using custom engineering discipline
related links, such as, in this example, Link A (dotted line) and link B (dashed line).
The EN is now ready for the next step - multi-view risk assessment.

4.6.2 Conduct multi-view risk assessment.
During this step the domain experts conducted multi view risk assessment described in
Section 4.4.

Step 2.1. Identify risk drivers. Assuming that the generic example concerns a system
scalability undesired effect, scalability test cases need to be specified. The purpose of
scalability testing is making sure that the system can handle an increased or decreased
user traffic.

Step 2.2. Identify risk regions. The scalability undesired effect is considered as risky.
In this scenario, the goal is to identify the asset and its property which could lead to the
undesired effect. Therefore only two regions are considered: default region with values
when the system is expected to work as designed and the risky region - the region which
should be confirmed and FMEA countermeasures need to be introduced.

Step 2.3. FMEA: Identify risk and informal cause candidates. At the third
step of the multi-view risk assessment domain experts identify possible risks and their
cause candidates. The possible risk is the scalability issue. A list of informal cause and

60



4.6. MATCS Method Application

Figure 4.8: Generic product-process-resource asset network example.

hypothesis candidates is delivered after this step. In the current example the undesired
effect happens due to a problem in resources related to Process step 1 or Process step 2.

Step 2.4. Software engineering risk assessment with domain specific engi-
neering network. The three steps related to software engineering risk assessment with
domain specific engineering network are presented here.

Step 2.4.1. Explore engineering network.

Figure 4.9 represents a generic example for the three sub-steps of the the multi-view
risk assessment process. In order to identify cause candidates for the undesired effect
which happens to the SuI, the domain experts explore the EN in an iterative way. In
the current example, there are three possible pathways of exploration for the domain
experts, such as:

1. S0 (SuI) -> S1 (Process 1) -> S2 (Product input 1) -> S3 (Resource 1.1) -> S4
(Resource 1.2) -> S5 (Resource 1.3),

2. S0 (SuI) -> S1 (Process 1) -> S2 (Product input 1) -> S3 (Resource 1.1) -> S4
(Resource 1.2) -> S5 (Resource 1.4),

61



4. Multi-Aspect Test Case Specification (MATCS) Method

3. S0 (SuI) -> S1 (Process 2) -> S2 (Product input 3) -> S3 (Resource 2.2) -> S4
(Resource 2.4)

Figure 4.9: Generic product-process-resource asset network exploration with cause
candidates example.

However, based on the opinions of the domain experts, not each asset from the path is a
cause candidate for the undesired effects. On the pathways 1. and 2. only Resource 1.1 is
a cause candidate, while on the pathway 3., there are two cause candidates: Resource 2.2
and Resource 2.4. The cause candidates are market as C1, C2 and C3 on the Figure 4.9.

Step 2.4.2 Analyze cause candidates and cause-effect pathways.

Figure 4.10 represents an FMEA + PPR diagram displaying all three possible pathways
from the cause candidates to the undesired effect.

Figure 4.9 displays an example of an artefact created during the multi-view risk assessment
process. On top of the PAN, a SuI is added, e.g. system. The system is inspected for
the case of possible undesired effect. The effect can be caused by resources coming from
different parts of the system and different disciplines or the environment, e.g. cause
candidates C1, C2, C3.

Step 2.4.3. Build hypothesis linked to the EN

A hypothesis built based on the knowledge about the cause candidates, describes it in
the following way: H(E11; C1orC2orC3). This means that the undesired effect, based on
the assumptions from the domain experts, could happen because of an issue in Resource
1.1 or in Resource 2.2 or in Resource 2.4.

62



4.6. MATCS Method Application

Figure 4.10: FMEA + PPR: cause-effect pathway (red arrows) leading from causes
(white circles) to an FMEA effect (violet box) via linked assets in an example engineering
network (green circles), including the test case steps (dashed rectangles) [Winkler et al.,
2022]

4.6.3 Specify test cases.

The output of after the PAN and CPPS-RA processes is: H(E11; C1orC2orC3). This
means that the undesired effect, based on the assumptions from the domain experts,
could happen because of an issue in Resource 1.1 or in Resource 2.2 or in Resource 2.4.

Step 3.1. Scoping.

Null Hypothesis: H0(E11; NOR(C1, C2, C3)). This means that none of the following
cause candidates is the root cause for the effect.

None-Null Hypothesis: H1(E11; OR(C1, C2, C3)), where H1(E11; Cn! = Cm) for at least
one pair of n and m. This means that at least one of the cause candidates is the root
cause of the undesired effect.

Step 3.2. Test case derivation.

Assuming that each of the causes has two equivalence classes EC1 (OK) and EC2 (Risky),
Table 4.12 represents the cause candidate definition. Values for EC1, such as for example
V12, represent correct values, with such values the system should work as expected.
Values in EC2 represent wrong values. If such values are set, the undesired effect might
appear. Wrong values are highlighted with pink in the Table 4.12.

Based on the cause definition, test cases are derived, which are represented by Table 4.13.
The amount of test cases is equal to 32=8, where 3 is the amount of cause candidates

63



4. Multi-Aspect Test Case Specification (MATCS) Method

OK Risky Can measure Can control Levels of control Levels of exec
C1 (Resource 1.1) V alue11 V alue12
C2 (Resource 2.2) V alue21 V alue22
C3 (Resource 2.4) V alue31 V alue32

Table 4.10: Table for cause candidate definitions with levels of measurement and control
for the generic example

and 2 is the amount of equivalence classes for each of the cause candidates. Wrong values
are highlighted with pink in the Table 4.13.

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1 V11 V21 V31 OK H0
TC 2 V12 V21 V31 NOK H1
TC 3 V11 V22 V31 NOK H1
TC 4 V12 V22 V31 NOK H1
TC 5 V11 V21 V32 NOK H1
TC 6 V12 V21 V32 NOK H1
TC 7 V11 V22 V32 NOK H1
TC 8 V12 V22 V32 NOK H1

Table 4.11: Test cases example

Step 3.3. Test control, measurement and execution

Assuming that each of the assets can be controlled and measured by available domain
experts, and where the test can be executed. Since each of the causes can be measured
and controlled separately, and executed on the test environment, all assets in each of the
test cases can be controlled and thus, each of the test cases can be automated.

OK Risky Can measure Can control Levels of control Levels of exec
C1 V11 V12 yes yes test engineer test
C2 V21 V22 yes yes test engineer test
C3 V31 V32 yes yes mechanical engineer test

Table 4.12: Table for cause candidate definitions with levels of measurement and control
for the generic example

In such a scenario, when all cases could be executed and automated, a test case reduction
based on the domain experts’ expertise and common sense hould take place. Here it is
visible that expected results of test cases TC 2, TC 3 and TC 5 is NOK even if one of
the assets is the cause. This means that in case it is proven that the actual results of TC
2, TC 3 and TC 5 is NOK, TC 4, TC 6, TC 7 and TC 8 can be marked as NOK as well,
since all of them contain the values of the cause candidates which lead to the undesired

64



4.6. MATCS Method Application

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1 V11 V21 V31 OK H0 yes yes
TC 2 V12 V21 V31 NOK H1 yes yes
TC 3 V11 V22 V31 NOK H1 yes yes
TC 4 V12 V22 V31 NOK H1 yes yes
TC 5 V11 V21 V32 NOK H1 yes yes
TC 6 V12 V21 V32 NOK H1 yes yes
TC 7 V11 V22 V32 NOK H1 yes yes
TC 8 V12 V22 V32 NOK H1 yes yes

Table 4.13: Test cases example

effect. If the actual result for TC 2, TC 3 or TC 5 is OK, a test cases which contain the
wrong values in combination with other wrong values should be executed.

Step 3.4. Test automation.

Once it has been established, which of the test cases can be automated and the test cases
have been executed manually, a possible Gherkin2 script has been prepared.

Feature: H0 testing
As a data analyst,
I want to test OK
So I can confirm OK scenario

Given I assume C1,C2,C3 are no root cause
And There are 3 independent variables with fixed level
And I do action
And I run the test
And test status is OK
Then I confirm OK scenario

Feature: H1 testing
As a data analyst,
I want to test NOK
So I can confirm NOK scenarios

Given I assume “treatment factor” is the root cause
And There are independent variables with fixed level "V1" and "V2"
When I apply “alternative treatment” to the factor
And I do “setup cause by definition”
And I run the test

2Gherkin syntax: https://cucumber.io/docs/gherkin/

65

https://cucumber.io/docs/gherkin/


4. Multi-Aspect Test Case Specification (MATCS) Method

And test status is “NOK”
Then I found the root cause

|treatment factor |alternative treatment |V1 |V2 |action |exp result
|C1 |V12 |setup cause by definition |V21 |V31 |OK
|C2 |V22 |setup cause by definition |V11 |V31 |OK
|C3 |V32 |setup cause by definition |V11 |V21 |OK

Step 3.5. Test data collection and analysis.

After the manual execution of the test cases, it has been confirmed that each of the cause
candidates independently is problematic and causes the undesired effect. This also means
that the combinations of causes lead to the undesired effect. The domain experts H1 and
rejected H0. No further investigation is needed. Furthermore, FMEA countermeasures
have been established.

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1 V11 V21 V31 OK OK H0 yes yes
TC 2 V12 V21 V31 NOK NOK H1 yes yes
TC 3 V11 V22 V31 NOK NOK H1 yes yes
TC 5 V11 V21 V32 NOK NOK H1 yes yes

Table 4.14: Test cases reduced example.

66



CHAPTER 5
Software Engineering Use Case:

Algorithm Performance

This chapter introduces the illustrative use case from the large-scale Company A with
in-house software development. The company employs more than 20.000 employees in 20
countries worldwide and delivers its services to over 20 million registered online customers.
One of the in-house software developments is located in Austria and has around 400
colleagues. Software infrastructure includes nearly one thousand micro services which
deliver data to various end products. One of the multiple micro services developed by
the software department is a Web service delivering data to the front-end application for
the end users. For the purposes of the thesis, together with the domain experts from the
Company A, Use case "Algorithm performance" has been selected.

Section 5.1 is designed to present the detailed use case analysis. In Section 5.2 the
process of building PAN is described. Section 5.3 presents the multi-view risk assessment
conducted in cooperation with the domain experts. Section 5.4 addresses the multi-aspect
test case specification process within the use case. Finally, Section 5.5 presents the
evaluation of the method by the domain experts from the company A.

5.1 Algorithm Performance – Use Case Analysis
The testing task is to assure that the software algorithm responsible for the data delivery
works as expected and the Web service delivers the data within an expected time window.
If the data is not delivered by the service within an expected time window, visible delays
could appear on the front-end of the application. The testing task is necessary since the
response time is the critical measurement for customers’ satisfaction. In order to save
testers’ time and effort, a test automation project is in place. The test case results coming
from the automated test execution, therefore, are not only dependent on the performance

67



5. Software Engineering Use Case: Algorithm Performance

of the software algorithm, the performance of underlying Web service infrastructure,
e.g., a virtual machine where the service is deployed, but also on the performance of the
underlying automation system, e.g., a virtual machine where the test case is executed.
The use case illustrates how test engineers cope with the uncertainty related to possible
causes of the failure in the current scenario. In order to better understand the challenges,
in the following text project stakeholders and their dependencies regarding knowledge
sharing are introduced.

Project stakeholders

Quality manager is responsible for delivering of the best quality software with regards to
the pre-defined deadlines. In order to assure the quality, the quality manager is involved
in all stages of the software development cycle and supports other stakeholders in their
tasks.

Hardware engineers are responsible for maintenance and scaling of hardware for the host
machines where the virtual machines are set up.

Software engineers develop code for various services and application to be tested by test
engineers. Among the other tasks of software engineers are confirmation about the found
issues and investigation of their nature.

Leanops engineers help in creation of Jenkins1 scripts needed for the automation project.
They maintain and plan resources for Jenkins virtual machines as well as maintain hosts
for the virtual machines.

Test engineers design, implement and execute manual test cases as well implement test
cases with regards for acceptance criteria from the automation tasks. Among the other
tasks of test engineers are analysis of Jenkins nightly report and send an e-mail to all
stakeholders

Test automation engineers test automation infrastructure to allow test engineers to
implement test scripts. They control status of the assigned automation stories, identify
dependencies and blockers, maintain the automation framework. Among the other tasks
of test automation engineers are performance of code reviews and follow up on feedback
implementation.

Figure 5.1 illustrates the stakeholders involved in the automation project, their interactions
and dependencies. Stakeholders are represented by person-like icons of different colors.
The arrows corresponding to the color of a stakeholder represent information requested
by the stakeholder from the others. The incoming arrows represent the response from the
others. In order for a test engineer to find out why the data could not be delivered by the
consumer service within an expected time window, knowledge from other stakeholders is
necessary. As was already mentioned before, performance of the test case results coming
from the automated test case execution can depend not only on a virtual machine where
the service is deployed, but also on the performance of the underlying automation system,

1Jenkins: https://www.jenkins.io/

68

https://www.jenkins.io/


5.1. Algorithm Performance – Use Case Analysis

e.g., a virtual machine where the test case is executed. Therefore, at Company A, the
tester needs to ask software engineers, leanOps engineers and hardware engineers about
various influences which could cause the issue. Following, the tester reports the results
to the quality manager.

Figure 5.1: Company A - Test automation project stakeholders.

As-Is-Analysis: Test case specification without MATCS method

In order for the domain experts to identify causes of potential risks, information from
different domain experts, various reports from the past and technical specifications are
to be collected. Once the information has been collected, the domain experts can start
searching for the cause of the potential risks. The main challenge here is the fact that the
knowledge on underlying systems is distributed among stakeholders which are employed
in different teams and different countries. They are not always available when the tester
needs their support due to different time zones, vacations etc. The tester contacts
different stakeholders according to the past communication experience regarding the
possible causes of the problem and gets re-directed to other domain experts or has to wait
for experts’ availability. Often the times and effort spent on such analysis is unacceptable
due to the agile nature of the company Software development life cycle. Meanwhile the
issue can get to production and undermine customer confidence and the company’s image.

69



5. Software Engineering Use Case: Algorithm Performance

Therefore, in the current scenario, there is often no way for a tester to find the cause
which causes the timeout in a meaningful time frame.

Once the possible causes have been identified, testers can design or extend the existing
test cases. The existing test cases are located in different test management systems across
the company. Testers often do not have access to such artifacts and need to involve
domain experts, which leads again to communication and lack of knowledge challenge. If
the test cases do not exist yet, they should be created. In order to create such test cases,
domain experts should be involved even more, as only they know what levels and values
of the causes could trigger the issue. This information is also sometimes documented at
places which testers from different departments cannot access.

The collected information on causes, their levels and values is then used for test case
design or updates. The information is often limited and enough for a happy path tests.
Testers use Ad-hoc testing and equivalence partitioning testing techniques. Such tests
allow to verify the state of the system at the particular moment of time, since such test
cases are not shared across departments and not maintained. Test data is often created
in order to test the functionality limited to one team or department. The influences
coming from the outside are mocked.

Execution of such test cases is a big challenge by itself. Testers often do not have the
access rights to modify or even view the values of causes from outside their departments
or even their teams. In order to execute such test cases, multiple domain experts are
involved and long meetings or workshops are organized. The results of the test execution
are further analyzed and reported. However, such testing is only done upon demand and
not regularly.

Automation for such tests currently does not exist at Company A.

5.2 Algorithm Performance – PPR Asset Network
Definition

The main focus of this section is presentation of the PAN implemented by the domain
experts from the use case description. The PAN consists of two input and one output
products, two process steps and seventeen resource assets. The domain experts have
identified four types of links representing relationships between the network assets:
Product-Process links, Process-Resource links, Hardware and Software links. The steps
for building a PAN are described in Section 2.1.1 and depicted in Figure 4.2. The
role of the PAN in test case specification is displayed in a more generic Figure 4.1.
Figure 5.3 displays the software engineering PAN representing the use case relevant
set of products, processes and resources, built by the domain experts based mostly on
their professional knowledge and engineering plans. The domain experts have previous
experience with UMLet2 tool, therefore the tool has been used for the graphic design

2UMLet tool: https://www.umlet.com/

70

https://www.umlet.com/


5.3. Algorithm Performance – Software Multi-View Risk Assessment.

Figure 5.2: Company A - Software engineering PPR Asset Network (PAN).

of the PAN. Following, the knowledge model has been implemented in Neo4j software3.
The code of the final knowledge model can be found in Appendix A 8.2.

5.3 Algorithm Performance – Software Multi-View Risk
Assessment.

This section illustrates how domain experts coming from different departments and
disciplines built a Software Engineering Network (SEN) based on the CPPS-RA meta-
model [Biffl et al., 2021]. Following the experts identified related aspects in the SEN
(Figure 5.3) which potentially could contribute to the response timeout. In order to do so
they analyzed product, process, resources (as building blocks of the model), and extended
the basic model with causes, effects, and dependencies. The extended SEN consists of
effects to be observed, related production processes and system resources, influenced by
a set of root causes (see details in the legend of Figure 5.3).

The multi-aspect risk assessment Process was conducted in five main steps with regards
to the multi-view risk assessment method [Biffl et al., 2021] and the extra steps described
in 4.4.

Step 2.1. Identify risk drivers. Within this step of the multi-view risk assessment
process, Table 4.4 has been presented to the domain experts. Based on the nature of
the specified risk and own expertise, the domain experts came to a conclusion that the
presented system requirement is performance, and therefore the risk driver is Performance

3Neo4j tool: https://neo4j.com/

71

https://neo4j.com/


5. Software Engineering Use Case: Algorithm Performance

Figure 5.3: Company A - Multi-aspect cause-effect graph.

risk driver. Based on Felderer and Schieferdecker [2014] performance is not a risk driver
by itself, however, it is a part of the requirement for reliability of the system. Therefore
performance test cases need to be specified.

Step 2.2. Identify risk regions. The insufficient performance of the software algorithm
is a risk. In this scenario, the goal is to identify the assets and their properties which lead
to the undesired effect. Therefore two risk regions are considered: default region with
values when the system is expected to work as designed and the risky region - the region
which should be confirmed and FMEA countermeasures need to be introduced. The
regions are represented by equivalence classes during the test case specification process.

Step 2.3. FMEA: Identify risk and informal cause candidates. In this step,
domain experts followed the FMEA process with the goal and scope specified in order
to define the SuI. The task of this step was to identify and prioritize candidate failure
modes, effects, and risks. For a selected effect E, the domain experts built on Software
Engineering knowledge in the project to elicit a list of possible cause and hypothesis
candidates. The stakeholders used notation such as "Effect E11 could potentially be
caused by causes C1, C2, C3 or their combinations." This means that for the risk Web
service response timeout, the domain experts identified as possible cause candidates an
issue in the Web Service API or insufficient allocated CPU on the Virtual Machine (VM)
where the test usually runs or insufficient CPU allocated on the hypervisor for the VM
where the test usually runs.

Step 2.4. Software engineering risk assessment with Software engineering
network. Step 2.4 includes 3 important sub-steps: 1) explore software engineering
network; 2) analyze cause candidates and cause-effect pathways; 3) build hypothesis

72



5.3. Algorithm Performance – Software Multi-View Risk Assessment.

linked to the SEN.

Step 2.4.1. Explore Software engineering network. In this step, the domain
experts identified assets which are relevant to represent informal cause candidates. The
domain experts started in the SEN from the asset which represents the SuI. The following
query helped the to fetch all assets linked to the SuI:

MATCH (n:Product:PPRAsset {name:"Test run result"})-[*]-(m)
RETURN n,m

Following, they explored SEN assets in an iterative way. The exploration happened by
following selected links between assets, e.g., hardware or software links, which could be
related to the selected effect. The domain experts identified eight pathways:

1. S0 (Test case result) -> S1 (Test code),

2. S0 (Test case result) -> S1 (Web service API),

3. S0 (Test case result) -> S1 (Web service API) -> S2 (allocated RAM),

4. S0 (Test case result) -> S1 (Web service API) -> S2 (operating system),

5. S0 (Test case result) -> S1 (Web service API) -> S2 (allocated CPU),

6. S0 (Test case result) -> S1 (Web service API) -> S2 (allocated CPU) -> S3
(Hypervisor),

7. S0 (Test case result) -> S1 (Web service API) -> S2 (allocated CPU) -> S3
(Hypervisor) -> S4 (RAM),

8. S0 (Test case result) -> S1 (Web service API) -> S2 (allocated CPU) -> S3
(Hypervisor) -> S4 (CPU).

However, not all explored assets are cause candidates. The domain experts selected Web
Server API, allocated CPU and Hypervisor as cause candidates. The result of this step
is a set of links between causes and assets. At this point, the domain experts found the
result set of SEN elements sufficient to motivate relevant cause candidates.

Step 2.4.2. Analyze cause candidates and cause-effect pathways. The domain
experts identified cause candidates linked to the SEN elements found in the risk assessment
Step 2.1, such as an issue in the Web Service API or insufficient allocated CPU on the
Virtual Machine (VM) where the test usually runs or insufficient CPU allocated on
the hypervisor for the VM where the test usually runs. A cause-effect diagram (Figure
5.4) links the SuI, a Web service response timeout, to technically connected assets as
foundation for defining a root cause and a pathway that connects the root cause to the
SuI and the risky effect.

73



5. Software Engineering Use Case: Algorithm Performance

Figure 5.4: Company A - FMEA + PAN: cause-effect pathway (red arrows) leading from
causes (white circles) to an FMEA effect (violet box) via linked assets in a SEN (green
circles), including the test case steps (dashed rectangles).

Step 2.4.3. Build hypothesis linked to the SEN. The domain experts used a
simple restricted language to express their hypotheses based on cause candidates linked
to SEN elements, e.g., H(E11; C1orC2orC3), where E11 represents the effect Web service
response timeout, C1 is issue in the Web Service API, and C2 is insufficient allocated
CPU on the VM where the test usually runs, and C3 is insufficient CPU allocated on the
hypervisor for the VM where the test usually runs.

5.4 Algorithm Performance – MATCS Application
This section illustrates how the test engineer from the Software department of the Com-
pany A, together with the domain experts applied the multi-aspect test case specification
method in order to generate test cases based on the multi-aspect cause-effect knowledge
graph prepared by the domain experts. Following, the test activities were planned,
executed and evaluated. The process includes five steps according to the definition of
MATCS method, which include: 1) scoping; 2) test case derivation; 3) test control and
measurement; 4) test automation; 5) test data collection and analysis.

5.4.1 Step 3.1. Scoping
As described by the MATCS method, the input parameters for this step are: the cause-
effect graph with identified possible causes for specified effects, hypotheses built based
on the cause-effect relationships and multi-aspect environment experience of the domain

74



5.4. Algorithm Performance – MATCS Application

experts. At this step, the domain experts created a document where they described the
desired and undesired effects, the assets linked to the defects, and the possible causes
contributing to the effect.

The desired effect, e.g. data is delivered by the consumer service within an expected time
window, happens when the system works as expected, e.g. all the assets, contributing to
the effect, correspond to the product requirements.

Cause EC1 OK EC2 Risky Can measure Can control Levels of control
C1 : WebServiceAPI

C2 : AllocatedCPU(V M)
C3 : HypervisorSetting

Table 5.1: Company A - Template table for cause candidate EC values

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1
TC 2
TC 3
TC 4
TC 5
TC 6
TC 7
TC 8

Table 5.2: Company A - Template table for test cases

The undesired effect, e.g. data is not delivered by the consumer service within an expected
time window, happens either when one or more of the identified cause candidates is the
root cause or none of the identified cause candidates is the root cause, and the root cause
is at a different asset or a group of assets. The tester, together with the domain experts,
built two hypotheses based on the above stated information:

Null Hypothesis: H0(E11; NOR(C1, C2, C3)). This means that none of the following cause
candidates is the root cause for the effect: an issue in the Web Service API or insufficient
allocated CPU on the VM where the test usually runs or insufficient CPU allocated on the
hypervisor for the VM where the test usually runs. Another representation: P(duration)
!= f (code issue, CPU load, hypervisor setting).

None-Null hypothesis: H1(E11; OR(C1, C2, C3)), where H1(E11; Cn! = Cm) for at least
one pair of n and m. This means that at least one of the cause candidates is the root
cause of the undesired effect. Another representation: P(duration) = f (code issue, CPU
load, hypervisor setting).

The domain experts went iteratively through the cause candidate assets from the hypothe-
ses and prepared a draft Table 5.1 for the cause candidate level values. Cn represents the
number of the cause candidate from the knowledge graph, ECn represents the number of
the equivalence class. The experts defined two possible cause candidate levels per asset,

75



5. Software Engineering Use Case: Algorithm Performance

therefore the Test case template Table 5.1 contains 23 = 8 rows. This means that each of
the three asset levels has two equivalence classes: the cause variable could either have
the specification (EC1 OK) value or risky value (EC2 Risky). The template table is
illustrated by Table 5.2.

5.4.2 Step 3.2. Test case derivation
In this step the domain experts and the tester filled in the values for cause candidates and
the equivalence classes according to their experience, login and technical requirements.
The code version of C1, e.g. the Web service API could be OK or contain heavy
computational operations which lead to the delay on the output. The C3, e.g. hypervisor
CPU setting, could be OK or not OK according to the technical requirements. The C2,
e.g. VM CPU, could be OK or overloaded. However, the domain experts did not know
with what load the CPU is considered as overloaded. In order to define the percentage
of the CPU usage, they needed to conduct an iterative experiment. Each time they
simulated different CPU load on the corresponding virtual machine and re-run the test.
Figure 5.5 illustrates the output of the experiment. The experiment contained four runs
for three CPU load ranges such as 3-6%, 78-81% and 100%. The result data can be
viewed in Appendix A 8.2.The target response time of the service is 200 ms. A slight
degradation appeared within the second range (>100 ms) and unacceptable degradation
withing the third range (>200 ms during 3 out of 4 runs). According to the results,
the domain experts decided that 80% CPU load is the critical value for the host server.
Mitigation should be applied already at 60% because running service consumes 20% on
an average day, which could bring the value to the risk zone. While executing the test case
with CPU 3-6% the experts did not observe any significant performance improvement.
Lowering the CPU load even more is not feasible, and therefore the improvement did not
take place.

Cause EC1 OK EC2 OK EC3 Risky Can measure Can control Levels of control
C2 : CPU(V M) 3-6% 78-81% 100% yes yes domain expert

Table 5.3: Company A - Table for cause candidate with equivalence classes values after
experimentation

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1 OK 3-6% >= 2 [1-200ms] 94ms H0
TC 2 OK 1-81% >= 2 [1-200ms] 106ms H1
TC 3 OK 100% >= 2 [200ms+] 353ms H1

Table 5.4: Company A - Table for experimentation with values from equivalence classes

Based on the analysis, the experts could fill in the tables 5.5 and 5.6 with the corresponding
values. The first test case is a positive test case, which means that if all the values are
set correctly, the timeout does not happen. The other seven test cases are negative test
cases, meaning that if at least one of the values is not set correctly, the timeout happens.

76



5.4. Algorithm Performance – MATCS Application

Figure 5.5: Company A - CPU load on the virtual machine during the four runs
experiment.

Following, the test engineer, together with the domain experts defined the test data
sources, preconditions and post-conditions. Once the set of test cases has been derived,
the test engineer extended the cause-effect graph with the tests related knowledge such
as reference test data and links from the causes to the effects using an iterative approach.

Cause EC1 OK EC2 Risky Can measure Can control Levels of control
C1 : WebServiceAPI V OK V NOK
C2 : AllocatedCPU(V M) <= 80% > 80%
C3 : HypervisorSetting >= 2 cores < 2 cores

Table 5.5: Company A - Table for cause candidates with values from identified equivalence
classes

TC N C1 C2 C3 Exp. res. Act. res. Hn Can control Can automate
TC 1 V OK <= 80% >= 2 cores OK H0
TC 2 V OK > 80% >= 2 cores Timeout H1
TC 3 V NOK > 80% >= 2 cores Timeout H1
TC 4 V NOK <= 80% >= 2 cores Timeout H1
TC 5 V OK > 80% < 2 cores Timeout H1
TC 6 V NOK > 80% < 2 cores Timeout H1
TC 7 V OK <= 80% < 2 cores Timeout H1
TC 8 V NOK <= 80% < 2 cores Timeout H1

Table 5.6: Company A - Table for test cases with equivalence classes values.

77



5. Software Engineering Use Case: Algorithm Performance

5.4.3 Step 3.3. Test control and measurement
At this step, the test engineer in cooperation with the domain experts iterated through
the set of test cases and defined the level of measurement and control. The following
levels of control have been identified:

• tester control: none of the assets. This means the test engineer cannot control any
of the presented assets.

• domain experts (involved in the case study) control: the asset corresponding to C2.
The leanOps engineer can control the allocated CPU on the virtual machine by
removing / adding CPU cores manually.

• domain experts (all) control: all assets. All properties of all the assets related to
this case study can be controlled by one or another domain expert. However, not
all of them participated in the study. Therefore the first two points apply.

Cause EC1 OK EC2Risky Can measure Can control Levels of control
C1 : WebServiceAPI V OK V NOK yes, auto no domain expert
C2 : AllocatedCPU(V M) <= 80% > 80% yes, auto yes domain expert
C3 : HypervisorSetting >= 2 cores < 2 cores no no domain expert

Table 5.7: Company A - Properties of cause candidates.

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1 V OK <= 80% >= 2 cores OK H0 yes yes(default)
TC 2 V OK > 80% >= 2 cores timeout H1 yes no
TC 3 V NOK > 80% >= 2 cores timeout H1 yes no
TC 4 V NOK <= 80% >= 2 cores timeout H1 no no
TC 5 V OK > 80% < 2 cores timeout H1 no no
TC 6 V NOK > 80% < 2 cores timeout H1 no no
TC 7 V OK <= 80% < 2 cores timeout H1 no no
TC 8 V NOK <= 80% < 2 cores timeout H1 no no

Table 5.8: Company A - Test cases.

The following relevant to the cause asset properties levels of measurement have been
identified by the domain experts:

• tester: the assets corresponding to C1 and C2. Test engineer can check the version
of the deployed service API code and measure the CPU load of the virtual machine
automatically.

• domain experts (involved in the case study) measurement: the assets corresponding
to C1 and C2. LeanOps engineer can check the version of the deployed service API
code and measure the CPU load of the virtual machine automatically.

78



5.4. Algorithm Performance – MATCS Application

• domain experts (all) measurement: all assets. All properties of all the assets related
to this case study can be measured by one or another domain expert. However,
not all of them participated in the study. Therefore the first two points apply.

Following, the tester added the info related to the degree of measurement and control
to each of the causes (Table 5.7). Based on the results of the measurement and control
analysis, the test engineer defined which of the test cases could be executed manually
(TC 1 and TC2 in Table 5.8). C3 was excluded from the consideration due to the fact
that it could not be controlled by the domain experts involved in the case study.

5.4.4 Step 3.4. Test automation

Based on the levels of control of each individual asset, the test automation engineer
made the decision to automate TC 1. Since the use case concerns a test automation
project, TC 1 corresponds to the happy path of already automated test case. Based on
the decision of the test automation engineer, keyword-driven test automation approach
[Rwemalika et al., 2019] in Robot framework4 used for the test automation project. There
is no possibility for semi-automated test cases in this scenario. The other test cases
cannot be automated due to the current lack of control rights over the properties of the
network assets. However, control over the CPU load and the hypervisor settings could be
implemented in the future in case the domain experts would like to automate the TC 2.

Figure 5.6: Company A - a snapshot of test cases written following the keyword-driven
test automation approach [Rwemalika et al., 2019] in Robot framework.

79



5. Software Engineering Use Case: Algorithm Performance

TC N C1 C2 C3 Exp. result Act. result Hn Can control Can automate
TC 1 V OK <= 80% >= 2 cores OK OK H0 yes yes(default)
TC 2 V OK > 80% >= 2 cores timeout timeout H1 yes no
TC 3 V NOK > 80% >= 2 cores timeout H1 yes no
TC 4 V NOK <= 80% >= 2 cores timeout H1 no no
TC 5 V OK > 80% < 2 cores timeout H1 no no
TC 6 V NOK > 80% < 2 cores timeout H1 no no
TC 7 V OK <= 80% < 2 cores timeout H1 no no
TC 8 V NOK <= 80% < 2 cores timeout H1 no no

Table 5.9: Company A - Test case results

Figure 5.7: Company A: FMEA + PPR + test related knowledge in Neo4j: cause-effect
pathway (link cause-effect on the left) leading from causes (gray circles on the left) to an
FMEA effect (gray bottom circle on the left) via linked assets in a SEN (orange circles).
Equivalence classes are linked to the FMEA attributes of the FMEA assets (circles linked
to the blue circles).

5.4.5 Step 3.5. Test data collection and analysis
In the final step, the tester executed the automated and manual test cases and validated
the expected results against actual results. Table 5.9 represents the results of the test
run. TC 1 was executed automatically and the expected result is equal to the actual
result. TC 2 was executed manually with help of the domain experts. In this case, the
expected result is equal to the actual result as well. TC 2 due to the current lack of

4Robot framework: https://robotframework.org/

80

https://robotframework.org/


5.5. Algorithm Performance – Evaluation

control rights over the properties of the network assets. However, control over the CPU
load and the hypervisor settings could be implemented in the future in case the domain
expert would like to automate the TC 2.

After the test runs, the tester could reject H0 and failed to reject H1. The root cause of the
timeout is C2, high CPU load on the virtual machine. Based on the info stated above, the
participants of the case study, in context of TDSE, implemented a system improvement
- a conditioned alarm email. It is automatically sent to the relevant stakeholders once
CPU load on the relevant virtual machine reaches 60%. This countermeasure allows the
test engineers responsible for nightly runs analysis save significant amount of time on
debugging and contacting other domain experts.

Specified test cases revealed the lack of access rights for a big group of domain experts to
particular assets. Therefore the test cases could be used in the future as a documentation
on security aspects of the system in context of the TDSE approach.

At the very end the test engineer extended the related to the use case software engineering
knowledge graph with the information regarding cause-effect relationships, links between
cause and effect assets, equivalence classes for the correct and risky output, information
about the possibilities of control and measurement, as well as the information about
the levels of control over the relevant properties of the investigated assets. The model
implemented in Neo4j 5 and depicted in Figure 5.7, the code is presented in Appendix A
8.2 of the paper.

5.5 Algorithm Performance – Evaluation
The research results have been evaluated in a case study with the relevant domain experts:
quality manager, test engineer, test automaton engineer, software developer and leanOps
engineer, based on the requirements specified in Section 4.1 during evaluation workshops.
The traditional test case design and planning approach of the software engineering
department of the Company A has been compared to the novel multi-aspect test case
specification approach. The use case for automated test execution process concerning
algorithm performance has been discussed, in order to better understand the process and
needed knowledge that domain experts refer to when specifying test cases. Execution
of automated tests on a remote virtual machine using Jenkins6 has been discussed, as
well as the important links between hardware and software parts of the system. The
multi-disciplinary domain knowledge required for test case design and represented by
the software engineering network has been investigated, in order for domain experts
to be able to identify an efficient set of tests for the optimal requirements coverage.
The domain experts typically rely on implicit knowledge which is typically limited by a
single discipline, therefore the traditional method includes mental integration of single
discipline-specific models by the domain experts.

5Neo4j tool: https://neo4j.com/
6Jenkins: https://www.jenkins.io/

81

https://neo4j.com/
https://www.jenkins.io/


5. Software Engineering Use Case: Algorithm Performance

5.5.1 Multi-aspect test case specification meta-model and model
requirements

The first part of the evaluation is evaluation of the multi-aspect test case specification
meta-model and model against the requirements (Section 4.1). Following requirements
have been elicited from the literature and preliminary workshops with the domain experts:

R1.1 Representation of cause-effect relationships and testing specific visual
elements and links between them. In the traditional approach, the domain experts
were not familiar with the standard FMEA procedure [Stamatis, 2019], however, they
conducted similar to FMEA steps in order to identify potential problems or the causes
of the existing problems. Whenever there was a potential problem or an improvement,
they organized brainstorming sessions where they viewed their engineering graphs from
single disciplines and discussed future steps. Therefore MATCS implicitly introduced
FMEA to the stakeholders and allowed them to follow the path from cause to the effect
on a unified multi-disciplinary knowledge graph. Moreover, it was the first attempt to
looking at the software system from the CPPS point of view. The domain experts liked
the idea very much. Following, the domain experts stated that the implementation of
the representation of cause-effect relationships and testing specific visual elements and
links between them fulfills the requirement very well.

R1.2 Representation of testing knowledge. Traditional approach allowed the
domain experts to store test case related knowledge in a test management system,
using various articles with different levels of access to information. This knowledge,
however, has not been bound to a knowledge model, and is, therefore, not well organized.
In contrast, MATCS supports sharing and extension of testing knowledge, such as
information regarding the equivalence classes for different effects, levels of measurement
and control, in a unified multi-disciplinary knowledge model. The domain experts found
the implementation of representation of testing knowledge in MATCS very systematic,
while in the traditional approach it is not systematically represented. However, current
capabilities of the Neo4j tool do not allow to represent the equivalence classes the same
way, e.g. sometimes the name of the equivalence class displayed, and sometimes - the
range of values. This is a technical limitation of the tool.

R1.3 Knowledge querying and iterative knowledge extension. In the traditional
test related knowledge specification approach related to multi-disciplinary testing, there
was no systematic way of making implicit expert knowledge explicit. The domain specific
knowledge model allowed the domain experts for systematic knowledge collection in and
from a knowledge model. Knowledge querying and iterative knowledge extension was not
present in the traditional approach, while feedback from the domain experts shows that
the implementation of this feature fulfills the requirement very well.

5.5.2 Multi-aspect test case specification method requirements
The second part of the evaluation is evaluation of the multi-aspect test case specification
method against the requirements (Section 4.1). Following requirements have been elicited

82



5.5. Algorithm Performance – Evaluation

from the literature and preliminary workshops with the domain experts:

R2.1 Key concepts. Key concepts including both, the knowledge model and the method
concepts have been presented to the domain experts in Table 4.2. In the traditional
approach such aspects have been presented as legends for the graphs or methods, therefore
it was not possible to combine testing and system key concepts. The representation of
the key concepts in Table 4.2 fulfills the requirement for the key concepts well.

R2.2 Risk assessment and prioritization. Multi-disciplinary risk assessment was
conducted in a form of brainstorming in the old approach since there was no underlying
multi-disciplinary knowledge model. It was not possible to store the structured outputs
related to the system risks from different departments/disciplines in a systematic way.
Extended multi-view risk assessment based on [Biffl et al., 2021] allowed the domain
experts to conduct iterative multi-disciplinary risk assessment in a systematic way. The
domain experts rate extended CPPS-RA approach higher than the traditional one.

R2.3 Equivalence classes concept support. This requirement was a part of the
"Multi-aspect testing case specification" during the very initial requirements elicitation
phase. However, this requirement needs a separate discussion. The idea of using
equivalence class partitioning [Burnstein, 2003] of the test data space has been taken
from the software development domain, where it is already often in use. Therefore the
domain experts found the technique supportive for both of the presented traditional and
novel approaches. The domain experts defined the minimum possible set of prioritized
test cases thanks to the application of equivalence class partitioning technique and risk
regions definition from the risk assessment step.

R2.4 Multi-aspect test case specification. Specification of test cases par of multi-
aspect test case specification method by itself is a set of logically interconnected well
established testing techniques. However, the techniques are applicable for single disciplines
only. The domain specific knowledge models make the multi-aspect test case specification
usable across multiple disciplines. Taking into consideration the underlying CPPS-RA,
PPR, FMEA concepts, the domain experts rated the multi-aspect test case specification
method as a method very well fulfilling the multi-aspect testing requirement, while the
traditional approach was not able to support the domain experts in multi-aspect test
case specification.

R2.5 Support for multi-aspect test automation. Similar to the multi-aspect test
case specification requirement, support for multi-aspect test automation is based on
multiple other concepts, such as CPPS-RA, PPR, FMEA which makes it different from
the traditional software engineering test automation approaches. It is more powerful
in multi-disciplinary environments, which the domain experts have highlighted. The
traditional approach was not able to support the domain experts in multi-aspect test
automation. MATCS allows the domain experts to establish the scope and limitations
for the tests to automate. However, it is still not easy to implement automated test cases
due to lack of access to various assets by the experts.

83



5. Software Engineering Use Case: Algorithm Performance

5.5.3 Comparative analysis of traditional and MATCS approaches

Knowledge representation requirements Tradit. approach MATCS approach
R1.1 Representation of cause-effect hypotheses - - ++
R1.2 Representation of testing knowledge - +
R1.3 Knowledge querying and iterative extension - - ++

Table 5.10: Company A - Analysis of traditional testing knowledge representation and
the MATCS approach.

Test case specification requirements Traditional approach MATCS approach
R2.1 Key concepts - +
R2.2 Equivalence classes concept support ++ ++
R2.3 Risk assessment and prioritization + ++
R2.4 Multi-aspect test case specification - ++
R2.5 Multi-aspect test automation - - O

Table 5.11: Company A - Analysis of traditional test case specification and the MATCS
approach.

In Tables 5.10 and 5.11, columns represent the traditional and novel test case specification
approaches. While the rows of the Table 5.10 represents knowledge representation related
requirements, Table 5.11 represents the method requirements. The cells of the Tables
5.10 and 5.11 display the values based on a 5-point Likert scale [Robinson, 2014] which
represent the evaluation results. The signs + (++) indicate the discussed approach
to satisfy the requirements well (very well), O indicates partial fulfillment, and - (- -)
indicate low (very low) fulfillment of the requirement by the test specification approach.

84



CHAPTER 6
CPPS Engineering Use Case:
Aluminium Surface Cleaning

Process

This chapter introduces the illustrative use case from the large-scale Company B - a
global expert in aluminium manufacturing. The company employs more than 2,500
employees in 8 countries worldwide and delivers aluminium products to customers from
mobility, construction industry, packaging, electrical and mechanical engineering, medical
technology, as well as consumer goods sectors. One of the plants of Company B is located
in Austria and is dedicated to aluminium casting, direct extrusion and impact extrusion
of aluminium products. Around 500 employees contribute to it. The CPPS infrastructure
of the floor includes multiple robotic elements responsible for laser and MIG welding,
washing process of the aluminium products in order to prepare them for MIG welding or
the customer, as well as quality control of the products. Examples of the final products
are battery infrastructure, pressure plates, chassis components, windows, swimming pool
roofs, generators, motors etc. For the purposes of the thesis, together with the domain
experts from the Company B, use case "Aluminium Surface Cleaning Process" has been
selected.

Section 6.1 is designed to present the detailed use case analysis. In Section 6.2 the
process of building PAN is described. Section 6.3 presents the multi-view risk assessment
conducted in cooperation with the domain experts. Section 6.4 addresses the multi-aspect
test case specification process within the use case. Finally, Section 6.5 presents the
evaluation of the method by the domain experts from the Company B.

85



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

6.1 Aluminium Surface Cleaning Process – Use Case
Analysis

In order to prepare aluminium details for further welding or packaging, aluminum surface
cleaning is required. Aluminum surface cleaning within the company production process
is done using an industrial washing machine (Figure 6.1).

Figure 6.1: Company B - Industrial washing machine for aluminum surface cleaning.

The aluminium details are delivered by a transport robot to the machine one-by-one
and undergo degreasing, etching, washing and drying procedures in chambers one-six in
first in - first out order. Once the detailed has been cleaned, another transport robot
picks it up from the other side of the machine and deliveries it to the next station. For
the process distilled water is used. The process is depicted in Figure 6.2. The washing
machine consists of six chambers designed for different purposes corresponding to the
aluminium surface cleaning process steps:

• Step 1: Degreasing. Chamber one. During this step degreasing of the aluminium
products takes place. This is done in order to be able to remove the oily layer which
appears on the product during the stamping process due to the machines lubrication.

86



6.1. Aluminium Surface Cleaning Process – Use Case Analysis

Figure 6.2: Company B - The five steps industrial aluminium surface cleaning process.
Based on a Company B report file.

This is achieved by spraying of a mixture of an industrial alkaline cleaner with a
tenside solution and distilled water on the aluminium surface. Chemistry tank one
is used in step one.

• Step 2.1 and Step 2.2: Micro etching. Chambers two and three combined. In this
chamber the chemistry tank two is used. In order to prepare the aluminium product
for further welding, etching process takes place.

• Step 3: First cycle of rinsing with water. Chamber four. Once the aluminium
part has reached step three, washing with clean water takes place. At this stage
the mixture of the alkaline cleaner with and tenside solution is removed from the
aluminium surface. Water from this step flows to the water tank one in order to be
re-used.

• Step 4: Second cycle of rinsing with water. Chamber five. One more cycle of
cleaning is done during step five, in order to remove the remaining grease and
physical particles from the surface.

• Step 5: Drying. Chamber six. Step five is designed in order to finalize the cleaning
process. In chamber six the aluminium part undergoes drying process.

Chambers one, two and three are designed to remove the oxidation level using a liquid
alkaline cleaner on the aluminium in order to prepare it for the next steps. Step 1 of the

87



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

Figure 6.3: Company B - Spraying nozzles and the transport system in chamber one.

aluminium surface cleaning process (Figure 6.2) is done in chamber one, steps 2.1 and
step 2.2 happen in chambers two and three. For the chambers one two and three the
following is valid: the best washing effect can be achieved with pH=10,4 for the chemical
bath. In order to achieve the pH level, water temperature in the chamber should be in the
range of 60-70◦C. A decrease of the water temperature leads to an increase of the pH level.
If pH<10,4, brown strains displayed on Figure 6.4 occur. In this case the aluminium
products needs to be melted and produced again. The conductivity of the bath is defined
by the amount of dissolved aluminium in the water. It is not known in advance how much
aluminium will be dissolved by the chemistry from each aluminium part. The maximum
amount of dissolved aluminium in these wash tank should remain under 300mg/L. For
an increased amount of the dissolved aluminium in the chambers an increased amount of
the washing chemistry is required in order to keep the appropriate pH level. Titration
test1 is conducted in order to measure the aluminium and the chemistry concentration in
the bath and keep the appropriate pH level by adjusting the amount of chemistry. A
titration test is an experiment where a volume of a solution of known concentration is
added to a volume of another solution in order to determine its concentration. The test
is supported by the formula:

6.1*(A-B), where:
A is 10mL of the base solution with 100mL of fully desalted water
B is alloy concentration in liquid

1Titration test: https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/
Introductory_Chemistry_(CK-12)/21%3A_Acids_and_Bases/21.17%3A_Titration_
Experiment#:~:text=A%20titration%20is%20an%20experiment,titrations%20can%
20also%20be%20performed.

88

https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/21%3A_Acids_and_Bases/21.17%3A_Titration_Experiment##:~:text=A%20titration%20is%20an%20experiment,titrations%20can%20also%20be%20performed.
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/21%3A_Acids_and_Bases/21.17%3A_Titration_Experiment##:~:text=A%20titration%20is%20an%20experiment,titrations%20can%20also%20be%20performed.
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/21%3A_Acids_and_Bases/21.17%3A_Titration_Experiment##:~:text=A%20titration%20is%20an%20experiment,titrations%20can%20also%20be%20performed.
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/21%3A_Acids_and_Bases/21.17%3A_Titration_Experiment##:~:text=A%20titration%20is%20an%20experiment,titrations%20can%20also%20be%20performed.


6.1. Aluminium Surface Cleaning Process – Use Case Analysis

Figure 6.4: Company B - Aluminium brown strains coloration defect.

Chamber four is required for step 3 of the aluminium surface cleaning process. In this
chamber the chemistry on the aluminium surface is rinsed by desalted water. The
conductivity of water in the fourth chamber could be <1000µS/m2. After the third
chamber the aluminium details are shifted to the fourth chamber for step 4 of the process.
There the details undergo another cycle of rinsing. At this step the conductivity of water
usually remains < 30µS/m2.

The focus of the use case is aluminium surface cleaning cycle time improvement by
decreasing the degreasing time in chamber one. Washing cycle time is the sum of washing
times from each individual chamber. Based on the domain experts’ opinions, improvement
could be achieved by changing parameters of the wash tank related to chamber one. The
goal of MATCS is to reveal the cause-effect paths, build hypotheses based on the output
of extended CPPS-RA, specify test cases to validate the hypotheses stated by the domain
experts, e.g. whether the washing cycle time could be improved by changing parameters
of the wash tank related to chamber one, and define the automation scope and implement
the skeleton for the possible future test cases in Gherkin notation.

Project stakeholders

Figure 6.5 illustrates the stakeholders involved in the aluminium surface cleaning project

89



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

project, their interactions and dependencies. Stakeholders are represented by person-like
icons of different colors. The arrows corresponding to the color of a stakeholder represent
information requested by the stakeholder from the others. Incoming arrows represent the
response from the others. In order for a quality engineer to find out whether aluminium
surface cleaning time could be improved, knowledge from other stakeholders is necessary.
The parameters to investigate are coming from a software driven machine and involve
chemical aspects. Therefore, at the Company B, the quality engineer needs to ask for
information system engineers, mechanical and chemical engineers, the washing expert
and the production leader about various influences which could support the improvement.

Figure 6.5: Company B - Aluminium surface cleaning project stakeholders.

90



6.2. Aluminium Surface Cleaning Process – PPR Asset Network Definition

As-Is-Analysis: Test case specification without MATCS method.

In order to prevent future production issues or introduce improvements, the domain
experts from Company B build a multi-disciplinary PPR [Winkler et al., 2021] knowledge
graph and then follow CPPS-RA [Biffl et al., 2021] steps. At the brainstorming stage
they identify the 5-M-Method or, in other words, Ishikawa diagram2, which helps them
to identify the factors which could influence the end effect. They draw the effect and
provide links to: "Man-Power", "Method", "Milieu" "Matter" and "Means" types of assets.
Following the experts discuss their assumptions and come to a shred conclusion regarding
the matter of the source of the issue or improvement. Most of the sources lay within the
company scope. However, some of the sources might come from the third party providers.
The company has a contractual bound with the providers regrading the support and
consultancy. Once it is clear from which "M" the issue/improvement can come from, the
domain experts follow the FMEA steps based on the PPR knowledge model. Once the
possible causes of a potential issue or improvement have been identified, a test case is
specified and documented on paper. Value of the test case parameters are usually single
values. The goal of such test case is reaching the target reproducibility of the potential
issue or the improvement. Often it is not easy to execute the test case at all, since the
production line should not be stopped for such matters without an approval from the
customers or the production leader, change of the parameters at production stage can be
very risky and the simulation for it often does not exist. In case it is possible to execute
such a test case, it has to be approved by the production leader. After the execution
of the test case the confirmed values are either applied, applied with modifications of
parameters of the other related production units, or rejected. The test case and the
results are then stored digitally in a report in a shared folder. Such test cases do not run
on a regular basis and are not automated. Test case automation has not been considered
yet.

6.2 Aluminium Surface Cleaning Process – PPR Asset
Network Definition

This section aims to give an overview of the PAN implemented by the domain experts
from the use case description. The PAN consists of four input and one output products,
one process step and sixteen resource assets, including the OPC UA controller. The
domain experts have identified five types of links representing relationships between the
network assets: Product-Process links, Process-Resource links, Mechanical and Electrical
links, as well as Controller-Resource link. The steps for building a PAN are described in
Section 2.1.1 and depicted in Figure 4.2. The role of the PAN in test case specification
is displayed in a more generic Figure 6.6. Figure 5.3 displays the software engineering
PAN representing the use case relevant set of products, processes and resources, built by
the domain experts based mostly on their professional knowledge and engineering plans.
The domain experts shared their knowledge, which was later depicted in the graph using

2Ishikawa diagram: https://link.springer.com/book/9789401176903

91

https://link.springer.com/book/9789401176903


6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

UMLet3 tool. Following, the knowledge model has been implemented in Neo4j software4.
The code of the final knowledge model can be found in Appendix B 8.2.

Figure 6.6: Company B - CPPS engineering PPR Asset Network (PAN).

6.3 Aluminium Surface Cleaning Process – CPPS
Multi-View Risk Assessment

This section illustrates how domain experts, such as quality engineer, chemical engineer
and cleaning expert, built CPPS Engineering Network (CEN) based on the CPPS-RA
meta-model [Biffl et al., 2021]. Following the experts identified related aspects in the
CEN which potentially could contribute to the aluminium surface cleaning cycle time
improvement. In order to do so they analyzed product, process, resources (as building
blocks of the model), and extended the basic model with causes, effects, and dependencies.
The extended CEN consists of effects to be observed, related production processes and
system resources, influenced by a set of root causes (details in the legend of Figure 6.8).

The multi-aspect risk assessment Process was conducted in five main steps with regards
to the multi-view risk assessment method [Biffl et al., 2021] and the extra steps described
in 4.4.

3UMLet tool: https://www.umlet.com/
4Neo4j tool: https://neo4j.com/

92

https://www.umlet.com/
https://neo4j.com/


6.3. Aluminium Surface Cleaning Process – CPPS Multi-View Risk Assessment

Step 2.1. Identify risk drivers. Within this step of the multi-view risk assessment
process, Table 4.4 has been presented to the domain experts. Based on the nature of
the specified risk and own expertise, the domain experts came to a conclusion that the
presented system requirement is performance, and therefore the risk driver is Performance
risk driver.

Step 2.2. Identify risk regions. The decrease of the aluminium surface cleaning cycle
time is a system improvement. In this scenario, the goal is to identify the assets and their
properties which lead to the improvement (desired effect). Therefore two risk regions are
considered: default region with values when the system is expected to work as designed
and the improvement region - the region which should be confirmed. The regions are
represented by equivalence classes during the test case specification process.

Step 2.3. FMEA: Identify risk and informal cause candidates. In this step,
domain experts followed the FMEA process with the goal and scope specified in order to
define the SuI. The task of this step was to identify and prioritize candidate improvement
modes, effects, and risks. For a selected effect E, the domain experts built on CPPS
engineering knowledge in the project to elicit a list of possible cause and hypothesis
candidates. The stakeholders used notation such as "Effect E11 could potentially be
caused by cause C1, C2, C3 or their combinations." This means that for the desired risk
aluminium surface cleaning cycle time decreased, the domain experts identified as possible
cause candidates: temperature of the water in the first washing tank, or freshness of the
content of the washing tank which would allow increase concentration of the detergent,
or decreased aluminium concentration in the water, or free from oil input products.

Step 2.4. Multi-view risk assessment with CPPS engineering network. Step
2.4 includes 3 important sub-steps: 1) explore software engineering network; 2) analyze
cause candidates and cause-effect pathways; 3) build hypothesis linked to the CEN.

Step 2.4.1. Explore SuI engineering network. In this step, the domain experts
identified assets which are relevant to represent informal cause candidates. The domain
experts started in the CEN from the asset which represents the SuI, e.g., the improvement.
The following query helps to fetch all assets linked to the SuI:

MATCH (n:Product:PPRAsset {name:"Degreasing"})-[*]-(m)
RETURN n,m

Following, they explored CEN assets in an iterative way. The exploration happened by
following selected links between assets, e.g., mechanical or electrical links, which could
be related to the selected effect. The domain experts identified five pathways:

1. S0 (Degreasing) -> S1 (Wash tank),

2. S0 (Degreasing) -> S1 (Wash tank) -> S2 (Heating element),

3. S0 (Degreasing) -> S1 (Wash tank freshness) -> S2 (Wash tank pH level),

93



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

4. S0 (Degreasing) -> S1 (Amount of grease on the aluminium part),

5. S0 (Degreasing) -> S1 (Concentration of alloy in the wash tank).

Step 2.4.2. Analyze cause candidates and cause-effect pathways. The domain
experts identified cause candidates linked to the CEN elements found in the risk assessment
Step 2.1, such as temperature of the water in the first washing tank, or freshness of the
content of the washing tank which would allow increase concentration of the detergent,
or decreased aluminium concentration in the water, or free from oil input products. A
cause-effect diagram (Figure 6.8) links the SuI, e.g. aluminium surface cleaning cycle
time decrease, to technically connected assets as foundation for defining a cause and a
pathway that connects the root cause to the SuI and the improvement effect. All four
cause-effect paths appeared to be reasonable. In order to identify the most relevant path,
the domain experts prioritized the cause candidates. After this step, only one cause-effect
path remained: S0 (Degreasing) -> S1 (Wash tank) -> S2 (Heating element).

Step 2.4.3. Build hypothesis linked to the CEN. The domain experts used a
simple restricted language to express their hypotheses based on cause candidates linked
to CEN elements, e.g., H(E11; C1), where E11 represents the effect aluminium surface
cleaning cycle time decreased, and C1 water temperature increase in the first wash tank.

6.4 Aluminium Surface Cleaning Process – MATCS
Application

This section illustrates how the quality engineer from the Company B, together with
the domain experts applied the multi-aspect test case specification method in order to
generate test cases based on the multi-aspect cause-effect knowledge graph prepared by
the domain experts. Following, the test activities were planned, executed and evaluated.
The process includes five steps according to the definition of MATCS method, which
include: 1) scoping; 2) test case derivation; 3) test control and measurement; 4) test
automation; 5) test data collection and analysis.

6.4.1 Step 3.1. Scoping
As described by the MATCS method, the input parameters for this step are: the cause-
effect graph with identified possible causes for specified effects, hypotheses built based
on the cause-effect relationships and multi-aspect environment experience of the domain
experts. At this step, the domain experts created a document where they described the
desired and undesired effects, the assets linked to the defects, and the possible causes
contributing to the effect.

Current effect, e.g. standard aluminium surface cleaning cycle time, happens when the
system works as expected, e.g. all the assets, contributing to the effect, correspond to
the product requirements.

94



6.4. Aluminium Surface Cleaning Process – MATCS Application

Cause EC1 OK EC2 Impr. Can measure Can control Levels of control Exec
C1 : Watertemperatureincreased

Table 6.1: Company B - Template table for cause candidate EC values

TC N C1 Exp. result Act.result Hn Can control Can automate Level of exec.
TC 1
TC 2

Table 6.2: Company B - Template table for test cases.

The desired effect, e.g. aluminium surface cleaning cycle time improved, takes place
when the identified cause candidate is the cause responsible for the change and it can be
confirmed. Otherwise, other cause-effect paths need to be taken into consideration. The
tester, together with the domain experts, built two hypotheses based on the above stated
information:

Null Hypothesis: H0(E11; NOR(C1). This means that the temperature increase in the
wash tank does not lead to the aluminium surface cleaning cycle time improvement.
Another representation: P(duration) != f(t).

None-Null hypothesis: H1(E11; OR(C1)). This means that the identified cause candidate
is an actual cause of the improvement. Another representation: P(duration) = f(t).

Following the domain experts went iteratively through the cause candidate assets from
the hypotheses and prepared a draft Table 6.1 for the cause candidate level values. Cn

represents the number of the cause candidate from the knowledge graph, ECn represents
the number of the equivalence class. The experts defined two possible cause candidate
levels per asset, therefore the Test case template Table 6.1 contains two rows. This means
that each of the three asset levels has two equivalence classes: the cause variable could
either have the specification (EC1 OK) value or risky value (EC2 Improvement). The
template table is illustrated by Table 6.2.

6.4.2 Step 3.2. Test case derivation

In this step the domain experts and the quality engineer filled in the values for the cause
candidate and the equivalence classes according to their experience, logs and technical
requirements. The assumption is that the water temperature in the first wash tank
caused by C1, e.g. raising the temperature of using the heating element related controller
user interface. It is known by the domain experts that, in order to keep the pH level
= 10.2, the water temperature range in the first wash tank should be 60-70◦C. Before
the experiment the value for the operator controller was set to max 65◦C. From the
past observations, the domain experts knew that the water could be overheated by 1◦C.
Figure 6.7 displays the controller user interface: the washing chambers with their current
parameters. The temperature is displayed in the right lower corner of the Figure.

95



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

Figure 6.7: Company B - Temperature setting before the experiment.

At first, the domain experts suggested to increase water temperature to 70◦C and collect
the data from the 20 runs. After each run one aluminum part is considered clean. The
domain experts modified the parameter value from the operator user interface during
the maintenance mode and started the system with the new value. However, the system
overheated and the temperature reached 71◦C within two runs. According to the user’s
manual of the controller, 71◦C is the maximum possible water temperature for the first
wash tank and in case of overheating, an alarm should be triggered. Moreover, the
software logic does not allow to input a number higher than 71 to the input field. This
lead the domain experts to the conclusion that the improvement equivalence class should
be 67-69, taking into consideration the overheating factor.

For the second iteration of the experiment, the domain experts adjusted the water
temperature to max 69◦C without stopping the production line. After the 20 runs, the
quality engineer together with the chemical engineer compared the past average washing
time (225sec) with the new average washing time (201sec, the data can be found in
the AppendixB 8.2). The aluminium surface cleaning cycle time improved by 10%.
Following, the quality engineer filled Table 6.3 with the equivalence classes from their
findings:

Based on the analysis, the experts could fill in the table 6.3 with the corresponding values.
The first test case is the default system behavior test case, which means that if all the
values are set correctly, the improvement will not happen. The second test case is the
improvement test case, meaning that if the water temperature is the range [67-69◦C], the

96



6.4. Aluminium Surface Cleaning Process – MATCS Application

Cause EC1 OK EC2 Impr. EC3 Crit. Can measure Can control Levels of control Exec
C1 : Watertincreased [60-66◦C] [67-69◦C] [70-71◦C]

Table 6.3: Company B - Table for the cause candidate with equivalence classes values
after experimentation.

washing time decreases. The third test case is the test case for the critical temperature
value. An FMEA countermeasure was introduced and tested in the past. The third test
case should only be executed when security alarms are tested. Following, the quality
engineer updated the test case Table 6.4.

TC N C1 Exp. res. Act. res. Hn Can control Can automate Exec
TC 1 [60-66◦C] Time avg 225 sec H0
TC 2 [67-69◦C] Time avg 201 sec H1
TC 3 [70-71◦C] Alarm H1

Table 6.4: Company B - Table for test cases with equivalence classes values.

6.4.3 Step 3.3. Test control and measurement

At this step, the test engineer in cooperation with the domain experts iterated through
the set of test cases and defined the level of measurement and control. The following
levels of control have been identified: all present domain experts had the access to the
controller and could modify the temperature using its display.

The following relevant to the cause asset properties levels of measurement have been
identified by the domain experts: all present domain experts could read the temperature
values from the operator display and the logs software.

Following, the quality engineer added the info related to the degree of measurement and
control to the cause (Table 6.5). Based on the results of the measurement and control
analysis, the quality engineer defined which of the test cases could be executed manually:
TC 1 and TC2 without concerns, and TC3 in order to test the safety aspect, Table 6.6.

Cause EC1 OK EC2 Impr. EC3 Crit. Can measure Can control Levels of control Exec
C1 : Watertincreased [60-66◦C] [67-69◦C] [70-71◦C] yes, auto yes, auto all DE prod

Table 6.5: Company B - Properties of cause candidates

TC N C1 Exp. result Act. result Hn Can control Can automate Exec.
TC 1 [60-66◦C] Time avg 225 sec H0 yes yes prod
TC 2 [67-69◦C] Time avg 201 sec H1 yes yes prod
TC 3 [70-71◦C] Alarm Alarm H1 yes yes prod

Table 6.6: Company B - Test cases.

97



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

6.4.4 Step 3.4. Test automation
Based on the analysis from the previous steps and the discussion of the method and
the automation possibilities, the quality engineer decided that running the specified test
cases on a regular basis would make sense. However, in order to do so, software engineers
which were not a part of the case study need to be involved. Moreover, it needs to be plan
carefully far in advance due to the production line schedules, test and results monitoring.
Therefore a Gherkin5 scripts has been prepared for the Company B in order to support
the software engineers in the future:

Feature: H0 testing
As a quality engineer,
I want to test time OK
So I can confirm time OK scenario

Given I assume "temperature increased" is the cause
And I apply temperature max "65"C
And I produce "20" parts
And washing time is avg "225"s
And quality is "OK"
Then I confirm OK scenario

Feature: H1 testing
As a quality engineer,
I want to test time improved
So I can confirm time improved scenario

Given I assume "temperature increased" is the cause
And I apply temperature max "69"C
And I produce "20" parts
And washing time is avg "201"s
And quality is "OK"
Then I confirm time improved scenario

For the potential case of a need of slowing down or speeding up the washing process, the
test cases are stored in the domain knowledge model (Figure 5.7, Appendix B 8.2).

6.4.5 Step 3.5. Test data collection and analysis
In the final step, the quality engineer executed the first two test cases and validated the
expected results against actual results. Table 6.7 represents the results of the test runs.
In both cases, 20 aluminium parts were cleaned. None of the pieces came out of the

5Gherkin syntax: https://cucumber.io/docs/gherkin/

98

https://cucumber.io/docs/gherkin/


6.4. Aluminium Surface Cleaning Process – MATCS Application

TC N C1 Exp. result Act. result Hn Can control Can automate Exec.
TC 1 [60-66◦C] Time avg 225 sec Time avg 225 sec H0 yes yes prod
TC 2 [67-69◦C] Time avg 201 sec Time avg 201 sec H1 yes yes prod
TC 3 [70-71◦C] Alarm Alarm H1 yes yes prod

Table 6.7: Company B - Test case results.

washing machine with a defect. The aluminium surface cleaning cycle time was improved
by 10% by increasing the water temperature in the was tank one. This change can be
introduced as a permanent solution at the Company B without risks and further process
adjustments, e.g. the washing step can run faster without interrupting the production
cycle already now.

After the test runs, the quality engineer could reject H0 and failed to reject H1. The
investigated cause allows the improvement. Specified test cases revealed two dependent
on each other parameters of the system and three sets of values for the parameters, where
all of them have been confirmed by the quality expert. Therefore they could be used in
the future as a part of the documentation on washing process in context of the TDSE
approach.

Figure 6.8: Company B - FMEA + PPR: cause-effect pathway (red arrows) leading from
causes (white circles) to an FMEA effect (violet box) via linked assets in a SEN (green
circles), including the test case steps (dashed rectangles).

At the very end the quality engineer extended the related to the use case software
engineering knowledge graph with the information regarding cause-effect relationships,
links between cause and effect assets, equivalence classes for the correct and improved

99



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

output, information about the possibilities of control and measurement, as well as the
information about the levels of control over the relevant properties of the investigated
assets. The model implemented in Neo4j 6 and depicted in Figure 5.7, the code is
presented in Appendix B 8.2 of the paper.

Figure 6.9: Company B: FMEA + PPR + test related knowledge in Neo4j: cause-effect
pathway (link cause-effect on the left) leading from causes (gray circles on the left) to an
FMEA effect (gray bottom circle on the left) via linked assets in a CEN (orange circles).
Equivalence classes are linked to the FMEA attributes of the FMEA assets (circles linked
to the blue circles).

6.5 Aluminium Surface Cleaning Process – Evaluation
The research results have been evaluated in a case study with the relevant domain experts:
quality engineer, chemical engineer and washing expert based on the requirements specified
in Section 4.1 during evaluation workshops. The traditional test case design and planning
approach of the Company B has been compared to the "intermediate" PAN + CPPS-RA
approach and the novel MATCS approach. The use case for industrial aluminum surface
cleaning process has been discussed, in order to better understand the process and needed
knowledge that domain experts refer to when specifying test cases. The multi-disciplinary

6Neo4j tool: https://neo4j.com/

100

https://neo4j.com/


6.5. Aluminium Surface Cleaning Process – Evaluation

domain knowledge required for test case design and represented by the CPPS engineering
network has been investigated, in order for domain experts to be able to identify an
efficient set of tests for the optimal requirements coverage. The domain experts typically
rely on implicit knowledge which is typically limited by a single discipline, therefore the
traditional method includes mental integration of single discipline-specific models by the
domain experts.

6.5.1 Multi-aspect test case specification meta-model and model
requirements

The first part of the evaluation is evaluation of the multi-aspect test case specification
meta-model and model against the requirements (Section 4.1). Following requirements
have been elicited from the literature and preliminary workshops with the domain experts:

R1.1 Representation of cause-effect relationships and testing specific visual
elements and links between them. In the traditional approach of the Company B
the domain experts used to rely on the knowledge graphs from single disciplines. The
cause-effect relationships could not have been traced withing a single model. Therefore
they were a part of the mental process of preparation for the risk assessment and
testing of hypotheses. In the PAN + CPPS-RA approach representation of cause-effect
relationships and links between them is supported very well (Figure 2.7). However, in
the intermediate approach testing related knowledge is missing on the knowledge graph.
Therefore the domain experts gave the partially fulfilment note to the intermediate
approach. Representation of cause-effect relationships and testing specific visual elements
and links between them in the MATCS approach is supported very well (Figure 4.6).

R1.2 Representation of testing knowledge. This requirement was elicited in order
to allow the domain experts to store and retrieve hypothesis testing related knowledge,
such as equivalence classes, level of control and measurement and levels of executing, in
and from the knowledge graph. In both, traditional and intermediate approaches, the
functionality is currently missing. In The domain experts could not say from the first
view, which bubble from the MATCS model designed in Neo4j corresponds to which asset.
This is the software limitation. Therefore MATCS approach supports the representation
of testing knowledge well and further research on suitable software tools for knowledge
models representation is needed.

R1.3 Knowledge querying and iterative knowledge extension. Knowledge shar-
ing is very much related to knowledge querying and extension. The requirement stated
that the domain experts from different disciplines should be able to store their knowledge
in a unified knowledge model, should be able to retrieve and extend their knowledge and
knowledge of their colleagues. The traditional approach did not support knowledge query-
ing and iterative knowledge extension. Both PAN + CPPS-RA and MATCS approaches
support such expert-model interactions very well (Figure 4.6).

101



6. CPPS Engineering Use Case: Aluminium Surface Cleaning Process

6.5.2 Multi-aspect test case specification method requirements

The second part of the evaluation is evaluation of the multi-aspect test case specification
method against the requirements (Section 4.1). Following requirements have been elicited
from the literature and preliminary workshops with the domain experts:

R2.1 Key concepts. The key concepts of the method, such as a table with the key terms
descriptions, was not present in the traditional Company B approach. The domain experts
used to search for the descriptions of the terms in numerous sources with documentation
or ask the colleagues. In PAN + CPPS-RA the key concepts for PAN and CPPS-RA
aspects are presented very well (Table 2.3). However, the key concepts related to the
hypotheses testing are not described in the table. MATCS approach contains the easily
readable and understandable key concepts Table 4.2 which allows the domain experts to
understand the method without further help.

R2.2 Risk assessment and prioritization. The traditional approach included risk
assessment and prioritization including the standard FMEA steps with the 5-M-Method
represented in Ishikawa diagram based on brainstorming. The intermediate approach
introduces the steps which allow the domain experts to consider well represented conditions
from the underlying systems based on PAN. MATCS is built on the PAN and CPPS-RA
approach and extended. The extension helps the domain experts to identify the system
requirements which drive the risks and define the risk regions to minimize the test scope.

R2.3 Equivalence classes concept support. Equivalence class partitioning technique
is well known in software engineering context. However, the domain experts from the
CPPS domain of the Company B heard about it for the first time. Which means the the
traditional approach did not include the support for it. PAN and CPPS-RA does not
include it either, since it is not designed for hypotheses testing. MATCS includes support
for equivalence classes concept. The domain experts defined the minimum possible set of
prioritized test cases thanks to the application of equivalence class partitioning technique
and risk regions definition from the risk assessment step. The domain experts found the
technique very fitting to their traditional, intermediate and the new MATCS approach.

R2.4 Multi-aspect test case specification. Based on PAN and extended CPPS-RA,
MATCS method gives clear directions regarding the multi-aspect test case specifications.
In the traditional approach the steps were not defined, the knowledge graph did not exist
or was not reusable and did not include all required system views and aspects.

R2.5 Support for multi-aspect test automation. Test automation has not been
considered by the domain experts from the Company B. After MATCS has been introduced
to them, the domain experts discussed the possibilities of automation of the specified
test cases. It is very dangerous to let the tests run without supervision, therefore
precise planning of the data source collection and storage, and the execution schedule
are needed. Test case automaton scope, limitations and a possible course of actions
have been documented and Gherkin scripts were implemented for the future use by the
Company B. Therefore MATCS only partly fulfills the requirement.

102



6.5. Aluminium Surface Cleaning Process – Evaluation

6.5.3 Comparative analysis of traditional, PAN + CPPS-RA and
MATCS approaches

In Tables 6.8 and 6.9, columns represent the traditional and novel test case specification
approaches, while the rows of the Table 6.8 represents knowledge representation related
requirements, while Table 6.9 represents the method requirements. The cells of the Tables
6.8 and 6.9 display the values based on a 5-point Likert scale [Robinson, 2014] which
represent the evaluation results. The signs + (++) indicate the risk assessment approach
to satisfy the requirements well (very well), O indicates partial fulfillment, and - (- -)
indicate low (very low) fulfillment of the requirement by the test specification approach.

Knowledge representation req. Tradit. PAN + CPPS-RA MATCS
R1.1 Representation of cause-effect hypotheses - - O ++
R1.2 Representation of testing knowledge - - +
R1.3 Knowledge querying and iterative extension - - ++ ++

Table 6.8: Company B - Analysis of traditional testing knowledge representation, PAN
and CPPS-RA, and the MATCS approach.

Test case specification requirements Tradit. PAN + CPPS-RA MATCS
R2.1 Key concepts - O ++
R2.2 Equivalence classes concept support - - - - ++
R2.3 Risk assessment and prioritization + ++ ++
R2.4 Multi-aspect test case specification O O ++
R2.5 Multi-aspect test automation - - - - O

Table 6.9: Company B - Analysis of traditional test case specification, PAN and CPPS-RA,
and the MATCS approach.

103





CHAPTER 7
Discussion and Limitations

At this point of time, all results have been evaluated and presented throughout the thesis.
This chapter presents the comparative analysis of MATCS applied in software and CPPS
engineering environments, discusses the Research Issues (RIs) stated in Section 3.1, as
well as limitations of the solution approach. At first, Section 7.1 aims to present the
comparative analysis of MATCS applied at Software and CPPS engineering environments.
Section 7.2 is designed in order to revisit the RIs and discuss the output. At the end, in
Section 7.3, limitations concerning data collection, applicability of the method and scope
of the solution are discussed.

7.1 Comparative Analysis of Case Study Results
This section is designed to provide the comparative analysis of MATCS applied in software
and CPPS engineering environments. Both, Company A and Company B are large-size
companies with multi-disciplinary software-intensive system engineering nature. For
the Company A with a software engineering department it is valid that the software
system is distributed and the software experts are not located in the same country, while
the production system of the Company B represents discreet engineering domain. The
domain experts from the Company A were not familiar with the PAN and CPPS-RA
concepts before the workshops, while for the domain experts from the Company B both
concepts are a part of an ongoing pilot project, however, without the testing approach.
Therefore at the Company A MATCS approach was evaluated against the traditional
approach, while at the Company B the evaluation of MATCS was done against the
traditional and the intermediate PAN + CPPS-RA approaches. Detailed evaluations
of the respective case studies are presented in Chapter 5 and Chapter 6. Figure 7.1
represents the analysis of the combined evaluations of the two case studies conducted in
the scope of this thesis.

105



7. Discussion and Limitations

Figure 7.1: Comparative analysis of MATCS applied at software (Company A) and CPPS
(Company B) engineering environments.

Commonalities. For both groups of the domain experts the idea of deriving test cases
based on the multi-disciplinary cause-effect graph was new and they both liked it very
much due to the MATCS method steps reproducibility and the possibility of knowledge
retrieving and extension. In both cases an efficient set of test cases was achieved thanks
to the combination of FMEA, risk regions and equivalence classes. The study results
indicate that MATCS approach is more efficient for analyzing quality risks once the high
quality PAN has been defined and makes experimenting for system improvements more
systematic compared to a traditional approach. In both cases system improvements
have been revealed based on the test run results. The Company A has implemented the
performance notification improvement and documented the security improvement for the
future. The Company B considers implementation of the performance improvement in
the scope of a bigger improvement project for the future using TDSE approach. The
support of the test case automation was evaluated as partly fulfilled by both of the groups.
MATCS approach offers clear description on how to define the test case automaton scope
and limitations, and implement Gherkin automation scripts. However, for the domain
experts it is still hard to imagine how to automate and schedule such test cases in reality
due to the current implementations of their systems.

Differences. The main differences are familiarity of the domain experts with the
domain specific approaches which were combined in MATCS approach and the test
case specification time. The domain experts from Company A use equivalence class
partitioning technique on daily basis. The domain experts from Company B have never
used it before and were positively surprised how ranges of values instead of single values
make testing more efficient in context in comparison to single values testing. The
domain experts from Company A have never used FMEA approach, instead unstructured
brainstormings were done. Therefore the Company A domain experts were very interested
in application of the approach for their use case. The domain experts from the Company
B conduct FMEA steps often. Risk assessment and prioritization topic was nothing new

106



7.2. Discussion of the Results

for the domain experts from the Company B due to their experience with the approach
from the above mentioned pilot project. The domain experts from the Company A found
the MATCS risk assessment and prioritization part more structured than their traditional
approach. Table of MATCS key concepts was well received by both groups, however, the
domain experts from the software engineering domain have better organized legends on
their engineering plans than their colleagues from Company B. Finally, since the domain
experts from the Company B are familiar with the PAN concepts, it took them much
less time to build the engineering network. This means that initial effort is needed to
setup a high quality PAN prior test case specification phase.

7.2 Discussion of the Results

In this section all three Research Issues (RIs) stated in Section 3.1 are discussed, including
the approaches to their solutions, results and evaluations.

7.2.1 RI1: Risk drivers for multi-aspect testing of system
requirements.

The aim of the first RI was to investigate together with the domain experts from different
disciplines identified and combined from the related literature sub-sets of risk drivers for
different software-intensive engineering contexts, such as software Engineering and Cyber-
physical Production Systems (CPPS) engineering. Knowing the system requirements
which motivate risks is very important for quality managers, quality engineers and other
domain experts, as this knowledge allows the domain experts to categorize risks [Felderer
and Schieferdecker, 2014] and encapsulate the categorization into the Multi-aspect Test
Case Specification (MATCS) approach. Furthermore, risks categorization enables better
communication within and across the organizational units and allows engaging the
domain experts with appropriate knowledge. RI1 motivated RQ1: Which risk drivers
motivate multi-aspect risk-based testing of cause-effect hypotheses between production
process characteristics and production resource parameters/influences?

The answer to the RQ1 is based on the discussions in scope of workshops with domain
experts from different engineering disciplines and presented in Table 4.4. Once the most
critical risk drivers have been identified, two use cases have been elicited based on the
set of risk drivers: software engineering use case Algorithm performance and CPPS
engineering use case Aluminium surface cleaning process (described in Chapter 5 and
Chapter 6). Both groups of representatives from Company A and Company B decided
that validation of hypotheses for establishment of countermeasures for timing related
issues and support of timing related improvements are the best scenarios to use the
multi-aspect testing approach for.

107



7. Discussion and Limitations

7.2.2 RI2: Representation of multi-aspect cause-effect hypotheses.

RI2 was motivated by the problematic of representation of cause-effect hypotheses related
implicit knowledge between production process characteristics and production resource
parameters/influences in heterogeneous multi-disciplinary engineering environments.
The RI2 motivated the RQ2: What knowledge model can represent multi-aspect cause-
effect hypotheses between production process characteristics and production resource
parameters/influences?

In order to answer RQ2, software and CPPS engineering domain knowledge models,
Product Process Resource Asset Networks (PAN [Winkler et al., 2021]), based on the
MATCS meta-model (Figure 4.6) were implemented in Neo4j 1 in cooperation with the
domain experts from the Company A and Company B, highlighting the engineering
network characteristics of the use cases (described in Chapter 5 and Chapter 6) elicited
based on the outcome of the RQ1. The MATCS meta-model is built on the CPPS-RA
meta-model [Biffl et al., 2021] and contains, in addition to the cause-effect, Failure
Mode and Effects Analysis (FMEA) and Product Process Resource (PPR) aspects, an
additional important testing layer for cause-effect hypotheses validation. The testing
layer contains the cause definitions which include the equivalence class values, information
about possibility and levels of asset property control and measurement, as well as levels
of execution. The domain knowledge models can be queried and iteratively extended
using the simple easily understandable for experts and non-experts Neo4j syntax.

The concept of PAN has been proven to be relevant and usable within the CPPS
engineering, such as [Kropatschek et al., 2022], [Meixner et al., 2022], [Biffl et al.,
2021], and chemical engineering [Grzymek, 2022] domains. However, based on the
literature research, the first attempt to look at the software engineering domain from
the CPPS point of view has been done in this thesis. The previous research in the
software engineering area focused on unifying implicit knowledge purely on software and
software related artefacts, such as requirements, modeling and programming languages, in
a knowledge model with the ability of cause-effect paths representation Meier et al. [2019].
On the other hand, possibilities of collecting testing related knowledge across multiple
disciplines has been investigated by [Chabot et al., 2016]. The method focuses on multi-
physics sub-systems purely: including components with mechanical, electrical, thermal,
electromagnetic physical features, but does not consider hardware/software controlling
elements. MATCS approach is capable of covering both research gaps. It means that
MATCS on one hand can be applied in software engineering environments and include
the underlying hardware systems, while on the other hand it can support representation
(and validation, see RI3 in 7.2.3) of cause-effect hypotheses in heterogeneous software-
driven multi-disciplinary systems. Even though the applicability of MATCS has been
investigated in contexts of two exemplary use cases representing processes, it showed
promising results. This fact allows the assumption that the solution can involve more
elements of the engineering network and be can applied in the full domains.

1Neo4j tool: https://neo4j.com/

108

https://neo4j.com/


7.3. Limitations

7.2.3 RI3: Multi-aspect test case specification and automation to
validate cause-effect relationships.

The following challenges related to validation of cause-effect hypotheses in multi-disciplinary
engineering environments motivated RI3: in addition to the lack of sufficient multi-
disciplinary knowledge representation, it is insufficient business and code coverage, as
well as resource availability and time limitations. The knowledge representation part has
been resolved by design and implementation of the knowledge model described in RI2 in
7.2.2. The other challenges motivated the RQ3: What are the process steps to support
multi-aspect testing in CPPS and Software engineering?
In order to validate the cause-effect hypotheses and address the testing challenges MATCS
method which allows to specify the relevant minimal set of test cases with the minimum
amount of test data has been designed (Chapter 4), applied in the two case studies and
evaluated (described in Chapter 5 and Chapter 6). The method as well supports the
quality experts with scope and limitations for the test case automation. MATCS method
is conducted in three steps: 1) domain relevant PAN based on [Winkler et al., 2021]
(RQ2); 2) CPPS Risk Assessment (CPPS-RA) which allows to define the cause-effect
hypotheses based on the risks and to prepare the cause-effect graph (extended PAN
based on [Biffl et al., 2021]), extended with risk drivers definition step (RQ1) and risk
regions identification step to limit the amount of specified test cases for validation of the
hypotheses; 3) MATCS which explains how to derive test cases from the cause-effect graph
designed in step 2 and define the minimum amount of test data using the equivalence
classes partitioning approach [Burnstein, 2003], as well as how to set the scope and
limitations for test case automation and gives an answer to RQ3a. MATCS method
together with the risk drivers identification step and MATCS meta-model addresses the
cause-effect hypotheses validation challenges in multi-disciplinary environments, such
as implicit distributed system knowledge [Meier et al., 2020, Biffl et al., 2021], as well
as resource availability and time limitations [Felderer and Ramler, 2014]. Test strategy
discussed in [Li and Kang, 2015] provides support for testing and evaluation of CPS,
however, is designed for reliability testing only and is limited to hardware/software
components and the network architecture. The needed support discussed in [Meixner
et al., 2020] for test case automation in multi-disciplinary engineering environments has
been provided by the method, which answers RQ3b.

7.3 Limitations
This section is designed in order to discuss the limitations of this research that were not
possible to overcome in the scope of this work, with regards to the following aspects:
data collection, use case complexity, applicability of the method, and solution scope.
Data collection. Taking into consideration the fact that selection of the partner
companies was based on the context of the research project and availability, it could be
assumed that within the study availability and selection bias could exist. Furthermore,
the number of domain experts participating in each case study representing different

109



7. Discussion and Limitations

roles was rather limited. Some of the domain experts represented different roles, which
could lead to scarce representation of the engineering roles.

Limited complexity of the selected for evaluation use cases. Both of the selected
use cases represent real World scenarios. The complexity of the scenarios is sufficient
for evaluation of the novel method and real improvements of the systems have been
achieved. The evaluation has been conducted by a limited amount of domain experts
who often represented multiple engineering roles. Other domain experts might have had
other results which could lead have lead to different conclusions.

Limited applicability of the method. Based on the discussion with the domain
experts and definition of risk drivers, two use cases were elicited. The method has been
validated and evaluated for such scenarios as defect detection and system improvements
during production phase. All scenarios were motivated by performance risk driver. More
risk drivers could be investigated in relation to the multi-aspect testing, which could
affect the output of the thesis. For example, security aspect could present certain interest,
as well as application of the method for initial test driven system design.

Limited scope of the solution. The method presented in this work is based on
the requirements from two domains: software engineering and CPPS engineering. The
assumption behind the topic of the thesis is that the quality engineer needs to receive data
from other multiple domain experts, such as software, hardware, mechanical and electrical
engineers, in order to assure the quality on their level. The method therefore could also
be evaluated in other multi-disciplinary contexts, such as, for instance, aerospace or
chemical engineering.

110



CHAPTER 8
Conclusion and Future Work

In this chapter the main findings of this work are concluded. Furthermore, a summary of
the contributions to research is presented. Last, an overview for potential future work is
given.

8.1 Conclusion
This thesis was motivated by the problematic of representation and validation of cause-
effect hypotheses between production process characteristics and production resource
parameters/influences in heterogeneous multi-disciplinary engineering environments,
including the set of standard testing challenges (see Chapter 1). Constantly growing
complexity of modern software-intensive production systems and their heterogeneous
nature makes it challenging for individual experts with different engineering backgrounds
to understand the details of the system and their processes. The quality engineers are
not an exception, since they need to have knowledge about aspects of the system from
multiple disciplines, such as product, process and resource (PPR) specifications, as well
as environmental influences, in order to specify test cases for cause-effect hypotheses
validation. Such knowledge is often implicit and spread across the domain experts, which
adds even more complexity to the already existing testing challenges, such as inefficient
coverage of the system parts and their characteristics, as well as resource availability
and time limitations. Automation of such test cases is often not possible or limited
due to heterogeneous tools, artifacts, and systems. Based on the literature survey and
workshops with domain experts from cyber-physical production systems (CPPS) and
software engineering domains, requirements for the novel MATCS approach have been
elicited. Following, the MATCS approach has been designed and evaluated with regards
to the TDSE approach in two case studies with the above mentioned domain experts.
The results of the work regarding the research questions are summarized in the following
text.

111



8. Conclusion and Future Work

The answer to the (RQ1) Which risk drivers motivate multi-aspect risk-based testing of
cause-effect hypotheses between production process characteristics and production resource
parameters/influences? is a sub-set of system requirements from [ISO25030, 2019]
limited by the system requirements from the related literature and reduced one more time
after the evaluation of the initial sub-set by the domain experts who later participated in
the two case studies. Based on the final set of critical risk drivers, the two use cases for
the case studies have been elicited.

To answer (RQ2) What knowledge model can represent multi-aspect cause- effect hy-
potheses between production process characteristics and production resource parameter-
s/influences? Based on PAN [Winkler et al., 2021], CPPS-RA [Biffl et al., 2021] and
additional elicited from literature and proposed by domain experts requirements, MATCS
meta-model has been designed. The meta-model contains the Failure Modes and Effects
Analysis (FMEA) aspect to support systematic and efficient risk management, PPR
Asset Network (PAN) aspect to describe a CPPS structure, cause-effect analysis aspect
to describe the relationships between effects and their causes and finally testing aspect
to extend the domain models with test case knowledge. Two domain knowledge models,
such as CPPS and software engineering knowledge models, have been derived from the
meta-model and implemented. The domain knowledge models allow the domain experts
to make their implicit knowledge explicit and propagate the cause-effect relationships
through the PAN. The resulting models cover the scientific gaps identified from the
literature, such as taking into consideration only software engineering knowledge [Meier
et al., 2019] and investigating only multi-physics sub-systems, including mechanical,
electrical, thermal and electromagnetic features [Chabot et al., 2016].

For the (RQ3) What are the process steps to support multi-aspect testing in CPPS and
software engineering? The five-steps MATCS method has been introduced based on
elicited from literature and proposed by domain experts requirements. The resulting
method covers the research gap identified from [Li and Kang, 2015], such as allowing
to cover other than reliability testing only. RQ3a: What is the minimum set of test
cases and test data a test engineer requires to validate a hypothesis based on cause-
effect relationships? was answered in the following way: based on the MATCS domain
knowledge models, FMEA approach, the hypotheses from the CPPS-RA [Biffl et al.,
2021], and Equivalence Partitioning Testing (EPT) which divides the input domain into
classes of data, in order to validate cause-effect hypotheses displayed as cause-effect
relationships in the PAN, MATCS method allows the domain experts to derive the
minimum set of test cases needed for the hypotheses validation without lowering the
results quality. For the RQ3b: What are the test scope and limitations for multi-aspect
test automation? Step 3.3 (Section 4.5.3) of MATCS method was designed to define the
scope and limitations for automation of the sub-set of the test cases.

All three artefacts together create one MATCS approach which was evaluated against the
elicited requirements in CPPS and software engineering domain case studies. Following,
a comparative analysis of the combined results has been conducted. The study results
indicate that initial effort is needed to setup a high quality PAN, however reusing the

112



8.2. Future Work

PAN will reduce the multi-aspect test case specification, automation, data collection
and analysis effort in the future. The initial test space in multi-disciplinary engineering
domains is usually very complex and therefore needs to be reduced efficiently due to
limited resources for testing. MATCS allows saving testing resources without lowering the
quality of the results. MATCS approach is more efficient for analyzing quality risks once
a high quality PAN has been defined and makes experimenting for system improvements
more systematic compared to a traditional approach. Furthermore, MATCS approach
can be used for documentation of system requirements in form of test cases and therefore
can support both, engineering first approach and TDSE based on the software TDD
approach.

8.2 Future Work
The novel method could be applied under a range of different conditions and leaves
numerous possibilities for extension. In this section possible future work is suggested,
based on the discussion and limitations from the previous chapters and ideas which were
not in the scope of this thesis.

Method applicability. It should be investigated whether the novel method can be
applied for use cases elicited based on different than presented in this work risk drivers.

Scope of the solution. While the novel approach is applicable for the elicited use cases
in software and CPPS engineering domains, it should be clarified whether the method
can be applicable for the other use cases in the same and other engineering domains.

Critical risk regions measurement. It is worth investigating how preconditions for
test cases which contain critical values that cannot be executed due to the possible system
or product damage, can be measured to avoid risks.

Improvement test cases which executions are limited by hardware. Some of
the proposed improvements cannot be executed due to the limitations in hardware
specifications. It should be investigated, whether simulations would be capable of
execution of such test cases and whether the test results would be reliable.

Automated test case generation. Automated generation of the test cases which
parameters are stored in the domain knowledge models should be investigated.

Versioning of the knowledge models. The failure mode from the FMEA usually
has dependency on a failure from PAN. For each FMEA a snapshot of the PAN is
used. The values from the snapshot are stored back to the knowledge model. It could
potentially happen that the same parameter values from PAN, in combination with the
other parameters, could lead to different effects. In MATCS approach the versioning of
FMEA is not considered.

113





List of Figures

1.1 Minimal illustrative use case Algorithm performance at Company A. . . . 2
1.2 Use case 4-color printer with Industry 4.0 components. Based on [Biffl et al.,

2020a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Major challenges in test case specification and automation in a multi-disciplinary

engineering environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Key contributions of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Five layer IoT architecture. Based on [Antão et al., 2018]. . . . . . . . . 13
2.2 CPPS testing requirements. Based on [Antão et al., 2018]. . . . . . . . . 14
2.3 PPR concept model. Based on [Sauer et al., 2015]. . . . . . . . . . . . . . 16
2.4 PAN concept meta-model. Based on [Winkler et al., 2021]. . . . . . . . . 16
2.5 PAN of selected assets: robots connected by a transport shuttle. Based

on [Winkler et al., 2021]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 The 8-steps FMEA process. Based on [Stamatis, 2019]. . . . . . . . . . . 20
2.7 CPPS-RA core concepts meta-model [Biffl et al., 2021]. . . . . . . . . . . . 21
2.8 CPPS-RA method overview (in IDEF0 notation [Presley and Liles, 1995]) [Biffl

et al., 2020b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 CPPS-RA CEN Exploration (in IDEF0 notation [Presley and Liles, 1995]) [Biffl

et al., 2021]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10 Test-driven development cycle. Based on [Beck, 2002] . . . . . . . . . . . 26
2.11 Overview of risk-based testing taxonomy. Based on [Felderer and Schiefer-

decker, 2014] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Visual abstract identifying the main elements of the proposed research. Based
on [Engström et al., 2020]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Case study design approach for Company A and Company B. . . . . . . . 38
3.3 Research approach of multi-aspect test case specification method design. . . 41

4.1 Multi-aspect test case specification method overview (in IDEF0 notation
[Presley and Liles, 1995]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 PPR asset, dependency elicitation and PAN definition process (in IDEF0
notation [Presley and Liles, 1995]). Based on Winkler et al. [2021]. . . . 49

4.3 MATCS approach overview (in IDEF0 notation [Presley and Liles, 1995]).
Based on [Biffl et al., 2020b] and extended. . . . . . . . . . . . . . . . . . 50

115



4.4 ISO/IEC SQuaRE, CPPS, software systems risk drivers analysis. . . . . . 50
4.5 Multi-view risk assessment. EN exploration (in IDEF0 notation [Presley and

Liles, 1995]). Based on [Biffl et al., 2021]. . . . . . . . . . . . . . . . . . . 53
4.6 Multi-aspect testing meta-model. Based on [Biffl et al., 2021] and extended [Win-

kler et al., 2022] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Multi-aspect testing MATCS method steps (in IDEF0 notation [Presley and

Liles, 1995]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Generic product-process-resource asset network example. . . . . . . . . . . 61
4.9 Generic product-process-resource asset network exploration with cause candi-

dates example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 FMEA + PPR: cause-effect pathway (red arrows) leading from causes (white

circles) to an FMEA effect (violet box) via linked assets in an example
engineering network (green circles), including the test case steps (dashed
rectangles) [Winkler et al., 2022] . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Company A - Test automation project stakeholders. . . . . . . . . . . . . 69
5.2 Company A - Software engineering PPR Asset Network (PAN). . . . . . . . 71
5.3 Company A - Multi-aspect cause-effect graph. . . . . . . . . . . . . . . . . 72
5.4 Company A - FMEA + PAN: cause-effect pathway (red arrows) leading from

causes (white circles) to an FMEA effect (violet box) via linked assets in a
SEN (green circles), including the test case steps (dashed rectangles). . . 74

5.5 Company A - CPU load on the virtual machine during the four runs experi-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Company A - a snapshot of test cases written following the keyword-driven
test automation approach [Rwemalika et al., 2019] in Robot framework. . 79

5.7 Company A: FMEA + PPR + test related knowledge in Neo4j: cause-effect
pathway (link cause-effect on the left) leading from causes (gray circles on the
left) to an FMEA effect (gray bottom circle on the left) via linked assets in a
SEN (orange circles). Equivalence classes are linked to the FMEA attributes
of the FMEA assets (circles linked to the blue circles). . . . . . . . . . . . 80

6.1 Company B - Industrial washing machine for aluminum surface cleaning. 86
6.2 Company B - The five steps industrial aluminium surface cleaning process.

Based on a Company B report file. . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Company B - Spraying nozzles and the transport system in chamber one. 88
6.4 Company B - Aluminium brown strains coloration defect. . . . . . . . . . 89
6.5 Company B - Aluminium surface cleaning project stakeholders. . . . . . . 90
6.6 Company B - CPPS engineering PPR Asset Network (PAN). . . . . . . . 92
6.7 Company B - Temperature setting before the experiment. . . . . . . . . . 96
6.8 Company B - FMEA + PPR: cause-effect pathway (red arrows) leading from

causes (white circles) to an FMEA effect (violet box) via linked assets in a
SEN (green circles), including the test case steps (dashed rectangles). . . 99

116



6.9 Company B: FMEA + PPR + test related knowledge in Neo4j: cause-effect
pathway (link cause-effect on the left) leading from causes (gray circles on the
left) to an FMEA effect (gray bottom circle on the left) via linked assets in a
CEN (orange circles). Equivalence classes are linked to the FMEA attributes
of the FMEA assets (circles linked to the blue circles). . . . . . . . . . . . 100

7.1 Comparative analysis of MATCS applied at software (Company A) and CPPS
(Company B) engineering environments. . . . . . . . . . . . . . . . . . . . 106

1 Company A - Data: algorithm performance time behaviour depending on the
CPU load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2 Company B - Data: aluminium surface cleaning performance time behaviour
depending on the water temperature. . . . . . . . . . . . . . . . . . . . . . 127

117





List of Tables

2.1 ISO/IEC SQuaRE - system requirements. Based on [ISO25030, 2019]. . . . 11
2.2 Software system requirements. Based on [Felderer and Schieferdecker, 2014]. 18
2.3 Key concepts for Risk Assessment with FMEA in a CEN. Based on [Biffl

et al., 2021]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Risk regions and recommendations. . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Key concepts for multi-aspect test case specification method. . . . . . . . 56
4.3 Template Table for Cause Candidate definitions . . . . . . . . . . . . . . . 57
4.4 Template Table for Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Table for Cause Candidate definitions with Level Values . . . . . . . . . . 58
4.6 Table for Test Cases with Equivalence Classes values . . . . . . . . . . . . 58
4.7 Table for Cause Candidate definitions with Levels of Measurement and Control 59
4.8 Table for Test Cases with Levels of Control and Automation . . . . . . . 59
4.9 Table with expected and actual test results. . . . . . . . . . . . . . . . . . 60
4.10 Table for cause candidate definitions with levels of measurement and control

for the generic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Test cases example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.12 Table for cause candidate definitions with levels of measurement and control

for the generic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.13 Test cases example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.14 Test cases reduced example. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Company A - Template table for cause candidate EC values . . . . . . . . 75
5.2 Company A - Template table for test cases . . . . . . . . . . . . . . . . . 75
5.3 Company A - Table for cause candidate with equivalence classes values after

experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Company A - Table for experimentation with values from equivalence classes 76
5.5 Company A - Table for cause candidates with values from identified equivalence

classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Company A - Table for test cases with equivalence classes values. . . . . . 77
5.7 Company A - Properties of cause candidates. . . . . . . . . . . . . . . . . 78
5.8 Company A - Test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.9 Company A - Test case results . . . . . . . . . . . . . . . . . . . . . . . . 80

119



5.10 Company A - Analysis of traditional testing knowledge representation and
the MATCS approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.11 Company A - Analysis of traditional test case specification and the MATCS
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Company B - Template table for cause candidate EC values . . . . . . . . 95
6.2 Company B - Template table for test cases. . . . . . . . . . . . . . . . . . 95
6.3 Company B - Table for the cause candidate with equivalence classes values

after experimentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Company B - Table for test cases with equivalence classes values. . . . . . 97
6.5 Company B - Properties of cause candidates . . . . . . . . . . . . . . . . . 97
6.6 Company B - Test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 Company B - Test case results. . . . . . . . . . . . . . . . . . . . . . . . . 99
6.8 Company B - Analysis of traditional testing knowledge representation, PAN

and CPPS-RA, and the MATCS approach. . . . . . . . . . . . . . . . . . 103
6.9 Company B - Analysis of traditional test case specification, PAN and CPPS-

RA, and the MATCS approach. . . . . . . . . . . . . . . . . . . . . . . . . 103

120



Company A - Software domain
knowledge model code

Company A experiment - data

Figure 1: Company A - Data: algorithm performance time behaviour depending on the
CPU load.

Company A experiment - knowledge model code.

In order to generate the Company A knowledge model, copy the code below and execute
it in Neo4j1 software.

// Product : PPRAssets
MERGE ( ‘ SetupCode ‘ : Product : PPRAsset { ‘name ‘ : " Setup code "} )
MERGE ( ‘ TestCode ‘ : Product : PPRAsset { ‘name ‘ : " Test code "} )
MERGE ( ‘ TestRunResult ‘ : Product : PPRAsset { ‘name ‘ : " Test run

r e s u l t " } )
MERGE ( ‘ TestOutput ‘ : Att r ibute : PPRAttribute { ‘name ‘ : " Output "} )
MERGE ( ‘ TestRunResult ‘ ) −[: has_Attribute ] −( ‘ TestOutput ‘ )
MERGE ( ‘ OutputTimeout ‘ : OutputRiskyTimeout { ‘name ‘ : " Risky " , ‘

value ‘ : " 3 5 3 ms"} )
MERGE ( ‘OutputOK ‘ : OutputOK { ‘name ‘ : "OK" , ‘ value ‘ : " [ 1 −200ms ] " } )
MERGE ( ‘ TestOutput ‘ ) −[: has_Value ] −( ‘ OutputTimeout ‘ )
MERGE ( ‘ TestOutput ‘ ) −[: has_Value ] −( ‘OutputOK ‘ )

// Process : PPRAssets
MERGE ( ‘VMrun ‘ : Process : PPRAsset { ‘name ‘ : " Execute t e s t case on a

v i r t u a l machine "} )
1Neo4j tool: https://neo4j.com/

121

https://neo4j.com/


MERGE ( ‘ RunTestCase ‘ : Process : PPRAsset { ‘name ‘ : " Run t e s t case
code "} )

// Product−Process : PPRAssets Links
MERGE ( ‘VMrun ‘ ) −[ : ‘ has_Input ‘] − >( ‘ SetupCode ‘ )
MERGE ( ‘ RunTestCase ‘ ) −[ : ‘ has_Input ‘] − >( ‘ TestCode ‘ )
MERGE ( ‘ RunTestCase ‘ ) −[ : ‘ has_Input ‘] − >( ‘VMrun ‘ )
MERGE ( ‘ RunTestCase ‘ ) −[ : ‘ has_Ouput ‘] − >( ‘ TestRunResult ‘ )

// Test Resource : PPRAssets
MERGE ( ‘ VMtest ‘ : Resource : PPRAsset { ‘name ‘ : " V i r tua l machine t e s t

" } )
MERGE ( ‘ RAMtest ‘ : Resource : PPRAsset { ‘name ‘ : "RAM t e s t " } )
MERGE ( ‘ CPUtest ‘ : Resource : PPRAsset { ‘name ‘ : "CPU t e s t " } )
MERGE ( ‘ OStest ‘ : Resource : PPRAsset { ‘name ‘ : " OS t e s t " } )
MERGE ( ‘ HypervisorTest ‘ : Resource : PPRAsset { ‘name ‘ : " Hypervisor

t e s t " } )
MERGE ( ‘ HostTest ‘ : Resource : PPRAsset { ‘name ‘ : " Host machine t e s t

" } )
MERGE ( ‘ RamHostTest ‘ : Resource : PPRAsset { ‘name ‘ : "RAM host

machine t e s t " } )
MERGE ( ‘ CPUhostTest ‘ : Resource : PPRAsset { ‘name ‘ : "CPU host

machine t e s t " } )

// Test Process−Resource : PPRAssets Links
MERGE ( ‘VMrun ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘ VMtest ‘ )

// Test has_Software : PPRAssets Links
MERGE ( ‘ VMtest ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ RAMtest ‘ )
MERGE ( ‘ VMtest ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ CPUtest ‘ )
MERGE ( ‘ VMtest ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ OStest ‘ )
MERGE ( ‘ CPUtest ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ HypervisorTest ‘ )

// Test has_Hardware : PPRAssets Links
MERGE ( ‘ HypervisorTest ‘ ) −[ : ‘ has_Hardware ‘ ] −( ‘ HostTest ‘ )
MERGE ( ‘ HostTest ‘ ) −[ : ‘ has_Hardware ‘ ] −( ‘ RamHostTest ‘ )
MERGE ( ‘ HostTest ‘ ) −[ : ‘ has_Hardware ‘ ] −( ‘ CPUhostTest ‘ )

// Se rv i c e Resource : PPRAssets
MERGE ( ‘ WebServiceAPI ‘ : Resource : PPRAsset { ‘name ‘ : " Web s e r v i c e

API "} )
MERGE ( ‘ CodeVersion ‘ : Att r ibute : PPRAttribute { ‘name ‘ : " Vers ion " , ‘

Version ‘ : " 1 0 . 1 . 2 4 " } )

122



MERGE ( ‘ WebServiceAPI ‘ ) −[: has_Attribute ] −( ‘ CodeVersion ‘ )
MERGE ( ‘ VMservice ‘ : Resource : PPRAsset { ‘name ‘ : " V i r t i a l machine

s e r v i c e "} )
MERGE ( ‘ RAMservice ‘ : Resource : PPRAsset { ‘name ‘ : "RAM s e r v i c e "} )
MERGE ( ‘ CPUservice ‘ : Resource : PPRAsset { ‘name ‘ : "CPU s e r v i c e " } )
MERGE ( ‘CPULoad ‘ : Att r ibute : PPRAttribute { ‘name ‘ : " Load " , ‘ value

‘ : " [ 8 8 % ] " } )
MERGE ( ‘ CPUservice ‘ ) −[: has_Attribute ] −( ‘CPULoad ‘ )
MERGE ( ‘ OSservice ‘ : Resource : PPRAsset { ‘name ‘ : " OS s e r v i c e "} )
MERGE ( ‘ Hyperv i sorServ i ce ‘ : Resource : PPRAsset { ‘name ‘ : "

Hypervisor s e r v i c e " } )
MERGE ( ‘ CoreAmount ‘ : Att r ibute : PPRAttribute { ‘name ‘ : " Cores " , ‘

value ‘ : " >=2"})
MERGE ( ‘ Hyperv i sorServ i ce ‘ ) −[: has_Attribute ] −( ‘CoreAmount ‘ )
MERGE ( ‘ HostServ ice ‘ : Resource : PPRAsset { ‘name ‘ : " Host machine

s e r v i c e "} )
MERGE ( ‘ RamHostService ‘ : Resource : PPRAsset { ‘name ‘ : "RAM host

machine s e r v i c e "} )
MERGE ( ‘ CPUhostService ‘ : Resource : PPRAsset { ‘name ‘ : "CPU host

machine s e r v i c e "} )

// Se rv i c e Process−Resource : PPRAssets Links
MERGE ( ‘ RunTestCase ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘ WebServiceAPI ‘ )

// Se rv i c e has_Software : PPRAssets Links
MERGE ( ‘ WebServiceAPI ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ VMservice ‘ )
MERGE ( ‘ VMservice ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ RAMservice ‘ )
MERGE ( ‘ VMservice ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ CPUservice ‘ )
MERGE ( ‘ VMservice ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ OSservice ‘ )
MERGE ( ‘ CPUservice ‘ ) −[ : ‘ has_Software ‘ ] −( ‘ Hyperv i sorServ i ce ‘ )

// Se rv i c e has_Hardware : PPRAssets Links
MERGE ( ‘ Hyperv i sorServ i ce ‘ ) −[ : ‘ has_Hardware ‘ ] −( ‘ HostServ ice ‘ )
MERGE ( ‘ HostServ ice ‘ ) −[ : ‘ has_Hardware ‘ ] −( ‘ RamHostService ‘ )
MERGE ( ‘ HostServ ice ‘ ) −[ : ‘ has_Hardware ‘ ] −( ‘ CPUhostService ‘ )

// Se rv i c e has_PPRDependency : PPRAssets Links
MERGE ( ‘ TestOutput ‘ ) −[ : ‘ has_PPRDependency ‘] − >( ‘CPULoad ‘ )

// Cause : FMEAAsset
MERGE ( ‘ CoresSettingWrong ‘ : Cause : FMEAAsset { ‘name ‘ : " Cores

s e t t i n g wrong "} )
MERGE ( ‘ Cores ‘ : Att r ibute : FMEAAttribute { ‘name ‘ : " Cores " , ‘

123



CanMeasure ‘ : " No" , ‘ CanControl ‘ : " No" , ‘ LevelsOfControl ‘ : " Domain
expert " , ‘ LevelOfExecution ‘ : " Test " } )

MERGE ( ‘ CoresOK ‘ : EquivalenceClassOK { ‘name ‘ : "OK" , ‘ value
‘ : " >=2"})

MERGE ( ‘ CoresFew ‘ : EquivalenceClassFew { ‘name ‘ : " Low" , ‘ value
‘ : " <2"} )

MERGE ( ‘ CoresSettingWrong ‘ ) −[: has_Attribute ] −( ‘ Cores ‘ )
MERGE ( ‘ Cores ‘ ) −[: has_EQClass ] −( ‘CoresOK ‘ )
MERGE ( ‘ Cores ‘ ) −[: has_EQClass ] −( ‘ CoresFew ‘ )

MERGE ( ‘NotEnoughCPU ‘ : Cause : FMEAAsset { ‘name ‘ : " Not enough CPU
"})

MERGE ( ‘ Load ‘ : Att r ibute : FMEAAttribute { ‘name ‘ : " Load " , ‘
CanMeasure ‘ : " Yes , auto " , ‘ CanControl ‘ : " Yes , auto " , ‘
LevelsOfControl ‘ : " Domain expert " , ‘ LevelOfExecution ‘ : " Test " } )

MERGE ( ‘LoadOK ‘ : EquivalenceClassOK { ‘name ‘ : "OK" , ‘ value
‘ : " [ 3 −80%] "} )

MERGE ( ‘ LoadHigh ‘ : EquivalenceClassHigh { ‘name ‘ : " High " , ‘ value
‘ : " [ 81 −100%]"})

MERGE ( ‘NotEnoughCPU ‘ ) −[: has_Attribute ] −( ‘Load ‘ )
MERGE ( ‘ Load ‘ ) −[: has_EQClass ] −( ‘LoadOK ‘ )
MERGE ( ‘ Load ‘ ) −[: has_EQClass ] −( ‘ LoadHigh ‘ )

MERGE ( ‘ NOKcodeVersion ‘ : Cause : FMEAAsset { ‘name ‘ : "NOK code
ve r s i on "} )

MERGE ( ‘ Version ‘ : Att r ibute : FMEAAttribute { ‘name ‘ : " Vers ion "} )
MERGE ( ‘ NOKcodeVersion ‘ ) −[: has_Attribute ] −( ‘ Version ‘ )
MERGE ( ‘ VersionOK ‘ : EquivalenceClassOK { ‘name ‘ : "OK" , ‘ value

‘ : " [ 1 . 0 . 0 − 1 0 . 1 . 2 2 , 1 0 . 1 . 2 4 ] " } )
MERGE ( ‘ VersionNOK ‘ : EquivalenceClassNOK { ‘name ‘ : "NOK" , ‘ value

‘ : " [ 1 0 . 1 . 2 3 , ? ] " } )
MERGE ( ‘ Version ‘ ) −[: has_EQClass ] −( ‘ VersionOK ‘ )
MERGE ( ‘ Version ‘ ) −[: has_EQClass ] −( ‘VersionNOK ‘ )

// Fault : FMEAAsset
MERGE ( ‘ Timeout ‘ : Fault : FMEAAsset { ‘name ‘ : " Data i s not d e l i v e r e d

on time "} )
MERGE ( ‘ Output ‘ : Att r ibute : FMEAAsset { ‘name ‘ : " Output "} )
MERGE ( ‘ Timeout ‘ ) −[: has_Attribute ] −( ‘ Output ‘ )
MERGE ( ‘ECOutputOK ‘ : EquivalenceClassOK { ‘name ‘ : "OK" , ‘ value

‘ : " [ 1 −200ms ] " } )
MERGE ( ‘ ECTimeout ‘ : EquivalenceRiskyTimeout { ‘name ‘ : " Risky " , ‘

value ‘ : " [ 201 −500ms ] " } )

124



MERGE ( ‘ Output ‘ ) −[: has_EQClass ] −( ‘OutputOK ‘ )
MERGE ( ‘ Output ‘ ) −[: has_EQClass ] −( ‘ECTimeout ‘ )

// Cause−E f f e c t : FMEAAsset Links
MERGE ( ‘ CoresSettingWrong ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘NotEnoughCPU ‘ )
MERGE ( ‘NotEnoughCPU ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘ NOKcodeVersion ‘ )
MERGE ( ‘ NOKcodeVersion ‘ ) −[ : ‘ Cause−Ef f ec t ‘] − >( ‘Timeout ‘ )

// has_FMEADependency : FMEAAsset Links
MERGE ( ‘ Load ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ Cores ‘ )
MERGE ( ‘ Load ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘CPULoad ‘ )
MERGE ( ‘ Version ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ CodeVersion ‘ )
MERGE ( ‘ Cores ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ CoreAmount ‘ )
MERGE ( ‘ OutputTimeout ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ ECTimeout ‘ )
MERGE ( ‘OutputOK ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ECOutputOK ‘ )
MERGE ( ‘ ECTimeout ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ LoadHigh ‘ )
MERGE ( ‘ECOutputOK ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘LoadOK ‘ )

In order to display the knowledge graph, execute:

MATCH (n)
RETURN n

125





Company B - CPPS domain
knowledge model code

Company B experiment - data

Figure 2: Company B - Data: aluminium surface cleaning performance time behaviour
depending on the water temperature.

Company B experiment - knowledge model code.

In order to generate the Company B knowledge model, copy the code below and execute
it in Neo4j2 software.

2Neo4j tool: https://neo4j.com/

127

https://neo4j.com/


// Product : PPRAssets
MERGE ( ‘ Di s t i l l edWater ‘ : Product : PPRAsset { ‘name ‘ : " D i s t l l e d

water " } )
MERGE ( ‘ AluminiumPart ‘ : Product : PPRAsset { ‘name ‘ : " Aluminium part

"} )
MERGE ( ‘ ChemistryAandB ‘ : Product : PPRAsset { ‘name ‘ : " Chemistry A

and B"} )
MERGE ( ‘ AluminiumPartOutput ‘ : Product : PPRAsset { ‘name ‘ : "

Aluminium part degreased "} )
MERGE ( ‘ Grease ‘ : Att r ibute : PPRAttribute { ‘name ‘ : " Grease "} )
MERGE ( ‘ AluminiumPartOutput ‘ ) −[: has_Attribute ] −( ‘ Grease ‘ )

// Process : PPRAssets
MERGE ( ‘ Degreasing ‘ : Process : PPRAsset { ‘name ‘ : " Degreas ing "} )
MERGE ( ‘ DegreasingTime ‘ : Att r ibute : PPRAttribute { ‘name ‘ : "

Degreas ing time "} )
MERGE ( ‘ Degreasing ‘ ) −[: has_Attribute ] −( ‘ DegreasingTime ‘ )
MERGE ( ‘ DegreasingTimeDecreased ‘ : DegreasingTimeImproved { ‘name

‘ : " Degreas ing time decreased " , ‘ value ‘ : " [ 200 −202 s ] " } )
MERGE ( ‘ DegreasingTime ‘ ) −[: has_Value ] −( ‘ DegreasingTimeDecreased

‘ )

// Product−Process : PPRAssets Links
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Input ‘] − >( ‘ Di s t i l l edWater ‘ )
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Input ‘] − >( ‘ AluminiumPart ‘ )
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Input ‘] − >( ‘ChemistryAandB ‘ )
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Ouput ‘] − >( ‘ AluminiumPartOutput ‘ )

// Resource : PPRAssets
MERGE ( ‘ BagFi l ter ‘ : Resource : PPRAsset { ‘name ‘ : " Bag f i l t e r " } )

MERGE ( ‘ ChipFi l t e r ‘ : Resource : PPRAsset { ‘name ‘ : " Chip f i l t e r " } )
MERGE ( ‘ Rol l e r ‘ : Resource : PPRAsset { ‘name ‘ : " Ro l l e r " } )

MERGE ( ‘ Chamber ‘ : Resource : PPRAsset { ‘name ‘ : " Chamber "} )
MERGE ( ‘ Nozzle ‘ : Resource : PPRAsset { ‘name ‘ : " Nozzle " } )
MERGE ( ‘ PressureMeasurmentSensor ‘ : Resource : PPRAsset { ‘name ‘ : "

Pres sure measurment s enso r "} )
MERGE ( ‘ TemperatureMeasurmentSensor ‘ : Resource : PPRAsset { ‘name

‘ : " Temperature measurment s enso r "} )
MERGE ( ‘Pump ‘ : Resource : PPRAsset { ‘name ‘ : " Pump"} )
MERGE ( ‘ LevelMeasurmentSensor ‘ : Resource : PPRAsset { ‘name ‘ : " Leve l

measurment s enso r " } )

128



MERGE ( ‘WashTank ‘ : Resource : PPRAsset { ‘name ‘ : " Wash tank "} )
MERGE ( ‘ AluminiumConcentration ‘ : Att r ibute : PPRAttribute { ‘name

‘ : " Aluminium concent ra t i on "} )
MERGE ( ‘WashTank ‘ ) −[: has_Attribute ] −( ‘ AluminiumConcentration ‘ )
MERGE ( ‘ Freshness ‘ : Att r ibute : PPRAttribute { ‘name ‘ : " Freshness " } )
MERGE ( ‘WashTank ‘ ) −[: has_Attribute ] −( ‘ Freshness ‘ )
MERGE ( ‘ phLevel ‘ : At t r ibute : PPRAttribute { ‘name ‘ : " pH l e v e l " } )
MERGE ( ‘WashTank ‘ ) −[: has_Attribute ] −( ‘ phLevel ‘ )

MERGE ( ‘ Oi lSeparator ‘ : Resource : PPRAsset { ‘name ‘ : " Oi l s epa ra to r
"} )

MERGE ( ‘ HeatingElement ‘ : Resource : PPRAsset { ‘name ‘ : " Heating
element "} )

MERGE ( ‘ HeatingTemperature ‘ : Att r ibute : PPRAttribute { ‘name ‘ : "
Heating temperature "} )

MERGE ( ‘ HeatingElement ‘ ) −[: has_Attribute ] −( ‘ HeatingTemperature
‘ )

MERGE ( ‘ HeatingTemperatureHigh ‘ : HeatingTemperature { ‘name ‘ : "
Heating temperature high " , ‘ value ‘ : " [ 66 −70C] " } )

MERGE ( ‘ HeatingTemperatureLow ‘ : HeatingTemperature { ‘name ‘ : "
Heating temperature low " , ‘ value ‘ : " [ 60 −65C] " } )

MERGE ( ‘ HeatingTemperature ‘ ) −[: has_EQClass ] −( ‘
HeatingTemperatureLow ‘ )

MERGE ( ‘ HeatingTemperature ‘ ) −[: has_EQClass ] −( ‘
HeatingTemperatureHigh ‘ )

MERGE ( ‘ ConductivityMeasurmentDevice ‘ : Resource : PPRAsset { ‘name
‘ : " Conduct iv i ty measurment dev i c e "} )

MERGE ( ‘ ConcentrationMeasurmentDevice ‘ : Resource : PPRAsset { ‘name
‘ : " Concentrat ion measurment dev i c e " } )

MERGE ( ‘ TransportSystem ‘ : Resource : PPRAsset { ‘name ‘ : " Transport
system "} )

// Resource : ITAsset
MERGE ( ‘OPCUA‘ : Resource : ITAsset { ‘name ‘ : "OPC UA"})

// Process−Resource : PPRAssets Links
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘ BagFi l ter ‘ )
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘ ChipFi l t e r ‘ )
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘ Chamber ‘ )

129



MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘WashTank ‘ )
MERGE ( ‘ Degreasing ‘ ) −[ : ‘ has_Resource ‘ ] −( ‘ TransportSystem ‘ )

// has_Mechanical : PPRAssets Links
MERGE ( ‘ ChipFi l t e r ‘ ) −[ : ‘ has_Mechanical ‘ ] −( ‘ Ro l l e r ‘ )
MERGE ( ‘ Chamber ‘ ) −[ : ‘ has_Mechanical ‘ ] −( ‘ Nozzle ‘ )
MERGE ( ‘ Chamber ‘ ) −[ : ‘ has_Mechanical ‘ ] −( ‘Pump‘ )
MERGE ( ‘WashTank ‘ ) −[ : ‘ has_Mechanical ‘ ] −( ‘ Oi lSeparator ‘ )
MERGE ( ‘WashTank ‘ ) −[ : ‘ has_Mechanical ‘ ] −( ‘ HeatingElement ‘ )

// ha s_E l e c t r i c a l : PPRAssets Links
MERGE ( ‘ Chamber ‘ ) −[ : ‘ has_Elec t r i ca l ‘ ] −( ‘ LevelMeasurmentSensor ‘ )
MERGE ( ‘WashTank ‘ ) −[ : ‘ has_Elec t r i ca l ‘ ] −( ‘

ConductivityMeasurmentDevice ‘ )
MERGE ( ‘WashTank ‘ ) −[ : ‘ has_Elec t r i ca l ‘ ] −( ‘

ConcentrationMeasurmentDevice ‘ )
MERGE ( ‘ Nozzle ‘ ) −[ : ‘ has_Elec t r i ca l ‘ ] −( ‘ PressureMeasurmentSensor

‘ )
MERGE ( ‘ Nozzle ‘ ) −[ : ‘ has_Elec t r i ca l ‘ ] −( ‘

TemperatureMeasurmentSensor ‘ )

// Cont ro l l e r −Resource : PPRAssets Links
MERGE ( ‘ HeatingElement ‘ ) −[ : ‘ has_Control ler ‘ ] −( ‘OPCUA‘ )

// has_PPRDependency : PPRAssets Links
MERGE ( ‘ DegreasingTimeDecreased ‘ ) −[ : ‘ has_PPRDependency ‘] − >( ‘

HeatingTemperatureHigh ‘ )

// Cause : FMEAAsset
MERGE ( ‘ TemperatureIncreased ‘ : Cause : FMEAAsset { ‘name ‘ : "

Temperature i n c r ea s ed "} )
MERGE ( ‘ Temperature ‘ : Att r ibute : FMEAAttribute { ‘name ‘ : "

Temperature " , ‘ CanMeasure ‘ : " Yes " , ‘ CanControl ‘ : " Yes " , ‘
LevelsOfControl ‘ : " Domain expert " , ‘ LevelOfExecution ‘ : " Prod "} )

MERGE ( ‘ TemperatureOK ‘ : EquivalenceClassOK { ‘name ‘ : " Washing time
be f o r e " , ‘ value ‘ : " [ 60 −66C] " } )

MERGE ( ‘ TemperatureImpr ‘ : EquivalenceClassImpr { ‘name ‘ : " Washing
time improved " , ‘ value ‘ : " [ 67 −69C] " } )

MERGE ( ‘ TemperatureCr ‘ : EquivalenceClassCr { ‘name ‘ : " C r i t i c a l " , ‘
value ‘ : " [ 70 −71C] " } )

MERGE ( ‘ TemperatureIncreased ‘ ) −[: has_Attribute ] −( ‘ Temperature ‘ )
MERGE ( ‘ Temperature ‘ ) −[: has_EQClass ] −( ‘TemperatureOK ‘ )
MERGE ( ‘ Temperature ‘ ) −[: has_EQClass ] −( ‘ TemperatureImpr ‘ )

130



MERGE ( ‘ Temperature ‘ ) −[: has_EQClass ] −( ‘ TemperatureCr ‘ )

MERGE ( ‘ TankContentFresh ‘ : Cause : FMEAAsset { ‘name ‘ : " Tank content
f r e s h "} )

MERGE ( ‘ DetergentConcentrat ionIncreased ‘ : Cause : FMEAAsset { ‘name
‘ : " Detergent concent ra t i on in c r ea s ed "} )

MERGE ( ‘ AluminiumConcentrationDecreased ‘ : Cause : FMEAAsset { ‘name
‘ : " Aluminium concent ra t i on decreased "} )

MERGE ( ‘ AmountOfGreaseLow ‘ : Cause : FMEAAsset { ‘name ‘ : " Amount o f
g r ea s e low "} )

// Improvement : FMEAAsset
MERGE ( ‘ TimeDecreased ‘ : Cause : FMEAAsset { ‘name ‘ : " Aluminium

s u r f a c e c l e an ing c y c l e time decreased "} )
MERGE ( ‘ Time ‘ : Att r ibute : FMEAAsset { ‘name ‘ : " Time "} )
MERGE ( ‘ TimeDecreased ‘ ) −[: has_Attribute ] −( ‘Time ‘ )
MERGE ( ‘ECLowTemp ‘ : EquivalenceLowTemp { ‘name ‘ : " Avg low

temperature " , ‘ value ‘ : " 2 2 5 s "} )
MERGE ( ‘ECHighTemp ‘ : EquivalenceHighTemp { ‘name ‘ : " Avg high

temperature " , ‘ value ‘ : " 2 0 1 s "} )
MERGE ( ‘ ECCritTemp ‘ : EquivalenceCritTemp { ‘name ‘ : " C r i t i c a l

temperature "} )
MERGE ( ‘ Time ‘ ) −[: has_EQClass ] −( ‘ECLowTemp‘ )
MERGE ( ‘ Time ‘ ) −[: has_EQClass ] −( ‘ECHighTemp ‘ )
MERGE ( ‘ Time ‘ ) −[: has_EQClass ] −( ‘ECCritTemp ‘ )

// Cause−E f f e c t : FMEAAsset Links
MERGE ( ‘ TemperatureIncreased ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘

TimeDecreased ‘ )
MERGE ( ‘ AmountOfGreaseLow ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘ TimeDecreased ‘ )
MERGE ( ‘ TankContentFresh ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘

DetergentConcentrat ionIncreased ‘ )
MERGE ( ‘ DetergentConcentrat ionIncreased ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘

TimeDecreased ‘ )
MERGE ( ‘ AluminiumConcentrationDecreased ‘ ) −[ : ‘ Cause−Ef f ec t ‘ ] −( ‘

TimeDecreased ‘ )

// has_FMEADependency : FMEAAsset Links
MERGE ( ‘ AmountOfGreaseLow ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ Grease ‘ )
MERGE ( ‘ TemperatureIncreased ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘

HeatingTemperature ‘ )
MERGE ( ‘ TankContentFresh ‘ ) −[ : ‘has_FMEADependency ‘ ] −( ‘ phLevel ‘ )
MERGE ( ‘ DetergentConcentrat ionIncreased ‘ ) −[ : ‘has_FMEADependency

131



‘ ] −( ‘ Freshness ‘ )
MERGE ( ‘ AluminiumConcentrationDecreased ‘ ) −[ : ‘has_FMEADependency

‘ ] −( ‘ AluminiumConcentration ‘ )

In order to display the knowledge graph, execute:

MATCH (n)
RETURN n

132



Acronyms

API Application Programming Interface. 72–76, 78

CEN CPPS Engineering Network. 21–23, 92–94, 115, 119

CPPS Cyber-Physical Production System. xiv, 6–10, 12, 14, 15, 17–19, 21, 22, 30, 33,
38–40, 42–45, 48, 50, 51, 82, 85, 92, 93, 101, 102, 105–110, 112, 115–117

CPPS-RA CPPS Risk Assessment. 21–24, 32, 46, 47, 49, 53, 54, 63, 71, 83, 89, 91, 92,
100–103, 105, 108, 109, 112, 115, 120

CPS Cyber-Physical System. 15

CPU Central Processing Unit. 3, 73–78, 81, 116

CS Case Study. 37, 38

CTU Czech Technical University. 16

DSR Design Science Research. 34

EC Equivalence Class. 75, 95, 119, 120

ECP Equivalence Class Partitioning. 27, 43

EN Engineering Network. 48, 49, 52, 53, 57, 60–62, 116

ETFA Emerging Technologies and Factory Automation. 8, 40, 60

FMEA Failure Modes and Effects Analysis. 19–23, 43, 45, 49, 51, 53, 60, 62, 63, 66, 72,
74, 82, 83, 91, 93, 97, 99, 102, 106, 108, 115, 116, 119

I4.0 Industry 4.0. 16

IDEF0 Integration Definition for Process Modelling. 22, 23, 47, 49, 50, 53, 55, 115, 116

IEC International Electrotechnical Commission. 10, 11, 50, 116, 119

133



IEEE Institute of Electrical and Electronics Engineers. 8, 40, 60

IIoT Industrial Internet of Things. 11, 12

ISO International Organization for Standardization. 10, 11, 50, 116, 119

MATCS Multi-Aspect Test Case Specification. 43–45, 47, 48, 50, 53–55, 60, 69, 74,
82–84, 89, 91, 94, 101–103, 105–109, 111–113, 115–117, 120

MDE Multi-Disciplinary Engineering. 9, 10, 18, 38

MIG Metal Inert Gas. 85

PAN PPR Asset Network. 15–17, 39, 44, 46–49, 60, 62, 63, 67, 70, 71, 74, 85, 91, 92,
100–103, 105–109, 112, 113, 115, 116, 120

pH Potential of Hydrogen. 88, 95

PPR Product, Process, Resource. 1, 10, 15, 16, 21, 44, 45, 60, 62, 63, 71, 83, 91, 92, 99,
108, 115, 116

QA Quality Assurance. 48

RA Risk Assessment. 9, 21

RBT Risk-Based Testing. 26

RI Research Issue. 31–33, 105, 107–109

RQ Research Question. 31–34, 44, 107–109, 112

SEN Software Engineering Network. 71, 73, 74, 99, 116

SLR Systematic Literature Review. 36, 37

SQuaRE Systems and software Quality Requirements and Evaluation. 10, 11, 32, 50,
116, 119

SuI System under Inspection. 21, 52, 61, 62, 72, 73, 93, 94

SuT System under Test. 5

TDD Test-driven Development. 42, 43, 113

TDSE Test-driven System Engineering. 35, 42, 81, 99, 106, 111, 113

VM Virtual Machine. 72–76

134



Bibliography

Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pages
1–46, 2011. doi: 10.1109/IEEESTD.2011.6129467.

B. S. Ahmed. Test case minimization approach using fault detection and combinatorial
optimization techniques for configuration-aware structural testing. Engineering Science
and Technology, an International Journal, 19(2):737–753, 2016. ISSN 2215-0986. doi:
https://doi.org/10.1016/j.jestch.2015.11.006.

L. Antão, R. Pinto, J. Reis, and G. Gonçalves. Requirements for testing and validating
the industrial internet of things. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 110–115, 2018. doi:
10.1109/ICSTW.2018.00036.

P. Baxter and S. Jack. Qualitative case study methodology: Study design and
implementation for novice researchers. Qualitative Report, 13, 01 2010. doi:
10.46743/2160-3715/2008.1573.

K. Beck. Test Driven Development. By Example (Addison-Wesley Signature). Addison-
Wesley Longman, Amsterdam, 2002. ISBN 0321146530.

A. Bertolino. Software testing research: Achievements, challenges, dreams. In Future of
Software Engineering (FOSE ’07), pages 85–103, 2007. doi: 10.1109/FOSE.2007.25.

S. Biffl, D. Gerhard, and A. Lüder. Introduction to the Multi-Disciplinary Engineering
for Cyber-Physical Production Systems, pages 1–24. Springer International Publishing,
Cham, 2017a. ISBN 978-3-319-56345-9. doi: 10.1007/978-3-319-56345-9_1. URL
https://doi.org/10.1007/978-3-319-56345-9_1.

S. Biffl, A. Lüder, and D. Gerhard, editors. Multi-Disciplinary Engineering for Cyber-
Physical Production Systems, Data Models and Software Solutions for Handling Com-
plex Engineering Projects. Springer, 2017b. ISBN 978-3-319-56344-2.

S. Biffl, M. Eckhart, A. Luder, and E. Weippl. Security and Quality in Cyber-Physical
Systems Engineering: With Forewords by Robert M. Lee and Tom Gilb. Springer
Publishing Company, Incorporated, 1st edition, 2019. ISBN 3030253112.

135

https://doi.org/10.1007/978-3-319-56345-9_1


S. Biffl, A. Lüder, E. Kiesling, K. Meixner, F. Rinker, C. Engelbrecht, M. Eckhart, and
D. Winkler. Multi-Aspect Risk Exploration in Models for Positioning and Joining
Simulation (Case Study) Part II. Technical Report CDL-SQI-2020-07, CDL-SQI,
Institute for ISE, TU Wien, Nov. 2020a. https://url.tuwien.at/ujyge.

S. Biffl, A. Lueder, K. Meixner, F. Rinker, M. Eckhart, and D. Winkler. Multi-viewmodel
risk assessment for positioning and joining simulation (case study). technical report
cdl-sqi 2020-05. 2020b. ttps://qse.ifs.tuwien.ac.at/cdl-sqi-2020-05/.

S. Biffl, A. Lueder, K. Meixner, F. Rinker, M. Eckhart, and D. Winkler. Multi-View-Model
Risk Assessment in Cyber-Physical Production Systems Engineering. In S. Hammoudi,
L. F. Pires, E. Seidewitz, and R. Soley, editors, Proceedings of the 9th International
Conference on Model-Driven Engineering and Software Development (MODELSWARD
2021), Online, February 6-8, 2019, pages 163–170. SciTePress, Feb. 2021. doi: 10.5220/
0010224801630170.

J. Biolchini, P. Mian, A. Candida, and C. Natali. Systematic review in software engineering.
01 2005.

S. Bisht. Robot framework test automation. Packt Publishing Ltd, 2013.

I. Burnstein. Practical Software Testing. Springer Verlag, 2003. ISBN ISBN0-387-95131-8.

T. Carbone and D. Tippett. Project risk management using the project risk fmea.
Engineering Management Journal, 16, 04 2015. doi: 10.1080/10429247.2004.11415263.

M. Chabot, L. Pierre, and A. Nabais-Moreno. A requirement driven testing method
for multi-disciplinary system design. MODELS ’16, page 396–405, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450343213. doi: 10.1145/
2976767.2976795. URL https://doi.org/10.1145/2976767.2976795.

P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving Software Qual-
ity and Reducing Risk. Addison-Wesley Signature Series. Addison-Wesley, Upper Saddle
River, NJ, 2007. ISBN 978-0-321-33638-5. URL http://my.safaribooksonline.
com/9780321336385.

H. Elmaraghy. Changing and Evolving Products and Systems – Models and Enablers,
pages 25–45. 01 2009. ISBN 978-1-84882-066-1. doi: 10.1007/978-1-84882-067-8_2.

E. Engström, M.-A. Storey, P. Runeson, M. Höst, and M. T. Baldassarre. How soft-
ware engineering research aligns with design science: a review. Empirical Software
Engineering, 25(4):2630–2660, 2020. doi: 10.1007/s10664-020-09818-7.

M. Felderer and R. Ramler. Integrating risk-based testing in industrial test processes.
Software Quality Journal, 22(3):543–575, 2014. doi: 10.1007/s11219-013-9226-y.

136

https://url.tuwien.at/ujyge
ttps://qse.ifs.tuwien.ac.at/cdl-sqi-2020-05/
https://doi.org/10.1145/2976767.2976795
http://my.safaribooksonline.com/9780321336385
http://my.safaribooksonline.com/9780321336385


M. Felderer and I. Schieferdecker. A taxonomy of risk-based testing. International
Journal on Software Tools for Technology Transfer, 16:559–568, 10 2014. doi: 10.1007/
s10009-014-0332-3.

J. Grossmann, M. Felderer, J. Viehmann, and I. Schieferdecker. A taxonomy to assess
and tailor risk-based testing in recent testing standards. IEEE Software, 37(1):40–49,
2020. doi: 10.1109/MS.2019.2915297.

A. Grzymek. Research information system for a smart lab use case scaling up of bio-
fuel plant models. Master’s thesis, Vienna University of Technology, 2022. URL
https://repositum.tuwien.at/handle/20.500.12708/20134.

R. Hametner, D. Winkler, and A. Zoitl. Agile testing concepts based on keyword-driven
testing for industrial automation systems. In IECON 2012 - 38th Annual Conference
on IEEE Industrial Electronics Society, pages 3727–3732, 2012. doi: 10.1109/IECON.
2012.6389298.

P. Hopkin. Fundamentals of Risk Management: Understanding, Evaluating and Imple-
menting Effective Risk Management. Kogan Page, 5th edition, 2018.

W. S. Humphrey. The software engineering process: Definition and scope. SIGSOFT
Softw. Eng. Notes, 14(4):82–83, Apr. 1988. ISSN 0163-5948. doi: 10.1145/75111.75122.
URL https://doi.org/10.1145/75111.75122.

L. Hundt and A. Lüder. Development of a method for the implementation of interoperable
tool chains applying mechatronical thinking — use case engineering of logic control.
In Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies
Factory Automation (ETFA 2012), pages 1–8, 2012. doi: 10.1109/ETFA.2012.6489661.

ISO25030. Iso/iec 25030:2019. systems and software engineering — systems and software
quality requirements and evaluation (square) — quality requirements framework, 2019.
https://www.iso.org/standard/72116.html; (Accessed on 2022-09-25).

ISO25040. Iso/iec 25040:2011. systems and software engineering — systems and software
quality requirements and evaluation (square) — evaluation process, 2011. https:
//www.iso.org/standard/35765.html; (Accessed on 2021-06-16).

J. M. Juran and J. F. Riley. The quality improvement process. McGraw Hill New York,
1999.

T. Jäger, A. Fay, T. Wagner, and U. Löwen. Mining technical dependencies throughout
engineering process knowledge. In ETFA2011, pages 1–7, 2011. doi: 10.1109/ETFA.
2011.6058985.

H. Kagermann, W. Wahlster, and J. Helbig. Recommendations for implementing the
strategic initiative industrie 4.0 – securing the future of german manufacturing industry.
Final report of the industrie 4.0 working group, acatech – National Academy of Science

137

https://repositum.tuwien.at/handle/20.500.12708/20134
https://doi.org/10.1145/75111.75122
https://www.iso.org/standard/72116.html
https://www.iso.org/standard/35765.html
https://www.iso.org/standard/35765.html


and Engineering, München, apr 2013. URL http://forschungsunion.de/pdf/
industrie_4_0_final_report.pdf.

B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews
in software engineering, technical report ebse 2007-001. 2007.

S. Kropatschek, O. Gert, I. Ayatollahi, K. Meixner, E. Kiesling, A. Steigberger, A. Luder,
and S. Biffl. Designing a digital shadow for efficient, low-delay analysis of production
quality risk. In 2022 27th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Stuttgart, Germany, 2022. 8p.

D. R. Kuhn, R. N. Kacker, and Y. Lei. Sp 800-142. practical combinatorial testing.
Technical report, Gaithersburg, MD, USA, 2010.

Z. Li and R. Kang. Strategy for reliability testing and evaluation of cyber physical systems.
In 2015 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM), pages 1001–1006, 2015. doi: 10.1109/IEEM.2015.7385799.

J. Meier, H. Klare, C. Tunjic, C. Atkinson, E. Burger, R. Reussner, and A. Winter.
Single underlying models for projectional, multi-view environments. pages 119–130, 01
2019. doi: 10.5220/0007396401190130.

J. Meier, C. Werner, K. Heiko, T. Christian, U. Aßmann, C. Atkinson, E. Burger,
R. Reussner, and A. Winter. Classifying approaches for constructing single underlying
models. pages 350–375, 2020.

K. Meixner, L. Kathrein, D. Winkler, A. Lüder, and S. Biffl. Efficient test case generation
from product and process model properties and preconditions. In 2020 25th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA),
volume 1, pages 859–866, 2020. doi: 10.1109/ETFA46521.2020.9212003.

K. Meixner, A. Luder, D. Winkler, and S. Biffl. A coordination artifact for multi-
disciplinary reuse in production systems engineering. In 2022 27th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart,
Germany, 2022. 8p.

M. Micallef and C. Colombo. Lessons learnt from using dsls for automated software testing.
In 2015 IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 1–6, 2015. doi: 10.1109/ICSTW.2015.7107472.

G. Myers. The Art of Software Testing. John Wiley Sons, Inc.605 Third Ave. New York,
NYUnited States, 1979. ISBN 978-0-471-04328-7.

E. Note Narciso, M. Delamaro, and F. Nunes. Test case selection: A systematic literature
review. International Journal of Software Engineering and Knowledge Engineering, 24:
653–676, 05 2014. doi: 10.1142/S0218194014500259.

138

http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf


J. Pfrommer, D. Štogl, K. Aleksandrov, S. Navarro, B. Hein, and J. Beyerer. Plug
produce by modelling skills and service-oriented orchestration of reconfigurable
manufacturing systems. at - Automatisierungstechnik, 63:790–800, 10 2015. doi:
10.1515/auto-2014-1157.

A. Presley and D. H. Liles. The use of IDEF0 for the design and specification of
methodologies. In Proceedings of the 4th industrial engineering research conference,
1995.

J. Robinson. Likert Scale, pages 3620–3621. Springer Netherlands, Dordrecht, 2014.
ISBN 978-94-007-0753-5. doi: 10.1007/978-94-007-0753-5_1654. URL https://doi.
org/10.1007/978-94-007-0753-5_1654.

P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg., 14(2):131–164, Apr. 2009. ISSN
1382-3256. doi: 10.1007/s10664-008-9102-8. URL https://doi.org/10.1007/
s10664-008-9102-8.

R. Rwemalika, M. Kintis, M. Papadakis, Y. Le Traon, and P. Lorrach. On the evolution
of keyword-driven test suites. In 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), pages 335–345, 2019. doi: 10.1109/ICST.2019.
00040.

O. Sauer, M. Schleipen, J. Jasperneite, A. Lüder, and H. Flatt. Requirements and concept
for plug-and-work, 10 2015.

N. F. Schneidewind. Computer, network, software, and hardware engineering with
applications. John Wiley & Sons, 2012.

A. Spillner, T. Linz, and H. Schaefer. Software Testing Foundations: A Study Guide for
the Certified Tester Exam. Rocky Nook, 2014.

H. D. Stamatis. Risk Management Using Failure Mode and Effect Analysis (FMEA).
Quality Press, 2019.

J. Stark. Product lifecycle management. In Product Lifecycle Management (Volume 1),
pages 1–29. Springer, 2015.

M. Tuteja, G. Dubey, et al. A research study on importance of testing and quality
assurance in software development life cycle (sdlc) models. International Journal of
Soft Computing and Engineering (IJSCE), 2(3):251–257, 2012.

R. J. Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

D. Winkler, K. Meixner, and S. Biffl. Towards flexible and automated testing in production
systems engineering projects. In 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), volume 1, pages 169–176, 2018. doi:
10.1109/ETFA.2018.8502650.

139

https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8


D. Winkler, P. Novák, K. Meixner, J. Vyskočil, F. Rinker, and S. Biffl. Product-process-
resource asset networks as foundation for improving cpps engineering. In 2021 26th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–4, 2021. doi: 10.1109/ETFA45728.2021.9613253.

D. Winkler, S. Sherstneva, and S. Biffl. Towards multi-view test specification in cpps
engineering. In 2022 27th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Stuttgart, Germany, 2022. 4p.

C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. Experimenta-
tion in Software Engineering. Springer Publishing Company, Incorporated, 2014. ISBN
3642432263.

J. Zavisa, A. Lüder, and A. Calà. Designing cooperating multi-agent systems — an
extended design methodology. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS),
pages 252–257, 2018. doi: 10.1109/ICPHYS.2018.8387668.

X. Zheng and C. Julien. Verification and validation in cyber physical systems: Research
challenges and a way forward. In 2015 IEEE/ACM 1st International Workshop on
Software Engineering for Smart Cyber-Physical Systems, pages 15–18, 2015. doi:
10.1109/SEsCPS.2015.11.

140


	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Aim of the Work
	Structure of the Work

	Related Work
	Multi-disciplinary Engineering
	Risk Management
	Software Systems Testing

	Research Issues and Approach
	Research Issues
	Research Methodology and Approach

	Multi-Aspect Test Case Specification (MATCS) Method 
	Requirements Elicitation
	MATCS Method Overview
	Step 1. Build Product-Process-Resource (PPR) Asset Network
	Step 2. Conduct Multi-View Risk Assessment
	Step 3. Multi-Aspect Test Case Specification
	MATCS Method Application

	Software Engineering Use Case: Algorithm Performance
	Algorithm Performance – Use Case Analysis
	Algorithm Performance – PPR Asset Network Definition
	Algorithm Performance – Software Multi-View Risk Assessment.
	Algorithm Performance – MATCS Application
	Algorithm Performance – Evaluation

	CPPS Engineering Use Case: Aluminium Surface Cleaning Process
	Aluminium Surface Cleaning Process – Use Case Analysis
	Aluminium Surface Cleaning Process – PPR Asset Network Definition
	Aluminium Surface Cleaning Process – CPPS Multi-View Risk Assessment
	Aluminium Surface Cleaning Process – MATCS Application
	Aluminium Surface Cleaning Process – Evaluation

	Discussion and Limitations
	Comparative Analysis of Case Study Results
	Discussion of the Results
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Company A - Software domain knowledge model code
	Company B - CPPS domain knowledge model code
	Acronyms
	Bibliography

